WO2023170880A1 - Dicarbazolyl benzene compound and organic electroluminescent device - Google Patents

Dicarbazolyl benzene compound and organic electroluminescent device Download PDF

Info

Publication number
WO2023170880A1
WO2023170880A1 PCT/JP2022/010682 JP2022010682W WO2023170880A1 WO 2023170880 A1 WO2023170880 A1 WO 2023170880A1 JP 2022010682 W JP2022010682 W JP 2022010682W WO 2023170880 A1 WO2023170880 A1 WO 2023170880A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
dicarbazolyl
substituted
groups
dicarbazolylbenzene
Prior art date
Application number
PCT/JP2022/010682
Other languages
French (fr)
Japanese (ja)
Inventor
中村正治
松田博
ラモン フランシスコ ベルナルディノ アベナ
奥本健二
ウンチョル ソン
松浦良介
Original Assignee
国立大学法人京都大学
株式会社Tsk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学, 株式会社Tsk filed Critical 国立大学法人京都大学
Priority to PCT/JP2022/010682 priority Critical patent/WO2023170880A1/en
Priority to KR1020247002001A priority patent/KR20240023619A/en
Priority to PCT/JP2023/009107 priority patent/WO2023171761A1/en
Priority to JP2023562803A priority patent/JP7445249B2/en
Publication of WO2023170880A1 publication Critical patent/WO2023170880A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • the present invention relates to dicarbazolylbenzene compounds and organic electroluminescent devices.
  • an electron transport layer, a light emitting layer, and a hole transport layer are sandwiched between an anode and a cathode. It is desirable that the organic EL element configured in this manner has a long life. From this point of view, an organic substance suitable as a material for an electron transport layer, a light emitting layer, or a hole transport layer is required.
  • JP 2021-172592A proposes a compound containing a nitrogen-containing heterocycle. In JP-A-2021-172592, the compound is used as a material for an electron transport layer, a light emitting layer, or a hole transport layer.
  • the present invention aims to solve the above-mentioned problems.
  • two carbazolyl groups have one or more dicarbazolyl groups bonded to each other or one or more substituted dicarbazolyl groups to which one or more functional groups are bonded
  • a dicarbazolylbenzene compound having as a basic skeleton a dicarbazolylbenzene in which one or more dicarbazolyl groups or one or more substituted dicarbazolyl groups are bonded to a benzene ring, and is represented by the following structural formula (1). be done.
  • R2 to R5 in Structural Formula (1) represent a substituent bonded to any position of the benzene ring constituting the carbazolyl group.
  • R2 to R5 may be hydrogen.
  • At least one of L1 to L3 in the above structural formula (1) is a functional group represented by the following structural formula (2), structural formula (3), or structural formula (4).
  • R6 and R7 are substituted aromatic hydrocarbon groups or unsubstituted aromatic hydrocarbon groups, or substituted nitrogen-containing aromatic heterocyclic groups or unsubstituted nitrogen-containing aromatic heterocyclic groups.
  • R8 in the above structural formula (3) is hydrogen, a substituted aromatic hydrocarbon group, or an unsubstituted aromatic hydrocarbon group.
  • R9 and R10 in the above structural formula (4) are hydrogen.
  • R9 and R10 may be substituted or unsubstituted aromatic hydrocarbon groups.
  • At least one of R2 to R5 is a monovalent aromatic hydrocarbon group
  • at least one of L1 to L3 is a substituted aromatic hydrocarbon or an unsubstituted aromatic hydrocarbon, or It is a substituted aromatic heterocyclic group or an unsubstituted aromatic heterocyclic group.
  • an organic electroluminescent device that includes a layer containing the dicarbazolylbenzene compound described above.
  • hydrogen in each compound may be replaced with deuterium.
  • the deuteration rate may be high, for example, about 80%.
  • the energy of the first excited triplet state (T1) is high.
  • the highest occupied level (HOMO) and lowest unoccupied level (LUMO) of the above-mentioned compound are within appropriate ranges when used as a charge transport material, especially when a blue light emitting material is included in the light emitting layer.
  • the charge easily moves within the molecule, so that it is difficult for the charge to become delocalized. Therefore, the molecular structure is stabilized. Furthermore, since intramolecular rotation is suppressed based on the molecular structure, thermal stability is good.
  • an organic electroluminescent element including a layer containing the above compound has a longer lifespan.
  • FIG. 1 is a schematic side view of an organic EL element.
  • FIG. 2 is a chart showing various physical properties of dicarbazolylbenzene compounds.
  • FIG. 3 is a chart showing various characteristics of an organic EL element having a light emitting layer containing an organic substance.
  • FIG. 4 is a chart showing various characteristics of an organic EL element having a layer containing an organic substance.
  • FIG. 1 is a schematic side view of an organic electroluminescence (EL) element 10.
  • the organic EL element 10 includes a glass substrate 12, an anode 14, a hole transport layer 16, a light emitting layer 18, an electron transport layer 20, and a cathode 22.
  • EL organic electroluminescence
  • At least one of the hole transport layer 16, the light emitting layer 18, or the electron transport layer 20 contains a dicarbazolylbenzene compound.
  • the dicarbazolylbenzene compound refers to a compound containing as a basic skeleton a benzene ring to which one or more dicarbazolyl groups are bonded, each having two carbazolyl groups bonded to each other.
  • a dicarbazolylbenzene compound refers to a compound containing as a basic skeleton a benzene ring to which one or more substituted dicarbazolyl groups are bonded.
  • the structural formula of the dicarbazolylbenzene compound according to this embodiment is shown in the following structural formula (1).
  • R2 to R5 in the above structural formula (1) represent hydrogen or a substituent bonded to any position of the benzene ring constituting the carbazolyl group. Furthermore, at least one of L1 to L3 in the above structural formula (1) is a functional group represented by the following structural formula (2), structural formula (3), or structural formula (4).
  • n in the above structural formula (2) is 0 or 1.
  • structural formula (1) is transformed into the following structural formula.
  • N is bonded to the benzene ring in structural formula (1).
  • N is bonded to the benzene ring in structural formula (1) via a phenyl group.
  • R6 and R7 in structural formula (2) represent a substituted or unsubstituted aromatic hydrocarbon group.
  • R6 and R7 may be substituted or unsubstituted nitrogen-containing aromatic heterocyclic groups.
  • Representative examples of the nitrogen-containing aromatic heterocyclic group include a nitrogen-containing 5-membered ring group, a nitrogen-containing 6-membered ring group, a nitrogen-containing aromatic condensed two-ring group, and a nitrogen-containing aromatic condensed three-ring group.
  • Specific examples of the nitrogen-containing 5-membered cyclic group include a pyrrolyl group
  • specific examples of the nitrogen-containing 6-membered cyclic group include a pyridinyl group or a pyrimidyl group.
  • nitrogen-containing aromatic condensed two rings include an indolyl group and a quinolyl group
  • specific examples of the nitrogen-containing aromatic condensed three rings include a carbazolyl group and a phenanthrolyl group.
  • the nitrogen-containing aromatic heterocyclic group is not particularly limited to the above-mentioned substituents.
  • R8 in Structural Formula (3) represents a substituted or unsubstituted aromatic hydrocarbon group.
  • R8 may be a substituted or unsubstituted nitrogen-containing aromatic heterocyclic group.
  • R9 and R10 in structural formula (4) are hydrogen.
  • R9 and R10 may be substituted or unsubstituted aromatic hydrocarbon groups.
  • All of R2 to R5 may be hydrogen. Specific examples of L1 to L3 in this case will be shown below.
  • Me represents a methyl group.
  • the dicarbazolylbenzene compound may be a compound in which two dicarbazolyl groups or two substituted dicarbazolyl groups are bonded to a benzene ring. Furthermore, any one of L1 to L3 bonded to the benzene ring is preferably a carbazolyl group or a substituted carbazolyl group.
  • the structural formula of this compound is illustrated below. Note that this structural formula exemplifies a compound in which two dicarbazolyl groups and one carbazolyl group are bonded to a benzene ring. That is, in this compound, hydrogen contained in the dicarbazolyl group and the carbazolyl group is not substituted with a substituent.
  • the dicarbazolylbenzene compound may be a compound in which two dicarbazolyl groups, two substituted dicarbazolyl groups, or one dicarbazolyl group and one substituted dicarbazolyl group are bonded to a benzene ring. .
  • Two dicarbazolyl groups, two substituted dicarbazolyl groups, or one dicarbazolyl group and one substituted dicarbazolyl group are preferably at the ortho position (o-position) in the benzene ring.
  • this compound is illustrated below. Note that this structural formula exemplifies a compound in which two dicarbazolyl groups are bonded to a benzene ring. That is, in this compound, hydrogen contained in the dicarbazolyl group is not substituted with a functional group. Further, the two dicarbazolyl groups are positioned at the o-position in the benzene ring.
  • the dicarbazolylbenzene compound may be a compound in which two dicarbazolylbenzenes are bonded to each other.
  • one dicarbazolylbenzene is a compound in which a dicarbazolyl group or a substituted dicarbazolyl group is bonded to a benzene ring. Therefore, the dicarbazolylbenzene compound in this case has a form in which a functional group containing a phenyl group is bonded to dicarbazolylbenzene.
  • a functional group containing a phenyl group refers to a functional group in which a dicarbazolyl group or a substituted dicarbazolyl group is bonded to a phenyl group.
  • the dicarbazolyl group or substituted dicarbazolyl group in dicarbazolylbenzene and the functional group containing a phenyl group are preferably o-positioned in the benzene ring.
  • this compound is illustrated below. Note that this structural formula exemplifies a compound in which two dicarbazolylbenzenes are bonded to each other. That is, in this compound, hydrogen contained in the dicarbazolyl group is not substituted with a functional group. Furthermore, the dicarbazolyl group and the functional group containing the phenyl group are in a positional relationship such that they are at the o-position in the benzene ring.
  • R2 to R5 may be monovalent aromatic hydrocarbon groups.
  • at least one of L1 to L3 is a monovalent substituted aromatic hydrocarbon group or a monovalent unsubstituted aromatic hydrocarbon group.
  • At least one of L1 to L3 may be a monovalent substituted aromatic heterocyclic group or a monovalent unsubstituted aromatic heterocyclic group.
  • the organic EL element 10 having the layer is different from the conventional technology. It is recognized that the lifespan is longer than that of such organic EL elements.
  • T1 the energy of the first excited triplet state
  • HOMO highest occupied level
  • LUMO lowest unoccupied level
  • the molecule forms a sterically twisted structure. This limits the extent of the ⁇ conjugate. As a result, wide gaps in energy tend to occur. Such a compound is considered to be more suitable as a material for blue light emission.
  • hydrogen in the organic compound described above may be replaced with deuterium.
  • the deuteration rate may be high, for example, about 80%.
  • dicarbazolylbenzene compounds can have various structures by bonding substituted aromatic hydrocarbon groups or substituted aromatic heterocyclic groups.
  • Example 1 For 5 ml of mesitylene, 2 mmol of dicarbazole, 2 mmol of 9-(3-bromophenyl)-9H-carbazole, 0.04 mmol of Pd(OAc) 2 and 0.16 mmol of t- Bu 3 P and 3 mmol of NaO(t-Bu) were added to prepare a mixed solution. The mixture was stirred for 4 hours while being maintained at 150° C. under an argon atmosphere. The mixture was quenched by adding 3 milliliters of 1 mol/liter HCl, and the organic matter was extracted from the mixture using EtOAc. After washing the organic matter with saturated brine, the organic matter was dried with MgSO 4 . The solvent was removed under reduced pressure to obtain the crude product.
  • the crude product was passed through Florisil using ethyl acetate as a developing solvent, and then the solvent was removed under reduced pressure and recrystallized using 2-propanol to obtain a whitish-brown organic substance.
  • the yield was 1.13 g, and the yield was 98%.
  • DCZ-1 the organic substance that is the product
  • Example 2 For 2.7 ml of mesitylene, 0.33 g of dicarbazole, 0.49 g of Ar-Br (aryl bromide), 4.5 mg of Pd(OAc) 2 and 16.2 mg of t-Bu 3 P and 0.144 g of NaO(t-Bu) were added to prepare a mixed solution. The mixture was maintained at 150°C and stirred under an argon atmosphere. The aryl bromide used was 9,9'-(5-bromo-1,3-phenylene)bis(9H-carbazole), and its structural formula is as follows.
  • the mixture was quenched by adding 1.5 milliliters of 1 mol/liter HCl, and the organic matter was extracted from the mixture using EtOAc. After washing the organic matter with saturated brine, the organic matter was dried with MgSO 4 . The solvent was removed under reduced pressure to obtain the crude product. Next, the crude product was purified by silica gel column using ethyl acetate as a developing solvent. The obtained purified product was reprecipitated with ethanol to obtain a white solid organic substance. The yield was 0.66 g, and the yield was 89%. After washing the organic matter with pure water and saturated brine, the organic matter was dried with MgSO 4 .
  • DCZ-2 this organic substance will be referred to as DCZ-2.
  • Example 3 A white color was prepared in the same manner as in Example 2 except that 0.47 g of 9-(3-bromophenyl)-3,6-diphenyl-9H-carbazole whose structural formula is shown below was used and hexane and EtOAc were used as the developing solvents. A solid organic material was obtained. The yield was 0.33 g, and the yield was 75%.
  • DCZ-3 this organic substance will be referred to as DCZ-3.
  • Example 4 A white solid organic substance was obtained in the same manner as in Example 3 except that 0.66 g of 1,3-dibromobenzene was used. Note that dicarbazole, Pd(OAc) 2 , t-Bu 3 P, and NaO(t-Bu) were 0.66 g, 9 mg, 32.4 mg, and 0.29 g, respectively, and mesitylene was 4 ml. In addition, chloroform was used for extraction. Chloroform was also used as the developing solvent. The yield was 0.44 g, and the yield was 59%.
  • DCZ-4 this organic substance will be referred to as DCZ-4.
  • Example 5 A white solid organic substance was obtained in the same manner as in Example 1, except that 1 mmol of 9-(3,5-dibromophenyl)-9H-carbazole having the structural formula shown below was used. Note that dicarbazole, Pd(OAc) 2 , t-Bu 3 P, and NaO(t-Bu) were set at 2 mmol, 0.04 mmol, 0.16 mmol, and 3 mmol, respectively, and mesitylene was set at 5 ml. . The yield was 0.81 g, and the yield was 90%.
  • DCZ-6 this organic substance will be referred to as DCZ-6.
  • Example 6 A white solid organic substance was obtained in the same manner as in Example 4, except that 1 mmol of N,N-bis(4-biphenylyl)-N-(4-bromophenyl)amine whose structural formula is shown below was used. . Note that dicarbazole, Pd(OAc) 2 , t-Bu 3 P, and NaO(t-Bu) are 1 mmol, 0.02 mmol, 0.08 mmol, and 1.5 mmol, respectively, and mesitylene is 4 ml. And so. The yield was 0.46 g, and the yield was 63%.
  • DCZ-9 this organic substance will be referred to as DCZ-9.
  • Example 7 A white solid organic substance was obtained in the same manner as in Example 5 except that 4'-bromotri(4-biphenylyl)amine having the structural formula shown below was used.
  • the molar ratios of dicarbazole, 4'-bromotri(4-biphenylyl)amine, Pd(OAc) 2 , t-Bu 3 P and NaO(t-Bu) are the same as in Example 5. Note that the amount of mesitylene was 2.5 ml. The yield was 0.72 g, and the yield was 89%.
  • DCZ-10 this organic substance will be referred to as DCZ-10.
  • Example 8 A white solid organic substance was prepared in the same manner as in Example 2 except that 1 mmol of N-(4-bromophenyl)-N-(naphthalen-2-yl)naphthalen-2-amine whose structural formula is shown below was used. Obtained. Note that the amount of ethylene was 2.7 ml. The yield was 0.60 g, and the yield was 88%.
  • DCZ-11 this organic substance will be referred to as DCZ-11.
  • Example 9 Except for using 1 mmol of N-(4'-bromo-[1,1'-biphenyl]-4-yl)-N-(naphthalen-2-yl)-naphthalen-2-amine whose structural formula is shown below. A white solid organic substance was obtained in the same manner as in Example 8, including the amount of mesitylene. The yield was 0.65 g, and the yield was 87%.
  • DCZ-12 this organic substance will be referred to as DCZ-12.
  • Example 10 The amount of mesitylene was also included, except that 0.474 g, equivalent to 1 mmol, of 9-(4-bromophenyl)-3,6-diphenyl-9H-carbazole, whose structural formula is shown below, was used as the aryl bromide. In the same manner as in Example 9, a white solid organic substance was obtained. The yield was 0.52 g, and the yield was 71%.
  • DCZ-13 this organic substance will be referred to as DCZ-13.
  • Example 11 1 mmol of 9-(4'-bromo-[1,1'-biphenyl]-4-yl)-3,6-diphenyl-9H-carbazole whose structural formula is shown below was used, and ethylene was set at 5 ml. A white solid organic substance was obtained in the same manner as in Example 10 except for this. The yield was 0.70 g, and the yield was 88%.
  • DCZ-14 this organic substance will be referred to as DCZ-14.
  • DCZ-15 this organic substance will be referred to as DCZ-15.
  • Example 13 A mixed solution was prepared in the same manner as in Example 1 except that 1 mmol of 3,3'-dibromobiphenyl was used in place of 9-(3-bromophenyl)-9H-carbazole. The mixture was stirred for 4 hours while being maintained at 150° C. under an argon atmosphere. The mixture was quenched by adding 1 mol/liter of HCl, and extracted with chloroform. After washing the organic layer with water, the organic layer was washed with saturated brine. The organics were then dried with MgSO4 . The solvent was removed under reduced pressure to obtain the crude product.
  • the crude product was purified on a silica gel column using a 5:1 mixture of hexane/ethyl acetate as a developing solvent to obtain a white solid organic substance.
  • the yield was 0.55 g, and the yield was 68%.
  • DCZ-20 the organic substance that is the product
  • the energy of the first excited triplet state (T1) of each compound is high.
  • the HOMO energy (EHOMO) and lowest unoccupied level energy (ELUMO) of each compound are within appropriate ranges, especially when used as a charge transport material when a blue light emitting material is included in the light emitting layer.
  • Organic EL devices each having a structure shown in FIG. 1 and having a light emitting layer containing DCZ-9 or DCZ-10 as a host material were manufactured.
  • an organic EL element having the structure shown in FIG. 1 was prepared, including a light-emitting layer containing URP or 3,3'-di(9H-carbazol-9-yl)-1,1'-biphenyl as a host material.
  • m-CBP 3,3'-di(9H-carbazol-9-yl)-1,1'-biphenyl
  • each organic EL element was evaluated by causing it to emit fluorescence, phosphorescence, or thermally activated delayed fluorescence (TADF). Note that the lifetime is the time until the emission intensity decreases to 90% of the initial characteristic.
  • TADF thermally activated delayed fluorescence
  • an organic EL device using DCZ-9 or DCZ-10 as the host material of the emitting layer is different from an organic EL device using URP as the host material of the emitting layer. It showed better efficiency than EL devices.
  • Element evaluation part 2 Nine types of organic EL devices having a hole injection layer (HIL), a hole transport layer (HTL), an electron block layer (EBL), and a hole block layer (HBL) were fabricated.
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron block layer
  • HBL hole block layer
  • evaluation elements 1 to 9 The substances shown in FIG. 4 were used as organic compounds contained in HIL, HTL, EBL, and HBL in Evaluation Elements 1 to 9.
  • DCZ-9 or DCZ-10 is included in at least one of the HIL, HTL, EBL, and HBL layers.
  • OPDA-10 contained in HTL of evaluation element 2 and HIL of evaluation element 5, respectively, is an organic compound whose chemical structural formula is shown below.
  • control element 1 and control element 2 are shown in FIG. 4.
  • Evaluation Elements 1 to 9 having layers containing DCZ-9 or DCZ-10 have better lifetimes than Control Elements 1 and 2 that do not have layers containing DCZ-9 or DCZ-10. It can be seen that this shows that Furthermore, the efficiency of Evaluation Elements 1 to 9 is approximately equal to or higher than that of Comparative Element 1 and Comparative Element 2. As described above, the organic EL elements (Evaluation Elements 1 to 9) having layers containing DCZ-9 or DCZ-10 are equivalent to the organic EL elements according to the prior art (Control Element 1 and Control Element 2). Demonstrates efficiency and excellent longevity.

Abstract

This dicarbazolyl benzene compound has at least one dicarbazolyl group in which two carbazolyl groups are bonded to each other or at least one substituent dicarbazolyl group to which at least one functional group is bonded. The dicarbazolyl benzene compound includes, as the basic skeleton thereof, a dicarbazolyl benzene in which at least at least one of the dicarbazolyl groups or the at least one substituent dicarbazolyl group is bonded to a benzene ring. The dicarbazolyl benzene compound has the structure represented by structural formula (1).

Description

ジカルバゾリルベンゼン類化合物及び有機エレクトロルミネッセンス素子Dicarbazolylbenzene compounds and organic electroluminescent devices
 本発明は、ジカルバゾリルベンゼン類化合物及び有機エレクトロルミネッセンス素子に関する。 The present invention relates to dicarbazolylbenzene compounds and organic electroluminescent devices.
 有機エレクトロルミネッセンス(EL)素子においては、アノードとカソードとの間に、電子輸送層、発光層及び正孔輸送層が挟まれる。このように構成される有機EL素子は、長寿命化であることが望ましい。この観点から、電子輸送層、発光層又は正孔輸送層の素材として適切な有機物が求められている。この要請に対応するため、例えば、特開2021-172592号公報において、窒素を有する複素環を含んだ化合物が提案されている。特開2021-172592号公報では、前記化合物は、電子輸送層、発光層又は正孔輸送層の素材として用いられている。 In an organic electroluminescent (EL) device, an electron transport layer, a light emitting layer, and a hole transport layer are sandwiched between an anode and a cathode. It is desirable that the organic EL element configured in this manner has a long life. From this point of view, an organic substance suitable as a material for an electron transport layer, a light emitting layer, or a hole transport layer is required. In order to meet this demand, for example, JP 2021-172592A proposes a compound containing a nitrogen-containing heterocycle. In JP-A-2021-172592, the compound is used as a material for an electron transport layer, a light emitting layer, or a hole transport layer.
 有機ELのさらなる長寿命化が要請されている。 There is a demand for organic EL to have an even longer lifespan.
 本発明は、上述した課題を解決することを目的とする。 The present invention aims to solve the above-mentioned problems.
 本発明の一実施形態によれば、2個のカルバゾリル基が互いに結合した1個以上のジカルバゾリル基、又は、1個以上の官能基が結合した1個以上の置換ジカルバゾリル基を有し、前記1個以上のジカルバゾリル基又は前記1個以上の置換ジカルバゾリル基がベンゼン環に結合したジカルバゾリルベンゼンを基本骨格として含み、下記の構造式(1)で示されるジカルバゾリルベンゼン類化合物が提供される。 According to one embodiment of the present invention, two carbazolyl groups have one or more dicarbazolyl groups bonded to each other or one or more substituted dicarbazolyl groups to which one or more functional groups are bonded, Provided is a dicarbazolylbenzene compound having as a basic skeleton a dicarbazolylbenzene in which one or more dicarbazolyl groups or one or more substituted dicarbazolyl groups are bonded to a benzene ring, and is represented by the following structural formula (1). be done.
Figure JPOXMLDOC01-appb-C000005
 ここで、構造式(1)中のR2~R5は、カルバゾリル基を構成するベンゼン環の任意の位置に結合した置換基を表す。R2~R5は、水素であってもよい。
Figure JPOXMLDOC01-appb-C000005
Here, R2 to R5 in Structural Formula (1) represent a substituent bonded to any position of the benzene ring constituting the carbazolyl group. R2 to R5 may be hydrogen.
 上記構造式(1)中のL1~L3の少なくともいずれか1個は、下記の構造式(2)、構造式(3)又は構造式(4)に示される官能基である。 At least one of L1 to L3 in the above structural formula (1) is a functional group represented by the following structural formula (2), structural formula (3), or structural formula (4).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記構造式(2)中のnは、0又は1である。
 R6及びR7は、置換芳香族炭化水素基もしくは無置換芳香族炭化水素基であるか、又は、置換窒素含有芳香族複素環基もしくは無置換窒素含有芳香族複素環基である。
n in the above structural formula (2) is 0 or 1.
R6 and R7 are substituted aromatic hydrocarbon groups or unsubstituted aromatic hydrocarbon groups, or substituted nitrogen-containing aromatic heterocyclic groups or unsubstituted nitrogen-containing aromatic heterocyclic groups.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記構造式(3)中のR8は、水素であるか、又は、置換芳香族炭化水素基もしくは無置換芳香族炭化水素基である。 R8 in the above structural formula (3) is hydrogen, a substituted aromatic hydrocarbon group, or an unsubstituted aromatic hydrocarbon group.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記構造式(4)におけるR9及びR10は水素である。代替的に、R9及びR10は、置換もしくは無置換の芳香族炭化水素基であってもよい。 R9 and R10 in the above structural formula (4) are hydrogen. Alternatively, R9 and R10 may be substituted or unsubstituted aromatic hydrocarbon groups.
 R2~R5の少なくともいずれか1つが1価の芳香族炭化水素基である場合、L1~L3の少なくともいずれか1個は、置換芳香族炭化水素もしくは無置換芳香族炭化水素であるか、又は、置換芳香族複素環基もしくは無置換芳香族複素環基である。 When at least one of R2 to R5 is a monovalent aromatic hydrocarbon group, at least one of L1 to L3 is a substituted aromatic hydrocarbon or an unsubstituted aromatic hydrocarbon, or It is a substituted aromatic heterocyclic group or an unsubstituted aromatic heterocyclic group.
 本発明の別の一実施形態によれば、上記したジカルバゾリルベンゼン類化合物を含む層を備える有機エレクトロルミネッセンス素子が提供される。 According to another embodiment of the present invention, an organic electroluminescent device is provided that includes a layer containing the dicarbazolylbenzene compound described above.
 なお、各化合物中の水素が重水素に置換されていてもよい。重水素化率は高くてもよく、例えば、80%程度であってもよい。 Note that hydrogen in each compound may be replaced with deuterium. The deuteration rate may be high, for example, about 80%.
 上記の化合物では、第一励起三重項状態(T1)のエネルギが高い。また、上記の化合物における最高占有準位(HOMO)及び最低非占有準位(LUMO)は、特に青色発光材料を発光層に含む場合の電荷輸送材として用いるに当たって、適切な範囲内である。また、この化合物においては、分子内で電荷が移動することが容易であるために電荷が非局在化し難い。従って、分子構造が安定する。さらに、分子の構造に基づいて分子内回転が抑制されるので、熱安定性が良好である。 In the above compounds, the energy of the first excited triplet state (T1) is high. Further, the highest occupied level (HOMO) and lowest unoccupied level (LUMO) of the above-mentioned compound are within appropriate ranges when used as a charge transport material, especially when a blue light emitting material is included in the light emitting layer. In addition, in this compound, the charge easily moves within the molecule, so that it is difficult for the charge to become delocalized. Therefore, the molecular structure is stabilized. Furthermore, since intramolecular rotation is suppressed based on the molecular structure, thermal stability is good.
 以上のような理由から、上記の化合物を含む層を備える有機エレクトロルミネッセンス素子では、寿命が長期化する。 For the reasons mentioned above, an organic electroluminescent element including a layer containing the above compound has a longer lifespan.
図1は、有機EL素子の模式的側面図である。FIG. 1 is a schematic side view of an organic EL element. 図2は、ジカルバゾリルベンゼン類化合物の諸物性を示す図表である。FIG. 2 is a chart showing various physical properties of dicarbazolylbenzene compounds. 図3は、有機物を含んだ発光層を有する有機EL素子の諸特性を示す図表である。FIG. 3 is a chart showing various characteristics of an organic EL element having a light emitting layer containing an organic substance. 図4は、有機物を含んだ層を有する有機EL素子の諸特性を示す図表である。FIG. 4 is a chart showing various characteristics of an organic EL element having a layer containing an organic substance.
 図1は、有機エレクトロルミネッセンス(EL)素子10の模式的側面図である。有機EL素子10は、ガラス基板12と、アノード14と、正孔輸送層16と、発光層18と、電子輸送層20と、カソード22とを備える。ガラス基板12、アノード14及びカソード22の素材としては、公知の素材を採用することができる。 FIG. 1 is a schematic side view of an organic electroluminescence (EL) element 10. The organic EL element 10 includes a glass substrate 12, an anode 14, a hole transport layer 16, a light emitting layer 18, an electron transport layer 20, and a cathode 22. As materials for the glass substrate 12, anode 14, and cathode 22, known materials can be used.
 正孔輸送層16、発光層18又は電子輸送層20の少なくとも1つは、ジカルバゾリルベンゼン類化合物を含む。本実施形態において、ジカルバゾリルベンゼン類化合物とは、2個のカルバゾリル基が互いに結合したジカルバゾリル基が1個以上結合したベンゼン環を基本骨格として含む化合物を指す。又は、ジカルバゾリルベンゼン類化合物とは、1個以上の置換ジカルバゾリル基が1個以上結合したベンゼン環を基本骨格として含む化合物を指す。本実施形態に係るジカルバゾリルベンゼン類化合物の構造式を、以下の構造式(1)に示す。 At least one of the hole transport layer 16, the light emitting layer 18, or the electron transport layer 20 contains a dicarbazolylbenzene compound. In the present embodiment, the dicarbazolylbenzene compound refers to a compound containing as a basic skeleton a benzene ring to which one or more dicarbazolyl groups are bonded, each having two carbazolyl groups bonded to each other. Alternatively, a dicarbazolylbenzene compound refers to a compound containing as a basic skeleton a benzene ring to which one or more substituted dicarbazolyl groups are bonded. The structural formula of the dicarbazolylbenzene compound according to this embodiment is shown in the following structural formula (1).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記構造式(1)中のR2~R5は、水素か、又は、カルバゾリル基を構成するベンゼン環の任意の位置に結合した置換基を表す。また、上記構造式(1)中のL1~L3の少なくともいずれか1個は、下記の構造式(2)、構造式(3)又は構造式(4)に示される官能基である。 R2 to R5 in the above structural formula (1) represent hydrogen or a substituent bonded to any position of the benzene ring constituting the carbazolyl group. Furthermore, at least one of L1 to L3 in the above structural formula (1) is a functional group represented by the following structural formula (2), structural formula (3), or structural formula (4).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 上記構造式(2)中のnは、0又は1である。n=0であるとき、構造式(1)は以下の構造式に変形される。この場合、構造式(1)中のベンゼン環に対してNが結合する。 n in the above structural formula (2) is 0 or 1. When n=0, structural formula (1) is transformed into the following structural formula. In this case, N is bonded to the benzene ring in structural formula (1).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 これに対し、n=1であるとき、構造式(1)中のベンゼン環に対し、フェニル基を介してNが結合する。 On the other hand, when n=1, N is bonded to the benzene ring in structural formula (1) via a phenyl group.
 構造式(2)における6及びR7は、置換もしくは無置換の芳香族炭化水素基を表す。代替的に、R6及びR7は、置換もしくは無置換の窒素含有芳香族複素環基であってもよい。窒素含有芳香族複素環基の代表例としては、窒素含有5員環基、窒素含有6員環基、窒素含有芳香族縮合2環又は窒素含有芳香族縮合3環等が挙げられる。窒素含有5員環基の具体例としてはピロリル基等が挙げられ、窒素含有6員環基の具体例としてはピリジニル基又はピリミジル基等が挙げられる。窒素含有芳香族縮合2環の具体例としてはインドリル基又はキノリル基等が挙げられ、窒素含有芳香族縮合3環の具体例としては、カルバゾリル基又はフェナントロリル基等が挙げられる。窒素含有芳香族複素環基は、上記した置換基に特に限定されない。 6 and R7 in structural formula (2) represent a substituted or unsubstituted aromatic hydrocarbon group. Alternatively, R6 and R7 may be substituted or unsubstituted nitrogen-containing aromatic heterocyclic groups. Representative examples of the nitrogen-containing aromatic heterocyclic group include a nitrogen-containing 5-membered ring group, a nitrogen-containing 6-membered ring group, a nitrogen-containing aromatic condensed two-ring group, and a nitrogen-containing aromatic condensed three-ring group. Specific examples of the nitrogen-containing 5-membered cyclic group include a pyrrolyl group, and specific examples of the nitrogen-containing 6-membered cyclic group include a pyridinyl group or a pyrimidyl group. Specific examples of the nitrogen-containing aromatic condensed two rings include an indolyl group and a quinolyl group, and specific examples of the nitrogen-containing aromatic condensed three rings include a carbazolyl group and a phenanthrolyl group. The nitrogen-containing aromatic heterocyclic group is not particularly limited to the above-mentioned substituents.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 構造式(3)におけるR8は、置換もしくは無置換の芳香族炭化水素基を表す。代替的に、R8は、置換もしくは無置換の窒素含有芳香族複素環基であってもよい。 R8 in Structural Formula (3) represents a substituted or unsubstituted aromatic hydrocarbon group. Alternatively, R8 may be a substituted or unsubstituted nitrogen-containing aromatic heterocyclic group.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 構造式(4)におけるR9及びR10は水素である。代替的に、R9及びR10は、置換もしくは無置換の芳香族炭化水素基であってもよい。 R9 and R10 in structural formula (4) are hydrogen. Alternatively, R9 and R10 may be substituted or unsubstituted aromatic hydrocarbon groups.
 R2~R5の全てが水素であってもよい。以下、この場合におけるL1~L3の具体例を示す。 All of R2 to R5 may be hydrogen. Specific examples of L1 to L3 in this case will be shown below.
[1.L2=L3=HであるときのL1の例] [1. Example of L1 when L2=L3=H]
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
[2.L2=HであるときのL1、L3の例] [2. Example of L1 and L3 when L2=H]
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
[3.L1=L3=HであるときのL2の例] [3. Example of L2 when L1=L3=H]
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 なお、Meはメチル基を表す。 Note that Me represents a methyl group.
 ジカルバゾリルベンゼン類化合物は、2個のジカルバゾリル基又は2個の置換ジカルバゾリル基がベンゼン環に結合した化合物であってもよい。さらに、ベンゼン環に結合するL1~L3のいずれかが、カルバゾリル基もしくは置換カルバゾリル基であることが好ましい。この化合物の構造式を以下に例示する。なお、この構造式では、ベンゼン環に対し、2個のジカルバゾリル基と、1個のカルバゾリル基とが結合した化合物を例示している。すなわち、この化合物において、ジカルバゾリル基及びカルバゾリル基に含まれる水素は、置換基に置換されていない。 The dicarbazolylbenzene compound may be a compound in which two dicarbazolyl groups or two substituted dicarbazolyl groups are bonded to a benzene ring. Furthermore, any one of L1 to L3 bonded to the benzene ring is preferably a carbazolyl group or a substituted carbazolyl group. The structural formula of this compound is illustrated below. Note that this structural formula exemplifies a compound in which two dicarbazolyl groups and one carbazolyl group are bonded to a benzene ring. That is, in this compound, hydrogen contained in the dicarbazolyl group and the carbazolyl group is not substituted with a substituent.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 ジカルバゾリルベンゼン類化合物は、ベンゼン環に対し、2個のジカルバゾリル基、2個の置換ジカルバゾリル基、又は1個のジカルバゾリル基と1個の置換ジカルバゾリル基とが結合した化合物であってもよい。2個のジカルバゾリル基、2個の置換ジカルバゾリル基、又は1個のジカルバゾリル基と1個の置換ジカルバゾリル基とは、ベンゼン環においてオルト位(o-位)の位置関係であることが好ましい。 The dicarbazolylbenzene compound may be a compound in which two dicarbazolyl groups, two substituted dicarbazolyl groups, or one dicarbazolyl group and one substituted dicarbazolyl group are bonded to a benzene ring. . Two dicarbazolyl groups, two substituted dicarbazolyl groups, or one dicarbazolyl group and one substituted dicarbazolyl group are preferably at the ortho position (o-position) in the benzene ring.
 この化合物の構造式を以下に例示する。なお、この構造式では、ベンゼン環に対し、2個のジカルバゾリル基が結合した化合物を例示している。すなわち、この化合物において、ジカルバゾリル基に含まれる水素は官能基に置換されていない。また、2個のジカルバゾリル基は、ベンゼン環においてo-位となる位置関係である。 The structural formula of this compound is illustrated below. Note that this structural formula exemplifies a compound in which two dicarbazolyl groups are bonded to a benzene ring. That is, in this compound, hydrogen contained in the dicarbazolyl group is not substituted with a functional group. Further, the two dicarbazolyl groups are positioned at the o-position in the benzene ring.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
 ジカルバゾリルベンゼン類化合物は、2個のジカルバゾリルベンゼンが互いに結合した化合物であってもよい。ここで、1個のジカルバゾリルベンゼンは、ジカルバゾリル基又は置換ジカルバゾリル基がベンゼン環に結合した化合物である。従って、この場合のジカルバゾリルベンゼン類化合物は、ジカルバゾリルベンゼンに対し、フェニル基を含む官能基が結合した形態となる。フェニル基を含む官能基とは、ジカルバゾリル基又は置換ジカルバゾリル基がフェニル基に結合した官能基を指す。ジカルバゾリルベンゼンにおけるジカルバゾリル基又は置換ジカルバゾリル基と、フェニル基を含む官能基とは、ベンゼン環においてo-位の位置関係であることが好ましい。 The dicarbazolylbenzene compound may be a compound in which two dicarbazolylbenzenes are bonded to each other. Here, one dicarbazolylbenzene is a compound in which a dicarbazolyl group or a substituted dicarbazolyl group is bonded to a benzene ring. Therefore, the dicarbazolylbenzene compound in this case has a form in which a functional group containing a phenyl group is bonded to dicarbazolylbenzene. A functional group containing a phenyl group refers to a functional group in which a dicarbazolyl group or a substituted dicarbazolyl group is bonded to a phenyl group. The dicarbazolyl group or substituted dicarbazolyl group in dicarbazolylbenzene and the functional group containing a phenyl group are preferably o-positioned in the benzene ring.
 この化合物の構造式を以下に例示する。なお、この構造式では、2個のジカルバゾリルベンゼンが互いに結合した化合物を例示している。すなわち、この化合物において、ジカルバゾリル基に含まれる水素は官能基に置換されていない。また、ジカルバゾリル基と、フェニル基を含む官能基とは、ベンゼン環においてo-位となる位置関係である。 The structural formula of this compound is illustrated below. Note that this structural formula exemplifies a compound in which two dicarbazolylbenzenes are bonded to each other. That is, in this compound, hydrogen contained in the dicarbazolyl group is not substituted with a functional group. Furthermore, the dicarbazolyl group and the functional group containing the phenyl group are in a positional relationship such that they are at the o-position in the benzene ring.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 代替的に、R2~R5は1価の芳香族炭化水素基であってもよい。この場合、L1~L3の少なくともいずれか1個は、1価の置換芳香族炭化水素基もしくは1価の無置換芳香族炭化水素基である。L1~L3の少なくともいずれか1個は、1価の置換芳香族複素環基もしくは1価の無置換芳香族複素環基であってもよい。 Alternatively, R2 to R5 may be monovalent aromatic hydrocarbon groups. In this case, at least one of L1 to L3 is a monovalent substituted aromatic hydrocarbon group or a monovalent unsubstituted aromatic hydrocarbon group. At least one of L1 to L3 may be a monovalent substituted aromatic heterocyclic group or a monovalent unsubstituted aromatic heterocyclic group.
 以上のような構造を有するジカルバゾリルベンゼン類化合物を素材として含む正孔輸送層16、発光層18又は電子輸送層20を形成した場合、該層を有する有機EL素子10では、従来技術に係る有機EL素子よりも寿命が長期化することが認められる。 When the hole transport layer 16, the light emitting layer 18, or the electron transport layer 20 containing the dicarbazolylbenzene compound having the above structure as a material is formed, the organic EL element 10 having the layer is different from the conventional technology. It is recognized that the lifespan is longer than that of such organic EL elements.
 このように寿命が長期化する理由は、以下のようであると考えられる。第1に、これらの化合物では、第一励起三重項状態(T1)のエネルギが高く、且つ最高占有準位(HOMO)及び最低非占有準位(LUMO)が適切である。第2に、構造式によれば、分子内で電荷が移動することが容易であり、電荷が非局在化し難いために分子構造が安定する。第3に、分子の構造に基づいて分子内回転が抑制されるので、熱安定性が良好となりホストとして適切である。 The reason why the lifespan becomes longer in this way is thought to be as follows. First, in these compounds, the energy of the first excited triplet state (T1) is high, and the highest occupied level (HOMO) and lowest unoccupied level (LUMO) are appropriate. Second, according to the structural formula, it is easy for charges to move within the molecule, and the charges are difficult to delocalize, so the molecular structure is stabilized. Thirdly, since intramolecular rotation is suppressed based on the molecular structure, it has good thermal stability and is suitable as a host.
 さらに、上記した複数個の官能基がベンゼン環においてo-位の位置関係となるとき、分子が立体的に捻れた構造となる。このためにπ共役の延びが限定される。その結果として、エネルギにワイドギャップが生じ易くなる。このような化合物は、青色発光用の素材として一層適切であると考えられる。 Furthermore, when the plurality of functional groups described above are positioned at the o-position on the benzene ring, the molecule forms a sterically twisted structure. This limits the extent of the π conjugate. As a result, wide gaps in energy tend to occur. Such a compound is considered to be more suitable as a material for blue light emission.
 なお、本発明は、上述した実施形態に限らず、本発明の要旨を逸脱することなく、種々の構成を取り得る。 Note that the present invention is not limited to the embodiments described above, and can take various configurations without departing from the gist of the present invention.
 例えば、上記した有機化合物中の水素が重水素に置換されていてもよい。重水素化率は高くてもよく、例えば、80%程度であってもよい。 For example, hydrogen in the organic compound described above may be replaced with deuterium. The deuteration rate may be high, for example, about 80%.
 また、ジカルバゾリルベンゼン類化合物は、置換芳香族炭化水素基又は置換芳香族複素環基が結合することにより、様々な構造となり得る。 Further, dicarbazolylbenzene compounds can have various structures by bonding substituted aromatic hydrocarbon groups or substituted aromatic heterocyclic groups.
[化合物の合成]
 以下におけるAc、Bu、Et及びArは、それぞれ、アセチル基、ブチル基、エチル基及びアリール基を表す。また、t-Buは三級ブチル基を意味する。さらに、H、C及びNの「%」は質量%である。
[Synthesis of compounds]
Ac, Bu, Et and Ar in the following represent an acetyl group, a butyl group, an ethyl group and an aryl group, respectively. Further, t-Bu means a tertiary butyl group. Furthermore, "%" of H, C and N is mass %.
[実施例1]
 5ミリリットルのメシチレンに対し、2ミリモルのジカルバゾールと、2ミリモルの9-(3-ブロモフェニル)-9H-カルバゾールと、0.04ミリモルのPd(OAc)2と、0.16ミリモルのt-Bu3Pと、3ミリモルのNaO(t-Bu)とを添加し、混合液を調製した。該混合液を、アルゴン雰囲気下で150℃に保持した状態で、4時間撹拌した。混合液に1モル/リットルのHClを3ミリリットル添加してクエンチを行い、EtOAcを用いて混合液から有機物を抽出した。飽和食塩水で有機物を洗浄した後、該有機物をMgSO4で乾燥した。溶媒を減圧下で除去して、粗生成物を得た。
[Example 1]
For 5 ml of mesitylene, 2 mmol of dicarbazole, 2 mmol of 9-(3-bromophenyl)-9H-carbazole, 0.04 mmol of Pd(OAc) 2 and 0.16 mmol of t- Bu 3 P and 3 mmol of NaO(t-Bu) were added to prepare a mixed solution. The mixture was stirred for 4 hours while being maintained at 150° C. under an argon atmosphere. The mixture was quenched by adding 3 milliliters of 1 mol/liter HCl, and the organic matter was extracted from the mixture using EtOAc. After washing the organic matter with saturated brine, the organic matter was dried with MgSO 4 . The solvent was removed under reduced pressure to obtain the crude product.
 酢酸エチルを展開溶媒として粗生成物をフロリジルに通し、さらに、溶媒を減圧下で除去した2-プロパノールを用いた再結晶により、白茶色の有機物を得た。収量は1.13gであり、収率は98%であった。 The crude product was passed through Florisil using ethyl acetate as a developing solvent, and then the solvent was removed under reduced pressure and recrystallized using 2-propanol to obtain a whitish-brown organic substance. The yield was 1.13 g, and the yield was 98%.
 得られた有機物につき、有機微量元素分析装置を用いて分析を行った。分子中のC、H及びNは、それぞれ87.82%、5.07%及び約6.93%であった。また、核磁気共鳴(NMR)による分析結果は、下記のとおりであった。
1HNMR(DMSO-d6,392MHz);δ=6.64-6.71(m,3H)、6.80-6.92(m,4H)、7.00-7.03(m,2H)、7.13-7.25(m,5H)、7.33-7.52(m,7H)、7.59(d,J=7.6Hz,1H)、8.03(d,J=7.6Hz,1H)、8.12(d,J=7.6Hz,2H)、8.37(d,J=7.6Hz,1H)、8.5(d,J=7.6Hz,1H)。
The obtained organic matter was analyzed using an organic trace element analyzer. C, H and N in the molecule were 87.82%, 5.07% and about 6.93%, respectively. Further, the analysis results by nuclear magnetic resonance (NMR) were as follows.
1 HNMR (DMSO-d6, 392MHz); δ = 6.64-6.71 (m, 3H), 6.80-6.92 (m, 4H), 7.00-7.03 (m, 2H) , 7.13-7.25 (m, 5H), 7.33-7.52 (m, 7H), 7.59 (d, J = 7.6Hz, 1H), 8.03 (d, J = 7.6Hz, 1H), 8.12 (d, J = 7.6Hz, 2H), 8.37 (d, J = 7.6Hz, 1H), 8.5 (d, J = 7.6Hz, 1H) ).
 以上の結果から、得られた有機物の示性式はC42273であり、分子量は573.7であると判断された。 From the above results, it was determined that the specific formula of the obtained organic substance was C 42 H 27 N 3 and the molecular weight was 573.7.
 この場合の化学反応式を、下記に示す。 The chemical reaction formula in this case is shown below.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 以下、生成物である有機物をDCZ-1という。 Hereinafter, the organic substance that is the product will be referred to as DCZ-1.
[実施例2]
 2.7ミリリットルのメシチレンに対し、0.33gのジカルバゾールと、0.49gのAr-Br(臭化アリール)と、4.5mgのPd(OAc)2と、16.2mgのt-Bu3Pと、0.144gのNaO(t-Bu)とを添加し、混合液を調製した。該混合液を150℃に保持し、アルゴン雰囲気下で撹拌した。なお、用いた臭化アリールは9,9’-(5-ブロモ-1,3-フェニレン)ビス(9H-カルバゾール)であり、その構造式は以下のとおりである。
[Example 2]
For 2.7 ml of mesitylene, 0.33 g of dicarbazole, 0.49 g of Ar-Br (aryl bromide), 4.5 mg of Pd(OAc) 2 and 16.2 mg of t-Bu 3 P and 0.144 g of NaO(t-Bu) were added to prepare a mixed solution. The mixture was maintained at 150°C and stirred under an argon atmosphere. The aryl bromide used was 9,9'-(5-bromo-1,3-phenylene)bis(9H-carbazole), and its structural formula is as follows.
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 混合液に1モル/リットルのHClを1.5ミリリットル添加してクエンチを行い、EtOAcを用いて混合液から有機物を抽出した。飽和食塩水で有機物を洗浄した後、該有機物をMgSO4で乾燥した。溶媒を減圧下で除去して、粗生成物を得た。次に、酢酸エチルを展開溶媒として粗生成物につきシリカゲルカラム精製を行った。得られた精製物をエタノールで再沈殿させ、白色固体の有機物を得た。収量は0.66gであり、収率は89%であった。純水及び飽和食塩水で有機物を洗浄した後、該有機物をMgSO4で乾燥した。 The mixture was quenched by adding 1.5 milliliters of 1 mol/liter HCl, and the organic matter was extracted from the mixture using EtOAc. After washing the organic matter with saturated brine, the organic matter was dried with MgSO 4 . The solvent was removed under reduced pressure to obtain the crude product. Next, the crude product was purified by silica gel column using ethyl acetate as a developing solvent. The obtained purified product was reprecipitated with ethanol to obtain a white solid organic substance. The yield was 0.66 g, and the yield was 89%. After washing the organic matter with pure water and saturated brine, the organic matter was dried with MgSO 4 .
 以降は実施例1と同様にして、得られた有機物につき分析を行った。分子中のC、H及びNは、それぞれ、87.63%、4.60%及び7.51%であった。また、NMRによる分析結果は下記のとおりである。
1HNMR(DMSO-d6,392MHz);δ=6.67-6.70(m,2H)、6.83-6.88(m,4H)、7.11-7.13(m,4H)、7.22-7.23(m,2H)、7.25-7.33(m,5H)、7.39-7.60(m,11H)、8.17-8.19(m,4H)、8.44-8.46(m,1H)、8.55-8.57(m,1H)。
 以上の結果から、得られた有機物の示性式はC54344であり、分子量は738.89であると判断された。この場合の有機物の構造式を、下記に示す。
Thereafter, the obtained organic substances were analyzed in the same manner as in Example 1. C, H and N in the molecule were 87.63%, 4.60% and 7.51%, respectively. Further, the results of NMR analysis are as follows.
1 HNMR (DMSO-d6, 392MHz); δ = 6.67-6.70 (m, 2H), 6.83-6.88 (m, 4H), 7.11-7.13 (m, 4H) , 7.22-7.23 (m, 2H), 7.25-7.33 (m, 5H), 7.39-7.60 (m, 11H), 8.17-8.19 (m, 4H), 8.44-8.46 (m, 1H), 8.55-8.57 (m, 1H).
From the above results, it was determined that the formula of the obtained organic substance was C 54 H 34 N 4 and the molecular weight was 738.89. The structural formula of the organic substance in this case is shown below.
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 以下、この有機物をDCZ-2という。 Hereinafter, this organic substance will be referred to as DCZ-2.
[実施例3]
 構造式が下記に示される9-(3-ブロモフェニル)-3,6-ジフェニル-9H-カルバゾールを0.47g用い、ヘキサンとEtOAcを展開溶媒とした以外は実施例2と同様にして、白色固体の有機物を得た。収量は0.33gであり、収率は75%であった。
[Example 3]
A white color was prepared in the same manner as in Example 2 except that 0.47 g of 9-(3-bromophenyl)-3,6-diphenyl-9H-carbazole whose structural formula is shown below was used and hexane and EtOAc were used as the developing solvents. A solid organic material was obtained. The yield was 0.33 g, and the yield was 75%.
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
 有機微量元素分析装置による分子中のC、H及びNは、それぞれ、89.20%、4.91%及び5.72%であった。また、NMRによる分析結果は下記のとおりである。
1HNMR(DMSO-d6,392MHz);δ=6.70-7.32(m,12H)、7.39-7.45(m,4H)、7.49-7.56(m,7H)、7.70-7.73(m,1H)、7.80-7.86(m,6H)、8.12-8.15(m,1H)、8.42-8.44(m,1H),8.54-8.56(m,1H)、8.65-8.66(m,2H)。
 以上の結果から、得られた有機物の示性式はC54353であり、分子量は725.9であると判断された。この場合の有機物の構造式を、下記に示す。
C, H, and N in the molecule determined by an organic trace element analyzer were 89.20%, 4.91%, and 5.72%, respectively. Further, the results of NMR analysis are as follows.
1 HNMR (DMSO-d6, 392MHz); δ = 6.70-7.32 (m, 12H), 7.39-7.45 (m, 4H), 7.49-7.56 (m, 7H) , 7.70-7.73 (m, 1H), 7.80-7.86 (m, 6H), 8.12-8.15 (m, 1H), 8.42-8.44 (m, 1H), 8.54-8.56 (m, 1H), 8.65-8.66 (m, 2H).
From the above results, it was determined that the specific formula of the obtained organic substance was C 54 H 35 N 3 and the molecular weight was 725.9. The structural formula of the organic substance in this case is shown below.
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
 以下、この有機物をDCZ-3という。 Hereinafter, this organic substance will be referred to as DCZ-3.
[実施例4]
 1,3-ジブロモベンゼンを0.66g用いた以外は実施例3と同様にして、白色固体の有機物を得た。なお、ジカルバゾール、Pd(OAc)2、t-Bu3P及びNaO(t-Bu)は、それぞれ、0.66g、9mg、32.4mg及び0.29gとし、メシチレンは4ミリリットルとした。また、抽出にはクロロホルムを用いた。展開溶媒もクロロホルムを用いた。収量は0.44gであり、収率は59%であった。
[Example 4]
A white solid organic substance was obtained in the same manner as in Example 3 except that 0.66 g of 1,3-dibromobenzene was used. Note that dicarbazole, Pd(OAc) 2 , t-Bu 3 P, and NaO(t-Bu) were 0.66 g, 9 mg, 32.4 mg, and 0.29 g, respectively, and mesitylene was 4 ml. In addition, chloroform was used for extraction. Chloroform was also used as the developing solvent. The yield was 0.44 g, and the yield was 59%.
 有機微量元素分析装置による分子中のC、H及びNは、それぞれ、87.73%、4.76%及び7.58%であった。また、NMRによる分析結果は下記のとおりである。
1HNMR(CDCl3,392MHz);δ=5.86-5.87(m,1H)、6.34-6.38(m,3H)、6.50-6.62(m,6H)、6.74-6.78(m,4H)、6.90-7.00(m,6H)、7.19-7.32(m,4H)、7.48-7.60(m,6H),8.18-8.22(m,4H)。
 以上の結果から、得られた有機物の示性式はC54344であり、分子量は738.89であると判断された。この場合の有機物の構造式を、下記に示す。
C, H, and N in the molecule determined by an organic trace element analyzer were 87.73%, 4.76%, and 7.58%, respectively. Further, the results of NMR analysis are as follows.
1 HNMR (CDCl 3 , 392 MHz); δ = 5.86-5.87 (m, 1H), 6.34-6.38 (m, 3H), 6.50-6.62 (m, 6H), 6.74-6.78 (m, 4H), 6.90-7.00 (m, 6H), 7.19-7.32 (m, 4H), 7.48-7.60 (m, 6H) ), 8.18-8.22 (m, 4H).
From the above results, it was determined that the formula of the obtained organic substance was C 54 H 34 N 4 and the molecular weight was 738.89. The structural formula of the organic substance in this case is shown below.
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
 以下、この有機物をDCZ-4という。 Hereinafter, this organic substance will be referred to as DCZ-4.
[実施例5]
 構造式が下記に示される9-(3,5-ジブロモフェニル)-9H-カルバゾールを1ミリモル用いた以外は実施例1と同様にして、白色固体の有機物を得た。なお、ジカルバゾール、Pd(OAc)2、t-Bu3P及びNaO(t-Bu)は、それぞれ、2ミリモル、0.04ミリモル、0.16ミリモル、3ミリモルとし、メシチレンは5ミリリットルとした。収量は0.81gであり、収率は90%であった。
[Example 5]
A white solid organic substance was obtained in the same manner as in Example 1, except that 1 mmol of 9-(3,5-dibromophenyl)-9H-carbazole having the structural formula shown below was used. Note that dicarbazole, Pd(OAc) 2 , t-Bu 3 P, and NaO(t-Bu) were set at 2 mmol, 0.04 mmol, 0.16 mmol, and 3 mmol, respectively, and mesitylene was set at 5 ml. . The yield was 0.81 g, and the yield was 90%.
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
 有機微量元素分析装置による分子中のC、H及びNは、それぞれ、87.98%、4.69%及び7.65%であった。また、NMRによる分析結果は下記のとおりである。
1HNMR(CDCl3,392MHz);δ=6.09(s,1H)、6.35(dd,J=7.2,7.2Hz,2H)、6.54-6.64(m,6H)、6.74-6.81(m,4H)、6.9(s,2H)、7.00-7.06(m,6H)、7.21-7.29(m,4H)、7.35-7.38(m,8H)、7.56(d,J=7.2Hz,2H)、8.05(d,J=7.2Hz,2H)、8.20-8.23(m,4H)。
 以上の結果から、得られた有機物の示性式はC66415であり、分子量は904.09であると判断された。この場合の有機物の構造式を、下記に示す。
C, H, and N in the molecule determined by an organic trace element analyzer were 87.98%, 4.69%, and 7.65%, respectively. Further, the results of NMR analysis are as follows.
1 HNMR (CDCl 3 , 392 MHz); δ = 6.09 (s, 1H), 6.35 (dd, J = 7.2, 7.2Hz, 2H), 6.54-6.64 (m, 6H ), 6.74-6.81 (m, 4H), 6.9 (s, 2H), 7.00-7.06 (m, 6H), 7.21-7.29 (m, 4H), 7.35-7.38 (m, 8H), 7.56 (d, J=7.2Hz, 2H), 8.05 (d, J=7.2Hz, 2H), 8.20-8.23 (m, 4H).
From the above results, it was determined that the specific formula of the obtained organic substance was C 66 H 41 N 5 and the molecular weight was 904.09. The structural formula of the organic substance in this case is shown below.
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
 以下、この有機物をDCZ-6という。 Hereinafter, this organic substance will be referred to as DCZ-6.
[実施例6]
 構造式が下記に示されるN,N-ビス(4-ビフェニルイル)-N-(4-ブロモフェニル)アミンを1ミリモル用いた以外は実施例4と同様にして、白色固体の有機物を得た。なお、ジカルバゾール、Pd(OAc)2、t-Bu3P及びNaO(t-Bu)は、それぞれ、1ミリモル、0.02ミリモル、0.08ミリモル、1.5ミリモルとし、メシチレンは4ミリリットルとした。収量は0.46gであり、収率は63%であった。
[Example 6]
A white solid organic substance was obtained in the same manner as in Example 4, except that 1 mmol of N,N-bis(4-biphenylyl)-N-(4-bromophenyl)amine whose structural formula is shown below was used. . Note that dicarbazole, Pd(OAc) 2 , t-Bu 3 P, and NaO(t-Bu) are 1 mmol, 0.02 mmol, 0.08 mmol, and 1.5 mmol, respectively, and mesitylene is 4 ml. And so. The yield was 0.46 g, and the yield was 63%.
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
 有機微量元素分析装置による分子中のC、H及びNは、それぞれ、89.19%、5.20%及び5.56%であった。また、NMRによる分析結果は下記のとおりである。
1HNMR(CDCl3,392MHz);δ=6.30(d,J=8.5Hz,2H)、6.58(d,J=8.5Hz,2H)、6.84(d,J=8.5Hz,4H)、7.04(d,J=8.5Hz,2H)、7.11(d,J=8.5Hz,1H)、7.20-7.24(m,2H)、7.25-7.50(m,16H)、7.59(d,J=7.2Hz,4H)、8.08(d,J=7.6Hz,2H)、8.22(d,J=7.6Hz,1H)、8.32(d,J=7.2Hz,1H)。
 以上の結果から、得られた有機物の示性式はC54373であり、分子量は727.91であると判断された。この場合の有機物の構造式を、下記に示す。
C, H, and N in the molecule determined by an organic trace element analyzer were 89.19%, 5.20%, and 5.56%, respectively. Further, the results of NMR analysis are as follows.
1 HNMR (CDCl 3 , 392 MHz); δ = 6.30 (d, J = 8.5 Hz, 2H), 6.58 (d, J = 8.5 Hz, 2H), 6.84 (d, J = 8 .5Hz, 4H), 7.04 (d, J = 8.5Hz, 2H), 7.11 (d, J = 8.5Hz, 1H), 7.20-7.24 (m, 2H), 7 .25-7.50 (m, 16H), 7.59 (d, J = 7.2Hz, 4H), 8.08 (d, J = 7.6Hz, 2H), 8.22 (d, J = 7.6Hz, 1H), 8.32 (d, J=7.2Hz, 1H).
From the above results, it was determined that the formula of the obtained organic substance was C 54 H 37 N 3 and the molecular weight was 727.91. The structural formula of the organic substance in this case is shown below.
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
 以下、この有機物をDCZ-9という。 Hereinafter, this organic substance will be referred to as DCZ-9.
[実施例7]
 構造式が下記に示される4’-ブロモトリ(4-ビフェニルイル)アミンを用いた以外は実施例5と同様にして、白色固体の有機物を得た。ジカルバゾール、4’-ブロモトリ(4-ビフェニルイル)アミン、Pd(OAc)2、t-Bu3P及びNaO(t-Bu)のモル比は実施例5と同様である。なお、メシチレンは2.5ミリリットルとした。収量は0.72gであり、収率は89%であった。
[Example 7]
A white solid organic substance was obtained in the same manner as in Example 5 except that 4'-bromotri(4-biphenylyl)amine having the structural formula shown below was used. The molar ratios of dicarbazole, 4'-bromotri(4-biphenylyl)amine, Pd(OAc) 2 , t-Bu 3 P and NaO(t-Bu) are the same as in Example 5. Note that the amount of mesitylene was 2.5 ml. The yield was 0.72 g, and the yield was 89%.
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
 有機微量元素分析装置による分子中のH、C及びNは、それぞれ、5.27%、89.67%及び5.43%であった。また、NMRによる分析結果は下記のとおりである。
1HNMR(CDCl3,392MHz);δ=6.51(s,4H)、7.01(d,J=8.1Hz,2H)、7.06-7.23(m,8H)、7.26-7.37(m,8H),7.42-7.63(m,15H)、7.77(d,J=7.6Hz,2H),8.23(d,J=7.2Hz,1H)、8.34(d,J=8.1Hz,1H)。
 以上の結果から、得られた有機物の示性式はC60413であり、分子量は809.01であると判断された。この場合の有機物の構造式を、下記に示す。
H, C, and N in the molecule determined by an organic trace element analyzer were 5.27%, 89.67%, and 5.43%, respectively. Further, the results of NMR analysis are as follows.
1 HNMR (CDCl 3 , 392 MHz); δ = 6.51 (s, 4H), 7.01 (d, J = 8.1 Hz, 2H), 7.06-7.23 (m, 8H), 7. 26-7.37 (m, 8H), 7.42-7.63 (m, 15H), 7.77 (d, J = 7.6Hz, 2H), 8.23 (d, J = 7.2Hz) , 1H), 8.34 (d, J = 8.1Hz, 1H).
From the above results, it was determined that the specific formula of the organic substance obtained was C 60 H 41 N 3 and the molecular weight was 809.01. The structural formula of the organic substance in this case is shown below.
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
 以下、この有機物をDCZ-10という。 Hereinafter, this organic substance will be referred to as DCZ-10.
[実施例8]
 構造式が下記に示されるN-(4-ブロモフェニル)-N-(ナフタレン-2-イル)ナフタレン-2-アミンを1ミリモル用いた以外は実施例2と同様にして、白色固体の有機物を得た。なお、エチレンは2.7ミリリットルとした。収量は0.60gであり、収率は88%であった。
[Example 8]
A white solid organic substance was prepared in the same manner as in Example 2 except that 1 mmol of N-(4-bromophenyl)-N-(naphthalen-2-yl)naphthalen-2-amine whose structural formula is shown below was used. Obtained. Note that the amount of ethylene was 2.7 ml. The yield was 0.60 g, and the yield was 88%.
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
 有機微量元素分析装置による分子中のH、C及びNは、それぞれ、89.03%、4.96%及び6.05%であった。また、NMRによる分析結果は下記のとおりである。
1HNMR(CDCl3,392MHz);δ=6.25-6.29(m,2H),6.53-6.57(m,2H)、7.03-7.06(m,4H)、7.10-7.50(m,15H)、7.60-7.63(m,2H)、7.76-7.81(m,4H)、8.12-8.14(m,2H)、8.22-8.24(m,1H)、8.32-8.34(m,1H)。
 以上の結果から、得られた有機物の示性式はC50353であり、分子量は675.84であると判断された。この場合の有機物の構造式を、下記に示す。
H, C, and N in the molecule determined by an organic trace element analyzer were 89.03%, 4.96%, and 6.05%, respectively. Further, the results of NMR analysis are as follows.
1 HNMR (CDCl 3 , 392 MHz); δ = 6.25-6.29 (m, 2H), 6.53-6.57 (m, 2H), 7.03-7.06 (m, 4H), 7.10-7.50 (m, 15H), 7.60-7.63 (m, 2H), 7.76-7.81 (m, 4H), 8.12-8.14 (m, 2H) ), 8.22-8.24 (m, 1H), 8.32-8.34 (m, 1H).
From the above results, it was determined that the formula of the obtained organic substance was C 50 H 35 N 3 and the molecular weight was 675.84. The structural formula of the organic substance in this case is shown below.
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
 以下、この有機物をDCZ-11という。 Hereinafter, this organic substance will be referred to as DCZ-11.
[実施例9]
 構造式が下記に示されるN-(4’-ブロモ-[1、1’-ビフェニル]-4-イル)-N-(ナフタレン-2-イル)-ナフタレン-2-アミンを1ミリモル用いた以外は、メシチレンの量も含めて実施例8と同様にして、白色固体の有機物を得た。収量は0.65gであり、収率は87%であった。
[Example 9]
Except for using 1 mmol of N-(4'-bromo-[1,1'-biphenyl]-4-yl)-N-(naphthalen-2-yl)-naphthalen-2-amine whose structural formula is shown below. A white solid organic substance was obtained in the same manner as in Example 8, including the amount of mesitylene. The yield was 0.65 g, and the yield was 87%.
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
 有機微量元素分析装置による分子中のC、H及びNは、それぞれ、89.54%、5.04%及び5.29%であった。また、NMRによる分析結果は下記のとおりである。
1HNMR(CDCl3,392MHz);δ=6.52-6.53(m,4H)、6.99-7.02(m,2H)、7.08-7.19(m,8H)、7.25-7.58(m,13H)、7.64-7.66(m,2H)、7.77-7.83(m,6H)、8.22-8.24(m,1H)、8.33-8.36(m,1H)。
 以上の結果から、得られた有機物の示性式はC56373であり、分子量は751.93であると判断された。この場合の有機物の構造式を、下記に示す。
C, H and N in the molecule determined by an organic trace element analyzer were 89.54%, 5.04% and 5.29%, respectively. Further, the results of NMR analysis are as follows.
1 HNMR (CDCl 3 , 392 MHz); δ = 6.52-6.53 (m, 4H), 6.99-7.02 (m, 2H), 7.08-7.19 (m, 8H), 7.25-7.58 (m, 13H), 7.64-7.66 (m, 2H), 7.77-7.83 (m, 6H), 8.22-8.24 (m, 1H) ), 8.33-8.36 (m, 1H).
From the above results, it was determined that the specific formula of the obtained organic substance was C 56 H 37 N 3 and the molecular weight was 751.93. The structural formula of the organic substance in this case is shown below.
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
 以下、この有機物をDCZ-12という。 Hereinafter, this organic substance will be referred to as DCZ-12.
[実施例10]
 臭化アリールとして、構造式が下記に示される9-(4-ブロモフェニル)-3,6-ジフェニル-9H-カルバゾールを、1ミリモルに相当する0.474g用いた以外は、メシチレンの量も含めて実施例9と同様にして、白色固体の有機物を得た。収量は0.52gであり、収率は71%であった。
[Example 10]
The amount of mesitylene was also included, except that 0.474 g, equivalent to 1 mmol, of 9-(4-bromophenyl)-3,6-diphenyl-9H-carbazole, whose structural formula is shown below, was used as the aryl bromide. In the same manner as in Example 9, a white solid organic substance was obtained. The yield was 0.52 g, and the yield was 71%.
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
 有機微量元素分析装置による分子中のC、H及びNは、それぞれ、89.43%、4.98%及び5.87%であった。また、NMRによる分析結果は下記のとおりである。
1HNMR(CDCl3,392MHz);δ=6.78-6.80(m,2H)、6.94-6.96(m,2H)、7.12-7.62(m,19H)、7.71-7.77(m,6H)、7.95-7.97(m,2H)、8.28-8.39(m,4H)。
 以上の結果から、得られた有機物の示性式はC54353であり、分子量は725.9であると判断された。この場合の有機物の構造式を、下記に示す。
C, H and N in the molecule determined by an organic trace element analyzer were 89.43%, 4.98% and 5.87%, respectively. Further, the results of NMR analysis are as follows.
1 HNMR (CDCl 3 , 392 MHz); δ = 6.78-6.80 (m, 2H), 6.94-6.96 (m, 2H), 7.12-7.62 (m, 19H), 7.71-7.77 (m, 6H), 7.95-7.97 (m, 2H), 8.28-8.39 (m, 4H).
From the above results, it was determined that the specific formula of the obtained organic substance was C 54 H 35 N 3 and the molecular weight was 725.9. The structural formula of the organic substance in this case is shown below.
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
 以下、この有機物をDCZ-13という。 Hereinafter, this organic substance will be referred to as DCZ-13.
[実施例11]
 構造式が下記に示される9-(4’-ブロモ-[1,1’-ビフェニル]-4-イル)-3,6-ジフェニル-9H-カルバゾールを1ミリモル用い、且つエチレンを5ミリリットルとした以外は実施例10と同様にして、白色固体の有機物を得た。収量は0.70gであり、収率は88%であった。
[Example 11]
1 mmol of 9-(4'-bromo-[1,1'-biphenyl]-4-yl)-3,6-diphenyl-9H-carbazole whose structural formula is shown below was used, and ethylene was set at 5 ml. A white solid organic substance was obtained in the same manner as in Example 10 except for this. The yield was 0.70 g, and the yield was 88%.
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
 有機微量元素分析装置による分子中のC、H及びNは、それぞれ、89.93%、4.99%及び5.03%であった。また、NMRによる分析結果は下記のとおりである。
1HNMR(CDCl3,392MHz);δ=6.61-6.66(m,4H)、7.04-7.21(m,4H)、7.31-7.86(m,27H)、8.25-8.44(m,4H)。
 以上の結果から、得られた有機物の示性式はC60393であり、分子量は801.99であると判断された。この場合の有機物の構造式を、下記に示す。
C, H, and N in the molecule determined by an organic trace element analyzer were 89.93%, 4.99%, and 5.03%, respectively. Further, the results of NMR analysis are as follows.
1 HNMR (CDCl 3 , 392 MHz); δ = 6.61-6.66 (m, 4H), 7.04-7.21 (m, 4H), 7.31-7.86 (m, 27H), 8.25-8.44 (m, 4H).
From the above results, it was determined that the formula of the obtained organic substance was C 60 H 39 N 3 and the molecular weight was 801.99. The structural formula of the organic substance in this case is shown below.
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
 以下、この有機物をDCZ-14いう。 Hereinafter, this organic substance will be referred to as DCZ-14.
[実施例12]
 ジカルバゾール化合物として、構造式が下記に示される3,3’,6,6’-テトラフェニル-9H-1,9’-ビカルバゾールを、1ミリモルに相当する0.64g用いた。
[Example 12]
As the dicarbazole compound, 0.64 g, equivalent to 1 mmol, of 3,3',6,6'-tetraphenyl-9H-1,9'-bicarbazole whose structural formula is shown below was used.
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
 また、臭化アリールとして、構造式が下記に示される4-ブロモビフェニルを1ミリモルに相当する0.233g用いた。 Further, as the aryl bromide, 0.233 g of 4-bromobiphenyl whose structural formula is shown below was used, which corresponds to 1 mmol.
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
 その後、エチレンを2.5ミリリットルとした以外は実施例11と同様にして、白色固体の有機物を得た。収量は0.48gであり、収率は61%であった。 Thereafter, a white solid organic substance was obtained in the same manner as in Example 11, except that the amount of ethylene was changed to 2.5 ml. The yield was 0.48 g, and the yield was 61%.
 有機微量元素分析装置による分子中のC、H及びNは、それぞれ、91.19%、5.16%及び3.49%であった。また、NMRによる分析結果は下記のとおりである。
1HNMR(CDCl3,392MHz);δ=6.62-6.67(m,4H)、7.14-7.64(m,27H)、7.73-7.75(m,2H)、7.83-7.85(m,2H)、7.92-7.93(m,1H),8.01-8.02(m,2H)、8.50-8.51(m,1H)、8.65-8.66(m,1H)。
 以上の結果から、得られた有機物の示性式はC60393であり、分子量は801.99であると判断された。この場合の有機物の構造式を、下記に示す。
C, H, and N in the molecule determined by an organic trace element analyzer were 91.19%, 5.16%, and 3.49%, respectively. Further, the results of NMR analysis are as follows.
1 HNMR (CDCl 3 , 392 MHz); δ = 6.62-6.67 (m, 4H), 7.14-7.64 (m, 27H), 7.73-7.75 (m, 2H), 7.83-7.85 (m, 2H), 7.92-7.93 (m, 1H), 8.01-8.02 (m, 2H), 8.50-8.51 (m, 1H) ), 8.65-8.66 (m, 1H).
From the above results, it was determined that the formula of the obtained organic substance was C 60 H 39 N 3 and the molecular weight was 801.99. The structural formula of the organic substance in this case is shown below.
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
 以下、この有機物をDCZ-15という。 Hereinafter, this organic substance will be referred to as DCZ-15.
[実施例13]
 9-(3-ブロモフェニル)-9H-カルバゾールに代替して1ミリモルの3、3’-ジブロモビフェニルを用いた以外は実施例1と同様にして混合液を調製した。該混合液を、アルゴン雰囲気下で150℃に保持した状態で、4時間撹拌した。混合液に1モル/リットルのHClを添加してクエンチを行い、クロロホルムで抽出した。有機層を水で洗浄した後、該有機層を飽和食塩水で洗浄した。その後、有機物をMgSO4で乾燥した。溶媒を減圧下で除去して、粗生成物を得た。
[Example 13]
A mixed solution was prepared in the same manner as in Example 1 except that 1 mmol of 3,3'-dibromobiphenyl was used in place of 9-(3-bromophenyl)-9H-carbazole. The mixture was stirred for 4 hours while being maintained at 150° C. under an argon atmosphere. The mixture was quenched by adding 1 mol/liter of HCl, and extracted with chloroform. After washing the organic layer with water, the organic layer was washed with saturated brine. The organics were then dried with MgSO4 . The solvent was removed under reduced pressure to obtain the crude product.
 ヘキサン/酢酸エチルの5:1混合液を展開溶媒として粗生成物のシリカゲルカラム精製を行い、白色固体の有機物を得た。収量は0.55gであり、収率は68%であった。 The crude product was purified on a silica gel column using a 5:1 mixture of hexane/ethyl acetate as a developing solvent to obtain a white solid organic substance. The yield was 0.55 g, and the yield was 68%.
 得られた有機物についてのNMRによる分析結果は、下記のとおりであった。
1HNMR(DMSO-d6,392MHz);δ=4.67(s,2H)、5.05(t,J=7.3Hz,2H)、5.64(t,J=7.6Hz,2H)、6.59-6.90(m,12H)、7.07-7.23(m,6H)、7.45-7.59(m,10H)、8.55-8.66(m,4H)。
The results of NMR analysis of the obtained organic matter were as follows.
1 HNMR (DMSO-d6, 392MHz); δ = 4.67 (s, 2H), 5.05 (t, J = 7.3Hz, 2H), 5.64 (t, J = 7.6Hz, 2H) , 6.59-6.90 (m, 12H), 7.07-7.23 (m, 6H), 7.45-7.59 (m, 10H), 8.55-8.66 (m, 4H).
 以上の結果から、得られた有機物の示性式はC60384であり、分子量は814であると判断された。 From the above results, it was determined that the formula of the obtained organic substance was C 60 H 38 N 4 and the molecular weight was 814.
 この場合の化学反応式を、下記に示す。 The chemical reaction formula in this case is shown below.
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
 以下、生成物である有機物をDCZ-20という。 Hereinafter, the organic substance that is the product will be referred to as DCZ-20.
[有機物(ジカルバゾリルベンゼン類化合物)の物性評価]
 DCZ-1、DCZ-2、DCZ-3、DCZ-4、DCZ-9、DCZ-10、DCZ-11、DCZ-12、DCZ-13、DCZ-14及びDCZ-15につき、ガラス転移温度(Tg)、HOMO、LUMO、S1、T1、吸収端、蛍光極大波長、量子収率及び酸化電位を求めた。結果を、図2に一括して示す。上記の化合物のガラス転移温度は、全て100℃以上である。従って、これらの化合物は、有機EL素子の各層の素材として好適である。
[Physical property evaluation of organic substances (dicarbazolylbenzene compounds)]
The glass transition temperature (Tg ), HOMO, LUMO, S1, T1, absorption edge, maximum fluorescence wavelength, quantum yield, and oxidation potential were determined. The results are collectively shown in FIG. 2. The glass transition temperatures of all of the above compounds are 100°C or higher. Therefore, these compounds are suitable as materials for each layer of an organic EL element.
 図2から、各化合物の第一励起三重項状態(T1)のエネルギが高いことが分かる。また、各化合物におけるHOMOエネルギ(EHOMO)及び最低非占有準位エネルギ(ELUMO)は、特に青色発光材料を発光層に含む場合の電荷輸送材として用いるに当たって、適切な範囲内である。 From FIG. 2, it can be seen that the energy of the first excited triplet state (T1) of each compound is high. In addition, the HOMO energy (EHOMO) and lowest unoccupied level energy (ELUMO) of each compound are within appropriate ranges, especially when used as a charge transport material when a blue light emitting material is included in the light emitting layer.
[素子の評価その1]
 DCZ-9又はDCZ-10をホスト材料として含む発光層を備え、図1に示される構造を有する有機EL素子をそれぞれ作製した。比較のため、URP又は3,3’-ジ(9H-カルバゾール-9-イル)-1,1’-ビフェニルをホスト材料として含む発光層を備え、図1に示される構造を有する有機EL素子をそれぞれ作製した。以下、3,3’-ジ(9H-カルバゾール-9-イル)-1,1’-ビフェニルをm-CBPと表記する。
[Element evaluation part 1]
Organic EL devices each having a structure shown in FIG. 1 and having a light emitting layer containing DCZ-9 or DCZ-10 as a host material were manufactured. For comparison, an organic EL element having the structure shown in FIG. 1 was prepared, including a light-emitting layer containing URP or 3,3'-di(9H-carbazol-9-yl)-1,1'-biphenyl as a host material. Each was produced. Hereinafter, 3,3'-di(9H-carbazol-9-yl)-1,1'-biphenyl will be referred to as m-CBP.
 各有機EL素子に蛍光、燐光又は熱活性化遅延蛍光(TADF)を発光させて寿命を評価した。なお、寿命は、発光強度が初期特性の90%に低下するまでの時間である。結果を、図3に併せて示す。この図3から、DCZ-9又はDCZ-10を発光層のホスト材料とする有機EL素子の寿命が、URP又はm-CBPを発光層のホスト材料とする有機EL素子の寿命に比べて優れていることが分かる。 The lifetime of each organic EL element was evaluated by causing it to emit fluorescence, phosphorescence, or thermally activated delayed fluorescence (TADF). Note that the lifetime is the time until the emission intensity decreases to 90% of the initial characteristic. The results are also shown in FIG. From FIG. 3, it can be seen that the lifetime of the organic EL device using DCZ-9 or DCZ-10 as the host material for the emissive layer is superior to that of the organic EL device using URP or m-CBP as the host material for the emissive layer. I know that there is.
 また、図3には特に示していないが、蛍光を発光させた場合では、DCZ-9又はDCZ-10を発光層のホスト材料とする有機EL素子は、URPを発光層のホスト材料とする有機EL素子よりも優れた効率を示した。 Although not particularly shown in FIG. 3, in the case of emitting fluorescence, an organic EL device using DCZ-9 or DCZ-10 as the host material of the emitting layer is different from an organic EL device using URP as the host material of the emitting layer. It showed better efficiency than EL devices.
[素子の評価その2]
 正孔注入層(HIL)、正孔輸送層(HTL)、電子ブロック層(EBL)及び正孔ブロック層(HBL)を有する9種類の有機EL素子を作製した。以下、9種類の有機EL素子を、それぞれ、評価素子1~評価素子9と表記する。評価素子1~評価素子9におけるHIL、HTL、EBL及びHBLに含まれる有機化合物として、図4に示す物質を用いた。図4に示すように、評価素子1~評価素子9においては、HIL、HTL、EBL又はHBLの少なくともいずれかの層にDCZ-9又はDCZ-10が含まれている。
[Element evaluation part 2]
Nine types of organic EL devices having a hole injection layer (HIL), a hole transport layer (HTL), an electron block layer (EBL), and a hole block layer (HBL) were fabricated. Hereinafter, the nine types of organic EL elements will be referred to as evaluation elements 1 to 9, respectively. The substances shown in FIG. 4 were used as organic compounds contained in HIL, HTL, EBL, and HBL in Evaluation Elements 1 to 9. As shown in FIG. 4, in evaluation elements 1 to 9, DCZ-9 or DCZ-10 is included in at least one of the HIL, HTL, EBL, and HBL layers.
 なお、評価素子2のHTLと、評価素子5のHILとにそれぞれ含まれているOPDA-10とは、化学構造式が以下のように示される有機化合物である。 Note that OPDA-10 contained in HTL of evaluation element 2 and HIL of evaluation element 5, respectively, is an organic compound whose chemical structural formula is shown below.
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
 これら評価素子1~評価素子9につき、効率と、発光強度が初期特性の90%に低下するまでの時間(寿命)と、発光強度が初期特性の90%に低下するまでの電圧の変化(ΔV)とを評価した。結果を、図4に併せて示す。 For these evaluation elements 1 to 9, the efficiency, the time until the emission intensity decreases to 90% of the initial characteristics (lifetime), and the change in voltage until the emission intensity decreases to 90% of the initial characteristics (ΔV ) was evaluated. The results are also shown in FIG.
 比較のため、DCZ-1等の有機化合物を含んだ層を全く有しない2種類の有機EL素子を作製した。以下、2種類の有機EL素子を、それぞれ、対照素子1及び対照素子2と表記する。なお、対照素子1及び対照素子2におけるHIL、HTL、EBL及びHBLに含まれる有機化合物は、図4に示されている。 For comparison, two types of organic EL devices were fabricated that did not have any layer containing an organic compound such as DCZ-1. Hereinafter, the two types of organic EL elements will be referred to as control element 1 and control element 2, respectively. Note that organic compounds contained in HIL, HTL, EBL, and HBL in control element 1 and control element 2 are shown in FIG. 4.
 対照素子1及び対照素子2についても、効率、寿命及びΔVを評価した。結果を、図4に併せて示す。 Efficiency, lifetime, and ΔV were also evaluated for Control Element 1 and Control Element 2. The results are also shown in FIG.
 図4から、DCZ-9又はDCZ-10を含む層を有する評価素子1~評価素子9が、DCZ-9又はDCZ-10を含む層を有しない対照素子1及び対照素子2よりも優れた寿命を示すことが分かる。また、評価素子1~評価素子9の効率は、対照素子1及び対照素子2と略同等であるか、又は上回っている。以上のように、DCZ-9又はDCZ-10を含む層を有する有機EL素子(評価素子1~評価素子9)は、従来技術に係る有機EL素子(対照素子1及び対照素子2)と同等の効率を示し、且つ優れた寿命を示す。 From FIG. 4, it can be seen that Evaluation Elements 1 to 9 having layers containing DCZ-9 or DCZ-10 have better lifetimes than Control Elements 1 and 2 that do not have layers containing DCZ-9 or DCZ-10. It can be seen that this shows that Furthermore, the efficiency of Evaluation Elements 1 to 9 is approximately equal to or higher than that of Comparative Element 1 and Comparative Element 2. As described above, the organic EL elements (Evaluation Elements 1 to 9) having layers containing DCZ-9 or DCZ-10 are equivalent to the organic EL elements according to the prior art (Control Element 1 and Control Element 2). Demonstrates efficiency and excellent longevity.
10…有機EL素子          12…ガラス基板
14…アノード            16…正孔輸送層
18…発光層             20…電子輸送層
22…カソード
DESCRIPTION OF SYMBOLS 10...Organic EL element 12...Glass substrate 14...Anode 16...Hole transport layer 18...Light emitting layer 20...Electron transport layer 22...Cathode

Claims (8)

  1.  2個のカルバゾリル基が互いに結合した1個以上のジカルバゾリル基、又は、1個以上の官能基が結合した1個以上の置換ジカルバゾリル基を有し、前記1個以上のジカルバゾリル基又は前記1個以上の置換ジカルバゾリル基がベンゼン環に結合したジカルバゾリルベンゼンを基本骨格として含み、下記の構造式(1)で示されるジカルバゾリルベンゼン類化合物。
    Figure JPOXMLDOC01-appb-C000001
     上記構造式(1)中のR2~R5は、水素か、又は、カルバゾリル基を構成するベンゼン環の任意の位置に結合した置換基を表す。また、上記構造式(1)中のL1~L3の少なくともいずれか1個は、下記の構造式(2)、構造式(3)又は構造式(4)に示される官能基である。
    Figure JPOXMLDOC01-appb-C000002
     上記構造式(2)中のnは、0又は1である。
     R6及びR7は、置換芳香族炭化水素基もしくは無置換芳香族炭化水素基であるか、又は、置換窒素含有芳香族複素環基もしくは無置換窒素含有芳香族複素環基である。
    Figure JPOXMLDOC01-appb-C000003
     上記構造式(3)中のR8は、水素であるか、又は、置換芳香族炭化水素基もしくは無置換芳香族炭化水素基である。
    Figure JPOXMLDOC01-appb-C000004
     R2~R5の少なくともいずれか1つが1価の芳香族炭化水素基である場合、L1~L3の少なくともいずれか1個は、置換芳香族炭化水素もしくは無置換芳香族炭化水素であるか、又は、置換芳香族複素環基もしくは無置換芳香族複素環基である。
    Two carbazolyl groups have one or more dicarbazolyl groups bonded to each other, or one or more substituted dicarbazolyl groups to which one or more functional groups are bonded, and the one or more dicarbazolyl groups or the one or more A dicarbazolylbenzene compound containing as a basic skeleton a dicarbazolylbenzene in which a substituted dicarbazolyl group is bonded to a benzene ring, and is represented by the following structural formula (1).
    Figure JPOXMLDOC01-appb-C000001
    R2 to R5 in the above structural formula (1) represent hydrogen or a substituent bonded to any position of the benzene ring constituting the carbazolyl group. Furthermore, at least one of L1 to L3 in the above structural formula (1) is a functional group represented by the following structural formula (2), structural formula (3), or structural formula (4).
    Figure JPOXMLDOC01-appb-C000002
    n in the above structural formula (2) is 0 or 1.
    R6 and R7 are substituted aromatic hydrocarbon groups or unsubstituted aromatic hydrocarbon groups, or substituted nitrogen-containing aromatic heterocyclic groups or unsubstituted nitrogen-containing aromatic heterocyclic groups.
    Figure JPOXMLDOC01-appb-C000003
    R8 in the above structural formula (3) is hydrogen, a substituted aromatic hydrocarbon group, or an unsubstituted aromatic hydrocarbon group.
    Figure JPOXMLDOC01-appb-C000004
    When at least one of R2 to R5 is a monovalent aromatic hydrocarbon group, at least one of L1 to L3 is a substituted aromatic hydrocarbon or an unsubstituted aromatic hydrocarbon, or It is a substituted aromatic heterocyclic group or an unsubstituted aromatic heterocyclic group.
  2.  請求項1記載のジカルバゾリルベンゼン類化合物において、前記1個以上のジカルバゾリル基として2個のジカルバゾリル基が前記ベンゼン環に結合するか、前記1個以上の置換ジカルバゾリル基として2個の置換ジカルバゾリル基が前記ベンゼン環に結合するか、又は、1個のジカルバゾリル基と1個の置換ジカルバゾリル基とが前記ベンゼン環に結合したジカルバゾリルベンゼン類化合物。 2. The dicarbazolylbenzene compound according to claim 1, wherein the one or more dicarbazolyl groups are two dicarbazolyl groups bonded to the benzene ring, or the one or more substituted dicarbazolyl groups are two substituted dicarbazolyl groups. A dicarbazolylbenzene compound in which a group is bonded to the benzene ring, or one dicarbazolyl group and one substituted dicarbazolyl group are bonded to the benzene ring.
  3.  請求項2記載のジカルバゾリルベンゼン類化合物において、前記ベンゼン環にカルバゾリル基又は置換カルバゾリル基がさらに結合したジカルバゾリルベンゼン類化合物。 The dicarbazolylbenzene compound according to claim 2, wherein a carbazolyl group or a substituted carbazolyl group is further bonded to the benzene ring.
  4.  請求項2記載のジカルバゾリルベンゼン類化合物において、前記2個のジカルバゾリル基同士、前記2個の置換ジカルバゾリル基同士、又は前記1個のジカルバゾリル基と前記1個の置換ジカルバゾリル基とがo-位の位置関係にあるジカルバゾリルベンゼン類化合物。 In the dicarbazolylbenzene compound according to claim 2, the two dicarbazolyl groups, the two substituted dicarbazolyl groups, or the one dicarbazolyl group and the one substituted dicarbazolyl group are o- Dicarbazolylbenzene compounds in positional relationship.
  5.  請求項1記載のジカルバゾリルベンゼン類化合物において、ジカルバゾリル基又は置換ジカルバゾリル基がベンゼン環に結合したジカルバゾリルベンゼンに対し、ジカルバゾリル基又は置換ジカルバゾリル基がフェニル基に結合した官能基が結合したジカルバゾリルベンゼン類化合物。 In the dicarbazolylbenzene compound according to claim 1, a functional group in which a dicarbazolyl group or a substituted dicarbazolyl group is bonded to a phenyl group is bonded to a dicarbazolylbenzene in which a dicarbazolyl group or a substituted dicarbazolyl group is bonded to a benzene ring. dicarbazolylbenzene compounds.
  6.  請求項5記載のジカルバゾリルベンゼン類化合物において、前記官能基が前記ジカルバゾリル基又は前記置換ジカルバゾリル基に対してo-位の位置関係にあるジカルバゾリルベンゼン類化合物。 The dicarbazolylbenzene compound according to claim 5, wherein the functional group is at the o-position with respect to the dicarbazolyl group or the substituted dicarbazolyl group.
  7.  請求項1記載のジカルバゾリルベンゼン類化合物において、L1~L3の少なくともいずれか1個がNを含む官能基であるジカルバゾリルベンゼン類化合物。 The dicarbazolylbenzene compound according to claim 1, wherein at least one of L1 to L3 is a functional group containing N.
  8.  請求項1~7のいずれか1項に記載されたジカルバゾリルベンゼン類化合物を含む層を備える有機エレクトロルミネッセンス素子(10)。 An organic electroluminescent device (10) comprising a layer containing the dicarbazolylbenzene compound according to any one of claims 1 to 7.
PCT/JP2022/010682 2022-03-10 2022-03-10 Dicarbazolyl benzene compound and organic electroluminescent device WO2023170880A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2022/010682 WO2023170880A1 (en) 2022-03-10 2022-03-10 Dicarbazolyl benzene compound and organic electroluminescent device
KR1020247002001A KR20240023619A (en) 2022-03-10 2023-03-09 Dicarbazolyl compounds and organic electroluminescent devices
PCT/JP2023/009107 WO2023171761A1 (en) 2022-03-10 2023-03-09 Dicarbazolyl compound and organic electroluminescence element
JP2023562803A JP7445249B2 (en) 2022-03-10 2023-03-09 Dicarbazolyl compounds and organic electroluminescent devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/010682 WO2023170880A1 (en) 2022-03-10 2022-03-10 Dicarbazolyl benzene compound and organic electroluminescent device

Publications (1)

Publication Number Publication Date
WO2023170880A1 true WO2023170880A1 (en) 2023-09-14

Family

ID=87935386

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/010682 WO2023170880A1 (en) 2022-03-10 2022-03-10 Dicarbazolyl benzene compound and organic electroluminescent device
PCT/JP2023/009107 WO2023171761A1 (en) 2022-03-10 2023-03-09 Dicarbazolyl compound and organic electroluminescence element

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009107 WO2023171761A1 (en) 2022-03-10 2023-03-09 Dicarbazolyl compound and organic electroluminescence element

Country Status (3)

Country Link
JP (1) JP7445249B2 (en)
KR (1) KR20240023619A (en)
WO (2) WO2023170880A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011049325A2 (en) * 2009-10-21 2011-04-28 Cheil Industries Inc. Novel compound for organic photoelectric device and organic photoelectric device including the same
WO2011081061A1 (en) * 2009-12-28 2011-07-07 新日鐵化学株式会社 Organic electroluminescent element
WO2013161437A1 (en) * 2012-04-25 2013-10-31 国立大学法人九州大学 Light-emitting material and organic light-emitting element
KR20140141337A (en) * 2013-05-31 2014-12-10 제일모직주식회사 Organic compound and organic optoelectric device and display device
KR20180062208A (en) * 2016-11-30 2018-06-08 희성소재 (주) Hetero-cyclic compound and organic light emitting device using the same
KR20200078253A (en) * 2018-12-21 2020-07-01 솔브레인 주식회사 Heterocyclic Compound and Organic Light Emitting Device Comprising The Same
KR20200122252A (en) * 2019-04-17 2020-10-27 주식회사 엘지화학 Heterocyclic compound and organic light emitting device comprising same
US20210210700A1 (en) * 2018-11-28 2021-07-08 Universal Display Corporation Organic electroluminescent materials and devices

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010012738A1 (en) * 2010-03-25 2011-09-29 Merck Patent Gmbh Materials for organic electroluminescent devices
KR101512059B1 (en) * 2014-10-06 2015-04-14 덕산네오룩스 주식회사 Compound for organic electric element, organic electric element comprising the same and electronic device thereof
KR102591635B1 (en) * 2015-10-27 2023-10-20 삼성디스플레이 주식회사 An organic light emitting device
CN110452153A (en) * 2018-05-08 2019-11-15 北京鼎材科技有限公司 Electroluminescent organic material and device
KR20200078254A (en) * 2018-12-21 2020-07-01 솔브레인 주식회사 Heterocyclic Compound and Organic Light Emitting Device Comprising The Same
US20220177492A1 (en) * 2019-10-25 2022-06-09 Universal Display Corporation Organic electroluminescent materials and devices
KR20220054483A (en) * 2020-10-23 2022-05-03 덕산네오룩스 주식회사 Compound for organic electric element, organic electric element using the same, and an electronic device thereof
CN114621237B (en) * 2020-12-14 2023-12-05 广州华睿光电材料有限公司 Organic compounds, mixtures, compositions and organic electronic devices

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011049325A2 (en) * 2009-10-21 2011-04-28 Cheil Industries Inc. Novel compound for organic photoelectric device and organic photoelectric device including the same
WO2011081061A1 (en) * 2009-12-28 2011-07-07 新日鐵化学株式会社 Organic electroluminescent element
WO2013161437A1 (en) * 2012-04-25 2013-10-31 国立大学法人九州大学 Light-emitting material and organic light-emitting element
KR20140141337A (en) * 2013-05-31 2014-12-10 제일모직주식회사 Organic compound and organic optoelectric device and display device
KR20180062208A (en) * 2016-11-30 2018-06-08 희성소재 (주) Hetero-cyclic compound and organic light emitting device using the same
US20210210700A1 (en) * 2018-11-28 2021-07-08 Universal Display Corporation Organic electroluminescent materials and devices
KR20200078253A (en) * 2018-12-21 2020-07-01 솔브레인 주식회사 Heterocyclic Compound and Organic Light Emitting Device Comprising The Same
KR20200122252A (en) * 2019-04-17 2020-10-27 주식회사 엘지화학 Heterocyclic compound and organic light emitting device comprising same

Also Published As

Publication number Publication date
JPWO2023171761A1 (en) 2023-09-14
WO2023171761A1 (en) 2023-09-14
KR20240023619A (en) 2024-02-22
JP7445249B2 (en) 2024-03-07

Similar Documents

Publication Publication Date Title
JP6338630B2 (en) New compounds
JP6674892B2 (en) Organic electroluminescence device
JP6329937B2 (en) Organic electroluminescence device
KR102059908B1 (en) Carbazole derivative, and light-emitting element, light-emitting device, and electronic device using carbazole derivative
TWI802612B (en) Organic electroluminescence device
JP2020074357A (en) Compound having tetraazatriphenylene ring structure, light emitting material, and organic electroluminescence element
CN110431680B (en) Organic electroluminescent element
EP3006426B1 (en) Indenoindole derivative and organic electroluminescent element
JP6223201B2 (en) Compound having indenoacridan ring structure and organic electroluminescence device
WO2015004875A1 (en) Organic electroluminescent element
TW201803967A (en) An organic electroluminescence device
WO2015029354A1 (en) Compound having triphenylene ring structure and organic electroluminescent element
WO2016111270A1 (en) Organic electroluminescent element
JP5585044B2 (en) Carbazole compounds and uses thereof
JP2014110354A (en) Organic el material containing cyclic compound having carbazolyl group and organic el element including the same
JP2019026556A (en) Arylamine derivative, hole transport material using the same, and organic el element
WO2023013575A1 (en) Organic electroluminescent element
WO2023170880A1 (en) Dicarbazolyl benzene compound and organic electroluminescent device
WO2015198563A1 (en) Organic electroluminescent element
JP5525665B1 (en) COMPOUND HAVING ACRYDAN RING STRUCTURE AND ORGANIC ELECTROLUMINESCENT DEVICE
KR20190106313A (en) Organic compound comprising boron and organic electroluminescent device comprising the same
TW201730147A (en) Aromatic compound and organic light emitting diode including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930861

Country of ref document: EP

Kind code of ref document: A1