WO2023170890A1 - Specifying device, program, learning method, learning device, and trained model - Google Patents

Specifying device, program, learning method, learning device, and trained model Download PDF

Info

Publication number
WO2023170890A1
WO2023170890A1 PCT/JP2022/010713 JP2022010713W WO2023170890A1 WO 2023170890 A1 WO2023170890 A1 WO 2023170890A1 JP 2022010713 W JP2022010713 W JP 2022010713W WO 2023170890 A1 WO2023170890 A1 WO 2023170890A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
drone
performance
data
data regarding
Prior art date
Application number
PCT/JP2022/010713
Other languages
French (fr)
Japanese (ja)
Inventor
誠 野村
Original Assignee
三共木工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三共木工株式会社 filed Critical 三共木工株式会社
Priority to PCT/JP2022/010713 priority Critical patent/WO2023170890A1/en
Publication of WO2023170890A1 publication Critical patent/WO2023170890A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/40Maintaining or repairing aircraft

Definitions

  • the technology of the present disclosure relates to a specific device, a program, a learning method, a learning device, and a model.
  • the fuel cell-equipped drone disclosed in Japanese Patent Application Laid-open No. 2019-145381 is capable of operating each electric motor using the power supplied from the other fuel cells even if the output of one of the first to third fuel cells decreases. By driving the aircraft, it prevents the aircraft from being unable to fly or crashing due to a drop in fuel cell output.
  • the technology of the present disclosure includes a specific device and program that can specify data related to aircraft performance, a learning method that generates a learned model by learning a model that specifies data related to aircraft performance, a learning device, and a program, and a trained model for identifying data regarding aircraft performance.
  • the identification device receives a signal indicating the content of the movement from the instruction device, and identifies data regarding the performance of the moving aircraft according to the received signal.
  • a receiving unit that receives the signal, and identifies data regarding the performance of the aircraft based on an ideal movement state of the aircraft and an actual movement state of the aircraft according to the received signal. and a specific part.
  • the identification device stores a plurality of combinations of an ideal movement state of the aircraft, an actual movement state of the aircraft, and data regarding the performance of the aircraft.
  • the determination unit further includes a storage unit that performs a determination based on the plurality of combinations stored in the storage unit, an ideal movement state of the aircraft according to the received signal, and an actual movement state of the aircraft. and identifying data regarding the performance of the aircraft.
  • the identification device is a teacher that receives an ideal movement state of the aircraft and an actual movement state of the aircraft as input, and outputs data regarding the performance of the aircraft. further comprising a storage unit that stores a trained model trained using the data, The determination unit determines the performance of the aircraft based on the learned model stored in the storage unit, an ideal movement state of the aircraft and an actual movement state of the aircraft according to the received signal. Identify data.
  • the identification device is such that, in any one of the first to third aspects, at least one of the aircraft and the identification device determines the actual movement state of the aircraft.
  • the actual movement state of the aircraft used by the determination unit is the actual movement state detected by the detection unit.
  • the aircraft is held movably in three dimensions by an aircraft holding device. move in a state.
  • the data regarding the performance of the aircraft is designed to have a predetermined response characteristic. data relating to improvements in the aircraft during the current stage of development or failures of the aircraft manufactured according to a completed design with predetermined response characteristics.
  • a program according to a seventh aspect of the technology of the present disclosure is a learned program used for receiving a signal indicating the content of movement from an instruction device and identifying data regarding the performance of a moving aircraft in response to the received signal.
  • a learning method is a learning method that generates a trained model by learning a model that specifies data related to the performance of an aircraft, the learning method specifying data related to the performance of the aircraft. a step of obtaining training data having input information for identifying the performance of the aircraft and outputting data regarding the performance of the aircraft; using the training data, inputting information for specifying data regarding the performance of the aircraft; training a model whose output is data regarding aircraft performance.
  • a learning device is a learning device that generates a learned model by learning a model that specifies data related to the performance of an aircraft, the learning device specifying data related to the performance of the aircraft.
  • an acquisition unit that acquires training data having input information for determining the performance of the aircraft and outputting data regarding the performance of the aircraft, and inputting information for specifying data regarding the performance of the aircraft using the training data; and a learning processing unit that learns a model that outputs data regarding the performance of the aircraft.
  • a program according to a tenth aspect of the technology of the present disclosure is a program that causes a computer to execute a learning process of generating a learned model by learning a model that specifies data related to the performance of an aircraft, the program
  • the process includes a step of obtaining training data having input information for specifying data regarding the performance of the aircraft and outputting data regarding the performance of the aircraft, and using the training data to obtain data regarding the performance of the aircraft.
  • the method includes the step of learning a model that inputs information for specifying the aircraft and outputs data regarding the performance of the aircraft.
  • the learned model according to the eleventh aspect of the technology of the present disclosure is a learned model for specifying data related to the performance of an aircraft, and the learned model includes information for specifying data related to the performance of the aircraft.
  • the trained model receives as input information for specifying data regarding the performance of the aircraft, and receives as input information for specifying data regarding the performance of the aircraft.
  • a computer is caused to execute a process for specifying data related to the performance of the aircraft based on information for specifying data related to the performance of the aircraft.
  • the first aspect of the technology of the present disclosure can identify data regarding aircraft performance.
  • the second aspect can eliminate the need for model learning.
  • the third aspect is that, compared to specifying data regarding aircraft performance using a plurality of combinations stored in the storage unit, data regarding aircraft performance can be specified even for combinations that are not stored. .
  • a fourth aspect may use the actual movement state of the aircraft detected by a detection unit provided in at least one of the aircraft and the specific device.
  • the fifth aspect can prevent the aircraft from crashing.
  • the sixth aspect is data regarding the performance of the aircraft, including data regarding improvements to the aircraft at the stage of designing it to have predetermined response characteristics, or data regarding improvements to the aircraft at the stage of designing the aircraft to have predetermined response characteristics, or data regarding the improvement of the aircraft in accordance with a completed design to have predetermined response characteristics. data relating to failures of the aircraft may be identified.
  • a seventh aspect is that data regarding the performance of the aircraft can be specified.
  • An eighth aspect can provide a learning method that can generate a model for specifying data regarding aircraft performance.
  • a ninth aspect can provide a learning device that can generate a model for specifying data regarding aircraft performance.
  • a tenth aspect can provide a program that can generate a model for specifying data regarding aircraft performance.
  • An eleventh aspect can provide a trained model for identifying data regarding aircraft performance.
  • FIG. 1 is a schematic diagram of an aircraft response characteristic providing system 100 according to an embodiment.
  • 2 is a diagram mainly showing the schematic configurations of a drone 10 and an aircraft holding device 150.
  • FIG. FIG. 3 shows the aircraft holding device 150 with the extendable strut 110 extended.
  • FIG. 7 is a cross-sectional view showing the structure of the upper end portion of the cylindrical body 110N1 and the lower end portion of the cylindrical body 110N2 in a state where the support column 110 is extended.
  • This is a diagram showing how the mounting table 114 is tilted downward on the right side and upward on the left side when viewed from the paper, with the drone 10 placed on the mounting table 114 and the support column 110 extended.
  • 2 is a schematic diagram of an information output device 170.
  • FIG. 1 is a schematic diagram of an information output device 170.
  • FIG. 2 is a functional block diagram of a CPU 212 of the information output device 170.
  • FIG. It is a flowchart of the information output processing program 222P1 executed by the CPU 212 of the information output device 170.
  • It is a flowchart of the learning processing program 222P2 executed by the CPU 212 of the information output device 170.
  • It is a flowchart of the identification program 222P3 of the first process for identifying data related to a failure, which is executed by the CPU 212 of the information output device 170.
  • FIG. 22 is a diagram showing a screen 224S of the display 224 that displays information for specifying data regarding a malfunction of the drone 10.
  • FIG. 10 is a diagram showing a state in which the drone 10 of the second modification example has slightly risen from the state held on the mounting table 114, and the support columns 420N1 to 420N4 have fallen down.
  • FIG. 10 is a diagram showing a state in which the drone 10 of the second modification example has slightly risen from the state held on the mounting table 114, and the support columns 420N1 to 420N4 have fallen down.
  • FIG. 1 shows a schematic diagram of an aircraft response characteristics providing system 100 according to an embodiment.
  • the aircraft response characteristic providing system 100 includes an aircraft holding device 150 (see also FIG. 2) that holds the aircraft 10 mounted thereon, and a response characteristic of the aircraft 10 mounted on the aircraft holding device 150. and an information output device 170 that outputs (for example, displays) information for evaluating.
  • the aircraft response characteristics providing system 100 is placed indoors where there is no possibility of receiving crosswinds or the like. Therefore, the limited flight test described below can be conducted in windless conditions.
  • the aircraft response characteristics providing system 100 is an example of a "specific system" of the technology of the present disclosure.
  • the information output device 170 is an example of a “specific device” and a “learning device” of the technology of the present disclosure.
  • a drone 10 will be described as an example of an aircraft.
  • the operator operates the operating device 50 in order to move the drone 10 in a desired direction (that is, fly).
  • the operating device 50 transmits to the drone 10 an instruction signal indicating the content of movement according to the content of the operation.
  • the drone 10 has a function of moving in accordance with an instruction signal received from the operating device 50 and indicating the content of movement. Drone 10 is manufactured according to a completed design with predetermined response characteristics.
  • the operating device 50 is an example of the "instruction device" of the technology of the present disclosure.
  • FIG. 2 mainly shows the schematic configurations of the drone 10 and the aircraft holding device 150. Since the configuration of the drone 10 is well known, a detailed explanation will be omitted, but as shown in FIG. , a propeller 18 rotated by the motor 16, and four support parts 20 that support the main body 12.
  • the main body 12 includes a communication device and a flight controller (not shown). When the communication device receives an instruction signal indicating the content of the movement from the operating device 50, the flight controller controls each motor 16 so that the drone 10 moves according to the content of the movement indicated by the received instruction signal. .
  • the aircraft holding device 150 includes a mounting table 114, a holding part 116 that holds the drone 10 placed on the mounting table 114, and a column 110 that supports the mounting table 114 at one end (i.e., the upper end) and is expandable and retractable in the vertical direction. , a universal joint 112 that connects one end of the support 110 and the support 114 such that the support 114 is three-dimensionally rotatable with respect to one end of the support 110.
  • the mounting table 114 has a plurality of mesh-like openings formed therein for weight reduction.
  • the holding part 116 for example, a binding band or the like with which the operator ties the supporting part 20 of the drone 10 to the mounting table 114 can be used.
  • the universal joint 112 is an example of a "connection part" of the technology of the present disclosure. Note that a ball joint may be used instead of the universal joint.
  • the aircraft holding device 150 includes a base body 118, a plurality of support columns 120N1 to 120N4 provided on the upper surface of the base body 118, and a plurality of casters (moving members) 122N1 to 122N4 provided on the lower surface of the base body 118.
  • the shape and size of the upper surface of the base 118 are approximately the same as the shape and size of the lower surface of the mounting table 114, and the shape of the upper surface of the base 118 and the shape of the lower surface of the mounting table 114 are, for example, square.
  • the support columns 120N1 to 120N4 are fixed to each corner of the upper surface of the base body 118.
  • the number of support columns 120N1 to 120N4 is four.
  • the support columns 120N1 to 120N4 support the mounting table 114 at one end (that is, the upper end), and have their lower ends fixed to the upper surface of the base 118.
  • the casters 122N1 to 122N4 are examples of "moving members" of the technology of the present disclosure.
  • the aircraft holding device 150 is provided with a plurality of casters 122N1 to 122N4 on the lower surface of the base body 118, it can move along the plane where the aircraft holding device 150 is provided.
  • FIG. 3 shows the expandable support column 110 in an extended state.
  • the support column 110 includes a plurality of (for example, four) cylindrical bodies 110N1 to 110N4, each having the same length in the axial direction and different cross-sectional radii.
  • the plurality of cylindrical bodies 110N1 to 110N4 are arranged concentrically from the outside to the inside in descending order of cross-sectional radius.
  • the three inner cylindrical bodies 110N2 to 110N4 are movable in the vertical direction (that is, the axial direction), but the lower end of the outermost cylindrical body 110N1 is fixed to the base body 118.
  • FIG. 4 shows a cross-sectional view showing the structure of the upper end of the outer cylindrical body 110N1 and the lower end of the inner cylindrical body 110N2 in a state where the support 110 is extended.
  • a groove is formed in the axial direction from the upper end to the lower end on the inner surface of the cylindrical body 110N1.
  • rollers 110N11 are rotatably attached around a shaft 110N12. In this way, the outer cylindrical body 110N1 contacts the inner cylindrical body 110N2 via the plurality of rotatably attached rollers 110N11.
  • the friction coefficient between the cylindrical body 110N1 and the cylindrical body 110N2 when the cylindrical body 110N2 ascends and descends is determined by the friction coefficient between the cylindrical body 110N2 and the outer surface of the cylindrical body 110N1 without providing the roller 110N11. can be made smaller than when they rise and fall in direct contact with each other.
  • At the lower end of the cylindrical body 110N2 in order to prevent the cylindrical body 110N2 from coming off the cylindrical body 110N1 when the cylindrical body 110N2 rises, there is at least one At least one protrusion is provided at a position that contacts the roller 110N11.
  • four protrusions are provided, and each of the four protrusions is arranged at a position corresponding to each of the four rollers 110N11.
  • the rollers 110N11 are provided in the cylindrical bodies 110N2 and 110N3 as well, and the cylindrical bodies 110N3 and 110N4 are provided with protrusions in the same manner, so a description thereof will be omitted.
  • a ball ie, a sphere
  • a sphere may be used instead of the roller.
  • the support column 110 extends. Specifically, as the mounting table 114 rises, the cylindrical body 110N4, which is connected to the mounting table 114 via the universal joint 112, is pulled by the mounting table 114 and rises. As the cylindrical body 110N4 continues to rise, each protrusion of the cylindrical body 110N4 hits the roller 110N11 of the cylindrical body 110N3, and the cylindrical body 110N3 begins to rise. As the cylindrical body 110N3 continues to rise, each protrusion of the cylindrical body 110N3 hits the roller 110N11 of the cylindrical body 110N2, and the cylindrical body 110N2 begins to rise.
  • each protrusion of the cylindrical body 110N2 hits the roller 110N11 of the cylindrical body 110N1.
  • the lower end of the cylindrical body 110N1 is fixed to the base body 118. Therefore, when the cylindrical body 110N2 rises until each protrusion of the cylindrical body 110N2 hits the roller 110N11 of the cylindrical body 110N1, each of the cylindrical bodies 110N4 to 110N2 stops rising.
  • the length of the support column 110 is a predetermined maximum length.
  • the cylindrical bodies 110N4 to 110N2 descend.
  • the lower end of the cylindrical body 110N2 reaches the base 118
  • the descent of the cylindrical body 110N2 is stopped, and the cylindrical bodies 110N4 and 110N3 are lowered.
  • the lower end of the cylindrical body 110N3 reaches the base 118
  • the descent of the cylindrical body 110N3 stops, and the cylindrical body 110N4 descends.
  • the lower end of the cylindrical body 110N4 reaches the base 118, the descent of the cylindrical body 110N4 is stopped.
  • the length of the strut 110 is a predetermined minimum length.
  • the drone 10 is held on the mounting table 114 and the support column 110 is extended, and the mounting table 114 rotates three-dimensionally with respect to one end of the support column 110, specifically, toward the paper surface.
  • the right side is shown tilting downward and the left side tilting upward.
  • one end of the support column 110 and the mounting table 114 are connected by the universal joint 112. Therefore, the mounting table 114 can rotate three-dimensionally based on one end of the support column 110.
  • the aircraft holding device 150 can be moved along the plane where the aircraft holding device 150 is provided by the plurality of casters 122N1 to 122N4.
  • the drone 10 moves in response to an instruction signal indicating the content of movement received from the operating device 50. Specifically, the drone 10 moves in each three-dimensional direction, for example, upward movement, downward movement, horizontal direction, a combination of upward movement and horizontal direction (i.e. diagonally upward direction), and a combination of downward movement and horizontal direction. It has the function of being able to move in the opposite direction (that is, diagonally downward).
  • the drone 10 is held by the holding part 116 on the mounting table 114 which is fixed to the base body 118 and connected to one end of the extensible support column 110.
  • the drone 10 when the drone 10 ascends, it ascends together with the mounting table 114 until the support 110 reaches its maximum length. When the drone 10 descends, the drone 10 descends together with the mounting table 114 until the support 110 reaches its minimum length.
  • the drone 10 when the drone 10 attempts to move horizontally, the drone 10 moves horizontally along with the mounting table 114, the strut 110, and the base 118, that is, the entire aircraft holding device 150 moves horizontally. .
  • the drone 10 when moving in a direction that combines upward and horizontal directions (that is, diagonally upward), the drone 10 ascends while tilting until the support column 110 reaches its maximum length, and the entire aircraft holding device 150 moves horizontally. Note that when moving diagonally upward, the inclination angle of the drone 10 is smaller than when simply moving horizontally, and the amount of movement per unit time that the entire aircraft holding device 150 moves in the horizontal direction is smaller. It's small.
  • the drone 10 descends while tilting until the support column 110 reaches its minimum length, and the entire aircraft holding device 150 moves horizontally. Note that when moving diagonally downward, the inclination angle of the drone 10 is smaller than when simply moving horizontally, and the amount of movement per unit time that the entire aircraft holding device 150 moves in the horizontal direction is smaller. It's small.
  • the drone 10 moves in accordance with the instruction signal indicating the content of movement received from the operating device 50.
  • the response characteristic of the technology of the present disclosure refers to a characteristic indicating how far the drone 10 can move according to the content of movement indicated by the instruction signal from the operating device 50. Therefore, for example, if the drone 10 has a predetermined response characteristic, the drone 10 will rise when instructed to ascend by the operating device 50, descend when instructed to descend, and descend when instructed to move horizontally. If instructed to move diagonally upward or downward, it moves diagonally upward or downward.
  • FIG. 6A shows a schematic block diagram of the information output device 170.
  • the information output device 170 includes a plurality of cameras 202N1 to 202N4 (see also FIG. 1) that detect the movement state of the drone 10 from different directions, and a calculation storage device 200. .
  • the cameras 202N1 to 202N4 have a communication function to communicate images obtained by shooting.
  • the cameras 202N1 to 202N4 are placed on the indoor wall or pillar.
  • Cameras 202N1 to 202N4 are examples of "detection units" of the technology of the present disclosure.
  • the cameras 202N1 to 202N4 are arranged to photograph the moving state of the drone 10 from four different directions. Specifically, the camera 202N1 and the camera 202N3 are arranged to face each other, and the camera 202N2 and the camera 202N4 are arranged to face each other. More specifically, the directions of the central axes of the camera 202N1 and the camera 202N3 for photographing the drone 10 are located on the first plane. The directions of the central axes of the camera 202N2 and the camera 202N4 for photographing the drone 10 are located on the second plane. The first plane and the second plane intersect at right angles.
  • the calculation storage device 200 includes a computer 210, a secondary storage device 222, a communication interface (I/F) 226, an input device 228, and a display 224, each connected to the computer 210.
  • the communication interface (I/F) 226 receives an instruction signal indicating the content of the movement from the operating device 50, and also receives image signals from the plurality of cameras 202N1 to 202N4.
  • the computer 210 includes a CPU (Central Processing Unit) 212, a ROM (Read Only Memory) 214, a RAM (Random Access Memory) 216, and an input/output (I/O) port 218.
  • CPU 212, ROM 214, RAM 216, and I/O port 218 are interconnected via bus 220.
  • a secondary storage device 222, a communication interface (I/F) 226, an input device 228, and a display 224 are connected to the I/O port 218.
  • the computational storage device 200 includes one communication interface (I/F) 226.
  • a plurality of communication interfaces (I/F) 226 may be provided for the operating device 50 and the plurality of cameras 202N1 to 202N4.
  • the input device 228 is, for example, a mouse, a keyboard, or the like.
  • the communication interface (I/F) 226 is an example of a “receiving unit” of the technology of the present disclosure.
  • the secondary storage device 222 includes programs such as an information output processing program 222P1 (see FIG. 7A), a learning processing program 222P2 (see FIG. 7B), and a specific program 222P3 (see FIG. 8 or 12), which will be described later, and a model 222M. is remembered.
  • Each program is read from the ROM 214 (or the secondary storage device 222) to the RAM 214 and executed by the CPU 212 to perform information output processing, learning processing (i.e., machine learning processing), and specific processing, which will be described later.
  • learning processing i.e., machine learning processing
  • specific processing which will be described later.
  • each of the above programs may be stored in the ROM 214.
  • the secondary storage device 222 is a non-transitory tangible computer readable media, such as a hard disk drive (HDD) or solid state drive (SSD).
  • the specific program 222P3 is an example of "a program that causes a computer to execute specific processing" of the technology of the present disclosure.
  • Learning processing program 222P2 is an example of "a program that causes a computer to execute learning processing" of the technology of the present disclosure.
  • the secondary storage device 222 is an example of a “storage unit” and a “recording medium” in the technology of the present disclosure.
  • response characteristics of each of a plurality of types of drones having different response characteristics are stored in correspondence with data indicating the type of drone.
  • the response characteristic of the technology of the present disclosure refers to a characteristic indicating how far the drone can move according to the content of movement indicated by the instruction signal from the operating device. Movement includes the elements of rising, falling, horizontal movement, diagonally upward movement, and diagonally downward movement. Therefore, specifically, in the ROM 214 or the secondary storage device 222, the amount of movement per unit time of ascending or descending, the inclination angle of the drone 10, and the amount of movement per unit time of each type of drone with the mounting table 114 and according to the instruction signal.
  • the amount of movement of the drone 10 in the horizontal direction per unit time is stored.
  • the CPU 212 of the information output device 170 receives the instruction signal using the response characteristics of the type of drone 10. It is possible to estimate the position and attitude of the drone 10 after a predetermined period of time has passed.
  • the model 222M stored in the secondary storage device 222 is a learning model for identifying data related to a failure of the drone 10.
  • the model 222M is, for example, a neural network (NN).
  • the model 222M includes an input layer in which the ideal movement state of the drone 10 and the actual movement state of the drone 10 are input, an output layer in which data regarding the failure of the drone 10 is output, and an ideal movement state of the drone 10. and one intermediate layer in which parameters are learned using a plurality of pieces of teacher data, the input of which is the movement state of the drone 10 and the actual movement state of the drone 10, and the output is data regarding a failure of the drone 10.
  • the model 222M causes the computer 210 to acquire the ideal movement state of the drone 10 and the actual movement state of the drone 10, and input the obtained ideal movement state of the drone 10 and the actual movement state of the drone 10 to the input layer.
  • the intermediate layer performs calculations, and the output layer outputs data related to the failure.
  • the model 222M is an example of a "model" of the technology of the present disclosure.
  • the model 222M may be a deep neural network (DNN).
  • model 222M includes multiple intermediate layers.
  • FIG. 6B shows a functional block diagram of the CPU 212.
  • the functions of the CPU 212 include a learning function, a processing function, an estimation function, an import function, a calculation function, a storage function, a reading function, a display function, and a specific function.
  • the learning function includes an acquisition function and a learning processing function.
  • the CPU 212 by executing any of the programs described above, the CPU 212 includes a learning section 500, a processing section 502, an estimating section 504, an importing section 506, a calculating section 508, a storage section 510, a reading section 512, It functions as a display section 514 and a specifying section 516.
  • the learning section 500 includes a learning processing section 500B.
  • the specifying unit 516 is an example of the “specific unit” of the technology of the present disclosure.
  • the acquisition unit 500A is an example of the “acquisition unit” of the technology of the present disclosure.
  • the learning processing unit 500B is an example of a “learning processing unit” of the technology of the present disclosure.
  • the information output device 170 acquires information for specifying data regarding a failure of the drone 10 by conducting a flight test.
  • Model learning Second, although it will be described in detail later, in this embodiment, the information output device 170 uses information for identifying data related to a failure of the drone 10, which is obtained by performing such a flight test. , model 222M is trained. (Identification of data regarding failure of drone 10) Thirdly, in this embodiment, the information output device 170 uses the trained model 222M to specify data regarding a failure of the drone 10, although this will be described in detail later.
  • the drone 10 moves in accordance with the instruction signal received from the operating device 50 and indicating the content of movement. However, if the assembled drone 10 has some kind of defect and does not have the predetermined response characteristics, the drone 10 will respond to the instruction signal indicating the content of movement received from the operating device 50. Don't move.
  • the drone 10 subjected to the free flight test may crash and be destroyed during movement.
  • a free flight test in which the drone 10 is actually flown freely is not performed, and the operator A limited flight test is performed in which the drone 10 is moved while being held movably in three dimensions by the aircraft holding device 150.
  • the operator first places the drone 10 on the mounting table 114 and causes the tips of the four supporting parts 20 to be held on the mounting table 114 by the holding parts 116.
  • the operator operates the operating device 50 in order to move the drone 10 held on the mounting table 114.
  • the operated operating device 50 transmits an instruction signal indicating the content of the movement so as to move according to the operated content.
  • the instruction signal indicating the content of movement transmitted from the operating device 50 is received by the drone 10, and the drone 10 attempts to move according to the received instruction signal indicating the content of movement. For example, as described above, when the drone 10 attempts to ascend or descend, it attempts to ascend or descend together with the mounting table 114. Furthermore, when the drone 10 attempts to move horizontally, the entire aircraft holding device 150 attempts to move horizontally.
  • the information output device 170 also receives the instruction signal indicating the content of the movement transmitted from the operating device 50 .
  • FIG. 7A shows a flowchart of the information output processing program 222P1 executed by the CPU 212 of the information output device 170.
  • the information output processing program 222P1 shown in FIG. 7A provides information for specifying data regarding a failure of the drone 10 so that it can be later confirmed whether the assembled drone 10 has predetermined response characteristics. is output (ie, stored) to the secondary storage device 222.
  • the information output processing program 222P1 starts when data indicating the type of the drone 10 is input from the input device 228 and a start button (not shown) connected to the computer 210 is turned on. Ends when the stop button is turned on.
  • the communication I/F 226 may start when receiving a start instruction signal from the operating device 50 and end when receiving a stop instruction signal from the operating device 50.
  • step 602 the processing unit 502 determines whether an instruction signal indicating the movement of the drone 10 has been received from the operating device 50 via the communication I/F 226.
  • the operating device 50 operated by the operator transmits an instruction signal indicating the content of the movement so that the operating device 50 moves according to the content of the operation.
  • the instruction signal indicating the content of movement transmitted from the operating device 50 is received by the drone 10 and also by the communication I/F 226.
  • the determination in step 602 becomes affirmative. If the instruction signal indicating the content of the movement is not received by the communication I/F 226, the determination in step 602 becomes a negative determination, and the process in step 602 is repeatedly executed until the determination in step 602 becomes an affirmative determination.
  • step 602 If the determination in step 602 is affirmative, the information output process proceeds to step 604.
  • step 604 the capture unit 506 captures each image signal from each of the cameras 202N1 to 202N4 via the communication I/F 226.
  • step 606 the processing unit 502 determines whether time t has elapsed since each image signal was captured in step 604. If the determination in step 606 is negative, the process in step 606 is repeatedly executed until the determination in step 606 is positive.
  • step 606 the information output process proceeds to step 608.
  • step 608 the capture unit 506 captures each image signal from each of the cameras 202N1 to 202N4 via the communication I/F 226.
  • step 610 the calculation unit 508 calculates the position and orientation of the drone 10 from each image signal captured in step 604, and calculates the position and orientation of the drone 10 from each image signal captured in step 604 and each image signal captured in step 608. From this, the moving direction and moving speed of the drone 10 are calculated.
  • the calculation unit 508 performs image matching or the like on each image signal captured in step 604 and each image signal captured in step 608 to find a predetermined position of the drone 10 in each image (for example, the main body). 12), and from the specified predetermined position, the position of the predetermined position in a three-dimensional space, which will be described later, is calculated using the principle of triangulation.
  • the calculation unit 508 calculates the attitude of the drone 10 based on, for example, the degree of inclination of the main body 12 of the drone 10 photographed in advance by each of the cameras 202N1 to 202N4.
  • the calculation unit 508 calculates the moving direction and movement of the drone 10 from the position of the main body 12 in the image of each image signal captured in step 604 and the position of the main body 12 in the image of each image signal captured in step 608. Calculate speed. Note that time t is used when calculating the moving speed.
  • the estimation unit 504 calculates the response characteristics stored in the ROM 214 or the secondary storage device 222 in correspondence with the data indicating the type of the drone 10, the contents of the instruction signal, the position, attitude, and movement of the drone 10. From the direction and movement speed, the position and attitude of the drone 10 after a predetermined period of time from the time when the determination in step 602 is affirmative is estimated. Note that the predetermined time is a predetermined time longer than the time t.
  • step 614 the processing unit 502 determines whether a predetermined time has elapsed since the determination in step 602 was affirmative. If the determination at step 614 is negative, the process at step 614 is repeatedly executed until the determination at step 614 is affirmative.
  • step 614 If the determination in step 614 is affirmative, the information output process proceeds to step 616.
  • step 616 the capture unit 506 captures the actual movement of the drone 10, for example, each image from each of the cameras 202N1 to 202N4, via the communication I/F 226.
  • step 618 the calculation unit 508 calculates the position and attitude of the drone 10 from each captured image.
  • the storage unit 510 stores the position and orientation of the drone 10 estimated in step 612 (that is, the ideal position and orientation (also referred to as ideal movement state)) and the position and orientation of the drone 10 calculated in step 618.
  • the posture that is, the actual position and posture (also referred to as the actual movement state)) is stored in the secondary storage device 222 along with each image captured in step 616 and the elapsed time since the information output processing program 222P was started. ,Output.
  • step 622 the processing unit 502 determines whether to end the information output processing program 222P by determining whether a stop button (not shown) has been turned on. If the stop button is not turned on, a negative determination is made in step 622, and the information output process returns to step 602 to execute the above processes (ie, steps 602 to 622). When the stop button is turned on, an affirmative determination is made in step 622, and the information output processing program 222P ends.
  • the ideal position and attitude of the drone 10 and the actual The position and orientation are stored in the secondary storage device 222 in correspondence with each image captured in step 616 and the elapsed time since the information output processing program 222P1 was started. If the instruction signal is transmitted from the operating device 50 multiple times, for example, N times, between when the start button is turned on and when the stop button is turned on, the ideal position and attitude of the drone 10 and the actual position are transmitted. N combinations of the image and posture are stored in the secondary storage device 222 along with each image captured in step 616 and the elapsed time since the information output processing program 222P1 was started.
  • FIG. 7B shows a flowchart of the learning process program 222P2 of the learning process in which the learning unit 500 in the CPU 212 of the information output device 170 learns the model 222M using teacher data.
  • the learning unit 500 in the CPU 212 of the information output device 170 executes the learning processing program 222P2
  • the learning method is executed and the learned model 222M is generated.
  • the learning processing program 222P2 starts when a learning instruction button (not shown) is turned on.
  • the acquisition unit 500A in the learning unit 500 acquires teacher data.
  • the display unit 514 controls the display 224 so that the ideal position and attitude of the drone 10 and the actual position and attitude of the drone 10 are displayed (FIGS. 8 to 11).
  • the operator can adjust the predetermined position and attitude to the drone 10. It can be determined whether or not the device has a response characteristic.
  • the operator determines that the drone 10 has a predetermined response characteristic, the operator determines that the drone 10 is not malfunctioning, and inputs data indicating that the drone 10 is not malfunctioning via the input device 228. input into computer 210;
  • the computer 210 corresponds data indicating that the drone 10 is not malfunctioning and a plurality of combinations (for example, the above N combinations) of the ideal position and attitude of the drone 10 and the actual position and attitude of the drone 10.
  • the data is then stored in the secondary storage device 222 as teacher data. In this case, N pieces of teacher data are stored in the secondary storage device 222.
  • the ideal position and attitude of the drone 10 and the actual position and attitude of the drone 10 are input data of teacher data, and are an example of information for specifying data related to a failure.
  • the data indicating that the drone 10 is not malfunctioning is output data of the teacher data, and is an example of data regarding the malfunction.
  • the operator determines that the drone 10 does not have the predetermined response characteristics, the operator determines that the drone 10 is malfunctioning, inspects the drone 10, and discovers the malfunction location. Then, the operator inputs data indicating that the drone 10 is malfunctioning, data indicating the location of the malfunction, and data indicating measures to be taken against the malfunction into the computer 210 via the input device 228.
  • the computer 210 stores data indicating that the drone 10 is malfunctioning, data indicating the location of the malfunction, data indicating countermeasures against the malfunction, an ideal position and attitude of the drone 10, and an actual position and attitude of the drone 10.
  • a plurality of combinations are stored in the secondary storage device 222 as teacher data.
  • N pieces of teacher data are stored in the secondary storage device 222.
  • the ideal position and attitude of the drone 10 and the actual position and attitude of the drone 10 are input data of teacher data, and are an example of information for specifying data related to a failure.
  • the data indicating that the drone 10 is malfunctioning, the data indicating the location of the malfunction, and the data indicating countermeasures against the malfunction are output data of the teacher data and are examples of data regarding the malfunction.
  • the teacher data includes input data and output data, as described above.
  • the input data of the teacher data includes an ideal movement state of the drone 10 and an actual movement state of the drone 10 according to a signal indicating the content of movement from the operating device 500.
  • the movement state is the position and attitude of the drone 10, and the attitude is represented by the yaw angle, pitch angle, and roll angle of the drone 10. Therefore, the input data of the teaching data includes data on the ideal and actual position of the drone 10, yaw angle, pitch angle, and roll angle of the drone 10.
  • the input data includes, for example, the ideal three-dimensional space position (X0, Y0, Z0) of the center of the main body 12 of the drone 10 and the actual position of the drone 10, respectively.
  • the input includes the position (Xa, Ya, Za) in the three-dimensional space.
  • the input data includes yaw angles (YAW0, YAWa), which are rotation angles around each axis, in three-dimensional coordinates based on the center of the main body 12 of the drone 10, and pitch angles ( P0, Pa) and roll angle (R0, Ra).
  • the yaw angle is, for example, an angle in which clockwise rotation is positive based on the traveling direction of the drone 10 when the drone 10 is viewed from above.
  • the pitch angle is, for example, an angle in which the counterclockwise rotation is positive with respect to the horizontal when the drone 10 is viewed from the left side.
  • the roll angle is, for example, an angle in which the counterclockwise rotation is positive with respect to the horizontal when the drone 10 is viewed from the direction of travel.
  • the output data of the teacher data includes data regarding the failure of the drone 10.
  • the data regarding the malfunction of the drone 10 includes data indicating whether or not the drone 10 is malfunctioning. Furthermore, if the drone 10 is out of order, the data regarding the failure includes data on the location of the failure and data indicating countermeasures against the failure.
  • the output data of the first teacher data is as follows. That is, the output data includes data indicating that the drone 10 is malfunctioning, data indicating the "flight controller” as data on the location of the malfunction, and data indicating “adjusting the calculation formula of the flight controller” as data indicating the countermeasure. It is data.
  • the output data of the second teacher data is as follows. That is, the output data includes data indicating that the drone 10 is malfunctioning, data indicating the "sensor that detects the tilt angle" as data on the malfunction location, and data indicating the "sensor that detects the tilt angle” as data indicating the countermeasure. This data shows that the system is being reworked.
  • the output data of the third teacher data is as follows. That is, the output data includes data indicating that the drone 10 is out of order, data indicating "power source” as data on the location of the failure, and data indicating "replacement of power source” as data indicating countermeasures.
  • the output data of the fourth teacher data is as follows. That is, data indicating that the drone 10 is out of order, data indicating "power supply” as data on the location of the failure, and data indicating "replacement of power supply” as data indicating countermeasures.
  • the output data of the fifth teacher data is as follows. In other words, data indicating that the drone 10 is malfunctioning, data indicating the failure location as "the right front propeller motor and right rear propeller motor”, and data indicating the countermeasure as "the right front propeller motor”. This data shows the replacement of the motor and the right rear propeller motor.
  • the output data of the sixth teacher data is as follows. In other words, data indicating that the drone 10 is malfunctioning, data indicating "the right front propeller motor and left front propeller motor” as data on the malfunction location, and data indicating "the right front propeller motor” as data indicating the countermeasure. This data indicates "replacement of the motor and front left propeller motor.”
  • the seventh training data will be explained.
  • the drone 10 of this embodiment when the drone 10 flies in the right direction, the rotation speed of the right rear propeller and the rotation speed of the left front propeller are changed to the rotation speed of the right front propeller and the left propeller. This is done by increasing the rotational speed of the rear propeller.
  • the reason for this flight was that the height was insufficient h0 and the rightward angle of the drone 10 was insufficient y angle, because the rotation speed of the right rear propeller was insufficient and the rotation speed of the left front propeller was insufficient. This is because the speed was insufficient.
  • the reason why the rotation speed of the right rear propeller was insufficient and the rotation speed of the left front propeller was insufficient was that a failure occurred in the right rear propeller motor and the left front propeller motor that caused the rotation speed to be insufficient. It is.
  • the output data of the seventh teacher data is as follows. In other words, data indicating that the drone 10 is malfunctioning, data indicating the failure location as "right rear propeller motor and left front propeller motor", and data indicating countermeasures as "right rear propeller motor”. This data indicates the replacement of the propeller motor and the front left propeller motor.
  • the first teacher data to the seventh teacher data are examples, and the teacher data is not limited to the first teacher data to the seventh teacher data. Get data.
  • step 500SA the acquisition unit 500A in the learning unit 500 specifically inputs the information for specifying the data related to the failure stored in the secondary storage device 222 as described above, and Obtain multiple pieces of training data whose output data is data related to .
  • the information for specifying the data regarding the failure includes the ideal movement state (position and attitude) of the drone 10 according to the signal indicating the movement details from the operating device 500 and the actual movement state of the drone 10. This is data indicating the movement state (position and orientation).
  • step 500SB the learning processing unit 500B of the learning unit 500 uses the teacher data to learn a model 222M that inputs information for specifying data regarding the failure of the drone 10 and outputs data regarding the failure of the drone 10. do.
  • the learning processing unit 500B inputs information for specifying data regarding the failure of the drone 10 in the teaching data to the input layer, and inputs information to the intermediate layer so that the data regarding the failure in the drone 10 in the teaching data is output from the output layer. learn the parameters of
  • the learning unit 500 generates the learned model 222M by learning the model 222M using the teacher data.
  • the models 222M that the learning unit 500 learns include, firstly, a model that has not been trained at all, and secondly, a trained model 222M. Therefore, by learning a model that has not been trained at all by the learning unit 500, a trained model 222M that has been trained for the first time is generated. Furthermore, by the learning unit 500 learning the learned model 222M, a further learned model 222M is generated.
  • the ideal movement state (position and attitude) of the drone 10 and the actual movement state (position and attitude) of the drone 10 are used as information for identifying data related to a failure.
  • the technology is not limited to this.
  • a value indicating the degree of coincidence between the ideal movement state of the drone 10 and the actual movement state of the drone 10 may be used instead of the ideal movement state of the drone 10 and the actual movement state of the drone 10.
  • Values indicating the degree of coincidence include first to fifth values.
  • the first to fifth values indicating the degree of coincidence are an example of "information for specifying data related to a failure" of the technology of the present disclosure.
  • the first value indicating the degree of coincidence is a value indicating the degree of coincidence between the ideal three-dimensional space position of the drone 10 and the actual three-dimensional space position after a predetermined period of time has passed since receiving the instruction signal. It is.
  • the center of the mounting table 114 of the original aircraft holding device 150 when the support column 110 is not extended is the origin of the three-dimensional space, specifically, the center of the three directions (X direction, Y direction, and Z direction) in the three-dimensional space. (i.e., the origin).
  • a predetermined direction passing through the center of the platform 114 of the aircraft holding device 150 is defined as the X direction
  • a direction perpendicular to the X direction is defined as the Y direction.
  • the Z direction is defined as a direction (vertical direction, that is, height direction) perpendicular to each of the X direction and the Y direction.
  • the first value indicating the degree of coincidence is the difference between the ideal three-dimensional space position (X0, Y0, Z0) of the center of the main body 12 of the drone 10 when a predetermined period of time has passed since receiving the instruction signal and the actual three-dimensional position (X0, Y0, Z0). This is the degree of coincidence with the position (Xa, Ya, Za) in the dimensional space.
  • the first value is Xa/X0, Ya/Y0, Za/Z0, and their average value when a predetermined time has elapsed since receiving the instruction signal.
  • the second to fourth values indicating the degree of coincidence are values indicating the degree of coincidence between the ideal posture and the actual posture of the drone 10 when a predetermined period of time has passed since the instruction signal was received.
  • the attitude is represented by a yaw angle, a pitch angle, and a roll angle, which are rotation angles around each axis, in three-dimensional coordinates based on the center of the main body 12 of the drone 10. If the ideal yaw angle of the drone 10 when a predetermined time has elapsed after receiving the instruction signal is Y0, and the actual yaw angle is Ya, then the second value is Ya/Y0.
  • the third value is Pa/P0.
  • the fourth value is Ra/R0.
  • the fifth value indicating the degree of coincidence is a value indicating the degree of coincidence between the image of the actual state of the drone 10 shown in the area 224S2 and the image of the ideal state of the drone 10 shown in the area 224S1.
  • a plurality of corresponding points of the drone 10 are extracted from each of the image of the actual state of the drone 10 and the image of the ideal state of the drone 10.
  • Examples of the plurality of corresponding points on the drone 10 include the center point of each propeller and the center point of the main body.
  • a plurality of points extracted from the image of the drone 10 in its actual state are superimposed on the image of the drone 10 in its ideal state.
  • the statistical value between the plurality of points extracted from the image of the actual state of the drone 10 and superimposed on the image of the ideal state and the plurality of points extracted from the image of the ideal state is determined by a fifth index indicating the degree of coincidence. Calculate as the value of .
  • the centers of the first to fourth propellers extracted from the image of the actual state of the drone 10 are superimposed on the image of the ideal state of the drone 10, and the centers of the superimposed first to fourth propellers are Statistical values are calculated between the points and the center points of the first to fourth propellers extracted from the image of the ideal state of the drone 10.
  • the statistical value is the distance between each of the center points of the superimposed first to fourth propellers and each of the center points of the first to fourth propellers extracted from the ideal state image. These include the total, the maximum value of the distance, and the value obtained by subtracting the minimum value from the maximum value of the distance.
  • the fifth value may be calculated by superimposing a plurality of points extracted from the image of the ideal state of the drone 10 on the image of the actual state of the drone 10.
  • the process of identifying the data regarding the failure of the drone 10 includes, firstly, a first process of identifying the data regarding the failure of the drone 10 when instructed by the operator who has viewed the information for identifying the data regarding the failure. (See FIG. 8), and secondly, a second process (see FIG. 12) that automatically identifies data related to a failure of the drone 10.
  • the operator can determine whether the drone 10 has a predetermined response characteristic. If the operator determines that the drone 10 does not have a predetermined response characteristic, the operator may determine that the drone 10 is malfunctioning, and may inspect the drone 10 to discover the malfunction location.
  • the information output device 170 executes a program for processing to specify data related to a failure of the drone 10.
  • FIG. 8 shows a flowchart of the identification program 222P3 of the first process for identifying data related to a failure, which is executed by the CPU 212 of the information output device 170.
  • the identification program 222P3 of the first process for identifying data related to a failure shown in FIG. 8 starts when an execution instruction button (not shown) is turned on.
  • step 111 the reading unit 512 reads information for specifying the data regarding the failure of the drone 10 from the secondary storage device 222, and the display unit 514 displays the read information for specifying the data regarding the failure of the drone 10. is displayed on the display 224 as shown in FIGS. 9 to 11.
  • FIG. 9 shows a screen 224S of the display 224 that displays information for specifying data regarding a malfunction of the drone 10. As shown in FIG. 9, the screen 224 has three areas 224S1, 224S2, and 224S3.
  • the processing unit 502 converts each image of the drone 10 taken in advance by each of the cameras 202N1 to 202N4 into correspondence with the ideal movement state (position and attitude) of the drone 10 when a predetermined period of time has elapsed since receiving the instruction signal. Transform as you do.
  • the processing unit 502 switches each of the cameras 202N1 to 202N4 to the area 224S1 and displays the transformed image (that is, the image of the ideal movement state (that is, the position and attitude) of the drone 10) after receiving the instruction signal. The corresponding display is displayed when a predetermined period of time has elapsed since then.
  • the processing unit 502 sends images of the actual movement state (i.e., position and orientation) of the drone 10 obtained by the cameras 202N1 to 202N4 after a predetermined period of time has passed since receiving the instruction signal to the area 224S2. - Switch and display every 202N4.
  • the processing unit 502 switches between the area 224S1 and the area 224S2 for each of the cameras 202N1 to 202N4 to display the transformed image and the actual image of the drone 10, but the technology of the present disclosure is not limited to this.
  • each region of area 224S1 and area 224S2 is divided by the number of cameras so as to correspond to cameras 202N1 to 202N4, and each of the transformed images and each actual image of drone 10 are displayed in each region. It's okay.
  • the image of the actual state of the drone 10 shown in the area 224S2 and the image of the ideal state of the drone 10 shown in the area 224S1 are examples of "information for identifying data related to failure" of the technology of the present disclosure.
  • the area 224S3 is an area that displays a value indicating the degree of agreement between the ideal position and attitude of the drone 10 and the actual position and attitude when a predetermined time has elapsed since receiving the instruction signal.
  • the area 224S3 may display the first to fifth values indicating the degree of matching, as well as an explanation of the values.
  • the first value is described as "a value indicating the degree of agreement between the ideal three-dimensional space position of the drone 10 and the actual three-dimensional space position.”
  • the explanation of the second value to the fifth value is also the definition of each value, similar to the explanation of the first value.
  • FIG. 10 shows the height of the drone 10 relative to the elapsed time from when the start button is turned on to when the stop button is turned on since the information output processing program 222P1 is started, which is displayed on the display 224.
  • a graph of changes in is shown.
  • a time change in the ideal height of the drone 10 is shown by a solid line
  • a time change in the actual height of the drone 10 is shown by a dotted line. It is understood that the more the time change of the actual height of the drone 10 shown by the dotted line differs from the time change of the ideal height of the drone 10 shown by the solid line, the worse the response characteristics of the drone 10 are. .
  • FIG. 10 shows the height of the drone 10 relative to the elapsed time from when the start button is turned on to when the stop button is turned on since the information output processing program 222P1 is started, which is displayed on the display 224.
  • a graph of changes in is shown.
  • a time change in the ideal height of the drone 10 is shown by a solid line
  • the content of the movement indicated by the instruction signal transmitted from the operating device 50 is to gradually raise the support 110 from the initial time when it is not extended, as shown by the solid line.
  • the device flies in a stopped position (that is, hovers) at a predetermined height.
  • the drone 10 gradually rises and flies to a halt in the air, but the rising speed and the height at which it flies to a halt in the air are fixed at a predetermined level. It was lower than the height. Therefore, it is understood that the actual response characteristic of the climbing speed of the drone 10 is worse than the response characteristic of the above-mentioned stored climbing speed of the type of drone 10.
  • FIG. 11 shows the pitch angle of the drone 10 relative to the elapsed time from when the start button is turned on to when the stop button is turned on since the information output processing program 222P1 is started, which is displayed on the display 224.
  • a graph of changes in is shown.
  • a time change in the ideal pitch angle of the drone 10 is shown by a solid line
  • a time change in the actual pitch angle of the drone 10 is shown by a dotted line. It is understood that the more the time change of the actual pitch angle of the drone 10 shown by the dotted line differs from the time change of the ideal pitch angle of the drone 10 shown by the solid line, the worse the response characteristics of the drone 10 are. .
  • FIG. 11 shows the pitch angle of the drone 10 relative to the elapsed time from when the start button is turned on to when the stop button is turned on since the information output processing program 222P1 is started, which is displayed on the display 224.
  • a graph of changes in is shown.
  • a time change in the ideal pitch angle of the drone 10 is
  • the content of the movement indicated by the instruction signal transmitted from the operating device 50 is such that the pitch angle gradually changes from when the start button is turned on, as shown by the solid line. It becomes large and remains almost unchanged at a given angle.
  • the pitch angle gradually increases from when the start button is turned on, but the increasing speed is the content of the movement indicated by the instruction signal.
  • the timing at which the angle becomes smaller and becomes almost unchanged at a predetermined angle is delayed from the content of the movement indicated by the instruction signal. Therefore, it is understood that the actual response characteristic of the pitch angle of the drone 10 is worse than the response characteristic of the above-mentioned stored climbing speed of the type of the drone 10.
  • other roll angles and yaw angles may also be displayed in the same manner as the pitch angle.
  • step 115 the processing unit 502 determines whether or not it has been instructed to identify the cause.
  • the operator selects images of the ideal and actual movement states of the drone, values indicating the degree of agreement between the ideal position and attitude of the drone 10 and the actual position and attitude (see FIG. 9), and the drone.
  • the operator evaluates the actual response characteristics of the drone 10 and evaluates that the actual response characteristics of the drone 10 are worse than the response characteristics of the above-mentioned stored climbing speed of the type of the drone 10, the operator determines the cause of the bad response. Decide whether to identify. If it is determined to identify the cause of poor actual response characteristics of the drone 10, a specific execution button (not shown) is turned on.
  • step 115 determines whether the specific execution button is turned on in this manner. If the specific execution button is turned on in this manner, the determination in step 115 is affirmative, and the first process proceeds to step 117. If the specific execution button is not turned on, a negative determination is made in step 115, and the first process ends.
  • the identifying unit 516 identifies the cause of the failure and a countermeasure using the learned model 222M. That is, the specifying unit 516 specifies data related to the failure of the drone 10 based on the ideal moving state of the drone 10 and the actual moving state of the drone 10 according to the signal, and the learned model 222M. More specifically, the specifying unit 516 inputs the ideal movement state of the drone 10 and the actual movement state of the drone 10 according to the above-mentioned signals to the input layer of the model 222M, and inputs the ideal movement state of the drone 10 and the actual movement state of the drone 10 from the output layer of the model 222M. Output data related to failures.
  • the ideal movement state of the drone 10 and the actual movement state of the drone 10 according to the above signals input to the input layer of the model 222M are N combinations of the ideal position and attitude and the actual position and attitude of the drone 10. It is one of the The N combinations are the N combinations that were most recently stored in the secondary storage device 222 by executing the information processing program 222P1 in FIG. 7A before the specific program 222P3 was executed this time.
  • the display unit 514 displays the cause of the failure and countermeasures on the display 224.
  • FIG. 12 shows a flowchart of a second processing identification program that is executed by the CPU 212 of the information output device 170 to automatically identify data related to a failure of the drone 10.
  • step 121 the reading unit 512 reads, from the secondary storage device 222, a value indicating the degree of matching among the information for specifying the data related to the failure of the drone 10, and in step 123, the processing unit 502, It is determined whether the read value indicating the degree of matching is outside a predetermined allowable range.
  • step 123 If the value indicating the degree of coincidence is outside the predetermined allowable range, the determination in step 123 is affirmative, and the second process proceeds to step 117. On the other hand, if the value indicating the degree of coincidence is within a predetermined allowable range, the determination in step 123 is negative, and the second process ends.
  • step 117 and step 119 The processing in step 117 and step 119 is the same as step 117 and step 119 in the first processing, so the explanation thereof will be omitted.
  • data regarding the failure of the drone 10 is specified using a plurality of combinations of information for identifying data regarding the failure of the drone 10 stored in the secondary storage device 22 and data regarding the failure of the drone 10. Compared to this, it is possible to identify data related to aircraft failures even in patterns that do not exist in combinations.
  • a model for specifying data regarding a failure of the drone 10 can be provided.
  • the aircraft response characteristic providing system of the present embodiment is capable of controlling the flight of the drone 10 when the operator operates the operating device 50 to fly the drone 10 while holding it on the mounting base 114.
  • the position and attitude of the drone 10 can be stored as the movement state, and furthermore, the yaw angle, pitch angle, and roll angle of the drone 10 can be stored as the attitude.
  • the present embodiment can provide an aircraft holding device used in the aircraft response characteristics providing system and an information output device used in the aircraft response characteristics providing system.
  • the aircraft holding device 150 of the present embodiment can hold the drone 10 on the mounting table 114 so as to be rotatable three-dimensionally. Therefore, information for identifying data related to flight failures of the drone 10 can be stored without actually performing a test flight. Therefore, even if the assembled drone 10 does not have response characteristics appropriate for the type of drone 10, it may crash and be destroyed during a movement test (i.e., flight test). This can be prevented.
  • the support of the aircraft holding device 150 is expandable and retractable, so the drone 10 can move in the vertical direction.
  • one end of the support column 110 and the mounting table 114 are connected by a universal joint, so that they can be rotated three-dimensionally. Therefore, the present embodiment can provide information for specifying data regarding failures in vertical movement and three-dimensional rotation of the drone 10.
  • the lower surface of the base 118 of the aircraft holding device 150 is provided with a plurality of casters 122N1 to 122N4, so that the aircraft holding device 150 can move as the drone 10 moves horizontally or diagonally upward or downward. , along the plane where the aircraft holding device 150 is provided. Therefore, the present embodiment can provide information for specifying data regarding a failure in horizontal movement or diagonally upward or downward movement of the drone 10.
  • a learned model is used to identify the cause of a failure and a countermeasure, but the technology of the present disclosure is not limited to this.
  • a plurality of combinations of an ideal moving state of the drone 10, an actual moving state of the drone 10, causes of failure of the drone 10, and countermeasures are stored in the secondary storage device 222.
  • the identification unit 516 determines whether the drone 10 is malfunctioning based on the plurality of combinations stored in the secondary storage device 222 and the ideal movement state of the drone 10 and the actual movement state of the drone 10 according to the above-mentioned signals. Identify the cause and countermeasures.
  • the specifying unit 516 selects a combination that corresponds to the ideal movement state of the drone 10 and the actual movement state of the drone 10 according to the signal from among the plurality of combinations stored in the secondary storage device 222. Identify the cause of the failure of the drone 10 and a countermeasure plan.
  • the display unit 514 displays the identified cause of the failure of the drone 10 and countermeasures on the display 224. In this way, data regarding the failure of the drone 10 can be specified. In particular, in this example, model learning can be made unnecessary.
  • the storage unit 510 stores the ideal position and orientation of the drone 10 and the actual position and orientation of the drone 10 in the secondary storage device 222 together with each image. By outputting it, it is stored in the secondary storage device 222.
  • the technology of the present disclosure is not limited to this.
  • the display unit 514 instead of outputting the ideal position and attitude of the drone 10 and the actual position and attitude of the drone 10 to the secondary storage device 222 together with each image, or 222 , the display unit 514 may also output to the display 224 . Thereby, the ideal position and attitude of the drone 10 and the actual position and attitude of the drone 10 can be displayed in real time on the display 224 in correspondence with each other.
  • the technology of the present disclosure stores the ideal position and attitude of the drone 10 and the actual position and attitude of the drone 10 in correspondence with each other in the secondary storage device 222 or displays them on the display 224. In other words, it is possible to provide information for identifying data related to flight failures of the drone 10.
  • the secondary storage device 222 and the display 224 are examples of the "output unit" of the technology of the present disclosure.
  • the calculation unit 508 calculates the position and orientation of the drone 10 from each image captured from each of the cameras 202N1 to 202N4 of the information output device 170.
  • the technology of the present disclosure is not limited to this.
  • the actual position of the drone 10 may be detected using GPS (Global Positioning System), or the angles may be detected using various sensors that detect the yaw angle, pitch angle, and roll angle. You can also
  • the cameras 202N1 to 202N4 when detecting the actual position of the drone 10 using GPS or detecting these angles using various sensors that detect the yaw angle, pitch angle, and roll angle, the cameras 202N1 to 202N4 Also, the processes of steps 604 to 608 and 616 may be omitted. However, without omitting the cameras 202N1 to 202N4, the position and attitude of the drone 10 are calculated from each image captured from each of the cameras 202N1 to 202N4, and the position and orientation of the drone 10 is calculated using the above-mentioned GPS and various sensors. and posture, and calculate the average value of each, and use the average value.
  • the actual movement state of the aircraft detected by the detection unit (cameras 202N1 to 202N4, various sensors) provided in at least one of the drone 10 and the information output device 170 can be used. .
  • the actual direction is an example of the "ideal movement state of the aircraft in response to the instruction signal" of the technology of the present disclosure
  • the ideal direction is an example of the "actual movement state of the aircraft” of the technology of the present disclosure.
  • the drone 10 of the first embodiment is manufactured according to a completed design so as to have predetermined response characteristics.
  • the drone of the second embodiment is a drone that is currently being designed to have predetermined response characteristics.
  • the model 222M stored in the secondary storage device 222 of the first embodiment is a model for specifying data regarding a failure of the drone 10.
  • the model 222M stored in the secondary storage device 222 of the second embodiment is a model for specifying data related to improvement of the drone at the stage of designing it to have predetermined response characteristics. It's a model. Data regarding failures and data regarding improvements to the drone are examples of "data regarding performance" in this embodiment.
  • the information output device 170 is designed to have a predetermined response characteristic by conducting a limited flight test on a drone that is currently being designed to have a predetermined response characteristic. Obtain information to identify data on drone improvements in stages. Therefore, the information output processing of the information output processing program 222P1 shown in FIG. 7A is performed on the drone that is currently being designed to have predetermined response characteristics. Note that the information output processing of the information output processing program 222P1 shown in FIG. 7A of the second embodiment is the same as that of the first embodiment described above, so a description thereof will be omitted.
  • the information output device 170 learns the model using information for specifying data related to improvement of the drone 10, which is obtained by performing such a limited flight test. Therefore, the learning processing program 222P2 shown in FIG. 7B was obtained by conducting a limited flight test conducted on a drone at the stage of designing the learning processing program 222P2 to have predetermined response characteristics. Train a model using data. Note that the learning process of the learning process program 222P2 shown in FIG. 7B of the second embodiment is the same as that of the first embodiment described above, so a description thereof will be omitted.
  • the information output device 170 uses the learned model to identify data regarding improvements to the drone at the stage of designing it to have predetermined response characteristics. Therefore, by executing the specific program for the first process shown in FIG. 8 or the specific program for the second process shown in FIG. Identify data.
  • the specifying process of the specifying program (FIG. 8 or 12) in the second embodiment is the same as that in the first embodiment described above, so a description thereof will be omitted.
  • the identification process of the second embodiment is executed using the "failure-related data" of the identification program (FIG. 8 or 12) of the first embodiment as "improvement-related data.”
  • the model learning in the second embodiment is performed at the stage where the structure of the drone is designed to have predetermined response characteristics.
  • the predetermined response characteristic is, for example, that the time TR until the rightward roll angle reaches r1 is Tr100 (seconds).
  • Tr100 seconds
  • the slope of the relational expression of the rotational speed of the motor shaft with respect to the supplied current is determined so that the response characteristics are as described above.
  • the slope A A2.
  • the output data of the teacher data A is "no improvement required".
  • the predetermined response characteristic is the same as the predetermined response characteristic in the teaching data A described above.
  • the slope of the relational expression of the rotational speed of the motor shaft with respect to the supplied current is determined so that the response characteristics are as described above.
  • the slope A A2.
  • the output data of teacher data B are "Improvement required” and "Replace motor 2 with motor 3.”
  • the predetermined response characteristic is the same as the predetermined response characteristic in the teaching data A described above.
  • the slope of the relational expression of the rotational speed of the motor shaft with respect to the supplied current is determined so that the response characteristics are as described above.
  • the slope A A1.
  • the output data of the teacher data C are "Improvement required” and "Replace motor 1 with motor 3.”
  • the predetermined response characteristic is the same as the predetermined response characteristic in the teaching data A described above.
  • the rotational speed of the motor shaft with respect to the supplied current is adjusted so that the response characteristics are as described above.
  • the slope A A3.
  • the output data of the teacher data D is "no improvement required".
  • the predetermined response characteristic is the same as the predetermined response characteristic in the teaching data A described above.
  • the rotational speed of the motor shaft with respect to the supplied current is adjusted so that the response characteristics are as described above.
  • the time TR until the rightward roll angle reached r1 was Tr95 ( ⁇ Tr100).
  • the slope A A2.
  • the output data of the teacher data E is "no improvement required".
  • the predetermined response characteristic is the same as the predetermined response characteristic in the teaching data A described above.
  • the rotational speed of the motor shaft with respect to the supplied current is adjusted so that the response characteristics are as described above.
  • the slope A A1.
  • the output data of the teacher data F are "Improvement required” and "Replace motor 1 with motor 3.”
  • the predetermined response characteristic is the same as the predetermined response characteristic in the teaching data A described above.
  • the rotational speed of the motor shaft with respect to the supplied current is adjusted so that the response characteristics are as described above.
  • the propeller was too long.
  • the data regarding improvements are "improvement required" and "propeller changed to a propeller with length LL1".
  • the slope A A3.
  • the output data of the teacher data G are "Improvement required” and "Propeller changed to a propeller with length LL1".
  • the predetermined response characteristic is the same as the predetermined response characteristic in the teaching data A described above.
  • the rotational speed of the motor shaft with respect to the supplied current is adjusted so that the response characteristics are as described above.
  • the distance LCx between the center of rotation of the propeller and the center of gravity of the main body was too short.
  • the slope A A3.
  • the output data of the teacher data H are "Improvement required” and “Change the propeller to a position where the distance LCx from the center of gravity of the main body is LC1 (>LC2)".
  • the teacher data A to H are examples, and the teacher data is not limited to the teacher data A to H, and a large number of teacher data are obtained by conducting various other limited flight tests.
  • the response characteristics are also not limited to the time TR required for the rightward roll angle to reach r1 to be Tr100 (seconds), and training data are obtained with various other response characteristics.
  • this embodiment has the same effects as the first embodiment.
  • the learned model is used to identify data related to improvement of the drone, but the technology of the present disclosure is not limited to this.
  • a plurality of combinations of the ideal moving state of the drone 10, the actual moving state of the drone 10, and data regarding improvement of the drone are stored in the secondary storage device 222.
  • the specifying unit 516 generates data regarding improvement of the drone based on the plurality of combinations stored in the secondary storage device 222 and the ideal movement state of the drone 10 and the actual movement state of the drone 10 according to the signal. Identify. More specifically, the specifying unit 516 selects a combination that corresponds to the ideal movement state of the drone 10 and the actual movement state of the drone 10 according to the signal from among the plurality of combinations stored in the secondary storage device 222. Drones Identify data for drone improvements.
  • the display unit 514 displays data regarding improvements to the identified drone on the display 224. In this way, data regarding improvements to the drone can be identified. In particular, in this example, model learning can be made unnecessary.
  • FIG. 13 shows a schematic configuration of an aircraft holding device 150C1 of a first modification.
  • FIG. 14 shows the drone 10 of the first modification example rising while being held on the mounting table 114.
  • the base body 118, support columns 120N1 to 120N4, and casters 122N1 to 122N4 (see also FIG. 2) of the aircraft holding device 150 of the embodiment described above are omitted.
  • the aircraft holding device 150C1 includes a support table 324 that supports the mounting table 114 and has substantially the same shape and size as the mounting table 114, and supports each corner of the support table 324 at one end and supports the aircraft holding device 150C1 at the other end. It includes four support columns 320N1 to 320N4 that are in contact with the installation location, and a column 330 that supports the mounting table 114.
  • the pillar 330 includes an outer cylinder 330N1 that supports the support stand 324, and an inner pillar 330N2.
  • a first disc 330N23 (see FIG. 14) is provided at the lower end of the internal column 330N2.
  • a second disc 330N22 is provided on the internal column 330N2 at a predetermined distance above the first disc 330N23.
  • the first disc 330N23 and the second disc 330N22 are discs with a first radius. Note that the radius of the internal cross section of the outer cylindrical body 330N1 is slightly longer (that is, a predetermined length) than the first radius. Therefore, the internal column 330N2 can move up and down inside the outer cylindrical body 330N1.
  • An opening 326 with a second radius smaller than the first radius is formed in the support base 324 so that the internal column 330N2 can rise and fall.
  • One end of the internal column 330N2 of the column 330 and the mounting table 114 are connected by a universal joint 112 so that the platform 114 can rotate three-dimensionally based on one end (i.e., the upper end) of the internal column 330N2 of the column 330. has been done.
  • a ball joint may be used instead of the universal joint.
  • each of the drone 10 and the information output device 170 are also the same as in the embodiment described above, so a description thereof will be omitted.
  • the internal column 330N2 of the support 330 connected to the mounting base 114 by the universal joint 112 opens the opening 326 of the support base 324. rise through.
  • the first radius of the second disk 330N22 provided on the lower end side of the internal column 330N2 is larger than the second radius of the opening 326 of the support base 324. Therefore, when the internal column 330N2 rises, the second disk 330N22 hits the periphery of the opening 326 of the support base 324, and the internal column 330N2 cannot rise thereafter. Therefore, the second disk 330N22 has the role of a stopper for the rise of the internal column 330N2.
  • first disk 330N23 and a second disk 330N22 each having a first radius are provided on the lower end side of the internal column 330N2, the internal column 330N2 moves up inside the outer cylinder 330N1. And when descending, the internal column 330N2 can be prevented from inclining.
  • FIG. 15 shows a schematic configuration of an aircraft holding device 150C2 of a second modification.
  • FIG. 16 shows how the drone 10 rises slightly (ie, by a predetermined length) from the state where it is held on the mounting table 114, and the support columns 420N1 to 420N4 fall down.
  • the aircraft holding device 150C2 includes a non-extendable support column 440 instead of the extensible support column 110 of the embodiment described above.
  • the aircraft holding device 150C2 includes four support columns 420N1 to 420N4 connected to the base body 118 via universal joints 420J1 to 420J4, instead of the support columns 120N1 to 120N4 fixed to the base body 118 of the embodiment described above.
  • Each corner of the mounting table 114 is supported at the upper end of the support columns 420N1 to 420N4.
  • the casters 122N1 to 122N4 (see also FIG. 2) of the embodiment described above are omitted. Note that casters 122N1 to 122N4 may be provided.
  • One end (i.e., the upper end) of the support column 440 and the mounting table 114 are connected by the universal joint 112 so that the mounting table 114 can rotate three-dimensionally based on one end (i.e., the upper end) of the support column 440. There is.
  • the lower end of the support column 440 is fixed to the base body 118.
  • the drone 10 can rotate three-dimensionally while being held on the mounting table 114. cannot rise.
  • the operator holds the drone 10 on the mounting table 114 and supports the mounting table 114 by the support columns 420N1 to 420N4.
  • the operator operates the operating device 50 to raise the drone 10.
  • One end of the support column 440 and the mounting table 114 are connected by the universal joint 112, but due to the structure of the universal joint 112, the drone 10 rises slightly (that is, by a predetermined length).
  • the support columns 420N1 to 420N4 fall down, as shown in FIG. 16. Therefore, the drone 10 does not rise while being held on the mounting table 114, but can rotate three-dimensionally.
  • the configuration of the information output device 170 is the same as that of the embodiment described above, so a description thereof will be omitted.
  • the operation of the information output device 170 is the same as that of the embodiment described above, except that the position of the drone 10 is not calculated or detected, so a description thereof will be omitted.
  • the response characteristics of each of a plurality of types of drones having different response characteristics are stored in the ROM 214 or the secondary storage device 222 as data indicating the type of drone.
  • the ideal position and attitude of the drone 10 are stored and estimated, and the actual position and attitude of the drone 10 are calculated, but the present embodiment is not limited thereto.
  • the direction of movement of the drone (ideal direction) is specified from the instruction signal from the operating device 50
  • the direction of movement of the drone is calculated from the image obtained by the camera
  • the ideal direction is determined.
  • the actual direction may be stored or displayed as information for specifying data related to a flight failure of the drone 10.
  • a value indicating the degree of coincidence between the ideal direction and the actual direction may be calculated, and the value indicating the degree of coincidence between the ideal direction and the actual direction may be stored or displayed. Therefore, even if the ROM 214 or the secondary storage device 222 does not store the response characteristics of each of a plurality of types of drones having different response characteristics, it is possible to provide information for identifying data related to flight failures of the drone 10. Can be done.
  • a cable tie with which the operator ties the support part 20 of the drone 10 to the mounting table 114 is used as the holding part 116.
  • the technology of the present disclosure is not limited to this, and the support part 116 of the drone 10 is 20 and the mounting table 114 may be connected and disconnected automatically.
  • through holes are formed at the tips of the four supporting parts 20.
  • a rod for example, a pinion
  • the moving mechanism may include a rod that is biased toward the connection side or the detachment side, and an eccentric cam that moves the rod between the detachment side and the detachment side. .
  • the operator views at least one of the screen 224S of the display 224 (see FIG. 8) and the graphs (FIGS. 9 and 10) that display information for evaluating the response characteristics of the drone 10.
  • the actual response characteristics of the drone 10 can be confirmed. If the operator determines that the actual response characteristics of the drone 10 are not worse than the response characteristics of the above-mentioned stored climbing speed of the type of the drone 10 and that it will not fall even if a free flight test is performed, the operator determines that the support part of the drone 10 20 and the mounting table 114 is instructed to the computer 210 (see FIG. 6A) of the calculation storage device 200 of the information output device 170 via the input device 228. Thereby, the connection between the support part 20 and the mounting table 114 of the drone 10 is released, and a free flight test can be performed on the drone 10.
  • a restricted flight test is performed in order to obtain teacher data, but a free flight test may also be performed.
  • the technology of the present disclosure is not limited thereto.
  • a drone other unmanned aircraft, such as a radio-controlled airplane and a radio-controlled unmanned helicopter, or even a manned aircraft, such as a radio-controlled helicopter that can carry a person, may be used. good.
  • each component may exist as long as there is no contradiction.
  • the information output processing is realized by a software configuration using a computer, but the technology of the present disclosure is not limited to this.
  • information output processing may be performed only by a hardware configuration such as an FPGA (Field-Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit). .
  • Part of the information output processing may be executed by a software configuration, and the remaining processes may be executed by a hardware configuration.
  • Non-transitory computer-readable media includes various types of tangible storage media.
  • Examples of non-transitory computer-readable media include magnetic recording media (e.g., flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (e.g., magneto-optical disks), CD-ROMs (Read Only Memory), CD-Rs, and CDs. - R/W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory)).
  • the program may also be provided to the computer on various types of temporary computer-readable media. Examples of transitory computer-readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can provide the program to the computer via wired communication channels, such as electrical wires and fiber optics, or wireless communication channels.
  • an aircraft holding device that holds the mounted aircraft; a specific device that specifies data related to the performance of an aircraft held movably in three dimensions in the aircraft holding device;
  • a specific system comprising: The aircraft holding device includes: A mounting table and a holding part that holds the aircraft placed on the mounting stand; A pillar that supports the aforementioned mounting stand; a connecting portion that connects one end of the pillar and the mounting base so that the mounting base is three-dimensionally movable with respect to the one end of the pillar; Equipped with The aircraft receives a signal indicating the content of movement from an instruction device instructing movement, and moves in accordance with the received signal indicating the content of movement,
  • the specific device is a receiving unit that receives the signal; regarding the performance of the aircraft based on the ideal movement state of the aircraft according to the received signal and the actual movement state of the aircraft moved while being held movably in three dimensions by the aircraft holding device.
  • a specific part that specifies data Equ
  • the aircraft holding device further includes a base body having a plurality of moving members on a lower surface, the other end of the support is attached to the top surface of the base; Specific system in Appendix 1.
  • a recording medium that records a program that causes a computer to execute a process, The performance state determination process includes: obtaining an ideal movement state of the aircraft and an actual movement state of the aircraft in response to the signal; identifying data regarding the performance of the aircraft based on the trained model, the obtained ideal movement state of the aircraft, and the actual movement state of the aircraft; recording media, including
  • a recording medium that stores a program that causes a computer to execute a learning process that generates a learned model by learning a model that specifies data related to aircraft performance,
  • the learning process is obtaining training data having input information for specifying data regarding the performance of the aircraft and outputting data regarding the performance of the aircraft; using the training data to learn a model whose input is information for specifying data related to the performance of the aircraft and whose output is data related to the performance of the aircraft;
  • a recording medium that records a trained model for identifying data regarding aircraft performance,
  • the trained model is trained using training data that inputs information for specifying data regarding the performance of the aircraft and outputs data regarding the performance of the aircraft,
  • the learned model receives as input information for identifying data regarding the performance of the aircraft, and identifies data regarding the performance of the aircraft based on the received information for identifying data regarding the performance of the aircraft. have a computer perform a process, recoding media.

Abstract

According to the present invention, an aircraft response characteristic providing system comprises: an aircraft holding device that holds a mounted drone; and an information output device that displays information for specifying data related to a failure of the drone mounted on the aircraft holding device. The drone, while held by the aircraft holding device, receives an instruction signal indicating the content of movement from the operating device and moves in response to the received instruction signal. The information output device specifies data regarding the failure of the drone, on the basis of an ideal movement state of the drone and an actual movement state of the drone in response to the instruction signal, and a trained model.

Description

特定装置、プログラム、学習方法、学習装置、及び学習済みモデルSpecific equipment, program, learning method, learning device, and trained model
 本開示の技術は、特定装置、プログラム、学習方法、学習装置、及びモデルに関する。 The technology of the present disclosure relates to a specific device, a program, a learning method, a learning device, and a model.
 特開2019-145381号公報に開示されている燃料電池搭載ドローンは、第1燃料電池~第3燃料電池の1つの出力が低下したとしても、他の燃料電池から給電される電力によって各電動機を駆動させることにより、燃料電池の出力低下による飛行不能や墜落を防いでいる。 The fuel cell-equipped drone disclosed in Japanese Patent Application Laid-open No. 2019-145381 is capable of operating each electric motor using the power supplied from the other fuel cells even if the output of one of the first to third fuel cells decreases. By driving the aircraft, it prevents the aircraft from being unable to fly or crashing due to a drop in fuel cell output.
 しかし、第1燃料電池~第3燃料電池の1つの出力が低下した原因を特定していない。 However, the cause of the decrease in the output of one of the first to third fuel cells has not been identified.
 本開示の技術は航空機の性能に関するデータを特定することができる特定装置及びプログラムと、航空機の性能に関するデータを特定するモデルを学習することにより、学習済みのモデルを生成する学習方法、学習装置、及びプログラムと、航空機の性能に関するデータを特定するための学習済みモデルとを提供することを目的とする。 The technology of the present disclosure includes a specific device and program that can specify data related to aircraft performance, a learning method that generates a learned model by learning a model that specifies data related to aircraft performance, a learning device, and a program, and a trained model for identifying data regarding aircraft performance.
 上記目的を達成するため本開示の技術の第1の態様の特定装置は、指示装置からの移動の内容を示す信号を受信し且つ前記受信した信号に応じて移動する航空機の性能に関するデータを特定する特定装置であって、前記信号を受信する受信部と、前記受信した信号に応じた前記航空機の理想の移動状態及び前記航空機の現実の移動状態に基づいて、前記航空機の性能に関するデータを特定する特定部と、を備える。 In order to achieve the above object, the identification device according to the first aspect of the technology of the present disclosure receives a signal indicating the content of the movement from the instruction device, and identifies data regarding the performance of the moving aircraft according to the received signal. a receiving unit that receives the signal, and identifies data regarding the performance of the aircraft based on an ideal movement state of the aircraft and an actual movement state of the aircraft according to the received signal. and a specific part.
 本開示の技術の第2の態様の特定装置は、第1の態様において、前記航空機の理想の移動状態及び前記航空機の現実の移動状態と、前記航空機の性能に関するデータとの複数の組み合わせを記憶する記憶部を更に備え、前記判定部は、前記記憶部に記憶された前記複数の組み合わせと、前記受信した信号に応じた前記航空機の理想の移動状態及び前記航空機の現実の移動状態とに基づいて、前記航空機の性能に関するデータを特定する。 In the first aspect, the identification device according to a second aspect of the technology of the present disclosure stores a plurality of combinations of an ideal movement state of the aircraft, an actual movement state of the aircraft, and data regarding the performance of the aircraft. The determination unit further includes a storage unit that performs a determination based on the plurality of combinations stored in the storage unit, an ideal movement state of the aircraft according to the received signal, and an actual movement state of the aircraft. and identifying data regarding the performance of the aircraft.
 本開示の技術の第3の態様の特定装置は、第1の態様において、前記航空機の理想の移動状態及び前記航空機の現実の移動状態を入力とし、前記航空機の性能に関するデータを出力とする教師データを用いて学習された学習済みモデルを記憶する記憶部を更に備え、
 前記判定部は、前記記憶部に記憶された前記学習済みモデルと、前記受信した信号に応じた前記航空機の理想の移動状態及び前記航空機の現実の移動状態とに基づいて、前記航空機の性能に関するデータを特定する。
In the first aspect, the identification device according to a third aspect of the technology of the present disclosure is a teacher that receives an ideal movement state of the aircraft and an actual movement state of the aircraft as input, and outputs data regarding the performance of the aircraft. further comprising a storage unit that stores a trained model trained using the data,
The determination unit determines the performance of the aircraft based on the learned model stored in the storage unit, an ideal movement state of the aircraft and an actual movement state of the aircraft according to the received signal. Identify data.
 本開示の技術の第4の態様の特定装置は、第1の態様~第3の態様の何れか1つの態様において、前記航空機及び前記特定装置の少なくとも一方は、前記航空機の現実の移動状態を検出する検出部を備え、前記判定部が用いる前記航空機の現実の移動状態は、前記検出部により検出された現実の移動状態である。 The identification device according to a fourth aspect of the technology of the present disclosure is such that, in any one of the first to third aspects, at least one of the aircraft and the identification device determines the actual movement state of the aircraft. The actual movement state of the aircraft used by the determination unit is the actual movement state detected by the detection unit.
 本開示の技術の第5の態様の特定装置は、第1の態様~第4の態様の何れか1つの態様において、前記航空機は、航空機保持装置に、3次元的に移動可能に保持された状態で移動する。 In the identification device according to a fifth aspect of the technology of the present disclosure, in any one of the first to fourth aspects, the aircraft is held movably in three dimensions by an aircraft holding device. move in a state.
 本開示の技術の第6の態様の特定装置は、第1の態様~第5の態様の何れか1つの態様において、前記航空機の性能に関するデータは、予め定めた応答特性となるように設計している段階における前記航空機の改善に関するデータ又は予め定めた応答特性となるように完成した設計に従って製造された前記航空機の故障に関するデータである。 In the identification device according to a sixth aspect of the technology of the present disclosure, in any one of the first to fifth aspects, the data regarding the performance of the aircraft is designed to have a predetermined response characteristic. data relating to improvements in the aircraft during the current stage of development or failures of the aircraft manufactured according to a completed design with predetermined response characteristics.
 本開示の技術の第7の態様のプログラムは、指示装置からの移動の内容を示す信号を受信し且つ前記受信した信号に応じて移動する航空機の性能に関するデータを特定するために用いられる学習済みモデルを用いて航空機の性能に関するデータを特定する特定処理を、コンピュータに実行させるプログラムであって、前記特定処理は、前記信号に応じた前記航空機の理想の移動状態及び前記航空機の現実の移動状態を取得するステップと、前記学習済みモデルと、前記取得した前記航空機の理想の移動状態及び前記航空機の現実の移動状態とに基づいて、前記航空機の性能に関するデータを特定するステップと、を含む。 A program according to a seventh aspect of the technology of the present disclosure is a learned program used for receiving a signal indicating the content of movement from an instruction device and identifying data regarding the performance of a moving aircraft in response to the received signal. A program that causes a computer to execute a specific process that uses a model to specify data regarding the performance of an aircraft, the specific process including an ideal movement state of the aircraft in response to the signal and an actual movement state of the aircraft. and identifying data regarding the performance of the aircraft based on the trained model, the acquired ideal movement state of the aircraft, and the actual movement state of the aircraft.
 本開示の技術の第8の態様の学習方法は、航空機の性能に関するデータを特定するモデルを学習することにより、学習済みのモデルを生成する学習方法であって、前記航空機の性能に関するデータを特定するための情報を入力とし、前記航空機の性能に関するデータを出力とする教師データを取得するステップと、前記教師データを用いて、前記航空機の性能に関するデータを特定するための情報を入力とし、前記航空機の性能に関するデータを出力とするモデルを学習するステップと、を含む。 A learning method according to an eighth aspect of the technology of the present disclosure is a learning method that generates a trained model by learning a model that specifies data related to the performance of an aircraft, the learning method specifying data related to the performance of the aircraft. a step of obtaining training data having input information for identifying the performance of the aircraft and outputting data regarding the performance of the aircraft; using the training data, inputting information for specifying data regarding the performance of the aircraft; training a model whose output is data regarding aircraft performance.
 本開示の技術の第9の態様の学習装置は、航空機の性能に関するデータを特定するモデルを学習することにより、学習済みのモデルを生成する学習装置であって、前記航空機の性能に関するデータを特定するための情報を入力とし、前記航空機の性能に関するデータを出力とする教師データを取得する取得部と、前記教師データを用いて、前記航空機の性能に関するデータを特定するための情報を入力とし、前記航空機の性能に関するデータを出力とするモデルを学習する学習処理部と、を含む。 A learning device according to a ninth aspect of the technology of the present disclosure is a learning device that generates a learned model by learning a model that specifies data related to the performance of an aircraft, the learning device specifying data related to the performance of the aircraft. an acquisition unit that acquires training data having input information for determining the performance of the aircraft and outputting data regarding the performance of the aircraft, and inputting information for specifying data regarding the performance of the aircraft using the training data; and a learning processing unit that learns a model that outputs data regarding the performance of the aircraft.
 本開示の技術の第10の態様のプログラムは、航空機の性能に関するデータを特定するモデルを学習することにより、学習済みのモデルを生成する学習処理を、コンピュータに実行させるプログラムであって、前記学習処理は、前記航空機の性能に関するデータを特定するための情報を入力とし、前記航空機の性能に関するデータを出力とする教師データを取得するステップと、前記教師データを用いて、前記航空機の性能に関するデータを特定するための情報を入力とし、前記航空機の性能に関するデータを出力とするモデルを学習するステップと、を含む。 A program according to a tenth aspect of the technology of the present disclosure is a program that causes a computer to execute a learning process of generating a learned model by learning a model that specifies data related to the performance of an aircraft, the program The process includes a step of obtaining training data having input information for specifying data regarding the performance of the aircraft and outputting data regarding the performance of the aircraft, and using the training data to obtain data regarding the performance of the aircraft. The method includes the step of learning a model that inputs information for specifying the aircraft and outputs data regarding the performance of the aircraft.
 本開示の技術の第11の態様の学習済みモデルは、航空機の性能に関するデータを特定するための学習済みモデルであって、前記学習済みモデルは、前記航空機の性能に関するデータを特定するための情報を入力とし、前記航空機の性能に関するデータを出力とする教師データを用いて、学習されており、前記学習済みモデルは、前記航空機の性能に関するデータを特定するための情報を入力として受け付け、受け付けた前記航空機の性能に関するデータを特定するための情報に基づいて、前記航空機の性能に関するデータを特定する処理をコンピュータに実行させる。 The learned model according to the eleventh aspect of the technology of the present disclosure is a learned model for specifying data related to the performance of an aircraft, and the learned model includes information for specifying data related to the performance of the aircraft. The trained model receives as input information for specifying data regarding the performance of the aircraft, and receives as input information for specifying data regarding the performance of the aircraft. A computer is caused to execute a process for specifying data related to the performance of the aircraft based on information for specifying data related to the performance of the aircraft.
 本開示の技術の第1の態様は、航空機の性能に関するデータを特定することができる。 The first aspect of the technology of the present disclosure can identify data regarding aircraft performance.
 第2の態様は、モデルの学習を不要とすることができる。 The second aspect can eliminate the need for model learning.
 第3の態様は、記憶部に記憶された複数の組み合わせを用いて航空機の性能に関するデータを特定する場合に比較すると、記憶されていない組み合わせにおいても、航空機の性能に関するデータを特定することができる。 The third aspect is that, compared to specifying data regarding aircraft performance using a plurality of combinations stored in the storage unit, data regarding aircraft performance can be specified even for combinations that are not stored. .
 第4の態様は、前記航空機及び前記特定装置の少なくとも一方に備えた検出部により検出された航空機の現実の移動状態を用いていることができる。 A fourth aspect may use the actual movement state of the aircraft detected by a detection unit provided in at least one of the aircraft and the specific device.
 第5の態様は、航空機が墜落することを防止することができる。 The fifth aspect can prevent the aircraft from crashing.
 第6の態様は、航空機の性能に関するデータとして、予め定めた応答特性となるように設計している段階における前記航空機の改善に関するデータ又は予め定めた応答特性となるように完成した設計に従って製造された前記航空機の故障に関するデータを特定することができる。 The sixth aspect is data regarding the performance of the aircraft, including data regarding improvements to the aircraft at the stage of designing it to have predetermined response characteristics, or data regarding improvements to the aircraft at the stage of designing the aircraft to have predetermined response characteristics, or data regarding the improvement of the aircraft in accordance with a completed design to have predetermined response characteristics. data relating to failures of the aircraft may be identified.
 第7の態様は、航空機の性能に関するデータを特定することができる。 A seventh aspect is that data regarding the performance of the aircraft can be specified.
 第8の態様は、航空機の性能に関するデータを特定するためのモデルを生成することができる学習方法を提供することができる。 An eighth aspect can provide a learning method that can generate a model for specifying data regarding aircraft performance.
 第9の態様は、航空機の性能に関するデータを特定するためのモデルを生成することができる学習装置を提供することができる。 A ninth aspect can provide a learning device that can generate a model for specifying data regarding aircraft performance.
 第10の態様は、航空機の性能に関するデータを特定するためのモデルを生成することができるプログラムを提供することができる。 A tenth aspect can provide a program that can generate a model for specifying data regarding aircraft performance.
 第11の態様は、航空機の性能に関するデータを特定するための学習済みモデルを提供することができる。 An eleventh aspect can provide a trained model for identifying data regarding aircraft performance.
実施の形態の航空機応答特性提供システム100の概略図である。1 is a schematic diagram of an aircraft response characteristic providing system 100 according to an embodiment. 主としてドローン10及び航空機保持装置150の各々の概略構成を示す図である。2 is a diagram mainly showing the schematic configurations of a drone 10 and an aircraft holding device 150. FIG. 伸縮可能な支柱110が伸びた状態の航空機保持装置150を示す図である。FIG. 3 shows the aircraft holding device 150 with the extendable strut 110 extended. 支柱110が伸びた状態での、円筒体110N1の上端部と、円筒体110N2の下端部との構造を示す断面図である。FIG. 7 is a cross-sectional view showing the structure of the upper end portion of the cylindrical body 110N1 and the lower end portion of the cylindrical body 110N2 in a state where the support column 110 is extended. 載置台114にドローン10が載置され且つ支柱110が伸びた状態で、載置台114が支柱110の一端を基準に、紙面に向かって右側が下方に左側が上方に傾斜した様子を示す図である。This is a diagram showing how the mounting table 114 is tilted downward on the right side and upward on the left side when viewed from the paper, with the drone 10 placed on the mounting table 114 and the support column 110 extended. be. 情報出力装置170の概略図である。2 is a schematic diagram of an information output device 170. FIG. 情報出力装置170のCPU212の機能ブロック図である。2 is a functional block diagram of a CPU 212 of the information output device 170. FIG. 情報出力装置170のCPU212が実行する情報出力処理プログラム222P1のフローチャートである。It is a flowchart of the information output processing program 222P1 executed by the CPU 212 of the information output device 170. 情報出力装置170のCPU212が実行する学習処理プログラム222P2のフローチャートである。It is a flowchart of the learning processing program 222P2 executed by the CPU 212 of the information output device 170. 情報出力装置170のCPU212が実行する故障に関するデータを特定する第1の処理の特定プログラム222P3のフローチャートである。It is a flowchart of the identification program 222P3 of the first process for identifying data related to a failure, which is executed by the CPU 212 of the information output device 170. ドローン10の故障に関するデータを特定するための情報を表示するディスプレイ224のスクリーン224Sを示す図である。FIG. 22 is a diagram showing a screen 224S of the display 224 that displays information for specifying data regarding a malfunction of the drone 10. FIG. ディスプレイ224に表示される、スタートボダンがオンされたときから、ストップボタンがオンされるまでの間のドローン10の高さの時間変化のグラフである。It is a graph of the change in height of the drone 10 over time, displayed on the display 224, from when the start button is turned on until when the stop button is turned on. ディスプレイ224に表示される、スタートボダンがオンされたときから、ストップボタンがオンされるまでの間のドローン10のピッチ角の時間変化のグラフである。It is a graph of the change in pitch angle of the drone 10 over time from when the start button is turned on until the stop button is turned on, displayed on the display 224. 情報出力装置170のCPU212が実行するドローン10の故障に関するデータを自動的に特定する第2の処理の特定プログラムのフローチャートである。It is a flowchart of the identification program of the 2nd process which automatically identifies the data regarding the failure of the drone 10, which is executed by the CPU 212 of the information output device 170. 第1の変形例の航空機保持装置150C1の概略構成を示す図である。It is a figure showing the schematic structure of aircraft holding device 150C1 of the 1st modification. 第1の変形例のドローン10が、載置台114に保持された状態で、上昇する様子を示す図である。7 is a diagram illustrating how the drone 10 of the first modification example rises while being held on the mounting table 114. FIG. 第2の変形例の航空機保持装置150C2の概略構成を示す図である。It is a figure showing the schematic structure of aircraft holding device 150C2 of the 2nd modification. 第2の変形例のドローン10ドローン10が、載置台114に保持された状態から若干上昇し、支持柱420N1~420N4が倒れた様子を示す図である。10 is a diagram showing a state in which the drone 10 of the second modification example has slightly risen from the state held on the mounting table 114, and the support columns 420N1 to 420N4 have fallen down. FIG.
 以下、図面を参照して、本開示の技術の実施の形態を説明する。 Hereinafter, embodiments of the technology of the present disclosure will be described with reference to the drawings.
 (第1の実施の形態)
 図1には、実施の形態の航空機応答特性提供システム100の概略図が示されている。図1に示すように、航空機応答特性提供システム100は、載置された航空機10を保持する航空機保持装置150(図2も参照)と、航空機保持装置150に載置された航空機10の応答特性を評価するための情報を出力(例えば、表示)する情報出力装置170と、を備える。航空機応答特性提供システム100は、横風等を受ける可能性がない屋内に配置されている。よって、後述する制限飛行試験を、無風状態で行うことができる。
 航空機応答特性提供システム100は、本開示の技術の「特定システム」の一例である。情報出力装置170は、本開示の技術の「特定装置」及び「学習装置」の一例である。
(First embodiment)
FIG. 1 shows a schematic diagram of an aircraft response characteristics providing system 100 according to an embodiment. As shown in FIG. 1, the aircraft response characteristic providing system 100 includes an aircraft holding device 150 (see also FIG. 2) that holds the aircraft 10 mounted thereon, and a response characteristic of the aircraft 10 mounted on the aircraft holding device 150. and an information output device 170 that outputs (for example, displays) information for evaluating. The aircraft response characteristics providing system 100 is placed indoors where there is no possibility of receiving crosswinds or the like. Therefore, the limited flight test described below can be conducted in windless conditions.
The aircraft response characteristics providing system 100 is an example of a "specific system" of the technology of the present disclosure. The information output device 170 is an example of a “specific device” and a “learning device” of the technology of the present disclosure.
 本実施の形態では、航空機として、ドローン10を例にとり説明する。 In this embodiment, a drone 10 will be described as an example of an aircraft.
 オペレータは、ドローン10を所望の方向に移動(即ち、飛行)させるため、操作装置50を操作する。操作装置50は、操作された内容に従った移動の内容を示す指示信号をドローン10に送信する。ドローン10は、操作装置50から受信した、移動の内容を示す指示信号に応じて移動する機能を有する。ドローン10は、予め定めた応答特性となるように完成した設計に従って製造されている。 The operator operates the operating device 50 in order to move the drone 10 in a desired direction (that is, fly). The operating device 50 transmits to the drone 10 an instruction signal indicating the content of movement according to the content of the operation. The drone 10 has a function of moving in accordance with an instruction signal received from the operating device 50 and indicating the content of movement. Drone 10 is manufactured according to a completed design with predetermined response characteristics.
 操作装置50は、本開示の技術の「指示装置」の一例である。 The operating device 50 is an example of the "instruction device" of the technology of the present disclosure.
 図2には、主としてドローン10及び航空機保持装置150の各々の概略構成を示す図が示されている。ドローン10の構成は周知であるので、詳細な説明は省略するが、図2に示すように、ドローン10は、本体12と、本体12から伸びる複数(例えば、4本)のアーム14と、複数のアーム14の各々の先端に設けられたモータ16と、モータ16により回転するプロペラ18と、本体12を支持する4本の支持部20と、を備えている。本体12には、図示しない通信装置及びフライトコントローラを備えている。通信装置が、操作装置50から、移動の内容を示す指示信号を受信すると、フライトコントローラは、受信した指示信号により示される移動の内容に従って、ドローン10が移動するように、各モータ16を制御する。 FIG. 2 mainly shows the schematic configurations of the drone 10 and the aircraft holding device 150. Since the configuration of the drone 10 is well known, a detailed explanation will be omitted, but as shown in FIG. , a propeller 18 rotated by the motor 16, and four support parts 20 that support the main body 12. The main body 12 includes a communication device and a flight controller (not shown). When the communication device receives an instruction signal indicating the content of the movement from the operating device 50, the flight controller controls each motor 16 so that the drone 10 moves according to the content of the movement indicated by the received instruction signal. .
 航空機保持装置150は、載置台114と、載置台114に載置されるドローン10を保持する保持部116と、載置台114を一端(即ち、上端)で支える上下方向に伸縮可能な支柱110と、支柱110の一端を基準に載置台114が3次元的に回動可能に、支柱110の一端と載置台114とを連結するユニバーサルジョイント(universal joint、即ち、自在継手)112と、を備える。載置台114には、図1に示すように、軽量化のため、網目状に複数の開口が形成されている。保持部116としては、例えば、オペレータがドローン10の支持部20を載置台114に結束させる結束バンド等を用いることができる。 The aircraft holding device 150 includes a mounting table 114, a holding part 116 that holds the drone 10 placed on the mounting table 114, and a column 110 that supports the mounting table 114 at one end (i.e., the upper end) and is expandable and retractable in the vertical direction. , a universal joint 112 that connects one end of the support 110 and the support 114 such that the support 114 is three-dimensionally rotatable with respect to one end of the support 110. As shown in FIG. 1, the mounting table 114 has a plurality of mesh-like openings formed therein for weight reduction. As the holding part 116, for example, a binding band or the like with which the operator ties the supporting part 20 of the drone 10 to the mounting table 114 can be used.
 ユニバーサルジョイント112は、本開示の技術の「連結部」の一例である。なお、ユニバーサルジョイントに代えて、ボールジョイントを用いてもよい。 The universal joint 112 is an example of a "connection part" of the technology of the present disclosure. Note that a ball joint may be used instead of the universal joint.
 航空機保持装置150は、基体118と、基体118の上面に設けられた複数の支持柱120N1~120N4と、基体118の下面に設けられた複数のキャスター(移動部材)122N1~122N4と、を備える。基体118の上面の形状及び大きさは、載置台114の下面の形状及び大きさと略同様であり、基体118の上面の形状及び載置台114の下面の形状は、例えば、正方形である。支持柱120N1~120N4は、基体118の上面の各隅に固定されている。支持柱120N1~120N4の個数は、4個である。 The aircraft holding device 150 includes a base body 118, a plurality of support columns 120N1 to 120N4 provided on the upper surface of the base body 118, and a plurality of casters (moving members) 122N1 to 122N4 provided on the lower surface of the base body 118. The shape and size of the upper surface of the base 118 are approximately the same as the shape and size of the lower surface of the mounting table 114, and the shape of the upper surface of the base 118 and the shape of the lower surface of the mounting table 114 are, for example, square. The support columns 120N1 to 120N4 are fixed to each corner of the upper surface of the base body 118. The number of support columns 120N1 to 120N4 is four.
 支持柱120N1~120N4は、一端(即ち、上端)で載置台114を支え、下端が基体118の上面に固定されている。 The support columns 120N1 to 120N4 support the mounting table 114 at one end (that is, the upper end), and have their lower ends fixed to the upper surface of the base 118.
 キャスター122N1~122N4は、本開示の技術の「移動部材」の一例である。 The casters 122N1 to 122N4 are examples of "moving members" of the technology of the present disclosure.
 航空機保持装置150は、基体118の下面に複数のキャスター122N1~122N4が設けられているので、航空機保持装置150が設けられた場所の面に沿って移動することができる。 Since the aircraft holding device 150 is provided with a plurality of casters 122N1 to 122N4 on the lower surface of the base body 118, it can move along the plane where the aircraft holding device 150 is provided.
 図3には、伸縮可能な支柱110が伸びた状態が示されている。図3に示すように、支柱110は、各々軸方向の長さが同じであり且つ断面半径が異なる複数(例えば、4個)の円筒体110N1~110N4を備えている。複数の円筒体110N1~110N4は、外側から内側に、断面半径が大きい順に、同心状に配置される。内側の3個の円筒体110N2~110N4は、上下方向(即ち、軸方向)に移動可能であるが、最も外側の円筒体110N1の下端は基体118に固定されている。 FIG. 3 shows the expandable support column 110 in an extended state. As shown in FIG. 3, the support column 110 includes a plurality of (for example, four) cylindrical bodies 110N1 to 110N4, each having the same length in the axial direction and different cross-sectional radii. The plurality of cylindrical bodies 110N1 to 110N4 are arranged concentrically from the outside to the inside in descending order of cross-sectional radius. The three inner cylindrical bodies 110N2 to 110N4 are movable in the vertical direction (that is, the axial direction), but the lower end of the outermost cylindrical body 110N1 is fixed to the base body 118.
 図4には、支柱110が伸びた状態での、外側の円筒体110N1の上端部と、内側の円筒体110N2の下端部との構造を示す断面図が示されている。図4に示すように、円筒体110N1の内面には、軸方向に溝が上端から下端まで形成され、溝の上端部側には、円筒体110N2が上昇及び下降しやすいようにするため、複数(例えば、4個)のローラ110N11が軸110N12を中心に回転可能に、取り付けられている。このように、外側の円筒体110N1は、回転可能に取り付けられている複数のローラ110N11を介して、内側の円筒体110N2に接する。よって、円筒体110N2が上昇及び下降する際の円筒体110N1と円筒体110N2との間の摩擦係数を、ローラ110N11を設けず、円筒体110N2が、円筒体110N2の外面と円筒体110N1の内面とが直接接して、上昇及び下降する場合に比較して、小さくすることができる。なお、図示はしていないが、円筒体110N2の下端には、円筒体110N2が上昇した場合に、円筒体110N2が円筒体110N1から外れないように、上記溝に沿って上昇し且つ少なくとも1つのローラ110N11に当たる位置に、少なくとも1つの突起が設けられる。本実施の形態では、突起は4個設けられ、4個の突起のそれぞれは、4個のローラ110N11のそれぞれに当たる位置に配置されている。ローラ110N11が設けられる点は、円筒体110N2、110N3も同様であり、突起が設けられる点は、円筒体110N3、110N4も同様であるので、その説明を省略する。
 なお、ローラに代えてボール(即ち、球)を用いてもよい。
FIG. 4 shows a cross-sectional view showing the structure of the upper end of the outer cylindrical body 110N1 and the lower end of the inner cylindrical body 110N2 in a state where the support 110 is extended. As shown in FIG. 4, a groove is formed in the axial direction from the upper end to the lower end on the inner surface of the cylindrical body 110N1. (For example, four) rollers 110N11 are rotatably attached around a shaft 110N12. In this way, the outer cylindrical body 110N1 contacts the inner cylindrical body 110N2 via the plurality of rotatably attached rollers 110N11. Therefore, the friction coefficient between the cylindrical body 110N1 and the cylindrical body 110N2 when the cylindrical body 110N2 ascends and descends is determined by the friction coefficient between the cylindrical body 110N2 and the outer surface of the cylindrical body 110N1 without providing the roller 110N11. can be made smaller than when they rise and fall in direct contact with each other. Although not shown, at the lower end of the cylindrical body 110N2, in order to prevent the cylindrical body 110N2 from coming off the cylindrical body 110N1 when the cylindrical body 110N2 rises, there is at least one At least one protrusion is provided at a position that contacts the roller 110N11. In this embodiment, four protrusions are provided, and each of the four protrusions is arranged at a position corresponding to each of the four rollers 110N11. The rollers 110N11 are provided in the cylindrical bodies 110N2 and 110N3 as well, and the cylindrical bodies 110N3 and 110N4 are provided with protrusions in the same manner, so a description thereof will be omitted.
Note that a ball (ie, a sphere) may be used instead of the roller.
 航空機10の上昇に伴って載置台114が上昇することにより支柱110が伸びる。具体的には、載置台114が上昇することにより、まず、載置台114にユニバーサルジョイント112を介して連結されている円筒体110N4が、載置台114に引っ張られることにより、上昇する。円筒体110N4が上昇し続けると、円筒体110N4の各突起が、円筒体110N3のローラ110N11に当たり、円筒体110N3が上昇し始める。円筒体110N3が上昇し続けると、円筒体110N3の各突起が、円筒体110N2のローラ110N11に当たり、円筒体110N2が上昇し始める。円筒体110N2が上昇し続けると、円筒体110N2の各突起が、円筒体110N1のローラ110N11に当たる。円筒体110N1の下端は基体118に固定されている。よって、円筒体110N2の各突起が円筒体110N1のローラ110N11に当たるまで、円筒体110N2が上昇すると、各円筒体110N4~110N2の上昇が停止する。この場合、支柱110の長さは予め定められた最大長さである。 As the mounting table 114 rises as the aircraft 10 rises, the support column 110 extends. Specifically, as the mounting table 114 rises, the cylindrical body 110N4, which is connected to the mounting table 114 via the universal joint 112, is pulled by the mounting table 114 and rises. As the cylindrical body 110N4 continues to rise, each protrusion of the cylindrical body 110N4 hits the roller 110N11 of the cylindrical body 110N3, and the cylindrical body 110N3 begins to rise. As the cylindrical body 110N3 continues to rise, each protrusion of the cylindrical body 110N3 hits the roller 110N11 of the cylindrical body 110N2, and the cylindrical body 110N2 begins to rise. As the cylindrical body 110N2 continues to rise, each protrusion of the cylindrical body 110N2 hits the roller 110N11 of the cylindrical body 110N1. The lower end of the cylindrical body 110N1 is fixed to the base body 118. Therefore, when the cylindrical body 110N2 rises until each protrusion of the cylindrical body 110N2 hits the roller 110N11 of the cylindrical body 110N1, each of the cylindrical bodies 110N4 to 110N2 stops rising. In this case, the length of the support column 110 is a predetermined maximum length.
 航空機10の下降に伴って載置台114が下降すると、円筒体110N4~110N2が下降する。円筒体110N2の下端が基台118に到達すると、円筒体110N2の下降が停止し、円筒体110N4、110N3が下降する。円筒体110N3の下端が基台118に到達すると、円筒体110N3の下降が停止し、円筒体110N4が下降する。円筒体110N4の下端が基台118に到達すると、円筒体110N4の下降が停止する。この場合、支柱110の長さは予め定められた最小長さである。 When the mounting table 114 descends as the aircraft 10 descends, the cylindrical bodies 110N4 to 110N2 descend. When the lower end of the cylindrical body 110N2 reaches the base 118, the descent of the cylindrical body 110N2 is stopped, and the cylindrical bodies 110N4 and 110N3 are lowered. When the lower end of the cylindrical body 110N3 reaches the base 118, the descent of the cylindrical body 110N3 stops, and the cylindrical body 110N4 descends. When the lower end of the cylindrical body 110N4 reaches the base 118, the descent of the cylindrical body 110N4 is stopped. In this case, the length of the strut 110 is a predetermined minimum length.
 図5には、載置台114にドローン10が保持され且つ支柱110が伸びた状態で、載置台114が支柱110の一端を基準に3次元的に回動、具体的には、紙面に向かって右側が下方に左側が上方に傾斜した様子が示されている。上記のように、支柱110の一端と載置台114とはユニバーサルジョイント112で連結されている。よって、載置台114が支柱110の一端を基準に3次元的に回動することができる。また、上記のように、航空機保持装置150は、複数のキャスター122N1~122N4により、航空機保持装置150が設けられた場所の面に沿って移動することができる。 In FIG. 5, the drone 10 is held on the mounting table 114 and the support column 110 is extended, and the mounting table 114 rotates three-dimensionally with respect to one end of the support column 110, specifically, toward the paper surface. The right side is shown tilting downward and the left side tilting upward. As described above, one end of the support column 110 and the mounting table 114 are connected by the universal joint 112. Therefore, the mounting table 114 can rotate three-dimensionally based on one end of the support column 110. Further, as described above, the aircraft holding device 150 can be moved along the plane where the aircraft holding device 150 is provided by the plurality of casters 122N1 to 122N4.
 上記のように、ドローン10は、操作装置50から受信した移動の内容を示す指示信号に応じて、移動する。具体的には、ドローン10は、3次元の各方向、例えば、上昇、下降、水平方向、上昇と水平方向とを組み合わせた方向(即ち、斜め上方向)、及び、下降と水平方向とを組み合わせた方向(即ち、斜め下方向)に移動することができる機能を有する。 As described above, the drone 10 moves in response to an instruction signal indicating the content of movement received from the operating device 50. Specifically, the drone 10 moves in each three-dimensional direction, for example, upward movement, downward movement, horizontal direction, a combination of upward movement and horizontal direction (i.e. diagonally upward direction), and a combination of downward movement and horizontal direction. It has the function of being able to move in the opposite direction (that is, diagonally downward).
 上記のようにドローン10は、基体118に固定され且つ伸縮可能な支柱110の一端に連結された載置台114に、保持部116により、保持されている。 As described above, the drone 10 is held by the holding part 116 on the mounting table 114 which is fixed to the base body 118 and connected to one end of the extensible support column 110.
 従って、例えば、ドローン10は、上昇する場合、支柱110が最大長さとなるまで、載置台114を伴って、上昇する。ドローン10は、下降する場合、支柱110が最小長さとなるまで、載置台114を伴って、下降する。 Therefore, for example, when the drone 10 ascends, it ascends together with the mounting table 114 until the support 110 reaches its maximum length. When the drone 10 descends, the drone 10 descends together with the mounting table 114 until the support 110 reaches its minimum length.
 また、ドローン10が、水平方向に移動しようとすると、傾斜しながら、ドローン10は、載置台114、支柱110、及び基体118を伴って、即ち、航空機保持装置150の全体が水平方向に移動する。 Furthermore, when the drone 10 attempts to move horizontally, the drone 10 moves horizontally along with the mounting table 114, the strut 110, and the base 118, that is, the entire aircraft holding device 150 moves horizontally. .
 更に、上昇と水平方向とを組み合わせた方向(即ち、斜め上方向)に移動する場合、ドローン10は、傾斜しながら、支柱110が最大長さとなるまで、上昇すると共に、航空機保持装置150の全体は、水平方向に移動する。なお、斜め上方向に移動する場合は、単に水平方向に移動する場合に比較して、ドローン10の傾斜角は、小さく、航空機保持装置150の全体が水平方向に移動する単位時間当たりの移動量は、小さい。 Further, when moving in a direction that combines upward and horizontal directions (that is, diagonally upward), the drone 10 ascends while tilting until the support column 110 reaches its maximum length, and the entire aircraft holding device 150 moves horizontally. Note that when moving diagonally upward, the inclination angle of the drone 10 is smaller than when simply moving horizontally, and the amount of movement per unit time that the entire aircraft holding device 150 moves in the horizontal direction is smaller. It's small.
 また、下降と水平方向とを組み合わせた方向(即ち、斜め下方向)に移動する場合、ドローン10は、傾斜しながら、支柱110が最小長さとなるまで、下降すると共に、航空機保持装置150の全体は、水平方向に移動する。なお、斜め下方向に移動する場合は、単に水平方向に移動する場合に比較して、ドローン10の傾斜角は、小さく、航空機保持装置150の全体が水平方向に移動する単位時間当たりの移動量は、小さい。 Furthermore, when moving in a direction that combines descending and horizontal directions (that is, diagonally downward), the drone 10 descends while tilting until the support column 110 reaches its minimum length, and the entire aircraft holding device 150 moves horizontally. Note that when moving diagonally downward, the inclination angle of the drone 10 is smaller than when simply moving horizontally, and the amount of movement per unit time that the entire aircraft holding device 150 moves in the horizontal direction is smaller. It's small.
 そして、ドローン10に不具合がなく、ドローン10が予め定められた応答特性を有していれば、ドローン10は、操作装置50から受信した移動の内容を示す指示信号に応じて、移動する。ここで、本開示の技術の応答特性とは、ドローン10が、操作装置50からの指示信号により示される移動の内容に応じた移動をどれだけできるかを示す特性をいう。よって、例えば、ドローン10が予め定められた応答特性を有していれば、ドローン10は、操作装置50から、上昇が指示されば上昇し、下降が指示されれば下降し、水平移動が指示されれば、水平方向に移動し、斜め上方又は下方の移動が指示されれば、斜め上方又は下方に移動する。 Then, if there is no problem with the drone 10 and the drone 10 has predetermined response characteristics, the drone 10 moves in accordance with the instruction signal indicating the content of movement received from the operating device 50. Here, the response characteristic of the technology of the present disclosure refers to a characteristic indicating how far the drone 10 can move according to the content of movement indicated by the instruction signal from the operating device 50. Therefore, for example, if the drone 10 has a predetermined response characteristic, the drone 10 will rise when instructed to ascend by the operating device 50, descend when instructed to descend, and descend when instructed to move horizontally. If instructed to move diagonally upward or downward, it moves diagonally upward or downward.
 図6Aには、情報出力装置170の概略ブロック図が示されている。図6Aに示すように、情報出力装置170は、ドローン10の移動状態を、各々異なる方向から検出する複数のカメラ202N1~202N4(図1も参照)と、計算記憶装置200と、を備えている。カメラ202N1~202N4は、撮影して得られた画像を通信する通信機能を有する。カメラ202N1~202N4は、上記屋内の壁又は柱に配置されている。
 カメラ202N1~202N4は、本開示の技術の「検出部」の一例である。
FIG. 6A shows a schematic block diagram of the information output device 170. As shown in FIG. 6A, the information output device 170 includes a plurality of cameras 202N1 to 202N4 (see also FIG. 1) that detect the movement state of the drone 10 from different directions, and a calculation storage device 200. . The cameras 202N1 to 202N4 have a communication function to communicate images obtained by shooting. The cameras 202N1 to 202N4 are placed on the indoor wall or pillar.
Cameras 202N1 to 202N4 are examples of "detection units" of the technology of the present disclosure.
 カメラ202N1~202N4は、ドローン10の移動状態を、異なる4つの方向から撮影するように、配置されている。具体的には、カメラ202N1とカメラ202N3とは、対向するように配置され、カメラ202N2とカメラ202N4とは、対向するように配置されている。より具体的には、カメラ202N1とカメラ202N3とのドローン10を撮影する中心軸の方向は、第1の平面に位置する。カメラ202N2とカメラ202N4とのドローン10を撮影する中心軸の方向は、第2の平面に位置する。第1の平面と第2の平面とは直角に交差する。 The cameras 202N1 to 202N4 are arranged to photograph the moving state of the drone 10 from four different directions. Specifically, the camera 202N1 and the camera 202N3 are arranged to face each other, and the camera 202N2 and the camera 202N4 are arranged to face each other. More specifically, the directions of the central axes of the camera 202N1 and the camera 202N3 for photographing the drone 10 are located on the first plane. The directions of the central axes of the camera 202N2 and the camera 202N4 for photographing the drone 10 are located on the second plane. The first plane and the second plane intersect at right angles.
 計算記憶装置200は、コンピュータ210と、各々コンピュータ210に接続されている2次記憶装置222、通信インターフェース(I/F)226、入力装置228、及びディスプレイ224と、を備えている。通信インターフェース(I/F)226は、操作装置50から上記移動の内容を示す指示信号を受信すると共に複数のカメラ202N1~202N4からの画像信号を受信する。コンピュータ210は、CPU(Central Processing Unit)212、ROM(Read Only Memory)214、RAM(Random Access Memory)216、及び入出力(I/O)ポート218を備えている。CPU212、ROM214、RAM216、及びI/Oポート218は、バス220を介して、相互に接続されている。I/Oポート218には、2次記憶装置222、通信インターフェース(I/F)226、入力装置228、及びディスプレイ224が接続されている。図6Aに示す例では、計算記憶装置200は、1つの通信インターフェース(I/F)226を備えている。しかしながら、通信インターフェース(I/F)226は、操作装置50及び複数のカメラ202N1~202N4について複数設けられてもよい。入力装置228は、例えば、マウス、キーボード等である。
 通信インターフェース(I/F)226は、本開示の技術の「受信部」の一例である。
The calculation storage device 200 includes a computer 210, a secondary storage device 222, a communication interface (I/F) 226, an input device 228, and a display 224, each connected to the computer 210. The communication interface (I/F) 226 receives an instruction signal indicating the content of the movement from the operating device 50, and also receives image signals from the plurality of cameras 202N1 to 202N4. The computer 210 includes a CPU (Central Processing Unit) 212, a ROM (Read Only Memory) 214, a RAM (Random Access Memory) 216, and an input/output (I/O) port 218. CPU 212, ROM 214, RAM 216, and I/O port 218 are interconnected via bus 220. A secondary storage device 222, a communication interface (I/F) 226, an input device 228, and a display 224 are connected to the I/O port 218. In the example shown in FIG. 6A, the computational storage device 200 includes one communication interface (I/F) 226. However, a plurality of communication interfaces (I/F) 226 may be provided for the operating device 50 and the plurality of cameras 202N1 to 202N4. The input device 228 is, for example, a mouse, a keyboard, or the like.
The communication interface (I/F) 226 is an example of a “receiving unit” of the technology of the present disclosure.
 2次記憶装置222には、後述する情報出力処理プログラム222P1(図7A参照)、学習処理プログラム222P2(図7B参照)、及び特定プログラム222P3(図8又は図12参照)の各プログラムと、モデル222Mとが記憶されている。ROM214(又は2次記憶装置222)から各プログラムがRAM214に読み出され、CPU212により実行され、後述する情報出力処理、学習処理(即ち、機械学習処理)、及び特定処理が実行される。なお、上記各プログラムは、ROM214に記憶されてもよい。2次記憶装置222は、一時的でない有形のコンピュータが可読可能な記録媒体(non-transitory tangible Computer Readable media)であり、例えば、HDD(Hard disk drive)やSSD(Solid state drive)等の不揮発性の記憶装置である。
 特定プログラム222P3は、本開示の技術の「特定処理をコンピュータに実行させるプログラム」の一例である。学習処理プログラム222P2本開示の技術の「学習処理をコンピュータに実行させるプログラム」の一例である。2次記憶装置222は、本開示の技術の「記憶部」及び「記録媒体」の一例である。
The secondary storage device 222 includes programs such as an information output processing program 222P1 (see FIG. 7A), a learning processing program 222P2 (see FIG. 7B), and a specific program 222P3 (see FIG. 8 or 12), which will be described later, and a model 222M. is remembered. Each program is read from the ROM 214 (or the secondary storage device 222) to the RAM 214 and executed by the CPU 212 to perform information output processing, learning processing (i.e., machine learning processing), and specific processing, which will be described later. Note that each of the above programs may be stored in the ROM 214. The secondary storage device 222 is a non-transitory tangible computer readable media, such as a hard disk drive (HDD) or solid state drive (SSD). non-volatile It is a storage device.
The specific program 222P3 is an example of "a program that causes a computer to execute specific processing" of the technology of the present disclosure. Learning processing program 222P2 is an example of "a program that causes a computer to execute learning processing" of the technology of the present disclosure. The secondary storage device 222 is an example of a "storage unit" and a "recording medium" in the technology of the present disclosure.
 ROM214又は2次記憶装置222には、応答特性が異なる複数の種類のドローンの各々の応答特性が、ドローンの種類を示すデータに対応して、記憶されている。上記のように、本開示の技術の応答特性とは、ドローンが、操作装置からの指示信号により示される移動の内容に応じた移動をどれだけできるかを示す特性をいう。移動には、上昇、下降、水平移動、斜め上方の移動、及び斜め下方の移動の要素がある。よって、ROM214又は2次記憶装置222には具体的には、各種類のドローンの載置台114を伴い且つ指示信号に応じた、上昇又は下降する単位時間当たりの移動量、ドローン10の傾斜角度、及び、ドローン10が水平方向に移動する単位時間当たりの移動量が記憶されている。このように、ROM214又は2次記憶装置222に各種類のドローンの応答特性を記憶しているので、情報出力装置170のCPU212は、ドローン10の種類の応答特性を用いて、指示信号を受信した時から所定時間経過後のドローン10の位置と姿勢を推定することができる。 In the ROM 214 or the secondary storage device 222, response characteristics of each of a plurality of types of drones having different response characteristics are stored in correspondence with data indicating the type of drone. As described above, the response characteristic of the technology of the present disclosure refers to a characteristic indicating how far the drone can move according to the content of movement indicated by the instruction signal from the operating device. Movement includes the elements of rising, falling, horizontal movement, diagonally upward movement, and diagonally downward movement. Therefore, specifically, in the ROM 214 or the secondary storage device 222, the amount of movement per unit time of ascending or descending, the inclination angle of the drone 10, and the amount of movement per unit time of each type of drone with the mounting table 114 and according to the instruction signal. Further, the amount of movement of the drone 10 in the horizontal direction per unit time is stored. In this way, since the response characteristics of each type of drone are stored in the ROM 214 or the secondary storage device 222, the CPU 212 of the information output device 170 receives the instruction signal using the response characteristics of the type of drone 10. It is possible to estimate the position and attitude of the drone 10 after a predetermined period of time has passed.
 2次記憶装置222に記憶されているモデル222Mは、ドローン10の故障に関するデータを特定するための学習モデルである。モデル222Mは、例えば、ニューラルネットワーク(NN)である。具体的には、モデル222Mは、ドローン10の理想の移動状態及びドローン10の現実の移動状態が入力される入力層と、ドローン10の故障に関するデータを出力とする出力層と、ドローン10の理想の移動状態及びドローン10の現実の移動状態を入力とし且つドローン10の故障に関するデータを出力とする教師データを複数用いてパラメータが学習された1つの中間層と、を備える。モデル222Mは、コンピュータ210を、ドローン10の理想の移動状態及びドローン10の現実の移動状態を取得し、取得したドローン10の理想の移動状態及びドローン10の現実の移動状態を上記入力層に入力し、中間層にて演算し、出力層から上記故障に関するデータを出力とするように、機能させる。
 モデル222Mは、本開示の技術の「モデル」の一例である。
The model 222M stored in the secondary storage device 222 is a learning model for identifying data related to a failure of the drone 10. The model 222M is, for example, a neural network (NN). Specifically, the model 222M includes an input layer in which the ideal movement state of the drone 10 and the actual movement state of the drone 10 are input, an output layer in which data regarding the failure of the drone 10 is output, and an ideal movement state of the drone 10. and one intermediate layer in which parameters are learned using a plurality of pieces of teacher data, the input of which is the movement state of the drone 10 and the actual movement state of the drone 10, and the output is data regarding a failure of the drone 10. The model 222M causes the computer 210 to acquire the ideal movement state of the drone 10 and the actual movement state of the drone 10, and input the obtained ideal movement state of the drone 10 and the actual movement state of the drone 10 to the input layer. The intermediate layer performs calculations, and the output layer outputs data related to the failure.
The model 222M is an example of a "model" of the technology of the present disclosure.
 モデル222Mは、ディープニューラルネットワーク(DNN)でもよい。この場合、モデル222Mは、中間層を複数備える。 The model 222M may be a deep neural network (DNN). In this case, model 222M includes multiple intermediate layers.
 図6Bには、CPU212の機能ブロック図が示されている。CPU212の機能は、学習機能、処理機能、推定機能、取り込み機能、計算機能、記憶機能、読み出し機能、表示機能、及び特定機能を有する。学習機能には、取得機能と学習処理機能とがある。図6Bに示すように、CPU212は、上記各プログラムの何れかを実行することにより、学習部500、処理部502、推定部504、取り込み部506、計算部508、記憶部510、読み出し部512、表示部514、及び特定部516として機能する。学習部500は、と学習処理部500Bとを備える。
 特定部516は、本開示の技術の「特定部」の一例である。取得部500Aは、本開示の技術の「取得部」の一例である。学習処理部500Bは、本開示の技術の「学習処理部」の一例である。
FIG. 6B shows a functional block diagram of the CPU 212. The functions of the CPU 212 include a learning function, a processing function, an estimation function, an import function, a calculation function, a storage function, a reading function, a display function, and a specific function. The learning function includes an acquisition function and a learning processing function. As shown in FIG. 6B, by executing any of the programs described above, the CPU 212 includes a learning section 500, a processing section 502, an estimating section 504, an importing section 506, a calculating section 508, a storage section 510, a reading section 512, It functions as a display section 514 and a specifying section 516. The learning section 500 includes a learning processing section 500B.
The specifying unit 516 is an example of the “specific unit” of the technology of the present disclosure. The acquisition unit 500A is an example of the “acquisition unit” of the technology of the present disclosure. The learning processing unit 500B is an example of a “learning processing unit” of the technology of the present disclosure.
 次に、本実施の形態の作用を説明する。
 (飛行試験)
 第1に、詳細には後述するが、本実施の形態では、情報出力装置170は、飛行試験を行うことにより、ドローン10の故障に関するデータを特定するための情報を取得する。
 (モデルの学習)
 第2に、詳細には後述するが、本実施の形態では、情報出力装置170は、このような飛行試験を行うことにより取得した、ドローン10の故障に関するデータを特定するための情報を用いて、モデル222Mを学習する。
 (ドローン10の故障に関するデータの特定)
 第3に、詳細には後述するが、本実施の形態では、情報出力装置170は、学習済みのモデル222Mを用いて、ドローン10の故障に関するデータを特定する。
Next, the operation of this embodiment will be explained.
(Flight test)
First, although the details will be described later, in this embodiment, the information output device 170 acquires information for specifying data regarding a failure of the drone 10 by conducting a flight test.
(Model learning)
Second, although it will be described in detail later, in this embodiment, the information output device 170 uses information for identifying data related to a failure of the drone 10, which is obtained by performing such a flight test. , model 222M is trained.
(Identification of data regarding failure of drone 10)
Thirdly, in this embodiment, the information output device 170 uses the trained model 222M to specify data regarding a failure of the drone 10, although this will be described in detail later.
 (飛行試験)
 まず、飛行試験について説明する。本実施の形態では、ドローン10を現実に自由に飛行させる自由飛行試験はせず、オペレータは、ドローン10を、航空機保持装置150に3次元的に移動可能に保持した状態で、制限飛行試験を行う。これは次の理由からである。
(Flight test)
First, I will explain the flight test. In this embodiment, a free flight test in which the drone 10 actually flies freely is not performed, but the operator performs a restricted flight test with the drone 10 held in the aircraft holding device 150 so as to be movable in three dimensions. conduct. This is for the following reason.
 組み立てが完成したドローン10が予め定められた応答特性を有していれば、ドローン10は、操作装置50から受信した、移動の内容を示す指示信号に応じた移動をする。しかし、組み立てが完成したドローン10が、何らかの不具合を有し、予め定められた応答特性を有していなければ、ドローン10は、操作装置50から受信した、移動の内容を示す指示信号に応じた移動をしない。 If the assembled drone 10 has predetermined response characteristics, the drone 10 moves in accordance with the instruction signal received from the operating device 50 and indicating the content of movement. However, if the assembled drone 10 has some kind of defect and does not have the predetermined response characteristics, the drone 10 will respond to the instruction signal indicating the content of movement received from the operating device 50. Don't move.
 組み立てが完成した段階では、ドローン10が、予め定められた応答特性を有しているか否かはわからない。組み立てが完成したドローン10が予め定められた応答特性を有しているか否かを確認するためには、ドローン10を現実に自由に飛行させる自由飛行試験を行うことも考えられる。 At the stage when the assembly is completed, it is not known whether the drone 10 has predetermined response characteristics. In order to confirm whether the assembled drone 10 has predetermined response characteristics, it is conceivable to perform a free flight test in which the drone 10 is actually allowed to fly freely.
 しかし、自由飛行試験させたドローン10が予め定められた応答特性を有していない場合、移動の途中で、墜落し、ドローン10が破壊してしまう場合もある。 However, if the drone 10 subjected to the free flight test does not have predetermined response characteristics, it may crash and be destroyed during movement.
 そこで、本実施の形態では、組み立てが完成したドローン10が予め定められた応答特性を有しているかを確認するため、ドローン10を現実に自由に飛行させる自由飛行試験はせず、オペレータは、ドローン10を、航空機保持装置150に3次元的に移動可能に保持した状態で、移動させる制限飛行試験を行う。具体的には、オペレータは、まず、ドローン10を、載置台114に載置し、4本の支持部20の先端を保持部116により載置台114に保持させる。次に、オペレータは、載置台114に保持したドローン10を移動させるため、操作装置50を操作する。操作された操作装置50は、操作された内容の通り移動するように、当該移動の内容を示す指示信号を送信する。操作装置50から送信された、移動の内容を示す指示信号は、ドローン10により受信され、ドローン10は、受信した、移動の内容を示す指示信号に応じて移動しようとする。例えば、上記のように、ドローン10は、上昇又は下降しようとすると、載置台114を伴って上昇又は下降しようとする。また、ドローン10は、水平方向に移動しようとすると、航空機保持装置150の全体が水平方向に移動しようとする。操作装置50から送信された、移動の内容を示す指示信号は、情報出力装置170も受信する。 Therefore, in this embodiment, in order to confirm whether the assembled drone 10 has predetermined response characteristics, a free flight test in which the drone 10 is actually flown freely is not performed, and the operator A limited flight test is performed in which the drone 10 is moved while being held movably in three dimensions by the aircraft holding device 150. Specifically, the operator first places the drone 10 on the mounting table 114 and causes the tips of the four supporting parts 20 to be held on the mounting table 114 by the holding parts 116. Next, the operator operates the operating device 50 in order to move the drone 10 held on the mounting table 114. The operated operating device 50 transmits an instruction signal indicating the content of the movement so as to move according to the operated content. The instruction signal indicating the content of movement transmitted from the operating device 50 is received by the drone 10, and the drone 10 attempts to move according to the received instruction signal indicating the content of movement. For example, as described above, when the drone 10 attempts to ascend or descend, it attempts to ascend or descend together with the mounting table 114. Furthermore, when the drone 10 attempts to move horizontally, the entire aircraft holding device 150 attempts to move horizontally. The information output device 170 also receives the instruction signal indicating the content of the movement transmitted from the operating device 50 .
 図7Aには、情報出力装置170のCPU212が実行する情報出力処理プログラム222P1のフローチャートが示されている。図7Aに示す情報出力処理プログラム222P1では、組み立てが完成したドローン10が予め定められた応答特性を有しているか否かを後に確認できるように、ドローン10の故障に関するデータを特定するための情報が2次記憶装置222に出力(即ち、記憶)される。 FIG. 7A shows a flowchart of the information output processing program 222P1 executed by the CPU 212 of the information output device 170. The information output processing program 222P1 shown in FIG. 7A provides information for specifying data regarding a failure of the drone 10 so that it can be later confirmed whether the assembled drone 10 has predetermined response characteristics. is output (ie, stored) to the secondary storage device 222.
 情報出力処理プログラム222P1は、ドローン10の種類を示すデータが、入力装置228から入力され、コンピュータ210に接続された図示しないスタートボダンがオンされたときにスタートし、コンピュータ210に接続された図示しないストップボタンがオンされたときに終了する。その他、通信I/F226が、操作装置50からのスタート指示信号を受信したときにスタートし、操作装置50からのストップ指示信号を受信したときに終了するようにしてもよい。 The information output processing program 222P1 starts when data indicating the type of the drone 10 is input from the input device 228 and a start button (not shown) connected to the computer 210 is turned on. Ends when the stop button is turned on. Alternatively, the communication I/F 226 may start when receiving a start instruction signal from the operating device 50 and end when receiving a stop instruction signal from the operating device 50.
 スタートボダンがオンされると、ステップ602で、処理部502は、通信I/F226を介して、操作装置50から、ドローン10の移動の内容を示す指示信号を受信したか否かを判断する。 When the start button is turned on, in step 602, the processing unit 502 determines whether an instruction signal indicating the movement of the drone 10 has been received from the operating device 50 via the communication I/F 226.
 上記のように、オペレータにより操作された操作装置50は、操作された内容の通り移動するように、当該移動の内容を示す指示信号を送信する。操作装置50から送信された、移動の内容を示す指示信号は、ドローン10に受信されると共に、通信I/F226により受信される。移動の内容を示す指示信号が、通信I/F226により受信されると、ステップ602の判定は肯定判定となる。移動の内容を示す指示信号が、通信I/F226により受信されないと、ステップ602の判定は否定判定となり、ステップ602の判定が肯定判定となるまで、ステップ602の処理が繰り返し実行される。 As described above, the operating device 50 operated by the operator transmits an instruction signal indicating the content of the movement so that the operating device 50 moves according to the content of the operation. The instruction signal indicating the content of movement transmitted from the operating device 50 is received by the drone 10 and also by the communication I/F 226. When the instruction signal indicating the content of movement is received by the communication I/F 226, the determination in step 602 becomes affirmative. If the instruction signal indicating the content of the movement is not received by the communication I/F 226, the determination in step 602 becomes a negative determination, and the process in step 602 is repeatedly executed until the determination in step 602 becomes an affirmative determination.
 ステップ602の判定が肯定判定となると、情報出力処理は、ステップ604に進む。ステップ604で、取り込み部506は、カメラ202N1~202N4の各々から各画像信号を、通信I/F226を介して、取り込む。 If the determination in step 602 is affirmative, the information output process proceeds to step 604. In step 604, the capture unit 506 captures each image signal from each of the cameras 202N1 to 202N4 via the communication I/F 226.
 ステップ606で、処理部502は、ステップ604で各画像信号が取り込まれた時から時間tが経過したか否かを判断する。ステップ606の判定が否定判定の場合、ステップ606の判定が肯定判定となるまで、ステップ606の処理が繰り返し実行される。 In step 606, the processing unit 502 determines whether time t has elapsed since each image signal was captured in step 604. If the determination in step 606 is negative, the process in step 606 is repeatedly executed until the determination in step 606 is positive.
 ステップ606の判定が肯定判定となると、情報出力処理は、ステップ608に進む。ステップ608で、取り込み部506は、カメラ202N1~202N4の各々から各画像信号を、通信I/F226を介して、取り込む。 If the determination in step 606 is affirmative, the information output process proceeds to step 608. In step 608, the capture unit 506 captures each image signal from each of the cameras 202N1 to 202N4 via the communication I/F 226.
 ステップ610で、計算部508は、ステップ604で取り込まれた各画像信号からドローン10の位置及び姿勢を計算すると共に、ステップ604で取り込まれた各画像信号とステップ608で取り込まれた各画像信号とから、ドローン10の移動方向及び移動速度を計算する。 In step 610, the calculation unit 508 calculates the position and orientation of the drone 10 from each image signal captured in step 604, and calculates the position and orientation of the drone 10 from each image signal captured in step 604 and each image signal captured in step 608. From this, the moving direction and moving speed of the drone 10 are calculated.
 具体的には、計算部508は、ステップ604で取り込まれた各画像信号とステップ608で取り込まれた各画像信号とに対して、画像マッチング等により各画像におけるドローン10の所定位置(例えば、本体12の中央の位置)を特定し、特定した所定位置から、三角測量の原理を用いて、上記所定位置の後述する3次元空間の位置を計算する。計算部508は、カメラ202N1~202N4の各々で予め撮影されたドローン10の、例えば、本体12の各傾斜の度合いから、ドローン10の姿勢を計算する。 Specifically, the calculation unit 508 performs image matching or the like on each image signal captured in step 604 and each image signal captured in step 608 to find a predetermined position of the drone 10 in each image (for example, the main body). 12), and from the specified predetermined position, the position of the predetermined position in a three-dimensional space, which will be described later, is calculated using the principle of triangulation. The calculation unit 508 calculates the attitude of the drone 10 based on, for example, the degree of inclination of the main body 12 of the drone 10 photographed in advance by each of the cameras 202N1 to 202N4.
 計算部508は、ステップ604で取り込まれた各画像信号の画像中の本体12の位置とステップ608で取り込まれた各画像信号の画像中の本体12の位置とから、ドローン10の移動方向及び移動速度を計算する。なお、移動速度を計算する際には、時間tが使用される。 The calculation unit 508 calculates the moving direction and movement of the drone 10 from the position of the main body 12 in the image of each image signal captured in step 604 and the position of the main body 12 in the image of each image signal captured in step 608. Calculate speed. Note that time t is used when calculating the moving speed.
 ステップ612で、推定部504は、ROM214又は2次記憶装置222にドローン10の種類を示すデータに対応して記憶されている応答特性と、指示信号の内容と、ドローン10の位置、姿勢、移動方向、及び移動速度とから、ドローン10の、ステップ602の判定が肯定判定となった時から所定時間後の位置と姿勢を推定する。なお、所定時間は、時間tより長い予め定められた時間である。 In step 612, the estimation unit 504 calculates the response characteristics stored in the ROM 214 or the secondary storage device 222 in correspondence with the data indicating the type of the drone 10, the contents of the instruction signal, the position, attitude, and movement of the drone 10. From the direction and movement speed, the position and attitude of the drone 10 after a predetermined period of time from the time when the determination in step 602 is affirmative is estimated. Note that the predetermined time is a predetermined time longer than the time t.
 ステップ614で、処理部502は、ステップ602の判定が肯定判定となった時から所定時間が経過したか否かを判断する。ステップ614の判定が否定判定の場合、ステップ614の判定が肯定判定となるまで、ステップ614の処理が繰り返し実行される。 In step 614, the processing unit 502 determines whether a predetermined time has elapsed since the determination in step 602 was affirmative. If the determination at step 614 is negative, the process at step 614 is repeatedly executed until the determination at step 614 is affirmative.
 ステップ614の判定が肯定判定となると、情報出力処理は、ステップ616に進む。 If the determination in step 614 is affirmative, the information output process proceeds to step 616.
 ステップ616で、取り込み部506は、ドローン10の現実の移動内容、例えば、カメラ202N1~202N4の各々から各画像を、通信I/F226を介して、取り込む。 In step 616, the capture unit 506 captures the actual movement of the drone 10, for example, each image from each of the cameras 202N1 to 202N4, via the communication I/F 226.
 ステップ618で、計算部508は、取り込んだ各画像から、ドローン10の位置と姿勢とを計算する。 In step 618, the calculation unit 508 calculates the position and attitude of the drone 10 from each captured image.
 ステップ620で、記憶部510は、ステップ612で推定されたドローン10の位置及び姿勢(即ち、理想の位置及び姿勢(理想の移動状態ともいう))と、ステップ618で計算したドローン10の位置及び姿勢(即ち、現実の位置及び姿勢(現実の移動状態ともいう))とを、ステップ616で取り込んだ各画像及び情報出力処理プログラム222Pがスタートしてからの経過時間と共に、2次記憶装置222に、出力する。 In step 620, the storage unit 510 stores the position and orientation of the drone 10 estimated in step 612 (that is, the ideal position and orientation (also referred to as ideal movement state)) and the position and orientation of the drone 10 calculated in step 618. The posture (that is, the actual position and posture (also referred to as the actual movement state)) is stored in the secondary storage device 222 along with each image captured in step 616 and the elapsed time since the information output processing program 222P was started. ,Output.
 ステップ622で、処理部502は、図示しないストップボタンがオンされたか否かを判断することにより、情報出力処理プログラム222Pを終了するか否かを判断する。ストップボタンがオンされなければ、ステップ622は否定判定となり、情報出力処理はステップ602に戻り、以上の処理(即ち、ステップ602~622)を実行する。ストップボタンがオンされると、ステップ622は肯定判定となり、情報出力処理プログラム222Pが終了する。 In step 622, the processing unit 502 determines whether to end the information output processing program 222P by determining whether a stop button (not shown) has been turned on. If the stop button is not turned on, a negative determination is made in step 622, and the information output process returns to step 602 to execute the above processes (ie, steps 602 to 622). When the stop button is turned on, an affirmative determination is made in step 622, and the information output processing program 222P ends.
 以上説明したように、スタートボダンがオンされたときからストップボタンがオンされるまでの間に、操作装置50からの指示信号を受信する毎に、ドローン10の理想の位置及び姿勢と、現実の位置及び姿勢とが対応して、ステップ616で取り込んだ各画像及び情報出力処理プログラム222P1がスタートしてからの経過時間と共に、2次記憶装置222に記憶される。スタートボダンがオンされたときからストップボタンがオンされるまでの間に、操作装置50から指示信号が複数回、例えば、N回送信されると、ドローン10の理想の位置及び姿勢と現実の位置及び姿勢との組み合わせがN個、対応して、ステップ616で取り込んだ各画像及び情報出力処理プログラム222P1がスタートしてからの経過時間と共に、2次記憶装置222に記憶される。 As explained above, each time an instruction signal is received from the operating device 50 from when the start button is turned on until the stop button is turned on, the ideal position and attitude of the drone 10 and the actual The position and orientation are stored in the secondary storage device 222 in correspondence with each image captured in step 616 and the elapsed time since the information output processing program 222P1 was started. If the instruction signal is transmitted from the operating device 50 multiple times, for example, N times, between when the start button is turned on and when the stop button is turned on, the ideal position and attitude of the drone 10 and the actual position are transmitted. N combinations of the image and posture are stored in the secondary storage device 222 along with each image captured in step 616 and the elapsed time since the information output processing program 222P1 was started.
 (モデルの学習)
 図7Bには、情報出力装置170のCPU212における学習部500が教師データを用いてモデル222Mを学習する学習処理の学習処理プログラム222P2のフローチャートが示されている。情報出力装置170のCPU212における学習部500が学習処理プログラム222P2を実行することにより、学習方法が実行され、学習済みモデル222Mが生成される。学習処理プログラム222P2は、図示しない学習指示ボタンがオンされた場合にスタートする。
(Model learning)
FIG. 7B shows a flowchart of the learning process program 222P2 of the learning process in which the learning unit 500 in the CPU 212 of the information output device 170 learns the model 222M using teacher data. When the learning unit 500 in the CPU 212 of the information output device 170 executes the learning processing program 222P2, the learning method is executed and the learned model 222M is generated. The learning processing program 222P2 starts when a learning instruction button (not shown) is turned on.
 ステップ500SAで、学習部500における取得部500Aは、教師データを取得する。 At step 500SA, the acquisition unit 500A in the learning unit 500 acquires teacher data.
 ここで、教師データを説明する。
 表示部514は、ドローン10の理想の位置及び姿勢とドローン10の現実の位置及び姿勢とが表示されるように、ディスプレイ224を制御する(図8~図11)。ドローン10の理想の位置及び姿勢とドローン10の現実の位置及び姿勢との表示を見たり、上記制限飛行試験でのドローン10の飛行状態を見たり、すると、オペレータは、ドローン10に予め定められた応答特性を有していないか否かを判断することができる。
Here, the teaching data will be explained.
The display unit 514 controls the display 224 so that the ideal position and attitude of the drone 10 and the actual position and attitude of the drone 10 are displayed (FIGS. 8 to 11). By looking at the display of the ideal position and attitude of the drone 10 and the actual position and attitude of the drone 10, and by looking at the flight condition of the drone 10 in the above-mentioned limited flight test, the operator can adjust the predetermined position and attitude to the drone 10. It can be determined whether or not the device has a response characteristic.
 オペレータは、ドローン10に予め定められた応答特性を有している判断した場合、ドローン10が故障していないと判断し、ドローン10が故障していないこと示すデータを、入力装置228を介してコンピュータ210に入力する。コンピュータ210は、ドローン10が故障していないことを示すデータと、ドローン10の理想の位置及び姿勢とドローン10の現実の位置及び姿勢との複数(例えば、上記N個)の組み合わせとを、対応して、教師データとして、2次記憶装置222に記憶する。この場合、N個の教師データが2次記憶装置222に記憶する。ドローン10の理想の位置及び姿勢とドローン10の現実の位置及び姿勢とは、教師データの入力データであり、故障に関するデータを特定するための情報の一例である。ドローン10が故障していないことを示すデータは、教師データの出力データであり、故障に関するデータの一例である。 If the operator determines that the drone 10 has a predetermined response characteristic, the operator determines that the drone 10 is not malfunctioning, and inputs data indicating that the drone 10 is not malfunctioning via the input device 228. input into computer 210; The computer 210 corresponds data indicating that the drone 10 is not malfunctioning and a plurality of combinations (for example, the above N combinations) of the ideal position and attitude of the drone 10 and the actual position and attitude of the drone 10. The data is then stored in the secondary storage device 222 as teacher data. In this case, N pieces of teacher data are stored in the secondary storage device 222. The ideal position and attitude of the drone 10 and the actual position and attitude of the drone 10 are input data of teacher data, and are an example of information for specifying data related to a failure. The data indicating that the drone 10 is not malfunctioning is output data of the teacher data, and is an example of data regarding the malfunction.
 一方、オペレータは、ドローン10に予め定められた応答特性を有していないと判断した場合、ドローン10が故障していると判断し、ドローン10を検査して、故障個所を発見する。そして、オペレータは、ドローン10が故障していることを示すデータ、故障の個所を示すデータ、及び故障に対する対策を示すデータを、入力装置228を介してコンピュータ210に入力する。コンピュータ210は、ドローン10が故障していることを示すデータ、故障の個所を示すデータ、及び故障に対する対策を示すデータと、ドローン10の理想の位置及び姿勢とドローン10の現実の位置及び姿勢との複数(例えば、上記N個)の組み合わせとを、対応して、教師データとして、2次記憶装置222に記憶する。この場合、N個の教師データが2次記憶装置222に記憶する。ドローン10の理想の位置及び姿勢とドローン10の現実の位置及び姿勢とは、教師データの入力データであり、故障に関するデータを特定するための情報の一例である。ドローン10が故障していることを示すデータ、故障の個所を示すデータ、及び故障に対する対策を示すデータは、教師データの出力データであり、故障に関するデータの一例である。 On the other hand, if the operator determines that the drone 10 does not have the predetermined response characteristics, the operator determines that the drone 10 is malfunctioning, inspects the drone 10, and discovers the malfunction location. Then, the operator inputs data indicating that the drone 10 is malfunctioning, data indicating the location of the malfunction, and data indicating measures to be taken against the malfunction into the computer 210 via the input device 228. The computer 210 stores data indicating that the drone 10 is malfunctioning, data indicating the location of the malfunction, data indicating countermeasures against the malfunction, an ideal position and attitude of the drone 10, and an actual position and attitude of the drone 10. A plurality of combinations (for example, the above N combinations) are stored in the secondary storage device 222 as teacher data. In this case, N pieces of teacher data are stored in the secondary storage device 222. The ideal position and attitude of the drone 10 and the actual position and attitude of the drone 10 are input data of teacher data, and are an example of information for specifying data related to a failure. The data indicating that the drone 10 is malfunctioning, the data indicating the location of the malfunction, and the data indicating countermeasures against the malfunction are output data of the teacher data and are examples of data regarding the malfunction.
 教師データを更に説明する。教師データは、上記のように、入力データと出力データとを備える。 Let's further explain the training data. The teacher data includes input data and output data, as described above.
 教師データの入力データには、操作装置500からの移動の内容を示す信号に応じたドローン10の理想の移動状態及びドローン10の現実の移動状態がある。上記のように、移動状態は、ドローン10の位置及び姿勢であり、姿勢は、ドローン10のヨー角、ピッチ角及びロール角で表される。よって、教示データの入力データには、理想と現実との各々の、ドローン10の位置、ドローン10のヨー角、ピッチ角、及びロール角のデータが含まれる。 The input data of the teacher data includes an ideal movement state of the drone 10 and an actual movement state of the drone 10 according to a signal indicating the content of movement from the operating device 500. As described above, the movement state is the position and attitude of the drone 10, and the attitude is represented by the yaw angle, pitch angle, and roll angle of the drone 10. Therefore, the input data of the teaching data includes data on the ideal and actual position of the drone 10, yaw angle, pitch angle, and roll angle of the drone 10.
 より具体的には、入力データには、理想と現実との各々のドローン10の位置として、例えば、ドローン10の本体12の中心の理想の3次元空間の位置(X0,Y0,Z0)と現実の3次元空間の位置(Xa,Ya,Za)とが入力に含まれる。また、入力データには、理想と現実との各々の、ドローン10の本体12の中心を基準とした3次元座標における、各軸回りの回転角であるヨー角(YAW0,YAWa)、ピッチ角(P0,Pa)、及びロール角(R0,Ra)が含まれる。 More specifically, the input data includes, for example, the ideal three-dimensional space position (X0, Y0, Z0) of the center of the main body 12 of the drone 10 and the actual position of the drone 10, respectively. The input includes the position (Xa, Ya, Za) in the three-dimensional space. In addition, the input data includes yaw angles (YAW0, YAWa), which are rotation angles around each axis, in three-dimensional coordinates based on the center of the main body 12 of the drone 10, and pitch angles ( P0, Pa) and roll angle (R0, Ra).
 なお、ヨー角は、例えば、ドローン10を上から見た場合のドローン10の進行方向を基準として右回りを正にした角度である。ピッチ角は、例えば、ドローン10を左側面から見た場合の水平を基準として左回りを正にした角度である。ロール角は、例えば、ドローン10を進行方向から見た場合の水平を基準として左回りを正にした角度である。 Note that the yaw angle is, for example, an angle in which clockwise rotation is positive based on the traveling direction of the drone 10 when the drone 10 is viewed from above. The pitch angle is, for example, an angle in which the counterclockwise rotation is positive with respect to the horizontal when the drone 10 is viewed from the left side. The roll angle is, for example, an angle in which the counterclockwise rotation is positive with respect to the horizontal when the drone 10 is viewed from the direction of travel.
 教師データの出力データは、ドローン10の故障に関するデータが含まれる。ドローン10の故障に関するデータには、ドローン10が故障しているのか否かを示すデータが含まれる。更に、故障に関するデータには、ドローン10が故障している場合には、故障している個所のデータと故障に対する対策を示すデータとが含まれる。 The output data of the teacher data includes data regarding the failure of the drone 10. The data regarding the malfunction of the drone 10 includes data indicating whether or not the drone 10 is malfunctioning. Furthermore, if the drone 10 is out of order, the data regarding the failure includes data on the location of the failure and data indicating countermeasures against the failure.
 より具体的な教師データを説明する。例として、以下の第1の教示データ~第7の教師データを説明する。  Explain more specific teacher data. As an example, the following first teaching data to seventh teaching data will be explained.
(第1の教師データ)
 第1の教師データを説明する。
 位置(X,Y,Z)=(0,0,0)から水平な状態で真上に上昇速度Vhで上昇する制限飛行試験をした。しかし、現実には、ドローン10は、水平に上昇したが、上昇速度がVh/5であった。
(First teacher data)
The first teaching data will be explained.
A limited flight test was conducted in which the aircraft ascended directly upward from the position (X, Y, Z) = (0, 0, 0) in a horizontal state at a climbing speed of Vh. However, in reality, the drone 10 rose horizontally, but the rising speed was Vh/5.
 第1の教師データの入力データには、ドローン10の理想の位置及び姿勢である、「X0=0、Y0=0、Z0=0、上昇速度=Vh、YAW0=0、P0=0、R0=0」と、ドローン10の現実の位置及び姿勢である、「Xa=0、Y0=a、Za=0、上昇速度=Vh/5、YAWa=0、Pa=0、Ra=0」と、がある。 The input data of the first teacher data includes the ideal position and attitude of the drone 10, "X0=0, Y0=0, Z0=0, rising speed=Vh, YAW0=0, P0=0, R0= 0'' and the actual position and attitude of the drone 10, ``Xa=0, Y0=a, Za=0, rising speed=Vh/5, YAWa=0, Pa=0, Ra=0''. be.
 このように「水平な状態で真上に上昇速度Vhで上昇すること」の指示があったが、現実には、ドローン10は、水平に上昇したが、上昇速度がVh/5であったのは、水平に上昇したので、プロペラのモータに故障はないが、フライトコントローラに設定されている、移動内容に応じて各モータに出力する電流の演算式が間違っていたためである。 In this way, there was an instruction to "climb directly overhead in a horizontal state at a climbing speed of Vh," but in reality, the drone 10 rose horizontally but at a climbing speed of Vh/5. The propeller motors were not at fault because the aircraft climbed horizontally, but the formula for calculating the current to be output to each motor depending on the content of the movement, which was set in the flight controller, was incorrect.
 よって、第1の教師データの出力データは次の通りである。即ち、出力データは、ドローン10が故障していることを示すデータ、故障個所のデータとして「フライトコントローラ」を示すデータ、及び対策を示すデータとして「フライトコントローラの演算式を調整する」ことを示すデータである。 Therefore, the output data of the first teacher data is as follows. That is, the output data includes data indicating that the drone 10 is malfunctioning, data indicating the "flight controller" as data on the location of the malfunction, and data indicating "adjusting the calculation formula of the flight controller" as data indicating the countermeasure. It is data.
 このように、第1の教師データの入力データと、第1の教師データの出力データとの間には、相関関係があることが理解される。 In this way, it is understood that there is a correlation between the input data of the first teacher data and the output data of the first teacher data.
(第2の教師データ)
 第2の教師データを説明する。
 位置(X,Y,Z)=(0,0,0)から水平な状態で真上に上昇速度Vhで上昇した後、左回りにロール角ryで傾斜する制限飛行試験をした。しかし、現実には、略上昇速度Vhで上昇したが、上昇の際、右回りにロール角rx傾斜し、左回りの傾斜の際、ロール角ry-rxで傾斜した。
(Second teacher data)
The second training data will be explained.
A limited flight test was conducted in which the aircraft climbed straight upward from the position (X, Y, Z) = (0, 0, 0) in a horizontal state at a climbing speed Vh, and then tilted counterclockwise at a roll angle ry. However, in reality, although the vehicle ascended at approximately the ascending speed Vh, when ascending, the vehicle tilted clockwise at a roll angle rx, and when tilting counterclockwise, the vehicle tilted at a roll angle ry−rx.
 第2の教師データの入力データには、ドローン10の理想の位置及び姿勢である、「X0=0、Y0=0、Z0=0、上昇速度=Vh、YAW0=0、P0=0、R0=0」→「R0=ry」と、ドローン10の現実の位置及び姿勢である、「X0=0、Y0=0、Z0=0、上昇速度=Vh、YAW0=0、P0=0、R0=-rx」→「R0=ry-rx」と、がある。 The input data of the second teacher data includes the ideal position and attitude of the drone 10, "X0=0, Y0=0, Z0=0, rising speed=Vh, YAW0=0, P0=0, R0= 0" → "R0=ry" and the actual position and attitude of the drone 10, "X0=0, Y0=0, Z0=0, rising speed=Vh, YAW0=0, P0=0, R0=- rx” → “R0=ry-rx”.
 このように「水平な状態で真上に上昇速度Vhで上昇した後、左回りにロール角rxで傾斜すること」の指示があったが、現実には、上昇の際、右回りにロール角rx傾斜し、左回りへの傾斜の際、ロール角ry-rxで傾斜したのは、キャリブレーション(calibration)が不正確であったこと、具体的には、キャリブレーション時に、右回りにロール角ryで傾斜しているのに、水平であるように、傾斜角度を検出するセンサについてキャリブレーションしてしまっていたためである。
 なお、キャリブレーションとは、センサで標準通りの値を得るために、標準器などを用いてそのセンサの偏りを計測したり、正しい値になるよう調整したりすることである。
In this way, there was an instruction to "climb straight upwards in a horizontal state at a climbing speed Vh, and then tilt counterclockwise at a roll angle rx," but in reality, when climbing, the roll angle is clockwise. The reason why the rx tilted and the roll angle ry-rx tilted counterclockwise was because the calibration was inaccurate. Specifically, during calibration, the roll angle was set clockwise. This is because the sensor that detects the tilt angle has been calibrated so that it is horizontal even though it is tilted at ry.
Note that calibration refers to measuring the bias of the sensor using a standard device or the like and adjusting it to obtain the correct value in order to obtain a standard value with the sensor.
 よって、第2の教師データの出力データは次の通りである。即ち、出力データは、ドローン10が故障していることを示すデータ、故障個所のデータとして「傾斜角度を検出するセンサ」を示すデータ、及び対策を示すデータとして「傾斜角度を検出するセンサについてキャリブレーションのし直し」ことを示すデータである。 Therefore, the output data of the second teacher data is as follows. That is, the output data includes data indicating that the drone 10 is malfunctioning, data indicating the "sensor that detects the tilt angle" as data on the malfunction location, and data indicating the "sensor that detects the tilt angle" as data indicating the countermeasure. This data shows that the system is being reworked.
 このように、第2の教師データの入力データと、第2の教師データの出力データとの間には、相関関係があることが理解される。 In this way, it is understood that there is a correlation between the input data of the second teacher data and the output data of the second teacher data.
(第3の教師データ)
 第3の教師データを説明する。
 位置(X,Y,Z)=(0,0,H)での空中停止飛行する制限飛行試験をした。しかし、現実には、ドローン10は、Xa=0、Ya=0、Za=H-h、YAWa=0、Pa=0、Ra=0であった。これは、ドローン10は現実には、姿勢は理想通りであったが、高さ(Z)がh不足していたことを意味する。
(Third teacher data)
The third training data will be explained.
A limited flight test was conducted in which the aircraft stopped in the air at position (X, Y, Z) = (0, 0, H). However, in reality, the drone 10 had Xa=0, Ya=0, Za=HH, YAWa=0, Pa=0, and Ra=0. This means that although the drone 10 actually had the ideal attitude, the height (Z) was insufficient by h.
 第3の教師データの入力データには、ドローン10の理想の位置及び姿勢である、「X0=0、Y0=0、Z0=H、YAW0=0、P0=0、R0=0」と、ドローン10の現実の位置及び姿勢である、「Xa=0、Ya=0、Za=H-h、YAWa=0、Pa=0、Ra=0」と、がある。 The input data of the third training data includes "X0=0, Y0=0, Z0=H, YAW0=0, P0=0, R0=0", which is the ideal position and attitude of the drone 10, and There are ten actual positions and orientations: "Xa=0, Ya=0, Za=Hh, YAWa=0, Pa=0, Ra=0".
 このように、位置(X,Y,Z)=(0,0,H)での空中停止飛行のはずが、姿勢に問題はなかったが高さがh不足する飛行となったのは、4つのプロペラの回転速度が均等に不足しているからである。4つのプロペラの回転速度が均等に不足したのは、電源に出力不足の故障が発生したためである。 In this way, the flight was supposed to be stopped in the air at the position (X, Y, Z) = (0, 0, H), but there was no problem with the attitude, but the flight was short in height by 4. This is because the rotation speeds of the two propellers are insufficient. The reason why the rotation speeds of the four propellers were insufficient evenly was due to a failure in the power supply that caused an insufficient output.
 よって、第3の教師データの出力データは次の通りである。即ち、出力データは、ドローン10が故障していることを示すデータ、故障個所のデータとして「電源」を示すデータ、及び対策を示すデータとして「電源の交換」を示すデータである。 Therefore, the output data of the third teacher data is as follows. That is, the output data includes data indicating that the drone 10 is out of order, data indicating "power source" as data on the location of the failure, and data indicating "replacement of power source" as data indicating countermeasures.
 このように、第3の教師データの入力データと、第3の教師データの出力データとの間には、相関関係があることが理解される。 In this way, it is understood that there is a correlation between the input data of the third teacher data and the output data of the third teacher data.
(第4の教師データ)
 第4の教師データを説明する。
 位置(X,Y,Z)=(0,0,H)での空中停止飛行する制限飛行試験をした。しかし、現実には、ドローン10は、Xa=0、Ya=0、Za=H+h、YAWa=0、Pa=0、Ra=0であった。これは、ドローン10は現実には、姿勢は理想通りであったが、高さ(Z)がh高過ぎたことを意味する。
(Fourth teacher data)
The fourth training data will be explained.
A limited flight test was conducted in which the aircraft stopped in the air at position (X, Y, Z) = (0, 0, H). However, in reality, the drone 10 had Xa=0, Ya=0, Za=H+h, YAWa=0, Pa=0, and Ra=0. This means that although the attitude of the drone 10 was actually ideal, the height (Z) was h too high.
 第4の教師データの入力データには、ドローン10の理想の位置及び姿勢である、「X0=0、Y0=0、Z0=H、YAW0=0、P0=0、R0=0」と、ドローン10の現実の位置及び姿勢である、「Xa=0、Ya=0、Za=H+h、YAWa=0、Pa=0、Ra=0」と、がある。 The input data of the fourth teacher data includes "X0=0, Y0=0, Z0=H, YAW0=0, P0=0, R0=0", which is the ideal position and attitude of the drone 10, and There are ten actual positions and orientations, "Xa=0, Ya=0, Za=H+h, YAWa=0, Pa=0, Ra=0."
 このように、位置(X,Y,Z)=(0,0,H)での空中停止飛行のはずが、姿勢に問題はなかったが高さがh高過ぎた飛行となったのは、4つのプロペラの回転速度が均等に過多であったからである。4つのプロペラの回転速度が均等に過多となったのは、電源に出力過多の故障が発生したためである。 In this way, the flight was supposed to be suspended in the air at the position (X, Y, Z) = (0, 0, H), but there was no problem with the attitude, but the height was h too high. This is because the rotational speeds of the four propellers were equally excessive. The reason why the rotational speeds of the four propellers were uniformly excessive was due to a failure in the power supply causing excessive output.
 よって、第4の教師データの出力データは次の通りである。即ち、ドローン10が故障していることを示すデータ、故障個所のデータとして「電源」を示すデータ、及び対策を示すデータとして「電源の交換」を示すデータである。 Therefore, the output data of the fourth teacher data is as follows. That is, data indicating that the drone 10 is out of order, data indicating "power supply" as data on the location of the failure, and data indicating "replacement of power supply" as data indicating countermeasures.
 このように、第4の教師データの入力データと、第4の教師データの出力データとの間には、相関関係があることが理解される。 In this way, it is understood that there is a correlation between the input data of the fourth teacher data and the output data of the fourth teacher data.
(第5の教師データ)
 第5の教師データを説明する。
 位置(X,Y,Z)=(0,0,H)での高さHでの左回りのロール角r0の飛行をする制限飛行試験をした。なお、本実施の形態のドローン10では、左回りのロール角が増加する飛行は、右前側のプロペラの回転速度及び右後側のプロペラの回転速度を、左前側のプロペラの回転速度及び左後側のプロペラの回転速度より、小さくすることにより、行う。
 しかし、現実には、ドローン10は、Xa=0、Ya=0、Za=H+h0、YAWa=0、Pa=0、Ra=r0-rであった。これは、高さがh0高く、左回りのロール角がr角の不足していたことを意味する。
(Fifth teacher data)
The fifth training data will be explained.
A limited flight test was conducted in which the aircraft flew counterclockwise at a height H at a position (X, Y, Z) = (0, 0, H) and a counterclockwise roll angle r0. In addition, in the drone 10 of the present embodiment, when flying in which the counterclockwise roll angle increases, the rotation speed of the right front propeller and the rotation speed of the right rear propeller are changed to the rotation speed of the left front propeller and the rotation speed of the left rear propeller. This is done by making the rotation speed smaller than that of the side propeller.
However, in reality, the drone 10 had Xa=0, Ya=0, Za=H+h0, YAWa=0, Pa=0, and Ra=r0-r. This means that the height was high by h0 and the counterclockwise roll angle was short of the r angle.
 第5の教師データの入力データには、ドローン10の理想の位置及び姿勢である、「X0=0、Y0=0、Z0=H、YAW0=0、P0=0、R0=r0」と、ドローン10の現実の位置及び姿勢である、「Xa=0、Ya=0、Za=H+h0、YAWa=0、Pa=0、Ra=r0-r」と、がある。 The input data of the fifth teacher data includes "X0=0, Y0=0, Z0=H, YAW0=0, P0=0, R0=r0", which is the ideal position and attitude of the drone 10, and There are ten actual positions and orientations: "Xa=0, Ya=0, Za=H+h0, YAWa=0, Pa=0, Ra=r0-r".
 このような高さがh0高く且つ左回りのロール角がr角の不足していた飛行となったのは、右前側のプロペラの回転速度の過多と右後側のプロペラの回転速度の過多とがあったからである。右前側のプロペラの回転速度の過多と右後側のプロペラの回転速度の過多とがあったのは、右前側のプロペラのモータ及び右後側のプロペラのモータの回転速度が不足する故障が発生したためである。 The reason for this kind of flight where the height was high h0 and the counterclockwise roll angle was insufficient r angle was due to the excessive rotation speed of the right front propeller and the excessive rotation speed of the right rear propeller. This is because there was The reason why there was an excessive rotation speed of the right front propeller and an excessive rotation speed of the right rear propeller was due to a failure in which the rotation speed of the right front propeller motor and the right rear propeller motor was insufficient. This is because.
 よって、第5の教師データの出力データは次の通りである。即ち、ドローン10が故障していることを示すデータ、故障個所のデータとして「右前側のプロペラのモータ及び右後側のプロペラのモータ」を示すデータ、及び対策を示すデータとして「右前側のプロペラのモータ及び右後側のプロペラのモータの交換」を示すデータである。 Therefore, the output data of the fifth teacher data is as follows. In other words, data indicating that the drone 10 is malfunctioning, data indicating the failure location as "the right front propeller motor and right rear propeller motor", and data indicating the countermeasure as "the right front propeller motor". This data shows the replacement of the motor and the right rear propeller motor.
 このように、第5の教師データの入力データと、第5の教師データの出力データとの間には、相関関係があることが理解される。 In this way, it is understood that there is a correlation between the input data of the fifth teacher data and the output data of the fifth teacher data.
(第6の教師データ)
 第6の教師データを説明する。
 位置(X,Y,Z)=(0,0,H)においてドローン10の前側が下方にp0角傾く飛行をする制限飛行試験をした。なお、本実施の形態のドローン10では、ドローン10の前側が下方に傾く飛行は、右前側のプロペラの回転速度及び左前側のプロペラの回転速度を、右後側のプロペラの回転速度及び左後側のプロペラの回転速度より、小さくすることにより、行う。
 しかし、現実には、ドローン10は、Xa=0、Ya=0、Za=H+h0、YAWa=0、Pa=p0-p、Ra=0であった。これは、高さがh0高く、ドローン10の前側が下方に傾くピッチ角がp角の不足していたことを意味する。
(Sixth teacher data)
The sixth training data will be explained.
A limited flight test was conducted in which the front side of the drone 10 was tilted downward at an angle of p0 at the position (X, Y, Z) = (0, 0, H). In addition, in the drone 10 of this embodiment, when the front side of the drone 10 is tilted downward, the rotation speed of the right front propeller and the rotation speed of the left front propeller are changed to the rotation speed of the right rear propeller and the left rear propeller. This is done by making the rotation speed smaller than that of the side propeller.
However, in reality, the drone 10 has Xa=0, Ya=0, Za=H+h0, YAWa=0, Pa=p0-p, and Ra=0. This means that the height was higher than h0, and the pitch angle at which the front side of the drone 10 tilted downward was insufficient to the p angle.
 第6の教師データの入力データには、ドローン10の理想の位置及び姿勢である、「X0=0、Y0=0、Z0=H、YAW0=0、P0=p0、R0=0」と、ドローン10の現実の位置及び姿勢である、「Xa=0、Ya=0、Za=H+h0、YAWa=0、Pa=p0-p、Ra=0」と、がある。 The input data of the sixth teacher data includes "X0=0, Y0=0, Z0=H, YAW0=0, P0=p0, R0=0", which is the ideal position and attitude of the drone 10, and There are ten actual positions and orientations: "Xa=0, Ya=0, Za=H+h0, YAWa=0, Pa=p0-p, Ra=0".
 このような高さがh0高く且つドローン10の前側が下方に傾くピッチ角がp角の不足していた飛行となったのは、右前側のプロペラの回転速度が過多となり且つ左前側のプロペラの回転速度が過多となったからである。右前側のプロペラの回転速度が過多となり且つ左前側のプロペラの回転速度が過多となったのは、右前側のプロペラのモータ及び左前側のプロペラのモータに、回転速度が過多となる故障が発生したためである。 The reason why the height was high h0 and the pitch angle where the front side of the drone 10 tilted downward was insufficient for the p angle was because the rotational speed of the front right propeller was too high and the front left propeller was too fast. This is because the rotational speed was excessive. The reason why the rotation speed of the right front propeller became excessive and the rotation speed of the left front propeller became excessive is that a failure occurred in the right front propeller motor and the left front propeller motor causing the rotation speed to be excessive. This is because.
 よって、第6の教師データの出力データは次の通りである。即ち、ドローン10が故障していることを示すデータ、故障個所のデータとして「右前側のプロペラのモータ及び左前側のプロペラのモータ」を示すデータ、及び対策を示すデータとして「右前側のプロペラのモータ及び左前側のプロペラのモータの交換」を示すデータである。 Therefore, the output data of the sixth teacher data is as follows. In other words, data indicating that the drone 10 is malfunctioning, data indicating "the right front propeller motor and left front propeller motor" as data on the malfunction location, and data indicating "the right front propeller motor" as data indicating the countermeasure. This data indicates "replacement of the motor and front left propeller motor."
 このように、第6の教師データの入力データと、第6の教師データの出力データとの間には、相関関係があることが理解される。 In this way, it is understood that there is a correlation between the input data of the sixth teacher data and the output data of the sixth teacher data.
(第7の教師データ)
 第7の教師データを説明する。
 位置(X,Y,Z)=(0,0,H)においてドローン10の方向がy0角右方向に向く飛行をする制限飛行試験をした。なお、本実施の形態のドローン10では、ドローン10の方向が右方向に向く飛行は、右後側のプロペラの回転速度及び左前側のプロペラの回転速度を、右前側のプロペラの回転速度及び左後側のプロペラの回転速度より、大きくすることにより、行う。
 しかし、現実には、ドローン10は、Xa=0、Ya=0、Za=H-h0、YAWa=y0-y、Pa0=、Ra=0であった。これは、高さがh0不足し、ドローン10の右方向に向く角度がy角不足していたことを意味する。
(7th teacher data)
The seventh training data will be explained.
A limited flight test was conducted in which the drone 10 flew at the position (X, Y, Z) = (0, 0, H) with the direction of the drone 10 facing to the right at the y0 angle. In addition, in the drone 10 of this embodiment, when the drone 10 flies in the right direction, the rotation speed of the right rear propeller and the rotation speed of the left front propeller are changed to the rotation speed of the right front propeller and the left propeller. This is done by increasing the rotational speed of the rear propeller.
However, in reality, the drone 10 has Xa=0, Ya=0, Za=H−h0, YAWa=y0−y, Pa0=, and Ra=0. This means that the height was short by h0, and the rightward angle of the drone 10 was short by y angle.
 第7の教師データの入力データには、ドローン10の理想の位置及び姿勢である、「X0=0、Y0=0、Z0=H、YAW0=y0、P0=0、R0=0」と、ドローン10の現実の位置及び姿勢である、「Xa=0、Ya=0、Za=H-h0、YAWa=y0-y、Pa0=、Ra=0」と、がある。 The input data of the seventh teacher data includes "X0=0, Y0=0, Z0=H, YAW0=y0, P0=0, R0=0", which is the ideal position and attitude of the drone 10, and There are ten actual positions and orientations, "Xa=0, Ya=0, Za=H−h0, YAWa=y0−y, Pa0=, Ra=0."
 このような高さがh0不足し且つドローン10の右方向に向く角度がy角不足していた飛行となったのは、右後側のプロペラの回転速度が不足し且つ左前側のプロペラの回転速度が不足したからである。右後側のプロペラの回転速度が不足し且つ左前側のプロペラの回転速度が不足したのは、右後側のプロペラのモータ及び左前側のプロペラのモータに、回転速度が不足する故障が発生したためである。 The reason for this flight was that the height was insufficient h0 and the rightward angle of the drone 10 was insufficient y angle, because the rotation speed of the right rear propeller was insufficient and the rotation speed of the left front propeller was insufficient. This is because the speed was insufficient. The reason why the rotation speed of the right rear propeller was insufficient and the rotation speed of the left front propeller was insufficient was that a failure occurred in the right rear propeller motor and the left front propeller motor that caused the rotation speed to be insufficient. It is.
 よって、第7の教師データの出力データは次の通りである。即ち、ドローン10が故障していることを示すデータ、故障個所のデータとして「右後側のプロペラのモータ及び左前側のプロペラのモータ」を示すデータ、及び対策を示すデータとして「右後側のプロペラのモータ及び左前側のプロペラのモータの交換」を示すデータである。 Therefore, the output data of the seventh teacher data is as follows. In other words, data indicating that the drone 10 is malfunctioning, data indicating the failure location as "right rear propeller motor and left front propeller motor", and data indicating countermeasures as "right rear propeller motor". This data indicates the replacement of the propeller motor and the front left propeller motor.
 このように、第7の教師データの入力データと、第7の教師データの出力データとの間には、相関関係があることが理解される。 In this way, it is understood that there is a correlation between the input data of the seventh teacher data and the output data of the seventh teacher data.
 第3の教師データ~第7の教師データの制限飛行試験の際は、フライトコントローラは正常であり、各センサのキャリブレーションも正確に行われていることを前提としている。 During the limited flight test for the third to seventh teacher data, it is assumed that the flight controller is normal and that each sensor is calibrated accurately.
 第1の教師データ~第7の教師データは例示であり、教師データは、第1の教師データ~第7の教師データに限定されず、その他の種々の制限飛行試験を行って、多数の教師データを得る。 The first teacher data to the seventh teacher data are examples, and the teacher data is not limited to the first teacher data to the seventh teacher data. Get data.
 ステップ500SAで、学習部500における取得部500Aは、具体的には、上記のように2次記憶装置222に記憶された、故障に関するデータを特定するための情報を入力データとし且つドローン10の故障に関するデータを出力データとする教師データを複数取得する。なお、上記のように、故障に関するデータを特定するための情報は、操作装置500からの移動の内容を示す信号に応じたドローン10の理想の移動状態(位置及び姿勢)及びドローン10の現実の移動状態(位置及び姿勢)を示すデータである。 In step 500SA, the acquisition unit 500A in the learning unit 500 specifically inputs the information for specifying the data related to the failure stored in the secondary storage device 222 as described above, and Obtain multiple pieces of training data whose output data is data related to . As described above, the information for specifying the data regarding the failure includes the ideal movement state (position and attitude) of the drone 10 according to the signal indicating the movement details from the operating device 500 and the actual movement state of the drone 10. This is data indicating the movement state (position and orientation).
 ステップ500SBで、学習部500の学習処理部500Bは、教師データを用いて、ドローン10の故障に関するデータを特定するための情報を入力とし且つドローン10の故障に関するデータを出力とするモデル222Mを学習する。学習処理部500Bは、教師データのドローン10の故障に関するデータを特定するための情報を入力層に入力し、出力層から、教師データのドローン10の故障に関するデータが出力されるように、中間層のパラメータを学習する。 In step 500SB, the learning processing unit 500B of the learning unit 500 uses the teacher data to learn a model 222M that inputs information for specifying data regarding the failure of the drone 10 and outputs data regarding the failure of the drone 10. do. The learning processing unit 500B inputs information for specifying data regarding the failure of the drone 10 in the teaching data to the input layer, and inputs information to the intermediate layer so that the data regarding the failure in the drone 10 in the teaching data is output from the output layer. learn the parameters of
 以上説明したように、学習部500は、上記教師データを用いてモデル222Mを学習することにより、学習済みモデル222Mを生成する。ところで、学習部500が学習するモデル222Mは、第1に、全く学習されていないモデルと、第2に、学習済みモデル222Mと、がある。よって、学習部500が全く学習されていないモデルを学習することにより、初めて学習された学習済みのモデル222Mが生成される。また、学習部500が学習済みモデル222Mを学習することにより、更に学習された学習済みのモデル222Mが生成される。 As explained above, the learning unit 500 generates the learned model 222M by learning the model 222M using the teacher data. By the way, the models 222M that the learning unit 500 learns include, firstly, a model that has not been trained at all, and secondly, a trained model 222M. Therefore, by learning a model that has not been trained at all by the learning unit 500, a trained model 222M that has been trained for the first time is generated. Furthermore, by the learning unit 500 learning the learned model 222M, a further learned model 222M is generated.
 以上説明した例では、故障に関するデータを特定するための情報として、ドローン10の理想の移動状態(位置及び姿勢)及びドローン10の現実の移動状態(位置及び姿勢)を用いているが、本開示の技術はこれに限定されない。例えば、ドローン10の理想の移動状態及びドローン10の現実の移動状態に代えて、ドローン10の理想の移動状態とドローン10の現実の移動状態との一致の度合いを示す値を用いてもよい。 In the example described above, the ideal movement state (position and attitude) of the drone 10 and the actual movement state (position and attitude) of the drone 10 are used as information for identifying data related to a failure. The technology is not limited to this. For example, instead of the ideal movement state of the drone 10 and the actual movement state of the drone 10, a value indicating the degree of coincidence between the ideal movement state of the drone 10 and the actual movement state of the drone 10 may be used.
 ここで、一致の度合いを示す値を説明する。一致の度合いを示す値には、第1の値~第5の値がある。
 一致の度合いを示す第1の値~第5の値は、本開示の技術の「故障に関するデータを特定するための情報」の一例である。
Here, the value indicating the degree of coincidence will be explained. Values indicating the degree of coincidence include first to fifth values.
The first to fifth values indicating the degree of coincidence are an example of "information for specifying data related to a failure" of the technology of the present disclosure.
 一致の度合いを示す第1の値は、指示信号を受信してから所定時間経過した時のドローン10の理想の3次元空間の位置と現実の3次元空間の位置との一致の度合いを示す値である。 The first value indicating the degree of coincidence is a value indicating the degree of coincidence between the ideal three-dimensional space position of the drone 10 and the actual three-dimensional space position after a predetermined period of time has passed since receiving the instruction signal. It is.
 支柱110が伸びていない当初の航空機保持装置150の載置台114の中心が、3次元空間の原点、具体的には、3次元空間における3方向(X方向、Y方向、及びZ方向)の中心の位置(即ち、原点)とされる。航空機保持装置150の載置台114の中心を通る平面において、載置台114の中心を通る所定方向がX方向として定められ且つY方向として、X方向に垂直な方向が定められる。Z方向が、X方向及びY方向の各々に垂直な方向(鉛直方向、つまり、高さ方向)として定められる。 The center of the mounting table 114 of the original aircraft holding device 150 when the support column 110 is not extended is the origin of the three-dimensional space, specifically, the center of the three directions (X direction, Y direction, and Z direction) in the three-dimensional space. (i.e., the origin). In a plane passing through the center of the platform 114 of the aircraft holding device 150, a predetermined direction passing through the center of the platform 114 is defined as the X direction, and a direction perpendicular to the X direction is defined as the Y direction. The Z direction is defined as a direction (vertical direction, that is, height direction) perpendicular to each of the X direction and the Y direction.
 一致の度合いを示す第1の値は、指示信号を受信してから所定時間経過した時のドローン10の本体12の中心の理想の3次元空間の位置(X0,Y0,Z0)と現実の3次元空間の位置(Xa,Ya,Za)との一致の度合いである。より詳細に説明すると、第1の値は、指示信号を受信してから所定時間経過した時のXa/X0、Ya/Y0、Za/Z0、及びこれらの平均値である。 The first value indicating the degree of coincidence is the difference between the ideal three-dimensional space position (X0, Y0, Z0) of the center of the main body 12 of the drone 10 when a predetermined period of time has passed since receiving the instruction signal and the actual three-dimensional position (X0, Y0, Z0). This is the degree of coincidence with the position (Xa, Ya, Za) in the dimensional space. To explain in more detail, the first value is Xa/X0, Ya/Y0, Za/Z0, and their average value when a predetermined time has elapsed since receiving the instruction signal.
 一致の度合いを示す第2~4の値は、指示信号を受信してから所定時間経過した時のドローン10の理想の姿勢と現実の姿勢との一致の度合いを示す値である。姿勢は、ドローン10の本体12の中心を基準とした3次元座標において、各軸回りの回転角であるヨー角、ピッチ角、及びロール角で表される。指示信号を受信してから所定時間経過した時のドローン10の理想のヨー角をY0とし、現実のヨー角をYaとすると、第2の値は、Ya/Y0である。指示信号を受信してから所定時間経過した時のドローン10の理想のピッチ角をP0とし、現実のピッチ角をPaとすると、第3の値は、Pa/P0である。指示信号を受信してから所定時間経過した時のドローン10の理想のロール角をR0とし、現実のロール角をRaとすると、第4の値は、Ra/R0である。 The second to fourth values indicating the degree of coincidence are values indicating the degree of coincidence between the ideal posture and the actual posture of the drone 10 when a predetermined period of time has passed since the instruction signal was received. The attitude is represented by a yaw angle, a pitch angle, and a roll angle, which are rotation angles around each axis, in three-dimensional coordinates based on the center of the main body 12 of the drone 10. If the ideal yaw angle of the drone 10 when a predetermined time has elapsed after receiving the instruction signal is Y0, and the actual yaw angle is Ya, then the second value is Ya/Y0. Assuming that the ideal pitch angle of the drone 10 when a predetermined time has elapsed after receiving the instruction signal is P0, and the actual pitch angle is Pa, the third value is Pa/P0. Assuming that the ideal roll angle of the drone 10 after a predetermined period of time has passed since receiving the instruction signal is R0, and the actual roll angle is Ra, the fourth value is Ra/R0.
 一致の度合いを示す第5の値は、エリア224S2に示されるドローン10の現実の状態の画像及びエリア224S1に示されるドローン10の理想の状態の画像の一致の度合いを示す値である。具体的には、ドローン10の現実の状態の画像とドローン10の理想の状態の画像との各々から、ドローン10の対応する複数の点を抽出する。対応するドローン10の複数の点としては、例えば、各プロペラの中心点、本体の中心点等である。次に、例えば、ドローン10の現実の状態の画像から抽出した複数の点を、ドローン10の理想の状態の画像に重畳する。ドローン10の現実の状態の画像から抽出し理想の状態の画像に重畳した複数の点と、理想の状態の画像から抽出した複数の点との間の統計値を、一致の度合いを示す第5の値として、計算する。 The fifth value indicating the degree of coincidence is a value indicating the degree of coincidence between the image of the actual state of the drone 10 shown in the area 224S2 and the image of the ideal state of the drone 10 shown in the area 224S1. Specifically, a plurality of corresponding points of the drone 10 are extracted from each of the image of the actual state of the drone 10 and the image of the ideal state of the drone 10. Examples of the plurality of corresponding points on the drone 10 include the center point of each propeller and the center point of the main body. Next, for example, a plurality of points extracted from the image of the drone 10 in its actual state are superimposed on the image of the drone 10 in its ideal state. The statistical value between the plurality of points extracted from the image of the actual state of the drone 10 and superimposed on the image of the ideal state and the plurality of points extracted from the image of the ideal state is determined by a fifth index indicating the degree of coincidence. Calculate as the value of .
 具体的には、ドローン10の現実の状態の画像から抽出した第1~第4のプロペラの中心点をドローン10の理想の状態の画像に重畳し、重畳した第1~第4のプロペラの中心点と、ドローン10の理想の状態の画像から抽出した第1~第4のプロペラの中心点との統計値を計算する。統計値は、具体的には、重畳した第1~第4のプロペラの中心点のそれぞれと理想の状態の画像から抽出した第1~第4のプロペラの中心点のそれぞれとの間の距離の合計、当該距離の最大値、及び当該距離の最大値から最小値を減算した値等である。 Specifically, the centers of the first to fourth propellers extracted from the image of the actual state of the drone 10 are superimposed on the image of the ideal state of the drone 10, and the centers of the superimposed first to fourth propellers are Statistical values are calculated between the points and the center points of the first to fourth propellers extracted from the image of the ideal state of the drone 10. Specifically, the statistical value is the distance between each of the center points of the superimposed first to fourth propellers and each of the center points of the first to fourth propellers extracted from the ideal state image. These include the total, the maximum value of the distance, and the value obtained by subtracting the minimum value from the maximum value of the distance.
 なお、ドローン10の理想の状態の画像から抽出した複数の点を、ドローン10の現実の状態の画像に重畳して、第5の値を計算してもよい。 Note that the fifth value may be calculated by superimposing a plurality of points extracted from the image of the ideal state of the drone 10 on the image of the actual state of the drone 10.
 (ドローン10の故障に関するデータの特定)
 次に、ドローン10の故障に関するデータを特定する処理のプログラムを説明する。ドローン10の故障に関するデータを特定する処理には、第1に、故障に関するデータを特定するための情報を見たオペレータにより指示された場合に、ドローン10の故障に関するデータを特定する第1の処理(図8参照)と、第2に、ドローン10の故障に関するデータを自動的に特定する第2の処理(図12参照)とがある。
(Identification of data regarding failure of drone 10)
Next, a program for processing to specify data regarding a failure of the drone 10 will be explained. The process of identifying the data regarding the failure of the drone 10 includes, firstly, a first process of identifying the data regarding the failure of the drone 10 when instructed by the operator who has viewed the information for identifying the data regarding the failure. (See FIG. 8), and secondly, a second process (see FIG. 12) that automatically identifies data related to a failure of the drone 10.
 上記のように、ドローン10の理想の位置及び姿勢とドローン10の現実の位置及び姿勢との表示(図9~図11)を見たり、上記制限飛行試験でのドローン10の飛行状態を見たり、すると、オペレータは、ドローン10に予め定められた応答特性を有していないか否かを判断することができる。オペレータは、ドローン10に予め定められた応答特性を有していないと判断した場合、ドローン10が故障していると判断し、ドローン10を検査して、故障個所を発見してもよい。 As mentioned above, you can see the display of the ideal position and attitude of the drone 10 and the actual position and attitude of the drone 10 (Figures 9 to 11), and see the flight status of the drone 10 in the above limited flight test. Then, the operator can determine whether the drone 10 has a predetermined response characteristic. If the operator determines that the drone 10 does not have a predetermined response characteristic, the operator may determine that the drone 10 is malfunctioning, and may inspect the drone 10 to discover the malfunction location.
 しかし、本実施の形態では、情報出力装置170は、ドローン10の故障に関するデータを特定する処理のプログラムを実行する。 However, in the present embodiment, the information output device 170 executes a program for processing to specify data related to a failure of the drone 10.
 図8には、情報出力装置170のCPU212が実行する故障に関するデータを特定する第1の処理の特定プログラム222P3のフローチャートが示されている。図8に示す故障に関するデータを特定する第1の処理の特定プログラム222P3は、図示しない実行指示ボタンがオンされると、スタートする。 FIG. 8 shows a flowchart of the identification program 222P3 of the first process for identifying data related to a failure, which is executed by the CPU 212 of the information output device 170. The identification program 222P3 of the first process for identifying data related to a failure shown in FIG. 8 starts when an execution instruction button (not shown) is turned on.
 ステップ111で、読み出し部512は、ドローン10の故障に関するデータを特定するための情報を、2次記憶装置222から読み出し、表示部514は、読み出したドローン10の故障に関するデータを特定するための情報を、図9~図11に示すように、ディスプレイ224に表示する。 In step 111, the reading unit 512 reads information for specifying the data regarding the failure of the drone 10 from the secondary storage device 222, and the display unit 514 displays the read information for specifying the data regarding the failure of the drone 10. is displayed on the display 224 as shown in FIGS. 9 to 11.
 図9には、ドローン10の故障に関するデータを特定するための情報を表示するディスプレイ224のスクリーン224Sが示されている。図9に示すように、スクリーン224は、3個のエリア224S1、224S2、224S3を有する。 FIG. 9 shows a screen 224S of the display 224 that displays information for specifying data regarding a malfunction of the drone 10. As shown in FIG. 9, the screen 224 has three areas 224S1, 224S2, and 224S3.
 エリア224S1について説明する。処理部502は、カメラ202N1~202N4の各々で予め撮影されたドローン10の各画像を、指示信号を受信してから所定時間経過した時のドローン10の理想の移動状態(位置及び姿勢)に対応するように、変形する。処理部502は、エリア224S1に、カメラ202N1~202N4毎に切り替えて、上記変形した画像(即ち、ドローン10の理想の移動状態(即ち、位置及び姿勢)の画像)を、指示信号を受信してから所定時間経過した時に対応して表示する。 Area 224S1 will be explained. The processing unit 502 converts each image of the drone 10 taken in advance by each of the cameras 202N1 to 202N4 into correspondence with the ideal movement state (position and attitude) of the drone 10 when a predetermined period of time has elapsed since receiving the instruction signal. Transform as you do. The processing unit 502 switches each of the cameras 202N1 to 202N4 to the area 224S1 and displays the transformed image (that is, the image of the ideal movement state (that is, the position and attitude) of the drone 10) after receiving the instruction signal. The corresponding display is displayed when a predetermined period of time has elapsed since then.
 次に、エリア224S2を説明する。処理部502は、エリア224S2に、指示信号を受信してから所定時間経過した時のカメラ202N1~202N4で得られたドローン10の現実の移動状態(即ち、位置及び姿勢)の画像を、カメラ202N1~202N4毎に切り替えて、表示する。 Next, the area 224S2 will be explained. The processing unit 502 sends images of the actual movement state (i.e., position and orientation) of the drone 10 obtained by the cameras 202N1 to 202N4 after a predetermined period of time has passed since receiving the instruction signal to the area 224S2. - Switch and display every 202N4.
 エリア224S2に示されるドローン10の現実の状態の画像が、エリア224S1に示されるドローン10の理想の状態の画像と、位置及び姿勢において、異なれば異なるほど、ドローン10の現実の応答特性が、ドローン10の種類の上記記憶された応答特性より悪いことが理解される。 The more the image of the actual state of the drone 10 shown in the area 224S2 differs in position and attitude from the image of the ideal state of the drone 10 shown in the area 224S1, the more the actual response characteristics of the drone 10 differ from the image of the ideal state of the drone 10 shown in the area 224S1. It is understood that this is worse than the 10 types of above-mentioned stored response characteristics.
 以上の例では、処理部502は、エリア224S1とエリア224S2とに、カメラ202N1~202N4毎に切り替えて、上記変形した画像とドローン10の現実の画像とを表示しているが、本開示の技術はこれに限定されない。例えば、エリア224S1とエリア224S2との各領域を、カメラ202N1~202N4に対応するようにカメラの個数で分割し、各領域に、上記各変形した画像とドローン10の各現実の画像とを表示してもよい。 In the above example, the processing unit 502 switches between the area 224S1 and the area 224S2 for each of the cameras 202N1 to 202N4 to display the transformed image and the actual image of the drone 10, but the technology of the present disclosure is not limited to this. For example, each region of area 224S1 and area 224S2 is divided by the number of cameras so as to correspond to cameras 202N1 to 202N4, and each of the transformed images and each actual image of drone 10 are displayed in each region. It's okay.
 エリア224S2に示されるドローン10の現実の状態の画像及びエリア224S1に示されるドローン10の理想の状態の画像は、本開示の技術の「故障に関するデータを特定するための情報」の一例である。 The image of the actual state of the drone 10 shown in the area 224S2 and the image of the ideal state of the drone 10 shown in the area 224S1 are examples of "information for identifying data related to failure" of the technology of the present disclosure.
 エリア224S3は、指示信号を受信してから所定時間経過した時のドローン10の理想の位置及び姿勢と現実の位置及び姿勢との一致の度合いを示す値を表示するエリアである。 The area 224S3 is an area that displays a value indicating the degree of agreement between the ideal position and attitude of the drone 10 and the actual position and attitude when a predetermined time has elapsed since receiving the instruction signal.
 エリア224S3には、一致の度合いを示す第1の値~第5の値と共に、その値の説明を表示してもよい。例えば、第1の値の説明としては、「ドローン10の理想の3次元空間の位置と現実の3次元空間の位置との一致の度合いを示す値」である。なお、第2の値~第5の値の説明も、第1の値の説明と同様に、各値の定義である。 The area 224S3 may display the first to fifth values indicating the degree of matching, as well as an explanation of the values. For example, the first value is described as "a value indicating the degree of agreement between the ideal three-dimensional space position of the drone 10 and the actual three-dimensional space position." Note that the explanation of the second value to the fifth value is also the definition of each value, similar to the explanation of the first value.
 エリア224S3に表示される第1の値~第4の値の各々が1から異なれば異なるほど、ドローン10の現実の応答特性が、ドローン10の種類の上記記憶された応答特性より悪いことが理解される。エリア224S3に表示される第5の値が大きければ大きいほど、ドローン10の現実の応答特性が、ドローン10の種類の上記記憶された応答特性より悪いことが理解される。 It is understood that the more each of the first to fourth values displayed in the area 224S3 differs from 1, the worse the actual response characteristics of the drone 10 are than the stored response characteristics of the type of the drone 10. be done. It is understood that the larger the fifth value displayed in the area 224S3, the worse the actual response characteristics of the drone 10 are than the stored response characteristics of the type of the drone 10.
 図10には、ディスプレイ224に表示される、スタートボダンがオンされたときから、ストップボタンがオンされるまでの間の情報出力処理プログラム222P1がスタートしてからの経過時間に対するドローン10の高さの変化のグラフが示されている。ドローン10の理想の高さの時間変化が実線で示され、ドローン10の現実の高さの時間変化が点線で示されている。点線で示されるドローン10の現実の高さの時間変化が、実線で示されドローン10の理想の高さの時間変化から異なれば異なるほど、ドローン10の応答特性が、より悪いことが理解される。具体的には、図9に示す例では、操作装置50から送信された指示信号により示される移動の内容は、実線で示すように、支柱110が伸びていない当初の時から徐々に上昇させ、所定の高さで空中停止飛行(即ち、ホバリング(hovering))させるものである。しかし、ドローン10の現実の移動は、点線で示すように、支柱110が伸びていない当初の時から徐々に上昇し、空中停止飛行してが、上昇速度及び空中停止飛行する高さが所定の高さより低かった。よって、ドローン10の上昇速度の現実の応答特性が、ドローン10の種類の上記記憶された上昇速度の応答特性より悪いことが理解される。 FIG. 10 shows the height of the drone 10 relative to the elapsed time from when the start button is turned on to when the stop button is turned on since the information output processing program 222P1 is started, which is displayed on the display 224. A graph of changes in is shown. A time change in the ideal height of the drone 10 is shown by a solid line, and a time change in the actual height of the drone 10 is shown by a dotted line. It is understood that the more the time change of the actual height of the drone 10 shown by the dotted line differs from the time change of the ideal height of the drone 10 shown by the solid line, the worse the response characteristics of the drone 10 are. . Specifically, in the example shown in FIG. 9, the content of the movement indicated by the instruction signal transmitted from the operating device 50 is to gradually raise the support 110 from the initial time when it is not extended, as shown by the solid line. The device flies in a stopped position (that is, hovers) at a predetermined height. However, in the actual movement of the drone 10, as shown by the dotted line, from the initial time when the support 110 is not extended, the drone 10 gradually rises and flies to a halt in the air, but the rising speed and the height at which it flies to a halt in the air are fixed at a predetermined level. It was lower than the height. Therefore, it is understood that the actual response characteristic of the climbing speed of the drone 10 is worse than the response characteristic of the above-mentioned stored climbing speed of the type of drone 10.
 図11には、ディスプレイ224に表示される、スタートボダンがオンされたときから、ストップボタンがオンされるまでの間の情報出力処理プログラム222P1がスタートしてからの経過時間に対するドローン10のピッチ角の変化のグラフが示されている。ドローン10の理想のピッチ角の時間変化が実線で示され、ドローン10の現実のピッチ角の時間変化が点線で示されている。点線で示されるドローン10の現実のピッチ角の時間変化が、実線で示されドローン10の理想のピッチ角の時間変化から異なれば異なるほど、ドローン10の応答特性が、より悪いことが理解される。具体的には、図10に示す例では、操作装置50から送信された指示信号により示される移動の内容は、実線で示すように、ピッチ角が、スタートボダンがオンされたときから、徐々に大きくなり、所定の角度でほぼ変化しないものである。しかし、ドローン10の現実の移動は、点線で示すように、ピッチ角が、スタートボダンがオンされたときから、徐々に大きくなったが、その大きくなる速度が、指示信号により示される移動の内容より、小さく、また、所定の角度でほぼ変化しなくなるタイミングが、指示信号により示される移動の内容より、遅れた。よって、ドローン10のピッチ角の現実の応答特性が、ドローン10の種類の上記記憶された上昇速度の応答特性より悪いことが理解される。
 なお、その他のロール角及びヨー角についても、ピッチ角と同様に、表示してもよい。
FIG. 11 shows the pitch angle of the drone 10 relative to the elapsed time from when the start button is turned on to when the stop button is turned on since the information output processing program 222P1 is started, which is displayed on the display 224. A graph of changes in is shown. A time change in the ideal pitch angle of the drone 10 is shown by a solid line, and a time change in the actual pitch angle of the drone 10 is shown by a dotted line. It is understood that the more the time change of the actual pitch angle of the drone 10 shown by the dotted line differs from the time change of the ideal pitch angle of the drone 10 shown by the solid line, the worse the response characteristics of the drone 10 are. . Specifically, in the example shown in FIG. 10, the content of the movement indicated by the instruction signal transmitted from the operating device 50 is such that the pitch angle gradually changes from when the start button is turned on, as shown by the solid line. It becomes large and remains almost unchanged at a given angle. However, in the actual movement of the drone 10, as shown by the dotted line, the pitch angle gradually increases from when the start button is turned on, but the increasing speed is the content of the movement indicated by the instruction signal. The timing at which the angle becomes smaller and becomes almost unchanged at a predetermined angle is delayed from the content of the movement indicated by the instruction signal. Therefore, it is understood that the actual response characteristic of the pitch angle of the drone 10 is worse than the response characteristic of the above-mentioned stored climbing speed of the type of the drone 10.
Note that other roll angles and yaw angles may also be displayed in the same manner as the pitch angle.
 ステップ115で、処理部502は、原因を特定することが指示されたか否かを判断する。 In step 115, the processing unit 502 determines whether or not it has been instructed to identify the cause.
 上記のようにオペレータは、理想と現実との各々のドローンの移動状態の画像及びドローン10の理想の位置及び姿勢と現実の位置及び姿勢との一致の度合いを示す値(図9参照)、ドローン10の高さの変化のグラフ(図10参照)、及びドローン10のピッチ角の変化のグラフ(図11参照)を確認し、ドローン10の現実の応答特性を、ドローン10の種類の上記記憶された上昇速度の応答特性との関係で、評価することができる。そして、ドローン10の現実の応答特性を評価してオペレータは、ドローン10の現実の応答特性が、ドローン10の種類の上記記憶された上昇速度の応答特性より悪いと評価した場合、その悪い原因を特定するかどうかを決定する。ドローン10の現実の応答特性が悪い原因を特定することを決定した場合には、図示しない特定実行ボタンをオンする。 As mentioned above, the operator selects images of the ideal and actual movement states of the drone, values indicating the degree of agreement between the ideal position and attitude of the drone 10 and the actual position and attitude (see FIG. 9), and the drone. Check the graph of the change in the height of the drone 10 (see Figure 10) and the graph of the change in the pitch angle of the drone 10 (see Figure 11), and check the actual response characteristics of the drone 10 by checking the graph of the change in the height of the drone 10 (see Figure 10), and determine the actual response characteristics of the drone 10. It can be evaluated in relation to the response characteristics of the rising speed. Then, when the operator evaluates the actual response characteristics of the drone 10 and evaluates that the actual response characteristics of the drone 10 are worse than the response characteristics of the above-mentioned stored climbing speed of the type of the drone 10, the operator determines the cause of the bad response. Decide whether to identify. If it is determined to identify the cause of poor actual response characteristics of the drone 10, a specific execution button (not shown) is turned on.
 このように特定実行ボタンがオンされた場合には、ステップ115の判定が肯定判定となり、第1の処理は、ステップ117に進む。特定実行ボタンがオンされなかった場合には、ステップ115が否定判定となり、第1の処理は終了する。 If the specific execution button is turned on in this manner, the determination in step 115 is affirmative, and the first process proceeds to step 117. If the specific execution button is not turned on, a negative determination is made in step 115, and the first process ends.
 ステップ117で、特定部516は、学習済みモデル222Mを用いて故障の原因と対策案とを特定する。即ち、特定部516は、上記信号に応じたドローン10の理想の移動状態及びドローン10の現実の移動状態と学習済みモデル222Mとに基づいて、ドローン10の故障に関するデータを特定する。より具体的には、特定部516は、上記信号に応じたドローン10の理想の移動状態及びドローン10の現実の移動状態をモデル222Mの入力層に入力し、モデル222Mの出力層からドローン10の故障に関するデータを出力させる。モデル222Mの入力層に入力する、上記信号に応じたドローン10の理想の移動状態及びドローン10の現実の移動状態は、ドローン10の理想の位置及び姿勢と現実の位置及び姿勢とのN個組み合わせの1つである。当該N個組み合わせは、特定プログラム222P3が今回実行される前に、図7Aの情報処理プログラム222P1が実行され、最も新しく2次記憶装置222に記憶されたN個組み合わせである。 In step 117, the identifying unit 516 identifies the cause of the failure and a countermeasure using the learned model 222M. That is, the specifying unit 516 specifies data related to the failure of the drone 10 based on the ideal moving state of the drone 10 and the actual moving state of the drone 10 according to the signal, and the learned model 222M. More specifically, the specifying unit 516 inputs the ideal movement state of the drone 10 and the actual movement state of the drone 10 according to the above-mentioned signals to the input layer of the model 222M, and inputs the ideal movement state of the drone 10 and the actual movement state of the drone 10 from the output layer of the model 222M. Output data related to failures. The ideal movement state of the drone 10 and the actual movement state of the drone 10 according to the above signals input to the input layer of the model 222M are N combinations of the ideal position and attitude and the actual position and attitude of the drone 10. It is one of the The N combinations are the N combinations that were most recently stored in the secondary storage device 222 by executing the information processing program 222P1 in FIG. 7A before the specific program 222P3 was executed this time.
 ステップ119で、表示部514は、故障の原因と対策案とディスプレイ224に表示する。 At step 119, the display unit 514 displays the cause of the failure and countermeasures on the display 224.
 次に、図12を参照して、ドローン10の故障に関するデータを自動的に特定する第2の処理を説明する。図12には、情報出力装置170のCPU212が実行するドローン10の故障に関するデータを自動的に特定する第2の処理の特定プログラムのフローチャートが示されている。 Next, with reference to FIG. 12, a second process for automatically identifying data related to a failure of the drone 10 will be described. FIG. 12 shows a flowchart of a second processing identification program that is executed by the CPU 212 of the information output device 170 to automatically identify data related to a failure of the drone 10.
 ステップ121で、読み出し部512は、ドローン10の故障に関するデータを特定するための情報の中の上記一致の度合いを示す値を、2次記憶装置222から読み出し、ステップ123で、処理部502は、読み出した一致の度合いを示す値が、予め定められた許容範囲外が否かを判断する。 In step 121, the reading unit 512 reads, from the secondary storage device 222, a value indicating the degree of matching among the information for specifying the data related to the failure of the drone 10, and in step 123, the processing unit 502, It is determined whether the read value indicating the degree of matching is outside a predetermined allowable range.
 一致の度合いを示す値が、予め定められた許容範囲外の場合には、ステップ123の判定が肯定判定となり、第2の処理は、ステップ117に進む。一方、一致の度合いを示す値が、予め定められた許容範囲内の場合には、ステップ123の判定が否定判定となり、第2の処理は終了する。 If the value indicating the degree of coincidence is outside the predetermined allowable range, the determination in step 123 is affirmative, and the second process proceeds to step 117. On the other hand, if the value indicating the degree of coincidence is within a predetermined allowable range, the determination in step 123 is negative, and the second process ends.
 ステップ117及びステップ119の処理は、第1の処理のステップ117及びステップ119と同様であるので、その説明を省略する。 The processing in step 117 and step 119 is the same as step 117 and step 119 in the first processing, so the explanation thereof will be omitted.
 以上説明したように、本実施の形態では、予め定めた応答特性となるように完成した設計に従って製造されたドローン10の故障に関するデータを特定することができる。 As described above, in this embodiment, it is possible to specify data related to failures of the drone 10 manufactured according to a completed design so as to have predetermined response characteristics.
 本実施の形態では、2次記憶装置22に記憶されたドローン10の故障に関するデータを特定する情報とドローン10の故障に関するデータとの複数の組み合わせを用いてドローン10の故障に関するデータを特定する場合に比較すると、組み合わせに無いパターンにおいても、空機の故障に関するデータを特定することができる。 In the present embodiment, data regarding the failure of the drone 10 is specified using a plurality of combinations of information for identifying data regarding the failure of the drone 10 stored in the secondary storage device 22 and data regarding the failure of the drone 10. Compared to this, it is possible to identify data related to aircraft failures even in patterns that do not exist in combinations.
 本実施の形態では、ドローン10の故障に関するデータを特定するための学習済みモデル222Mを生成することができる学習方法、学習装置、及びプログラムを提供することができる。 In the present embodiment, it is possible to provide a learning method, a learning device, and a program that can generate a learned model 222M for specifying data regarding a failure of the drone 10.
 本実施の形態では、ドローン10の故障に関するデータを特定するためのモデルを提供することができる。 In this embodiment, a model for specifying data regarding a failure of the drone 10 can be provided.
 以上説明したように本実施の形態の航空機応答特性提供システムは、オペレータが操作装置50を操作して、ドローン10を、載置台114に保持した状態で、飛行させた場合の、ドローン10の飛行の故障に関するデータを特定するための情報を提供すること、具体的には、記憶することができる。より具体的には、本実施の形態は、第1に、操作装置50により指示した移動の内容に基づくドローン10の移動状態及び検出されたドローン10の移動状態、第2に、操作装置50により指示した移動の内容に基づくドローン10の移動状態と検出されたドローン10の移動状態との一致の度合いを示す値を記憶することができる。特に、本実施の形態は、移動状態として、ドローン10の位置及び姿勢、更には、姿勢として、ドローン10のヨー角、ピッチ角及びロール角を記憶することができる。
 そして、本実施の形態は、航空機応答特性提供システムに用いられる航空機保持装置と、航空機応答特性提供システムに用いられる情報出力装置を提供することができる。
As described above, the aircraft response characteristic providing system of the present embodiment is capable of controlling the flight of the drone 10 when the operator operates the operating device 50 to fly the drone 10 while holding it on the mounting base 114. can provide, in particular store, information to identify data regarding the failure of the device. More specifically, in the present embodiment, firstly, the movement state of the drone 10 and the detected movement state of the drone 10 are determined based on the content of the movement instructed by the operating device 50; A value indicating the degree of coincidence between the movement state of the drone 10 based on the contents of the instructed movement and the detected movement state of the drone 10 can be stored. In particular, in this embodiment, the position and attitude of the drone 10 can be stored as the movement state, and furthermore, the yaw angle, pitch angle, and roll angle of the drone 10 can be stored as the attitude.
The present embodiment can provide an aircraft holding device used in the aircraft response characteristics providing system and an information output device used in the aircraft response characteristics providing system.
 また、本実施の形態の航空機保持装置150は、ドローン10を、載置台114に保持した状態で、3次元的に回動可能に保持することができる。よって、実際に試験飛行させずに、ドローン10の飛行の故障に関するデータを特定するための情報を記憶することができる。従って、組み立てが完成したドローン10が、当該ドローン10の種類に応じた応答特性を有していない場合でも、移動試験(即ち、飛行試験)の途中で、墜落し、ドローン10が破壊してしまうことを防止することができる。 Further, the aircraft holding device 150 of the present embodiment can hold the drone 10 on the mounting table 114 so as to be rotatable three-dimensionally. Therefore, information for identifying data related to flight failures of the drone 10 can be stored without actually performing a test flight. Therefore, even if the assembled drone 10 does not have response characteristics appropriate for the type of drone 10, it may crash and be destroyed during a movement test (i.e., flight test). This can be prevented.
 本実施の形態は、航空機保持装置150の支柱が伸縮可能であるので、ドローン10が上下方向に移動することができる。本実施の形態は、支柱110の一端と載置台114とをユニバーサルジョイントで連結するので、3次元的に回動可能とすることができる。よって、本実施の形態は、ドローン10の上下方向の移動及び3次元的回動の故障に関するデータを特定するための情報を提供することができる。 In this embodiment, the support of the aircraft holding device 150 is expandable and retractable, so the drone 10 can move in the vertical direction. In this embodiment, one end of the support column 110 and the mounting table 114 are connected by a universal joint, so that they can be rotated three-dimensionally. Therefore, the present embodiment can provide information for specifying data regarding failures in vertical movement and three-dimensional rotation of the drone 10.
 本実施の形態は、航空機保持装置150の基体118の下面に複数のキャスター122N1~122N4を備えているので、ドローン10の水平移動又は斜め上方又は下方への移動に伴って、航空機保持装置150が、航空機保持装置150が設けられた場所の面に沿って移動することができる。よって、本実施の形態は、ドローン10の水平移動又は斜め上方又は下方への移動の故障に関するデータを特定するための情報を提供することができる。 In this embodiment, the lower surface of the base 118 of the aircraft holding device 150 is provided with a plurality of casters 122N1 to 122N4, so that the aircraft holding device 150 can move as the drone 10 moves horizontally or diagonally upward or downward. , along the plane where the aircraft holding device 150 is provided. Therefore, the present embodiment can provide information for specifying data regarding a failure in horizontal movement or diagonally upward or downward movement of the drone 10.
 本実施の形態では、学習済みモデルを用いて故障の原因と対策案とを特定するが、本開示の技術はこれに限定されない。例えば、ドローン10の理想の移動状態及びドローン10の現実の移動状態とドローン10の故障の原因及び対策案との複数の組み合わせ2次記憶装置222に記憶しておく。特定部516は、2次記憶装置222に記憶された複数の組み合わせと、上記信号に応じたドローン10の理想の移動状態及びドローン10の現実の移動状態と、に基づいて、ドローン10の故障の原因及び対策案を特定する。より具体的には、特定部516は、2次記憶装置222に記憶された複数の組み合わせの中から、上記信号に応じたドローン10の理想の移動状態及びドローン10の現実の移動状態に対応するドローン10の故障の原因及び対策案を特定する。表示部514は、特定したドローン10の故障の原因及び対策案をディスプレイ224に表示する。このように、ドローン10の故障に関するデータを特定することができる。特に、本例では、モデルの学習を不要とすることができる。 In this embodiment, a learned model is used to identify the cause of a failure and a countermeasure, but the technology of the present disclosure is not limited to this. For example, a plurality of combinations of an ideal moving state of the drone 10, an actual moving state of the drone 10, causes of failure of the drone 10, and countermeasures are stored in the secondary storage device 222. The identification unit 516 determines whether the drone 10 is malfunctioning based on the plurality of combinations stored in the secondary storage device 222 and the ideal movement state of the drone 10 and the actual movement state of the drone 10 according to the above-mentioned signals. Identify the cause and countermeasures. More specifically, the specifying unit 516 selects a combination that corresponds to the ideal movement state of the drone 10 and the actual movement state of the drone 10 according to the signal from among the plurality of combinations stored in the secondary storage device 222. Identify the cause of the failure of the drone 10 and a countermeasure plan. The display unit 514 displays the identified cause of the failure of the drone 10 and countermeasures on the display 224. In this way, data regarding the failure of the drone 10 can be specified. In particular, in this example, model learning can be made unnecessary.
 前述した実施の形態では、ステップ620で、記憶部510は、ドローン10の理想の位置及び姿勢と、ドローン10の現実の位置及び姿勢とを対応して、各画像と共に2次記憶装置222に、出力することにより、2次記憶装置222に記憶している。本開示の技術はこれに限定されない。例えば、ステップ620で、ドローン10の理想の位置及び姿勢と、ドローン10の現実の位置及び姿勢とを対応して、各画像と共に2次記憶装置222に出力する代わりに、又は、2次記憶装置222に出力すると共に、表示部514は、ディスプレイ224に出力してもよい。これにより、ドローン10の理想の位置及び姿勢と、ドローン10の現実の位置及び姿勢とを対応して、ディスプレイ224にリアルタイムに表示することができる。このように本開示の技術は、ドローン10の理想の位置及び姿勢と、ドローン10の現実の位置及び姿勢とを対応して、2次記憶装置222に記憶したりディスプレイ224に表示したりする、つまり、ドローン10の飛行の故障に関するデータを特定するための情報を提供することができる。 In the embodiment described above, in step 620, the storage unit 510 stores the ideal position and orientation of the drone 10 and the actual position and orientation of the drone 10 in the secondary storage device 222 together with each image. By outputting it, it is stored in the secondary storage device 222. The technology of the present disclosure is not limited to this. For example, in step 620, instead of outputting the ideal position and attitude of the drone 10 and the actual position and attitude of the drone 10 to the secondary storage device 222 together with each image, or 222 , the display unit 514 may also output to the display 224 . Thereby, the ideal position and attitude of the drone 10 and the actual position and attitude of the drone 10 can be displayed in real time on the display 224 in correspondence with each other. In this manner, the technology of the present disclosure stores the ideal position and attitude of the drone 10 and the actual position and attitude of the drone 10 in correspondence with each other in the secondary storage device 222 or displays them on the display 224. In other words, it is possible to provide information for identifying data related to flight failures of the drone 10.
 2次記憶装置222及びディスプレイ224は、本開示の技術の「出力部」の一例である。 The secondary storage device 222 and the display 224 are examples of the "output unit" of the technology of the present disclosure.
 前述した実施の形態では、ステップ610、618で、計算部508は、情報出力装置170のカメラ202N1~202N4の各々から取り込んだ各画像から、ドローン10の位置と姿勢とを計算する。本開示の技術はこれに限定されない。例えば、ドローン10において、GPS(Global Positioning System)を利用して、ドローン10の現実の位置を検出したり、ヨー角、ピッチ角及びロール角を検出する各種センサを用いてこれらの角を検出したりしてもよい。 In the embodiment described above, in steps 610 and 618, the calculation unit 508 calculates the position and orientation of the drone 10 from each image captured from each of the cameras 202N1 to 202N4 of the information output device 170. The technology of the present disclosure is not limited to this. For example, in the drone 10, the actual position of the drone 10 may be detected using GPS (Global Positioning System), or the angles may be detected using various sensors that detect the yaw angle, pitch angle, and roll angle. You can also
 このようにGPSを利用して、ドローン10の現実の位置を検出したり、ヨー角、ピッチ角及びロール角を検出する各種センサを用いてこれらの角を検出したりする場合、カメラ202N1~202N4及びステップ604~608、616の処理を省略してもよい。しかし、カメラ202N1~202N4を省略せず、カメラ202N1~202N4の各々から取り込んだ各画像から、ドローン10の位置と姿勢とを計算すると共に、上記GPS及び各種センサを利用して、ドローン10の位置と姿勢とを検出し、各々の平均値を計算し、平均値を用いてもよい。 In this way, when detecting the actual position of the drone 10 using GPS or detecting these angles using various sensors that detect the yaw angle, pitch angle, and roll angle, the cameras 202N1 to 202N4 Also, the processes of steps 604 to 608 and 616 may be omitted. However, without omitting the cameras 202N1 to 202N4, the position and attitude of the drone 10 are calculated from each image captured from each of the cameras 202N1 to 202N4, and the position and orientation of the drone 10 is calculated using the above-mentioned GPS and various sensors. and posture, and calculate the average value of each, and use the average value.
 本実施の形態及び当該例では、ドローン10及び情報出力装置170の少なくとも一方に備えた検出部(カメラ202N1~202N4、各種センサ)により検出された航空機の現実の移動状態を用いていることができる。 In this embodiment and the example, the actual movement state of the aircraft detected by the detection unit (cameras 202N1 to 202N4, various sensors) provided in at least one of the drone 10 and the information output device 170 can be used. .
 現実の方向は、本開示の技術の「指示信号に応じた航空機の理想の移動状態」の一例であり、理想の方向は、本開示の技術の「航空機の現実の移動状態」の一例である。 The actual direction is an example of the "ideal movement state of the aircraft in response to the instruction signal" of the technology of the present disclosure, and the ideal direction is an example of the "actual movement state of the aircraft" of the technology of the present disclosure. .
 (第2の実施の形態)
 次に、第2の実施の形態を説明する。第2の実施の形態の構成は、第1の実施の形態の構成と略同様であるので、同一の部分には同一の符号を付してその説明を省略し、異なる部分を説明する。
(Second embodiment)
Next, a second embodiment will be described. The configuration of the second embodiment is substantially the same as the configuration of the first embodiment, so the same parts are given the same reference numerals, the explanation thereof will be omitted, and the different parts will be explained.
 第1の実施の形態のドローン10は、予め定めた応答特性となるように完成した設計に従って製造されている。これに対し、第2の実施の形態のドローンは、予め定めた応答特性となるように設計している段階におけるドローンである。 The drone 10 of the first embodiment is manufactured according to a completed design so as to have predetermined response characteristics. In contrast, the drone of the second embodiment is a drone that is currently being designed to have predetermined response characteristics.
 第1の実施の形態の2次記憶装置222に記憶されているモデル222Mは、ドローン10の故障に関するデータを特定するためのモデルである。これに対し、第2の実施の形態の2次記憶装置222に記憶されているモデル222Mは、予め定めた応答特性となるように設計している段階におけるドローンの改善に関するデータを特定するためのモデルである。
 故障に関するデータ及びドローンの改善に関するデータは、本実施の形態の「性能に関するデータ」の一例である。
The model 222M stored in the secondary storage device 222 of the first embodiment is a model for specifying data regarding a failure of the drone 10. On the other hand, the model 222M stored in the secondary storage device 222 of the second embodiment is a model for specifying data related to improvement of the drone at the stage of designing it to have predetermined response characteristics. It's a model.
Data regarding failures and data regarding improvements to the drone are examples of "data regarding performance" in this embodiment.
 第2の実施の形態の作用を説明する。 The operation of the second embodiment will be explained.
 (制限飛行試験)
 第1に、情報出力装置170は、予め定めた応答特性となるように設計している段階におけるドローンに対して制限飛行試験を行うことにより、予め定めた応答特性となるように設計している段階におけるドローンの改善に関するデータを特定するための情報を取得する。よって、図7Aに示す情報出力処理プログラム222P1の情報出力処理を、予め定めた応答特性となるように設計している段階におけるドローンに対して行う。なお、第2の実施の形態の図7Aに示す情報出力処理プログラム222P1の情報出力処理は、前述した第1の実施の形態と同様であるので、その説明を省略する。
(Limited flight test)
First, the information output device 170 is designed to have a predetermined response characteristic by conducting a limited flight test on a drone that is currently being designed to have a predetermined response characteristic. Obtain information to identify data on drone improvements in stages. Therefore, the information output processing of the information output processing program 222P1 shown in FIG. 7A is performed on the drone that is currently being designed to have predetermined response characteristics. Note that the information output processing of the information output processing program 222P1 shown in FIG. 7A of the second embodiment is the same as that of the first embodiment described above, so a description thereof will be omitted.
 (モデルの学習)
 第2に、情報出力装置170は、このような制限飛行試験を行うことにより取得した、ドローン10の改善に関するデータを特定するための情報を用いて、モデルを学習する。よって、図7Bに示す学習処理プログラム222P2を、予め定めた応答特性となるように設計している段階におけるドローンに対して行った制限飛行試験を行うことにより取得した詳細には後述する種々の教師データを用いて、モデルを学習する。なお、第2の実施の形態の図7Bに示す学習処理プログラム222P2の学習処理は、前述した第1の実施の形態と同様であるので、その説明を省略する。
(Model learning)
Second, the information output device 170 learns the model using information for specifying data related to improvement of the drone 10, which is obtained by performing such a limited flight test. Therefore, the learning processing program 222P2 shown in FIG. 7B was obtained by conducting a limited flight test conducted on a drone at the stage of designing the learning processing program 222P2 to have predetermined response characteristics. Train a model using data. Note that the learning process of the learning process program 222P2 shown in FIG. 7B of the second embodiment is the same as that of the first embodiment described above, so a description thereof will be omitted.
 (ドローン10の故障に関するデータの特定)
 第3に、情報出力装置170は、学習済みのモデルを用いて、予め定めた応答特性となるように設計している段階におけるドローンの改善に関するデータを特定する。よって、図8に示す第1の処理の特定プログラム又は図12に示す第2の処理の特定プログラムを実行することにより、予め定めた応答特性となるように設計している段階におけるドローンの改善に関するデータを特定する。なお、第2の実施の形態の特定プログラム(図8又は図12)の特定処理は、前述した第1の実施の形態と同様であるので、その説明を省略する。なお、第2の実施の形態の特定処理は、第1の実施の形態の特定プログラム(図8又は図12)の「故障に関するデータ」が「改善に関するデータ」として、実行される。
(Identification of data regarding failure of drone 10)
Thirdly, the information output device 170 uses the learned model to identify data regarding improvements to the drone at the stage of designing it to have predetermined response characteristics. Therefore, by executing the specific program for the first process shown in FIG. 8 or the specific program for the second process shown in FIG. Identify data. Note that the specifying process of the specifying program (FIG. 8 or 12) in the second embodiment is the same as that in the first embodiment described above, so a description thereof will be omitted. Note that the identification process of the second embodiment is executed using the "failure-related data" of the identification program (FIG. 8 or 12) of the first embodiment as "improvement-related data."
(教示データ) 
 次に、教示データについて説明する。上記のように、第2の実施の形態におけるモデルの学習は、予め定めた応答特性となるようにドローンの構造を設計している段階での学習である。
(teaching data)
Next, the teaching data will be explained. As described above, the model learning in the second embodiment is performed at the stage where the structure of the drone is designed to have predetermined response characteristics.
(教示データA)
 予め定めた応答特性は、例えば、右側へのロール角がr1になるまでの時間TRがTr100(秒)である。
 プロペラの長さLLx=LL1及びプロペラの回転中心と本体の重心位置との距離LCx=LC1の構造において、このような応答特性となるように、供給電流に対するモータ軸の回転速度の関係式の傾きA=A3のモータ3を用いるようにドローンを暫定的に設計し、暫定的な設計に従って製造したドローンについて制限飛行試験をした。
(Teaching data A)
The predetermined response characteristic is, for example, that the time TR until the rightward roll angle reaches r1 is Tr100 (seconds).
In a structure where the length of the propeller is LLx = LL1 and the distance between the center of rotation of the propeller and the center of gravity of the main body is LCx = LC1, the slope of the relational expression of the rotational speed of the motor shaft with respect to the supplied current is determined so that the response characteristics are as described above. A drone was provisionally designed to use motor 3 of A=A3, and a limited flight test was conducted on the drone manufactured according to the provisional design.
 結果は、右側へのロール角がr1になるまでの時間TRは、Tr99(<Tr100)であった。
 モータ3であれば、プロペラの長さLLx=LL1及びプロペラの回転中心と本体の重心位置との距離LCx=LC1の構造において、右側へのロール角がr1になるまでの時間TRがTr100以内にできる性能を有していることが分かった。よって、改善に関するデータは、「改善不要」である。
As a result, the time TR until the rightward roll angle reached r1 was Tr99 (<Tr100).
For motor 3, in a structure where the length of the propeller is LLx = LL1 and the distance between the center of rotation of the propeller and the center of gravity of the main body LCx = LC1, the time TR until the roll angle to the right reaches r1 is within Tr100. It was found that it has the performance that can be achieved. Therefore, the data regarding improvement is "no improvement required".
 以上から、教師データAの入力データは、プロペラの長さLLx=LL1、プロペラの回転中心と本体の重心位置との距離LCx=LC1、及びモータ2の印加電圧に対するモータ軸の回転速度の関係式の傾きA=A2である。
 教師データAの出力データは、「改善不要」である。
From the above, the input data of the teacher data A is the propeller length LLx = LL1, the distance between the propeller rotation center and the body's center of gravity position LCx = LC1, and the relational expression of the rotation speed of the motor shaft with respect to the applied voltage of the motor 2. The slope A=A2.
The output data of the teacher data A is "no improvement required".
(教示データB)
 予め定めた応答特性は、前述した教示データAにおける予め定めた応答特性と同様である。
 プロペラの長さLLx=LL1及びプロペラの回転中心と本体の重心位置との距離LCx=LC1の構造において、このような応答特性となるように、供給電流に対するモータ軸の回転速度の関係式の傾きA=A2(<A3)のモータ2を用いるようにドローンを暫定的に設計し、暫定的な設計に従って製造したドローンについて制限飛行試験をした。
(Teaching data B)
The predetermined response characteristic is the same as the predetermined response characteristic in the teaching data A described above.
In a structure where the length of the propeller is LLx = LL1 and the distance between the center of rotation of the propeller and the center of gravity of the main body is LCx = LC1, the slope of the relational expression of the rotational speed of the motor shaft with respect to the supplied current is determined so that the response characteristics are as described above. A drone was provisionally designed to use a motor 2 with A=A2 (<A3), and a limited flight test was conducted on the drone manufactured according to the provisional design.
 結果は、右側へのロール角がr1になるまでの時間TRは、Tr110(>Tr100)であった。
 モータ2は、プロペラの長さLLx=LL1及びプロペラの回転中心と本体の重心位置との距離LCx=LC1の構造において、右側へのロール角がr1になるまでの時間TRがTr100以内にできる性能を有していないことが分かった。
 モータ2をモータ3に交換して再度、制限飛行試験をした結果、右側へのロール角がr1になるまでの時間TR=Tr099(<Tr100)となった。よって、改善に関するデータは、「改善必要」及び「モータ2をモータ3に交換」である。
As a result, the time TR until the rightward roll angle reached r1 was Tr110 (>Tr100).
The motor 2 has a structure in which the length of the propeller is LLx = LL1 and the distance between the center of rotation of the propeller and the center of gravity of the main body LCx = LC1, and the performance is such that the time TR until the roll angle to the right reaches r1 is within Tr100. It was found that it does not have
As a result of replacing motor 2 with motor 3 and conducting a limited flight test again, the time taken for the roll angle to the right to reach r1 was TR=Tr099 (<Tr100). Therefore, the data regarding improvement are "improvement required" and "replace motor 2 with motor 3."
 以上から、教師データBの入力データは、プロペラの長さLLx=LL1、プロペラの回転中心と本体の重心位置との距離LCx=LC1、及びモータ2の印加電圧に対するモータ軸の回転速度の関係式の傾きA=A2である。
 教師データBの出力データは、「改善必要」及び「モータ2をモータ3に交換」である。
From the above, the input data for teacher data B is the propeller length LLx = LL1, the distance between the propeller rotation center and the body's center of gravity position LCx = LC1, and the relational expression of the rotation speed of the motor shaft with respect to the applied voltage of the motor 2. The slope A=A2.
The output data of teacher data B are "Improvement required" and "Replace motor 2 with motor 3."
(教示データC)
 予め定めた応答特性は、前述した教示データAにおける予め定めた応答特性と同様である。
 プロペラの長さLLx=LL1及びプロペラの回転中心と本体の重心位置との距離LCx=LC1の構造において、このような応答特性となるように、供給電流に対するモータ軸の回転速度の関係式の傾きA=A1(<A2<A3)のモータ1を用いるようにドローンを暫定的に設計し、暫定的な設計に従って製造したドローンについて制限飛行試験をした。
(Teaching data C)
The predetermined response characteristic is the same as the predetermined response characteristic in the teaching data A described above.
In a structure where the length of the propeller is LLx = LL1 and the distance between the center of rotation of the propeller and the center of gravity of the main body is LCx = LC1, the slope of the relational expression of the rotational speed of the motor shaft with respect to the supplied current is determined so that the response characteristics are as described above. A drone was provisionally designed to use motor 1 with A=A1 (<A2<A3), and a limited flight test was conducted on the drone manufactured according to the provisional design.
 結果は、右側へのロール角がr1になるまでの時間TRは、Tr120(>Tr100)であった。
 モータ1は、プロペラの長さLLx=LL1及びプロペラの回転中心と本体の重心位置との距離LCx=LC1の構造において、右側へのロール角がr1になるまでの時間TRがTr100以内にできる性能を有していないことが分かった。
 モータ1をモータ3に交換して再度、制限飛行試験をした結果、右側へのロール角がr1になるまでの時間TR=Tr099(<Tr100)となった。よって、改善に関するデータは、「改善必要」及び「モータ1をモータ3に交換」である。
As a result, the time TR until the rightward roll angle reached r1 was Tr120 (>Tr100).
The motor 1 has a structure in which the length of the propeller is LLx = LL1 and the distance between the center of rotation of the propeller and the center of gravity of the main body LCx = LC1, and the performance is such that the time TR until the roll angle to the right reaches r1 is within Tr100. It was found that it does not have
As a result of replacing motor 1 with motor 3 and conducting a limited flight test again, the time taken until the roll angle to the right reached r1 was TR=Tr099 (<Tr100). Therefore, the data regarding improvement are "improvement required" and "replace motor 1 with motor 3."
 以上から、教師データCの入力データは、プロペラの長さLLx=LL1、プロペラの回転中心と本体の重心位置との距離LCx=LC1、及びモータ2の印加電圧に対するモータ軸の回転速度の関係式の傾きA=A1である。
 教師データCの出力データは、「改善必要」及び「モータ1をモータ3に交換」である。
From the above, the input data of the teacher data C is the propeller length LLx = LL1, the distance between the propeller rotation center and the body's center of gravity position LCx = LC1, and the relational expression of the rotation speed of the motor shaft with respect to the applied voltage of the motor 2. The slope A=A1.
The output data of the teacher data C are "Improvement required" and "Replace motor 1 with motor 3."
(教示データD)
 予め定めた応答特性は、前述した教示データAにおける予め定めた応答特性と同様である。
 プロペラの長さLLx=LL1及びプロペラの回転中心と本体の重心位置との距離LCx=LC2(>LC1)の構造において、このような応答特性となるように、供給電流に対するモータ軸の回転速度の関係式の傾きA=A3のモータ3を用いるようにドローンを暫定的に設計し、暫定的な設計に従って製造したドローンについて制限飛行試験をした。
(Teaching data D)
The predetermined response characteristic is the same as the predetermined response characteristic in the teaching data A described above.
In a structure where the length of the propeller is LLx = LL1 and the distance between the center of rotation of the propeller and the center of gravity of the main body is LCx = LC2 (>LC1), the rotational speed of the motor shaft with respect to the supplied current is adjusted so that the response characteristics are as described above. A drone was provisionally designed to use the motor 3 with the slope of the relational expression A=A3, and a limited flight test was conducted on the drone manufactured according to the provisional design.
 結果は、右側へのロール角がr1になるまでの時間TRは、Tr90(<Tr100)であった。
 モータ3は、ププロペラの長さLLx=LL1及びプロペラの回転中心と本体の重心位置との距離LCx=LC2(>LC1)の構造において、右側へのロール角がr1になるまでの時間TRがTr100以内にできる性能を有していることが分かった。よって、改善に関するデータは、「改善不要」である。
As a result, the time TR until the rightward roll angle reached r1 was Tr90 (<Tr100).
The motor 3 has a structure in which the length of the propeller is LLx=LL1 and the distance between the center of rotation of the propeller and the center of gravity of the main body LCx=LC2 (>LC1), and the time TR until the roll angle to the right reaches r1 is Tr100. It was found that it has the performance that can be achieved within Therefore, the data regarding improvement is "no improvement required".
 以上から、教師データDの入力データは、プロペラの長さLLx=LL1、プロペラの回転中心と本体の重心位置との距離LCx=LC2、及びモータ3の印加電圧に対するモータ軸の回転速度の関係式の傾きA=A3である。
 教師データDの出力データは、「改善不要」である。
From the above, the input data of the teacher data D are the propeller length LLx = LL1, the distance between the propeller rotation center and the body's center of gravity position LCx = LC2, and the relational expression of the rotation speed of the motor shaft with respect to the applied voltage of the motor 3. The slope A=A3.
The output data of the teacher data D is "no improvement required".
(教示データE)
 予め定めた応答特性は、前述した教示データAにおける予め定めた応答特性と同様である。
 プロペラの長さLLx=LL1及びプロペラの回転中心と本体の重心位置との距離LCx=LC2(>LC1)の構造において、このような応答特性となるように、供給電流に対するモータ軸の回転速度の関係式の傾きA=A2(<A3)のモータ2を用いるようにドローンを暫定的に設計し、暫定的な設計に従って製造したドローンについて制限飛行試験をした。
(Teaching data E)
The predetermined response characteristic is the same as the predetermined response characteristic in the teaching data A described above.
In a structure where the length of the propeller is LLx = LL1 and the distance between the center of rotation of the propeller and the center of gravity of the main body is LCx = LC2 (>LC1), the rotational speed of the motor shaft with respect to the supplied current is adjusted so that the response characteristics are as described above. A drone was provisionally designed to use a motor 2 with a slope of the relational expression A=A2 (<A3), and a limited flight test was conducted on the drone manufactured according to the provisional design.
 結果は、右側へのロール角がr1になるまでの時間TRは、Tr95(<Tr100)であった。
 モータ2であれば、プロペラの長さLLx=LL1及びプロペラの回転中心と本体の重心位置との距離LCx=LC2(>LC1)の構造において、右側へのロール角がr1になるまでの時間TRがTr100以内にできる性能を有していることが分かった。よって、改善に関するデータは、「改善不要」である。
As a result, the time TR until the rightward roll angle reached r1 was Tr95 (<Tr100).
For motor 2, the time TR until the roll angle to the right reaches r1 in a structure where the length of the propeller is LLx = LL1 and the distance between the center of rotation of the propeller and the center of gravity of the main body is LCx = LC2 (>LC1). It was found that it has a performance that can be achieved within Tr100. Therefore, the data regarding improvement is "no improvement required".
 以上から、教師データEの入力データは、プロペラの長さLLx=LL1、プロペラの回転中心と本体の重心位置との距離LCx=LC2、及びモータ3の印加電圧に対するモータ軸の回転速度の関係式の傾きA=A2である。
 教師データEの出力データは、「改善不要」である。
From the above, the input data of the teacher data E are the propeller length LLx = LL1, the distance between the propeller rotation center and the body's center of gravity position LCx = LC2, and the relational expression of the rotation speed of the motor shaft with respect to the applied voltage of the motor 3. The slope A=A2.
The output data of the teacher data E is "no improvement required".
(教示データF)
 予め定めた応答特性は、前述した教示データAにおける予め定めた応答特性と同様である。
 プロペラの長さLLx=LL1及びプロペラの回転中心と本体の重心位置との距離LCx=LC2(>LC1)の構造において、このような応答特性となるように、供給電流に対するモータ軸の回転速度の関係式の傾きA=A1(<A3)のモータ1を用いるようにドローンを暫定的に設計し、暫定的な設計に従って製造したドローンについて制限飛行試験をした。
(Teaching data F)
The predetermined response characteristic is the same as the predetermined response characteristic in the teaching data A described above.
In a structure where the length of the propeller is LLx = LL1 and the distance between the center of rotation of the propeller and the center of gravity of the main body is LCx = LC2 (>LC1), the rotational speed of the motor shaft with respect to the supplied current is adjusted so that the response characteristics are as described above. A drone was provisionally designed to use the motor 1 with the slope of the relational expression A=A1 (<A3), and a limited flight test was conducted on the drone manufactured according to the provisional design.
 結果は、右側へのロール角がr1になるまでの時間TRは、Tr105(>Tr100)であった。
 モータ1は、プロペラの長さLLx=LL1及びプロペラの回転中心と本体の重心位置との距離LCx=LC2(>LC1)の構造において、右側へのロール角がr1になるまでの時間TRがTr100以内にできる性能を有していないことが分かった。モータ1をモータ3に交換して再度、制限飛行試験をした結果、右側へのロール角がr1になるまでの時間TR=Tr90(<Tr100)であった。改善に関するデータは、「改善必要」及び「モータ1をモータ3に交換」である。
As a result, the time TR until the rightward roll angle reached r1 was Tr105 (>Tr100).
The motor 1 has a structure in which the length of the propeller is LLx = LL1 and the distance between the center of rotation of the propeller and the center of gravity of the main body LCx = LC2 (>LC1), and the time TR until the roll angle to the right reaches r1 is Tr100. It was found that it did not have the performance that could be achieved within the same period. As a result of replacing motor 1 with motor 3 and conducting a limited flight test again, the time taken until the roll angle to the right reached r1 was TR=Tr90 (<Tr100). The data related to improvement are "improvement required" and "replace motor 1 with motor 3."
 以上から、教師データFの入力データは、プロペラの長さLLx=LL1、プロペラの回転中心と本体の重心位置との距離LCx=LC2、及びモータ3の印加電圧に対するモータ軸の回転速度の関係式の傾きA=A1である。
 教師データFの出力データは、「改善必要」及び「モータ1をモータ3に交換」である。
From the above, the input data of the teacher data F are the length of the propeller LLx = LL1, the distance between the center of rotation of the propeller and the center of gravity of the main body LCx = LC2, and the relational expression of the rotational speed of the motor shaft with respect to the applied voltage of the motor 3. The slope A=A1.
The output data of the teacher data F are "Improvement required" and "Replace motor 1 with motor 3."
(教示データG)
 予め定めた応答特性は、前述した教示データAにおける予め定めた応答特性と同様である。
 プロペラの長さLLx=LL2(>LL1)及びプロペラの回転中心と本体の重心位置との距離LCx=LC1の構造において、このような応答特性となるように、供給電流に対するモータ軸の回転速度の関係式の傾きA=A3のモータ3を用いるようにドローンを暫定的に設計し、暫定的な設計に従って製造したドローンについて制限飛行試験をした。
(Teaching data G)
The predetermined response characteristic is the same as the predetermined response characteristic in the teaching data A described above.
In a structure where the length of the propeller is LLx = LL2 (>LL1) and the distance between the center of rotation of the propeller and the center of gravity of the main body LCx = LC1, the rotational speed of the motor shaft with respect to the supplied current is adjusted so that the response characteristics are as described above. A drone was provisionally designed to use the motor 3 with the slope of the relational expression A=A3, and a limited flight test was conducted on the drone manufactured according to the provisional design.
 結果は、右側へのロール角がr1になるまでの時間TRは、Tr105(>Tr100)であった。
 モータ3は、プロペラの長さLLx=LL2(>LL1)及びプロペラの回転中心と本体の重心位置との距離LCx=LC1の構造において、右側へのロール角がr1になるまでの時間TRがTr100以内にできる性能を有しておらず、プロペラの長さが長すぎた。
 プロペラを長さがLL1のプロペラに変更して再度、制限飛行試験した結果、右側へのロール角がr1になるまでの時間TR=Tr99(<Tr100)となった。改善に関するデータは、「改善必要」及び「プロペラを、長さがLL1のプロペラに変更」である。
As a result, the time TR until the rightward roll angle reached r1 was Tr105 (>Tr100).
The motor 3 has a structure in which the length of the propeller is LLx = LL2 (>LL1) and the distance between the center of rotation of the propeller and the center of gravity of the main body LCx = LC1, and the time TR until the roll angle to the right reaches r1 is Tr100. The propeller was too long.
As a result of changing the propeller to a propeller with a length of LL1 and conducting a limited flight test again, the time required for the roll angle to the right to reach r1 was TR=Tr99 (<Tr100). The data regarding improvements are "improvement required" and "propeller changed to a propeller with length LL1".
 以上から、教師データGの入力データは、プロペラの長さLLx=LL2、プロペラの回転中心と本体の重心位置との距離LCx=LC1、及びモータ3の印加電圧に対するモータ軸の回転速度の関係式の傾きA=A3である。
 教師データGの出力データは、「改善必要」及び「プロペラを、長さがLL1のプロペラに変更」である。
From the above, the input data of the teacher data G is the propeller length LLx = LL2, the distance between the propeller rotation center and the center of gravity position of the main body LCx = LC1, and the relational expression of the rotation speed of the motor shaft with respect to the applied voltage of the motor 3. The slope A=A3.
The output data of the teacher data G are "Improvement required" and "Propeller changed to a propeller with length LL1".
(教示データH)
 予め定めた応答特性は、前述した教示データAにおける予め定めた応答特性と同様である。
 プロペラの長さLLx=LL1及びプロペラの回転中心と本体の重心位置との距離LCx=LC2(<LC1)の構造において、このような応答特性となるように、供給電流に対するモータ軸の回転速度の関係式の傾きA=A3のモータ3を用いるようにドローンを暫定的に設計し、暫定的な設計に従って製造したドローンについて制限飛行試験をした。
(Teaching data H)
The predetermined response characteristic is the same as the predetermined response characteristic in the teaching data A described above.
In a structure where the length of the propeller is LLx = LL1 and the distance between the center of rotation of the propeller and the center of gravity of the main body LCx = LC2 (<LC1), the rotational speed of the motor shaft with respect to the supplied current is adjusted so that the response characteristics are as described above. A drone was provisionally designed to use the motor 3 with the slope of the relational expression A=A3, and a limited flight test was conducted on the drone manufactured according to the provisional design.
 結果は、右側へのロール角がr1になるまでの時間TRは、Tr105(>Tr100)であった。
 モモータ3は、プロペラの長さLLx=LL1及びプロペラの回転中心と本体の重心位置との距離LCx=LC2(<LC1)の構造において、右側へのロール角がr1になるまでの時間TRがTr100以内にできる性能を有しておらず、プロペラの回転中心と本体の重心位置との距離LCxが短すぎた。プロペラを、本体の重心位置との距離LCxがLC1(>LC2)となる位置に変更して再度、制限飛行試験した結果、右側へのロール角がr1になるまでの時間TR=Tr99(<Tr100)となった。改善に関するデータは、「改善必要」及び「プロペラを、本体の重心位置との距離LCxがLC1(>LC2)となる位置に変更」である。
As a result, the time TR until the rightward roll angle reached r1 was Tr105 (>Tr100).
The motor 3 has a structure in which the length of the propeller is LLx = LL1 and the distance between the center of rotation of the propeller and the center of gravity of the main body LCx = LC2 (<LC1), and the time TR until the roll angle to the right reaches r1 is Tr100. The distance LCx between the center of rotation of the propeller and the center of gravity of the main body was too short. As a result of changing the propeller to a position where the distance LCx from the center of gravity of the main body is LC1 (>LC2) and conducting a limited flight test again, the time taken until the roll angle to the right becomes r1 TR = Tr99 (<Tr100 ). The data related to improvement are "improvement required" and "change the propeller to a position where the distance LCx from the center of gravity of the main body is LC1 (>LC2)".
 以上から、教師データHの入力データは、プロペラの長さLLx=LL2、プロペラの回転中心と本体の重心位置との距離LCx=LC2、及びモータ3の印加電圧に対するモータ軸の回転速度の関係式の傾きA=A3である。
 教師データHの出力データは、「改善必要」及び「プロペラを、本体の重心位置との距離LCxがLC1(>LC2)となる位置に変更」である。
From the above, the input data of the teacher data H is the propeller length LLx = LL2, the distance between the propeller rotation center and the center of gravity position of the main body LCx = LC2, and the relational expression of the rotation speed of the motor shaft with respect to the applied voltage of the motor 3. The slope A=A3.
The output data of the teacher data H are "Improvement required" and "Change the propeller to a position where the distance LCx from the center of gravity of the main body is LC1 (>LC2)".
 教師データA~教師データHは例示であり、教師データは、教師データA~教師データHに限定されず、その他の種々の制限飛行試験を行って、多数の教師データを得る。応答特性も、右側へのロール角がr1になるまでの時間TRがTr100(秒)であることに限定されず、その他の種々の応答特性で、教師データを得る。 The teacher data A to H are examples, and the teacher data is not limited to the teacher data A to H, and a large number of teacher data are obtained by conducting various other limited flight tests. The response characteristics are also not limited to the time TR required for the rightward roll angle to reach r1 to be Tr100 (seconds), and training data are obtained with various other response characteristics.
 以上説明したように、第2の実施の形態では、ドローンの改善に関するデータを特定することができ、ドローンの設計を効率よく行うことができ、ドローンの設計を短時間に行うことができる。その他、本実施の形態は、第1の実施の形態と同様の効果を有する。 As explained above, in the second embodiment, it is possible to specify data related to improvement of the drone, and the drone can be designed efficiently and the drone can be designed in a short time. In addition, this embodiment has the same effects as the first embodiment.
 第2の実施の形態では、学習済みモデルを用いてドローンの改善に関するデータを特定するが、本開示の技術はこれに限定されない。例えば、ドローン10の理想の移動状態及びドローン10の現実の移動状態とドローンの改善に関するデータとの複数の組み合わせ2次記憶装置222に記憶しておく。特定部516は、2次記憶装置222に記憶された複数の組み合わせと、上記信号に応じたドローン10の理想の移動状態及びドローン10の現実の移動状態と、に基づいて、ドローンの改善に関するデータを特定する。より具体的には、特定部516は、2次記憶装置222に記憶された複数の組み合わせの中から、上記信号に応じたドローン10の理想の移動状態及びドローン10の現実の移動状態に対応するドローンドローンの改善に関するデータを特定する。表示部514は、特定したドローンの改善に関するデータをディスプレイ224に表示する。このように、ドローンの改善に関するデータを特定することができる。特に、本例では、モデルの学習を不要とすることができる。 In the second embodiment, the learned model is used to identify data related to improvement of the drone, but the technology of the present disclosure is not limited to this. For example, a plurality of combinations of the ideal moving state of the drone 10, the actual moving state of the drone 10, and data regarding improvement of the drone are stored in the secondary storage device 222. The specifying unit 516 generates data regarding improvement of the drone based on the plurality of combinations stored in the secondary storage device 222 and the ideal movement state of the drone 10 and the actual movement state of the drone 10 according to the signal. Identify. More specifically, the specifying unit 516 selects a combination that corresponds to the ideal movement state of the drone 10 and the actual movement state of the drone 10 according to the signal from among the plurality of combinations stored in the secondary storage device 222. Drones Identify data for drone improvements. The display unit 514 displays data regarding improvements to the identified drone on the display 224. In this way, data regarding improvements to the drone can be identified. In particular, in this example, model learning can be made unnecessary.
 次に、航空機保持装置150の変形例を説明する。以下に説明する変形例は、前述した実施の形態と同一の構成を有するので、同一の構成については同一の符号を付してその説明を省略し、主として異なる部分を説明する。 Next, a modification of the aircraft holding device 150 will be described. Since the modified example described below has the same configuration as the embodiment described above, the same configurations will be given the same reference numerals, the explanation thereof will be omitted, and the different parts will be mainly explained.
(第1の変形例)
 図13には、第1の変形例の航空機保持装置150C1の概略構成が示されている。図14には、第1の変形例のドローン10が、載置台114に保持された状態で、上昇する様子が示されている。
 図13に示すように、航空機保持装置150C1では、前述した実施の形態の航空機保持装置150の基体118、支持柱120N1~120N4、及びキャスター122N1~122N4(図2も参照)が省略されている。
(First modification)
FIG. 13 shows a schematic configuration of an aircraft holding device 150C1 of a first modification. FIG. 14 shows the drone 10 of the first modification example rising while being held on the mounting table 114.
As shown in FIG. 13, in the aircraft holding device 150C1, the base body 118, support columns 120N1 to 120N4, and casters 122N1 to 122N4 (see also FIG. 2) of the aircraft holding device 150 of the embodiment described above are omitted.
 航空機保持装置150C1は、載置台114を支持する、載置台114と略同じ形状及び略同じ大きさの支持台324と、支持台324の各隅を一端で支持し且つ他端で航空機保持装置150C1の設置場所に接する4本の支持柱320N1~320N4と、載置台114を支える支柱330とを備える。 The aircraft holding device 150C1 includes a support table 324 that supports the mounting table 114 and has substantially the same shape and size as the mounting table 114, and supports each corner of the support table 324 at one end and supports the aircraft holding device 150C1 at the other end. It includes four support columns 320N1 to 320N4 that are in contact with the installation location, and a column 330 that supports the mounting table 114.
 支柱330は、支持台324を支持する外筒体330N1と、内部柱330N2とを備える。内部柱330N2の下端には、第1の円板330N23(図14参照)が設けられている。内部柱330N2の、第1の円板330N23より所定距離上側には、第2の円板330N22が設けられている。第1の円板330N23及び第2の円板330N22は、第1の半径の円板である。なお、外筒体330N1の内部の断面の半径は、第1の半径より若干(即ち、所定長さ)長い。よって、内部柱330N2は、外筒体330N1の内部を上昇及び下降することができる。 The pillar 330 includes an outer cylinder 330N1 that supports the support stand 324, and an inner pillar 330N2. A first disc 330N23 (see FIG. 14) is provided at the lower end of the internal column 330N2. A second disc 330N22 is provided on the internal column 330N2 at a predetermined distance above the first disc 330N23. The first disc 330N23 and the second disc 330N22 are discs with a first radius. Note that the radius of the internal cross section of the outer cylindrical body 330N1 is slightly longer (that is, a predetermined length) than the first radius. Therefore, the internal column 330N2 can move up and down inside the outer cylindrical body 330N1.
 支持台324には、内部柱330N2が上昇及び下降することができるように、第1の半径よりも小さい第2の半径の開口326が形成されている。 An opening 326 with a second radius smaller than the first radius is formed in the support base 324 so that the internal column 330N2 can rise and fall.
 載置台114が、支柱330の内部柱330N2の一端(即ち、上端)を基準に、3次元的に回動可能に、支柱330の内部柱330N2の一端と載置台114とがユニバーサルジョイント112により連結されている。なお、ユニバーサルジョイントに代えて、ボールジョイントを用いてもよい。 One end of the internal column 330N2 of the column 330 and the mounting table 114 are connected by a universal joint 112 so that the platform 114 can rotate three-dimensionally based on one end (i.e., the upper end) of the internal column 330N2 of the column 330. has been done. Note that a ball joint may be used instead of the universal joint.
 なお、ドローン10及び情報出力装置170の各々の構成及び作用も、前述した実施の形態と同様であるので、その説明を省略する。 Note that the configuration and operation of each of the drone 10 and the information output device 170 are also the same as in the embodiment described above, so a description thereof will be omitted.
 図14に示すように、ドローン10が、載置台114に保持された状態で、上昇すると、載置台114にユニバーサルジョイント112により連結された支柱330の内部柱330N2が、支持台324の開口326を介して上昇する。内部柱330N2の下端側に設けられた第2の円板330N22の第1の半径は、支持台324の開口326の第2の半径より大きい。よって、内部柱330N2が上昇すると、第2の円板330N22が支持台324の開口326の周囲に当たり、これ以降、内部柱330N2が上昇することができない。よって、第2の円板330N22は内部柱330N2の上昇のストッパの役割を有する。 As shown in FIG. 14, when the drone 10 rises while being held on the mounting base 114, the internal column 330N2 of the support 330 connected to the mounting base 114 by the universal joint 112 opens the opening 326 of the support base 324. rise through. The first radius of the second disk 330N22 provided on the lower end side of the internal column 330N2 is larger than the second radius of the opening 326 of the support base 324. Therefore, when the internal column 330N2 rises, the second disk 330N22 hits the periphery of the opening 326 of the support base 324, and the internal column 330N2 cannot rise thereafter. Therefore, the second disk 330N22 has the role of a stopper for the rise of the internal column 330N2.
 また、内部柱330N2の下端側には、各々第1の半径の第1の円板330N23と第2の円板330N22とが設けられているので、内部柱330N2が外筒体330N1の内部を上昇及び下降する際、内部柱330N2が傾斜することを防止することができる。 Furthermore, since a first disk 330N23 and a second disk 330N22 each having a first radius are provided on the lower end side of the internal column 330N2, the internal column 330N2 moves up inside the outer cylinder 330N1. And when descending, the internal column 330N2 can be prevented from inclining.
(第2の変形例)
 図15には、第2の変形例の航空機保持装置150C2の概略構成が示されている。図16には、ドローン10が、載置台114に保持された状態から若干(即ち、所定長さ)上昇し、支持柱420N1~420N4が倒れた様子が示されている。
 図15に示すように、航空機保持装置150C2は、前述した実施の形態の伸縮可能な支柱110に代えて、伸縮不可能な支持柱440を備えている。航空機保持装置150C2は、前述した実施の形態の基体118に固定された支持柱120N1~120N4に代えて、基体118にユニバーサルジョイント420J1~420J4を介して連結している4本の支持柱420N1~420N4を備えている。支持柱420N1~420N4の上端で載置台114の各隅を支持する。航空機保持装置150C2では、前述した実施の形態のキャスター122N1~122N4(図2も参照)が省略されている。なお、キャスター122N1~122N4を設けてもよい。
(Second modification)
FIG. 15 shows a schematic configuration of an aircraft holding device 150C2 of a second modification. FIG. 16 shows how the drone 10 rises slightly (ie, by a predetermined length) from the state where it is held on the mounting table 114, and the support columns 420N1 to 420N4 fall down.
As shown in FIG. 15, the aircraft holding device 150C2 includes a non-extendable support column 440 instead of the extensible support column 110 of the embodiment described above. The aircraft holding device 150C2 includes four support columns 420N1 to 420N4 connected to the base body 118 via universal joints 420J1 to 420J4, instead of the support columns 120N1 to 120N4 fixed to the base body 118 of the embodiment described above. It is equipped with Each corner of the mounting table 114 is supported at the upper end of the support columns 420N1 to 420N4. In the aircraft holding device 150C2, the casters 122N1 to 122N4 (see also FIG. 2) of the embodiment described above are omitted. Note that casters 122N1 to 122N4 may be provided.
 載置台114が、支持柱440一端(即ち、上端)を基準に、3次元的に回動可能に、支持柱440の一端(即ち、上端)と載置台114とがユニバーサルジョイント112により連結されている。支持柱440の下端は、基体118に固定されている。 One end (i.e., the upper end) of the support column 440 and the mounting table 114 are connected by the universal joint 112 so that the mounting table 114 can rotate three-dimensionally based on one end (i.e., the upper end) of the support column 440. There is. The lower end of the support column 440 is fixed to the base body 118.
 上記のように伸縮不能な支持柱440と載置台114とがユニバーサルジョイント112により連結されているので、ドローン10は、載置台114に保持された状態で3次元的に回動可能であるが、上昇することはできない。 As described above, since the non-extendable support column 440 and the mounting table 114 are connected by the universal joint 112, the drone 10 can rotate three-dimensionally while being held on the mounting table 114. cannot rise.
 なお、ドローン10の構成及び作用も、前述した実施の形態とほぼ同様であるので、その詳細な説明を省略し、取得して異なる部分を説明する。 Note that the configuration and operation of the drone 10 are also substantially the same as in the embodiment described above, so a detailed explanation thereof will be omitted, and the different parts will be explained based on acquired information.
 まず、オペレータは、図15に示すように、ドローン10を載置台114に保持し、載置台114を支持柱420N1~420N4により支持させておく。次に、オペレータは、操作装置50を操作させて、ドローン10を上昇させる。支持柱440の一端と載置台114とがユニバーサルジョイント112により連結されているが、ユニバーサルジョイント112の構造上、ドローン10は、若干(即ち、所定長さ)上昇する。 First, as shown in FIG. 15, the operator holds the drone 10 on the mounting table 114 and supports the mounting table 114 by the support columns 420N1 to 420N4. Next, the operator operates the operating device 50 to raise the drone 10. One end of the support column 440 and the mounting table 114 are connected by the universal joint 112, but due to the structure of the universal joint 112, the drone 10 rises slightly (that is, by a predetermined length).
 ドローン10が若干(即ち、所定長さ)上昇すると、支持柱420N1~420N4は、図16に示すように、倒れる。よって、ドローン10は、載置台114に保持された状態で、上昇はしないが、3次元的に回動可能である。 When the drone 10 rises slightly (ie, by a predetermined length), the support columns 420N1 to 420N4 fall down, as shown in FIG. 16. Therefore, the drone 10 does not rise while being held on the mounting table 114, but can rotate three-dimensionally.
 情報出力装置170の構成は、前述した実施の形態と同様であるので、その説明を省略する。情報出力装置170の作用は、ドローン10の位置を計算及び検出しない点以外は、前述した実施の形態と同様であるので、その説明を省略する。 The configuration of the information output device 170 is the same as that of the embodiment described above, so a description thereof will be omitted. The operation of the information output device 170 is the same as that of the embodiment described above, except that the position of the drone 10 is not calculated or detected, so a description thereof will be omitted.
 以上説明した第1の実施の形態及び第2の実施の形態では、ROM214又は2次記憶装置222に、応答特性が異なる複数の種類のドローンの各々の応答特性が、ドローンの種類を示すデータに対応して、記憶され、ドローン10の理想の位置及び姿勢を推定し、また、ドローン10の現実の位置及び姿勢を計算しているが、本実施の形態はこれに限定されない。例えば、操作装置50からの指示信号からドローンの移動の方向(理想の方向)を特定し、また、カメラにより得られた画像からドローンの移動の方向(現実の方向)を計算し、理想の方向と現実の方向とを、ドローン10の飛行の故障に関するデータを特定するための情報として、記憶したり表示したりしてもよい。理想の方向と現実の方向との一致度を示す値を計算し、理想の方向と現実の方向との一致度を示す値を記憶したり表示したりしてもよい。よって、ROM214又は2次記憶装置222に、応答特性が異なる複数の種類のドローンの各々の応答特性を記憶していなくとも、ドローン10の飛行の故障に関するデータを特定するための情報を提供することができる。 In the first and second embodiments described above, the response characteristics of each of a plurality of types of drones having different response characteristics are stored in the ROM 214 or the secondary storage device 222 as data indicating the type of drone. Correspondingly, the ideal position and attitude of the drone 10 are stored and estimated, and the actual position and attitude of the drone 10 are calculated, but the present embodiment is not limited thereto. For example, the direction of movement of the drone (ideal direction) is specified from the instruction signal from the operating device 50, the direction of movement of the drone (actual direction) is calculated from the image obtained by the camera, and the ideal direction is determined. and the actual direction may be stored or displayed as information for specifying data related to a flight failure of the drone 10. A value indicating the degree of coincidence between the ideal direction and the actual direction may be calculated, and the value indicating the degree of coincidence between the ideal direction and the actual direction may be stored or displayed. Therefore, even if the ROM 214 or the secondary storage device 222 does not store the response characteristics of each of a plurality of types of drones having different response characteristics, it is possible to provide information for identifying data related to flight failures of the drone 10. Can be done.
 以上説明した各例では、保持部116として、オペレータがドローン10の支持部20を載置台114に結束させる結束バンドを説明したが、本開示の技術はこれに限定されず、ドローン10の支持部20と載置台114との連結及び解除を自動的に行ってもよい。例えば、4本の支持部20の先端に貫通孔を形成する。また、モータの回転により、ラックアンドピニオン機構等の移動機構を介して、棒(例えば、ピニオン)を、載置台114に載置されたドローン10の各支持部20の先端の貫通孔に、挿入及び離脱させる。これにより、ドローン10の支持部20と載置台114との連結及び解除を行う。なお、移動機構には、ラックアンドピニオン機構の他、連結側又は離脱側に付勢された棒と、棒を
離脱側と離脱側との間を移動させる偏芯カムとを備える移動機構でもよい。
In each of the examples described above, a cable tie with which the operator ties the support part 20 of the drone 10 to the mounting table 114 is used as the holding part 116. However, the technology of the present disclosure is not limited to this, and the support part 116 of the drone 10 is 20 and the mounting table 114 may be connected and disconnected automatically. For example, through holes are formed at the tips of the four supporting parts 20. Further, by rotation of the motor, a rod (for example, a pinion) is inserted into the through hole at the tip of each support part 20 of the drone 10 placed on the mounting table 114 via a moving mechanism such as a rack and pinion mechanism. and detach. Thereby, the support part 20 of the drone 10 and the mounting table 114 are connected and released. In addition to the rack and pinion mechanism, the moving mechanism may include a rod that is biased toward the connection side or the detachment side, and an eccentric cam that moves the rod between the detachment side and the detachment side. .
 上記のように、ドローン10の応答特性を評価するための情報を表示するディスプレイ224のスクリーン224S(図8参照)及び上記グラフ(図9、図10)の少なくとも何れかを見て、オペレータは、ドローン10の現実の応答特性を確認することができる。オペレータは、ドローン10の現実の応答特性が、ドローン10の種類の上記記憶された上昇速度の応答特性より悪くなく、自由飛行試験を行っても、落下しないと判断した場合、ドローン10の支持部20と載置台114との連結の解除を、情報出力装置170の計算記憶装置200のコンピュータ210(図6A参照)に入力装置228を介して、指示する。これにより、ドローン10の支持部20と載置台114との連結を解除させ、ドローン10に対して、自由飛行試験を行うことができる。 As described above, the operator views at least one of the screen 224S of the display 224 (see FIG. 8) and the graphs (FIGS. 9 and 10) that display information for evaluating the response characteristics of the drone 10. The actual response characteristics of the drone 10 can be confirmed. If the operator determines that the actual response characteristics of the drone 10 are not worse than the response characteristics of the above-mentioned stored climbing speed of the type of the drone 10 and that it will not fall even if a free flight test is performed, the operator determines that the support part of the drone 10 20 and the mounting table 114 is instructed to the computer 210 (see FIG. 6A) of the calculation storage device 200 of the information output device 170 via the input device 228. Thereby, the connection between the support part 20 and the mounting table 114 of the drone 10 is released, and a free flight test can be performed on the drone 10.
 以上説明した実施の形態及び各変形例では、教師データを取得するため、制限飛行試験を行っているが、自由飛行試験を行ってもよい。 In the embodiment and each modification example described above, a restricted flight test is performed in order to obtain teacher data, but a free flight test may also be performed.
 以上説明した実施の形態及び各変形例では、ドローン10を用いて説明したが、本開示の技術はこれに限定されない。例えば、ドローンに代えて、その他の無人飛行機、例えば、無線操縦可能な飛行機及び無線操縦可能な無人ヘリコプタ、更には、有人航空機、例えば、無線操縦可能な人が乗ることができるヘリコプタを用いてもよい。 Although the embodiment and each modification example described above has been described using the drone 10, the technology of the present disclosure is not limited thereto. For example, instead of a drone, other unmanned aircraft, such as a radio-controlled airplane and a radio-controlled unmanned helicopter, or even a manned aircraft, such as a radio-controlled helicopter that can carry a person, may be used. good.
 本開示において、各構成要素(装置等)は、矛盾が生じない限りは、1つのみ存在しても2つ以上存在してもよい。 In the present disclosure, only one or two or more of each component (device, etc.) may exist as long as there is no contradiction.
 以上説明した各例では、コンピュータを利用したソフトウェア構成により情報出力処理が実現される場合を例示したが、本開示の技術はこれに限定されるものではない。例えば、コンピュータを利用したソフトウェア構成に代えて、FPGA(Field-Programmable Gate Array)またはASIC(Application Specific Integrated Circuit)等のハードウェア構成のみによって、情報出力処理が実行されるようにしてもよい。情報出力処理のうちの一部の処理がソフトウェア構成により実行され、残りの処理がハードウェア構成によって実行されるようにしてもよい。 In each of the examples described above, the information output processing is realized by a software configuration using a computer, but the technology of the present disclosure is not limited to this. For example, instead of a software configuration using a computer, information output processing may be performed only by a hardware configuration such as an FPGA (Field-Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit). . Part of the information output processing may be executed by a software configuration, and the remaining processes may be executed by a hardware configuration.
  なお、上述したプログラムは、様々なタイプの非一時的なコンピュータ可読媒体を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。 Note that the programs described above can be stored and provided to a computer using various types of non-transitory computer-readable media. Non-transitory computer-readable media includes various types of tangible storage media. Examples of non-transitory computer-readable media include magnetic recording media (e.g., flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (e.g., magneto-optical disks), CD-ROMs (Read Only Memory), CD-Rs, and CDs. - R/W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory)). The program may also be provided to the computer on various types of temporary computer-readable media. Examples of transitory computer-readable media include electrical signals, optical signals, and electromagnetic waves. The temporary computer-readable medium can provide the program to the computer via wired communication channels, such as electrical wires and fiber optics, or wireless communication channels.
 以上説明した情報出力処理はあくまでも一例である。従って、主旨を逸脱しない範囲内において不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ替えたりしてもよいことは言うまでもない。 The information output processing described above is just an example. Therefore, it goes without saying that unnecessary steps may be deleted, new steps may be added, or the processing order may be changed within the scope of the main idea.
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的にかつ個々に記載された場合と同様に、本明細書中に参照により取り込まれる。 All documents, patent applications, and technical standards mentioned herein are incorporated by reference, as if each individual document, patent application, and technical standard was specifically and individually indicated to be incorporated by reference. Incorporated herein by reference.
(付記)
 以上の開示内容から以下の付記が提案される。
(付記1)
 載置された航空機を保持する航空機保持装置と、
 前記航空機保持装置に3次元的に移動可能に保持された航空機の性能に関するデータを特定する特定装置と、
 を備える特定システムであって、
 前記航空機保持装置は、
 載置台と、
 前記載置台に載置される航空機を保持する保持部と、
 前記載置台を支える支柱と、
 前記支柱の一端を基準に前記載置台が3次元的に移動可能に、前記支柱の一端と前記載置台とを連結する連結部と、
 を備え、
 前記航空機は、移動を指示する指示装置からの移動の内容を示す信号を受信し、受信した移動の内容を示す信号に応じて移動し、
 前記特定装置は、
 前記信号を受信する受信部と、
 前記受信した信号に応じた前記航空機の理想の移動状態及び前記航空機保持装置に3次元的に移動可能に保持された状態で移動した前記航空機の現実の移動状態に基づいて、前記航空機の性能に関するデータを特定する特定部と、
 を備える、
 特定システム。
(Additional note)
Based on the above disclosure content, the following additional notes are proposed.
(Additional note 1)
an aircraft holding device that holds the mounted aircraft;
a specific device that specifies data related to the performance of an aircraft held movably in three dimensions in the aircraft holding device;
A specific system comprising:
The aircraft holding device includes:
A mounting table and
a holding part that holds the aircraft placed on the mounting stand;
A pillar that supports the aforementioned mounting stand;
a connecting portion that connects one end of the pillar and the mounting base so that the mounting base is three-dimensionally movable with respect to the one end of the pillar;
Equipped with
The aircraft receives a signal indicating the content of movement from an instruction device instructing movement, and moves in accordance with the received signal indicating the content of movement,
The specific device is
a receiving unit that receives the signal;
regarding the performance of the aircraft based on the ideal movement state of the aircraft according to the received signal and the actual movement state of the aircraft moved while being held movably in three dimensions by the aircraft holding device. A specific part that specifies data;
Equipped with
Specific system.
(付記2)
 前記航空機保持装置は、複数の移動部材を下面に備えた基体を更に備え、
 前記支柱の他端が前記基体の上面に取り付けられる、
 付記1の特定システム。
(Additional note 2)
The aircraft holding device further includes a base body having a plurality of moving members on a lower surface,
the other end of the support is attached to the top surface of the base;
Specific system in Appendix 1.
(付記3)
 指示装置からの移動の内容を示す信号を受信し且つ前記受信した信号に応じて移動する航空機の性能に関するデータを特定するために用いられる学習済みモデルを用いて航空機の性能に関するデータを特定する特定処理を、コンピュータに実行させるプログラムを記録した記録媒体であって、
 前記性能状態判定処理は、
 前記信号に応じた前記航空機の理想の移動状態及び前記航空機の現実の移動状態を取得するステップと、
 前記学習済みモデルと、前記取得した前記航空機の理想の移動状態及び前記航空機の現実の移動状態とに基づいて、前記航空機の性能に関するデータを特定するステップと、
 を含む、記録媒体。
(Additional note 3)
identifying data regarding the performance of the aircraft using a trained model used to receive a signal indicating the content of the movement from the indicating device and identifying data regarding the performance of the aircraft moving in response to the received signal; A recording medium that records a program that causes a computer to execute a process,
The performance state determination process includes:
obtaining an ideal movement state of the aircraft and an actual movement state of the aircraft in response to the signal;
identifying data regarding the performance of the aircraft based on the trained model, the obtained ideal movement state of the aircraft, and the actual movement state of the aircraft;
recording media, including
(付記4)
 航空機の性能に関するデータを特定するモデルを学習することにより、学習済みのモデルを生成する学習処理を、コンピュータに実行させるプログラムを記録した記録媒体であって、
 前記学習処理は、
 前記航空機の性能に関するデータを特定するための情報を入力とし、前記航空機の性能に関するデータを出力とする教師データを取得するステップと、
 前記教師データを用いて、前記航空機の性能に関するデータを特定するための情報を入力とし、前記航空機の性能に関するデータを出力とするモデルを学習するステップと、
 を含む、記録媒体。
(Additional note 4)
A recording medium that stores a program that causes a computer to execute a learning process that generates a learned model by learning a model that specifies data related to aircraft performance,
The learning process is
obtaining training data having input information for specifying data regarding the performance of the aircraft and outputting data regarding the performance of the aircraft;
using the training data to learn a model whose input is information for specifying data related to the performance of the aircraft and whose output is data related to the performance of the aircraft;
recording media, including
(付記5)
 航空機の性能に関するデータを特定するための学習済みモデルを記録した記録媒体であって、
 前記学習済みモデルは、前記航空機の性能に関するデータを特定するための情報を入力とし、前記航空機の性能に関するデータを出力とする教師データを用いて、学習されており、
 前記学習済みモデルは、前記航空機の性能に関するデータを特定するための情報を入力として受け付け、受け付けた 前記航空機の性能に関するデータを特定するための情報に基づいて、前記航空機の性能に関するデータを特定する処理をコンピュータに実行させる、
 記録媒体。
(Appendix 5)
A recording medium that records a trained model for identifying data regarding aircraft performance,
The trained model is trained using training data that inputs information for specifying data regarding the performance of the aircraft and outputs data regarding the performance of the aircraft,
The learned model receives as input information for identifying data regarding the performance of the aircraft, and identifies data regarding the performance of the aircraft based on the received information for identifying data regarding the performance of the aircraft. have a computer perform a process,
recoding media.

Claims (11)

  1.  指示装置からの移動の内容を示す信号を受信し且つ前記受信した信号に応じて移動する航空機の性能に関するデータを特定する特定装置であって、
     前記信号を受信する受信部と、
     前記受信した信号に応じた前記航空機の理想の移動状態及び前記航空機の現実の移動状態に基づいて、前記航空機の性能に関するデータを特定する特定部と、
     を備える特定装置。
    A specific device that receives a signal indicating the content of movement from an instruction device and specifies data regarding the performance of a moving aircraft according to the received signal,
    a receiving unit that receives the signal;
    an identification unit that identifies data regarding the performance of the aircraft based on an ideal movement state of the aircraft and an actual movement state of the aircraft according to the received signal;
    A specific device equipped with
  2.  前記航空機の理想の移動状態及び前記航空機の現実の移動状態と、前記航空機の性能に関するデータとの複数の組み合わせを記憶する記憶部を更に備え、
     前記判定部は、前記記憶部に記憶された前記複数の組み合わせと、前記受信した信号に応じた前記航空機の理想の移動状態及び前記航空機の現実の移動状態とに基づいて、前記航空機の性能に関するデータを特定する、
     請求項1に記載の特定装置。
    further comprising a storage unit that stores a plurality of combinations of an ideal movement state of the aircraft, an actual movement state of the aircraft, and data regarding the performance of the aircraft,
    The determination unit determines the performance of the aircraft based on the plurality of combinations stored in the storage unit and the ideal movement state of the aircraft and the actual movement state of the aircraft according to the received signal. identify data,
    The identification device according to claim 1.
  3.  前記航空機の理想の移動状態及び前記航空機の現実の移動状態を入力とし、前記航空機の性能に関するデータを出力とする教師データを用いて学習された学習済みモデルを記憶する記憶部を更に備え、
     前記判定部は、前記記憶部に記憶された前記学習済みモデルと、前記受信した信号に応じた前記航空機の理想の移動状態及び前記航空機の現実の移動状態とに基づいて、前記航空機の性能に関するデータを特定する、
     請求項1に記載の特定装置。
    further comprising a storage unit that stores a trained model trained using teacher data in which an ideal movement state of the aircraft and an actual movement state of the aircraft are input, and data regarding the performance of the aircraft is output;
    The determination unit determines the performance of the aircraft based on the learned model stored in the storage unit, an ideal movement state of the aircraft and an actual movement state of the aircraft according to the received signal. identify data,
    The identification device according to claim 1.
  4.  前記航空機及び前記特定装置の少なくとも一方は、前記航空機の現実の移動状態を検出する検出部を備え、
     前記判定部が用いる前記航空機の現実の移動状態は、前記検出部により検出された現実の移動状態である、
     請求項1~請求項3の何れか1項に記載の特定装置。
    At least one of the aircraft and the specific device includes a detection unit that detects the actual movement state of the aircraft,
    The actual movement state of the aircraft used by the determination unit is the actual movement state detected by the detection unit.
    The identification device according to any one of claims 1 to 3.
  5.  前記航空機は、航空機保持装置に、3次元的に移動可能に保持された状態で移動する、請求項1~請求項4の何れか1項に記載の特定装置。 The identification device according to any one of claims 1 to 4, wherein the aircraft moves while being held in a three-dimensionally movable manner by an aircraft holding device.
  6.  前記航空機の性能に関するデータは、予め定めた応答特性となるように設計している段階における前記航空機の改善に関するデータ又は予め定めた応答特性となるように完成した設計に従って製造された前記航空機の故障に関するデータである、
    請求項1~請求項5の何れか1項に記載の特定装置。
    Data regarding the performance of the aircraft may include data regarding improvements to the aircraft at the stage of designing it to have predetermined response characteristics or failures of the aircraft manufactured according to a completed design to have predetermined response characteristics. Data regarding
    The identification device according to any one of claims 1 to 5.
  7.  指示装置からの移動の内容を示す信号を受信し且つ前記受信した信号に応じて移動する航空機の性能に関するデータを特定するために用いられる学習済みモデルを用いて航空機の性能に関するデータを特定する特定処理を、コンピュータに実行させるプログラムであって、
     前記特定処理は、
     前記信号に応じた前記航空機の理想の移動状態及び前記航空機の現実の移動状態を取得するステップと、
     前記学習済みモデルと、前記取得した前記航空機の理想の移動状態及び前記航空機の現実の移動状態とに基づいて、前記航空機の性能に関するデータを特定するステップと、
     を含む、プログラム。
    identifying data regarding the performance of the aircraft using a trained model used to receive a signal indicating the content of the movement from the indicating device and identifying data regarding the performance of the aircraft moving in response to the received signal; A program that causes a computer to execute a process,
    The specific processing is
    obtaining an ideal movement state of the aircraft and an actual movement state of the aircraft in response to the signal;
    identifying data regarding the performance of the aircraft based on the trained model, the obtained ideal movement state of the aircraft, and the actual movement state of the aircraft;
    programs, including.
  8.  航空機の性能に関するデータを特定するモデルを学習することにより、学習済みのモデルを生成する学習方法であって、
     前記航空機の性能に関するデータを特定するための情報を入力とし、前記航空機の性能に関するデータを出力とする教師データを取得するステップと、
     前記教師データを用いて、前記航空機の性能に関するデータを特定するための情報を入力とし、前記航空機の性能に関するデータを出力とするモデルを学習するステップと、
     を含む学習方法。
    A learning method that generates a trained model by learning a model that specifies data regarding aircraft performance, the method comprising:
    obtaining training data having input information for specifying data regarding the performance of the aircraft and outputting data regarding the performance of the aircraft;
    using the training data to learn a model whose input is information for specifying data related to the performance of the aircraft and whose output is data related to the performance of the aircraft;
    Learning methods including.
  9.  航空機の性能に関するデータを特定するモデルを学習することにより、学習済みのモデルを生成する学習装置であって、
     前記航空機の性能に関するデータを特定するための情報を入力とし、前記航空機の性能に関するデータを出力とする教師データを取得する取得部と、
     前記教師データを用いて、前記航空機の性能に関するデータを特定するための情報を入力とし、前記航空機の性能に関するデータを出力とするモデルを学習する学習処理部と、
     を含む学習装置。
    A learning device that generates a trained model by learning a model that specifies data regarding aircraft performance,
    an acquisition unit that acquires training data having input information for specifying data regarding the performance of the aircraft and outputting data regarding the performance of the aircraft;
    a learning processing unit that uses the training data to learn a model that receives information for specifying data regarding the performance of the aircraft as input and outputs data regarding the performance of the aircraft;
    learning devices including;
  10.  航空機の性能に関するデータを特定するモデルを学習することにより、学習済みのモデルを生成する学習処理を、コンピュータに実行させるプログラムであって、
     前記学習処理は、
     前記航空機の性能に関するデータを特定するための情報を入力とし、前記航空機の性能に関するデータを出力とする教師データを取得するステップと、
     前記教師データを用いて、前記航空機の性能に関するデータを特定するための情報を入力とし、前記航空機の性能に関するデータを出力とするモデルを学習するステップと、
     を含むプログラム。
    A program that causes a computer to execute a learning process to generate a learned model by learning a model that specifies data related to aircraft performance, the program comprising:
    The learning process is
    obtaining training data having input information for specifying data regarding the performance of the aircraft and outputting data regarding the performance of the aircraft;
    using the training data to learn a model whose input is information for specifying data related to the performance of the aircraft and whose output is data related to the performance of the aircraft;
    programs containing.
  11.  航空機の性能に関するデータを特定するための学習済みモデルであって、
     前記学習済みモデルは、前記航空機の性能に関するデータを特定するための情報を入力とし、前記航空機の性能に関するデータを出力とする教師データを用いて、学習されており、
     前記学習済みモデルは、前記航空機の性能に関するデータを特定するための情報を入力として受け付け、受け付けた前記航空機の性能に関するデータを特定するための情報に基づいて、前記航空機の性能に関するデータを特定する処理をコンピュータに実行させる、
     学習済みモデル。
    A trained model for identifying data regarding aircraft performance, the model comprising:
    The trained model is trained using training data that inputs information for specifying data regarding the performance of the aircraft and outputs data regarding the performance of the aircraft,
    The learned model receives as input information for identifying data regarding the performance of the aircraft, and identifies data regarding the performance of the aircraft based on the received information for identifying the data regarding the performance of the aircraft. have a computer perform a process,
    Trained model.
PCT/JP2022/010713 2022-03-10 2022-03-10 Specifying device, program, learning method, learning device, and trained model WO2023170890A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/010713 WO2023170890A1 (en) 2022-03-10 2022-03-10 Specifying device, program, learning method, learning device, and trained model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/010713 WO2023170890A1 (en) 2022-03-10 2022-03-10 Specifying device, program, learning method, learning device, and trained model

Publications (1)

Publication Number Publication Date
WO2023170890A1 true WO2023170890A1 (en) 2023-09-14

Family

ID=87936398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010713 WO2023170890A1 (en) 2022-03-10 2022-03-10 Specifying device, program, learning method, learning device, and trained model

Country Status (1)

Country Link
WO (1) WO2023170890A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020038166A (en) * 2018-09-05 2020-03-12 東芝情報システム株式会社 Inspection apparatus and program for inspection
JP2021135858A (en) * 2020-02-28 2021-09-13 株式会社Subaru Program correction system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020038166A (en) * 2018-09-05 2020-03-12 東芝情報システム株式会社 Inspection apparatus and program for inspection
JP2021135858A (en) * 2020-02-28 2021-09-13 株式会社Subaru Program correction system

Similar Documents

Publication Publication Date Title
CN108045596B (en) Flight performance inspection and detection system and method for fixed-wing unmanned aerial vehicle
US10914418B2 (en) Method and system for adaptive gimbal
WO2021013110A1 (en) Target tracking-based unmanned aerial vehicle obstacle avoidance method and apparatus, and unmanned aerial vehicle
US20230070563A1 (en) Control device, control method, and flight vehicle device
US20210144296A1 (en) Photographing control method, apparatus, and control device
US11505317B2 (en) Flying object
JP5264749B2 (en) Factory flight
KR102074637B1 (en) Flight Apparatus for Checking Structure
WO2019163523A1 (en) Flight status inspection system, flight status inspection method, and program
WO2018045538A1 (en) Unmanned aerial vehicle, obstacle avoidance method for same, and obstacle avoidance system thereof
CN104067111A (en) Automated system and method for tracking and detecting discrepancies on a target object
KR101928451B1 (en) aircraft for indoor area monitoring system
CN111953892B (en) Unmanned aerial vehicle and inspection method
KR101918407B1 (en) Unmanned aerial vehicle
WO2022226695A1 (en) Data processing method and apparatus for fire disaster scenario, system, and unmanned aerial vehicle
JP2019126032A (en) Camera stabilizer for inspection object surface inspection and inspection object surface inspection system including the same
JP6760601B2 (en) Measuring device for ceiling air control port
CN104138664B (en) The model of an airplane
KR101949782B1 (en) Auto-checking system for overlap of picture by dron taking
WO2023170890A1 (en) Specifying device, program, learning method, learning device, and trained model
JP6515367B1 (en) Imaging system and imaging method
WO2020042159A1 (en) Rotation control method and apparatus for gimbal, control device, and mobile platform
CN106542105B (en) Aircraft moving landing method and system
KR20190127485A (en) Unmanned Aerial Vehicle Testing Apparatus, Method and Computer Readable Recording Medium
KR20180093717A (en) System of monitoring intersection or method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930871

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)