WO2023171059A1 - Construction machine - Google Patents

Construction machine Download PDF

Info

Publication number
WO2023171059A1
WO2023171059A1 PCT/JP2022/044963 JP2022044963W WO2023171059A1 WO 2023171059 A1 WO2023171059 A1 WO 2023171059A1 JP 2022044963 W JP2022044963 W JP 2022044963W WO 2023171059 A1 WO2023171059 A1 WO 2023171059A1
Authority
WO
WIPO (PCT)
Prior art keywords
main body
swing
working device
construction machine
work
Prior art date
Application number
PCT/JP2022/044963
Other languages
French (fr)
Japanese (ja)
Inventor
馬場司
関口政一
森本秀敏
小幡博志
蛯原明光
Original Assignee
日本国土開発株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本国土開発株式会社 filed Critical 日本国土開発株式会社
Publication of WO2023171059A1 publication Critical patent/WO2023171059A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/96Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F7/00Equipment for conveying or separating excavated material
    • E02F7/04Loading devices mounted on a dredger or an excavator hopper dredgers, also equipment for unloading the hopper
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives

Definitions

  • the present invention relates to construction machinery.
  • Patent Document 1 discloses automation of excavation work.
  • Patent Document 1 is a construction machine with a driver's seat, there are restrictions on the layout of the construction machine. Furthermore, since there are restrictions on the layout of construction machines, it is necessary to consider where the construction machines should be installed relative to the construction location during construction, which is not convenient.
  • an object of the present invention is to provide a construction machine that is easy to use.
  • a construction machine includes an upper main body device connected to an upper working device, a lower main body device located below the upper main body device and connected to a lower working device, and a swingable upper main body device.
  • an upper rotating device that rotates the lower main body device
  • a lower rotating device that rotates the lower main body device
  • a control that controls the upper rotating device and the lower rotating device to independently rotate the upper working device and the lower working device.
  • a construction machine includes: an upper main body device connected to an upper working device; a lower main body device located below the upper main body device and connected to the lower working device; an upper swing device that swings the upper working device with respect to the lower main body device; a lower swing device that swings the lower working device with respect to the lower main body device; and a lower swing device that swings the upper working device with respect to the lower main body device;
  • a control device is provided to swing the device and the lower working device independently.
  • the first invention and the second invention it is possible to provide a construction machine that is easy to use.
  • FIG. 1 is a diagram showing a state in which a hydraulic excavator according to an embodiment is viewed from the ⁇ Y direction.
  • FIG. 1 is a diagram showing a state in which a hydraulic excavator according to an embodiment is viewed from the ⁇ X direction.
  • FIG. 1 is a block diagram showing a control system of a hydraulic excavator according to an embodiment.
  • FIGS. 4(a) to 4(c) are diagrams for explaining examples of arrangement of sensor groups. It is a flowchart showing the flow of water pipe installation work (individual work).
  • FIG. 2 is a diagram (part 1) for explaining water pipe installation work (individual work). It is a figure (part 2) for explaining water pipe laying work (individual work).
  • FIGS. 9(a) to 9(c) are diagrams (part 1) for explaining water pipe installation work (simultaneous parallel work).
  • FIGS. 10A and 10B are diagrams (Part 2) for explaining water pipe installation work (simultaneous parallel work).
  • FIGS. 11(a) to 11(c) are diagrams (part 3) for explaining water pipe installation work (simultaneous parallel work). It is a figure which shows the modification of water pipe laying work (simultaneous parallel work).
  • FIGS. 13(a) to 13(c) are diagrams for explaining changes in the posture of the transport device.
  • FIG. 1 is a diagram showing a hydraulic excavator 1 according to the present embodiment.
  • the left-right direction on the page is the X-axis direction
  • the direction perpendicular to the page is the Y-axis direction
  • the vertical direction on the page is the Z-axis direction.
  • FIG. 1 shows a partially sectional view of a hydraulic excavator 1 as viewed from the -Y direction.
  • FIG. 2 shows the hydraulic excavator 1 viewed from the ⁇ X direction.
  • FIG. 3 is a diagram showing a control system of the hydraulic excavator 1.
  • the hydraulic excavator 1 of this embodiment is of an automatic operation type without a driver's seat.
  • the hydraulic excavator 1 may be driven automatically at a construction site, and may be transported on a trailer on public roads.
  • the hydraulic excavator 1 may be operated automatically or remotely at a remote location away from the excavation site.
  • the hydraulic excavator 1 of this embodiment includes a traveling device 20, a lower swing device 30a, an upper swing device 30b, a lifting and swing device 30c, a lower main body device 40a, and an upper main body device 40b. , a lower working device 60a, an upper working device 60b, a lifting device 60c, and a conveying device 80.
  • the hydraulic excavator 1 of this embodiment includes a fuel cell 11, a hydrogen tank 12, and a storage battery 13.
  • the fuel cell 11 is a power generation device that generates electricity through an electrochemical reaction between hydrogen and oxygen.
  • the hydrogen tank 12 stores hydrogen compressed to several tens of MPa, and supplies hydrogen to the fuel cell 11 via a hydrogen supply channel (not shown).
  • the storage battery 13 is a secondary battery that stores the power generated by the fuel cell 11.
  • the storage battery 13 can also be used as an auxiliary power source for driving the fuel cell 11 with the stored power, and also supplies power to each component of the hydraulic excavator 1.
  • the fuel cell 11, hydrogen tank 12, and storage battery 13 are provided, for example, within the lower main unit 40a or on the traveling device 20.
  • the traveling device 20 includes an idler wheel 21, a drive wheel 22, and a pair of crawler belts 23 around which the idler wheel 21 and the drive wheel 22 are wrapped.
  • the traveling device 20 also includes a traveling motor 24 (see FIG. 3) that rotationally drives the driving wheels 22, and drives the pair of tracks 23 in accordance with the rotation of the driving wheels 22, thereby causing the hydraulic excavator 1 to travel. be able to.
  • a traveling motor 24 that rotationally drives the driving wheels 22, and drives the pair of tracks 23 in accordance with the rotation of the driving wheels 22, thereby causing the hydraulic excavator 1 to travel.
  • the traveling motor 24 an in-wheel motor provided so as to be coaxially connected to the drive wheel 22 or a hub of the drive wheel 22 can be used.
  • the traveling device 20 is provided with an outrigger 90.
  • the outrigger 90 can be switched between a state separated from the ground (the state shown in FIG. 1) and a state fixed to the ground.
  • the outriggers 90 are separated from the ground when the traveling device 20 is traveling, and are fixed to the ground when, for example, the lower work device 60a excavates earth or when the lifting device 60c lifts a heavy object.
  • the outriggers 90 that are fixed to the ground stabilize the posture of the entire hydraulic excavator 1 by protruding to the side of the traveling device 20 and touching the ground.
  • the lower swing device 30a is provided between the shaft member 25 provided on the traveling device 20 and extending in the Z-axis direction and the lower main body device 40a.
  • the lower rotating device 30a includes a bearing (not shown) and a lower rotating motor 31a (see FIG. 3), and rotates the lower main body device 40a and the lower working device 60a around the shaft member 25.
  • the lower body device 40a and the lower working device 60a may be rotated by the lower rotating device 30a using a hydraulic device 43, which will be described later.
  • a slip ring mechanism is provided near the lower swing device 30a, and wiring and the like are routed through the slip ring mechanism. Therefore, even if the lower main body device 40a turns, the wiring will not become tangled or disconnected.
  • piping for liquid (hydraulic pressure, water), gas, etc. may be routed using a slip ring mechanism.
  • the upper swing device 30b is provided between the shaft member 25 provided in the traveling device 20 and the upper main body device 40b.
  • the upper rotating device 30b includes a bearing (not shown) and a lower rotating motor 31b (see FIG. 3), and rotates the upper main body device 40b and the upper working device 60b about the shaft member 25.
  • the upper body device 40b and the upper working device 60b may be rotated by the upper rotating device 30b using a hydraulic device 43, which will be described later.
  • a slip ring mechanism is provided near the upper rotating device 30b, similar to the lower rotating device 30a, and wiring and the like are routed through the slip ring mechanism.
  • the lifting and turning device 30c is a device that turns (rotates) the lifting device 60c around the shaft member 25, and is provided between the shaft member 25 and the lifting device 60c.
  • the lifting and turning device 30c includes a bearing (not shown) and a lifting device turning motor 31c (see FIG. 3). Note that the lifting device 60c may be rotated using a hydraulic device 43, which will be described later. Note that a slip ring mechanism is provided near the lifting and rotating device 30c, similar to the lower rotating device 30a and the upper rotating device 30b, and wiring and the like are routed through the slip ring mechanism.
  • the lower body device 40a has a rectangular parallelepiped shape, and a lower working device 60a is connected to the side surface thereof via a swing portion 41a and a swing cylinder 42a serving as a lower swing device.
  • the fuel cell 11, hydrogen tank 12, and storage battery 13 described above can be provided inside the lower main body device 40a.
  • a counterweight (first mass body) 46a is provided inside the lower main body device 40a.
  • the counterweight 46a is movable in the X-axis direction and the Y-axis direction, and is controlled by the control device 50 (see FIG. 3) according to the output of the attitude detector 44 (see FIG. 3) provided in the hydraulic excavator 1.
  • attitude detector 44 an inclinometer, a spirit level, or the like can be used.
  • the fuel cell 11, hydrogen tank 12, and storage battery 13 described above may be used as the counterweight 46a.
  • the fuel cell 11, hydrogen tank 12, and storage battery 13 may be provided in the traveling device 20. Also in this case, at least a portion of the fuel cell 11, hydrogen tank 12, and storage battery 13 may be used as a counterweight.
  • the swing portion 41a is pivoted such that a portion connected to the lower main body device 40a and a portion connected to the boom 53a of the lower working device 60a are rotatable around the Z-axis.
  • the swing cylinder 42a is a hydraulic cylinder whose one end is connected to the lower main body device 40a and the other end is connected to the swing part 41a, and is expanded and contracted by a hydraulic device 43.
  • the lower working device 60a is driven around the Z-axis by the expansion and contraction of the swing cylinder 42a.
  • the hydraulic device 43 has a hydraulic control valve and the like, and as shown in FIG. 3, is supplied with electric power from the storage battery 13 to drive each part.
  • the upper body device 40b has a cylindrical shape, and the upper working device 60b is connected to its upper surface via a swing portion 41b and a swing cylinder 42b serving as an upper swing device. Further, a lifting device 60c is provided at the center of the upper surface of the upper main body device 40b.
  • a counterweight (second mass body) 46b is provided inside the upper main body device 40b.
  • the counterweight 46b is movable in the X-axis direction and the Y-axis direction, and is controlled by the control device 50 (see FIG. 3) according to the output of the attitude detector 44 (see FIG. 3) provided in the hydraulic excavator 1. Movement is controlled by Note that at least a portion of the fuel cell 11, hydrogen tank 12, and storage battery 13 described above may be provided in the upper main body device 40b and used as the counterweight 46b.
  • the horizontal cross-sectional area (XY cross-sectional area) of the lower main body device 40a is larger than the horizontal cross-sectional area (XY cross-sectional area) of the upper main body device 40b. That is, there is a portion of the lower main body device 40a that is not hidden behind the upper main body device 40b and is visible when viewed from above (+Z side). By doing so, the volume (accumulation) of the lower main body device 40a can be made larger than that of the upper main body device 40b, so that the center of gravity of the hydraulic excavator 1 can be set low. Thereby, the posture of the hydraulic excavator 1 can be stabilized.
  • the lower working device 60a is a working device that performs works such as excavating and loading earth and sand, and backfilling earth and sand, which will be described later. As shown in FIG. 1, the lower working device 60a includes a boom 53a, a boom cylinder 54a, an arm 55a, an arm cylinder 56a, a bucket 58a, and a bucket cylinder 59a.
  • the boom 53a is a V-shaped component connected to the lower main body device 40a via the swing portion 41a, and is rotated by a boom cylinder 54a.
  • the arm 55a is connected to the tip of the boom 53a, and is rotated by an arm cylinder 56a.
  • the bucket 58a is connected to the tip of the arm 55a, and is rotated by a bucket cylinder 59a. Note that it is also possible to attach a breaker or the like to the tip of the arm 55a instead of the bucket 58a. It is also assumed that the bucket 58a and other attachments such as the breaker can be replaced at the site.
  • the boom cylinder 54a, the arm cylinder 56a, and the bucket cylinder 59a are hydraulic cylinders that expand and contract using hydraulic pressure. Further, the boom cylinder 54a, the arm cylinder 56a, and the bucket cylinder 59a are extended and contracted by the hydraulic device 43.
  • the upper working device 60b is a working device that performs work such as crushing the road surface, which will be described later. As shown in FIG. 1, the upper working device 60b includes a boom 53b, a boom cylinder 54b, a slide arm 55b, an arm cylinder 56b, a breaker 58b, and a breaker cylinder 59b.
  • the boom 53b is a V-shaped component connected to the upper main body device 40b via the swing portion 41b, and is rotated by a boom cylinder 54b.
  • the slide arm 55b is connected to the tip of the boom 53b, and is rotated by an arm cylinder 56b.
  • the slide arm 55b has a fixed arm 155a and a movable arm 155b, and the movable arm 155b is slidable in the longitudinal direction with respect to the fixed arm 155a (see FIG. 6). Note that the moving arm 155b is moved by hydraulic pressure from the hydraulic device 43.
  • the breaker 58b is connected to the tip of the slide arm 55b, and is rotated by a breaker cylinder 59b. Note that instead of the breaker 58b, it is also possible to attach a bucket or the like to the tip of the slide arm 55b. Further, it is assumed that the breaker 58b and other attachments such as a bucket can be replaced at the site.
  • the boom cylinder 54b, the arm cylinder 56b, and the breaker cylinder 59b are hydraulic cylinders that expand and contract using hydraulic pressure. Further, the boom cylinder 54b, the arm cylinder 56b, and the breaker cylinder 59b are extended and contracted by the hydraulic device 43.
  • the lifting device 60c includes a pole part 160a extending in the Z-axis direction, a first arm part 160b extending in the horizontal direction from near the upper end of the pole part 160a, and a first arm part 160b that is extendable and retractable with respect to the first arm part 160b. It has two arm parts 160c and a crane part 160d provided at the tip of the second arm part 16c.
  • the expansion and contraction of the second arm portion 160c of the lifting device 60c and the vertical movement of the crane portion 160d are realized by using the power of a motor (not shown) rotating using electric power supplied from the storage battery 13. .
  • the lifting device 60c can be used to transport a newly installed water pipe to the installation position or to transport an old water pipe.
  • the lifting device 60c may be used to perform the replacement. Further, when transporting the hydraulic excavator 1 to a construction site, the transport device 80 may be removed, but the lifting device 60c may be used during this removal and installation.
  • At least a portion of the transport device 80 is provided between the traveling device 20 and the lower main body device 40a. It has belt conveyors 82a, 82b and a hopper 84 as an excavated material receiving section.
  • the hopper 84 is supported by a frame (not shown) above the belt conveyor 82a.
  • the belt conveyor 82a and the belt conveyor 82b can change their postures within a range where conveyed objects can be transferred.
  • the belt conveyors 82a and 82b may be arranged in a straight line when viewed from above, or as shown in FIG. 13(b) and FIG. 13(c). , it is also possible to arrange them in a broken line.
  • the conveyance device 80 conveys the earth and sand put into the hopper 84 through a belt conveyor 82a and a belt conveyor 82b in this order, and puts it into the loading platform of a dump truck parked near the end of the belt conveyor 82b.
  • FIG. 2 shows an example in which the transport device 80 is provided at a position closer to the -Y side of the hydraulic excavator 1, the transport device 80 may be provided at a position closer to the +Y side of the hydraulic excavator 1. .
  • the hydraulic excavator 1 of this embodiment includes, in addition to the above-mentioned configuration, a global positioning system (GNSS) 47 (Global Navigation Satellite System), a memory 49, a control device 50 that controls the entire hydraulic excavator 1, It has a sensor group 104 and the like as a surrounding recognition device.
  • GNSS global positioning system
  • the GNSS 47 measures the position of the hydraulic excavator 1 using artificial satellites.
  • the memory 49 is a nonvolatile memory (for example, a flash memory), and stores various data and programs for driving the hydraulic excavator 1 and various data and programs for automatically operating the hydraulic excavator 1.
  • a nonvolatile memory for example, a flash memory
  • the control device 50 is a control device that includes a CPU and controls the entire hydraulic excavator 1.
  • the control device 50 controls the turning operations and various operations of the lower working device 60a, the upper working device 60b, and the lifting device 60c based on the positioning results by the GNSS 47 and the detection results from the sensor group 104.
  • the sensor group 104 includes a distance measuring device (Lidar) and an imaging device.
  • FIGS. 4(a) to 4(c) are diagrams for explaining examples of arrangement of the sensor group 104.
  • FIG. FIG. 4(a) is a diagram showing the hydraulic excavator 1 seen from the -Y direction
  • FIG. 4(b) is a diagram showing the hydraulic excavator 1 seen from the -X direction
  • (c) is a diagram (a diagram in which the lower working device 60a, the upper working device 60b, the lifting device 60c, the conveying device 80, etc. are omitted) showing the hydraulic excavator 1 viewed from the +Z direction.
  • the sensor group 104 includes distance measuring devices 106a to 106c and imaging devices 108a to 108d.
  • the distance measuring devices 106a are provided at two locations (near the corners) at the end of the upper surface of the lower main body device 40a on the lower working device 60a side. Further, the distance measuring device 106b is provided below the upper working device 60b of the upper main body device 40b. Further, the distance measuring device 106c is provided at the upper end of the pole portion 160a of the lifting device 60c. These distance measuring devices 106a to 106c determine whether or not the lower working device 60a and the upper working device 60b are likely to contact (interfere with) other parts of the hydraulic excavator 1, or whether they are likely to come into contact with anything other than the hydraulic excavator 1. Detect whether it is present or not. Further, the distance measuring devices 106a to 106c have a function of checking (surveying) the finished shape of the place where the lower working device 60a and the upper working device 60b have constructed.
  • the imaging devices 108a are provided at two locations (near the corner) at the end of the upper surface of the lower main body device 40a on the lower working device 60a side. This imaging device 108a can image the vicinity of the working position of the lower working device 60a. Further, the imaging device 108b is provided below the upper working device 60b of the upper main body device 40b. This imaging device 108b can image the vicinity of the working position of the upper working device 60b. Further, the imaging device 108c is provided below the second arm portion 160c of the lifting device 60c. This imaging device 108c can image the situation around the suspended load when the lifting device 60c performs lifting work.
  • the imaging device 108d is provided at the end of the upper surface of the lower main body device 40a on the opposite side from the lower working device 60a.
  • This imaging device 108d can image the situation on the rear side (the side opposite to the lower working device 60a), for example, the situation in which earth and sand are loaded into a dump truck.
  • the imaging devices 108a to 108d it is possible to determine whether the lower working device 60a and the upper working device 60b are likely to come into contact with other parts of the hydraulic excavator 1, or whether they are likely to come into contact with something other than the hydraulic excavator 1. You can check whether the situation is correct and whether the work is progressing smoothly. Further, for example, when a worker remotely controls the hydraulic excavator 1, the imaging devices 108a to 108d can capture images to be displayed on the display section of the terminal used by the worker.
  • the distance measuring device 106a and the imaging device 108a are provided at two locations to suppress the occurrence of blind spots.
  • a distance measuring device 106a and an imaging device 108a may be provided at the tip of the bucket 58a.
  • a shock absorbing member such as vibration isolating rubber may be provided on the bucket 58a.
  • a mechanism for changing the position of the distance measuring device 106c vertically and horizontally may be interposed between the pole section 160a and the distance measuring device 106c.
  • the lower swing device 30a, the upper swing device 30b, and the lifting and swing device 30c independently swing under the control of the control device 50.
  • the lower main body device 40a, the upper main body device 40b, and the lifting device 60c can be rotated independently. Thereby, the lower main body device 40a, the upper main body device 40b, and the lifting device 60c can be accessed in various directions. Additionally, different devices can perform different tasks at the same time without interfering with each other.
  • the hydraulic excavator 1 of this embodiment is provided with the transport device 80, the earth and sand excavated by the lower working device 60a can be loaded onto the rear dump truck without turning. Furthermore, since the lower working device 60a only needs to load the earth and sand into the hopper 84, the operating distance of the lower working device 60a is shorter than when loading earth and sand directly onto a dump truck. This makes it possible to reduce energy consumption when excavating and loading earth and sand. Furthermore, since the lower working device 60a does not have to rotate during loading, there is less possibility that dirt will spill from the bucket 58a and stain the road, etc., and the effort of cleaning work can be saved. In addition, since no turning is required, the time required for loading can be reduced, making it possible to improve work efficiency. Furthermore, when turning, there is a possibility of collision with other objects, but since turning is not necessary, the possibility of collision with other objects can be reduced.
  • Water pipe installation work (individual work) uses hydraulic excavator 1 for one work area (for example, an area where one water pipe is to be laid), and performs road surface crushing, earth excavation/loading, pipe laying, and earth filling. This refers to the work of performing the return process in sequence.
  • the individual work is executed according to the flowchart in FIG. It is assumed that the memory 49 of the hydraulic excavator 1 has been previously inputted with information necessary for automatic operation, such as construction position information and construction procedure information.
  • the control device 50 controls each part of the hydraulic excavator 1 based on the information stored in the memory 49, the measured values of the GNSS 47, the distance measurement results and images by the sensor group 104, and executes the processing shown in FIG. 5.
  • step S10 the control device 50 moves the hydraulic excavator 1 to the construction position by controlling the travel motor 24 based on the measured value of the GNSS 47.
  • the construction position is a position as shown in FIG. 6, and in step S10, the hydraulic excavator 1 is positioned on the +X side of the construction position.
  • the dump truck DT may also be automatically positioned at the position shown in FIG. 6 . It is assumed that the position of the dump truck DT is such that the +X end of the transport device 80 (belt conveyor 82b) is located above the loading platform.
  • step S12 the control device 50 uses the posture detector 44 and the sensor group 104 to check the posture of the hydraulic excavator 1 and the surroundings of the hydraulic excavator 1. At this time, the control device 50 checks whether the posture of the hydraulic excavator 1 is unstable and whether there are any obstacles around the hydraulic excavator 1.
  • step S14 the control device 50 determines whether work is possible. If this determination is negative, the process moves to step S16 and a confirmation/response process is executed. For example, the control device 50 displays information such as "Please check the posture and surroundings of the hydraulic excavator" on a monitor that can be checked by the worker, and waits until the worker completes the confirmation and response. Then, when the operator confirms and takes action and inputs that the problem is resolved, the control device 50 returns to step S12.
  • step S14 determines whether the determination in step S14 is affirmative. If the determination in step S14 is affirmative, the process moves to step S18, and the control device 50 starts crushing the road surface.
  • the control device 50 extends the slide arm 55b of the upper working device 60b and uses the breaker 58b to crush the road surface. At this time, the control device 50 controls the lower swing device 30a and the swing cylinder 42b to appropriately swing or swing the upper working device 60b.
  • control device 50 waits until the road surface crushing is completed.
  • the control device 50 determines whether or not the road surface crushing is completed, for example, by checking the image captured by the imaging device 108a included in the sensor group 104. Note that when determining from the image whether or not road surface disintegration is completed, machine learning or the like can be used, for example.
  • the control device 50 executes earth and sand excavation and loading. Specifically, the control device 50 controls the lower working device 60a to excavate the construction position with the bucket 58a. Further, the control device 50 controls the lower working device 60a to charge excavated earth and sand into the hopper 84 using the bucket 58a. As a result, the excavated earth and sand is conveyed rearward (+X side) by the belt conveyors 82a and 82b, and loaded onto the platform of the dump truck DT. In addition, the control device 50 controls the lower swing device 30a and the swing cylinder 42a to appropriately rotate or swing the lower working device 60a during excavation or loading.
  • step S24 the control device 50 waits until the earth and sand excavation and loading are completed. Whether or not earth and sand excavation and loading have been completed can be determined, for example, by surveying the construction position based on the measurement results of the construction position by the distance measuring device 106a included in the sensor group 104. Determine whether it has been done. Note that the control device 50 may determine whether the construction position has been excavated to a predetermined depth from the image captured by the imaging device 108a.
  • the control device 50 installs water pipes. Specifically, as shown in FIG. 7, the control device 50 rotates the lower working device 60a together with the lower main body device 40a, and also rotates the upper working device 60b together with the upper main device 40b, thereby controlling the water pipe installation.
  • the lower working device 60a and the upper working device 60b are arranged at positions where they do not get in the way.
  • the lower working device 60a and the upper working device 60b are in a state facing the +Y side. In this state, the control device 50 rotates the lifting device 60c, extends the second arm portion 160c, and causes the crane portion 160d to suspend and hold the water pipe to be laid.
  • the control device 50 installs the water pipe by lowering the crane section 160d from the state where it is positioned above the construction position. During this operation of the lifting device 60c, the control device 50 controls the lifting device 60c so that the water pipe is appropriately laid, based on the image captured by the imaging device 108c in FIG. 4(a). do.
  • step S28 the control device 50 waits until the installation of the water pipes is completed.
  • the control device 50 uses machine learning or the like to determine whether or not the water pipe installation is complete based on the image captured by the imaging device 108c.
  • step S30 the control device 50 uses the lower work device 60a to perform earth and sand backfilling.
  • the control device 50 uses the lower working device 60a to backfill the construction position with earth and sand transported by a dump truck or the like.
  • the control device 50 controls the lower rotating device 30a and the swing cylinder 42a to appropriately rotate or swing the lower working device 60a even when backfilling with earth and sand.
  • the control device 50 waits until backfilling with earth and sand is completed. Whether the backfilling of earth and sand has been completed can be determined by, for example, surveying the construction position based on the measurement results of the construction position by the distance measuring device 106a included in the sensor group 104. judge whether Note that the control device 50 may determine whether the construction position is filled with earth and sand or excavated from the image captured by the imaging device 108a.
  • control device 50 determines that the backfilling of earth and sand is completed, it ends all the processes in FIG. 5 .
  • step S110 the control device 50 moves the hydraulic excavator 1 near the construction position (No. 2) by controlling the travel motor 24 based on the measured value of the GNSS 47. Move to.
  • the hydraulic excavator 1 is assumed to be in a position as shown in FIG. 9(b), for example. Note that in FIG. 9(b) and subsequent drawings, the hydraulic excavator 1 is illustrated in a simplified manner.
  • steps S112, S114, and S116 are executed in the same manner as steps S12, S14, and S16 in FIG. 5 described above. If the determination in step S114 is affirmative, the control device 50 shifts to simultaneous work using the lower working device 60a, the upper working device 60b, and the lifting device 60c.
  • step S200 the control device 50 uses the upper work device 60b to crush the road surface at the construction position (No. 1).
  • FIG. 9(b) shows a state in which the road surface is being crushed at the construction position (No. 1).
  • this road surface disintegration (S200) is completed, the lower working device 60a and the upper working device 60b turn, resulting in the state shown in FIG. 9(c).
  • step S202 the control device 50 uses the upper working device 60b to crush the road surface at the construction position (No. 2). Further, in parallel with step S202, in step S300, the control device 50 uses the lower working device 60a to excavate and load earth and sand at the construction position (No. 1).
  • the explanation will be given assuming that the road surface crushing and the earth and sand excavation and loading are completed at the same time.
  • control device 50 turns the lower working device 60a and the upper working device 60b, and turns and extends the lifting device 60c, thereby bringing the state shown in FIG. 10(a).
  • step S204 the control device 50 uses the upper working device 60b to crush the road surface at the construction position (No. 3). Further, in parallel with step S204, in step S302, the control device 50 uses the lower working device 60a to excavate and load earth and sand at the construction position (No. 2). Further, in parallel with steps S204 and S302, in step S400, the control device 50 uses the lifting device 60c to lay a water pipe at the construction position (No. 1).
  • control device 50 turns the lower working device 60a and the upper working device 60b, and turns the lifting device 60c, thereby achieving the state shown in FIG. 10(b).
  • step S206 the control device 50 replaces the breaker 58b of the upper working device 60b with a bucket (attachment replacement). At this time, the control device 50 performs attachment exchange using the lifting device 60c (step S402). Further, in parallel with steps S206 and S402, in step S304, the control device 50 uses the lower working device 60a to excavate and load earth and sand at the construction position (No. 3). Note that if the dump truck DT gets in the way of the lower working device 60a, the dump truck DT is moved to a position where it does not get in the way, and the attitude of the belt conveyor 82b is changed accordingly (for example, as shown in FIG. 13(b) )reference). Further, the attitude of the belt conveyor 82a and the position of the hopper are adjusted depending on the position of the lower working device 60a.
  • the control device 50 uses the lifting device 60c to sequentially lay the water pipes at the construction position (No. 2) and the construction position (No. 3) (FIG. 11(a) , see FIG. 11(b)). Further, the control device 50 uses the upper working device 60b and the lower working device 60a to backfill the construction position where the water pipe has been laid with earth and sand (S208, S306, S210, FIG. 10(a) ) to Figure 10(c)).
  • the construction time can be shortened by simultaneously performing parallel work using the lower working device 60a, the upper working device 60b, and the lifting device 60c. Note that in the process of FIG. 8, waiting time may occur due to differences in the time of each task, so the control device 50 efficiently controls each device so that the waiting time is minimized.
  • FIG. 12 shows a situation of simultaneous parallel work according to a modified example.
  • the hydraulic excavator 1 according to the modified example disintegrates the road surface using the upper working device 60b located forward in the traveling direction while moving in the direction of arrow A while straddling the construction position. Earth and sand are excavated and loaded using the lower working device 60a at the rear in the direction of travel.
  • the dump truck DT is located near the belt conveyor 82b and moves in the direction of arrow A together with the hydraulic excavator 1.
  • the hydraulic excavator 1 uses the lifting device 60c to lay a water pipe at the excavated position. Even in this case, the lower work device 60a, the upper work device 60b, and the lifting device 60c can perform simultaneous work, so that the construction time can be shortened.
  • the upper working device 60b and the lower working device 60a can perform each work without turning, so the upper turning device 30b and the lower turning device 30a do not need to be provided. That is, the upper working device 60b and the lower working device 60a may only be swingable by the swing cylinders 42a, 42b. Further, the hydraulic excavator 1 may be provided with only one of the upper swing device 30b and the lower swing device 30a.
  • the hydraulic excavator 1 includes an upper main body device 40b connected to the upper working device 60b, and an upper main body device 40b located below the upper main body device 40b and connected to the lower working device 60a.
  • the lower main body device 40a that has been rotated, the upper rotating device 30b that rotates the upper main body device 40b, the lower rotating device 30a that rotates the lower main body device 40a, the upper rotating device 30b, and the lower rotating device 30a are controlled.
  • the control device 50 is provided to independently rotate the working device 60b and the lower working device 60a.
  • the upper working device 60b and the lower working device 60a rotate independently, the upper working device 60b and the lower working device 60a can be accessed in various directions. Therefore, the degree of freedom in arranging the hydraulic excavator 1 during construction can be improved. Thereby, it is possible to realize a hydraulic excavator 1 that is easy to use. Moreover, as mentioned above, by performing simultaneous parallel operations, construction time can be shortened.
  • the hydraulic excavator 1 includes a swing cylinder 42b that swings the upper working device 60b with respect to the upper main body device 40b, and a swing cylinder 42a that swings the lower working device 60a with respect to the lower main body device 40a. It is equipped with The control device then controls the swing cylinders 42a and 42b to swing the upper working device 60b and the lower working device 60a independently. Thereby, the directions of the upper working device 60b and the lower working device 60a can be finely adjusted, so it is possible to realize the hydraulic excavator 1 that is easy to use.
  • the horizontal cross-sectional area of the lower main body device 40a is larger than the horizontal cross-sectional area of the upper main body device 40b, so the center of gravity of the hydraulic excavator 1 can be set low.
  • this embodiment includes a sensor group 104 that recognizes the surrounding situation of the hydraulic excavator 1, and the control device 50 controls the lower working device 60a and the upper working device based on the measurement results of the sensor group 104 and the captured images.
  • the device 60b operates simultaneously and in parallel. This can prevent the lower working device 60a and the upper working device 60b from coming into contact with each other or with other objects.
  • the hydraulic excavator 1 since the hydraulic excavator 1 includes the lifting device 60c, it can be used for transporting water pipes, replacing attachments of the upper working device 60b and the lower working device 60a, installing the transporting device 80, etc. .
  • the hydraulic excavator 1 of this embodiment includes a counterweight 46a that moves according to the drive of the lower work device 60a, and a counterweight 46b that moves according to the drive of the upper work device 60b. Thereby, movement of the center of gravity of the entire hydraulic excavator 1 can be suppressed when the lower working device 60a and the upper working device 60b turn or swing.
  • a conveying device 80 is provided below the lower main body device 40a and conveys earth and sand. Thereby, energy consumption can be reduced compared to the case where excavated earth and sand are directly thrown into a dump truck.
  • a removable hopper 84 is provided on the top surface of the belt conveyor 82a, earth and sand can be reliably thrown onto the top surface of the belt conveyor 82a.
  • Device 60b may have a bucket.
  • the upper working device 60b has the slide arm 55b
  • the upper working device 60b may have the same configuration as the lower working device 60a (only the attachment at the tip is different). You can.
  • the hydraulic excavator 1 includes the lifting device 60c, but the lifting device 60c does not necessarily need to be provided.
  • the lower working device 60a and the upper working device 60b may perform the same work as the lifting device 60c.
  • the conveyance device 80 has two transferable belt conveyors, but the present invention is not limited to this, and the conveyance device 80 may have only one belt conveyor. , it may have three or more transferable belt conveyors.
  • power is obtained from the fuel cell 11, but the invention is not limited to this, and power may be obtained from, for example, a solar panel.
  • an internal combustion engine may be used as the driving source for the traveling device, and electric power may be obtained from an alternator.

Abstract

In order to provide an easy-to-use construction machine, this construction machine comprises: an upper body device connected to an upper working device; a lower body device positioned below the upper body device and connected to a lower working device; an upper revolving device for revolving the upper body device; a lower revolving device for revolving the lower body device; and a control device for controlling the upper revolving device and the lower revolving device to cause the upper working device and the lower working device to revolve independently from each other. 

Description

建設機械construction machinery
 本発明は、建設機械に関する。 The present invention relates to construction machinery.
 従来より、バックホウなどの建設機械においても自動運転の開発がなされており、掘削作業の自動化について特許文献1に開示されている。 Conventionally, automatic operation has been developed for construction machines such as backhoes, and Patent Document 1 discloses automation of excavation work.
特開2020-41354号公報Japanese Patent Application Publication No. 2020-41354
 しかしながら、特許文献1は、運転席のある建設機械であるため、建設機械のレイアウトに制限があった。また、建設機械のレイアウトに制限があるため、施工の際に、施工位置に対して建設機械をどのような位置に設置すべきかを検討する必要があり、使い勝手がよくない。 However, since Patent Document 1 is a construction machine with a driver's seat, there are restrictions on the layout of the construction machine. Furthermore, since there are restrictions on the layout of construction machines, it is necessary to consider where the construction machines should be installed relative to the construction location during construction, which is not convenient.
 そこで、本発明は、使い勝手のよい建設機械を提供することを目的とする。 Therefore, an object of the present invention is to provide a construction machine that is easy to use.
 本第1発明に係る建設機械は、上部作業装置と接続された上部本体装置と、前記上部本体装置の下方に位置し、下部作業装置と接続された下部本体装置と、前記上部本体装置を旋回する上部旋回装置と、前記下部本体装置を旋回する下部旋回装置と、前記上部旋回装置と前記下部旋回装置とを制御して、前記上部作業装置と前記下部作業装置とを独立して旋回させる制御装置とを備える。 A construction machine according to a first aspect of the present invention includes an upper main body device connected to an upper working device, a lower main body device located below the upper main body device and connected to a lower working device, and a swingable upper main body device. an upper rotating device that rotates the lower main body device, a lower rotating device that rotates the lower main body device, and a control that controls the upper rotating device and the lower rotating device to independently rotate the upper working device and the lower working device. and a device.
 本第2発明に係る建設機械は、上部作業装置と接続された上部本体装置と、前記上部本体装置の下方に位置し、下部作業装置と接続された下部本体装置と、前記上部本体装置に対して前記上部作業装置をスイングする上部スイング装置と、前記下部本体装置に対して前記下部作業装置をスイングする下部スイング装置と、前記上部スイング装置と前記下部スイング装置とを制御して、前記上部作業装置と前記下部作業装置とを独立してスイングさせる制御装置とを備える。 A construction machine according to a second aspect of the present invention includes: an upper main body device connected to an upper working device; a lower main body device located below the upper main body device and connected to the lower working device; an upper swing device that swings the upper working device with respect to the lower main body device; a lower swing device that swings the lower working device with respect to the lower main body device; and a lower swing device that swings the upper working device with respect to the lower main body device; A control device is provided to swing the device and the lower working device independently.
 本第1発明及び本第2発明によれば、使い勝手のよい建設機械を提供することができる。 According to the first invention and the second invention, it is possible to provide a construction machine that is easy to use.
一実施形態に係る油圧ショベルを-Y方向から見た状態を示す図である。1 is a diagram showing a state in which a hydraulic excavator according to an embodiment is viewed from the −Y direction. FIG. 一実施形態に係る油圧ショベルを-X方向から見た状態を示す図である。1 is a diagram showing a state in which a hydraulic excavator according to an embodiment is viewed from the −X direction. FIG. 一実施形態に係る油圧ショベルの制御系を示すブロック図である。FIG. 1 is a block diagram showing a control system of a hydraulic excavator according to an embodiment. 図4(a)~図4(c)は、センサ群の配置例を説明するための図である。FIGS. 4(a) to 4(c) are diagrams for explaining examples of arrangement of sensor groups. 水道管敷設作業(個別作業)の流れを示すフローチャートである。It is a flowchart showing the flow of water pipe installation work (individual work). 水道管敷設作業(個別作業)を説明するための図(その1)である。FIG. 2 is a diagram (part 1) for explaining water pipe installation work (individual work). 水道管敷設作業(個別作業)を説明するための図(その2)である。It is a figure (part 2) for explaining water pipe laying work (individual work). 水道管敷設作業(同時並行作業)の流れを示すフローチャートである。It is a flowchart showing the flow of water pipe laying work (simultaneous parallel work). 図9(a)~図9(c)は、水道管敷設作業(同時並行作業)を説明するための図(その1)である。FIGS. 9(a) to 9(c) are diagrams (part 1) for explaining water pipe installation work (simultaneous parallel work). 図10(a)、図10(b)は、水道管敷設作業(同時並行作業)を説明するための図(その2)である。FIGS. 10A and 10B are diagrams (Part 2) for explaining water pipe installation work (simultaneous parallel work). 図11(a)~図11(c)は、水道管敷設作業(同時並行作業)を説明するための図(その3)である。FIGS. 11(a) to 11(c) are diagrams (part 3) for explaining water pipe installation work (simultaneous parallel work). 水道管敷設作業(同時並行作業)の変形例を示す図である。It is a figure which shows the modification of water pipe laying work (simultaneous parallel work). 図13(a)~図13(c)は、搬送装置の姿勢変化について説明するための図である。FIGS. 13(a) to 13(c) are diagrams for explaining changes in the posture of the transport device.
 以下、本発明の一実施形態の建設機械について、添付の図面に基づいて詳細に説明する。なお、本実施形態により、本発明が限定されるものではない。本実施形態では、建設機械が油圧ショベル1である場合を例に説明する。 Hereinafter, a construction machine according to an embodiment of the present invention will be described in detail based on the attached drawings. Note that the present invention is not limited to this embodiment. In this embodiment, a case where the construction machine is a hydraulic excavator 1 will be described as an example.
 図1は、本実施形態に係る油圧ショベル1を示す図である。なお、図1においては、紙面左右方向をX軸方向、紙面直交方向をY軸方向、紙面上下方向をZ軸方向としている。図1は、油圧ショベル1を-Y方向から見た状態を、一部断面して示している。また、図2は、油圧ショベル1を-X方向から見た状態を示している。また、図3は、油圧ショベル1の制御系を示す図である。 FIG. 1 is a diagram showing a hydraulic excavator 1 according to the present embodiment. In FIG. 1, the left-right direction on the page is the X-axis direction, the direction perpendicular to the page is the Y-axis direction, and the vertical direction on the page is the Z-axis direction. FIG. 1 shows a partially sectional view of a hydraulic excavator 1 as viewed from the -Y direction. Further, FIG. 2 shows the hydraulic excavator 1 viewed from the −X direction. Further, FIG. 3 is a diagram showing a control system of the hydraulic excavator 1.
 以下、図1~図3を用いて油圧ショベル1の構成を説明する。図1に示すように、本実施形態の油圧ショベル1は、運転席が無い自動運転タイプのものである。なお、油圧ショベル1は、建設現場での走行を自動運転とし、公道ではトレーラに載置して運搬するようにしてもよい。また、油圧ショベル1の操作は、自動操作でもよく、掘削場所から離れた遠隔地での遠隔操作でもよい。 Hereinafter, the configuration of the hydraulic excavator 1 will be explained using FIGS. 1 to 3. As shown in FIG. 1, the hydraulic excavator 1 of this embodiment is of an automatic operation type without a driver's seat. Note that the hydraulic excavator 1 may be driven automatically at a construction site, and may be transported on a trailer on public roads. Furthermore, the hydraulic excavator 1 may be operated automatically or remotely at a remote location away from the excavation site.
 本実施形態の油圧ショベル1は、図1に示すように、走行装置20と、下部旋回装置30aと、上部旋回装置30bと、揚重旋回装置30cと、下部本体装置40aと、上部本体装置40bと、下部作業装置60aと、上部作業装置60bと、揚重装置60cと、搬送装置80と、を備える。 As shown in FIG. 1, the hydraulic excavator 1 of this embodiment includes a traveling device 20, a lower swing device 30a, an upper swing device 30b, a lifting and swing device 30c, a lower main body device 40a, and an upper main body device 40b. , a lower working device 60a, an upper working device 60b, a lifting device 60c, and a conveying device 80.
 本実施形態の油圧ショベル1は、図3に示すように、燃料電池11と、水素タンク12と、蓄電池13とを有している。燃料電池11は水素と酸素を電気化学反応させて電気を作る発電装置である。水素タンク12は、数十MPaに圧縮された水素を蓄えるものであり、不図示の水素供給流路を介して燃料電池11に水素を供給するものである。蓄電池13は、2次電池であり、燃料電池11が発電した電力を蓄電するものである。蓄電池13は、蓄えた電力により燃料電池11を駆動するための補助電源として用いることもでき、油圧ショベル1を構成する各部にも電力を供給するものである。なお、燃料電池11と、水素タンク12と、蓄電池13とは、例えば、下部本体装置40a内や、走行装置20上に設けられる。 As shown in FIG. 3, the hydraulic excavator 1 of this embodiment includes a fuel cell 11, a hydrogen tank 12, and a storage battery 13. The fuel cell 11 is a power generation device that generates electricity through an electrochemical reaction between hydrogen and oxygen. The hydrogen tank 12 stores hydrogen compressed to several tens of MPa, and supplies hydrogen to the fuel cell 11 via a hydrogen supply channel (not shown). The storage battery 13 is a secondary battery that stores the power generated by the fuel cell 11. The storage battery 13 can also be used as an auxiliary power source for driving the fuel cell 11 with the stored power, and also supplies power to each component of the hydraulic excavator 1. Note that the fuel cell 11, hydrogen tank 12, and storage battery 13 are provided, for example, within the lower main unit 40a or on the traveling device 20.
 走行装置20は、図1に示すように、遊動輪21と、駆動輪22と、遊動輪21及び駆動輪22を巻装した一対の履帯23と、を有する。また、走行装置20は、駆動輪22を回転駆動する走行モータ24(図3参照)を有し、駆動輪22の回転に応じて一対の履帯23を駆動させることにより、油圧ショベル1を走行させることができる。なお、走行モータ24としては、駆動輪22または駆動輪22のハブと同軸に繋がるように設けられたインホイールモータを用いることができる。 As shown in FIG. 1, the traveling device 20 includes an idler wheel 21, a drive wheel 22, and a pair of crawler belts 23 around which the idler wheel 21 and the drive wheel 22 are wrapped. The traveling device 20 also includes a traveling motor 24 (see FIG. 3) that rotationally drives the driving wheels 22, and drives the pair of tracks 23 in accordance with the rotation of the driving wheels 22, thereby causing the hydraulic excavator 1 to travel. be able to. Note that as the traveling motor 24, an in-wheel motor provided so as to be coaxially connected to the drive wheel 22 or a hub of the drive wheel 22 can be used.
 走行装置20には、アウトリガー90が設けられている。アウトリガー90は、対地離間状態(図1の状態)と対地固定状態との間で切換可能となっている。アウトリガー90は、走行装置20による走行時には、対地離間状態となり、例えば下部作業装置60aにより土砂の掘削が行われるときや揚重装置60cにより重量物を吊り上げるときには、対地固定状態になる。対地固定状態のアウトリガー90は、走行装置20の横に張り出して接地することで油圧ショベル1全体の姿勢を安定させる。 The traveling device 20 is provided with an outrigger 90. The outrigger 90 can be switched between a state separated from the ground (the state shown in FIG. 1) and a state fixed to the ground. The outriggers 90 are separated from the ground when the traveling device 20 is traveling, and are fixed to the ground when, for example, the lower work device 60a excavates earth or when the lifting device 60c lifts a heavy object. The outriggers 90 that are fixed to the ground stabilize the posture of the entire hydraulic excavator 1 by protruding to the side of the traveling device 20 and touching the ground.
 下部旋回装置30aは、走行装置20に設けられたZ軸方向に延びる軸部材25と下部本体装置40aとの間に設けられている。下部旋回装置30aは、不図示のベアリングと、下部旋回モータ31a(図3参照)とを備え、下部本体装置40aと下部作業装置60aとを軸部材25を中心として旋回させるものである。なお、下部旋回装置30aによる下部本体装置40aと下部作業装置60aとの旋回は、後述の油圧装置43を用いて行うようにしてもよい。なお、下部旋回装置30a近傍には、スリップリング機構が設けられており、当該スリップリング機構を介して、配線などが引き回されている。このため、下部本体装置40aが旋回しても配線が絡まったり、断線したりすることがない。なお、液体(油圧や水)や気体などの配管をスリップリング機構を用いて引き回すようにしてもよい。 The lower swing device 30a is provided between the shaft member 25 provided on the traveling device 20 and extending in the Z-axis direction and the lower main body device 40a. The lower rotating device 30a includes a bearing (not shown) and a lower rotating motor 31a (see FIG. 3), and rotates the lower main body device 40a and the lower working device 60a around the shaft member 25. Note that the lower body device 40a and the lower working device 60a may be rotated by the lower rotating device 30a using a hydraulic device 43, which will be described later. Note that a slip ring mechanism is provided near the lower swing device 30a, and wiring and the like are routed through the slip ring mechanism. Therefore, even if the lower main body device 40a turns, the wiring will not become tangled or disconnected. Note that piping for liquid (hydraulic pressure, water), gas, etc. may be routed using a slip ring mechanism.
 上部旋回装置30bは、走行装置20に設けられた軸部材25と上部本体装置40bとの間に設けられている。上部旋回装置30bは、不図示のベアリングと、下部旋回モータ31b(図3参照)とを備え、上部本体装置40bと上部作業装置60bとを軸部材25を中心として旋回するものである。なお、上部旋回装置30bによる上部本体装置40bと上部作業装置60bとの旋回は、後述の油圧装置43を用いて行うようにしてもよい。なお、上部旋回装置30b近傍には、下部旋回装置30aと同様、スリップリング機構が設けられており、当該スリップリング機構を介して、配線などが引き回されている。 The upper swing device 30b is provided between the shaft member 25 provided in the traveling device 20 and the upper main body device 40b. The upper rotating device 30b includes a bearing (not shown) and a lower rotating motor 31b (see FIG. 3), and rotates the upper main body device 40b and the upper working device 60b about the shaft member 25. Note that the upper body device 40b and the upper working device 60b may be rotated by the upper rotating device 30b using a hydraulic device 43, which will be described later. Note that a slip ring mechanism is provided near the upper rotating device 30b, similar to the lower rotating device 30a, and wiring and the like are routed through the slip ring mechanism.
 揚重旋回装置30cは、揚重装置60cを軸部材25まわりに旋回(回転)させる装置であり、軸部材25と揚重装置60cとの間に設けられている。揚重旋回装置30cは、不図示のベアリングと、揚重装置旋回モータ31c(図3参照)とを備える。なお、揚重装置60cの旋回は、後述の油圧装置43を用いて行うようにしてもよい。なお、揚重旋回装置30c近傍には、下部旋回装置30a及び上部旋回装置30bと同様、スリップリング機構が設けられており、当該スリップリング機構を介して、配線などが引き回されている。 The lifting and turning device 30c is a device that turns (rotates) the lifting device 60c around the shaft member 25, and is provided between the shaft member 25 and the lifting device 60c. The lifting and turning device 30c includes a bearing (not shown) and a lifting device turning motor 31c (see FIG. 3). Note that the lifting device 60c may be rotated using a hydraulic device 43, which will be described later. Note that a slip ring mechanism is provided near the lifting and rotating device 30c, similar to the lower rotating device 30a and the upper rotating device 30b, and wiring and the like are routed through the slip ring mechanism.
 下部本体装置40aは、直方体状の形状を有し、その側面には、スイング部41aおよび下部スイング装置としてのスイングシリンダ42aを介して下部作業装置60aが接続されている。下部本体装置40aの内部には、前述した燃料電池11、水素タンク12、蓄電池13を設けることができる。また、下部本体装置40aの内部には、カウンタウエイト(第1の質量体)46aが設けられる。カウンタウエイト46aは、X軸方向及びY軸方向に移動可能となっており、油圧ショベル1に設けられた姿勢検出計44(図3参照)の出力に応じて、制御装置50(図3参照)により移動が制御される。なお、姿勢検出計44としては、傾斜計や水準器などを用いることができる。なお、上述した燃料電池11、水素タンク12、蓄電池13の少なくとも一部をカウンタウエイト46aとして用いることとしてもよい。なお、油圧ショベル1の重心をなるべく下側に位置させるために、燃料電池11、水素タンク12、蓄電池13を走行装置20に設けることとしてもよい。この場合においても、燃料電池11、水素タンク12、蓄電池13の少なくとも一部をカウンタウエイトとして用いることとしてもよい。 The lower body device 40a has a rectangular parallelepiped shape, and a lower working device 60a is connected to the side surface thereof via a swing portion 41a and a swing cylinder 42a serving as a lower swing device. The fuel cell 11, hydrogen tank 12, and storage battery 13 described above can be provided inside the lower main body device 40a. Further, a counterweight (first mass body) 46a is provided inside the lower main body device 40a. The counterweight 46a is movable in the X-axis direction and the Y-axis direction, and is controlled by the control device 50 (see FIG. 3) according to the output of the attitude detector 44 (see FIG. 3) provided in the hydraulic excavator 1. movement is controlled by Note that as the attitude detector 44, an inclinometer, a spirit level, or the like can be used. Note that at least a portion of the fuel cell 11, hydrogen tank 12, and storage battery 13 described above may be used as the counterweight 46a. Note that in order to locate the center of gravity of the hydraulic excavator 1 as low as possible, the fuel cell 11, hydrogen tank 12, and storage battery 13 may be provided in the traveling device 20. Also in this case, at least a portion of the fuel cell 11, hydrogen tank 12, and storage battery 13 may be used as a counterweight.
 スイング部41aは、下部本体装置40aに接続された部分と、下部作業装置60aのブーム53aに接続された部分とがZ軸回りに回転可能なように軸支されている。スイングシリンダ42aは一端が下部本体装置40aに接続され、他端がスイング部41aに接続された油圧シリンダであり、油圧装置43により伸縮動作がなされるものである。スイングシリンダ42aの伸縮により、下部作業装置60aは、Z軸回りに駆動される。ここで、油圧装置43は、油圧制御弁などを有しており、図3に示すように、蓄電池13からの電力が供給されて、各部の駆動を行うものである。 The swing portion 41a is pivoted such that a portion connected to the lower main body device 40a and a portion connected to the boom 53a of the lower working device 60a are rotatable around the Z-axis. The swing cylinder 42a is a hydraulic cylinder whose one end is connected to the lower main body device 40a and the other end is connected to the swing part 41a, and is expanded and contracted by a hydraulic device 43. The lower working device 60a is driven around the Z-axis by the expansion and contraction of the swing cylinder 42a. Here, the hydraulic device 43 has a hydraulic control valve and the like, and as shown in FIG. 3, is supplied with electric power from the storage battery 13 to drive each part.
 上部本体装置40bは、円柱状の形状を有し、その上面には、スイング部41bおよび上部スイング装置としてのスイングシリンダ42bを介して上部作業装置60bが接続されている。また、上部本体装置40bの上面の中央部には、揚重装置60cが設けられている。 The upper body device 40b has a cylindrical shape, and the upper working device 60b is connected to its upper surface via a swing portion 41b and a swing cylinder 42b serving as an upper swing device. Further, a lifting device 60c is provided at the center of the upper surface of the upper main body device 40b.
 上部本体装置40bの内部には、カウンタウエイト(第2の質量体)46bが設けられる。カウンタウエイト46bは、X軸方向及びY軸方向に移動可能となっており、油圧ショベル1に設けられた姿勢検出計44(図3参照)の出力に応じて、制御装置50(図3参照)により移動が制御される。なお、上述した燃料電池11、水素タンク12、蓄電池13の少なくとも一部を上部本体装置40b内に設け、これをカウンタウエイト46bとして用いることとしてもよい。 A counterweight (second mass body) 46b is provided inside the upper main body device 40b. The counterweight 46b is movable in the X-axis direction and the Y-axis direction, and is controlled by the control device 50 (see FIG. 3) according to the output of the attitude detector 44 (see FIG. 3) provided in the hydraulic excavator 1. movement is controlled by Note that at least a portion of the fuel cell 11, hydrogen tank 12, and storage battery 13 described above may be provided in the upper main body device 40b and used as the counterweight 46b.
 ここで、下部本体装置40aの水平面の断面積(XY断面の断面積)は、上部本体装置40bの水平面の断面積(XY断面の断面積)よりも大きくなっている。すなわち、下部本体装置40aには、上方(+Z側)から視認したときに上部本体装置40bに隠れず、視認できる箇所が存在する。このようにすることで、下部本体装置40aの容積(堆積)を上部本体装置40bよりも大きくすることができるため、油圧ショベル1の重心位置を低く設定することができる。これにより、油圧ショベル1の姿勢を安定させることができる。 Here, the horizontal cross-sectional area (XY cross-sectional area) of the lower main body device 40a is larger than the horizontal cross-sectional area (XY cross-sectional area) of the upper main body device 40b. That is, there is a portion of the lower main body device 40a that is not hidden behind the upper main body device 40b and is visible when viewed from above (+Z side). By doing so, the volume (accumulation) of the lower main body device 40a can be made larger than that of the upper main body device 40b, so that the center of gravity of the hydraulic excavator 1 can be set low. Thereby, the posture of the hydraulic excavator 1 can be stabilized.
 下部作業装置60aは、後述する土砂の掘削や積込、土砂の埋め戻しなどの作業を行う作業装置である。下部作業装置60aは、図1に示すように、ブーム53aと、ブームシリンダ54aと、アーム55aと、アームシリンダ56aと、バケット58aと、バケットシリンダ59aと、を有する。 The lower working device 60a is a working device that performs works such as excavating and loading earth and sand, and backfilling earth and sand, which will be described later. As shown in FIG. 1, the lower working device 60a includes a boom 53a, a boom cylinder 54a, an arm 55a, an arm cylinder 56a, a bucket 58a, and a bucket cylinder 59a.
 ブーム53aは、スイング部41aを介して下部本体装置40aに接続されたへの字状の部品であり、ブームシリンダ54aにより回動するものである。 The boom 53a is a V-shaped component connected to the lower main body device 40a via the swing portion 41a, and is rotated by a boom cylinder 54a.
 アーム55aは、ブーム53aの先端に接続されており、アームシリンダ56aにより回動するものである。 The arm 55a is connected to the tip of the boom 53a, and is rotated by an arm cylinder 56a.
 バケット58aは、アーム55aの先端に接続されており、バケットシリンダ59aにより回動するものである。なお、バケット58aに代えて、アーム55aの先端にブレーカなどを取り付けることも可能である。また、バケット58aとブレーカなどの他のアタッチメントは、現場においても付け替え可能になっているものとする。 The bucket 58a is connected to the tip of the arm 55a, and is rotated by a bucket cylinder 59a. Note that it is also possible to attach a breaker or the like to the tip of the arm 55a instead of the bucket 58a. It is also assumed that the bucket 58a and other attachments such as the breaker can be replaced at the site.
 本実施形態において、ブームシリンダ54aと、アームシリンダ56aと、バケットシリンダ59aとは油圧シリンダであり、油圧により伸縮するものである。また、ブームシリンダ54aと、アームシリンダ56aと、バケットシリンダ59aとは油圧装置43により伸縮動作がなされるものである。 In this embodiment, the boom cylinder 54a, the arm cylinder 56a, and the bucket cylinder 59a are hydraulic cylinders that expand and contract using hydraulic pressure. Further, the boom cylinder 54a, the arm cylinder 56a, and the bucket cylinder 59a are extended and contracted by the hydraulic device 43.
 上部作業装置60bは、後述する路面の解砕などの作業を行う作業装置である。上部作業装置60bは、図1に示すように、ブーム53bと、ブームシリンダ54bと、スライドアーム55bと、アームシリンダ56bと、ブレーカ58bと、ブレーカシリンダ59bと、を有している。 The upper working device 60b is a working device that performs work such as crushing the road surface, which will be described later. As shown in FIG. 1, the upper working device 60b includes a boom 53b, a boom cylinder 54b, a slide arm 55b, an arm cylinder 56b, a breaker 58b, and a breaker cylinder 59b.
 ブーム53bは、スイング部41bを介して上部本体装置40bに接続されたへの字状の部品であり、ブームシリンダ54bにより回動するものである。 The boom 53b is a V-shaped component connected to the upper main body device 40b via the swing portion 41b, and is rotated by a boom cylinder 54b.
 スライドアーム55bは、ブーム53bの先端に接続されており、アームシリンダ56bにより回動するものである。スライドアーム55bは、固定アーム155aと、移動アーム155bとを有しており、固定アーム155aに対して移動アーム155bが長手方向にスライド可能となっている(図6参照)。なお、移動アーム155bは、油圧装置43の油圧により移動する。 The slide arm 55b is connected to the tip of the boom 53b, and is rotated by an arm cylinder 56b. The slide arm 55b has a fixed arm 155a and a movable arm 155b, and the movable arm 155b is slidable in the longitudinal direction with respect to the fixed arm 155a (see FIG. 6). Note that the moving arm 155b is moved by hydraulic pressure from the hydraulic device 43.
 ブレーカ58bは、スライドアーム55bの先端に接続されており、ブレーカシリンダ59bにより回動するものである。なお、ブレーカ58bに代えて、スライドアーム55bの先端にバケットなどを取り付けることも可能である。また、ブレーカ58bとバケットなどの他のアタッチメントは、現場においても付け替え可能になっているものとする。 The breaker 58b is connected to the tip of the slide arm 55b, and is rotated by a breaker cylinder 59b. Note that instead of the breaker 58b, it is also possible to attach a bucket or the like to the tip of the slide arm 55b. Further, it is assumed that the breaker 58b and other attachments such as a bucket can be replaced at the site.
 本実施形態において、ブームシリンダ54bと、アームシリンダ56bと、ブレーカシリンダ59bと、は油圧シリンダであり、油圧により伸縮するものである。また、ブームシリンダ54bと、アームシリンダ56bと、ブレーカシリンダ59bとは油圧装置43により伸縮動作がなされるものである。 In this embodiment, the boom cylinder 54b, the arm cylinder 56b, and the breaker cylinder 59b are hydraulic cylinders that expand and contract using hydraulic pressure. Further, the boom cylinder 54b, the arm cylinder 56b, and the breaker cylinder 59b are extended and contracted by the hydraulic device 43.
 揚重装置60cは、Z軸方向に延びるポール部160aと、ポール部160aの上端部近傍から水平方向に延びる第1アーム部160bと、第1アーム部160bに対して伸縮可能に設けられた第2アーム部160cと、第2アーム部16cの先端に設けられたクレーン部160dと、を有する。揚重装置60cの、第2アーム部160cの伸縮や、クレーン部160dの上下動は、蓄電池13から供給される電力を利用して不図示のモータが回転する力を用いて、実現されている。揚重装置60cは、水道管敷設工事の場合であれば、新たに敷設する水道管を敷設位置に搬入したり、古い水道管を搬出したりするのに用いることができる。また、下部作業装置60aのバケット58aや上部作業装置60bのブレーカ58bを他のアタッチメントに交換する場合に、揚重装置60cを用いて交換を行うようにしてもよい。また、油圧ショベル1を工事現場まで運搬する場合には、搬送装置80を取り外すこともあるが、この取り外しや、取り付けの際に、揚重装置60cを用いることとしてもよい。 The lifting device 60c includes a pole part 160a extending in the Z-axis direction, a first arm part 160b extending in the horizontal direction from near the upper end of the pole part 160a, and a first arm part 160b that is extendable and retractable with respect to the first arm part 160b. It has two arm parts 160c and a crane part 160d provided at the tip of the second arm part 16c. The expansion and contraction of the second arm portion 160c of the lifting device 60c and the vertical movement of the crane portion 160d are realized by using the power of a motor (not shown) rotating using electric power supplied from the storage battery 13. . In the case of water pipe installation work, the lifting device 60c can be used to transport a newly installed water pipe to the installation position or to transport an old water pipe. Further, when replacing the bucket 58a of the lower working device 60a or the breaker 58b of the upper working device 60b with another attachment, the lifting device 60c may be used to perform the replacement. Further, when transporting the hydraulic excavator 1 to a construction site, the transport device 80 may be removed, but the lifting device 60c may be used during this removal and installation.
 搬送装置80の少なくとも一部は、走行装置20と下部本体装置40aとの間に設けられている。ベルトコンベア82a,82bと、掘削物受け入れ部としてのホッパ84と、を有する。ホッパ84は、ベルトコンベア82aの上方において不図示のフレームにより支持されている。ベルトコンベア82aとベルトコンベア82bは、搬送物が乗り継ぎ可能な範囲において、姿勢変更が可能となっている。例えば、図13(a)に示すように、上方から見て、ベルトコンベア82a、82bが直線的に並ぶようにすることもできるし、図13(b)、図13(c)に示すように、折線状に並ぶようにすることもできる。搬送装置80は、ホッパ84に投入された土砂をベルトコンベア82a、ベルトコンベア82bの順に搬送し、ベルトコンベア82bの端部近傍に駐車したダンプトラックの荷台に投入する。なお、図2では、搬送装置80が油圧ショベル1の-Y側寄りの位置に設けられた例を示しているが、搬送装置80は油圧ショベル1の+Y側寄りの位置に設けられてもよい。 At least a portion of the transport device 80 is provided between the traveling device 20 and the lower main body device 40a. It has belt conveyors 82a, 82b and a hopper 84 as an excavated material receiving section. The hopper 84 is supported by a frame (not shown) above the belt conveyor 82a. The belt conveyor 82a and the belt conveyor 82b can change their postures within a range where conveyed objects can be transferred. For example, as shown in FIG. 13(a), the belt conveyors 82a and 82b may be arranged in a straight line when viewed from above, or as shown in FIG. 13(b) and FIG. 13(c). , it is also possible to arrange them in a broken line. The conveyance device 80 conveys the earth and sand put into the hopper 84 through a belt conveyor 82a and a belt conveyor 82b in this order, and puts it into the loading platform of a dump truck parked near the end of the belt conveyor 82b. Note that although FIG. 2 shows an example in which the transport device 80 is provided at a position closer to the -Y side of the hydraulic excavator 1, the transport device 80 may be provided at a position closer to the +Y side of the hydraulic excavator 1. .
 図3に示すように、本実施形態の油圧ショベル1は、上記構成の他、全地球型測位システムであるGNSS47(Global Navigation Satellite System)、メモリ49、油圧ショベル1全体を制御する制御装置50、周囲認識装置としてのセンサ群104等を有する。 As shown in FIG. 3, the hydraulic excavator 1 of this embodiment includes, in addition to the above-mentioned configuration, a global positioning system (GNSS) 47 (Global Navigation Satellite System), a memory 49, a control device 50 that controls the entire hydraulic excavator 1, It has a sensor group 104 and the like as a surrounding recognition device.
 GNSS47は、人工衛星を利用して油圧ショベル1の位置を測位するものである。 The GNSS 47 measures the position of the hydraulic excavator 1 using artificial satellites.
 メモリ49は、不揮発性のメモリ(例えばフラッシュメモリ)であり、油圧ショベル1を駆動するための各種データやプログラム、油圧ショベル1を自動運転するための各種データやプログラムが記憶されている。 The memory 49 is a nonvolatile memory (for example, a flash memory), and stores various data and programs for driving the hydraulic excavator 1 and various data and programs for automatically operating the hydraulic excavator 1.
 制御装置50は、CPUを備えており、油圧ショベル1全体を制御する制御装置である。制御装置50は、GNSS47による測位結果やセンサ群104の検出結果に基づいて、下部作業装置60a、上部作業装置60b、揚重装置60cの旋回動作や、各種動作の制御を行う。 The control device 50 is a control device that includes a CPU and controls the entire hydraulic excavator 1. The control device 50 controls the turning operations and various operations of the lower working device 60a, the upper working device 60b, and the lifting device 60c based on the positioning results by the GNSS 47 and the detection results from the sensor group 104.
 センサ群104は、測距装置(Lidar)や、撮像装置を有する。図4(a)~図4(c)は、センサ群104の配置例を説明するための図である。図4(a)は、油圧ショベル1を-Y方向から見た状態を示す図であり、図4(b)は、油圧ショベル1を-X方向から見た状態を示す図であり、図4(c)は、油圧ショベル1を+Z方向から見た状態を示す図(下部作業装置60a、上部作業装置60b、揚重装置60c、搬送装置80等を省略した図)である。 The sensor group 104 includes a distance measuring device (Lidar) and an imaging device. FIGS. 4(a) to 4(c) are diagrams for explaining examples of arrangement of the sensor group 104. FIG. FIG. 4(a) is a diagram showing the hydraulic excavator 1 seen from the -Y direction, and FIG. 4(b) is a diagram showing the hydraulic excavator 1 seen from the -X direction. (c) is a diagram (a diagram in which the lower working device 60a, the upper working device 60b, the lifting device 60c, the conveying device 80, etc. are omitted) showing the hydraulic excavator 1 viewed from the +Z direction.
 図4(a)~図4(c)に示すように、センサ群104は、測距装置106a~106cを有するとともに、撮像装置108a~108dを有する。 As shown in FIGS. 4(a) to 4(c), the sensor group 104 includes distance measuring devices 106a to 106c and imaging devices 108a to 108d.
 測距装置106aは、下部本体装置40aの上面の下部作業装置60a側の端部の2か所(角部近傍)に設けられている。また、測距装置106bは、上部本体装置40bの上部作業装置60bの下側に設けられている。また、測距装置106cは、揚重装置60cのポール部160aの上端部に設けられている。これら測距装置106a~106cは、下部作業装置60aと上部作業装置60bが油圧ショベル1の他の部分に接触(干渉)しそうな状況にあるか否かや、油圧ショベル1以外へ接触しそうな状況にあるか否かを感知する。また、測距装置106a~106cは、下部作業装置60aや上部作業装置60bが施工した場所の出来形を確認する(測量する)機能を有する。 The distance measuring devices 106a are provided at two locations (near the corners) at the end of the upper surface of the lower main body device 40a on the lower working device 60a side. Further, the distance measuring device 106b is provided below the upper working device 60b of the upper main body device 40b. Further, the distance measuring device 106c is provided at the upper end of the pole portion 160a of the lifting device 60c. These distance measuring devices 106a to 106c determine whether or not the lower working device 60a and the upper working device 60b are likely to contact (interfere with) other parts of the hydraulic excavator 1, or whether they are likely to come into contact with anything other than the hydraulic excavator 1. Detect whether it is present or not. Further, the distance measuring devices 106a to 106c have a function of checking (surveying) the finished shape of the place where the lower working device 60a and the upper working device 60b have constructed.
 撮像装置108aは、下部本体装置40aの上面の下部作業装置60a側の端部の2か所(角部近傍)に設けられている。この撮像装置108aにより、下部作業装置60aの作業位置近傍を撮像することができる。また、撮像装置108bは、上部本体装置40bの上部作業装置60bの下側に設けられている。この撮像装置108bにより、上部作業装置60bの作業位置近傍を撮像することができる。また、撮像装置108cは、揚重装置60cの第2アーム部160cの下側に設けられている。この撮像装置108cにより、揚重装置60cが揚重作業を行う際の、吊荷周辺の状況を撮像することができる。また、撮像装置108dは、下部本体装置40aの上面の下部作業装置60aとは反対側の端部に設けられている。この撮像装置108dにより、後方側(下部作業装置60aと反対側)の状況、例えばダンプトラックに土砂を積み込む状況など、を撮像することができる。これら撮像装置108a~108dの画像を用いることで、下部作業装置60aと上部作業装置60bが油圧ショベル1の他の部分に接触しそうな状況にあるか否かや、油圧ショベル1以外へ接触しそうな状況にあるか否か、作業が順調であるかなどを確認することができる。また、例えば、油圧ショベル1を作業者が遠隔操作を行う場合には、撮像装置108a~108dは、作業者が利用する端末の表示部に表示する画像を撮像することができる。 The imaging devices 108a are provided at two locations (near the corner) at the end of the upper surface of the lower main body device 40a on the lower working device 60a side. This imaging device 108a can image the vicinity of the working position of the lower working device 60a. Further, the imaging device 108b is provided below the upper working device 60b of the upper main body device 40b. This imaging device 108b can image the vicinity of the working position of the upper working device 60b. Further, the imaging device 108c is provided below the second arm portion 160c of the lifting device 60c. This imaging device 108c can image the situation around the suspended load when the lifting device 60c performs lifting work. Further, the imaging device 108d is provided at the end of the upper surface of the lower main body device 40a on the opposite side from the lower working device 60a. This imaging device 108d can image the situation on the rear side (the side opposite to the lower working device 60a), for example, the situation in which earth and sand are loaded into a dump truck. By using the images of these imaging devices 108a to 108d, it is possible to determine whether the lower working device 60a and the upper working device 60b are likely to come into contact with other parts of the hydraulic excavator 1, or whether they are likely to come into contact with something other than the hydraulic excavator 1. You can check whether the situation is correct and whether the work is progressing smoothly. Further, for example, when a worker remotely controls the hydraulic excavator 1, the imaging devices 108a to 108d can capture images to be displayed on the display section of the terminal used by the worker.
 なお、本実施形態では、測距装置106a及び撮像装置108aを2か所に設けることにより、死角が発生するのを抑制することとしているが、死角の発生を抑制するために、下部作業装置60aのバケット58aの先端に測距装置106a及び撮像装置108aを設けることとしてもよい。この場合、測距装置106a及び撮像装置108aにバケット58aの振動が伝達するのを防止するため、防振ゴム等の衝撃吸収部材を介して、バケット58aに設けることとしてもよい。また、揚重装置60cのポール部160aの端部に測距装置106cを設ける場合には、死角の発生を抑制するために、測距装置106cの位置を上下左右に変更するための機構(例えばロボットアームのような機構)をポール部160aと測距装置106cとの間に介在させてもよい。 Note that in this embodiment, the distance measuring device 106a and the imaging device 108a are provided at two locations to suppress the occurrence of blind spots. A distance measuring device 106a and an imaging device 108a may be provided at the tip of the bucket 58a. In this case, in order to prevent vibrations of the bucket 58a from being transmitted to the distance measuring device 106a and the imaging device 108a, a shock absorbing member such as vibration isolating rubber may be provided on the bucket 58a. In addition, when the distance measuring device 106c is provided at the end of the pole portion 160a of the lifting device 60c, in order to suppress the occurrence of blind spots, a mechanism for changing the position of the distance measuring device 106c vertically and horizontally (for example, A mechanism such as a robot arm) may be interposed between the pole section 160a and the distance measuring device 106c.
 以上のように構成される本実施形態の油圧ショベル1においては、下部旋回装置30a、上部旋回装置30b、揚重旋回装置30cが、制御装置50の制御の下、独立して旋回動作するので、下部本体装置40a、上部本体装置40b、揚重装置60cが独立して旋回できるようになっている。これにより、下部本体装置40a、上部本体装置40b、揚重装置60cが様々な方向にアクセス可能となっている。また、各装置が干渉せずに、異なる作業を同時に行うことが可能となっている。 In the hydraulic excavator 1 of this embodiment configured as described above, the lower swing device 30a, the upper swing device 30b, and the lifting and swing device 30c independently swing under the control of the control device 50. The lower main body device 40a, the upper main body device 40b, and the lifting device 60c can be rotated independently. Thereby, the lower main body device 40a, the upper main body device 40b, and the lifting device 60c can be accessed in various directions. Additionally, different devices can perform different tasks at the same time without interfering with each other.
 また、本実施形態の油圧ショベル1には、搬送装置80が設けられているため、下部作業装置60aが掘削した土砂を、旋回することなく、後方のダンプトラックに積み込むことができる。また、下部作業装置60aは、ホッパ84に土砂を投入すればよいことから、ダンプトラックに直接土砂を積み込む場合と比べ、下部作業装置60aの動作距離が短くなる。これにより、土砂を掘削し、積み込みする際の消費エネルギを低減することができる。また、積込の際に下部作業装置60aが旋回しなくてもよいことから、バケット58aから土砂がこぼれて道路等を汚す可能性が低くなり、清掃作業の手間を省くことができる。また、旋回を行わない分、積込に要する時間を削減できるため、作業の効率化を図ることが可能となる。更に、旋回を行う場合には、他の物体と衝突する可能性があるが、旋回が不要となることで、他の物体との衝突可能性を低減することができる。 Moreover, since the hydraulic excavator 1 of this embodiment is provided with the transport device 80, the earth and sand excavated by the lower working device 60a can be loaded onto the rear dump truck without turning. Furthermore, since the lower working device 60a only needs to load the earth and sand into the hopper 84, the operating distance of the lower working device 60a is shorter than when loading earth and sand directly onto a dump truck. This makes it possible to reduce energy consumption when excavating and loading earth and sand. Furthermore, since the lower working device 60a does not have to rotate during loading, there is less possibility that dirt will spill from the bucket 58a and stain the road, etc., and the effort of cleaning work can be saved. In addition, since no turning is required, the time required for loading can be reduced, making it possible to improve work efficiency. Furthermore, when turning, there is a possibility of collision with other objects, but since turning is not necessary, the possibility of collision with other objects can be reduced.
(油圧ショベル1の作業について)
(個別作業について)
 以下、水道管敷設作業(個別作業)について図面を参照しつつ説明する。水道管敷設作業(個別作業)は、1つの作業領域(例えば水道管1本を敷設する領域)に対し、油圧ショベル1を用いて、路面解砕、土砂掘削・積込、管敷設、土砂埋め戻しの工程を順番に行う作業を意味する。個別作業は、図5のフローチャートに沿って実行される。なお、油圧ショベル1のメモリ49には、施工位置の情報や施工手順の情報などの自動運転に必要な情報が予め入力されているものとする。制御装置50は、メモリ49に格納されている情報、GNSS47の計測値、センサ群104による測距結果や画像に基づいて、油圧ショベル1の各部を制御し、図5の処理を実行する。
(About the work of hydraulic excavator 1)
(About individual work)
The water pipe installation work (individual work) will be explained below with reference to the drawings. Water pipe installation work (individual work) uses hydraulic excavator 1 for one work area (for example, an area where one water pipe is to be laid), and performs road surface crushing, earth excavation/loading, pipe laying, and earth filling. This refers to the work of performing the return process in sequence. The individual work is executed according to the flowchart in FIG. It is assumed that the memory 49 of the hydraulic excavator 1 has been previously inputted with information necessary for automatic operation, such as construction position information and construction procedure information. The control device 50 controls each part of the hydraulic excavator 1 based on the information stored in the memory 49, the measured values of the GNSS 47, the distance measurement results and images by the sensor group 104, and executes the processing shown in FIG. 5.
 図5の処理が開始されると、まず、ステップS10において、制御装置50は、GNSS47の計測値に基づいて走行モータ24を制御することで、油圧ショベル1を施工位置へ移動する。ここで、施工位置は、図6に示すような位置であるものとし、ステップS10では、油圧ショベル1が施工位置の+X側に位置決めされるものとする。また、作業者は、ダンプトラックDTを油圧ショベル1の+X側に停車させる。なお、ダンプトラックDTも自動運転で図6の位置に位置決めされてもよい。ダンプトラックDTの位置は、荷台の上方に搬送装置80(ベルトコンベア82b)の+X端部が位置するような位置であるものとする。 When the process in FIG. 5 is started, first, in step S10, the control device 50 moves the hydraulic excavator 1 to the construction position by controlling the travel motor 24 based on the measured value of the GNSS 47. Here, it is assumed that the construction position is a position as shown in FIG. 6, and in step S10, the hydraulic excavator 1 is positioned on the +X side of the construction position. Further, the worker stops the dump truck DT on the +X side of the hydraulic excavator 1. Note that the dump truck DT may also be automatically positioned at the position shown in FIG. 6 . It is assumed that the position of the dump truck DT is such that the +X end of the transport device 80 (belt conveyor 82b) is located above the loading platform.
 次いで、ステップS12に移行すると、制御装置50は、姿勢検出計44やセンサ群104を用いて、油圧ショベル1の姿勢や、油圧ショベル1の周囲を確認する。このとき、制御装置50は、油圧ショベル1の姿勢が不安定でないかや、油圧ショベル1の周囲に障害物が存在していないかなどを確認する。 Next, in step S12, the control device 50 uses the posture detector 44 and the sensor group 104 to check the posture of the hydraulic excavator 1 and the surroundings of the hydraulic excavator 1. At this time, the control device 50 checks whether the posture of the hydraulic excavator 1 is unstable and whether there are any obstacles around the hydraulic excavator 1.
 次いで、ステップS14では、制御装置50が、作業可能か否かを判断する。この判断が否定された場合にはステップS16に移行し、確認・対応処理を実行する。例えば、制御装置50は、作業者が確認可能なモニタ等に「油圧ショベルの姿勢や周囲を確認してください」などの情報を表示し、作業者による確認や対応が完了するまで待機する。そして、作業者が、確認や対応を行い、問題がなくなった旨を入力すると、制御装置50は、ステップS12に戻る。 Next, in step S14, the control device 50 determines whether work is possible. If this determination is negative, the process moves to step S16 and a confirmation/response process is executed. For example, the control device 50 displays information such as "Please check the posture and surroundings of the hydraulic excavator" on a monitor that can be checked by the worker, and waits until the worker completes the confirmation and response. Then, when the operator confirms and takes action and inputs that the problem is resolved, the control device 50 returns to step S12.
 一方、ステップS14の判断が肯定された場合には、ステップS18に移行し、制御装置50は、路面解砕を開始する。この場合、図6に示すように、制御装置50は、上部作業装置60bのスライドアーム55bを伸ばして、ブレーカ58bを用いて路面解砕を実行する。このとき、制御装置50は、下部旋回装置30aやスイングシリンダ42bを制御することで、上部作業装置60bを適宜旋回させたり、スイングさせたりする。 On the other hand, if the determination in step S14 is affirmative, the process moves to step S18, and the control device 50 starts crushing the road surface. In this case, as shown in FIG. 6, the control device 50 extends the slide arm 55b of the upper working device 60b and uses the breaker 58b to crush the road surface. At this time, the control device 50 controls the lower swing device 30a and the swing cylinder 42b to appropriately swing or swing the upper working device 60b.
 次いで、ステップS20に移行すると、制御装置50は、路面解砕が完了するまで待機する。制御装置50は、路面解砕が完了したか否かを、例えば、センサ群104に含まれる撮像装置108aによって撮像された画像を確認することで判定する。なお、画像から路面解砕が完了したか否かを判断する場合、例えば機械学習等を用いることができる。 Next, when moving to step S20, the control device 50 waits until the road surface crushing is completed. The control device 50 determines whether or not the road surface crushing is completed, for example, by checking the image captured by the imaging device 108a included in the sensor group 104. Note that when determining from the image whether or not road surface disintegration is completed, machine learning or the like can be used, for example.
 路面解砕が完了し、ステップS22に移行すると、制御装置50は、土砂掘削・積込を実行する。具体的には、制御装置50は、下部作業装置60aを制御し、施工位置をバケット58aで掘削する。また、制御装置50は、下部作業装置60aを制御し、バケット58aにより、掘削した土砂をホッパ84に投入する。これにより、掘削した土砂はベルトコンベア82a,82bによって後方(+X側)に搬送され、ダンプトラックDTの荷台に積み込まれる。なお、制御装置50は、掘削や積込の際に、下部旋回装置30aやスイングシリンダ42aを制御することで、下部作業装置60aを適宜旋回させたり、スイングさせたりする。 When the road surface crushing is completed and the process moves to step S22, the control device 50 executes earth and sand excavation and loading. Specifically, the control device 50 controls the lower working device 60a to excavate the construction position with the bucket 58a. Further, the control device 50 controls the lower working device 60a to charge excavated earth and sand into the hopper 84 using the bucket 58a. As a result, the excavated earth and sand is conveyed rearward (+X side) by the belt conveyors 82a and 82b, and loaded onto the platform of the dump truck DT. In addition, the control device 50 controls the lower swing device 30a and the swing cylinder 42a to appropriately rotate or swing the lower working device 60a during excavation or loading.
 次いで、ステップS24に移行すると、制御装置50は、土砂掘削・積込が完了するまで待機する。土砂掘削・積込が完了したか否かは、例えば、センサ群104に含まれる測距装置106aによる施工位置の測定結果に基づいて施工位置の測量を行うことで、施工位置が所定深さまで掘削されたかどうかを判定する。なお、制御装置50は、撮像装置108aの画像から施工位置が所定深さまで掘削されたかどうかを判定してもよい。 Next, in step S24, the control device 50 waits until the earth and sand excavation and loading are completed. Whether or not earth and sand excavation and loading have been completed can be determined, for example, by surveying the construction position based on the measurement results of the construction position by the distance measuring device 106a included in the sensor group 104. Determine whether it has been done. Note that the control device 50 may determine whether the construction position has been excavated to a predetermined depth from the image captured by the imaging device 108a.
 土砂掘削・積込が完了し、ステップS26に移行すると、制御装置50は、水道管の敷設を行う。具体的には、制御装置50は、図7に示すように、下部作業装置60aを下部本体装置40aとともに旋回するとともに、上部作業装置60bを上部本体装置40bとともに旋回することで、水道管敷設の邪魔にならない位置に下部作業装置60aと上部作業装置60bとを配置する。なお、図7では、下部作業装置60aと上部作業装置60bを+Y側に向けた状態としている。この状態で、制御装置50は、揚重装置60cの旋回動作、第2アーム部160cの伸長動作を行うとともに、敷設する水道管をクレーン部160dに吊下げ保持させる。そして、制御装置50は、クレーン部160dを施工位置の上方に位置決めした状態から下降させることで、水道管の敷設を行う。この揚重装置60cの動作の間は、制御装置50は、図4(a)の撮像装置108cによって撮像される画像に基づいて、水道管が適切に敷設されるように揚重装置60cを制御する。 When the earth and sand excavation and loading are completed and the process moves to step S26, the control device 50 installs water pipes. Specifically, as shown in FIG. 7, the control device 50 rotates the lower working device 60a together with the lower main body device 40a, and also rotates the upper working device 60b together with the upper main device 40b, thereby controlling the water pipe installation. The lower working device 60a and the upper working device 60b are arranged at positions where they do not get in the way. In addition, in FIG. 7, the lower working device 60a and the upper working device 60b are in a state facing the +Y side. In this state, the control device 50 rotates the lifting device 60c, extends the second arm portion 160c, and causes the crane portion 160d to suspend and hold the water pipe to be laid. Then, the control device 50 installs the water pipe by lowering the crane section 160d from the state where it is positioned above the construction position. During this operation of the lifting device 60c, the control device 50 controls the lifting device 60c so that the water pipe is appropriately laid, based on the image captured by the imaging device 108c in FIG. 4(a). do.
 次いで、ステップS28に移行すると、制御装置50は、水道管の敷設が完了するまで待機する。制御装置50は、水道管の敷設が完了したか否かを、撮像装置108cが撮像した画像に基づいて機械学習等を用いて判断する。 Next, in step S28, the control device 50 waits until the installation of the water pipes is completed. The control device 50 uses machine learning or the like to determine whether or not the water pipe installation is complete based on the image captured by the imaging device 108c.
 水道管の敷設が完了すると、ステップS30に移行し、制御装置50は、下部作業装置60aを用いて、土砂埋め戻しを実行する。具体的には、制御装置50は、下部作業装置60aを用いて、ダンプトラック等により運搬してきた土砂を施工位置に対して埋め戻す。なお、制御装置50は、土砂埋め戻しの際にも、下部旋回装置30aやスイングシリンダ42aを制御することで、下部作業装置60aを適宜旋回させたり、スイングさせたりする。 When the water pipe installation is completed, the process moves to step S30, and the control device 50 uses the lower work device 60a to perform earth and sand backfilling. Specifically, the control device 50 uses the lower working device 60a to backfill the construction position with earth and sand transported by a dump truck or the like. In addition, the control device 50 controls the lower rotating device 30a and the swing cylinder 42a to appropriately rotate or swing the lower working device 60a even when backfilling with earth and sand.
 次いで、ステップS32に移行すると、制御装置50は、土砂の埋め戻しが完了するまで待機する。土砂の埋め戻しが完了したか否かは、例えば、センサ群104に含まれる測距装置106aによる施工位置の測定結果に基づいて施工位置の測量を行うことで、施工位置が土砂で埋められたかどうかを判定する。なお、制御装置50は、撮像装置108aの画像から施工位置が土砂で埋められたか掘削されたかどうかを判定してもよい。 Next, when moving to step S32, the control device 50 waits until backfilling with earth and sand is completed. Whether the backfilling of earth and sand has been completed can be determined by, for example, surveying the construction position based on the measurement results of the construction position by the distance measuring device 106a included in the sensor group 104. judge whether Note that the control device 50 may determine whether the construction position is filled with earth and sand or excavated from the image captured by the imaging device 108a.
 そして、制御装置50は、土砂の埋め戻しが完了したと判定すると、図5の全処理を終了する。 Then, when the control device 50 determines that the backfilling of earth and sand is completed, it ends all the processes in FIG. 5 .
(同時並行作業について)
 次に、下部作業装置60a、上部作業装置60b、揚重装置60cによる水道管敷設作業(同時並行作業)について図8のフローチャートに沿って、その他図面を参照しつつ詳細に説明する。ここでは、図9(a)に示すような、上方から見て直線状に並ぶ施工位置(No.1)、施工位置(No.2)、施工位置(No.3)に対し、上述した路面解砕、土砂掘削・積込、管敷設、土砂埋め戻しの工程を行う場合について説明する。
(About concurrent work)
Next, water pipe laying work (simultaneous parallel work) using the lower work device 60a, the upper work device 60b, and the lifting device 60c will be described in detail along the flowchart of FIG. 8 and with reference to other drawings. Here, as shown in FIG. 9(a), the above-mentioned road surface is We will explain the process of crushing, excavating and loading soil, laying pipes, and backfilling soil.
 図8の処理が開始されると、まず、ステップS110において、制御装置50は、GNSS47の計測値に基づいて走行モータ24を制御することで、油圧ショベル1を施工位置(No.2)の近傍へ移動する。ここで、油圧ショベル1は一例として、図9(b)に示すような位置であるものとする。なお、図9(b)及び以降の図面においては、油圧ショベル1を簡略化して図示している。 When the process of FIG. 8 is started, first, in step S110, the control device 50 moves the hydraulic excavator 1 near the construction position (No. 2) by controlling the travel motor 24 based on the measured value of the GNSS 47. Move to. Here, the hydraulic excavator 1 is assumed to be in a position as shown in FIG. 9(b), for example. Note that in FIG. 9(b) and subsequent drawings, the hydraulic excavator 1 is illustrated in a simplified manner.
 ステップS110の後は、ステップS112、S114、S116を、前述した図5のステップS12、S14,S16と同様に実行する。そして、ステップS114の判断が肯定されると、制御装置50は、下部作業装置60a、上部作業装置60b、揚重装置60cによる同時並行作業に移行する。 After step S110, steps S112, S114, and S116 are executed in the same manner as steps S12, S14, and S16 in FIG. 5 described above. If the determination in step S114 is affirmative, the control device 50 shifts to simultaneous work using the lower working device 60a, the upper working device 60b, and the lifting device 60c.
 同時並行作業が開始されると、まず、ステップS200において、制御装置50は、上部作業装置60bを用いて、施工位置(No.1)の路面解砕を行う。図9(b)には、施工位置(No.1)の路面解砕を行っている状態が示されている。この路面解砕(S200)が完了すると、下部作業装置60a、上部作業装置60bが旋回し、図9(c)の状態となる。 When the concurrent work is started, first, in step S200, the control device 50 uses the upper work device 60b to crush the road surface at the construction position (No. 1). FIG. 9(b) shows a state in which the road surface is being crushed at the construction position (No. 1). When this road surface disintegration (S200) is completed, the lower working device 60a and the upper working device 60b turn, resulting in the state shown in FIG. 9(c).
 次いで、ステップS202では、制御装置50は、上部作業装置60bを用いて、施工位置(No.2)の路面解砕を行う。また、制御装置50は、ステップS202と並行して、ステップS300において、下部作業装置60aを用いて、施工位置(No.1)の土砂掘削・積込を行う。なお、ここでは、説明の簡素化のため、路面解砕と、土砂掘削・積込とが、同一の時間に完了するものとして説明する。 Next, in step S202, the control device 50 uses the upper working device 60b to crush the road surface at the construction position (No. 2). Further, in parallel with step S202, in step S300, the control device 50 uses the lower working device 60a to excavate and load earth and sand at the construction position (No. 1). Here, for the sake of simplicity, the explanation will be given assuming that the road surface crushing and the earth and sand excavation and loading are completed at the same time.
 ステップS202、S300が完了すると、制御装置50は、下部作業装置60a、上部作業装置60bを旋回するとともに、揚重装置60cを旋回・伸長等させることにより、図10(a)の状態とする。 When steps S202 and S300 are completed, the control device 50 turns the lower working device 60a and the upper working device 60b, and turns and extends the lifting device 60c, thereby bringing the state shown in FIG. 10(a).
 次いで、ステップS204では、制御装置50は、上部作業装置60bを用いて、施工位置(No.3)の路面解砕を行う。また、制御装置50は、ステップS204と並行して、ステップS302において、下部作業装置60aを用いて、施工位置(No.2)の土砂掘削・積込を行う。また、制御装置50は、ステップS204,S302と並行して、ステップS400において、揚重装置60cを用いて、施工位置(No.1)に水道管を敷設する。 Next, in step S204, the control device 50 uses the upper working device 60b to crush the road surface at the construction position (No. 3). Further, in parallel with step S204, in step S302, the control device 50 uses the lower working device 60a to excavate and load earth and sand at the construction position (No. 2). Further, in parallel with steps S204 and S302, in step S400, the control device 50 uses the lifting device 60c to lay a water pipe at the construction position (No. 1).
 各部の作業が終了すると、制御装置50は、下部作業装置60a、上部作業装置60bを旋回するとともに、揚重装置60cを旋回等させることにより、図10(b)の状態となる。 When the work of each part is completed, the control device 50 turns the lower working device 60a and the upper working device 60b, and turns the lifting device 60c, thereby achieving the state shown in FIG. 10(b).
 次いで、ステップS206では、制御装置50は、上部作業装置60bのブレーカ58bをバケットに交換する(アタッチメント交換)。このとき、制御装置50は、揚重装置60cを用いてアタッチメント交換を行う(ステップS402)。また、制御装置50は、ステップS206,S402と並行して、ステップS304において、下部作業装置60aを用いて、施工位置(No.3)の土砂掘削・積込を行う。なお、ダンプトラックDTが下部作業装置60aの邪魔になる場合には、ダンプトラックDTを邪魔にならない位置まで移動させ、これに対応してベルトコンベア82bの姿勢を変化させる(例えば、図13(b)参照)。また、下部作業装置60aの位置に応じて、ベルトコンベア82aの姿勢やホッパの位置を調整する。 Next, in step S206, the control device 50 replaces the breaker 58b of the upper working device 60b with a bucket (attachment replacement). At this time, the control device 50 performs attachment exchange using the lifting device 60c (step S402). Further, in parallel with steps S206 and S402, in step S304, the control device 50 uses the lower working device 60a to excavate and load earth and sand at the construction position (No. 3). Note that if the dump truck DT gets in the way of the lower working device 60a, the dump truck DT is moved to a position where it does not get in the way, and the attitude of the belt conveyor 82b is changed accordingly (for example, as shown in FIG. 13(b) )reference). Further, the attitude of the belt conveyor 82a and the position of the hopper are adjusted depending on the position of the lower working device 60a.
 その後は、ステップS404、S406において、制御装置50は、揚重装置60cを用いて、水道管を施工位置(No.2)、施工位置(No.3)に順次敷設する(図11(a)、図11(b)参照)。また、制御装置50は、水道管の敷設が終わった施工位置に対し、上部作業装置60bと下部作業装置60aとを用いて、土砂の埋め戻しを行う(S208,S306,S210、図10(a)~図10(c))。 Thereafter, in steps S404 and S406, the control device 50 uses the lifting device 60c to sequentially lay the water pipes at the construction position (No. 2) and the construction position (No. 3) (FIG. 11(a) , see FIG. 11(b)). Further, the control device 50 uses the upper working device 60b and the lower working device 60a to backfill the construction position where the water pipe has been laid with earth and sand (S208, S306, S210, FIG. 10(a) ) to Figure 10(c)).
 以上のように、下部作業装置60a、上部作業装置60b、揚重装置60cによる同時並行作業を実行することで、施工時間を短縮することができる。なお、図8の処理においては、各作業の時間の違いにより待ち時間が発生する場合があるので、制御装置50は、待ち時間が極力少なくなるように各装置を効率よく制御する。 As described above, the construction time can be shortened by simultaneously performing parallel work using the lower working device 60a, the upper working device 60b, and the lifting device 60c. Note that in the process of FIG. 8, waiting time may occur due to differences in the time of each task, so the control device 50 efficiently controls each device so that the waiting time is minimized.
 なお、上記説明においては、油圧ショベル1を施工位置の+Y側に配置して、同時並行作業を行う場合について説明したが、これに限らず、油圧ショベル1は、以下の変形例のように、直線的に移動しながら同時並行作業を行うこととしてもよい。 In addition, in the above description, the case where the hydraulic excavator 1 is placed on the +Y side of the construction position and simultaneous parallel work is performed is explained, but the hydraulic excavator 1 is not limited to this, and as in the following modification example, It is also possible to carry out simultaneous work while moving in a straight line.
(変形例)
 図12には、変形例に係る同時並行作業の様子が示されている。図12に示すように、変形例にかかる油圧ショベル1は、施工位置を跨いだ状態で矢印A方向に移動しながら、進行方向前方に位置する上部作業装置60bを用いて路面解砕を行い、進行方向後方の下部作業装置60aを用いて土砂掘削・積込を行う。なお、図12では図示を省略しているが、ダンプトラックDTは、ベルトコンベア82bの近傍に存在しており、油圧ショベル1とともに矢印A方向に移動する。また、油圧ショベル1は、掘削済みの位置に、揚重装置60cを用いて水道管を敷設する。このようにしても、下部作業装置60a、上部作業装置60b、揚重装置60cによる同時並行作業を実行することができるので、施工時間を短縮することができる。
(Modified example)
FIG. 12 shows a situation of simultaneous parallel work according to a modified example. As shown in FIG. 12, the hydraulic excavator 1 according to the modified example disintegrates the road surface using the upper working device 60b located forward in the traveling direction while moving in the direction of arrow A while straddling the construction position. Earth and sand are excavated and loaded using the lower working device 60a at the rear in the direction of travel. Although not shown in FIG. 12, the dump truck DT is located near the belt conveyor 82b and moves in the direction of arrow A together with the hydraulic excavator 1. Further, the hydraulic excavator 1 uses the lifting device 60c to lay a water pipe at the excavated position. Even in this case, the lower work device 60a, the upper work device 60b, and the lifting device 60c can perform simultaneous work, so that the construction time can be shortened.
 なお、図12の場合、上部作業装置60bと下部作業装置60aは、旋回しなくても各作業を行うことができるため、上部旋回装置30b及び下部旋回装置30aを設けなくてもよい。すなわち、上部作業装置60bと下部作業装置60aは、スイングシリンダ42a,42bにより、スイング可能となっているのみでも良い。また、油圧ショベル1には、上部旋回装置30b及び下部旋回装置30aのいずれか一方のみが設けられていてもよい。 Note that in the case of FIG. 12, the upper working device 60b and the lower working device 60a can perform each work without turning, so the upper turning device 30b and the lower turning device 30a do not need to be provided. That is, the upper working device 60b and the lower working device 60a may only be swingable by the swing cylinders 42a, 42b. Further, the hydraulic excavator 1 may be provided with only one of the upper swing device 30b and the lower swing device 30a.
 以上、詳細に説明したように、本実施形態によると、油圧ショベル1は、上部作業装置60bと接続された上部本体装置40bと、上部本体装置40bの下方に位置し、下部作業装置60aと接続された下部本体装置40aと、上部本体装置40bを旋回する上部旋回装置30bと、下部本体装置40aを旋回する下部旋回装置30aと、上部旋回装置30bと下部旋回装置30aとを制御して、上部作業装置60bと下部作業装置60aとを独立して旋回させる制御装置50とを備えている。これにより、本実施形態では、上部作業装置60bと下部作業装置60aが独立して旋回するため、上部作業装置60bと下部作業装置60aは、様々な方向にアクセスすることができる。したがって、施工時における油圧ショベル1の配置の自由度を向上することができる。これにより、使い勝手のよい油圧ショベル1を実現することができる。また、上述したように、同時並行動作を行うことで施工時間を短縮することができる。 As described above in detail, according to the present embodiment, the hydraulic excavator 1 includes an upper main body device 40b connected to the upper working device 60b, and an upper main body device 40b located below the upper main body device 40b and connected to the lower working device 60a. The lower main body device 40a that has been rotated, the upper rotating device 30b that rotates the upper main body device 40b, the lower rotating device 30a that rotates the lower main body device 40a, the upper rotating device 30b, and the lower rotating device 30a are controlled. The control device 50 is provided to independently rotate the working device 60b and the lower working device 60a. Accordingly, in this embodiment, since the upper working device 60b and the lower working device 60a rotate independently, the upper working device 60b and the lower working device 60a can be accessed in various directions. Therefore, the degree of freedom in arranging the hydraulic excavator 1 during construction can be improved. Thereby, it is possible to realize a hydraulic excavator 1 that is easy to use. Moreover, as mentioned above, by performing simultaneous parallel operations, construction time can be shortened.
 また、本実施形態では、油圧ショベル1は、上部本体装置40bに対して上部作業装置60bをスイングするスイングシリンダ42bと、下部本体装置40aに対して下部作業装置60aをスイングするスイングシリンダ42aと、を備えている。そして、制御装置は、スイングシリンダ42a,42bを制御して、上部作業装置60bと下部作業装置60aとを独立してスイングさせる。これにより、上部作業装置60bと下部作業装置60aの方向を細かく調整することができるので、使い勝手のよい油圧ショベル1を実現することができる。 Furthermore, in the present embodiment, the hydraulic excavator 1 includes a swing cylinder 42b that swings the upper working device 60b with respect to the upper main body device 40b, and a swing cylinder 42a that swings the lower working device 60a with respect to the lower main body device 40a. It is equipped with The control device then controls the swing cylinders 42a and 42b to swing the upper working device 60b and the lower working device 60a independently. Thereby, the directions of the upper working device 60b and the lower working device 60a can be finely adjusted, so it is possible to realize the hydraulic excavator 1 that is easy to use.
 また、本実施形態では、下部本体装置40aの水平面の断面積が、上部本体装置40bの水平面の断面積よりも大きいので、油圧ショベル1の重心を低く設定することができる。 Furthermore, in this embodiment, the horizontal cross-sectional area of the lower main body device 40a is larger than the horizontal cross-sectional area of the upper main body device 40b, so the center of gravity of the hydraulic excavator 1 can be set low.
 また、本実施形態では、油圧ショベル1の周囲の状況を認識するセンサ群104を備え、制御装置50は、センサ群104の計測結果や撮像された画像に基づいて、下部作業装置60aと上部作業装置60bにより同時並行動作させる。これにより、下部作業装置60aと上部作業装置60b同士が接触したり、他の物体と接触するのを防止することができる。 In addition, this embodiment includes a sensor group 104 that recognizes the surrounding situation of the hydraulic excavator 1, and the control device 50 controls the lower working device 60a and the upper working device based on the measurement results of the sensor group 104 and the captured images. The device 60b operates simultaneously and in parallel. This can prevent the lower working device 60a and the upper working device 60b from coming into contact with each other or with other objects.
 また、本実施形態では、油圧ショベル1が揚重装置60cを備えるため、水道管を搬送したり、上部作業装置60bや下部作業装置60aのアタッチメント交換、搬送装置80の設置などに用いることができる。 Furthermore, in this embodiment, since the hydraulic excavator 1 includes the lifting device 60c, it can be used for transporting water pipes, replacing attachments of the upper working device 60b and the lower working device 60a, installing the transporting device 80, etc. .
 また、本実施形態の油圧ショベル1は、下部作業装置60aの駆動に応じて移動するカウンタウエイト46aと、上部作業装置60bの駆動に応じて移動するカウンタウエイト46bと、を備える。これにより、下部作業装置60aや上部作業装置60bが旋回やスイングをした場合における、油圧ショベル1全体の重心の移動を抑制することができる。 Further, the hydraulic excavator 1 of this embodiment includes a counterweight 46a that moves according to the drive of the lower work device 60a, and a counterweight 46b that moves according to the drive of the upper work device 60b. Thereby, movement of the center of gravity of the entire hydraulic excavator 1 can be suppressed when the lower working device 60a and the upper working device 60b turn or swing.
 また、本実施形態では、下部本体装置40aの下方に設けられ、土砂を搬送する搬送装置80を備える。これにより、掘削した土砂をダンプトラックに直接投入する場合に比べ、消費エネルギを低減することができる。 Additionally, in this embodiment, a conveying device 80 is provided below the lower main body device 40a and conveys earth and sand. Thereby, energy consumption can be reduced compared to the case where excavated earth and sand are directly thrown into a dump truck.
 また、本実施形態では、ベルトコンベア82aの上面に着脱可能なホッパ84が設けられているので、土砂をベルトコンベア82aの上面に確実に投入することができる。 Furthermore, in this embodiment, since a removable hopper 84 is provided on the top surface of the belt conveyor 82a, earth and sand can be reliably thrown onto the top surface of the belt conveyor 82a.
 なお、上記実施形態では、下部作業装置60aがバケット58aを有し、上部作業装置60bがブレーカ58bを有する場合について説明したが、これに限らず、下部作業装置60aがブレーカを有し、上部作業装置60bがバケットを有していてもよい。 In the above embodiment, a case has been described in which the lower working device 60a has the bucket 58a and the upper working device 60b has the breaker 58b, but the present invention is not limited to this. Device 60b may have a bucket.
 なお、上記実施形態では、上部作業装置60bがスライドアーム55bを有する場合について説明したが、これに限らず、上部作業装置60bは下部作業装置60aと同一の構成(先端のアタッチメントのみ異なる)であってもよい。 In the above embodiment, the case where the upper working device 60b has the slide arm 55b has been described, but the upper working device 60b may have the same configuration as the lower working device 60a (only the attachment at the tip is different). You can.
 なお、上記実施形態では、油圧ショベル1が揚重装置60cを備える場合について説明したが、必ずしも揚重装置60cを設けなくてもよい。この場合、揚重装置60cと同様の作業を下部作業装置60aや上部作業装置60bが行うこととしてもよい。 Note that in the above embodiment, a case has been described in which the hydraulic excavator 1 includes the lifting device 60c, but the lifting device 60c does not necessarily need to be provided. In this case, the lower working device 60a and the upper working device 60b may perform the same work as the lifting device 60c.
 なお、上記実施形態では、センサ群104を用いて、周囲の状況を把握する場合について説明したが、これに代えて又はこれとともに、測距装置や撮像装置を有するドローンを用いて、油圧ショベル1の周囲の状況を把握することとしてもよい。 In the above embodiment, a case has been described in which the surrounding situation is grasped using the sensor group 104, but instead of or in addition to this, a drone having a distance measuring device or an imaging device is used to monitor the hydraulic excavator 1. It is also possible to grasp the surrounding situation.
 なお、上記実施形態では、搬送装置80が、乗り継ぎ可能なベルトコンベアを2つ有する場合について説明したが、これに限らず、搬送装置80は、ベルトコンベアを1つのみ有していてもよいし、乗り継ぎ可能なベルトコンベアを3つ以上有していてもよい。 Note that in the above embodiment, a case has been described in which the conveyance device 80 has two transferable belt conveyors, but the present invention is not limited to this, and the conveyance device 80 may have only one belt conveyor. , it may have three or more transferable belt conveyors.
 なお、上記実施形態では、電力を燃料電池11から得る場合について説明したが、これに限らず、例えば太陽光パネルなどから電力を得ることとしてもよい。また、走行装置の駆動源として、内燃機関を用い、電力をオルタネータから得るようにしてもよい。 Note that in the above embodiment, a case has been described in which power is obtained from the fuel cell 11, but the invention is not limited to this, and power may be obtained from, for example, a solar panel. Alternatively, an internal combustion engine may be used as the driving source for the traveling device, and electric power may be obtained from an alternator.
  1 油圧ショベル(建設機械)
  20 走行装置
  30a 下部旋回装置
  30b 上部旋回装置
  30c 揚重旋回装置
  40a 下部本体装置
  40b 上部本体装置
  42a スイングシリンダ(下部スイング装置)
  42b スイングシリンダ(上部スイング装置)
  46a カウンタウエイト(第1の質量体)
  46b カウンタウエイト(第2の質量体)
  50 制御装置
  60a 下部作業装置
  60b 上部作業装置
  60c 揚重装置
  80 搬送装置
  84 ホッパ(掘削物受入れ部)
  104 センサ群(周囲認識装置)
 
1 Hydraulic excavator (construction machinery)
20 Travel device 30a Lower swing device 30b Upper swing device 30c Lifting swing device 40a Lower main body device 40b Upper main device 42a Swing cylinder (lower swing device)
42b Swing cylinder (upper swing device)
46a Counterweight (first mass body)
46b Counterweight (second mass body)
50 Control device 60a Lower working device 60b Upper working device 60c Lifting device 80 Conveying device 84 Hopper (excavated material receiving section)
104 Sensor group (surrounding recognition device)

Claims (13)

  1.  上部作業装置と接続された上部本体装置と、
     前記上部本体装置の下方に位置し、下部作業装置と接続された下部本体装置と、
     前記上部本体装置を旋回する上部旋回装置と、
     前記下部本体装置を旋回する下部旋回装置と、
     前記上部旋回装置と前記下部旋回装置とを制御して、前記上部作業装置と前記下部作業装置とを独立して旋回させる制御装置とを備えた建設機械。
    an upper main body device connected to the upper working device;
    a lower main body device located below the upper main body device and connected to a lower working device;
    an upper rotating device that rotates the upper main body device;
    a lower rotating device that rotates the lower main body device;
    A construction machine comprising: a control device that controls the upper swing device and the lower swing device to independently swing the upper working device and the lower working device.
  2.  前記上部本体装置に対して前記上部作業装置をスイングする上部スイング装置と、
     前記下部本体装置に対して前記下部作業装置をスイングする下部スイング装置と、
    を備え、
     前記制御装置は、前記上部スイング装置と前記下部スイング装置とを制御して、前記上部作業装置と前記下部作業装置とを独立してスイングさせる請求項1に記載の建設機械。
    an upper swing device that swings the upper working device with respect to the upper main body device;
    a lower swing device that swings the lower working device with respect to the lower main body device;
    Equipped with
    The construction machine according to claim 1, wherein the control device controls the upper swing device and the lower swing device to swing the upper work device and the lower work device independently.
  3.  上部作業装置と接続された上部本体装置と、
     前記上部本体装置の下方に位置し、下部作業装置と接続された下部本体装置と、
     前記上部本体装置に対して前記上部作業装置をスイングする上部スイング装置と、
     前記下部本体装置に対して前記下部作業装置をスイングする下部スイング装置と、
     前記上部スイング装置と前記下部スイング装置とを制御して、前記上部作業装置と前記下部作業装置とを独立してスイングさせる制御装置とを備えた建設機械。
    an upper main body device connected to the upper working device;
    a lower main body device located below the upper main body device and connected to a lower working device;
    an upper swing device that swings the upper working device with respect to the upper main body device;
    a lower swing device that swings the lower working device with respect to the lower main body device;
    A construction machine comprising: a control device that controls the upper swing device and the lower swing device to swing the upper working device and the lower working device independently.
  4.  前記下部本体装置の水平面の断面積が、前記上部本体装置の水平面の断面積よりも大きい請求項1~3のいずれか一項に記載の建設機械。 The construction machine according to any one of claims 1 to 3, wherein a horizontal cross-sectional area of the lower main body device is larger than a horizontal cross-sectional area of the upper main body device.
  5.  周囲の状況を認識する周囲認識装置を備え、
     前記制御装置は、前記周囲認識装置の認識結果に基づいて、第1範囲において、前記上部作業装置及び前記下部作業装置の一方に第1作業を行わせ、前記第1作業の終了後に、前記第1範囲において、前記上部作業装置及び前記下部作業装置の他方に前記第1作業と異なる第2作業を行わせる請求項1~4のいずれか一項に記載の建設機械。
    Equipped with a surrounding recognition device that recognizes the surrounding situation,
    The control device causes one of the upper working device and the lower working device to perform a first work in a first range based on the recognition result of the surrounding recognition device, and after the first work is finished, performs the first work. The construction machine according to any one of claims 1 to 4, wherein the other of the upper working device and the lower working device is caused to perform a second work different from the first work in one range.
  6.  前記制御装置は、前記周囲認識装置の認識結果に基づいて、前記上部作業装置及び前記下部作業装置が前記建設機械の他の部分及び前記建設機械以外の装置と干渉しないように動作させる請求項5に記載の建設機械。 5. The control device operates based on the recognition result of the surrounding recognition device so that the upper working device and the lower working device do not interfere with other parts of the construction machine and devices other than the construction machine. Construction machinery listed in .
  7.  前記上部本体装置に設けられ、対象物を揚重する揚重装置を備えた請求項1~6のいずれか一項に記載の建設機械。 The construction machine according to any one of claims 1 to 6, further comprising a lifting device provided on the upper main body device to lift an object.
  8.  前記揚重装置は、前記上部本体装置の中央上部に設置されている請求項7に記載の建設機械。 The construction machine according to claim 7, wherein the lifting device is installed at the upper center of the upper main body device.
  9.  前記揚重装置を旋回させる揚重装置旋回装置を備え、
     前記制御装置は、前記揚重装置旋回装置により前記揚重装置を独立して旋回させる請求項7又は8に記載の建設機械。
    comprising a lifting device turning device that turns the lifting device,
    The construction machine according to claim 7 or 8, wherein the control device independently rotates the lifting device using the lifting device turning device.
  10.  前記制御装置は、前記揚重装置に前記建設機械の一部の着脱を実施させる請求項7~9のいずれか一項に記載の建設機械。 The construction machine according to any one of claims 7 to 9, wherein the control device causes the lifting device to attach and detach a part of the construction machine.
  11.  前記下部作業装置の駆動に応じて移動する第1の質量体と、
     前記上部作業装置の駆動に応じて移動する第2の質量体と、を備える請求項1~10のいずれか一項に記載の建設機械。
    a first mass body that moves in accordance with the drive of the lower working device;
    The construction machine according to any one of claims 1 to 10, further comprising a second mass body that moves in response to driving of the upper working device.
  12.  少なくとも一部が前記下部本体装置の下方に設けられ、前記上部作業装置または前記下部作業装置のいずれか一方が掘削した掘削物を搬送する搬送装置を備えた請求項1~11のいずれか一項に記載の建設機械。 Any one of claims 1 to 11, wherein at least a portion of the lower main body device is provided below the lower main body device, and includes a conveyance device for conveying an excavated material excavated by either the upper work device or the lower work device. Construction machinery listed in .
  13.  前記搬送装置の上面に着脱可能な掘削物受入れ部を備えた請求項12に記載の建設機械。
     
     
    The construction machine according to claim 12, further comprising a removable excavated material receiving section on the upper surface of the transport device.

PCT/JP2022/044963 2022-03-08 2022-12-06 Construction machine WO2023171059A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-035418 2022-03-08
JP2022035418 2022-03-08

Publications (1)

Publication Number Publication Date
WO2023171059A1 true WO2023171059A1 (en) 2023-09-14

Family

ID=87936518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044963 WO2023171059A1 (en) 2022-03-08 2022-12-06 Construction machine

Country Status (1)

Country Link
WO (1) WO2023171059A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5012882Y1 (en) * 1972-10-03 1975-04-21
JPS5327603U (en) * 1976-08-17 1978-03-09
JPS61198350U (en) * 1985-05-30 1986-12-11
JPH09189047A (en) * 1996-01-11 1997-07-22 Komatsu Ltd Construction machine
JPH1129958A (en) * 1997-07-11 1999-02-02 Komatsu Ltd Construction machine
JP3144562B2 (en) * 1997-07-11 2001-03-12 株式会社小松製作所 Work machine
JP2011089326A (en) * 2009-10-23 2011-05-06 Hitachi Constr Mach Co Ltd Trench excavator for burying pipe
JP2015131371A (en) * 2014-01-14 2015-07-23 日立建機株式会社 Double-arm work machine
JP2018028212A (en) * 2016-08-18 2018-02-22 株式会社神戸製鋼所 Construction machine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5012882Y1 (en) * 1972-10-03 1975-04-21
JPS5327603U (en) * 1976-08-17 1978-03-09
JPS61198350U (en) * 1985-05-30 1986-12-11
JPH09189047A (en) * 1996-01-11 1997-07-22 Komatsu Ltd Construction machine
JPH1129958A (en) * 1997-07-11 1999-02-02 Komatsu Ltd Construction machine
JP3144562B2 (en) * 1997-07-11 2001-03-12 株式会社小松製作所 Work machine
JP2011089326A (en) * 2009-10-23 2011-05-06 Hitachi Constr Mach Co Ltd Trench excavator for burying pipe
JP2015131371A (en) * 2014-01-14 2015-07-23 日立建機株式会社 Double-arm work machine
JP2018028212A (en) * 2016-08-18 2018-02-22 株式会社神戸製鋼所 Construction machine

Similar Documents

Publication Publication Date Title
JP7274831B2 (en) working machine
JP2711612B2 (en) Automatic transport system for earthworks
JP5004834B2 (en) Work machine
CN111771031B (en) System and method for controlling a work machine
WO2020026506A1 (en) System and method for controlling work machine
WO2020075458A1 (en) System and method including transport vehicle and work machine for loading raw materials into transport vehicle, and work machine
US20160196749A1 (en) Method for assisting hauling trucks at worksite
JP7217373B2 (en) Assist method for construction machinery
WO2020075457A1 (en) System and method for controlling work machine for loading material into transport vehicle
WO2023171059A1 (en) Construction machine
US9803337B2 (en) System and method for in-pit crushing and conveying operations
JP7265323B2 (en) Systems and methods for controlling work machines
WO2020026505A1 (en) System and method for controlling work machine
CN116438356A (en) Construction machine and control device for construction machine
US20140345894A1 (en) Pole splint driver implement
AU2021222454B2 (en) Remote operation system for work machine
JP2019188879A (en) Rear deck corrugation control system for dump truck for mine
CN113454292A (en) Excavator
CA3163110A1 (en) System and method for controlling transport vehicle
JP2001200553A (en) Operating machine
CN114829710A (en) Shovel and remote operation support device
AU2017218995B2 (en) System and method for swing control
JP7436593B2 (en) construction machinery
EP3974585B1 (en) Construction machine
WO2022185666A1 (en) Construction machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931030

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024505899

Country of ref document: JP