WO2023170930A1 - リピーター及び通信方法 - Google Patents

リピーター及び通信方法 Download PDF

Info

Publication number
WO2023170930A1
WO2023170930A1 PCT/JP2022/010924 JP2022010924W WO2023170930A1 WO 2023170930 A1 WO2023170930 A1 WO 2023170930A1 JP 2022010924 W JP2022010924 W JP 2022010924W WO 2023170930 A1 WO2023170930 A1 WO 2023170930A1
Authority
WO
WIPO (PCT)
Prior art keywords
repeater
base station
information
terminal
resource
Prior art date
Application number
PCT/JP2022/010924
Other languages
English (en)
French (fr)
Inventor
大輔 栗田
浩樹 原田
ウェイチー スン
ジン ワン
ラン チン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/010924 priority Critical patent/WO2023170930A1/ja
Publication of WO2023170930A1 publication Critical patent/WO2023170930A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to a repeater and a communication method.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • LTE-A LTE-Advanced
  • FAA Future Radio Access
  • 5G 5th generation mobile communication system
  • 5G+ 5th generation mobile communication system
  • New-RAT Radio Access Technology
  • NR Radio
  • the network control repeater may also be referred to as an NR network control repeater or a smart repeater.
  • the network controlled repeater may be simply referred to as a repeater.
  • One aspect of the present disclosure is to provide a repeater and communication method that appropriately controls the beam of the repeater.
  • a repeater includes a receiving unit that receives a plurality of beams from a base station, and beam information of the base station included in each time unit of the received beam and associated with each of the plurality of beams. and a control unit that determines a beam for the terminal based on the information.
  • a communication method is a communication method for a repeater, which receives a plurality of beams from a base station, and includes a plurality of beams included in each time unit of the received beams and associated with each of the plurality of beams. Determine the beam for the terminal based on the beam information of the base station.
  • a repeater includes a receiving unit that receives a plurality of beams from a base station, and a base station that is included in each reference signal resource included in the received beam and that is associated with each of the plurality of beams. and a control unit that determines a beam for the terminal based on the beam information of the station.
  • a communication method is a repeater communication method, in which a plurality of beams are received from a base station, a reference signal resource included in each of the received beams is included in each of the plurality of beams, and a reference signal is included in each of the plurality of beams.
  • a beam for the terminal is determined based on the beam information of the base station associated with the base station.
  • FIG. 1 is a diagram showing an example of a wireless communication system according to an embodiment.
  • FIG. 2 is a diagram showing an example of frequency ranges used in a wireless communication system.
  • FIG. 2 is a diagram showing an example of a configuration of a radio frame, a subframe, and a slot used in a radio communication system.
  • 3 is a diagram illustrating an example of proposal 1-type 1.
  • FIG. 2 is a diagram illustrating an example of proposal 1-type 2.
  • FIG. 3 is a diagram illustrating an example of proposal 2-option 1.
  • FIG. 2 is a diagram illustrating an example of proposal 2-option 2.
  • FIG. 3 is a diagram illustrating an example of proposal 2-option 3.
  • FIG. 4 is a diagram illustrating an example of proposal 2-option 4.
  • FIG. 7 is a diagram illustrating an example of proposal 2-option 5.
  • FIG. 1 is a diagram showing an example of a wireless communication system according to an embodiment.
  • FIG. 2 is a diagram showing an example of frequency ranges used in a wireless communication system
  • FIG. 7 is a diagram illustrating an example of proposal 3-option 1.
  • FIG. 7 is a diagram illustrating another example of proposal 3-option 1.
  • FIG. 7 is a diagram illustrating an example of proposal 3-option 2.
  • FIG. 3 is a diagram illustrating an example of proposal 3-option 3.
  • FIG. 4 is a diagram illustrating an example of proposal 3-option 4.
  • FIG. 7 is a diagram illustrating another example of proposal 3-option 4. It is a figure explaining unified TCI state indication DCI of Rel-17.
  • FIG. 7 is a diagram illustrating an example of proposal 5-option 1.
  • FIG. 6 is a diagram illustrating another example of proposal 5-option 1.
  • FIG. 5 is a diagram illustrating an example of proposal 5-option 2.
  • FIG. 7 is a diagram illustrating an example of proposal 5-option 3.
  • FIG. 5 is a diagram illustrating an example of proposal 5-option 4.
  • FIG. 6 is a diagram illustrating another example of proposal 5-option 4.
  • FIG. 3 is a diagram showing an example of RRC parameters.
  • FIG. 3 is a diagram illustrating an example of variation 1.
  • FIG. 7 is a diagram illustrating an example of variation 2.
  • 7 is a diagram illustrating another example of variation 2.
  • FIG. 2 is a diagram illustrating an example of a functional configuration of a base station and a repeater according to an embodiment.
  • FIG. 2 is a diagram illustrating an example of the hardware configuration of a base station and a repeater according to an embodiment.
  • 1 is a diagram showing an example of the configuration of a vehicle.
  • FIG. 1 is a diagram showing an example of a wireless communication system 1 according to an embodiment.
  • the wireless communication system 1 is, for example, a wireless communication system compliant with 5G New Radio (NR).
  • the wireless communication system 1 includes a Next Generation-Radio Access Network (NG-RAN) 11, a base station 12, a repeater 13, and a terminal 14.
  • NG-RAN Next Generation-Radio Access Network
  • the wireless communication system 1 may be a wireless communication system that follows a system called Beyond 5G, 5G Evolution, or 6G.
  • Base station 12 may be referred to as a gNB.
  • Terminal 14 may be referred to as User Equipment (UE).
  • UE User Equipment
  • the NG-RAN 20 actually includes one or more NG-RAN nodes (or ng-eNB) and is connected to a 5G-compliant core network (eg, 5GC, not shown).
  • a 5G-compliant core network eg, 5GC, not shown.
  • the NG-RAN 20 includes the base station 12 and is connected to 5GC.
  • the NG-RAN 20 and 5GC may be simply expressed as a "network.”
  • the base station 12 is, for example, a 5G base station, and performs 5G wireless communication with the terminal 14 via the repeater 13.
  • the base station 12 uses Massive Multiple-Input Multiple-Output (MIMO), which generates a beam BM with higher directivity by controlling radio signals transmitted from multiple antenna elements, and multiple component carriers (CC). It may be compatible with carrier aggregation (CA) that is used in a bundle, dual connectivity (DC) that communicates with the terminal 14 in cooperation with another base station (not shown), and the like.
  • CA carrier aggregation
  • DC dual connectivity
  • the beam may also be referred to as a spatial domain filter.
  • the repeater 13 is a network-controlled repeater whose operation is controlled by the network.
  • the repeater 13 has operations such as beam control controlled by the network, and relays communication between the base station 12 and the terminal 14.
  • the wireless communication system 1 supports multiple frequency ranges (FR).
  • FIG. 2 is a diagram showing an example of a frequency range used in the wireless communication system 1.
  • the wireless communication system 1 supports FR1 and FR2.
  • the frequency bands of each FR are, for example, as follows. ⁇ FR1: 410 MHz to 7.125 GHz ⁇ FR2: 24.25 GHz to 52.6 GHz
  • FR1 Sub-Carrier Spacing (SCS) of 15kHz, 30kHz, or 60kHz is used, and a bandwidth (BW) of 5 to 100MHz may be used.
  • SCS Sub-Carrier Spacing
  • FR2 is at a higher frequency than FR1, with an SCS of 60kHz or 120kHz (may include 240kHz), and a bandwidth (BW) of 50-400MHz may be used.
  • SCS may also be interpreted as numerology. Numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier spacing in the frequency domain.
  • the wireless communication system 1 may support a frequency band higher than the frequency band of FR2. Specifically, the wireless communication system 1 may support frequency bands exceeding 52.6 GHz and up to 114.25 GHz. Such a high frequency band may be conveniently referred to as "FR2x.”
  • FR2x Such a high frequency band may be conveniently referred to as "FR2x.”
  • CP-OFDM Cyclic Prefix-Orthogonal Frequency Division Multiplexing
  • DFT-S-OFDM Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing
  • FIG. 3 is a diagram showing a configuration example of a radio frame, subframe, and slot used in the radio communication system 1. As shown in FIG. 3, one slot is composed of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period). SCS is not limited to the intervals (frequency) shown in FIG. For example, 480kHz, 960kHz, etc. may be used as the SCS.
  • the number of symbols that make up one slot does not necessarily have to be 14 symbols (for example, 28 or 56 symbols). Furthermore, the number of slots per subframe may vary depending on the SCS.
  • time direction (t) shown in FIG. 3 may also be called a time domain, symbol period, symbol time, or the like.
  • the frequency direction may be referred to as a frequency domain, resource block, subcarrier, bandwidth part (BWP), or the like.
  • 3GPP has decided to study technologies such as beam control, timing control, and power ON/OFF control in DL-UL.
  • 3GPP has only decided to consider these technologies, but has not conducted any specific studies. For example, in FIG. 1, 3GPP has not specifically considered how the downlink transmission beam of the repeater 13 is controlled based on the network such as the base station 12.
  • the downlink transmission beam may be referred to as a beam, DL Tx beam, Tx beam, DL beam, etc.
  • Transmission at a repeater may also be referred to as forwarding.
  • a transmit beam may be referred to as a forwarding beam.
  • SCI is information that is notified from the network to repeaters.
  • the SCI is received and processed by the repeater.
  • the repeater is controlled by the network via the SCI.
  • the SCI may be notified from the base station to the repeater by, for example, L1/L2 lower layer signaling such as SSB (SS/PBCH Block), CSI-RS, PDCCH (DCI), PDSCH, or MAC CE.
  • L1/L2 lower layer signaling such as SSB (SS/PBCH Block), CSI-RS, PDCCH (DCI), PDSCH, or MAC CE.
  • the SCI may be notified from the base station to the repeater by higher layer signaling such as RRC parameters.
  • SS is an abbreviation for Primary Synchronization Signal (PSS) and Secondary Synchronization Signal (SSS).
  • PBCH is an abbreviation for Physical Broadcast Channel.
  • CSI stands for Channel State Information.
  • RS stands for Reference Signal.
  • PDCCH is an abbreviation for Physical Downlink Control Channel.
  • DCI stands for Downlink Control Information.
  • PDSCH stands for Physical Downlink Shared Channel.
  • MAC CE stands for Medium Access Control Control
  • the repeater controls the DL Tx beam based on (using SCI).
  • DL Tx beam control in the repeater may have three types: type 0 to type 2.
  • a repeater (on which DL Tx beam control is implemented) notifies the base station that it has DL Tx beam capability. For example, the repeater reports to the base station whether or not it has capabilities regarding DL Tx beam control, such as the number of DL Tx beams.
  • Proposal 1-Type 1 beam information of the base station is used as the SCI.
  • beam information such as a beam ID (identifier) of the base station is notified from the base station to the repeater in order to control the DL Tx beam at the repeater.
  • the repeater controls (determines) the DL Tx beam based on beam information such as the base station's beam ID that is notified from the base station. Therefore, the repeater's DL Tx beam is associated with the base station's DL Tx beam. For example, the DL Tx beam of the repeater is indicated based on a mapping rule (mapping table) between the DL Tx beam of the base station and the DL Tx beam of the repeater.
  • a mapping rule mapping table
  • the repeater refers to the mapping rules and determines the DL Tx beam for transmitting (transferring) the DL signal received from the base station to the terminal.
  • FIG. 4 is a diagram illustrating an example of proposal 1-type 1.
  • FIG. 4 shows the base station 12, repeater 13, and terminals 14 (14a to 14d) described in FIG. Further, FIG. 4 shows a mapping rule R21.
  • the mapping rule R21 is information that associates the relationship between the DL Tx beam of the base station 12 and the DL Tx beam of the repeater 13. For example, as shown in FIG. 4, the mapping rule R21 associates the beam ID “#1” of the DL Tx beam at the base station (gNB) 12 with the beam ID “#a” of the DL Tx beam at the repeater 13.
  • beam ID “#1” may be simply written as beam #1.
  • ID is omitted for other beam IDs such as #2 and #a (for example, they are written as beam #2 and beam #a).
  • the base station 12 determines (understands) which beam of the repeater 13 the terminal 14 uses to receive the DL signal. For example, the base station 12 determines that the terminal 14a receives the DL signal via the beam #a of the repeater 13. The base station 12 determines that the terminal 14b receives the DL signal via the beam #b of the repeater 13. The base station 12 determines that the terminal 14c receives the DL signal via the beam #c of the repeater 13. The base station 12 determines that the terminal 14d receives the DL signal via the beam #d of the repeater 13.
  • the base station 12 schedules DL transmission to the terminal 14a.
  • the terminal 14a receives the DL signal from the repeater 13 via beam #a. Therefore, the base station 12 refers to the mapping rule R21 and transmits the DL signal to the repeater 13 using beam #1 corresponding to beam #a (notifying the repeater 13 of beam #1).
  • Repeater 13 refers to mapping rule R21 based on beam #1 of the received DL signal, and transmits the DL signal transmitted from base station 12 to terminal 14a using beam #a corresponding to beam #1. (Forward.
  • the base station 12 schedules DL transmission to the terminal 14b.
  • the terminal 14b receives the DL signal from the repeater 13 via beam #b. Therefore, the base station 12 refers to the mapping rule R21 and transmits the DL signal to the repeater 13 using beam #2 corresponding to beam #b.
  • Repeater 13 refers to mapping rule R21 based on beam #2 of the received DL signal, and transmits the DL signal transmitted from base station 12 to terminal 14a using beam #b corresponding to beam #2. (Forward.
  • the repeater controls the DL Tx beam by referring to the mapping rule based on beam information such as the beam ID of the base station notified from the base station. Therefore, the repeater can appropriately control the beam of the DL signal transmitted to the terminal.
  • the repeater may report the number of DL Tx beams to the base station as the repeater's capabilities.
  • the base station may notify the beam ID to the repeater based on the repeater's capability notified from the repeater.
  • mapping rules may be pre-implemented in the repeater (eg, stored in a storage device). Further, the mapping rule may be notified from the base station to the repeater using SCI.
  • the mapping rules may be reported from the repeater to the base station.
  • a repeater may associate the repeater's beam (information) with the base station's beam (information) and report the associated mapping rule to the base station.
  • the repeater's beam information in the mapping rule may be associated with the base station's DL RS resource ID.
  • beam information such as a repeater's beam ID may be associated with a base station's SSB/CSI-RS resource ID.
  • beam information such as a repeater's beam ID may be associated with a base station's Transmission Configuration Indication (TCI) state ID.
  • TCI Transmission Configuration Indication
  • the TCI state is information regarding quasi-co-location (QCL) of at least one of a signal and a channel (hereinafter referred to as signal/channel), spatial reception parameters, spatial relationship information (spatial It may also be called relation info).
  • QCL quasi-co-location
  • the TCI state may be set in the terminal on a per-channel or per-signal basis.
  • the TCI state is, for example, information regarding the QCL between the target channel (or RS for the channel) and another signal (for example, another Downlink Reference Signal (DL-RS)). Good too.
  • the TCI state may be set (indicated) by upper layer signaling, physical layer signaling, or a combination thereof.
  • QCL is an index that indicates the statistical properties of a signal/channel. For example, if one signal/channel has a QCL relationship with another signal/channel, the Doppler shift, Doppler spread, and average delay are calculated between these different signals/channels. ), delay spread, and spatial parameters (e.g. Spatial Rx Parameter) can be assumed to be the same (QCL with respect to at least one of these) You may.
  • the terminal may determine at least one of a transmit beam (Tx beam) and a receive beam (Rx beam) for the signal/channel based on TCI conditions or QCL assumptions for the signal/channel.
  • Tx beam transmit beam
  • Rx beam receive beam
  • the base station may use the SCI to indicate the time unit of the base station's DL Tx beam.
  • the repeater may be instructed by the base station to use the SCI to determine the time unit of the DL Tx beam of the base station.
  • a time unit may be a subframe, slot, minislot, symbol, multiple subframes, multiple slots, or multiple symbols.
  • the repeater's DL Tx beam in a time unit may be determined based on the base station's DL Tx beam and the mapping rule.
  • the mapping rule is assumed to be mapping rule R21 shown in FIG. 4. Assume that the DL Tx beam of the base station in a certain slot (time unit) is beam #2. In this case, the DL Tx beam of the repeater in a certain slot (time unit) is beam #b.
  • mapping rules different DL Tx beams of the base station correspond to different DL Tx beams of the repeater.
  • the DL Tx beam ID of the base station used in the mapping rule may be the same as or different from the DL Tx beam ID of the base station (or may be defined separately). Whether the DL Tx beam ID of the base station used in the mapping rule is the same as or different from the DL Tx beam ID of the base station may depend on the implementation of the base station.
  • the repeater's beam may depend on the repeater implementation. For example, if the repeater is notified of the same beam ID from the base station in two time units, it may apply the same beam (direction). The repeater may apply beams (in different directions) in two time units if different beam IDs are notified from the base station.
  • Beam control at the repeater may be applied to DL channels such as SSB, SCI-RS, PDCCH, PDSCH, and DMRS.
  • DL channels such as SSB, SCI-RS, PDCCH, PDSCH, and DMRS.
  • DMRS is an abbreviation for Demodulation Reference Signal.
  • Proposal 1-Type 2 In Proposal 1-Type 2, repeater beam information is used as the SCI. In other words, in Proposal 1-Type 2, beam information such as the beam ID of the repeater is notified from the base station to the repeater in order to control the DL Tx beam at the repeater.
  • the repeater controls (determines) the DL Tx beam based on beam information such as the repeater's beam ID that is notified from the base station. Therefore, in Proposal 1-Type 2, the mapping rule described in Proposal 1-Type 1 is unnecessary.
  • FIG. 5 is a diagram illustrating an example of proposal 1-type 2.
  • FIG. 5 shows the base station 12, repeater 13, and terminals 14 (14a to 14d) described in FIG.
  • the base station 12 determines (ascertains) which beam of the repeater 13 the terminal 14 uses to receive the DL signal in a predetermined process such as initial access, for example. For example, the base station 12 determines that the terminal 14a receives the DL signal via the beam #a of the repeater 13. The base station 12 determines that the terminal 14b receives the DL signal via the beam #b of the repeater 13. The base station 12 determines that the terminal 14c receives the DL signal via the beam #c of the repeater 13. The base station 12 determines that the terminal 14d receives the DL signal via the beam #d of the repeater 13.
  • the base station 12 communicates with the repeater 13 (transmits a DL signal) using one beam among beams #1 to #4 of the base station 12. For example, as shown in FIG. 4, the base station 12 communicates with the repeater 13 using beam #2, which has the best communication quality among beams #1 to #4 of the base station 12.
  • the base station 12 schedules DL transmission to the terminal 14a.
  • the terminal 14a receives the DL signal from the repeater 13 via beam #a. Therefore, when transmitting a DL signal to the terminal 14a via the repeater 13, the base station 12 notifies the repeater 13 of the beam #a using the SCI.
  • the repeater 13 uses the beam #a notified from the base station 12 to transmit the DL signal received from the base station 12 to the terminal 14a.
  • the base station 12 schedules DL transmission to the terminal 14b.
  • the terminal 14b receives the DL signal from the repeater 13 via beam #b. Therefore, when transmitting a DL signal to the terminal 14b via the repeater 13, the base station 12 notifies the repeater 13 of beam #b using the SCI.
  • the repeater 13 uses beam #b notified from the base station 12 to transmit the DL signal received from the base station 12 to the terminal 14b.
  • the repeater controls the DL Tx beam based on beam information such as the beam ID of the repeater notified from the base station. Therefore, the repeater does not need to store information such as mapping rules in the storage device, which can reduce costs.
  • the repeater may report the number of DL Tx beams to the base station as the repeater's capabilities.
  • the base station may notify the beam ID to the repeater based on the repeater's capability notified from the repeater.
  • the base station may use the SCI to indicate the time unit of the repeater's DL Tx beam.
  • the repeater may be instructed by the base station to use the SCI to determine the time unit of the repeater's DL Tx beam.
  • the repeater's DL Tx beam in a time unit may be determined directly based on the repeater's DL Tx beam instructed by the base station. In other words, the repeater may determine the DL Tx beam in a time unit based on instructions from the base station.
  • the beam of the repeater may depend on the repeater implementation. For example, if the repeater is notified of the same beam ID from the base station in two time units, it may apply the same beam (direction). The repeater may apply beams (in different directions) in two time units if different beam IDs are notified from the base station.
  • Beam control at the repeater may be applied to DL channels such as SSB, SCI-RS, PDCCH, PDSCH, and DMRS.
  • the terminal performs measurements based on the repeater's DL Tx beam.
  • the terminal notifies the base station of the measurement results. This operation allows the base station to determine (understand) the quality of the repeater's DL Tx beam at the terminal.
  • measurement is, for example, when a terminal receives a detection/measurement signal (e.g., PSS, SSS, Cell-specific Reference Signal (CRS), CSI-RS, etc.) and discovers the detection/measurement signal. , to measure its reception quality.
  • a detection/measurement signal e.g., PSS, SSS, Cell-specific Reference Signal (CRS), CSI-RS, etc.
  • reception quality include Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and Signal to Interference plus Noise Ratio (SINR).
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • SINR Signal to Interference plus Noise Ratio
  • a measurement result may also be referred to as a measurement report or simply a report.
  • Proposal 2 may include options 1 to 5 below.
  • Options 1 and 2 assume the type 1 operation described in proposal 1 in the measurement.
  • the base station directs the DL Tx beam to the repeater using different beam information of the base station.
  • the base station transmits an RS for each time unit or RS resource set in Options 1 and 2 below, and determines which RS the terminal has measured based on the report from the terminal.
  • Options 3 to 5 assume Type 2 behavior described in Proposal 1 in measurement.
  • a base station directs a DL Tx beam to a repeater using different beam information of the repeater.
  • the base station transmits an RS for each time unit or for each DL RS resource set in options 3 to 5 below, and determines which RS the terminal has measured based on the report from the terminal.
  • (Option 3) The base station directs the repeater's beam on a time-unit basis (see also proposal 5).
  • the base station directs the beam on a time unit basis in Proposal 1-Type 1 operation.
  • the repeater is directed to a beam for each time unit in Proposal 1-Type 1 operation.
  • FIG. 6 is a diagram illustrating an example of proposal 2-option 1.
  • "gNB's DL RS resources" shown in FIG. 6 indicates the DL RS resources of the base station (gNB).
  • one DL RS resource is allocated to two time units.
  • the DL RS resource configuration of the base station may not be notified (instructed) to the repeater.
  • the DL RS resource may be, for example, an SSB/CSI-RS resource.
  • gNB's Tx beam indicates the base station's DL Tx beam.
  • the base station transmits, for example, four DL RSs (RS#1 to RS#4) using different DL Tx beams.
  • Each of the DL RSs may be transmitted using multiple time units.
  • RS#1 may be transmitted using two time units shown by arrow A1.
  • RS#2 may be transmitted using two time units shown by arrow A2.
  • the base station notifies the repeater of beam information such as the base station's beam ID for each time unit, as shown in "Beam indication" in FIG.
  • the base station notifies the repeater of beam #1, which is the beam ID of the base station, in each of the two time units shown by arrow A1 in FIG.
  • the base station notifies the repeater of beam #2, which is the beam ID of the base station, in each of the two time units shown by arrow A2 in FIG.
  • repeaters have mapping rules.
  • the repeater refers to the mapping rule based on the beam information notified from the base station and determines the DL Tx beam for transmitting the DL RS.
  • the repeater refers to the mapping rule R21 shown in FIG. 4 and determines the repeater beam #a corresponding to the base station beam #1 in each of the two time units shown by the arrow A1 in FIG. 6). For example, the repeater determines the repeater's beam #b corresponding to the base station's beam #2 in each of the two time units shown by arrow A2 in FIG. 6 (see the beam shown by arrow A4 in FIG. 6).
  • the terminal uses a legacy procedure (e.g., an existing procedure) to measure the DL RS transmitted from the repeater. For example, the terminal performs L1 beam measurements on the four DL RS resources shown in FIG. 6. Further, the terminal performs L1 beam measurement in each time unit shown in FIG. 6. The terminal sends a measurement report of the L1 beam measurement to the base station via the repeater 13.
  • a legacy procedure e.g., an existing procedure
  • the base station determines (understands) the beam quality (communication quality) between the repeater and the terminal based on the measurement report from the terminal.
  • the base station dynamically executes (determines) the schedule of the terminal (DL) using the good beam of the repeater.
  • the repeater may control the DL Tx beam for each time unit based on the beam information of the base station, and may transmit the DL RS to the terminal.
  • the terminal may report the measurement of the beam of the repeater to the base station for each time unit. This allows the repeater to transmit a DL signal to the terminal using a beam with good quality.
  • the base station directs beams for each DL RS resource of the base station.
  • the repeater is directed to a beam for each DL RS resource of the base station.
  • FIG. 7 is a diagram illustrating an example of proposal 2-option 2.
  • “gNB’s DL RS resources” in FIG. 7 indicates the DL RS resources of the base station.
  • “gNB’s Tx beam” in FIG. 7 indicates the DL Tx beam of the base station.
  • the base station transmits, for example, four DL RSs (RS#1 to RS#4) using different DL Tx beams.
  • the base station notifies the repeater of the DL RS resource configuration.
  • the base station notifies the repeater of beam information such as the beam ID of the base station for each DL RS resource, as shown by arrow A5 in FIG. 7.
  • the base station notifies the repeater of beam #1 in the DL RS resource of RS #1 shown in FIG.
  • the base station notifies the repeater of beam #2 in the DL RS resource of RS #2 shown in FIG.
  • repeaters have mapping rules.
  • the repeater refers to the mapping rule based on the beam information notified from the base station and determines the DL Tx beam for transmitting the DL RS. At this time, the repeater determines the DL Tx beam for each DL RS resource configuration (DL RS resource unit) notified from the base station.
  • DL RS resource unit DL RS resource unit
  • the repeater refers to the mapping rule R21 shown in FIG. 4 and determines the repeater beam #a corresponding to the base station's beam #1. (See the beam indicated by arrow A6 in FIG. 7).
  • the repeater refers to the mapping rule R21 shown in FIG. 4 and determines the repeater's beam #b corresponding to the base station's beam #2 (Fig. (see the beam indicated by arrow A7).
  • the terminal uses legacy procedures to measure the DL RS transmitted from the repeater. For example, the terminal performs L1 beam measurements on the four DL RS resources #1 to #4 shown in FIG. 7. The terminal sends a measurement report of the L1 beam measurement to the base station via the repeater 13.
  • the base station determines (understands) the beam quality (communication quality) between the repeater and the terminal based on the measurement report from the terminal.
  • the base station dynamically schedules the terminal (DL) using the repeater's good beam.
  • the base station may schedule terminals on a per time unit basis.
  • the repeater may control the DL Tx beam for each DL RS resource based on the beam information of the base station, and may transmit the DL RS to the terminal.
  • the terminal may report the repeater beam measurement to the base station for each DL RS resource. This allows the repeater to transmit a DL signal to the terminal using a beam with good quality.
  • the base station directs the beam on a time unit basis in Proposal 1-Type 2 operation.
  • the repeater is directed to a beam for each time unit in Proposal 1-Type 2 operation.
  • FIG. 8 is a diagram illustrating an example of proposal 2-option 3.
  • "gNB's DL RS resources" shown in FIG. 8 indicates DL RS resources in the base station.
  • one DL RS resource is allocated to two time units.
  • the base station's DL RS resource configuration may not be notified to the repeater.
  • FIG. 8 shows the DL Tx beam of the base station.
  • the base station uses one (directed) DL Tx beam among the plurality of DL Tx beams (see arrow A8 in FIG. 8) to transmit, for example, four DL RSs (RS#1 to RS#4). Send.
  • the base station may transmit the DL RS using the DL Tx beam with the best communication quality between the base station and the repeater among the multiple DL Tx beams.
  • the base station notifies the repeater of beam information such as the beam ID of the repeater for each time unit, as shown in "Beam indication" in FIG. 8.
  • the base station notifies the repeater of beam #a, which is the beam ID of the repeater, in each of the two time units shown by arrow A9 in FIG.
  • the base station notifies the repeater of beam #b, which is the beam ID of the repeater, in each of the two time units shown by arrow A10 in FIG.
  • the base station notifies the repeater of beam information of the repeater in order to control the DL Tx beam of the repeater. Therefore, in proposal 1-type 2, the repeater has no mapping rules.
  • the repeater determines the DL Tx beam to transmit (transfer) the DL RS based on the repeater beam information notified from the base station.
  • the repeater determines the DL Tx beam for transmitting the DL RS, as shown in "Repeater DL Tx beam" in FIG. 8. For example, the repeater determines its beam #a in each of the two time units shown by arrow A9 in FIG. 8 (see the beam shown by arrow A11 in FIG. 8). For example, the repeater determines its beam #b in each of the two time units shown by arrow A10 in FIG. 8 (see the beam shown by arrow A12 in FIG. 8).
  • the terminal uses legacy procedures to measure the DL RS transmitted from the repeater. For example, the terminal performs L1 beam measurements on the four DL RS resources shown in FIG. 8. Further, the terminal performs L1 beam measurement in each time unit shown in FIG. 8. The terminal sends a measurement report of the L1 beam measurement to the base station via the repeater 13.
  • the base station determines (understands) the beam quality (communication quality) between the repeater and the terminal based on the measurement report from the terminal.
  • the base station dynamically schedules the terminal (DL) using the repeater's good beam.
  • the repeater may control the DL Tx beam and transmit the DL RS to the terminal for each time unit based on the beam information of the repeater.
  • the terminal may report the measurement of the beam of the repeater to the base station for each time unit. This allows the repeater to transmit a DL signal to the terminal using a beam with good quality.
  • the base station may notify multiple beam information of repeaters in one time unit.
  • the repeater may transmit DL signals (simultaneously) using multiple DL Tx beams in one time unit.
  • the time unit may be set for each of a plurality of frequency resources (for each frequency resource domain unit).
  • the base station may notify beam information of the repeater in each time unit of a plurality of frequency resources.
  • the repeater may transmit the DL signal using multiple DL Tx beams on each of multiple frequency resources simultaneously.
  • the setting of time units for each of the plurality of frequency resources described above may also be applied to other options of Proposal 2.
  • the setting of time units for each of the plurality of frequency resources described above may also be applied to proposals other than proposal 2.
  • Proposal 2 - Option 4 newly defines RS resources for controlling the repeater's DL Tx beam.
  • the newly defined repeater DL RS resource may be referred to as a repeater DL RS resource.
  • Repeater DL RS resources can be thought of as defined to manage the repeater's DL Tx beams.
  • FIG. 9 is a diagram illustrating an example of proposal 2-option 4.
  • "gNB's DL RS resources" shown in FIG. 9 indicates DL RS resources in the base station.
  • the DL RS resources (configuration) at the base station may not be notified to the repeater.
  • Repeater DL RS resources indicates repeater DL RS resources for repeaters.
  • the repeater DL RS resource includes beam information of the repeater for controlling the DL Tx beam of the repeater.
  • Beam indication shown in FIG. 9 indicates beam information for controlling the DL Tx beam of the repeater. Beam information for controlling the DL Tx beam of the repeater is determined for each repeater DL RS resource. Repeater DL RS resources (configuration) are notified to the repeater from the base station.
  • the base station configures repeater DL RS resources and transmits repeater DL RS containing beam information of the repeater's DL Tx beam for each repeater DL RS resource.
  • the base station transmits, for example, four repeater DL RSs (RS#a to RS#d) using one DL Tx beam among the plurality of DL Tx beams.
  • the base station may transmit the repeater DL RS using the DL Tx beam with the best communication quality between the base station and the repeater among the multiple DL Tx beams.
  • the repeater that receives the repeater DL RS decodes the repeater DL RS and obtains the beam information of the repeater.
  • the repeater controls the DL Tx beam as shown in "Repeater DL Tx beam" in FIG. 9 based on the decoded beam information.
  • Each of the repeater DL RS resources occupies specific time-domain resources as directed by the base station.
  • the repeater amplifies the base station's DL RS in each repeater DL RS resource and forwards it to the terminal.
  • the terminal uses legacy procedures to measure the DL RS transmitted from the repeater. For example, the terminal performs L1 beam measurements on the four repeater DL RS resources shown in FIG. The terminal sends a measurement report of the L1 beam measurement to the base station via the repeater 13.
  • the base station determines (understands) the beam quality (communication quality) between the repeater and the terminal based on the measurement report from the terminal.
  • the base station dynamically schedules the terminal (DL) using the repeater's good beam.
  • the base station may schedule terminals on a per time unit basis.
  • the repeater may control the DL Tx beam and transmit the DL RS to the terminal for each repeater DL RS resource.
  • the terminal may report the repeater beam measurement to the base station for each repeater DL RS resource. This allows the repeater to transmit a DL signal to the terminal using a beam with good quality.
  • the beam information of the repeater may be determined for each repeater DL RS resource, but it is not limited to this.
  • Repeater beam information may be indicated for each repeater DL RS resource.
  • the DL Tx beam of the repeater may be determined for each repeater DL RS resource, or may be instructed for each repeater DL RS resource.
  • the base station uses the base station's beam information to direct the repeater's beam.
  • the repeater uses the base station's beam information to determine the DL Tx beam without using mapping rules.
  • the beam of the repeater is determined for each DL RS resource of the base station.
  • FIG. 10 is a diagram illustrating an example of proposal 2-option 5.
  • "gNB's DL RS resources" shown in FIG. 10 indicates DL RS resources in the base station.
  • the base station transmits, for example, four DL RSs (RS#1 to RS#4) using one DL Tx beam among the plurality of DL Tx beams.
  • the base station may transmit the DL RS using the DL Tx beam with the best communication quality between the base station and the repeater among the multiple DL Tx beams.
  • the base station notifies the repeater of the beam information of the base station in the DL RS of the DL RS resource. For example, as shown in “Beam indication” in FIG. 10, the base station may notify the repeater of beam information of the base station in the DL RS of the DL RS resource.
  • the repeater controls the DL Tx beam based on the beam information notified from the base station. For example, as shown in "Repeater DL Tx beam" in FIG. 10, the DL Tx beam is controlled. In other words, the repeater uses the base station's beam information to control the DL Tx beam.
  • the terminal uses legacy procedures to measure the DL RS transmitted from the repeater. For example, the terminal performs L1 beam measurements on the four DL RS resources shown in FIG. 10. The terminal sends a measurement report of the L1 beam measurement to the base station via the repeater 13.
  • the base station determines (understands) the beam quality (communication quality) between the repeater and the terminal based on the measurement report from the terminal.
  • the base station dynamically schedules the terminal (DL) using the repeater's good beam.
  • the base station may schedule terminals on a per time unit basis.
  • the repeater may control the DL Tx beam for each DL RS resource of the base station using the beam information of the base station notified from the base station, and may transmit the DL RS to the terminal.
  • the terminal may report the repeater beam measurement to the base station for each DL RS resource. This allows the repeater to transmit a DL signal to the terminal using a beam with good quality.
  • a repeater can transmit, for example, a repeater capability to a network such as NG-RAN, which indicates the repeater's capabilities.
  • the repeater may transmit the repeater capability in response to receiving a Repeater Capability Inquiry from the network.
  • Repeater capability that indicates the repeater's capability may include the following information that indicates the repeater's capability. Note that the information indicating the repeater's ability may correspond to information defining the repeater's ability.
  • ⁇ Information on the number of DL Tx beams that the repeater can process ⁇ Information indicating whether the repeater supports the Type 0, Type 1, or Type 2 framework described in Proposal 1 ⁇ Information on the number of DL Tx beams that the repeater can process Information indicating whether DL signals can be simultaneously transmitted using beams
  • the number of DL Tx beams that the repeater can use to simultaneously transmit DL signals may be defined as the repeater capability.
  • ⁇ Information indicating whether the repeater can simultaneously transmit DL signals using different beams for resources in different frequency regions.In this case, the repeater capability is the number of DL Tx beams that the repeater can use to simultaneously transmit DL signals. may be defined as
  • Proposal 3 assumes the type 1 operation described in Proposal 1.
  • the base station notifies the repeater's DL Tx beam for each time unit using the base station's beam information.
  • Proposal 3 may have the following options 1-8.
  • the repeater decodes the DCI for the terminal.
  • (Option 7) Use Semi Persistent Scheduling (SPS) configuration/activation TCI status. Alternatively, define the TCI status of SPS configuration/activation for repeaters.
  • the base station notifies the repeater of a plurality of consecutive base station beam information.
  • the repeater controls the DL Tx beam based on consecutive base station beam information.
  • FIG. 11 is a diagram illustrating an example of proposal 3-option 1.
  • “Beam indication” in FIG. 11 indicates beam information that the base station notifies the repeater.
  • the beam information is, for example, the beam ID of the base station.
  • a series of base station beam information is applied in a series of time units.
  • the base station notifies different beam information for each time unit. For example, the base station notifies beam #1 in the time unit indicated by arrow A13 in FIG. For example, the base station notifies beam #2 in the time unit indicated by arrow A14 in FIG.
  • FIG. 12 is a diagram illustrating another example of proposal 3-option 1.
  • the length of the time unit is different from that in FIG.
  • the time units shown in FIG. 11 have a constant length, but the time units shown in FIG. 12 have non-uniform lengths. Note that, similarly to the explanation of FIG. 11, the base station notifies different beam information for each time unit also in FIG. 12.
  • the sequence of time units to which beam control is applied may be indicated to the repeater as a number of consecutive time units.
  • the sequence of time units to which beam control is applied may be dictated based on the start time and length of the time units.
  • the starting time or length of time for which the beam control is applied may be predefined.
  • the time unit over which beam control is applied may start at a predefined offset from receiving beam information and span a predefined length.
  • sequence of time units to which beam control is applied may be notified to the repeater using a sequence of time unit IDs.
  • the beam information of the base station and the time unit may be associated with each other.
  • the beam ID and time unit ID of a base station may be associated.
  • the base station notifies the repeater of one base station beam information.
  • the notified beam information is continuously set.
  • the repeater continuously uses the DL Tx beam based on the one piece of beam information that has been notified.
  • FIG. 13 is a diagram illustrating an example of proposal 3-option 2.
  • “Beam indication” in FIG. 13 indicates beam information that the base station notifies the repeater.
  • the beam information is, for example, the beam ID of the base station.
  • the base station notifies the repeater of the beam information of the base station in a certain time unit. For example, the base station announces beam #1 to the repeater in one time unit.
  • the repeater continuously uses the DL Tx beam based on the notified beam information. For example, a repeater uses a DL Tx beam based on one notified beam information over multiple time units. In the example of FIG. 13, the repeater uses the DL Tx beam based on the base station's beam ID “#1” over multiple time units.
  • the sequence of time units to which beam control is applied may be indicated to the repeater as a number of consecutive time units.
  • the sequence of time units to which beam control is applied may be dictated based on the start time and length of the time units.
  • the starting time or length of time for which the beam control is applied may be predefined.
  • the time unit over which beam control is applied may start at a predefined offset from receiving beam information and span a predefined length.
  • the sequence of time units to which beam control is applied may be instructed to the repeater using a sequence of time unit IDs.
  • the beam information of the base station and the time unit may be associated with each other.
  • beam information of a base station and time unit ID may be associated with each other.
  • the base station can notify the repeater of the sequence of time units to which beam control is applied by reporting beam information of the base station.
  • the base station periodically sets a plurality of consecutive base station beam information.
  • the repeater periodically controls the DL Tx beam based on consecutive pieces of base station beam information notified from the base station.
  • FIG. 14 is a diagram illustrating an example of proposal 3-option 3.
  • “Beam indication” in FIG. 14 indicates beam information that the base station notifies the repeater.
  • the beam information is, for example, the beam ID of the base station.
  • the base station notifies the repeater of the beam information of the base station in one cycle. For example, as shown in FIG. 14, the base station transmits the base station's beam IDs “#1, #2, #3, #4” once using all the time units (four time units) in one cycle. , notify repeat customers.
  • the repeater When the repeater receives the base station beam IDs “#1, #2, #3, #4” in one cycle, it corresponds to each of the base station beam IDs “#1, #2, #3, #4”. DL Tx beams are periodically transmitted.
  • the repeater refers to the mapping rule and repeats the beam IDs “#a, #b, #c, #d” that correspond to the beam IDs “#1, #2, #3, #4” of the base station. Send (periodically).
  • the base station may notify the repeater of the periodic pattern of the base station's beam information.
  • the base station may notify the repeater of the period and offset of the base station's beam information.
  • the offset may, for example, indicate a time unit to start transmitting periodic DL Tx beams.
  • the sequence of beam information of a base station may be indicated by each beam information (eg, "#1, #2, #3, #4") applied to a time unit in one period.
  • the base station notifies one base station beam information.
  • the same beam information is continuously and periodically set.
  • FIG. 15 is a diagram illustrating an example of proposal 3-option 4.
  • “Beam indication” in FIG. 15 indicates beam information that the base station notifies the repeater.
  • the beam information is, for example, the beam ID of the base station.
  • the base station notifies the repeater of the beam information of the base station in one cycle. For example, as shown by arrow A15a in FIG. 15, the base station notifies the repeater of the base station's beam ID “#1” using some time units (one time unit) in one cycle.
  • the repeater continuously uses the DL Tx beam based on the notified beam information. For example, the repeater uses the DL Tx beam based on the notified piece of beam information over some of the time units in one cycle.
  • the repeater uses the DL Tx beam based on the notified one beam information over two time units out of four time units in one cycle.
  • the repeater uses the DL Tx beam based on the notified one beam information over two time units out of four time units in one cycle.
  • the sequence of time units to which beam control is applied may be indicated to the repeater as a number of consecutive time units.
  • the sequence of time units to which beam control is applied may be dictated based on the start time and length of the time units.
  • the starting time or length of time for which the beam control is applied may be predefined.
  • the time unit over which beam control is applied may start at a predefined offset from receiving beam information and span a predefined length.
  • the base station may notify the repeater of the periodic pattern of the base station's beam information.
  • the base station may notify the repeater of the period and offset of the base station's beam information.
  • the offset may indicate, for example, a time unit within one cycle to start transmitting the DL Tx beam. Further, the number of time units (2 in the example of FIG. 15) to which beam control is applied within one period may be notified to the repeater.
  • FIG. 16 is a diagram illustrating another example of proposal 3-option 4.
  • “Beam indication” in FIG. 16 indicates beam information that the base station notifies the repeater.
  • the beam information is, for example, the beam ID of the base station.
  • the base station notifies the repeater of the beam information of the base station in one cycle. For example, as shown by arrow A16a in FIG. 16, the base station notifies the repeater of the base station's beam ID “#2” using some time units (one time unit) in one cycle.
  • the repeater continuously uses the DL Tx beam based on the notified beam information. For example, the repeater transmits the DL Tx beam based on the notified one beam information over the third and fourth time units out of the four time units in one cycle based on the offset notified from the base station. Send.
  • the base station may control the DL Tx beams of the repeater so that the multiple DL Tx beams at the repeater do not overlap.
  • the base station transmits the DL Tx beam of the repeater so that the DL Tx beam corresponding to beam #1 is transmitted in the first and second time units of one cycle. Control.
  • the base station transmits the DL Tx beam of the repeater so that the DL Tx beam corresponding to beam #2 is transmitted in the third and fourth time units of one cycle. Control.
  • the repeater can continuously transmit multiple DL Tx beams using multiple time units within one cycle.
  • the base station utilizes the beam setting method for existing terminals.
  • the repeater decodes the signal for the terminal.
  • the base station may utilize existing beam configurations (indications) in the DL channel or DL RS to the terminals (eg, all terminals in a cell or group).
  • the base station may utilize existing beam configurations (eg, cell-specific RNTI or group-common RNTI) in the PDSCH, PDCCH, SSB, or CSI-RS. Since the existing beam configuration is for the terminal, the repeater decodes the DL channel or DL RS.
  • the beam information of the base station may be indicated by the DL RS resource ID (CSI-RS ID or SSB index) or TCI status ID of the base station.
  • the repeater refers to the TCI status of DCI 1_x.
  • the repeater decodes the DCI for the terminal.
  • the base station uses DCI (DCI 1_x) to schedule PDSCH and notifies repeaters of beam information.
  • the DCI's TCI status field indicates beam information such as the base station's Tx beam ID.
  • the beam information (Tx beam ID of the base station) notified to the repeater and the DL Tx beam of the repeater corresponding to the beam information are applied to the slot or symbol indicated in the Time Domain Resource Allocation (TDRA) field of the DCI.
  • TDRA Time Domain Resource Allocation
  • the repeater may not need to decode the PDSCH. In this case, the repeater may simply amplify and transmit the DL signal.
  • a repeater receives DCI 1_x.
  • the repeater does not need to decode the PDSCH.
  • the repeater (the repeater's Mobile Termination (MT) functionality) may not decode or process the PDSCH of the resource indicated to the DCI in the following manner.
  • MT Mobile Termination
  • Method 1 The repeater only sends DL signals in the slot or symbol indicated in the DCI if one or more existing fields (or new fields) of the DCI are set to predefined values. is transferred from the base station to the terminal. The repeater does not decode or process the PDSCH of the resource indicated in the DCI.
  • Method 2 If the repeater detects a DCI in a specific RNTI, search space (SS) set, or control-resource set (CORESET), the repeater transmits only the DL signal to the base in the slot or symbol indicated in the DCI. Transfer from station to terminal. The repeater does not decode or process the PDSCH of the resource indicated in the DCI.
  • SS search space
  • CORESET control-resource set
  • a new DCI format may be introduced as a method other than methods 1 and 2 above.
  • the new DCI format includes a field similar to the TCI status field of DCI 1_x. This field indicates beam information of the base station.
  • the new DCI format also includes fields similar to the TDRA field in DCI 1_x. This field indicates the applicable time (eg, slot offset and symbol position within the slot) of the base station's beam information to be communicated to the repeater.
  • This field indicates the applicable time (eg, slot offset and symbol position within the slot) of the base station's beam information to be communicated to the repeater.
  • the SPS PDSCH is configured by RRC parameters such as SPS-Config. SPS PDSCH transmission is activated and deactivated/released by DCI (activation DCI).
  • the base station uses SPS activation DCI to notify the repeater of beam information.
  • the TCI status field in the SPS activation DCI indicates beam information such as the base station's Tx beam ID.
  • the beam information notified to the repeater (base station Tx beam ID) and the repeater's DL Tx beam corresponding to the beam information are determined by the slot or symbol indicated in the SPS configuration (RRC parameters) or SPS activation DCI TDRA field. Applicable.
  • the SPS configuration may indicate the period of beam information.
  • the TDRA field of the SPS activation DCI may indicate the slot offset or symbol position within the slot of the DL Tx beam at the repeater.
  • the repeater may not need to decode the PDSCH. In this case, the repeater may simply amplify and transmit the DL signal.
  • a repeater receives SPS configuration (RRC parameters) or activation DCI.
  • RRC parameters SPS configuration
  • activation DCI activation DCI
  • the repeater will use the slot or symbol indicated in the activation DCI (TDRA). , only the DL signal is transferred from the base station to the terminal. The repeater does not decode or process the PDSCH for the resource indicated in the activation DCI.
  • a new RRC configuration or DCI includes a field similar to the activation DCI's TCI status field. This field indicates beam information of the base station.
  • the new RRC configuration or DCI includes a field similar to the field for setting the SPS cycle in the SPS configuration. This field indicates the applicable time (eg, slot offset and symbol position within the slot) of the base station's beam information to be communicated to the repeater.
  • the new RRC configuration or DCI includes a field similar to the TDRA field of the activation DCI. This field indicates the slot or symbol for controlling the repeater's DL Tx beam.
  • the base station uses Rel-17 TCI status to notify beam information.
  • unified TCI state indication DCI is defined as shown in FIG. 17.
  • Rel-17 unified TCI state indication The DCI TCI state field indicates beam information such as the base station's Tx beam ID.
  • the base station uses the Rel-17 unified TCI state indication DCI to notify the repeater of the base station's beam information.
  • the beam information notified to the repeater (Tx beam ID of the base station) and the DL Tx beam of the repeater corresponding to the beam information shall be at least X slots after the last slot/symbol of the PUCCH transmitting DCI HARQ-ACK. /X symbols may start from the first symbol/slot.
  • the beam information notified to the repeater and the repeater's DL Tx beam corresponding to the beam information may start from the first symbol/slot at least in X slots/X symbols after the slot/symbol in which the DCI was received. good.
  • X may be predefined, configured, or subject to a repeater function.
  • a new DCI format may also be introduced to notify repeaters of base station beam information.
  • the new DCI format includes a field similar to the Rel-17 unified TCI state indication DCI TCI state field.
  • This field indicates beam information of the base station.
  • This field also indicates the applicable time of the beam information (eg, slot offset and symbol position within the slot).
  • a time unit may be set for each of multiple frequency resources (for each frequency resource domain unit).
  • the base station may notify beam information of the base station in each time unit of a plurality of frequency resources.
  • the repeater may transmit the DL signal using multiple DL Tx beams on each of multiple frequency resources simultaneously.
  • Proposal 4 assumes the type 1 operation described in Proposal 1.
  • the base station uses the beam information of the base station to notify the repeater's DL Tx beam for each DL RS resource of the base station.
  • Proposal 4 may include the following options 1 and 2.
  • the base station directs beams for each of the base station's DL RS resources.
  • the base station's DL RS resources may be for terminals. Therefore, the repeater decodes the RS for the terminal and obtains the beam information of the base station.
  • the repeater decodes the DL RS (e.g., SSB/CSI-RS) configuration, DL RS activation, or DL RS triggering for the terminal and provides information about the base station's DL RS resources and the information used by each DL RS resource. Obtain the beam information of the base station. The repeater uses the acquired beam information to control the DL Tx beam.
  • DL RS e.g., SSB/CSI-RS
  • the repeater may only decode the base station's DL RS configuration, DL RS activation, or DL RS triggering in all terminals in the cell or group (i.e., cell-specific or group-specific DL RS).
  • a repeater may decode a base station's DL RS resources using cell-specific RNTI or group-common RNTI.
  • Proposal 4 - Option 2 The base station uses the existing signaling of the base station's DL RS configuration, DL RS activation, or DL RS triggering, and the existing signaling of the beam instruction in the DR SR for the terminal, to obtain information on the base station's DL RS resources, The beam information of the base station used in each DL RS resource is notified to the repeater.
  • Proposal 4-Option 2 may have the following variants 1 and 2.
  • Modification 1 When using the base station's DL RS resource, the base station may notify the repeater that it does not need to decode the DL RS resource. The base station may instruct the repeater to amplify and transmit the DL signal.
  • Time-domain resources include periodic/semi-persistent/aperiodic time-domain operations, slot-level periods and offsets, or the position of an OFDM symbol within a slot (starting symbol and symbol length). It's okay.
  • a time unit may be set for each of multiple frequency resources (for each frequency resource domain unit).
  • the base station may notify beam information of the base station in each time unit of a plurality of frequency resources.
  • the repeater may transmit the DL signal using multiple DL Tx beams on each of multiple frequency resources simultaneously.
  • Proposal 5 assumes the type 2 operation described in Proposal 1.
  • the base station notifies the repeater's DL Tx beam for each time unit using the repeater's transmission beam information.
  • Proposal 5 may have the following options 1-7.
  • the base station notifies repeaters of consecutive repeater beam information.
  • the repeater controls the DL Tx beam based on consecutive repeater beam information.
  • FIG. 18 is a diagram illustrating an example of proposal 5-option 1.
  • “Beam indication” in FIG. 18 indicates beam information that the base station notifies the repeater.
  • the beam information is, for example, a beam ID of a repeater.
  • the repeater's series of beam information is applied in a series of time units.
  • the base station notifies different beam information for each time unit. For example, the base station notifies the repeater beam #a in the time unit indicated by arrow A15 in FIG. 18 . For example, the base station notifies beam #b in the time unit indicated by arrow A16 in FIG. 18.
  • FIG. 19 is a diagram illustrating another example of Proposal 5-Option 1.
  • the length of the time unit is different from that in FIG.
  • the time units shown in FIG. 18 have a constant length, but the time units shown in FIG. 19 have non-uniform lengths. Note that, similarly to the explanation of FIG. 18, in FIG. 19 as well, the base station notifies different beam information of repeaters for each time unit.
  • the sequence of time units to which beam control is applied may be indicated to the repeater as a number of consecutive time units.
  • the sequence of time units to which beam control is applied may be dictated based on the start time and length of the time units.
  • the starting time or length of time for which the beam control is applied may be predefined.
  • the time unit over which beam control is applied may start at a predefined offset from receiving beam information and span a predefined length.
  • sequence of time units to which beam control is applied may be notified to the repeater using a sequence of time unit IDs.
  • the beam information of the repeater and the time unit may be associated with each other.
  • the beam ID and time unit ID of a repeater may be associated.
  • the base station notifies the repeater of one repeater beam information.
  • the notified beam information is continuously set.
  • the repeater continuously uses the DL Tx beam based on the one piece of beam information that has been notified.
  • FIG. 20 is a diagram illustrating an example of proposal 5-option 2.
  • “Beam indication” in FIG. 20 indicates beam information that the base station notifies the repeater.
  • the beam information is, for example, a beam ID of a repeater.
  • the base station notifies the repeater of beam information of the repeater in a certain time unit. For example, the base station notifies the repeater of beam #a in a certain time unit.
  • the repeater continuously uses the DL Tx beam based on the notified beam information. For example, a repeater uses a DL Tx beam based on one notified beam information over multiple time units. In the example of FIG. 20, the repeater uses the DL Tx beam based on the repeater's beam ID “#a” over multiple time units.
  • the sequence of time units to which beam control is applied may be indicated to the repeater as a number of consecutive time units.
  • the sequence of time units to which beam control is applied may be dictated based on the start time and length of the time units.
  • the starting time or length of time for which the beam control is applied may be predefined.
  • the time unit over which beam control is applied may start at a predefined offset from receiving beam information and span a predefined length.
  • time unit sequence may be instructed from the base station to the repeater as a time unit ID sequence.
  • the base station periodically sets a plurality of consecutive repeater beam information.
  • the repeater periodically controls the DL Tx beam based on consecutive pieces of repeater beam information notified from the base station.
  • FIG. 21 is a diagram illustrating an example of proposal 5-option 3.
  • “Beam indication” in FIG. 21 indicates beam information that the base station notifies the repeater.
  • the beam information is, for example, a beam ID of a repeater.
  • the base station notifies the repeater of the beam information of the repeater in one cycle. For example, as shown in FIG. 21, the base station uses all the time units (four time units) in one period to send the beam IDs of the repeaters "#a, #b, #c, #d" once, Notify repeat customers.
  • the repeater When the repeater receives the repeater beam IDs “#a, #b, #c, #d” in one cycle, the repeater repeats the DL Tx beam with the received beam IDs “#a, #b, #c, #d”. Send (periodically).
  • the base station may notify the repeater of the periodic pattern of beam information of the repeater.
  • the base station may notify the repeater of the period and offset of the beam information of the repeater.
  • the offset may, for example, indicate a time unit to start transmitting periodic DL Tx beams.
  • the repeater beam information sequence may be indicated by each beam information (eg, "#a, #b, #c, #d") applied to a time unit in one period.
  • the base station notifies one repeater beam information.
  • the same beam information is continuously and periodically set.
  • FIG. 22 is a diagram illustrating an example of proposal 5-option 4.
  • “Beam indication” in FIG. 22 indicates beam information that the base station notifies the repeater.
  • the beam information is, for example, a beam ID of a repeater.
  • the base station notifies the repeater of the beam information of the repeater in one cycle once. For example, as shown by arrow A17 in FIG. 22, the base station uses some time units (one time unit) in one cycle to notify the repeater of the beam ID "#a" of the repeater.
  • the repeater continuously uses the DL Tx beam based on the notified beam information. For example, the repeater uses the DL Tx beam based on the notified piece of beam information over some of the time units in one cycle.
  • the repeater uses the DL Tx beam based on the notified one beam information over two time units out of four time units in one cycle.
  • the repeater uses a DL Tx beam based on the notified one beam information over two time units out of four time units in one cycle.
  • the sequence of time units to which beam control is applied may be indicated to the repeater as a number of consecutive time units.
  • the sequence of time units to which beam control is applied may be dictated based on the start time and length of the time units.
  • the starting time or length of time for which the beam control is applied may be predefined.
  • the time unit over which beam control is applied may start at a predefined offset from receiving beam information and span a predefined length.
  • the base station may notify the repeater of the periodic pattern of beam information of the repeater.
  • the base station may notify the repeater of the period and offset of the beam information of the repeater.
  • the offset may indicate, for example, a time unit within one cycle to start transmitting the DL Tx beam. Further, the number of time units (2 in the example of FIG. 22) to which beam control is applied within one period may be notified to the repeater.
  • FIG. 23 is a diagram illustrating another example of Proposal 5-Option 4.
  • “Beam indication” in FIG. 23 indicates beam information that the base station notifies the repeater.
  • the beam information is, for example, a beam ID of a repeater.
  • the base station notifies the repeater of the beam information of the repeater in one cycle. For example, as shown by arrow A20 in FIG. 23, the base station uses some time units (one time unit) in one cycle to notify the repeater of the beam ID "#b" of the repeater.
  • the repeater continuously uses the DL Tx beam based on the notified beam information. For example, the repeater transmits the DL Tx beam based on the notified one beam information over the third and fourth time units out of the four time units in one cycle based on the offset notified from the base station. use.
  • the base station may control the DL Tx beams of the repeater so that the multiple DL Tx beams at the repeater do not overlap.
  • the base station controls the DL Tx beam of the repeater so that the DL Tx beam of beam #a is transmitted in the first and second time units of one period.
  • the base station controls the DL Tx beam of the repeater so that the DL Tx beam of beam #b is transmitted in the third and fourth time units of one cycle. .
  • the repeater can continuously transmit multiple DL Tx beams using multiple time units within one cycle.
  • the repeater refers to the TCI status of DCI 1_x.
  • the repeater decodes the DCI for the terminal.
  • the base station uses the TCI status field or a new field of the DCI (DCI 1_x) that schedules the PDSCH to notify the repeater of beam information.
  • the DCI's TCI status field or new field indicates beam information such as the repeater's DL Tx beam ID.
  • the beam information notified to the repeater (the repeater's DL Tx beam ID) and the repeater's DL Tx beam are applied to the slot or symbol indicated in the TDRA field of the DCI.
  • the repeater may not need to decode the PDSCH. In this case, the repeater may simply amplify and transmit the DL signal.
  • a repeater receives DCI 1_x.
  • the repeater if the base station instructs the repeater to transfer only the DL signal to the terminal, the repeater does not need to decode the PDSCH.
  • the repeater (functionality of the repeater's MT) may not decode or process the PDSCH of the resource indicated in the DCI in the following manner.
  • Method 1 The repeater only sends DL signals in the slot or symbol indicated in the DCI if one or more existing fields (or new fields) of the DCI are set to predefined values. is transferred from the base station to the terminal. The repeater does not decode or process the PDSCH of the resource indicated in the DCI.
  • Method 2 If the repeater detects DCI in a specific RNTI, SS set, or CORESET, it transfers only the DL signal from the base station to the terminal in the slot or symbol indicated in the DCI. The repeater does not decode or process the PDSCH of the resource indicated in the DCI.
  • a new DCI format may be introduced as a method other than methods 1 and 2 above.
  • the new DCI format includes a field similar to the TCI status field of DCI 1_x. This field indicates beam information of the repeater.
  • the new DCI format also includes fields similar to the TDRA field in DCI 1_x. This field indicates the applicable time (eg, slot offset and symbol position within the slot) of the repeater's beam information to be communicated to the repeater.
  • This field indicates the applicable time (eg, slot offset and symbol position within the slot) of the repeater's beam information to be communicated to the repeater.
  • the SPS PDSCH is configured by RRC parameters such as SPS-Config. SPS PDSCH transmission is activated and deactivated/released by DCI (activation DCI).
  • the base station uses SPS activation DCI to notify the repeater of beam information.
  • the TCI status field or new field in the SPS activation DCI indicates beam information such as the repeater's DL Tx beam ID.
  • the beam information notified to the repeater (repeater's DL Tx beam ID) and the repeater's DL Tx beam are applied to the slot or symbol indicated in the TDRA field of the SPS configuration (RRC parameter) or SPS activation DCI.
  • the SPS configuration may indicate the period of beam information.
  • the TDRA field of the SPS activation DCI may indicate the slot offset or symbol position within the slot of the DL Tx beam at the repeater.
  • the repeater may not need to decode the PDSCH. In this case, the repeater may simply amplify and transmit the DL signal.
  • a repeater receives SPS configuration (RRC parameters) or activation DCI.
  • RRC parameters SPS configuration
  • activation DCI activation DCI
  • the repeater will use the slot or symbol indicated in the activation DCI (TDRA). , only the DL signal is transferred from the base station to the terminal. The repeater does not decode or process the PDSCH for the resource indicated in the activation DCI.
  • a new RRC configuration or DCI includes a field similar to the activation DCI's TCI status field. This field indicates beam information of the repeater.
  • the new RRC configuration or DCI includes a field similar to the field for setting the SPS cycle in the SPS configuration. This field indicates the applicable time (eg, slot offset and symbol position within the slot) of the repeater's beam information to be communicated to the repeater.
  • the new RRC configuration or DCI includes a field similar to the TDRA field of the activation DCI. This field indicates the slot or symbol for controlling the repeater's DL Tx beam.
  • the base station uses Rel-17 TCI status to notify repeater beam information.
  • unified TCI state indication DCI is defined as shown in FIG. 17.
  • the Rel-17 unified TCI state indication DCI TCI state field or new field indicates beam information such as the repeater's DL Tx beam ID.
  • the base station notifies the repeater of its beam information using the Rel-17 unified TCI state indication DCI.
  • the beam information notified to the repeater (repeater Tx beam ID) and the repeater's DL Tx beam shall be the first in at least It may start from a symbol/slot.
  • the beam information notified to the repeater and the repeater's DL Tx beam may start from the first symbol/slot in at least X slots/X symbols after the slot/symbol in which the DCI was received.
  • X may be predefined, configured, or subject to a repeater function.
  • a new DCI format may also be introduced to notify repeaters of their beam information.
  • the new DCI format includes a field similar to the Rel-17 unified TCI state indication DCI TCI state field.
  • This field indicates beam information of the repeater.
  • This field also indicates the applicable time of the beam information (eg, slot offset and symbol position within the slot).
  • a time unit may be set for each of multiple frequency resources (for each frequency resource domain unit).
  • the base station may notify beam information of the repeater in each time unit of a plurality of frequency resources.
  • the repeater may transmit the DL signal using multiple DL Tx beams on each of multiple frequency resources simultaneously.
  • the beam information of the repeater in proposal 5 may be notified from the base station to the repeater based on the following Alt.1 to Alt.3.
  • the beam information of the repeater may be, for example, a repeater DL Tx beam ID or a repeater DL Tx spatial domain filter ID. Different IDs may refer to different spatial domain filters.
  • the beam information of the repeater in proposal 5 may be notified from the base station to the repeater via the repeater DL RS resource ID.
  • the Repeater DL RS resource is a newly defined RS resource used for the management of the repeater's beam information (see Proposal 2 - Option 4) and may be used for the RS of the repeater's spatial domain filter.
  • Each repeater DL RS resource occupies specific time domain resources indicated by the base station.
  • the repeater amplifies the base station's DL RS in each repeater DLRS resource and transmits it to the terminal.
  • the repeater DL RS resource ID is indicated as the beam ID of a time unit, it may mean that the same repeater DL Tx spatial domain filter as the repeater DL RS resource is used for the time unit.
  • the beam information of the repeater may be notified from the base station to the repeater as a repeater TCI state ID.
  • each repeater TCI state is associated with a repeater DL RS resource. If a repeater TCI state ID is shown as a beam ID for a time unit, it means that the same repeater DL Tx spatial domain filter as the repeater DL RS resource associated with the repeater TCI state is used for the time unit. Good too.
  • the repeater DL RS resource is a newly defined RS resource used for the management of the repeater DL Tx beam (see proposal 2 - option 4) and may be used for the RS of the repeater's spatial domain filter.
  • Each repeater DL RS resource occupies specific time domain resources indicated by the base station.
  • the repeater amplifies the base station's DL RS in each repeater DL RS resource and transmits it to the terminal.
  • Proposal 6 assumes the type 2 operation described in Proposal 1.
  • the base station advertises the DL Tx beams for each RS resource defined for the repeater's DL Tx beams.
  • the repeater DL RS resource is a newly defined RS resource used for the management of the repeater's DL Tx beam.
  • Each repeater DL RS resource occupies specific time domain resources indicated by the base station.
  • the repeater amplifies the base station's DL RS in each repeater DL RS resource and transmits it to the terminal.
  • a repeater may be configured with multiple repeater DL RS resources.
  • Each repeater DL RS resource may occupy multiple adjacent symbols.
  • the number of adjacent symbols (number of supported candidates) may be predefined. For example, the number of adjacent symbols may be 1, 2, or 4.
  • a repeater DL RS resource set (hereinafter sometimes referred to as a resource set) may be configured.
  • Each resource set consists of multiple repeater DL RS resources.
  • the number of resources in each resource set (number of supported resource candidates) may be predefined or may be a repeater capability.
  • the following parameters (information) may be configured by the SCI (RRC/MAC CE/DCI) for the repeater DL RS resource or resource set.
  • the forwarding operation of the repeater may be activated and deactivated by the SCI. For example, if the repeater DL RS resource is activated, the repeater uses the repeater DL RS resource to transfer the DL signal. If the repeater DL RS resource is deactivated, the repeater does not transfer DL signals using the repeater DL RS resource.
  • An indicator indicating activation and deactivation of the repeater DL RS resource ID/resource set ID may be included in the SCI.
  • the repeater DL RS resources/resource sets may be triggered by the SCI.
  • the repeater may forward the DL signal to the terminal if the repeater DL RS resource/resource set is triggered by the SCI.
  • a repeater DL RS resource ID/resource set ID may be included in the SCI for triggering the repeater DL RS resource/resource set.
  • a parameter indicating the trigger state of the repeater DL RS resource ID/resource set ID may be included in the SCI.
  • the trigger state may be set for each repeater DL RS resource/resource set.
  • the slot offset or the symbol position of the resource within the slot may be indicated by the SCI.
  • the repeater DL Tx beam used in the repeater DL RS resource may perform operations based on the following Alt.1 to Alt.3 and variations.
  • the repeater's DL Tx beam may depend on the repeater implementation. For example, by default, different repeater DL Tx beams may be used for different repeater DL RS resources within the same resource set.
  • the repeater's DL Tx beam may be instructed by the base station via RRC or MAC CE in each repeater DL RS resource.
  • a repeater DL Tx beam ID that directly references the repeater's spatial domain filter used for DL transmission (DL transfer) is indicated by the base station.
  • the ID of another repeater DL RS resource (referred to as reference repeater DL RS resource) is indicated by the base station to determine the spatial domain filter of the repeater DL RS resource (referred to as target repeater DL RS resource).
  • the same repeater DL Tx spatial domain filter is used for the target repeater DL RS resource as the indicated reference repeater DL RS resource.
  • the ID of the repeater TCI state associated with the reference repeater DL RS resource is indicated by the base station.
  • the repeater's DL Tx beam may operate according to the base station's instructions if there is an instruction from the base station, and may operate depending on the implementation if there is no instruction from the base station.
  • the instruction may be performed by the SCI.
  • Proposal 7 The base station uses the base station's beam information to notify the transmit beam of the repeater.
  • the following behavior may be assumed for Type 1 behavior described in Proposal 1 and Option 5 of Proposal 2.
  • Proposal 4 The content (operation) of Proposal 4 is used to instruct the repeater of information on each DL RS resource of the base station and the Tx beam (beam information) of the base station in each DL RS resource.
  • the Tx DL beam ID of the repeater is indicated by the base station.
  • the repeater's Tx DL beam ID depends on the repeater implementation. The repeater's Tx DL beam ID is reported to the base station.
  • the Tx DL beam ID of the repeater is indicated by the base station.
  • the repeater's Tx DL beam ID depends on the repeater implementation. The repeater's Tx DL beam ID is reported to the base station.
  • receiver DL Tx beam ID may be newly defined as a term meaning the spatial domain filter of a repeater used for transmitting (transferring) DL signals.
  • the repeater utilizes the mechanism of RS measurement and reporting methods at the terminal.
  • the repeater uses the CSI framework.
  • the repeater measures the DL RS from the base station and reports it to the base station.
  • a repeater MT has similar functionality to a terminal or IAB-MT.
  • a repeater MT connects to a base station in the same way as a terminal and receives control signals from the base station.
  • IAB stands for Integrated Access and Backhaul.
  • a Radio Resource Management (RRM) framework may be used to measure the Tx beam.
  • the repeater measures the quality of the base station's Tx beam and reports it to the base station in the RRM framework.
  • the following changes or constraints may be considered.
  • the measurement function in the terminal may be changed or restricted and applied to the repeater.
  • the repeater may only be able to set SSB or CSI-RS as the beam measurement RS. In other words, the repeater can set either SSB or CSI-RS as the beam measurement RS.
  • cri-RI-PMI-CQI “cri-RI-i1”, “cri-RI-i1-CQI”, “cri-RI-CQI”, “cri-RSRP”, “cri-SINR” ”, “ssb-Index-RSRP”, “ssb-Index-SINR”, or “cri-RI-LI-PMI-CQI” may be configured for repeaters. . In other words, the repeater only needs to report the aforementioned part of the quantity (Report Quantity) to the base station for CSI reporting.
  • Different candidate values for the number of RSs reported from legacy terminals may be set for repeaters. For example, a subset of candidate values for measurement reports of legacy terminals may be configured on the repeater, and the values may be smaller or larger than the legacy terminals.
  • a candidate value for the CSI resource cycle that is different from that for the legacy terminal may be set for the repeater.
  • a different candidate value for the CSI resource period may be set for the repeater than for the legacy terminal, and the value may be smaller or larger than for the legacy terminal (eg, 640/1280/2560/...slots). Note that it is preferable that the candidate value of the CSI resource cycle set for the repeater is larger than that for the legacy terminal.
  • the maximum value of parameters related to measurement of repeaters specified in upper layers such as RRC is the maximum value of parameters related to measurement of legacy terminals (for example, see 3GPP TS 38.331 V16.7.0 (2021-12), Chapter 6.4). may be different from
  • FIG. 24 is a diagram showing an example of RRC parameters.
  • a repeater for example, CSI report configuration, CSI resource configuration, CSI-RS resource set, CSI-RS resource, CSI-RS resource set per resource configuration, CSI-RS resource per CSI-RS resource configuration, CSI-RS resource per The maximum value of a measurement-related parameter such as resource set may be different from the maximum value of a legacy terminal. For example, the maximum value at a repeater may be smaller or larger than the maximum value at a legacy terminal.
  • some (types) of the RRC parameters related to measurement may be omitted (restricted) compared to the RRC parameters of the legacy terminal (may be less).
  • a legacy framework of terminal functionality related to beam measurements and reporting may be utilized for repeaters.
  • Functions required for legacy terminals may not be necessary for repeaters.
  • Features that are mandatory on legacy terminals may be made optional on repeaters.
  • the repeater's candidate values/value ranges/parameters or default/required values/value ranges/parameters may be different from legacy terminals.
  • a repeater for example, is unlikely to be moved once it is installed. Therefore, as explained in Proposal 8, the measurement function in the terminal may be changed or restricted and applied to the repeater. This reduces the power consumption of the repeater. Repeater costs are reduced.
  • Beam instructions may be applied in DL time units.
  • the beam designations in Proposals 3 and 5 may be applied in time units designated as DL.
  • the beam designations in Proposal 3 and Proposal 5 may be applied in at least one symbol of a time unit designated as DL.
  • FIG. 25 is a diagram illustrating an example of variation 1.
  • FIG. 25 shows a DL time unit and a UL time unit.
  • the base station may notify beam information of the base station in the DL time unit.
  • the base station may notify beam information of a repeater in a DL time unit.
  • the series of beam information may be applied in the DL time unit. In other words, the series of beam information does not apply to the UL time unit.
  • the base station may instruct the repeater to jointly turn on/off the beam and the repeater. For example, in the operations described in Proposals 3 and 5, the base station notifies the repeater of beam information in some time units, and in some time units instructs the repeater to turn off DL. You may go. Turning off the DL of a repeater may mean that the repeater does not transmit (forward) DL signals.
  • FIG. 26 is a diagram illustrating an example of variation 2. As shown by arrow A26a in FIG. 26, the base station notifies the repeater of beam information in a certain time unit. As shown by arrow A26b in FIG. 26, the base station notifies the repeater that DL is off in a certain time unit.
  • FIG. 27 is a diagram illustrating another example of variation 2.
  • FIG. 27 shows repeater ON-OFF Indication (operation instruction in DL). For example, when the repeater's ON-OFF Indication is ON, the base station notifies the repeater of beam information. The repeater transmits the DL Tx beam in the time unit for which the beam information is notified. On the other hand, if the ON-OFF Indication of the repeater is OFF, the base station does not notify the repeater of beam information. The repeater turns off DL in time units for which beam information is not notified.
  • the base station may perform power control of the repeater.
  • the repeater may be power controlled by the base station.
  • the power control parameters in the DL Tx of the repeater may be set for each DL Tx beam of the repeater.
  • the power control parameters in the repeater's DL Tx may be set for each time unit.
  • the power control parameters in the DL Tx of the repeater may be set together with the beam information for each time unit.
  • a power scaling level may be predefined or set.
  • the power scaling level may be indicated by 2 bits of information, for example, as follows.
  • the power scaling level may be indicated on a per time unit basis.
  • the power scaling level may be notified from the base station to the repeater using signaling such as DCI, MAC CE, or RRC.
  • the gap or scaling may be notified from the base station to the repeater using signaling such as DCI, MAC CE, or RRC.
  • FIG. 28 is a diagram illustrating an example of the functional configuration of the base station 12 and repeater 13 according to an embodiment.
  • the base station 12 and repeater 13 include a transmitting section 510, a receiving section 520, a setting section 530, and a control section 540.
  • the functional configuration shown in FIG. 28 is only an example. As long as the operations according to the embodiments of the present disclosure can be executed, the functional divisions and functional parts may have any names.
  • the transmitter 510 generates a transmission signal from the transmission data and wirelessly transmits the generated transmission signal.
  • the receiving unit 520 wirelessly receives various signals and obtains higher layer signals from the received physical layer signals.
  • the setting unit 530 stores, for example, various setting information received from the communication partner by the receiving unit 520 in a storage device (storage unit), and reads out the setting information from the storage device as necessary.
  • the setting unit 530 also stores preset setting information in the storage device. Note that the setting section 530 may be included in the control section 540.
  • the control unit 540 controls the entire base station 12 and repeater 13.
  • a functional unit related to signal transmission in the control unit 540 may be included in the transmitting unit 510, and a functional unit related to signal reception in the control unit 540 may be included in the receiving unit 520.
  • the receiving unit 520 of the repeater 13 receives multiple beams from the base station 12.
  • the control unit 540 of the repeater 13 determines the beam destined for the terminal 14 based on the beam information of the base station 12 included in the beam received by the receiving unit 520 and associated with each of the plurality of beams.
  • the repeater 13 can appropriately control the beam directed toward the terminal 14.
  • the control unit 540 of the repeater 13 holds a mapping rule R21 that associates a plurality of beam information of the base station 12 with a plurality of beam information for the terminal 14.
  • the control unit 540 of the repeater 13 refers to the mapping rule R21, obtains beam information for the terminal 14 corresponding to the beam information of the base station 12 included in the received beam, and determines a beam for the terminal 14.
  • the repeater 13 can appropriately control the beam directed toward the terminal 14.
  • the transmitter 510 of the base station 12 transmits multiple beams to the repeater 13.
  • the control unit 540 of the base station 12 includes beam information of the base station 12 associated with each of the plurality of beams transmitted to the repeater 13 in the beam transmitted to the repeater 13, and controls the beam of the repeater 13 directed to the terminal 14. do.
  • the beam of the repeater 13 directed toward the terminal 14 is appropriately controlled by the base station 12.
  • the receiving unit 520 of the repeater 13 receives the beam from the base station 12.
  • the control unit 540 of the repeater 13 determines the beam destined for the terminal 14 based on the beam information of the repeater 13 included in the beam received by the receiving unit 520 and associated with each of the plurality of beams of the repeater 13.
  • the repeater 13 can appropriately control the beam directed toward the terminal 14.
  • the receiving unit 520 of the repeater receives a beam with the best communication quality from the base station 12. Through the above operations, the repeater 13 can appropriately control the beam directed toward the terminal 14.
  • control unit 540 of the base station 12 includes repeater beam information associated with each beam of the repeater 13 in the beam of the base station 12.
  • the transmitter 510 of the base station 12 transmits a beam containing beam information of the repeater 13 to the repeater 13.
  • the beam of the repeater 13 directed toward the terminal 14 is appropriately controlled by the base station 12.
  • the transmitter 510 of the base station 12 transmits the beam with the best communication quality to the repeater 13.
  • the beam of the repeater 13 directed toward the terminal 14 is appropriately controlled by the base station 12.
  • the receiving unit 520 of the repeater 13 receives multiple beams from the base station 12.
  • the control unit 540 of the repeater 13 determines the beam destined for the terminal 14 based on the beam information of the base station 12 included in each time unit of the beam received by the receiving unit 520 and associated with each of the plurality of beams.
  • the repeater 13 can appropriately control the beam directed toward the terminal 14.
  • One beam information is included over multiple time units. Therefore, the repeater 13 can appropriately control the beam directed toward the terminal 14.
  • the receiving unit 520 of the repeater 13 receives a plurality of beams from the base station 12.
  • the control unit 540 of the repeater 13 transmits information to the terminal 14 based on beam information of the base station 12 included in each reference signal resource included in the beam received by the receiving unit 520 and associated with each of the plurality of beams. Determine the beam.
  • the repeater 13 can appropriately control the beam directed toward the terminal 14.
  • the control unit 540 of the repeater 13 decodes the reference signal directed to the terminal 14 and obtains the beam information of the base station 12.
  • the repeater 13 can appropriately control the beam directed toward the terminal 14.
  • the receiving unit 520 of the repeater 13 receives the beam from the base station 12.
  • the control unit 540 of the repeater 13 determines the beam destined for the terminal 14 based on the beam information of the repeater 13 that is included in each time unit of the beam received by the reception unit 520 and is associated with each beam of the repeater 13. do.
  • the repeater 13 can appropriately control the beam directed toward the terminal 14.
  • One beam information is included over multiple time units. Therefore, the repeater 13 can appropriately control the beam directed toward the terminal 14.
  • the receiving unit 520 of the repeater 13 receives a beam from the base station 12.
  • the control unit 540 of the repeater 13 controls the terminal based on the beam information of the repeater 13 included in each reference signal resource included in the beam received by the receiving unit 520 and associated with each beam of the repeater 13. Determine the beam for 14.
  • the repeater 13 can appropriately control the beam directed toward the terminal 14.
  • the control unit 540 of the repeater 13 decodes the reference signal and obtains beam information of the repeater 13.
  • the repeater 13 can appropriately control the beam directed toward the terminal 14.
  • the control unit 540 of the repeater 13 measures the communication quality with the base station 12 using fewer types of signals than the signals used by the terminal 14 to measure communication quality.
  • the transmitter 510 of the repeater 13 transmits the measurement results of the communication quality with the base station 12 to the base station 12.
  • the repeater 13 can appropriately control the beam directed toward the terminal 14.
  • the resource type of the signal is limited to some of periodic, semi-permanent, and aperiodic resource types.
  • the resource types of the measurement results are limited to some of periodic, semi-permanent, and aperiodic resource types.
  • the types of measurement results are fewer than the types of measurement results at the terminal.
  • the maximum value of the measurement specified in the upper layer is different from the maximum value of the measurement at the terminal.
  • the repeater 13 is less likely to move, so even if there are restrictions on operation etc., the beam directed toward the terminal 14 can be appropriately controlled. Furthermore, the repeater can reduce power consumption by restricting its operation and the like.
  • each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices.
  • the functional block may be realized by combining software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, These include, but are not limited to, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assigning. I can't do it.
  • a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
  • the base station 12, repeater 13, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 29 is a diagram illustrating an example of the hardware configuration of the base station 12 and repeater 13 according to an embodiment.
  • the base station 12 and repeater 13 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “apparatus” can be read as a circuit, a device, a unit, etc.
  • the hardware configuration of the base station 12 and the repeater 13 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
  • Each function in the base station 12 and the repeater 13 is performed by loading predetermined software (programs) onto hardware such as the processor 1001 and memory 1002, so that the processor 1001 performs calculations and controls communication by the communication device 1004. This is realized by controlling at least one of data reading and writing in the memory 1002 and the storage 1003.
  • the processor 1001 for example, operates an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • the control unit 540 and the like described above may be implemented by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes in accordance with these.
  • programs program codes
  • software modules software modules
  • data etc.
  • the program a program that causes a computer to execute at least part of the operations described in the above embodiments is used.
  • the control unit 540 of the base station 12 and the repeater 13 may be realized by a control program stored in the memory 1002 and operated in the processor 1001, and other functional blocks may be similarly realized.
  • Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
  • the memory 1002 is a computer-readable recording medium, and includes at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be done.
  • Memory 1002 may be called a register, cache, main memory, or the like.
  • the memory 1002 can store executable programs (program codes), software modules, and the like to implement a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (such as a compact disk, a digital versatile disk, or a Blu-ray disk). (registered trademark disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc.
  • Storage 1003 may also be called an auxiliary storage device.
  • the storage medium mentioned above may be, for example, a database including at least one of memory 1002 and storage 1003, a server, or other suitable medium.
  • the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
  • the base station 12 and repeater 13 are also equipped with hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA).
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a part or all of each functional block may be realized by the hardware.
  • processor 1001 may be implemented using at least one of these hardwares.
  • the notification of information may include physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, It may be implemented using broadcast information (MIB (Master Information Block), SIB (System Information Block))), other signals, or a combination thereof.
  • RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4G fourth generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG 6th generation mobile communication system
  • xG 6th generation mobile communication system
  • FRA Fluture Radio Access
  • NR new Radio
  • New radio access NX
  • Future generation radio access FX
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Universal Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 UWB (Ultra-WideBand
  • Bluetooth registered trademark
  • other appropriate systems and the following extended, modified, created, and prescribed based on these. It may be applied to at least one generation system.
  • a combination of a plurality of systems may be applied (for example, a combination of at least one of LTE and LTE-A and 5G).
  • ⁇ Base station operation> The specific operations performed by the base station in this disclosure may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal are performed by the base station and other network nodes other than the base station (e.g., MME or It is clear that this could be done by at least one of the following: (conceivable, but not limited to) S-GW, etc.).
  • MME Mobility Management Entity
  • S-GW Serving Mobility Management Entity
  • ⁇ Input/output direction> Information etc. can be output from an upper layer (or lower layer) to a lower layer (or upper layer). It may be input/output via multiple network nodes.
  • the input/output information may be stored in a specific location (eg, memory) or may be managed using a management table. Information etc. to be input/output may be overwritten, updated, or additionally written. The output information etc. may be deleted. The input information etc. may be transmitted to other devices.
  • Judgment may be made using a value expressed by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (for example, a predetermined value). (comparison with a value).
  • Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • a transmission medium For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to create a website, When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
  • At least one of the channel and the symbol may be a signal.
  • the signal may be a message.
  • a component carrier may be called a carrier frequency, a cell, a frequency carrier, or the like.
  • the information, parameters, etc. described in this disclosure may be expressed using absolute values, relative values from a predetermined value, or using other corresponding information. may be expressed.
  • radio resources may be indicated by an index.
  • Base Station In this disclosure, "Base Station (BS),""wireless base station,””fixedstation,” "NodeB,””eNodeB(eNB),”"gNodeB(gNB),”""""accesspoint”,”transmissionpoint”,”receptionpoint”,”transmission/receptionpoint”,”cell”,”sector”,”cellgroup”,”
  • carrier “component carrier”, etc. may be used interchangeably.
  • a base station is sometimes referred to by terms such as macrocell, small cell, femtocell, and picocell.
  • a base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is divided into multiple subsystems (e.g., small indoor base stations (RRHs)). Communication services may also be provided by a remote radio head).
  • RRHs small indoor base stations
  • Communication services may also be provided by a remote radio head).
  • the term "cell” or “sector” refers to a portion or the entire coverage area of a base station and/or base station subsystem that provides communication services in this coverage. refers to
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • the base station and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like.
  • the moving body refers to a movable object, and the moving speed is arbitrary. Naturally, this also includes cases where the moving object is stopped. Examples of such moving objects include vehicles, transportation vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships and other watercraft.
  • the mobile object may be a mobile object that autonomously travels based on a travel command. It may be a vehicle (e.g. car, airplane, etc.), an unmanned moving object (e.g. drone, self-driving car, etc.), or a robot (manned or unmanned). good.
  • the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be replaced by a terminal.
  • a terminal for example, regarding a configuration in which communication between a base station and a terminal is replaced with communication between multiple terminals (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.)
  • the repeater 13 may have the functions that the base station 12 described above has.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be replaced with side channels.
  • a terminal in the present disclosure may be replaced by a base station.
  • the base station 12 may have the functions that the repeater 13 described above has.
  • FIG. 30 shows an example of the configuration of the vehicle 2001.
  • the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, a front wheel 2007, a rear wheel 2008, an axle 2009, an electronic control unit 2010, and various sensors 2021 to 2029. , an information service section 2012 and a communication module 2013.
  • Each aspect/embodiment described in this disclosure may be applied to a communication device mounted on vehicle 2001, for example, may be applied to communication module 2013.
  • the vehicle 2001 equipped with the function of the repeater 13 may function as a repeater vehicle that can move to a place where communication needs to be relayed.
  • the drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
  • the steering unit 2003 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
  • the electronic control unit 2010 is composed of a microprocessor 2031, memory (ROM, RAM) 2032, and communication port (IO port) 2033. Signals from various sensors 2021 to 2029 provided in the vehicle 2001 are input to the electronic control unit 2010.
  • the electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
  • Signals from various sensors 2021 to 2029 include a current signal from a current sensor 2021 that senses the motor current, a front wheel and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, and a front wheel rotation speed signal obtained by an air pressure sensor 2023. and rear wheel air pressure signals, vehicle speed signals acquired by vehicle speed sensor 2024, acceleration signals acquired by acceleration sensor 2025, accelerator pedal depression amount signals acquired by accelerator pedal sensor 2029, and brake pedal sensor 2026. These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028, and the like.
  • the information service department 2012 includes various devices such as car navigation systems, audio systems, speakers, televisions, and radios for providing various information such as driving information, traffic information, and entertainment information, as well as one or more devices that control these devices. It consists of an ECU.
  • the information service unit 2012 provides various multimedia information and multimedia services to the occupants of the vehicle 2001 using information acquired from an external device via the communication module 2013 and the like.
  • the driving support system unit 2030 includes a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (for example, GNSS, etc.), map information (for example, a high-definition (HD) map, an autonomous vehicle (AV) map, etc.) ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors that prevent accidents and reduce the driver's driving burden.
  • the system is comprised of various devices that provide functions for the purpose and one or more ECUs that control these devices. Further, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
  • Communication module 2013 can communicate with microprocessor 2031 and components of vehicle 2001 via a communication port.
  • the communication module 2013 communicates with the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axle 2009, electronic Data is transmitted and received between the microprocessor 2031, memory (ROM, RAM) 2032, and sensors 2021 to 29 in the control unit 2010.
  • the communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
  • the communication module 2013 may be located either inside or outside the electronic control unit 2010.
  • the external device may be, for example, a base station, a mobile station, or the like.
  • the communication module 2013 transmits the current signal from the current sensor input to the electronic control unit 2010 to an external device via wireless communication.
  • the communication module 2013 also receives the front wheel and rear wheel rotational speed signals inputted to the electronic control unit 2010 and acquired by the rotational speed sensor 2022, the front wheel and rear wheel air pressure signals acquired by the air pressure sensor 2023, and the vehicle speed sensor. 2024, an acceleration signal obtained by acceleration sensor 2025, an accelerator pedal depression amount signal obtained by accelerator pedal sensor 2029, a brake pedal depression amount signal obtained by brake pedal sensor 2026, and a shift lever.
  • a shift lever operation signal acquired by the sensor 2027, a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028 are also transmitted to the external device via wireless communication.
  • the communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 2012 provided in the vehicle 2001.
  • Communication module 2013 also stores various information received from external devices into memory 2032 that can be used by microprocessor 2031 . Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive section 2002, steering section 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheel 2007, rear wheel 2008, and axle 2009 provided in the vehicle 2001. , sensors 2021 to 2029, etc. may be controlled.
  • determining may encompass a wide variety of operations.
  • “Judgment” and “decision” include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, and inquiry. (e.g., searching in a table, database, or other data structure), and regarding an ascertaining as a “judgment” or “decision.”
  • judgment and “decision” refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access.
  • (accessing) may include considering something as a “judgment” or “decision.”
  • judgment and “decision” refer to resolving, selecting, choosing, establishing, comparing, etc. as “judgment” and “decision”. may be included.
  • judgment and “decision” may include regarding some action as having been “judged” or “determined.”
  • judgment (decision) may be read as "assuming", “expecting", “considering”, etc.
  • connection means any connection or coupling, direct or indirect, between two or more elements and each other. It may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled.”
  • the bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be replaced with "access.”
  • two elements may include one or more electrical wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges.
  • the reference signal can also be abbreviated as RS (Reference Signal), and may also be called a pilot depending on the applied standard.
  • any reference to elements using the designations "first,””second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • a radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe. A subframe may also be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to the transmission and/or reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, transmission and reception. It may also indicate at least one of a specific filtering process performed by the device in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • the numerology may also indicate at least one of a specific filtering process performed by the device in the frequency domain, a specific windowing process performed by the transceiver in the time domain, etc.
  • a slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbols, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols, etc.) in the time domain.
  • a slot may be a unit of time based on numerology.
  • a slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a Transmission Time Interval (TTI)
  • TTI Transmission Time Interval
  • multiple consecutive subframes may be called a TTI
  • one slot or minislot may be called a TTI. It's okay.
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit for scheduling in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • the TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI shorter than a normal TTI may be referred to as a shortened TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, short TTI, etc. It may also be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on numerology.
  • the time domain of an RB may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs are defined as physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. May be called.
  • PRBs physical resource blocks
  • SCGs sub-carrier groups
  • REGs resource element groups
  • PRB pairs RB pairs, etc. May be called.
  • a resource block may be configured by one or more resource elements (REs).
  • REs resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • Bandwidth Part (also referred to as partial bandwidth) refers to a subset of consecutive common resource blocks (RBs) for a certain numerology in a certain carrier. good.
  • the common RB may be specified by an RB index based on a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a UL BWP (UL BWP) and a DL BWP (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be configured within one carrier for a UE.
  • At least one of the configured BWPs may be active and the UE may not expect to transmit or receive a given signal/channel outside of the active BWP.
  • “cell”, “carrier”, etc. in the present disclosure may be replaced with "BWP”.
  • radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB The number of subcarriers, the number of symbols in a TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • Maximum transmit power as described in this disclosure may mean the maximum value of transmit power, the nominal maximum transmit power (the nominal UE maximum transmit power), or the rated maximum transmit power ( It may also mean the rated UE maximum transmit power.
  • One aspect of the present disclosure is useful for wireless communication systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

リピーターは、基地局から複数のビームを受信する受信部と、受信したビームのタイムユニット各々に含まれ、前記複数のビーム各々に関連付けられた前記基地局のビーム情報に基づいて、端末向けのビームを決定する制御部と、を有する。

Description

リピーター及び通信方法
 本開示は、リピーター及び通信方法に関する。
 Universal Mobile Telecommunication System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(Long Term Evolution(LTE))が仕様化された。また、LTEからの更なる広帯域化及び高速化を目的として、LTEの後継システムも検討されている。LTEの後継システムには、例えば、LTE-Advanced(LTE-A)、Future Radio Access(FRA)、5th generation mobile communication system(5G)、5G plus(5G+)、Radio Access Technology(New-RAT)、New Radio(NR)などと呼ばれるシステムがある。
 3GPPのRel-18において、ネットワーク制御リピーター(Network-controlled Repeater)に関する検討会(SI:Study Item)が設立された(例えば、非特許文献1を参照)。ネットワーク制御リピーターは、従来の増幅転送リピーターとは異なり、ビーム制御、タイミング制御、及び、Downlink-Uplink(DL-UL)における電力のON/OFF制御等について、検討されることが決定された。
 なお、ネットワーク制御リピーターは、NRネットワーク制御リピーター又はスマートリピーターと称されてもよい。以下では、ネットワーク制御リピーターを、単にリピーターと称することがある。
3GPP TSG RAN Meeting #94e,RP-213700,Electronic Meeting, Dec.6-17,2021
 しかしながら、リピーターのビームをどのように制御するかについては、検討が不十分である。
 本開示の一態様は、リピーターのビームを適切に制御するリピーター及び通信方法を提供することにある。
 本開示の一態様に係るリピーターは、基地局から複数のビームを受信する受信部と、受信したビームのタイムユニット各々に含まれ、前記複数のビーム各々に関連付けられた前記基地局のビーム情報に基づいて、端末向けのビームを決定する制御部と、を有する。
 本開示の一態様に係る通信方法は、リピーターの通信方法であって、基地局から複数のビームを受信し、受信したビームのタイムユニット各々に含まれ、前記複数のビーム各々に関連付けられた前記基地局のビーム情報に基づいて、端末向けのビームを決定する。
 本開示の一態様に係るリピーターは、基地局から複数のビームを受信する受信部と、受信したビームに含まれる参照信号用のリソース各々に含まれ、前記複数のビーム各々に関連付けられた前記基地局のビーム情報に基づいて、端末向けのビームを決定する制御部と、を有する。
 本開示の一態様に係る通信方法は、リピーターの通信方法であって、基地局から複数のビームを受信し、受信したビームに含まれる参照信号用のリソース各々に含まれ、前記複数のビーム各々に関連付けられた前記基地局のビーム情報に基づいて、端末向けのビームを決定する。
一実施の形態に係る無線通信システムの一例を示した図である。 無線通信システムにおいて用いられる周波数レンジの一例を示す図である。 無線通信システムにおいて用いられる無線フレーム、サブフレーム、及びスロットの構成例を示す図である。 提案1-タイプ1の一例を説明する図である。 提案1-タイプ2の一例を説明する図である。 提案2-オプション1の一例を説明する図である。 提案2-オプション2の一例を説明する図である。 提案2-オプション3の一例を説明する図である。 提案2-オプション4の一例を説明する図である。 提案2-オプション5の一例を説明する図である。 提案3-オプション1の一例を説明する図である。 提案3-オプション1の別例を説明する図である。 提案3-オプション2の一例を説明する図である。 提案3-オプション3の一例を説明する図である。 提案3-オプション4の一例を説明する図である。 提案3-オプション4の別例を説明する図である。 Rel-17のunified TCI state indication DCIを説明する図である。 提案5-オプション1の一例を説明する図である。 提案5-オプション1の別例を説明する図である。 提案5-オプション2の一例を説明する図である。 提案5-オプション3の一例を説明する図である。 提案5-オプション4の一例を説明する図である。 提案5-オプション4の別例を説明する図である。 RRCパラメータの一例を示した図である。 バリエーション1の一例を説明する図である。 バリエーション2の一例を説明する図である。 バリエーション2の別例を説明する図である。 一実施の形態に係る基地局及びリピーターの機能構成の一例を示す図である。 一実施の形態に係る基地局及びリピーターのハードウェア構成の一例を示す図である。 車両の構成例を示す図である。
 以下、本開示の一態様に係る実施の形態を、図面を参照して説明する。
 <システム構成>
 図1は、一実施の形態に係る無線通信システム1の一例を示した図である。無線通信システム1は、例えば、5G New Radio(NR)に従った無線通信システムである。無線通信システム1は、Next Generation-Radio Access Network(NG-RAN)11と、基地局12と、リピーター13と、端末14と、を含む。
 なお、無線通信システム1は、Beyond 5G、5G Evolution、又は、6Gと呼ばれる方式に従った無線通信システムであってもよい。基地局12は、gNBと称されてもよい。端末14は、User Equipment(UE)と称されてもよい。
 NG-RAN20は、実際には、1以上のNG-RANノード(又はng-eNB)を含み、5Gに従ったコアネットワーク(例えば、5GC、図示せず)と接続される。例えば、NG-RAN20は、基地局12を含み、5GCと接続される。なお、NG-RAN20及び5GCは、単に「ネットワーク」と表現されてもよい。
 基地局12は、例えば、5Gに従った基地局であり、5Gに従った無線通信を、リピーター13を介して、端末14と実行する。基地局12は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームBMを生成するMassive Multiple-Input Multiple-Output(MIMO)、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及び、別の基地局(図示せず)と連携して端末14と通信を行うデュアルコネクティビティ(DC)等に対応してよい。なお、ビームは、空間領域フィルタ(spatial domain filter)と称されてもよい。
 リピーター13は、ネットワークによって動作が制御されるネットワーク制御リピーターである。リピーター13は、例えば、ビーム制御といった動作が、ネットワークによって制御され、基地局12と端末14との間の通信を中継する。
 また、無線通信システム1は、複数の周波数レンジ(FR)に対応する。
 図2は、無線通信システム1において用いられる周波数レンジの一例を示す図である。図2に示すように、無線通信システム1は、FR1及びFR2に対応する。各FRの周波数帯は、例えば、以下の通りである。
 ・FR1:410 MHz~7.125 GHz
 ・FR2:24.25 GHz~52.6 GHz
 FR1では、15kHz、30kHz、又は60kHzのSub-Carrier Spacing(SCS)が用いられ、5~100MHzの帯域幅(BW)が用いられてもよい。FR2は、FR1よりも高周波数であり、60kHz又は120kHz(240kHzが含まれてもよい)のSCSが用いられ、50~400MHzの帯域幅(BW)が用いられてもよい。
 なお、SCSは、numerologyと解釈されてもよい。numerologyは、3GPP TS38.300において定義されており、周波数ドメインにおける1つのサブキャリア間隔と対応する。
 さらに、無線通信システム1は、FR2の周波数帯よりも高周波数帯に対応してもよい。具体的には、無線通信システム1は、52.6GHzを超え、114.25GHzまでの周波数帯に対応してもよい。このような高周波数帯は、便宜上「FR2x」と呼ばれてもよい。52.6GHzを超える帯域を用いる場合、より大きなSCSを有するCyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing(DFT-S-OFDM)を適用してもよい。
 図3は、無線通信システム1において用いられる無線フレーム、サブフレーム、及びスロットの構成例を示す図である。図3に示すように、1スロットは、14シンボルで構成され、SCSが大きく(広く)なる程、シンボル期間(及びスロット期間)は短くなる。SCSは、図3に示す間隔(周波数)に限定されない。例えば、SCSとして、480kHz、960kHz等が用いられてもよい。
 また、1スロットを構成するシンボル数は、必ずしも14シンボルでなくてもよい(例えば、28、56シンボル)。さらに、サブフレーム当たりのスロット数は、SCSによって異なっていてよい。
 なお、図3に示す時間方向(t)は、時間領域、シンボル期間、又はシンボル時間等と呼ばれてもよい。また、周波数方向は、周波数領域、リソースブロック、サブキャリア、又はバンド幅部分(BWP: Bandwidth part)等と呼ばれてもよい。
 <分析>
 3GPPでは、リピーターに関し、ビーム制御、タイミング制御、及び、DL-ULにおける電力のON/OFF制御等の技術について、検討されることが決定された。
 しかし、3GPPでは、これらの技術について検討されることが決定されただけで、具体的な検討がされていない。例えば、図1において、リピーター13のダウンリンク送信ビームが、基地局12といったネットワークに基づいて、どのように制御されるか、3GPPでは具体的に検討されていない。
 なお、以下では、ダウンリンク送信ビームを、ビーム、DL Txビーム、Txビーム、DLビーム等と称することがある。また、リピーターにおける送信は、転送(forwarding)と称されてもよい。例えば、送信ビームは、転送ビーム(forwarding beam)と称されてもよい。
 <提案の概要>
 本件では、リピーターにおけるDL Txビームの制御について、以下の提案1~提案8を行う。
 (提案1):リピーターは、サイド制御情報(Side Control Information:SCI)に基づいて、DL Txビームを制御する。
 (提案2):端末は、リピーターのDL Txビームを用いた測定(measurement)を行う。
 (提案3):基地局は、基地局のビーム情報を用いて、タイムユニットごとに、リピーターのDL Txビームを通知する。
 (提案4):基地局は、基地局のビーム情報を用いて、基地局のDL RSリソース毎にリピーターのDL Txビームを通知する。なお、RSは、Reference Signalの略である。
 (提案5):基地局は、リピーターの送信ビームの情報を用いて、タイムユニットごとに、リピーターのDL Txビームを通知する。
 (提案6):基地局は、リピーターのDL Txビーム用に規定された(新しく規定された)RSリソースごとに、DL Txビームを通知する。
 (提案7):基地局は、基地局のビーム情報を用いて、リピーターの送信ビームを通知する。
 (提案8):リピーターは、端末におけるRS測定方法及びレポート方法のメカニズムを利用する。
 なお、SCIは、ネットワークからリピーターに通知される情報である。SCIは、リピーターによって受信され、処理される。別言すれば、リピーターは、SCIを介して、ネットワークにより制御される。
 SCIは、例えば、SSB(SS/PBCH Block)、CSI-RS、PDCCH(DCI)、PDSCH、又はMAC CEといったL1/L2の下位レイヤシグナリングによって、基地局からリピーターに通知されてもよい。SCIは、RRCパラメータといった上位レイヤシグナリングによって、基地局からリピーターに通知されてもよい。なお、SSは、Primary Synchronization Signal(PSS)及びSecondary Synchronization Signal(SSS)の略である。PBCHは、Physical Broadcast Channelの略である。CSIは、Channel State Informationの略である。RSは、Reference Signalの略である。PDCCHは、Physical Downlink Control Channelの略である。DCIは、Downlink Control Informationの略である。PDSCHは、Physical Downlink Shared Channelの略である。MAC CEは、Medium Access Control Control Elementの略である。
 <提案1>
 リピーターは、SCIに基づいて(SCIを用いて)、DL Txビームを制御する。
 リピーターにおけるDL Txビーム制御は、タイプ0~タイプ2の3つのタイプを有してもよい。
 <提案1-タイプ0>
 リピーターのDL Txビーム制御の機能が、実装に依存する。
 この場合、リピーターにおいては、能力レポート(capability report)の強化が検討される。例えば、リピーター(DL Txビーム制御が実装されるリピーター)は、DL Txビームの能力があることを基地局に通知する。例えば、リピーターは、DL Txビームの数といったDL Txビーム制御に関する能力の有無を基地局にレポートする。
 <提案1-タイプ1>
 提案1-タイプ1では、SCIとして、基地局のビーム情報が用いられる。別言すれば、提案1-タイプ1では、リピーターにおけるDL Txビームの制御のために、基地局のビームID(identifier)といったビーム情報が、基地局からリピーターに通知される。
 リピーターは、基地局から通知される、基地局のビームIDといったビーム情報に基づいて、DL Txビームを制御(決定)する。そのため、リピーターのDL Txビームは、基地局のDL Txビームに関連付けられる。例えば、リピーターのDL Txビームは、基地局のDL Txビームと、リピーターのDL Txビームとの間のマッピングルール(マッピングテーブル)に基づいて示される。
 リピーターは、マッピングルールを参照して、基地局から受信したDL信号を、端末に送信(転送)するためのDL Txビームを決定する。
 図4は、提案1-タイプ1の一例を説明する図である。図4には、図1で説明した基地局12と、リピーター13と、端末14(14a~14d)と、が示してある。また、図4には、マッピングルールR21が示してある。
 マッピングルールR21は、基地局12のDL Txビームと、リピーター13のDL Txビームとの関係を関連付けた情報である。例えば、図4に示すように、マッピングルールR21は、基地局(gNB)12におけるDL TxビームのビームID“#1”と、リピーター13におけるDL TxビームのビームID“#a”とを関連付ける。
 なお、以下では、ビームID“#1”を、単に、ビーム#1と記載することがある。その他の#2、#aといったビームIDについても同様に、“ID”の記載を省略する(例えば、ビーム#2、ビーム#aと記載する)。
 図4における無線システムの動作例について説明する。基地局12は、例えば、初期アクセスといった所定の処理において、端末14が、リピーター13のどのビームを介して、DL信号を受信するかを決定(把握)する。例えば、基地局12は、端末14aが、リピーター13のビーム#aを介して、DL信号を受信すると決定する。基地局12は、端末14bが、リピーター13のビーム#bを介して、DL信号を受信すると決定する。基地局12は、端末14cが、リピーター13のビーム#cを介して、DL信号を受信すると決定する。基地局12は、端末14dが、リピーター13のビーム#dを介して、DL信号を受信すると決定する。
 ここで、例えば、基地局12は、端末14aへのDL送信をスケジュールする。上記した通り、端末14aは、リピーター13から、ビーム#aを介してDL信号を受信する。従って、基地局12は、マッピングルールR21を参照し、ビーム#aに対応するビーム#1を用いて(ビーム#1をリピーター13に通知して)、DL信号をリピーター13に送信する。
 リピーター13は、受信したDL信号のビーム#1に基づいて、マッピングルールR21を参照し、基地局12から送信されたDL信号を、ビーム#1に対応するビーム#aを用いて端末14aに送信(転送)する。
 また、例えば、基地局12は、端末14bへのDL送信をスケジュールする。上記した通り、端末14bは、リピーター13からビーム#bを介して、DL信号を受信する。従って、基地局12は、マッピングルールR21を参照し、ビーム#bに対応するビーム#2を用いて、DL信号をリピーター13に送信する。
 リピーター13は、受信したDL信号のビーム#2に基づいて、マッピングルールR21を参照し、基地局12から送信されたDL信号を、ビーム#2に対応するビーム#bを用いて端末14aに送信(転送)する。
 以上、図4を用いて説明した通り、リピーターは、基地局から通知される、基地局のビームIDといったビーム情報に基づいて、マッピングルールを参照し、DL Txビームを制御する。従って、リピーターは、端末に送信するDL信号のビームを適切に制御できる。
 <提案1-タイプ1-その他1>
 リピーターは、リピーターの能力として、DL Txビーム数を基地局に報告してもよい。基地局は、リピーターから通知されたリピーターの能力に基づいて、ビームIDをリピーターに通知してもよい。
 <提案1-タイプ1-その他2>
 マッピングルールは、リピーターに予め実装(例えば、記憶装置に記憶)されてもよい。また、マッピングルールは、SCIを用いて、基地局からリピーターに通知されてもよい。
 <提案1-タイプ1-その他3>
 マッピングルールは、リピーターから基地局に報告されてもよい。例えば、リピーターが、リピーターのビーム(情報)と基地局のビーム(情報)とを関連付け、関連付けたマッピングルールを基地局に報告してもよい。
 <提案1-タイプ1-その他4>
 マッピングルールにおいて、基地局のビーム情報と、リピーターのビーム情報とが対応付けられるとしたが、これに限られない。マッピングルールにおけるリピーターのビーム情報は、基地局のDL RSリソースIDと関連付けられてもよい。例えば、リピーターのビームIDといったビーム情報は、基地局のSSB/CSI-RSリソースIDと関連付けられてもよい。また、リピーターのビームIDといったビーム情報は、基地局のTransmission Configuration Indication(TCI)状態ID(TCI state ID)と関連付けられてもよい。
 なお、TCI状態とは、信号及びチャネルの少なくとも一方(以下、信号/チャネルと記載)が、疑似コロケーション(Quasi-Co-Location(QCL))に関する情報であり、空間受信パラメータ、空間関係情報(spatial relation info)などとも呼ばれてもよい。TCI状態は、チャネルごと又は信号ごとに端末に設定されてもよい。
 TCI状態は、例えば、対象となるチャネル(又は当該チャネル用のRS)と、別の信号(例えば、別の下り参照信号(Downlink Reference Signal(DL-RS)))とのQCLに関する情報であってもよい。TCI状態は、上位レイヤシグナリング、物理レイヤシグナリング、又はこれらの組み合わせによって設定(指示)されてもよい。
 QCLとは、信号/チャネルの統計的性質を示す指標である。例えば、ある信号/チャネルと他の信号/チャネルがQCLの関係である場合、これらの異なる複数の信号/チャネル間において、ドップラーシフト(doppler shift)、ドップラースプレッド(doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(Spatial parameter)(例えば、空間受信パラメータ(Spatial Rx Parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。
 NRでは、TCI状態に基づいて、信号/チャネルの受信処理(例えば、受信、デマッピング、復調、復号の少なくとも1つ)を制御することが検討される。端末は、信号/チャネルのTCI状態又はQCL想定に基づいて、当該信号/チャネルの送信ビーム(Txビーム)及び受信ビーム(Rxビーム)の少なくとも1つを決定してもよい。
 <提案1-タイプ1-その他5>
 基地局は、SCIを用いて、基地局のDL Txビームのタイムユニットを指示してもよい。別言すれば、リピーターは、基地局から、SCIを用いて、基地局のDL Txビームのタイムユニットが指示されてもよい。タイムユニットは、サブフレーム、スロット、ミニスロット、シンボル、複数のサブフレーム、複数のスロット、又は複数のシンボルであってもよい。
 <提案1-タイプ1-その他6>
 タイムユニットにおけるリピーターのDL Txビームは、基地局のDL Txビームと、マッピングルールとに基づいて決定されてもよい。例えば、マッピングルールを、図4に示したマッピングルールR21とする。或るスロット(タイムユニット)における基地局のDL Txビームが、ビーム#2であるとする。この場合、或るスロット(タイムユニット)におけるリピーターのDL Txビームは、ビーム#bとなる。
 <提案1-タイプ1-その他7>
 マッピングルールにおいて、基地局の異なるDL Txビームは、リピーターの異なるDL Txビームに対応する。マッピングルールに用いる基地局のDL TxビームIDは、基地局のDL TxビームIDと同じであってもよいし、異なっていてもよい(別に定義されてもよい)。マッピングルールに用いる基地局のDL TxビームIDが、基地局のDL TxビームIDと同じであるか、又は、異なっているかについては、基地局の実装(implementation)に依存してもよい。
 <提案1-タイプ1-その他8>
 リピーターのビームは、リピーターの実装に依存してもよい。例えば、リピーターは、2つのタイムユニットにおいて、基地局から同じビームIDが通知される場合、同じ(方向の)ビームを適用してもよい。リピーターは、2つのタイムユニットにおいて、基地局から異なるビームIDが通知される場合、異なる(方向の)ビームを適用してもよい。
 <提案1-タイプ1-その他9>
 リピーターにおけるビーム制御は、SSB、SCI-RS、PDCCH、PDSCH、及びDMRSといったDLチャネルに適用されてもよい。なお、DMRSは、Demodulation Reference Signalの略である。
 <提案1-タイプ2>
 提案1-タイプ2では、SCIとして、リピーターのビーム情報が用いられる。別言すれば、提案1-タイプ2では、リピーターにおけるDL Txビームの制御のために、リピーターのビームIDといったビーム情報が、基地局からリピーターに通知される。
 リピーターは、基地局から通知される、リピーターのビームIDといったビーム情報に基づいて、DL Txビームを制御(決定)する。そのため、提案1-タイプ2では、提案1-タイプ1で説明したマッピングルールが不要となる。
 図5は、提案1-タイプ2の一例を説明する図である。図5には、図4で説明した基地局12と、リピーター13と、端末14(14a~14d)と、が示してある。
 基地局12は、図4の説明と同様に、例えば、初期アクセスといった所定の処理において、端末14が、リピーター13のどのビームを介して、DL信号を受信するかを決定(把握)する。例えば、基地局12は、端末14aが、リピーター13のビーム#aを介して、DL信号を受信すると決定する。基地局12は、端末14bが、リピーター13のビーム#bを介して、DL信号を受信すると決定する。基地局12は、端末14cが、リピーター13のビーム#cを介して、DL信号を受信すると決定する。基地局12は、端末14dが、リピーター13のビーム#dを介して、DL信号を受信すると決定する。
 基地局12は、基地局12のビーム#1~ビーム#4のうち、1つのビームを用いて、リピーター13と通信(DL信号を送信)する。例えば、図4に示すように、基地局12は、基地局12のビーム#1~ビーム#4のうち、最も通信品質のよいビーム#2を用いて、リピーター13と通信する。
 ここで、例えば、基地局12は、端末14aへのDL送信をスケジュールする。上記した通り、端末14aは、リピーター13から、ビーム#aを介してDL信号を受信する。従って、基地局12は、リピーター13を介して端末14aにDL信号を送信するとき、SCIを用いて、リピーター13にビーム#aを通知する。
 リピーター13は、基地局12から通知されたビーム#aを用いて、基地局12から受信したDL信号を端末14aに送信する。
 また、例えば、基地局12は、端末14bへのDL送信をスケジュールする。上記した通り、端末14bは、リピーター13から、ビーム#bを介してDL信号を受信する。従って、基地局12は、リピーター13を介して端末14bにDL信号を送信するとき、SCIを用いて、リピーター13にビーム#bを通知する。
 リピーター13は、基地局12から通知されたビーム#bを用いて、基地局12から受信したDL信号を端末14bに送信する。
 以上、図5を用いて説明した通り、リピーターは、基地局から通知される、リピーターのビームIDといったビーム情報に基づいて、DL Txビームを制御する。従って、リピーターは、例えば、マッピングルールといった情報を、記憶装置に記憶しなくて済み、コスト低減を図ることができる。
 <提案1-タイプ2-その他1>
 リピーターは、リピーターの能力として、DL Txビーム数を基地局に報告してもよい。基地局は、リピーターから通知されたリピーターの能力に基づいて、ビームIDをリピーターに通知してもよい。
 <提案1-タイプ2-その他2>
 基地局は、SCIを用いて、リピーターのDL Txビームのタイムユニットを指示してもよい。別言すれば、リピーターは、基地局から、SCIを用いて、リピーターのDL Txビームのタイムユニットが指示されてもよい。
 <提案1-タイプ2-その他3>
 タイムユニットにおけるリピーターのDL Txビームは、基地局から指示されたリピーターのDL Txビームに基づいて、直接決定されてもよい。別言すれば、リピーターは、基地局からの指示に基づいて、タイムユニットにおけるDL Txビームを決定してもよい。
 <提案1-タイプ2-その他4>
 リピーターのビームは、リピーターの実装に依存してもよい。例えば、リピーターは、2つのタイムユニットにおいて、基地局から同じビームIDが通知される場合、同じ(方向の)ビームを適用してもよい。リピーターは、2つのタイムユニットにおいて、基地局から異なるビームIDが通知される場合、異なる(方向の)ビームを適用してもよい。
 <提案1-タイプ2-その他5>
 リピーターにおけるビーム制御は、SSB、SCI-RS、PDCCH、PDSCH、及びDMRSといったDLチャネルに適用されてもよい。
 <提案2>
 端末は、リピーターのDL Txビームに基づいた測定(measurement)を行う。端末は、測定結果を基地局に通知する。この動作によって、基地局は、端末におけるリピーターのDL Txビームの品質を決定(把握)できる。
 なお、測定とは、例えば、端末が検出/測定用信号(例えば、PSS、SSS、Cell-specific Reference Signal(CRS)、CSI-RSなど)を受信して、当該検出/測定用信号を発見し、その受信品質を測定することである。受信品質には、例えば、Reference Signal Received Power(RSRP)、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)などがある。測定結果は、測定報告(measurement report)、又は、単に報告と称されてもよい。
 提案2は、以下のオプション1~5を有してもよい。
 オプション1,2では、測定において、提案1で説明したタイプ1の動作を想定する。例えば、基地局は、基地局の異なるビーム情報を用いて、リピーターにDL Txビームを指示する。基地局は、以下のオプション1,2にて設定されるタイムユニットごと、又は、RSリソースごとにRSを送信し、端末がどのRSを測定したかを、端末からの報告に基づいて決定する。
 (オプション1):基地局は、タイムユニットごとにおいて、リピーターのビームを指示する(提案3も参照)。
 (オプション2):基地局は、基地局のDL RSリソースごとに、リピーターのビームを指示する(提案4も参照)。
 オプション3~5では、測定において、提案1で説明したタイプ2の動作を想定する。例えば、基地局は、リピーターの異なるビーム情報を用いて、リピーターにDL Txビームを指示する。基地局は、以下のオプション3~5において設定されるタイムユニットごと、又は、DL RSリソースごとにRSを送信し、端末がどのRSを測定したかを、端末からの報告に基づいて決定する。
 (オプション3):基地局は、タイムユニットごとにおいて、リピーターのビームを指示する(提案5も参照)。
 (オプション4):リピーターのDL Txビームを制御するためのDL RSリソースを規定する。基地局は、規定されたDL RSリソースを用いて、DL RSリソースごとにリピーターのビームを指示する(提案6も参照)。
 (オプション5):基地局は、基地局のビーム情報を用いて、リピーターのビームを指示する(提案7も参照)。
 <提案2-オプション1>
 基地局は、提案1-タイプ1の動作において、タイムユニットごとにビームを指示する。リピーターは、提案1-タイプ1の動作において、タイムユニットごとに、ビームが指示される。
 図6は、提案2-オプション1の一例を説明する図である。図6に示す“gNB’s DL RS resources”は、基地局(gNB)のDL RSリソースを示す。図6の例では、1つのDL RSリソースは、2つのタイムユニットに割り当てられる。基地局のDL RSリソース構成(configuration)は、リピーターに通知(指示)されなくてもよい。なお、DL RSリソースは、例えば、SSB/CSI-RSのリソースであってもよい。
 図6の“gNB’s Tx beam”は、基地局のDL Txビームを示す。基地局は、異なるDL Txビームを用いて、例えば、4つのDL RS(RS#1~RS#4)を送信する。DL RSの各々は、複数のタイムユニットを用いて送信されてもよい。例えば、RS#1は、矢印A1に示す2つのタイムユニットを用いて送信されてもよい。例えば、RS#2は、矢印A2に示す2つのタイムユニットを用いて送信されてもよい。
 基地局は、図6の“Beam indication”に示すように、タイムユニットごとに、基地局のビームIDといったビーム情報をリピーターに通知する。
 例えば、基地局は、図6の矢印A1に示す2つのタイムユニット各々において、基地局のビームIDであるビーム#1を、リピーターに通知する。例えば、基地局は、図6の矢印A2に示す2つのタイムユニット各々において、基地局のビームIDであるビーム#2をリピーターに通知する。
 提案1-タイプ1で説明したように、リピーターは、マッピングルールを有する。リピーターは、基地局から通知されたビーム情報に基づいて、マッピングルールを参照し、DL RSを送信するDL Txビームを決定する。
 例えば、リピーターは、図4に示したマッピングルールR21を参照し、図6の矢印A1に示す2つのタイムユニット各々において、基地局のビーム#1に対応するリピーターのビーム#aを決定する(図6の矢印A3に示すビームを参照)。例えば、リピーターは、図6の矢印A2に示す2つのタイムユニット各々において、基地局のビーム#2に対応するリピーターのビーム#bを決定する(図6の矢印A4に示すビームを参照)。
 端末は、レガシープロシージャー(例えば、既存のプロシージャー)を用いて、リピーターから送信されるDL RSの測定を行う。例えば、端末は、図6に示す4つのDL RSリソースにおいて、L1ビーム測定を行う。また、端末は、図6に示すタイムユニット各々において、L1ビーム測定を行う。端末は、L1ビーム測定の測定報告を、リピーター13を介して、基地局に対し行う。
 基地局は、端末からの測定報告に基づいて、リピーターと端末との間のビーム品質(通信品質)を決定(把握)する。基地局は、リピーターの良好なビームを用いて、端末(DL)のスケジュールを動的に実行(決定)する。
 以上説明した通り、リピーターは、基地局のビーム情報に基づいて、タイムユニットごとに、DL Txビームを制御し、DL RSを端末に送信してもよい。端末は、タイムユニットごとにおいて、リピーターのビームの測定報告を基地局に対し行ってもよい。これにより、リピーターは、品質の良いビームを用いて、端末に対し、DL信号を送信できる。
 <提案2-オプション2>
 基地局は、基地局のDL RSリソースごとにおいて、ビームを指示する。リピーターは、基地局のDL RSリソースごとにおいて、ビームが指示される。
 図7は、提案2-オプション2の一例を説明する図である。図7の“gNB’s DL RS resources”は、基地局のDL RSリソースを示す。図7の“gNB’s Tx beam”は、基地局のDL Txビームを示す。基地局は、異なるDL Txビームを用いて、例えば、4つのDL RS(RS#1~RS#4)を送信する。基地局は、リピーターにDL RSリソース構成を通知する。
 基地局は、例えば、図7の矢印A5に示すように、DL RSリソースごとに、基地局のビームIDといったビーム情報をリピーターに通知する。
 例えば、基地局は、図7に示すRS#1のDL RSリソースにおいて、ビーム#1をリピーターに通知する。例えば、基地局は、図7に示すRS#2のDL RSリソースにおいて、ビーム#2をリピーターに通知する。
 提案1-タイプ1で説明したように、リピーターは、マッピングルールを有する。リピーターは、基地局から通知されたビーム情報に基づいて、マッピングルールを参照し、DL RSを送信するDL Txビームを決定する。このとき、リピーターは、基地局から通知されたDL RSリソース構成(DL RSリソース単位)ごとにおいて、DL Txビームを決定する。
 例えば、リピーターは、図7に示すRS#1のDL RSリソース(区間)において、図4に示したマッピングルールR21を参照し、基地局のビーム#1に対応するリピーターのビーム#aを決定する(図7の矢印A6に示すビームを参照)。例えば、リピーターは、図7に示すRS#2のDL RSリソースにおいて、図4に示したマッピングルールR21を参照し、基地局のビーム#2に対応するリピーターのビーム#bを決定する(図7の矢印A7に示すビームを参照)。
 端末は、レガシープロシージャーを用いて、リピーターから送信されるDL RSの測定を行う。例えば、端末は、図7に示す4つのDL RSリソース#1~#4において、L1ビーム測定を行う。端末は、L1ビーム測定の測定報告を、リピーター13を介して、基地局に対し行う。
 基地局は、端末からの測定報告に基づいて、リピーターと端末との間のビーム品質(通信品質)を決定(把握)する。基地局は、リピーターの良好なビームを用いて、端末(DL)のスケジュールを動的に実行する。基地局は、タイムユニットごとに、端末をスケジュールしてもよい。
 以上説明した通り、リピーターは、基地局のビーム情報に基づいて、DL RSリソースごとに、DL Txビームを制御し、DL RSを端末に送信してもよい。端末は、DL RSリソースごとにおいて、リピーターのビームの測定報告を基地局に対し行ってもよい。これにより、リピーターは、品質の良いビームを用いて、端末に対し、DL信号を送信できる。
 <提案2-オプション3>
 基地局は、提案1-タイプ2の動作において、タイムユニットごとにビームを指示する。リピーターは、提案1-タイプ2の動作において、タイムユニットごとに、ビームが指示される。
 図8は、提案2-オプション3の一例を説明する図である。図8に示す“gNB’s DL RS resources”は、基地局におけるDL RSリソースを示す。図8の例では、1つのDL RSリソースは、2つのタイムユニットに割り当てられる。基地局のDL RSリソース構成は、リピーターに通知されなくてもよい。
 図8には、基地局のDL Txビームが示してある。基地局は、複数のDL Txビームのうち、1つの(方向を向く)DL Txビームを用いて(図8の矢印A8を参照)、例えば、4つのDL RS(RS#1~RS#4)を送信する。例えば、基地局は、複数のDL Txビームのうち、基地局とリピーターとの間の通信品質が最も良いDL Txビームを用いて、DL RSを送信してもよい。
 基地局は、図8の“Beam indication”に示すように、タイムユニットごとに、リピーターのビームIDといったビーム情報をリピーターに通知する。
 例えば、基地局は、図8の矢印A9に示す2つのタイムユニット各々において、リピーターのビームIDであるビーム#aを、リピーターに通知する。例えば、基地局は、図8の矢印A10に示す2つのタイムユニット各々において、リピーターのビームIDであるビーム#bを、リピーターに通知する。
 提案1-タイプ2で説明した通り、提案1-タイプ2では、基地局は、リピーターのDL Txビームを制御するために、リピーターのビーム情報をリピーターに通知する。そのため、提案1-タイプ2では、リピーターは、マッピングルールを有さない。リピーターは、基地局から通知されたリピーターのビーム情報に基づいて、DL RSを送信(転送)するDL Txビームを決定する。
 例えば、リピーターは、図8の“Repeater DL Tx beam”に示すように、DL RSを送信するDL Txビームを決定する。例えば、リピーターは、図8の矢印A9に示す2つのタイムユニット各々において、リピーターのビーム#aを決定する(図8の矢印A11に示すビームを参照)。例えば、リピーターは、図8の矢印A10に示す2つのタイムユニット各々において、リピーターのビーム#bを決定する(図8の矢印A12に示すビームを参照)。
 端末は、レガシープロシージャーを用いて、リピーターから送信されるDL RSの測定を行う。例えば、端末は、図8に示す4つのDL RSリソースにおいて、L1ビーム測定を行う。また、端末は、図8に示すタイムユニット各々において、L1ビーム測定を行う。端末は、L1ビーム測定の測定報告を、リピーター13を介して、基地局に対し行う。
 基地局は、端末からの測定報告に基づいて、リピーターと端末との間のビーム品質(通信品質)を決定(把握)する。基地局は、リピーターの良好なビームを用いて、端末(DL)のスケジュールを動的に実行する。
 以上説明した通り、リピーターは、リピーターのビーム情報に基づいて、タイムユニットごとに、DL Txビームを制御し、DL RSを端末に送信してもよい。端末は、タイムユニットごとにおいて、リピーターのビームの測定報告を基地局に対し行ってもよい。これにより、リピーターは、品質の良いビームを用いて、端末に対し、DL信号を送信できる。
 なお、基地局は、リピーターの複数のビーム情報を、1つのタイムユニットにおいて通知してもよい。この場合、リピーターは、1つのタイムユニットにおいて、複数のDL Txビームを用いて、DL信号を(同時に)送信してもよい。
 また、タイムユニットは、複数の周波数リソースごと(周波数リソース領域ユニットごと)に設定されてもよい。基地局は、複数の周波数リソース各々のタイムユニットにおいて、リピーターのビーム情報を通知してもよい。この場合、リピーターは、複数の周波数リソース各々における複数のDL Txビームを同時に用いて、DL信号を送信してもよい。
 上記の複数の周波数リソースごとにおけるタイムユニットの設定は、提案2のその他のオプションにおいても適用されてもよい。上記の複数の周波数リソースごとにおけるタイムユニットの設定は、提案2以外の提案においても適用されてもよい。
 <提案2-オプション4>
 提案2-オプション4では、リピーターのDL Txビームを制御するためのRSリソースを新たに規定する。新たに規定するリピーターのDL RSリソースは、リピーターDL RSリソースと称されてもよい。リピーターDL RSリソースは、リピーターのDL Txビームを管理するために規定されると捉えることができる。
 図9は、提案2-オプション4の一例を説明する図である。図9に示す“gNB’s DL RS resources”は、基地局におけるDL RSリソースを示す。基地局におけるDL RSリソース(構成)は、リピーターに通知されなくてもよい。
 図9に示す“repeater DL RS resources”は、リピーター向けのリピーターDL RSリソースを示す。リピーターDL RSリソースには、リピーターのDL Txビームを制御するためのリピーターのビーム情報が含まれる。
 図9に示す“Beam indication”は、リピーターのDL Txビームを制御するためのビーム情報を示す。リピーターのDL Txビームを制御するためのビーム情報は、リピーターDL RSリソースごとに決定される。リピーターDL RSリソース(構成)は、基地局からリピーターに通知される。
 基地局は、リピーターDL RSリソースを構成し、リピーターDL RSリソースごとにリピーターのDL Txビームのビーム情報を含むリピーターDL RSを送信する。基地局は、複数のDL Txビームのうち、1つのDL Txビームを用いて、例えば、4つのリピーターDL RS(RS#a~RS#d)を送信する。例えば、基地局は、複数のDL Txビームのうち、基地局とリピーターとの間の通信品質が最も良いDL Txビームを用いて、リピーターDL RSを送信してもよい。
 リピーターDL RSを受信したリピーターは、リピーターDL RSをデコードし、リピーターのビーム情報を取得する。リピーターは、デコードしたビーム情報に基づいて、図9の“Repeater DL Tx beam”に示すように、DL Txビームを制御する。
 リピーターDL RSリソースの各々は、基地局によって指示される特定の時間領域リソースを占有する。リピーターは、リピーターDL RSリソースの各々において、基地局のDL RSを増幅し、端末に転送する。
 端末は、レガシープロシージャーを用いて、リピーターから送信されるDL RSの測定を行う。例えば、端末は、図9に示す4つのリピーターDL RSリソースにおいて、L1ビーム測定を行う。端末は、L1ビーム測定の測定報告を、リピーター13を介して、基地局に対し行う。
 基地局は、端末からの測定報告に基づいて、リピーターと端末との間のビーム品質(通信品質)を決定(把握)する。基地局は、リピーターの良好なビームを用いて、端末(DL)のスケジュールを動的に実行する。基地局は、タイムユニットごとに、端末をスケジュールしてもよい。
 以上説明した通り、リピーターは、リピーターDL RSリソースごとに、DL Txビームを制御し、DL RSを端末に送信してもよい。端末は、リピーターDL RSリソースごとにおいて、リピーターのビームの測定報告を基地局に対し行ってもよい。これにより、リピーターは、品質の良いビームを用いて、端末に対し、DL信号を送信できる。
 なお、上記の提案2-オプション4において、リピーターのビーム情報は、リピーターDL RSリソースごとに決定されてもよいとしたが、これに限られない。リピーターのビーム情報は、リピーターDL RSリソースごとに指示されてもよい。また、リピーターのDL Txビームは、リピーターDL RSリソースごとに決定されてもよいし、リピーターDL RSリソースごとに指示されてもよい。
 <提案2-オプション5>
 基地局は、提案1-タイプ2の動作において、基地局のビーム情報を用いて、リピーターのビームを指示する。リピーターは、マッピングルールを用いずに、基地局のビーム情報を用いて、DL Txビームを決定する。リピーターは、基地局のDL RSリソースごとにビームが決定される。
 図10は、提案2-オプション5の一例を説明する図である。図10に示す“gNB’s DL RS resources”は、基地局におけるDL RSリソースを示す。
 基地局は、複数のDL Txビームのうち、1つのDL Txビームを用いて、例えば、4つのDL RS(RS#1~RS#4)を送信する。例えば、基地局は、複数のDL Txビームのうち、基地局とリピーターとの間の通信品質が最も良いDL Txビームを用いて、DL RSを送信してもよい。
 基地局は、DL RSリソースのDL RSにおいて、基地局のビーム情報をリピーターに通知する。例えば、図10の“Beam indication”に示すように、基地局は、DL RSリソースのDL RSにおいて、基地局のビーム情報をリピーターに通知してもよい。
 リピーターは、基地局から通知されたビーム情報に基づいて、DL Txビームを制御する。例えば、図10の“Repeater DL Tx beam”に示すように、DL Txビームを制御する。別言すれば、リピーターは、基地局のビーム情報を用いて、DL Txビームを制御する。
 端末は、レガシープロシージャーを用いて、リピーターから送信されるDL RSの測定を行う。例えば、端末は、図10に示す4つのDL RSリソースにおいて、L1ビーム測定を行う。端末は、L1ビーム測定の測定報告を、リピーター13を介して、基地局に対し行う。
 基地局は、端末からの測定報告に基づいて、リピーターと端末との間のビーム品質(通信品質)を決定(把握)する。基地局は、リピーターの良好なビームを用いて、端末(DL)のスケジュールを動的に実行する。基地局は、タイムユニットごとに、端末をスケジュールしてもよい。
 以上説明した通り、リピーターは、基地局のDL RSリソースごとに、基地局から通知された基地局のビーム情報を用いてDL Txビームを制御し、DL RSを端末に送信してもよい。端末は、DL RSリソースごとにおいて、リピーターのビームの測定報告を基地局に対し行ってもよい。これにより、リピーターは、品質の良いビームを用いて、端末に対し、DL信号を送信できる。
 <提案1,2におけるリピーターの能力>
 リピーターは、例えば、NG-RANといったネットワークに対して、リピーターの能力を示すリピーター能力(Repeater capability)を送信することができる。リピーターは、リピーターの能力に関する問い合わせ(Repeater Capability Enquiry)をネットワークから受信したことに応じて、当該リピーター能力を送信してもよい。
 リピーターの能力を示すRepeater capabilityには、以下のリピーターの能力を示す情報が含まれてよい。なお、リピーターの能力を示す情報は、リピーターの能力を定義する情報に相当してよい。
 ・リピーターが処理できるDL Txビームの数の情報
 ・リピーターが提案1で説明したタイプ0、タイプ1、及びタイプ2のフレームワークのいずれをサポートしているかどうかを示す情報
 ・リピーターが複数のDL Txビームを用いて、同時にDL信号を転送できるかどうかを示す情報
 この場合、リピーターが、DL信号を同時転送するために使用できるDL Txビームの数がリピーター能力として定義されてもよい。
 ・リピーターが異なる周波数領域のリソースに対して、同時に異なるビームでDL信号を転送できるかどうかを示す情報
 この場合、リピーターが、DL信号を同時転送するために使用できるDL Txビームの数がリピーター能力として定義されてもよい。
 <提案3>
 提案3では、提案1で説明したタイプ1の動作を想定する。基地局は、基地局のビーム情報を用いて、タイムユニットごとに、リピーターのDL Txビームを通知する。提案3は、次のオプション1~8を有してもよい。
 (オプション1):基地局は、連続する複数の基地局ビーム情報(例えば、基地局のビームID)を通知する。
 (オプション2):基地局は、1つの基地局ビーム情報を通知する。リピーターでは、同じビーム情報が連続して設定される。
 (オプション3):基地局は、連続する複数の基地局ビーム情報を周期的に設定する。
 (オプション4):基地局は、1つの基地局ビーム情報を通知する。リピーターでは、同じビーム情報が連続して周期的に設定される。
 (オプション5):基地局は、既存の端末に対するビーム設定(の方式)を利用する。リピーターは、端末に対する信号をデコードする。
 (オプション6):リピーターは、DCI 1_x(xは、例えば、0又は1といった正の整数)のTCI状態を参照する。リピーターは、端末に対するDCIをデコードする。
 (オプション7):Semi Persistent Scheduling(SPS)のconfiguration/activationのTCI状態を利用する。又は、SPSのconfiguration/activationのTCI状態をリピーター向けに規定する。
 (オプション8):基地局は、基地局ビーム情報の通知のために、Rel-17のTCI状態を利用する。
 <提案3-オプション1>
 基地局は、連続する複数の基地局ビーム情報をリピーターに通知する。リピーターは、連続する複数の基地局ビーム情報に基づいて、DL Txビームを制御する。
 図11は、提案3-オプション1の一例を説明する図である。図11の“Beam indication”は、基地局がリピーターに通知するビーム情報を示す。ビーム情報は、例えば、基地局のビームIDである。
 図11に示すように、基地局の一連のビーム情報は、一連のタイムユニットにおいて適用される。基地局は、タイムユニットごとに、異なるビーム情報を通知する。例えば、基地局は、図11の矢印A13に示すタイムユニットにおいて、ビーム#1を通知する。例えば、基地局は、図11の矢印A14に示すタイムユニットにおいて、ビーム#2を通知する。
 図12は、提案3-オプション1の別例を説明する図である。図12では、タイムユニットの長さが、図11と異なる。図11に示したタイムユニットは、長さが一定であるが、図12のタイムユニットは、長さが一定でない。なお、基地局は、図11の説明と同様に、図12においても、タイムユニットごとに、異なるビーム情報を通知する。
 ビーム制御が適用されるタイムユニットのシーケンスは、連続するタイムユニットの数として、リピーターに指示されてもよい。ビーム制御が適用されるタイムユニットのシーケンスは、タイムユニットの開始時間と長さとに基づいて、指示されてもよい。
 ビーム制御が適用されるタイムユニットの開始時間又は時間の長さは、事前に定義されてもよい。例えば、ビーム制御が適用されるタイムユニットは、ビーム情報の受信からの事前定義されたオフセットから開始し、事前定義された長さにわたってもよい。
 また、ビーム制御が適用されるタイムユニットのシーケンスは、タイムユニットIDのシーケンスを用いて、リピーターに通知されてもよい。基地局のビーム情報とタイムユニットとは、対応付けられてもよい。例えば、基地局のビームIDとタイムユニットIDとが、対応付けられてもよい。
 <提案3-オプション2>
 基地局は、1つの基地局ビーム情報をリピーターに通知する。リピーターでは、通知された1つのビーム情報が連続して設定される。別言すれば、リピーターは、通知された1つのビーム情報に基づくDL Txビームを、連続して使用する。
 図13は、提案3-オプション2の一例を説明する図である。図13の“Beam indication”は、基地局がリピーターに通知するビーム情報を示す。ビーム情報は、例えば、基地局のビームIDである。
 図13に示すように、基地局は、或る1つのタイムユニットにおいて、基地局のビーム情報をリピーターに通知する。例えば、基地局は、或る1つのタイムユニットにおいて、ビーム#1をリピーターに通知する。
 リピーターは、通知された1つのビーム情報に基づくDL Txビームを、連続して使用する。例えば、リピーターは、通知された1つのビーム情報に基づくDL Txビームを、複数のタイムユニットにわたり使用する。図13の例の場合、リピーターは、基地局のビームID“#1”に基づくDL Txビームを、複数のタイムユニットにわたり使用する。
 ビーム制御が適用されるタイムユニットのシーケンスは、連続するタイムユニットの数として、リピーターに指示されてもよい。ビーム制御が適用されるタイムユニットのシーケンスは、タイムユニットの開始時間と長さとに基づいて、指示されてもよい。
 ビーム制御が適用されるタイムユニットの開始時間又は時間の長さは、事前に定義されてもよい。例えば、ビーム制御が適用されるタイムユニットは、ビーム情報の受信からの事前定義されたオフセットから開始し、事前定義された長さにわたってもよい。
 また、ビーム制御が適用されるタイムユニットのシーケンスは、タイムユニットIDのシーケンスを用いて、リピーターに指示されてもよい。基地局のビーム情報とタイムユニットとは、対応付けられてもよい。例えば、基地局のビーム情報とタイムユニットIDとが、対応付けられてもよい。この場合、基地局は、基地局のビーム情報の通知によって、ビーム制御が適用されるタイムユニットのシーケンスをリピーターに通知できる。
 <提案3-オプション3>
 基地局は、連続する複数の基地局ビーム情報を周期的に設定する。リピーターは、基地局から通知された連続する複数の基地局ビーム情報に基づいて、DL Txビームを周期的に制御する。
 図14は、提案3-オプション3の一例を説明する図である。図14の“Beam indication”は、基地局がリピーターに通知するビーム情報を示す。ビーム情報は、例えば、基地局のビームIDである。
 基地局は、1周期における基地局のビーム情報を、リピーターに通知する。例えば、図14に示すように、基地局は、1周期における全タイムユニット(4つのタイムユニット)を用いて、基地局のビームID“#1,#2,#3,#4”を1回、リピーターに通知する。
 リピーターは、1周期における基地局のビームID“#1,#2,#3,#4”を受信すると、基地局のビームID“#1,#2,#3,#4”の各々に対応するDL Txビームを、周期的に送信する。例えば、リピーターは、マッピングルールを参照し、基地局のビームID“#1,#2,#3,#4”に対応する、ビームID“#a,#b,#c,#d”を繰り返し(周期的に)送信する。
 基地局は、基地局のビーム情報の周期的なパターンをリピーターに通知してもよい。
 基地局は、基地局のビーム情報の周期と、オフセットとをリピーターに通知してもよい。オフセットは、例えば、周期的なDL Txビームの送信を開始するタイムユニットを示してもよい。基地局のビーム情報のシーケンスは、1周期におけるタイムユニットに適用される各ビーム情報(例えば、“#1,#2,#3,#4”)で示されてもよい。
 <提案3-オプション4>
 基地局は、1つの基地局ビーム情報を通知する。リピーターでは、同じビーム情報が連続して周期的に設定される。
 図15は、提案3-オプション4の一例を説明する図である。図15の“Beam indication”は、基地局がリピーターに通知するビーム情報を示す。ビーム情報は、例えば、基地局のビームIDである。
 基地局は、1周期における基地局のビーム情報を、リピーターに通知する。例えば、図15の矢印A15aに示すように、基地局は、1周期における一部のタイムユニット(1つのタイムユニット)を用いて、基地局のビームID“#1”を、リピーターに通知する。
 リピーターは、通知された1つのビーム情報に基づくDL Txビームを、連続して使用する。例えば、リピーターは、通知された1つのビーム情報に基づくDL Txビームを、1周期におけるタイムユニットのうち、一部のタイムユニットにわたり使用する。
 例えば、図15の矢印A15bに示すように、リピーターは、1周期における4つのタイムユニットのうち、2つのタイムユニットにわたり、通知された1つのビーム情報に基づくDL Txビームを使用する。例えば、図15の矢印A15cに示すように、リピーターは、1周期における4つのタイムユニットのうち、2つのタイムユニットにわたり、通知された1つのビーム情報に基づくDL Txビームを使用する。
 ビーム制御が適用されるタイムユニットのシーケンスは、連続するタイムユニットの数として、リピーターに指示されてもよい。ビーム制御が適用されるタイムユニットのシーケンスは、タイムユニットの開始時間と長さとに基づいて、指示されてもよい。
 ビーム制御が適用されるタイムユニットの開始時間又は時間の長さは、事前に定義されてもよい。例えば、ビーム制御が適用されるタイムユニットは、ビーム情報の受信からの事前定義されたオフセットから開始し、事前定義された長さにわたってもよい。
 基地局は、基地局のビーム情報の周期的なパターンをリピーターに通知してもよい。
 基地局は、基地局のビーム情報の周期と、オフセットとをリピーターに通知してもよい。オフセットは、例えば、1周期内におけるDL Txビームの送信を開始するタイムユニットを示してもよい。また、1周期内における、ビーム制御が適用されるタイムユニット数(図15の例の場合、2)が、リピーターに通知されてもよい。
 図16は、提案3-オプション4の別例を説明する図である。図16の“Beam indication”は、基地局がリピーターに通知するビーム情報を示す。ビーム情報は、例えば、基地局のビームIDである。
 基地局は、1周期における基地局のビーム情報を、リピーターに通知する。例えば、図16の矢印A16aに示すように、基地局は、1周期における一部のタイムユニット(1つのタイムユニット)を用いて、基地局のビームID“#2”を、リピーターに通知する。
 リピーターは、通知された1つのビーム情報に基づくDL Txビームを、連続して使用する。例えば、リピーターは、通知された1つのビーム情報に基づくDL Txビームを、基地局から通知されるオフセットに基づいて、1周期における4つのタイムユニットのうち、3番目と4番目とのタイムユニットにわたり送信する。
 基地局は、リピーターにおける複数のDL Txビームが、オーバーラップしないように、リピーターのDL Txビームを制御してもよい。
 例えば、基地局は、図15に示したように、1周期のうちの1番目及び2番目のタイムユニットにおいて、ビーム#1に対応するDL Txビームが送信されるようにリピーターのDL Txビームを制御する。また、基地局は、図16に示したように、1周期のうちの3番目及び4番目のタイムユニットにおいて、ビーム#2に対応するDL Txビームが送信されるようにリピーターのDL Txビームを制御する。
 以上の動作により、リピーターは、1周期内において、複数のDL Txビームを、複数のタイムユニットを用いて、連続送信できる。
 <提案3-オプション5>
 基地局は、既存の端末に対するビーム設定(の方式)を利用する。リピーターは、端末に対する信号をデコードする。
 例えば、基地局は、端末(例えば、セル又はグループ内の全ての端末)へのDLチャネル又はDL RSにおける既存のビーム設定(指示)を利用してもよい。例えば、基地局は、PDSCH、PDCCH、SSB、又はCSI-RSにおける既存のビーム設定(例えば、cell-specific RNTI又はgroup-common RNTI)を利用してもよい。既存のビーム設定は、端末向けであるため、リピーターは、DLチャネル又はDL RSをデコードする。
 なお、基地局のビーム情報は、基地局のDL RSリソースID(CSI-RS ID又はSSBインデックス)又はTCI状態IDで示されてもよい。
 <提案3-オプション6>
 リピーターは、DCI 1_xのTCI状態を参照する。リピーターは、端末に対するDCIをデコードする。
 例えば、基地局は、PDSCHをスケジューリングするDCI(DCI 1_x)を利用し、ビーム情報をリピーターに通知する。DCIのTCI状態フィールドは、基地局のTxビームIDといったビーム情報を示す。リピーターに通知されるビーム情報(基地局のTxビームID)及びビーム情報に対応するリピーターのDL Txビームは、DCIのTime Domain Resource Allocation(TDRA)フィールドに示されるスロット又はシンボルに適用される。
 リピーターは、PDSCHをデコードしなくてもよい場合がある。この場合、リピーターは、単にDL信号を増幅して転送してもよい。
 例えば、リピーターが、DCI 1_xを受信する。この場合において、基地局が、リピーターにDL信号のみを端末に転送することを指示する場合、リピーターは、PDSCHをデコードしなくてもよい。リピーター(リピーターのMobile Termination(MT)の機能)は、以下の方法で、DCIに示されたリソースのPDSCHをデコード又は処理しなくてもよい。
 (方法1):リピーターは、DCIの1つ又は複数の既存フィールド(又は新しいフィールド)において、事前定義された値が設定されている場合、DCIに示されているスロット又はシンボルにおいて、DL信号のみを基地局から端末に転送する。リピーターは、DCIに示されるリソースのPDSCHをデコード又は処理しない。
 (方法2):リピーターは、DCIを特定のRNTI、search space(SS)セット、又はcontrol-resource set(CORESET)において検出した場合、DCIに示されているスロット又はシンボルにおいて、DL信号のみを基地局から端末に転送する。リピーターは、DCIに示されるリソースのPDSCHをデコード又は処理しない。
 上記の方法1,2とは別の方法として、新しいDCIフォーマットが導入されてもよい。
 例えば、新しいDCIフォーマットには、DCI 1_xのTCI状態フィールドと同様のフィールドが含まれる。このフィールドは、基地局のビーム情報を示す。
 また、新しいDCIフォーマットには、DCI 1_xのTDRAフィールドと同様のフィールドが含まれる。このフィールドは、リピーターに通知される基地局のビーム情報の適用可能な時間(例えば、スロットオフセット及びスロット内のシンボル位置)を示す。
 <提案3-オプション7>
 SPSのconfiguration/activationのTCI状態を利用する。又は、SPSのconfiguration/activationのTCI状態をリピーター向けに規定する。
 SPSのPDSCHは、SPS-ConfigといったRRCパラメータによって設定(configuration)される。SPSのPDSCHの送信は、DCI(activation DCI)によって活性化(activation)され、非活性化(deactivation/release)される。
 例えば、基地局は、SPSのactivation DCIを利用し、ビーム情報をリピーターに通知する。SPSのactivation DCIにおけるTCI状態フィールドは、基地局のTxビームIDといったビーム情報を示す。リピーターに通知されるビーム情報(基地局のTxビームID)及びビーム情報に対応するリピーターのDL Txビームは、SPSのconfiguration(RRCパラメータ)又はSPSのactivation DCIのTDRAフィールドに示されるスロット又はシンボルに適用される。
 例えば、SPSのconfigurationは、ビーム情報の周期を示してもよい。SPSのactivation DCIのTDRAフィールドは、リピーターにおけるDL Txビームのスロットオフセット又はスロット内のシンボル位置を示してもよい。
 リピーターは、PDSCHをデコードしなくてもよい場合がある。この場合、リピーターは、単にDL信号を増幅して転送してもよい。
 例えば、リピーターが、SPS configuration(RRCパラメータ)又はactivation DCIを受信する。この場合において、基地局が、リピーターにDL信号のみを端末に転送することを指示する場合、リピーターは、PDSCHをデコードしなくてもよい。
 例えば、リピーターは、SPS configuration又はactivation DCIの1つ又は複数の既存フィールド(又は新しいフィールド)において、事前定義された値が設定されている場合、activation DCI(TDRA)に示されているスロット又はシンボルにおいて、DL信号のみを基地局から端末に転送する。リピーターは、activation DCIに示されるリソースのPDSCHをデコード又は処理しない。
 また、SPS configuration又はactivation DCIと同様の新しいRRC configuration又はDCIが導入されてもよい。
 例えば、新しいRRC configuration又はDCIには、activation DCIのTCI状態フィールドと同様のフィールドが含まれる。このフィールドは、基地局のビーム情報を示す。
 また、新しいRRC configuration又はDCIには、SPS configurationのSPS周期を設定するフィールドと同様のフィールドが含まれる。このフィールドは、リピーターに通知される基地局のビーム情報の適用可能な時間(例えば、スロットオフセット及びスロット内のシンボル位置)を示す。
 また、新しいRRC configuration又はDCIには、activation DCIのTDRAフィールドと同様のフィールドが含まれる。このフィールドは、リピーターのDL Txビームを制御するためのスロット又はシンボルを示す。
 <提案3-オプション8>
 基地局は、ビーム情報の通知のために、Rel-17のTCI状態を利用する。
 Rel-17では、図17に示すように、unified TCI state indication DCIが規定される。Rel-17のunified TCI state indication DCIのTCI状態フィールドは、基地局のTxビームIDといったビーム情報を示す。基地局は、Rel-17のunified TCI state indication DCIを用いて、基地局のビーム情報をリピーターに通知する。
 リピーターに通知されるビーム情報(基地局のTxビームID)及びビーム情報に対応するリピーターのDL Txビームは、DCIのHARQ-ACKを伝送するPUCCHの最後のスロット/シンボルの後の、少なくともXスロット/Xシンボルにおける最初のシンボル/スロットから開始されてもよい。
 又は、リピーターに通知されるビーム情報及びビーム情報に対応するリピーターのDL Txビームは、DCIを受信したスロット/シンボルの後の、少なくともXスロット/Xシンボルにおける最初のシンボル/スロットから開始されてもよい。
 なお、Xは、事前定義、設定、又はリピーター機能の対象とされてもよい。
 また、基地局のビーム情報をリピーターに通知するために、新しいDCIフォーマットが導入されてもよい。
 例えば、新しいDCIフォーマットには、Rel-17のunified TCI state indication DCIのTCI状態フィールドと同様のフィールドが含まれる。このフィールドは、基地局のビーム情報を示す。また、このフィールドは、ビーム情報の適用可能な時間(例えば、スロットオフセット及びスロット内のシンボル位置)を示す。
 <提案3-バリエーション>
 提案3の各オプションにおいて、基地局の複数のビーム情報は、タイムユニットごとに示されてもよい。
 提案3の各オプションにおいて、タイムユニットは、複数の周波数リソースごと(周波数リソース領域ユニットごと)に設定されてもよい。基地局は、複数の周波数リソース各々のタイムユニットにおいて、基地局のビーム情報を通知してもよい。この場合、リピーターは、複数の周波数リソース各々における複数のDL Txビームを同時に用いて、DL信号を送信してもよい。
 <提案4>
 提案4では、提案1で説明したタイプ1の動作を想定する。基地局は、基地局のビーム情報を用いて、基地局のDL RSリソース毎にリピーターのDL Txビームを通知する。提案4は、次のオプション1,2を有してもよい。
 (オプション1):リピーターは、端末向けのRSをデコードし、基地局のビーム情報を取得する。
 (オプション2):基地局は、既存の端末向けのRSと同様の方法を用いて、リピーターにビーム情報を通知する。
 <提案4-オプション1>
 提案2-オプション2で説明したように、基地局は、基地局のDL RSリソースごとにおいて、ビームを指示する。基地局のDL RSリソース(RS)は、端末向けであってもよい。そこで、リピーターは、端末向けのRSをデコードし、基地局のビーム情報を取得する。
 例えば、リピーターは、端末向けのDL RS(例えば、SSB/CSI-RS) configuration、DL RS activation、又はDL RS triggeringをデコードし、基地局のDL RSリソースの情報と、各DL RSリソースで使用される基地局のビーム情報とを取得する。リピーターは、取得したビーム情報を用いて、DL Txビームを制御する。
 なお、リピーターは、セル又はグループ内の全ての端末(すなわち、セル固有又はグループ固有のDL RS)における基地局のDL RS configuration、DL RS activation、又はDL RS triggeringのみをデコードしてもよい。例えば、リピーターは、cell-specific RNTI又はgroup-common RNTIを用いて、基地局のDL RSリソースをデコードしてもよい。
 <提案4-オプション2>
 基地局は、基地局のDL RS configuration、DL RS activation、又はDL RS triggeringにおける既存シグナリングと、端末向けのDR SRにおけるビーム指示の既存シグナリングとを用いて、基地局のDL RSリソースの情報と、各DL RSリソースで使用される基地局のビーム情報とをリピーターに通知する。提案4-オプション2は、次の変形例1,2を有してもよい。
 (変形例1):基地局は、基地局のDL RSリソースを用いる場合、リピーターにDL RSリソースをデコードしなくてもよいことを通知してもよい。基地局は、リピーターにDL信号を増幅して転送することを指示してもよい。
 (変形例2):基地局は、リピーターが基地局のDL RSをデコードしなくてもよいケースを考慮し、ビーム情報と、時間領域のリソースとをリピーターに通知してもよい。時間領域のリソースには、周期的/半永続的/非周期的な時間領域の動作、スロットレベルの周期とオフセット、又はスロット内のOFDMシンボルの位置(開始シンボルとシンボルの長さ)が含まれてもよい。
 <提案4-バリエーション>
 提案4の各オプションにおいて、基地局の複数のビーム情報は、タイムユニットごとに示されてもよい。
 提案4の各オプションにおいて、タイムユニットは、複数の周波数リソースごと(周波数リソース領域ユニットごと)に設定されてもよい。基地局は、複数の周波数リソース各々のタイムユニットにおいて、基地局のビーム情報を通知してもよい。この場合、リピーターは、複数の周波数リソース各々における複数のDL Txビームを同時に用いて、DL信号を送信してもよい。
 <提案5>
 提案5では、提案1で説明したタイプ2の動作を想定する。基地局は、リピーターの送信ビームの情報を用いて、タイムユニットごとに、リピーターのDL Txビームを通知する。提案5は、次のオプション1~7を有してもよい。
 (オプション1):基地局は、連続する複数のリピータービーム情報(例えば、リピーターのビームID)を通知する。
 (オプション2):基地局は、1つのリピータービーム情報を通知する。リピーターでは、同じビーム情報が連続して設定される。
 (オプション3):基地局は、連続する複数のリピータービーム情報を周期的に設定する。
 (オプション4):基地局は、1つのリピータービーム情報を通知する。リピーターでは、同じビーム情報が連続して周期的に設定される。
 (オプション5):リピーターは、DCI 1_xのTCI状態を参照する。リピーターは、端末に対するDCIをデコードする。
 (オプション6):SPSのconfiguration/activationのTCI状態を利用する。又は、SPSのconfiguration/activationのTCI状態をリピーター向けに規定する。
 (オプション7):基地局は、リピータービーム情報の通知のために、Rel-17のTCI状態を利用する。
 <提案5-オプション1>
 基地局は、連続する複数のリピータービーム情報をリピーターに通知する。リピーターは、連続する複数のリピータービーム情報に基づいて、DL Txビームを制御する。
 図18は、提案5-オプション1の一例を説明する図である。図18の“Beam indication”は、基地局がリピーターに通知するビーム情報を示す。ビーム情報は、例えば、リピーターのビームIDである。
 図18に示すように、リピーターの一連のビーム情報は、一連のタイムユニットにおいて適用される。基地局は、タイムユニットごとに、異なるビーム情報を通知する。例えば、基地局は、図18の矢印A15に示すタイムユニットにおいて、リピーターのビーム#aを通知する。例えば、基地局は、図18の矢印A16に示すタイムユニットにおいて、ビーム#bを通知する。
 図19は、提案5-オプション1の別例を説明する図である。図19では、タイムユニットの長さが、図18と異なる。図18に示したタイムユニットは、長さが一定であるが、図19のタイムユニットは、長さが一定でない。なお、基地局は、図18の説明と同様に、図19においても、タイムユニットごとに、リピーターの異なるビーム情報を通知する。
 ビーム制御が適用されるタイムユニットのシーケンスは、連続するタイムユニットの数として、リピーターに指示されてもよい。ビーム制御が適用されるタイムユニットのシーケンスは、タイムユニットの開始時間と長さとに基づいて、指示されてもよい。
 ビーム制御が適用されるタイムユニットの開始時間又は時間の長さは、事前に定義されてもよい。例えば、ビーム制御が適用されるタイムユニットは、ビーム情報の受信からの事前定義されたオフセットから開始し、事前定義された長さにわたってもよい。
 また、ビーム制御が適用されるタイムユニットのシーケンスは、タイムユニットIDのシーケンスを用いて、リピーターに通知されてもよい。リピーターのビーム情報とタイムユニットとは、対応付けられてもよい。例えば、リピーターのビームIDとタイムユニットIDとが、対応付けられてもよい。
 <提案5-オプション2>
 基地局は、1つのリピータービーム情報をリピーターに通知する。リピーターでは、通知された1つのビーム情報が連続して設定される。別言すれば、リピーターは、通知された1つのビーム情報に基づくDL Txビームを、連続して使用する。
 図20は、提案5-オプション2の一例を説明する図である。図20の“Beam indication”は、基地局がリピーターに通知するビーム情報を示す。ビーム情報は、例えば、リピーターのビームIDである。
 図20に示すように、基地局は、或る1つのタイムユニットにおいて、リピーターのビーム情報をリピーターに通知する。例えば、基地局は、或る1つのタイムユニットにおいて、ビーム#aをリピーターに通知する。
 リピーターは、通知された1つのビーム情報に基づくDL Txビームを、連続して使用する。例えば、リピーターは、通知された1つのビーム情報に基づくDL Txビームを、複数のタイムユニットにわたり使用する。図20の例の場合、リピーターは、リピーターのビームID“#a”に基づくDL Txビームを、複数のタイムユニットにわたり使用する。
 ビーム制御が適用されるタイムユニットのシーケンスは、連続するタイムユニットの数として、リピーターに指示されてもよい。ビーム制御が適用されるタイムユニットのシーケンスは、タイムユニットの開始時間と長さとに基づいて、指示されてもよい。
 ビーム制御が適用されるタイムユニットの開始時間又は時間の長さは、事前に定義されてもよい。例えば、ビーム制御が適用されるタイムユニットは、ビーム情報の受信からの事前定義されたオフセットから開始し、事前定義された長さにわたってもよい。
 また、タイムユニットのシーケンスは、タイムユニットIDのシーケンスとして、基地局からリピーターに指示されてもよい。
 <提案5-オプション3>
 基地局は、連続する複数のリピータービーム情報を周期的に設定する。リピーターは、基地局から通知された連続する複数のリピータービーム情報に基づいて、DL Txビームを周期的に制御する。
 図21は、提案5-オプション3の一例を説明する図である。図21の“Beam indication”は、基地局がリピーターに通知するビーム情報を示す。ビーム情報は、例えば、リピーターのビームIDである。
 基地局は、1周期におけるリピーターのビーム情報を、リピーターに通知する。例えば、図21に示すように、基地局は、1周期における全タイムユニット(4つのタイムユニット)を用いて、リピーターのビームID“#a,#b,#c,#d”を1回、リピーターに通知する。
 リピーターは、1周期におけるリピーターのビームID“#a,#b,#c,#d”を受信すると、受信したビームID“#a,#b,#c,#d”のDL Txビームを繰り返し(周期的に)送信する。
 基地局は、リピーターのビーム情報の周期的なパターンをリピーターに通知してもよい。
 基地局は、リピーターのビーム情報の周期と、オフセットとをリピーターに通知してもよい。オフセットは、例えば、周期的なDL Txビームの送信を開始するタイムユニットを示してもよい。リピーターのビーム情報のシーケンスは、1周期におけるタイムユニットに適用される各ビーム情報(例えば、“#a,#b,#c,#d”)で示されてもよい。
 <提案5-オプション4>
 基地局は、1つのリピータービーム情報を通知する。リピーターでは、同じビーム情報が連続して周期的に設定される。
 図22は、提案5-オプション4の一例を説明する図である。図22の“Beam indication”は、基地局がリピーターに通知するビーム情報を示す。ビーム情報は、例えば、リピーターのビームIDである。
 基地局は、1周期におけるリピーターのビーム情報を、1回、リピーターに通知する。例えば、図22の矢印A17に示すように、基地局は、1周期における一部のタイムユニット(1つのタイムユニット)を用いて、リピーターのビームID“#a”を、リピーターに通知する。
 リピーターは、通知された1つのビーム情報に基づくDL Txビームを、連続して使用する。例えば、リピーターは、通知された1つのビーム情報に基づくDL Txビームを、1周期におけるタイムユニットのうち、一部のタイムユニットにわたり使用する。
 例えば、図22の矢印A18に示すように、リピーターは、1周期における4つのタイムユニットのうち、2つのタイムユニットにわたり、通知された1つのビーム情報に基づくDL Txビームを使用する。例えば、図22の矢印A19に示すように、リピーターは、1周期における4つのタイムユニットのうち、2つのタイムユニットにわたり、通知された1つのビーム情報に基づくDL Txビームを使用する。
 ビーム制御が適用されるタイムユニットのシーケンスは、連続するタイムユニットの数として、リピーターに指示されてもよい。ビーム制御が適用されるタイムユニットのシーケンスは、タイムユニットの開始時間と長さとに基づいて、指示されてもよい。
 ビーム制御が適用されるタイムユニットの開始時間又は時間の長さは、事前に定義されてもよい。例えば、ビーム制御が適用されるタイムユニットは、ビーム情報の受信からの事前定義されたオフセットから開始し、事前定義された長さにわたってもよい。
 基地局は、リピーターのビーム情報の周期的なパターンをリピーターに通知してもよい。
 基地局は、リピーターのビーム情報の周期と、オフセットとをリピーターに通知してもよい。オフセットは、例えば、1周期内におけるDL Txビームの送信を開始するタイムユニットを示してもよい。また、1周期内における、ビーム制御が適用されるタイムユニット数(図22の例の場合、2)が、リピーターに通知されてもよい。
 図23は、提案5-オプション4の別例を説明する図である。図23の“Beam indication”は、基地局がリピーターに通知するビーム情報を示す。ビーム情報は、例えば、リピーターのビームIDである。
 基地局は、1周期におけるリピーターのビーム情報を、リピーターに通知する。例えば、図23の矢印A20に示すように、基地局は、1周期における一部のタイムユニット(1つのタイムユニット)を用いて、リピーターのビームID“#b”を、リピーターに通知する。
 リピーターは、通知された1つのビーム情報に基づくDL Txビームを、連続して使用する。例えば、リピーターは、通知された1つのビーム情報に基づくDL Txビームを、基地局から通知されるオフセットに基づいて、1周期における4つのタイムユニットのうち、3番目と4番目とのタイムユニットにわたり使用する。
 基地局は、リピーターにおける複数のDL Txビームが、オーバーラップしないように、リピーターのDL Txビームを制御してもよい。
 例えば、基地局は、図22に示したように、1周期のうちの1番目及び2番目のタイムユニットにおいて、ビーム#aのDL Txビームが送信されるようにリピーターのDL Txビームを制御する。また、基地局は、図23に示したように、1周期のうちの3番目及び4番目のタイムユニットにおいて、ビーム#bのDL Txビームが送信されるようにリピーターのDL Txビームを制御する。
 以上の動作により、リピーターは、1周期内において、複数のDL Txビームを、複数のタイムユニットを用いて、連続送信できる。
 <提案5-オプション5>
 リピーターは、DCI 1_xのTCI状態を参照する。リピーターは、端末に対するDCIをデコードする。
 例えば、基地局は、PDSCHをスケジューリングするDCI(DCI 1_x)のTCI状態フィールド又は新たなフィールドを利用し、ビーム情報をリピーターに通知する。DCIのTCI状態フィールド又は新たなフィールドは、リピーターのDL TxビームIDといったビーム情報を示す。リピーターに通知されるビーム情報(リピーターのDL TxビームID)及びリピーターのDL Txビームは、DCIのTDRAフィールドに示されるスロット又はシンボルに適用される。
 リピーターは、PDSCHをデコードしなくてもよい場合がある。この場合、リピーターは、単にDL信号を増幅して転送してもよい。
 例えば、リピーターが、DCI 1_xを受信する。この場合において、基地局が、リピーターにDL信号のみを端末に転送することを指示する場合、リピーターは、PDSCHをデコードしなくてもよい。リピーター(リピーターのMTの機能)は、以下の方法で、DCIに示されたリソースのPDSCHをデコード又は処理しなくてもよい。
 (方法1):リピーターは、DCIの1つ又は複数の既存フィールド(又は新しいフィールド)において、事前定義された値が設定されている場合、DCIに示されているスロット又はシンボルにおいて、DL信号のみを基地局から端末に転送する。リピーターは、DCIに示されるリソースのPDSCHをデコード又は処理しない。
 (方法2):リピーターは、DCIを特定のRNTI、SSセット、又はCORESETにおいて検出した場合、DCIに示されているスロット又はシンボルにおいて、DL信号のみを基地局から端末に転送する。リピーターは、DCIに示されるリソースのPDSCHをデコード又は処理しない。
 上記の方法1,2とは別の方法として、新しいDCIフォーマットが導入されてもよい。
 例えば、新しいDCIフォーマットには、DCI 1_xのTCI状態フィールドと同様のフィールドが含まれる。このフィールドは、リピーターのビーム情報を示す。
 また、新しいDCIフォーマットには、DCI 1_xのTDRAフィールドと同様のフィールドが含まれる。このフィールドは、リピーターに通知されるリピーターのビーム情報の適用可能な時間(例えば、スロットオフセット及びスロット内のシンボル位置)を示す。
 <提案5-オプション6>
 SPSのconfiguration/activationのTCI状態を利用する。又は、SPSのconfiguration/activationのTCI状態をリピーター向けに規定する。
 SPSのPDSCHは、SPS-ConfigといったRRCパラメータによって設定(configuration)される。SPSのPDSCHの送信は、DCI(activation DCI)によって活性化(activation)され、非活性化(deactivation/release)される。
 例えば、基地局は、SPSのactivation DCIを利用し、ビーム情報をリピーターに通知する。SPSのactivation DCIにおけるTCI状態フィールド又は新たなフィールドは、リピーターのDL TxビームIDといったビーム情報を示す。リピーターに通知されるビーム情報(リピーターのDL TxビームID)及びリピーターのDL Txビームは、SPSのconfiguration(RRCパラメータ)又はSPSのactivation DCIのTDRAフィールドに示されるスロット又はシンボルに適用される。
 例えば、SPSのconfigurationは、ビーム情報の周期を示してもよい。SPSのactivation DCIのTDRAフィールドは、リピーターにおけるDL Txビームのスロットオフセット又はスロット内のシンボル位置を示してもよい。
 リピーターは、PDSCHをデコードしなくてもよい場合がある。この場合、リピーターは、単にDL信号を増幅して転送してもよい。
 例えば、リピーターが、SPS configuration(RRCパラメータ)又はactivation DCIを受信する。この場合において、基地局が、リピーターにDL信号のみを端末に転送することを指示する場合、リピーターは、PDSCHをデコードしなくてもよい。
 例えば、リピーターは、SPS configuration又はactivation DCIの1つ又は複数の既存フィールド(又は新しいフィールド)において、事前定義された値が設定されている場合、activation DCI(TDRA)に示されているスロット又はシンボルにおいて、DL信号のみを基地局から端末に転送する。リピーターは、activation DCIに示されるリソースのPDSCHをデコード又は処理しない。
 また、SPS configuration又はactivation DCIと同様の新しいRRC configuration又はDCIが導入されてもよい。
 例えば、新しいRRC configuration又はDCIには、activation DCIのTCI状態フィールドと同様のフィールドが含まれる。このフィールドは、リピーターのビーム情報を示す。
 また、新しいRRC configuration又はDCIには、SPS configurationのSPS周期を設定するフィールドと同様のフィールドが含まれる。このフィールドは、リピーターに通知されるリピーターのビーム情報の適用可能な時間(例えば、スロットオフセット及びスロット内のシンボル位置)を示す。
 また、新しいRRC configuration又はDCIには、activation DCIのTDRAフィールドと同様のフィールドが含まれる。このフィールドは、リピーターのDL Txビームを制御するためのスロット又はシンボルを示す。
 <提案5-オプション7>
 基地局は、リピータービーム情報の通知のために、Rel-17のTCI状態を利用する。
 Rel-17では、図17に示したように、unified TCI state indication DCIが規定される。Rel-17のunified TCI state indication DCIのTCI状態フィールド又は新たなフィールドは、リピーターのDL TxビームIDといったビーム情報を示す。基地局は、Rel-17のunified TCI state indication DCIを用いて、リピーターのビーム情報をリピーターに通知する。
 リピーターに通知されるビーム情報(リピーターのTxビームID)及びリピーターのDL Txビームは、DCIのHARQ-ACKを伝送するPUCCHの最後のスロット/シンボルの後の、少なくともXスロット/Xシンボルにおける最初のシンボル/スロットから開始されてもよい。
 又は、リピーターに通知されるビーム情報及びリピーターのDL Txビームは、DCIを受信したスロット/シンボルの後の、少なくともXスロット/Xシンボルにおける最初のシンボル/スロットから開始されてもよい。
 なお、Xは、事前定義、設定、又はリピーター機能の対象とされてもよい。
 また、リピーターのビーム情報をリピーターに通知するために、新しいDCIフォーマットが導入されてもよい。
 例えば、新しいDCIフォーマットには、Rel-17のunified TCI state indication DCIのTCI状態フィールドと同様のフィールドが含まれる。このフィールドは、リピーターのビーム情報を示す。また、このフィールドは、ビーム情報の適用可能な時間(例えば、スロットオフセット及びスロット内のシンボル位置)を示す。
 <提案5-バリエーション>
 提案5の各オプションにおいて、リピーターの複数のビーム情報は、タイムユニットごとに示されてもよい。
 提案5の各オプションにおいて、タイムユニットは、複数の周波数リソースごと(周波数リソース領域ユニットごと)に設定されてもよい。基地局は、複数の周波数リソース各々のタイムユニットにおいて、リピーターのビーム情報を通知してもよい。この場合、リピーターは、複数の周波数リソース各々における複数のDL Txビームを同時に用いて、DL信号を送信してもよい。
 提案5におけるリピーターのビーム情報は、次のAlt.1~Alt.3に基づいて、基地局からリピーターに通知されてもよい。
 (Alt.1):リピーターのビーム情報は、例えば、リピーターDL TxビームID(repeater DL Tx beam ID)又はリピーターDL Tx空間ドメインフィルターID(repeater DL Tx spatial domain filter ID)であってもよい。異なるIDは、異なる空間ドメインフィルターを参照してもよい。
 (Alt.2):提案5におけるリピーターのビーム情報は、リピーターDL RSリソースIDを介して、基地局からリピーターに通知されてもよい。
 リピーターDL RSリソースは、リピーターのビーム情報の管理に使用される新しく定義されたRSリソースであり(提案2-オプション4を参照)、リピーターの空間ドメインフィルターのRSに使用されてもよい。
 各リピーターDL RSリソースは、基地局によって示される特定の時間領域リソースを占有する。
 リピーターは、各リピーターDLRSリソースにおいて、基地局のDL RSを増幅し、端末に転送する。
 リピーターDL RSリソースIDが、タイムユニットのビームIDとして示される場合、リピーターDL RSリソースと同じリピーターDL Tx空間ドメインフィルターが、タイムユニットに使用されることを意味してもよい。
 (Alt.3):リピーターのビーム情報は、リピーターTCI状態ID(repeater TCI state ID)として、基地局からリピーターに通知されてもよい。
 リピーターDL RSリソースIDを間接的に参照するために、リピーターTCI状態IDを、新たに定義する。例えば、各リピーターTCI状態は、リピーターDL RSリソースに関連付けられる。リピーターTCI状態IDが、タイムユニットのビームIDとして示されている場合、リピーターTCI状態に関連付けられたリピーターDL RSリソースと同じリピーターDL Tx空間ドメインフィルターが、タイムユニットに使用されることを意味してもよい。
 リピーターDL RSリソースは、リピーターDL Txビームの管理に使用される新しく定義されたRSリソースであり(提案2-オプション4を参照)、リピーターの空間ドメインフィルターのRSに使用されてもよい。
 各リピーターDL RSリソースは、基地局によって示される特定の時間領域リソースを占有する。
 リピーターは、各リピーターDL RSリソースにおいて、基地局のDL RSを増幅し、端末に転送する。
 <提案6>
 提案6では、提案1で説明したタイプ2の動作を想定する。基地局は、リピーターのDL Txビーム用に規定されたRSリソースごとに、DL Txビームを通知する。
 提案2-オプション4で説明したように、リピーターDL RSリソースは、リピーターのDL Txビームの管理に使用される新しく定義されたRSリソースである。各リピーターDL RSリソースは、基地局によって示される特定の時間領域リソースを占有する。リピーターは、各リピーターDL RSリソースにおいて、基地局のDL RSを増幅し、端末に転送する。
 以下、リピーターDL RSリソースの設定について説明する。
 (1):リピーターは、複数のリピーターDL RSリソースが設定されてもよい。
 (2):各リピーターDL RSリソースは、複数の隣接するシンボルを占有してもよい。隣接するシンボルの数(サポートされる候補数)は、事前定義されてもよい。例えば、隣接するシンボルの数は、1,2,4のいずれかであってもよい。
 (3):リピーターDL RSリソースセット(以下、リソースセットと称することがある)が構成されてもよい。各リソースセットは、複数のリピータDL RSリソースで構成される。各リソースセットのリソース数(サポートされるリソースの候補数)は、事前定義されてもよく、リピーター能力としてもよい。
 (4):リピーターDL RSリソース又はリソースセットのために、SCI(RRC/MAC CE/DCI)によって、次のパラメータ(情報)が構成されてもよい。
 ・リピーターDL RSリソースID/リソースセットID
 ・時間領域動作(time domain behavior)に関するパラメータ、例えば、リピーターDL RSリソース又はリソースセットのリソースタイプが、定期的、半永続的、又は非定期的であることを示すパラメータ
 ・リピーターDL RSリソース/リソースセットのスロットレベル周期性(P/SPリソース/リソースセットの場合)
 ・リピーターDL RSリソース/リソースセットのスロットレベルオフセット
 ・スロット内のリソースのシンボル位置(開始シンボルとシンボル数を含む)
 (5):半永続的なリピーターDL RSリソース/リソースセットの場合、SCIによって、リピーターの転送動作が、活性化及び非活性化されてもよい。例えば、リピーターDL RSリソースが活性化されている場合、リピーターは、リピーターDL RSリソースを用いてDL信号を転送する。リピーターDL RSリソースが非活性化されている場合、リピーターは、リピーターDL RSリソースを用いてDL信号を転送しない。リピーターDL RSリソースID/リソースセットIDの活性化及び非活性化を示すインディケーターが、SCIに含まれてもよい。
 (6):非周期的なリピーターDL RSリソース/リソースセットの場合、リピーターDL RSリソース/リソースセットは、SCIによってトリガーされてもよい。リピーターは、SCIによってリピーターDL RSリソース/リソースセットがトリガーされた場合、DL信号を端末に転送してもよい。
 リピーターDL RSリソースID/リソースセットIDが、リピーターDL RSリソース/リソースセットのトリガーのために、SCIに含まれてもよい。又は、リピーターDL RSリソースID/リソースセットIDのトリガー状態を示すパラメータが、SCIに含まれてもよい。トリガー状態は、リピーターDL RSリソース/リソースセットごとに設定されてもよい。
 スロットオフセット又はスロット内のリソースのシンボル位置(開始シンボルおよびシンボル数を含む)が、SCIによって指示されてもよい。
 リピーターDL RSリソースで使用されるリピーターのDL Txビームは、以下のAlt.1~Alt.3及びバリエーションに基づく動作を行ってもよい。
 (Alt.1):リピーターのDL Txビームは、リピーターの実装に依存してもよい。例えば、デフォルトでは、同じリソースセット内の異なるリピーターDL RSリソースに、異なるリピーターDL Txビームが使用されてもよい。
 (Alt.2):リピーターのDL Txビームは、各リピーターDL RSリソースにおけるRRC又はMAC CEを介し、基地局から指示されてもよい。
 例えば、DL送信(DL転送)に使用されるリピーターの空間ドメインフィルターを直接参照するリピーターDL TxビームIDが、基地局から指示される。又は、リピーターDL RSリソース(ターゲットリピーターDL RSリソースと称する)の空間ドメインフィルターを決定するために、別のリピーターDL RSリソース(リファレンスリピーターDL RSリソースと称する)のIDが、基地局から指示される。これは、指示されたリファレンスリピーターDL RSリソースと同じリピーターDL Tx空間ドメインフィルターが、ターゲットリピーターDL RSリソースに使用されることを意味する。又は、リファレンスリピーターDL RSリソースに関連付けられているリピーターTCI状態のIDが、基地局から指示される。
 (Alt.3):リピーターのDL Txビームは、基地局から指示があった場合、基地局の指示に従って動作し、基地局からの指示がない場合、実装に依存して動作してもよい。前記指示は、SCIによって行われてもよい。
 (バリエーション):例えば、CSI-RSと同様に、パラメータ“Repetition”={ON、OFF}が、リソースセットのために指定されてもよい。
 例えば、Repetition=ONは、リソースセット内のすべてのリピーターDL RSリソースにおいて、リピーターが同じDL Txビームを使用することを意味する。Repetition=OFFは、リソースセット内の異なるリピーターDL RSリソースにおいて、リピーターが異なるDL Txビームを使用することを意味する。
 <提案7>
 基地局は、基地局のビーム情報を用いて、リピーターの送信ビームを通知する。提案7では、提案1で説明したタイプ1の動作及び提案2のオプション5について、次の動作が想定されてもよい。
 (1):提案4の内容(動作)が、基地局の各DL RSリソースの情報と、各DL RSリソースにおける基地局のTxビーム(ビーム情報)とをリピーターに指示するために利用される。
 (2):基地局の各DL RSリソースにおいて、リピーターのTx DLビームIDが、基地局によって指示される。又は、基地局の各DL RSリソースにおいて、リピーターのTx DLビームIDが、リピーターの実装に依存する。リピーターのTx DLビームIDが、基地局へ報告される。
 (3):基地局のTxビームごと(TCI状態ごと)において、リピーターのTx DLビームIDが、基地局によって指示される。又は、基地局のTxビームごと(TCI状態ごと)において、リピーターのTx DLビームIDが、リピーターの実装に依存する。リピーターのTx DLビームIDが、基地局へ報告される。
 なお、DL信号の送信(転送)に使用されるリピーターの空間ドメインフィルター(spatial domain filter)を意味する用語として、“リピーターDL TxビームID”が新しく定義されてもよい。
 <提案8>
 リピーターは、端末におけるRS測定方法及びレポート方法のメカニズムを利用する。
 リピーターは、CSIのフレームワークを利用する。リピーターは、基地局からのDL RSを測定し、基地局に報告する。
 リピーターの機能は、リピーターMTの機能と捉えてもよい。リピーターMTは、端末又はIAB-MTと同様の機能を有する。例えば、リピーターMTは、端末と同様に基地局に接続し、基地局から制御信号を受信する。IABは、Integrated Access and Backhaulの略である。
 なお、リピーターに向けた基地局のTxビームの品質判断のために、Radio Resource Management(RRM)フレームワークが、Txビームの測定に使用されてもよい。リピーターは、RRMフレームワークにおいて、基地局のTxビームの品質を測定し、基地局に報告する。
 リピーターにおけるCSIレポート設定(CSI report configuration)又はCSIリソース設定(CSI resource configuration)に関しては、次の変更又は制約が考慮されてもよい。別言すれば、リピーターには、端末における測定の機能が、変更又は制約され、適用されてもよい。
 (1):リピーターが、ビーム測定用RSとして設定できるのは、SSB又はCSI-RSのみであってもよい。別言すれば、リピーターが、ビーム測定用RSとして設定できるのは、SSB及びCSI-RSのいずれか一方であってもよい。
 (2):periodic、semi-persistent、及びaperiodicの一部のリソースタイプのみが、リピーターのCSIリソース設定(CSI resource configuration)のために使用されてもよい。
 (3):periodic、semi-persistent、及びaperiodicの一部のリソースタイプのみが、リピーターのCSIレポート設定(CSI report configuration)のために使用されてもよい。
 (4):“cri-RI-PMI-CQI”、“cri-RI-i1”、“cri-RI-i1-CQI”、“cri-RI-CQI”、“cri-RSRP”、“cri-SINR”、“ssb-Index-RSRP”、“ssb-Index-SINR”、又は“cri-RI-LI-PMI-CQI”の一部の量(quantities)のみが、リピーターのために設定されてもよい。別言すれば、リピーターは、CSI報告のために、前記の一部の量(Report Quantity)を、基地局に報告すればよい。
 (5):非グループベースのビームレポートのみが、リピーターに設定されてもよい。例えば、リピーターにおいて、RRCパラメータ“groupBasedBeamReport”(例えば、3GPP TS 38.331 V16.7.0 (2021-12) 6.3.2章、3GPP TS 38.214 V16.8.0 (2021-12) 5.2.1.4.2章参照)は、“無効(disabled)”のみ設定され、“有効(enabled)”は設定されない。
 (6):リピーターには、repetition=“OFF”のみが設定されてもよい。別言すれば、リピーターは、繰り返し送信を行わない。
 (7):レガシー端末から報告されるRS数の異なる候補値が、リピーター用に設定されてもよい。例えば、レガシー端末の測定報告の候補値のサブセットが、リピーターに設定されてもよく、その値は、レガシー端末よりも小さく又は大きくてもよい。
 (8):レガシー端末とは異なるCSIリソース周期の候補値を、リピーター用に設定されてもよい。例えば、レガシー端末とは異なるCSIリソース周期の候補値が、リピーターに設定されてもよく、その値は、レガシー端末よりも小さく又は大きくてもよい(例:640/1280/2560/…スロット)。なお、リピーターに設定されるCSIリソース周期の候補値は、レガシー端末より大きい方が好ましい。
 (9):RRCといった上位レイヤで指定されるリピーターの測定に関するパラメータの最大値は、レガシー端末の測定に関するパラメータ(例えば、3GPP TS 38.331 V16.7.0 (2021-12)、6.4章参照)の最大値とは異なってもよい。
 図24は、RRCパラメータの一例を示した図である。リピーターにおいては、例えば、CSI report configuration、CSI resource configuration、CSI-RS resource set、CSI-RS resource、CSI-RS resource set per resource configuration、CSI-RS resource per CSI-RS resource configuration、CSI-RS resource per resource setといった測定に関するパラメータの最大値が、レガシー端末の最大値と異なってもよい。例えば、リピーターにおける最大値は、レガシー端末における最大値より小さくてもよく又は大きくてもよい。
 また、リピーターにおいては、測定に関するRRCパラメータの一部(種類)が、レガシー端末のRRCパラメータに対して省略(制限)されてもよい(少なくてもよい)。
 ビーム測定とレポートとに関連する端末機能のレガシーフレームワークは、リピーターに利用されてもよい。
 レガシー端末に必要な機能は、リピーターにおいて必要でない場合があってもよい。レガシー端末に必須の機能は、リピーターにおいてオプションにされる場合があってもよい。リピーターの候補値/値の範囲/パラメータ、またはデフォルト/必須の値/値の範囲/パラメータは、レガシー端末とは異なってもよい。
 リピーターは、例えば、一度設置されると、移動される可能性が低い。そのため、提案8で説明した通り、リピーターには、端末における測定の機能が、変更又は制約され、適用されてもよい。これにより、リピーターの消費電力が低減される。リピーターのコストが低減される。
 以上、提案1-提案8について説明した。
 <バリエーション1>
 ビーム指示は、DLのタイムユニットにおいて適用されてもよい。例えば、提案3及び提案5におけるビーム指示は、DLとして指示されるタイムユニットにおいて適用されてもよい。また、例えば、提案3及び提案5におけるビーム指示は、DLとして指示されるタイムユニットの少なくとも1シンボルにおいて適用されてもよい。
 図25は、バリエーション1の一例を説明する図である。図25には、DLのタイムユニットと、ULのタイムユニットとが示してある。
 例えば、基地局は、DLのタイムユニットにおいて、基地局のビーム情報を通知してもよい。例えば、基地局は、DLのタイムユニットにおいて、リピーターのビーム情報を通知してもよい。
 また、一連のビーム情報が、一連のタイムユニットにおいて指示される場合、DLのタイムユニットにおいて、一連のビーム情報が適用されてもよい。別言すれば、一連のビーム情報は、ULのタイムユニットには、適用されない。
 <バリエーション2>
 基地局は、ビームと、リピーターのオン/オフとのジョイント指示をリピーターに行ってもよい。例えば、基地局は、提案3及び提案5にて説明した動作において、いくつかのタイムユニットにおいては、ビーム情報をリピーターに通知し、いくつかのタイムユニットにおいては、リピーターのDLをオフする指示を行ってもよい。リピーターのDLのオフとは、リピーターがDL信号を送信(転送)しないことを意味してもよい。
 図26は、バリエーション2の一例を説明する図である。図26の矢印A26aに示すように、基地局は、或るタイムユニットにおいては、ビーム情報をリピーターに通知する。図26の矢印A26bに示すように、基地局は、或るタイムユニットにおいては、リピーターのDLのオフを通知する。
 図27は、バリエーション2の別例を説明する図である。図27には、リピーターのON-OFF Indication(DLにおける動作指示)が示してある。例えば、基地局は、リピーターのON-OFF IndicationがONの場合、ビーム情報をリピーターに通知する。リピーターは、ビーム情報が通知されたタイムユニットにおいて、DL Txビームを送信する。一方、基地局は、リピーターのON-OFF IndicationがOFFの場合、ビーム情報をリピーターに通知しない。リピーターは、ビーム情報が通知されなかったタイムユニットにおいては、DLをオフする。
 <バリエーション3>
 基地局は、リピーターの電力制御を行ってもよい。別言すれば、リピーターは、基地局によって、電力制御されてもよい。
 リピーターのDL Txにおける電力制御パラメータは、リピーターのDL Txビームごとに設定されてもよい。又は、リピーターのDL Txにおける電力制御パラメータは、タイムユニットごとに設定されてもよい。又は、リピーターのDL Txにおける電力制御パラメータは、タイムユニットごとのビーム情報とともに、設定されてもよい。
 電力スケーリングレベルが事前定義又は設定されてもよい。電力スケーリングレベルは、例えば、以下のように、2ビットの情報で指示されてもよい。
 00:最大パワー
 01:最大パワー×ギャップ×1、又は、最大パワー×スケーリング×1
 10:最大パワー×ギャップ×2、又は、最大パワー×スケーリング×2
 11:ゼロパワー(OFF)
 電力スケーリングレベルは、タイムユニットごとに指示されてもよい。電力スケーリングレベルは、DCI、MAC CE、又はRRCといったシグナリングを用いて、基地局からリピーターに通知されてもよい。ギャップ又はスケーリングは、DCI、MAC CE、又はRRCといったシグナリングを用いて、基地局からリピーターに通知されてもよい。
 <基地局及びリピーターの機能>
 図28は、一実施の形態に係る基地局12及びリピーター13の機能構成の一例を示す図である。図28に示すように、基地局12及びリピーター13は、送信部510と、受信部520と、設定部530と、制御部540と、を備える。図28に示す機能構成は一例に過ぎない。本開示の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
 送信部510は、送信データから送信信号を生成し、生成した送信信号を無線送信する。受信部520は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。
 設定部530は、例えば、受信部520により通信相手から受信した各種の設定情報を記憶装置(記憶部)に格納し、必要に応じて記憶装置から設定情報を読み出す。また、設定部530は、予め設定される設定情報も記憶装置に格納する。なお、設定部530は、制御部540に含まれてもよい。
 制御部540は、基地局12及びリピーター13全体の制御を行う。制御部540における信号送信に関する機能部は、送信部510に含まれてもよく、制御部540における信号受信に関する機能部は、受信部520に含まれてもよい。
 (1):リピーター13の受信部520は、基地局12から複数のビームを受信する。
 リピーター13の制御部540は、受信部520が受信したビームに含まれ、複数のビーム各々に関連付けられた基地局12のビーム情報に基づいて、端末14向けのビームを決定する。
 以上の動作により、リピーター13は、端末14に向けたビームを適切に制御できる。
 リピーター13の制御部540は、基地局12の複数のビーム情報と、端末14向けの複数のビーム情報とを対応付けたマッピングルールR21を保持する。リピーター13の制御部540は、マッピングルールR21を参照して、受信したビームに含まれる基地局12のビーム情報に対応する端末14向けのビーム情報を取得し、端末14向けのビームを決定する。
 以上の動作により、リピーター13は、端末14に向けたビームを適切に制御できる。
 また、基地局12の送信部510は、リピーター13に複数のビームを送信する。
 基地局12の制御部540は、リピーター13に送信する複数のビーム各々に関連付けられた当該基地局12のビーム情報を、リピーター13に送信するビームに含め、リピーター13の端末14向けのビームを制御する。
 以上の動作により、リピーター13は、基地局12によって、端末14に向けたビームが適切に制御される。
 (2):リピーター13の受信部520は、基地局12からビームを受信する。
 リピーター13の制御部540は、受信部520が受信したビームに含まれ、当該リピーター13の複数のビーム各々に関連付けられた当該リピーター13のビーム情報に基づいて、端末14向けのビームを決定する。
 以上の動作により、リピーター13は、端末14に向けたビームを適切に制御できる。
 リピーターの受信部520は、基地局12から最も通信品質のよいビームを受信する。以上の動作により、リピーター13は、端末14に向けたビームを適切に制御できる。
 また、基地局12の制御部540は、リピーター13のビーム各々に関連付けられたリピーターのビーム情報を、当該基地局12のビームに含める。
 基地局12の送信部510は、リピーター13のビーム情報を含むビームをリピーター13に送信する。
 以上の動作により、リピーター13は、基地局12によって、端末14に向けたビームが適切に制御される。
 基地局12の送信部510は、通信品質の最もよいビームをリピーター13に送信する。
 以上の動作により、リピーター13は、基地局12によって、端末14に向けたビームが適切に制御される。
 (3):リピーター13の受信部520は、基地局12から複数のビームを受信する。
 リピーター13の制御部540は、受信部520が受信したビームのタイムユニット各々に含まれ、複数のビーム各々に関連付けられた基地局12のビーム情報に基づいて、端末14向けのビームを決定する。
 以上の動作により、リピーター13は、端末14に向けたビームを適切に制御できる。
 1つのビーム情報が、複数のタイムユニットにわたり含まれる。従って、リピーター13は、端末14に向けたビームを適切に制御できる。
 また、リピーター13の受信部520は、基地局12から複数のビームを受信する。
 リピーター13の制御部540は、受信部520が受信したビームに含まれる参照信号用のリソース各々に含まれ、複数のビーム各々に関連付けられた基地局12のビーム情報に基づいて、端末14向けのビームを決定する。
 以上の動作により、リピーター13は、端末14に向けたビームを適切に制御できる。
 リピーター13の制御部540は、端末14向けの参照信号をデコードし、基地局12のビーム情報を取得する。
 以上の動作により、リピーター13は、端末14に向けたビームを適切に制御できる。
 (4):リピーター13の受信部520は、基地局12からビームを受信する。
 リピーター13の制御部540は、受信部520が受信したビームのタイムユニット各々に含まれ、当該リピーター13のビーム各々に関連付けられた当該リピーター13のビーム情報に基づいて、端末14向けのビームを決定する。
 以上の動作により、リピーター13は、端末14に向けたビームを適切に制御できる。
 1つのビーム情報が、複数のタイムユニットにわたり含まれる。従って、リピーター13は、端末14に向けたビームを適切に制御できる。
 また、リピーター13の受信部520は、基地局12からビームを受信する。
 リピーター13の制御部540は、受信部520が受信したビームに含まれる参照信号用のリソース各々に含まれ、当該リピーター13ーのビーム各々に関連付けられた当該リピーター13のビーム情報に基づいて、端末14向けのビームを決定する。
 以上の動作により、リピーター13は、端末14に向けたビームを適切に制御できる。
 リピーター13の制御部540は、参照信号をデコードし、当該リピーター13のビーム情報を取得する。
 以上の動作により、リピーター13は、端末14に向けたビームを適切に制御できる。
 (5):リピーター13の制御部540は、端末14が通信品質の測定に用いる信号より少ない種類の信号を用いて、基地局12との間の通信品質を測定する。
 リピーター13の送信部510は、基地局12との間の通信品質の測定結果を基地局12に送信する。
 以上の動作により、リピーター13は、端末14に向けたビームを適切に制御できる。
 信号のリソースタイプは、周期的、半永続的、及び非周期的なリソースタイプのうちの一部に限定される。
 測定結果のリソースタイプは、周期的、半永続的、及び非周期的なリソースタイプのうちの一部に限定される。
 測定結果の種類は、端末における測定結果の種類より少ない。
 上位レイヤで指定される前記測定の最大値は、端末における測定の最大値と異なる。
 リピーター13は、端末14と異なり、移動する可能性が少ないため、動作等に制約があっても、端末14に向けたビームを適切に制御できる。また、リピーターは、動作等が制約されることにより、消費電力を低減できる。
 以上、本開示について説明した。なお、上記の説明における項目の区分けは本開示に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。
<ハードウェア構成等>
 上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施の形態における基地局12及びリピーター13などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図29は、一実施の形態に係る基地局12及びリピーター13のハードウェア構成の一例を示す図である。上述の基地局12及びリピーター13は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。基地局12及びリピーター13のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 基地局12及びリピーター13における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述の制御部540などは、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、基地局12及びリピーター13の制御部540は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送信部510及び受信部520などは、通信装置1004によって実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局12及びリピーター13は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
<情報の通知、シグナリング>
 情報の通知は、本開示において説明した実施の形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
<適用システム>
 本開示において説明した実施の形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、FRA(Future Radio Access)、NR(new Radio)、New radio access(NX)、Future generation radio access(FX)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張、修正、作成、規定された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
<処理手順等>
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
<基地局の動作>
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
<入出力の方向>
 情報等(<情報、信号>の項目参照)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
<入出力された情報等の扱い>
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
<判定方法>
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
<態様のバリエーション等>
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
<ソフトウェア>
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
<情報、信号>
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
<システム、ネットワーク>
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
<パラメータ、チャネルの名称>
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
<基地局>
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
<移動局>
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
<基地局/移動局>
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、移動可能な物体をいい、移動速度は任意である。また移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン(登録商標)、マルチコプター、クアッドコプター、気球、およびこれらに搭載される物を含み、またこれらに限らない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
 また、本開示における基地局は、端末で読み替えてもよい。例えば、基地局及び端末間の通信を、複数の端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の実施の形態を適用してもよい。この場合、上述の基地局12が有する機能をリピーター13が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示における端末は、基地局で読み替えてもよい。この場合、上述のリピーター13が有する機能を基地局12が有する構成としてもよい。
 図30に車両2001の構成例を示す。図30に示すように、車両2001は駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010、各種センサ2021~2029、情報サービス部2012と通信モジュール2013を備える。本開示において説明した各態様/実施形態は、車両2001に搭載される通信装置に適用されてもよく、例えば、通信モジュール2013に適用されてもよい。例えば、リピーター13の機能を備えた車両2001は、通信の中継が必要な場所へ移動できるリピーター車両として機能してもよい。
 駆動部2002は例えば、エンジン、モータ、エンジンとモータのハイブリッドで構成される。操舵部2003は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪及び後輪の少なくとも一方を操舵するように構成される。
 電子制御部2010は、マイクロプロセッサ2031、メモリ(ROM、RAM)2032、通信ポート(IOポート)2033で構成される。電子制御部2010には、車両2001に備えられた各種センサ2021~2029からの信号が入力される。電子制御部2010は、ECU(Electronic Control Unit)と呼んでも良い。
 各種センサ2021~2029からの信号としては、モータの電流をセンシングする電流センサ2021からの電流信号、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者等を検出するための検出信号等がある。
 情報サービス部2012は、カーナビゲーションシステム、オーディオシステム、スピーカー、テレビ、ラジオといった、運転情報、交通情報、エンターテイメント情報等の各種情報を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部2012は、外部装置から通信モジュール2013等を介して取得した情報を利用して、車両2001の乗員に各種マルチメディア情報及びマルチメディアサービスを提供する。
 運転支援システム部2030は、ミリ波レーダ、LiDAR(Light Detection and Ranging)、カメラ、測位ロケータ(例えば、GNSS等)、地図情報(例えば、高精細(HD)マップ、自動運転車(AV)マップ等)、ジャイロシステム(例えば、IMU(Inertial Measurement Unit)、INS(Inertial Navigation System)等)、AI(Artificial Intelligence)チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部2030は、通信モジュール2013を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。
 通信モジュール2013は通信ポートを介して、マイクロプロセッサ2031および車両2001の構成要素と通信することができる。例えば、通信モジュール2013は通信ポート2033を介して、車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010内のマイクロプロセッサ2031及びメモリ(ROM、RAM)2032、センサ2021~29との間でデータを送受信する。
 通信モジュール2013は、電子制御部2010のマイクロプロセッサ2031によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール2013は、電子制御部2010の内部と外部のどちらにあってもよい。外部装置は、例えば、基地局、移動局等であってもよい。
 通信モジュール2013は、電子制御部2010に入力された電流センサからの電流信号を、無線通信を介して外部装置へ送信する。また、通信モジュール2013は、電子制御部2010に入力された、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者等を検出するための検出信号等についても無線通信を介して外部装置へ送信する。
 通信モジュール2013は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報等)を受信し、車両2001に備えられた情報サービス部2012へ表示する。また、通信モジュール2013は、外部装置から受信した種々の情報をマイクロプロセッサ2031によって利用可能なメモリ2032へ記憶する。メモリ2032に記憶された情報に基づいて、マイクロプロセッサ2031が車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、センサ2021~2029等の制御を行ってもよい。
<用語の意味、解釈>
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
<参照信号>
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
<「に基づいて」の意味>
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
<「第1の」、「第2の」>
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
<手段>
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
<オープン形式>
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
<TTI等の時間単位、RBなどの周波数単位、無線フレーム構成>
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
<最大送信電力>
 本開示に記載の「最大送信電力」は、送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
<冠詞>
 本開示において、例えば、英語でのa、an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
<「異なる」>
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示の一態様は、無線通信システムに有用である。
 1 無線通信システム
 11 NG-RAN
 12 基地局
 13 リピーター
 14 端末
 510 送信部
 520 受信部
 530 設定部
 540 制御部

Claims (6)

  1.  基地局から複数のビームを受信する受信部と、
     受信したビームのタイムユニット各々に含まれ、前記複数のビーム各々に関連付けられた前記基地局のビーム情報に基づいて、端末向けのビームを決定する制御部と、
     を有するリピーター。
  2.  1つの前記ビーム情報は、複数のタイムユニットにわたり含まれる、
     請求項1に記載のリピーター。
  3.  リピーターの通信方法であって、
     基地局から複数のビームを受信し、
     受信したビームのタイムユニット各々に含まれ、前記複数のビーム各々に関連付けられた前記基地局のビーム情報に基づいて、端末向けのビームを決定する、
     通信方法。
  4.  基地局から複数のビームを受信する受信部と、
     受信したビームに含まれる参照信号用のリソース各々に含まれ、前記複数のビーム各々に関連付けられた前記基地局のビーム情報に基づいて、端末向けのビームを決定する制御部と、
     を有するリピーター。
  5.  前記制御部は、端末向けの参照信号をデコードし、前記基地局のビーム情報を取得する、
     請求項4に記載のリピーター。
  6.  リピーターの通信方法であって、
     基地局から複数のビームを受信し、
     受信したビームに含まれる参照信号用のリソース各々に含まれ、前記複数のビーム各々に関連付けられた前記基地局のビーム情報に基づいて、端末向けのビームを決定する、
     通信方法。
PCT/JP2022/010924 2022-03-11 2022-03-11 リピーター及び通信方法 WO2023170930A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/010924 WO2023170930A1 (ja) 2022-03-11 2022-03-11 リピーター及び通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/010924 WO2023170930A1 (ja) 2022-03-11 2022-03-11 リピーター及び通信方法

Publications (1)

Publication Number Publication Date
WO2023170930A1 true WO2023170930A1 (ja) 2023-09-14

Family

ID=87936438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010924 WO2023170930A1 (ja) 2022-03-11 2022-03-11 リピーター及び通信方法

Country Status (1)

Country Link
WO (1) WO2023170930A1 (ja)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Views on smart repeaters", 3GPP DRAFT; RP-212505, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Electronic Meeting; 20210913 - 20210917, 8 September 2021 (2021-09-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052050748 *
QUALCOMM: "Email discussion summary for [RAN-R18-WS-non-eMBB-Qualcomm]", 3GPP DRAFT; RWS-210590, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Electronic Meeting; 20210628 - 20210702, 25 June 2021 (2021-06-25), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052029052 *
RAN3 CHAIR (ZTE): "Moderator’s summary for discussion [RAN93e-R18Prep-04] Additional topological improvements", 3GPP DRAFT; RP-211654, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. 20210913 - 20210917, 3 September 2021 (2021-09-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052047743 *

Similar Documents

Publication Publication Date Title
WO2023170930A1 (ja) リピーター及び通信方法
WO2023170926A1 (ja) リピーター、基地局、及び通信方法
WO2023170938A1 (ja) リピーター及び通信方法
WO2023170921A1 (ja) リピーター、基地局、及び通信方法
WO2023170916A1 (ja) リピーター及び通信方法
WO2024033989A1 (ja) リピータ、基地局及び通信方法
WO2023203623A1 (ja) 端末、基地局及び通信方法
WO2024023990A1 (ja) 通信装置及び通信方法
WO2024023989A1 (ja) 通信装置及び通信方法
WO2023203735A1 (ja) 端末及び通信方法
WO2023209765A1 (ja) 端末、及び基地局
WO2023090401A1 (ja) 無線通信ノード及び無線通信方法
WO2023203734A1 (ja) 端末及び通信方法
WO2023203703A1 (ja) 端末及び通信方法
WO2023210015A1 (ja) 端末及び通信方法
WO2023199526A1 (ja) 端末、基地局及び通信方法
WO2024034084A1 (ja) 端末、基地局、及び通信方法
WO2024053114A1 (ja) 端末及び通信方法
WO2024034036A1 (ja) 端末及び通信方法
WO2024033991A1 (ja) 通信装置及び通信方法
WO2023210010A1 (ja) 端末及び通信方法
WO2024029079A1 (ja) 通信装置及び通信方法
WO2024013903A1 (ja) 端末、基地局、及び通信方法
WO2024033990A1 (ja) 通信装置及び通信方法
WO2023203704A1 (ja) 端末、基地局、及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930911

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024505813

Country of ref document: JP