WO2023170857A1 - Plasma irradiation apparatus and plasma-treated liquid manufacturing method - Google Patents

Plasma irradiation apparatus and plasma-treated liquid manufacturing method Download PDF

Info

Publication number
WO2023170857A1
WO2023170857A1 PCT/JP2022/010566 JP2022010566W WO2023170857A1 WO 2023170857 A1 WO2023170857 A1 WO 2023170857A1 JP 2022010566 W JP2022010566 W JP 2022010566W WO 2023170857 A1 WO2023170857 A1 WO 2023170857A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
storage container
liquid
treated
distance
Prior art date
Application number
PCT/JP2022/010566
Other languages
French (fr)
Japanese (ja)
Inventor
紘佑 土田
俊之 池戸
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2022/010566 priority Critical patent/WO2023170857A1/en
Publication of WO2023170857A1 publication Critical patent/WO2023170857A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma

Definitions

  • the present disclosure relates to a technique for irradiating plasma onto an object to be processed.
  • Patent Document 1 discloses a plasma generator that ejects plasma toward the inside of a cover housing, a gas supply device that supplies gas to the inside of the cover housing, and a plasma generating device that is disposed inside the cover housing and on which an object to be processed is mounted.
  • a plasma irradiation device comprising: a stage for placing the plasma; and a moving device for moving the stage and arbitrarily changing the distance between the stage and the plasma ejection port into the inside of the cover housing of the plasma generator. is listed.
  • the distance between the stage and the plasma ejection port is adjusted by visually checking the scale of a measuring rod that is installed next to the stage.
  • the distance between the stage and the plasma ejection port is adjusted by visually checking the scale of the measurement rod, so parts may be removed during maintenance, for example.
  • the distance between the stage and the plasma ejection port changes before and after the parts are attached and detached, which may deteriorate the quality of the liquid to be treated that has been irradiated with plasma.
  • the main reason for this is that errors inevitably occur due to shifts during distance adjustment and parallax when reading scales. Therefore, in the plasma irradiation apparatus described in Patent Document 1, it is very difficult to return the distance to the distance that was properly adjusted before attachment and detachment after attaching and detaching the component.
  • An object of the present disclosure is to provide a technique that makes it possible to properly adjust the distance between the liquid to be treated and the plasma generator and then return it to the appropriate distance.
  • the plasma irradiation device of the present disclosure includes a storage container that stores a liquid to be treated, a plasma generator that generates plasma to irradiate the liquid to be treated stored in the storage container, and a a moving mechanism capable of moving the storage container in either direction toward the plasma generator or away from the plasma generator in order to adjust the distance between the liquid to be treated stored in the plasma generator and the plasma generator; , and an encoder that outputs position information indicating the amount of movement of the storage container moved by the movement mechanism.
  • FIG. 1 is a perspective view of an atmospheric pressure plasma irradiation device according to a first embodiment of the present disclosure.
  • 2 is an exploded view of the plasma generator in FIG. 1.
  • FIG. 2 is an exploded view of the plasma generator in FIG. 1.
  • FIG. 2 is a sectional view of the plasma generator in FIG. 1.
  • FIG. They are a perspective view ((a)) of an irradiation block and a cross-sectional perspective view ((b)) taken along the BB line.
  • 2 is a block diagram of a control device in FIG. 1.
  • FIG. FIG. 2 is a perspective view of an atmospheric pressure plasma irradiation device according to a second embodiment of the present disclosure.
  • 8 is a block diagram of the control device in FIG. 7.
  • FIG. 9 is a flowchart showing the procedure of an appropriate distance resetting process executed by a controller included in the control device of FIG. 8;
  • FIG. 1 shows an atmospheric pressure plasma irradiation apparatus 10 according to a first embodiment of the present disclosure.
  • the atmospheric pressure plasma irradiation device 10 is a device for irradiating a culture solution (an example of a "liquid to be treated") with plasma under atmospheric pressure, and includes a plasma generator 20, a cover housing 22, an opening/closing mechanism 24, It includes a stage 26, a lifting device 100, a purge gas supply mechanism 32 (see FIG. 6), a concentration detection mechanism 34 (see FIG. 6), and a control device 38.
  • the width direction of the atmospheric pressure plasma irradiation device 10 is referred to as the X direction
  • the depth direction of the atmospheric pressure plasma irradiation device 10 is referred to as the Y direction
  • the direction perpendicular to the X direction and the Y direction, that is, the vertical direction is referred to as the Z direction.
  • the plasma generator 20 includes a cover 50, an upper block 52, a lower block 54, a pair of electrodes 56, and a nozzle block 58.
  • the cover 50 generally has the shape of a square cylinder with a lid, and an upper block 52 is disposed inside the cover 50.
  • the upper block 52 has a generally rectangular parallelepiped shape and is molded from ceramic.
  • a pair of cylindrical recesses 60 are formed on the lower surface of the upper block 52 .
  • the lower block 54 also has a generally rectangular parallelepiped shape and is molded from ceramic.
  • a recess 62 is formed on the upper surface of the lower block 54, and the recess 62 includes a pair of cylindrical recesses 66 and a connecting recess 68 that connects the pair of cylindrical recesses 66.
  • the lower block 54 is fixed to the lower surface of the upper block 52 while protruding from the lower end of the cover 50, and the cylindrical recess 60 of the upper block 52 and the cylindrical recess 66 of the lower block 54 are in communication. .
  • the cylindrical recess 60 and the cylindrical recess 66 have approximately the same diameter.
  • a slit 70 that penetrates the lower surface of the lower block 54 is formed in the bottom surface of the recess 62 .
  • Each of the pair of electrodes 56 is arranged in a cylindrical space defined by a cylindrical recess 60 of the upper block 52 and a cylindrical recess 66 of the lower block 54. Note that the outer diameter of the electrode 56 is smaller than the inner diameter of the cylindrical recesses 60 and 66.
  • the nozzle block 58 has a generally flat plate shape and is fixed to the lower surface of the lower block 54.
  • a jet nozzle 72 is formed in the nozzle block 58 and communicates with the slit 70 of the lower block 54, and the jet nozzle 72 passes through the nozzle block 58 in the vertical direction.
  • the plasma generator 20 further includes a processing gas supply device 74 (see FIG. 6).
  • the processing gas supply device 74 is a device that supplies a processing gas in which an active gas such as oxygen and an inert gas such as nitrogen are mixed in an arbitrary ratio, and is a cylindrical space defined by the cylindrical recesses 60 and 66. And, it is connected to the upper part of the connection recess 68 via a pipe (not shown). As a result, the processing gas is supplied into the recess 62 from the gap between the electrode 56 and the cylindrical recess 66 and from the upper part of the connecting recess 68 .
  • the plasma generator 20 ejects plasma from the ejection port 72 of the nozzle block 58.
  • a processing gas is supplied into the recess 62 by a processing gas supply device 74 .
  • a voltage is applied to the pair of electrodes 56 in the recess 62, and a current flows between the pair of electrodes 56. This causes a discharge between the pair of electrodes 56, and the discharge turns the processing gas into plasma.
  • plasma is ejected from the ejection port 72 through the slit 70.
  • the cover housing 22 includes an upper cover 76 and a lower cover 78, as shown in FIG.
  • the upper cover 76 generally has a cylindrical shape with a lid, and a through hole (not shown) having a shape corresponding to the lower block 54 of the plasma generator 20 is formed in the lid portion of the upper cover 76.
  • the cover 50 of the plasma generator 20 is fixed in an upright position on the lid portion of the upper cover 76 so as to cover the through hole. Therefore, the lower block 54 and nozzle block 58 of the plasma generator 20 protrude toward the inside of the upper cover 76 so as to extend in the Z direction. Thereby, the plasma generated by the plasma generator 20 is ejected from the ejection port 72 of the nozzle block 58 toward the inside of the upper cover 76 in the Z direction.
  • the lower cover 78 of the cover housing 22 is generally shaped like a disk, and is fixed to a housing 79 of a mounting section on which the atmospheric pressure plasma irradiation device 10 is mounted.
  • the outer diameter of the lower cover 78 is larger than the outer diameter of the upper cover 76, and an annular packing (not shown) having the same diameter as the upper cover 76 is disposed on the upper surface of the lower cover 78. . Then, when the upper cover 76 is slid downward by the opening/closing mechanism 24, the upper cover 76 comes into close contact with the packing, and the inside of the cover housing 22 is in a sealed state.
  • the opening/closing mechanism 24 includes a pair of slide mechanisms 86 and an air cylinder (not shown).
  • Each slide mechanism 86 includes a support shaft 90 and a slider 92.
  • the support shaft 90 is provided upright on the housing 79 of the mounting section so as to extend in the Z direction.
  • the slider 92 has a generally cylindrical shape, and is fitted onto the outside of the support shaft 90 so as to be slidable in the axial direction of the support shaft 90.
  • the upper cover 76 is held on the slider 92 by an upper bracket 96 and a lower bracket 98. Thereby, the upper cover 76 is slidable in the Z direction, that is, in the vertical direction.
  • the stage 26 is generally disc-shaped, and the irradiation block 180 is placed on the top surface of the stage 26. Further, the outer diameter of the stage 26 is smaller than the outer diameter of the lower cover 78.
  • the irradiation block 180 is used to store the culture solution sent by the liquid delivery tube 122 and generate a plasma-treated culture solution by irradiating the stored culture solution with the plasma ejected from the plasma generator 20.
  • the generated plasma-treated culture fluid is discharged from the irradiation block 180 by the drain tube 124.
  • the culture solution is supplied from a culture solution supply section (not shown) provided outside the cover housing 22 to the irradiation block 180 inside the cover housing 22 through the liquid supply tube 122 using a pump (not shown). . Additionally, the plasma-treated culture fluid generated in the irradiation block 180 is drained from the irradiation block 180 through a drainage tube 124 using a pump (not shown), and is stored in a temporary storage bin ( (not shown). Therefore, through holes 123 and 125 are formed in the side surface of the lower cover 78, through which the liquid feeding tube 122 and the liquid draining tube 124 pass, respectively.
  • FIG. 5 shows a schematic configuration of the irradiation block 180.
  • 5(a) is a perspective view showing the overall appearance of the irradiation block 180
  • FIG. 5(b) is a cross-sectional perspective view taken along line BB in FIG. 5(a). Note that the direction from left to right is the direction in which the culture solution flows.
  • the irradiation block 180 is made of ceramic and consists of an irradiation block main body 181 having a generally rectangular parallelepiped shape. Note that the long side direction of the irradiation block 180 is the X direction, and the short side direction is the Y direction.
  • the irradiation block main body part 181 is formed with a groove part 183 and a storage part 184 whose surfaces facing the plasma generator 20 are open when installed in the cover housing 22 .
  • the groove portion 183 has a U-shape in which the YZ cross section opens upward.
  • a bottom surface 183a forming the groove portion 183 is curved.
  • the YZ cross-section of this groove 183 is slightly narrower than the cross-sectional shape of the liquid feeding tube 122 (see FIG. 1), and when the flexible liquid feeding tube 122 is fitted into the groove 183, the liquid feeding tube 122 is fixed.
  • the storage section 184 stores a culture solution for plasma irradiation.
  • the storage portion 184 is constituted by a cylindrical recess formed of a side surface 184a and a bottom surface 184b. Further, a bottom surface 184b forming the storage section 184 is formed to be located below a bottom surface 183a forming the groove section 183. Further, a drain hole 184c is formed in the bottom surface 184b constituting the storage section 184 for discharging the plasma-treated culture solution generated by plasma irradiation of the culture solution to the outside from the storage section 184. Note that the bottom surface 184b is an inclined surface that slopes downward from the side surface 184a toward the drain hole 184c.
  • the irradiation block main body part 181 has a discharge part 186.
  • the discharge part 186 is formed on the lower surface 181a of the irradiation block main body part 181 and protrudes downward from a position including the drain hole 184c of the storage part 184.
  • the discharge portion 186 has a base portion 186a, a flange portion 186b, and a discharge locking portion 186c, and is integrally formed with each component 186a to 186c connected downward.
  • a through hole 186d is formed in the center of the discharge portion 186 in the Z direction, and communicates with the drain hole 184c of the storage portion 184.
  • a portion of the outer peripheral surface of the discharge portion 186 that is continuous with the lower surface 181a of the irradiation block main body portion 181 is the base portion 186a.
  • the diameter of the outer periphery of the discharge locking portion 186c formed below the base portion 186a with the flange portion 186b interposed therebetween is larger than the diameter of the drain tube 124 (see FIG. 1).
  • the outer diameter of the upper portion 186c1 of the discharge locking portion 186c is smaller than the outer diameter of the discharge locking portion 186c.
  • the irradiation block 180 is fixed to the stage 26 by fitting the base 186a and the notch 26a (see FIG. 1) of the stage 26. In this way, since the irradiation block 180 is not fixed using a fixture, it can be easily attached to and detached from the stage 26.
  • the lifting device 100 includes a rotary operator 101, a gear 102, a rotating shaft 103, a pinion holding section 105, a support rod 106, a rack 107, and a pinion (not shown).
  • the rotary operator 101 is an operator that can rotate both clockwise and counterclockwise with the Y direction as the rotation axis.
  • a bevel gear (not shown) is provided at the end of the rotating shaft of the rotary operator 101 in the gear 102 direction.
  • the gear 102 is also configured as a bevel gear, and both gears are meshed.
  • the gear 102 is provided with a rotating shaft 103 in the X direction, and the rotation of the gear 102 directly becomes the rotation of the rotating shaft 103.
  • the rotating shaft of the pinion is connected to the end of the rotating shaft 103 opposite to the gear 102 .
  • a through hole (not shown) that passes through the lower cover 78 in the vertical direction is formed, and the support rod 106 is inserted into the through hole.
  • the outer diameter of the support rod 106 is smaller than the inner diameter of the through hole, and the support rod 106 is movable in the vertical direction, that is, in the Z direction.
  • the lower surface of the stage 26 is fixed to the upper end of the support rod 106.
  • the rack 107 is fixed to the outer peripheral surface of the portion of the support rod 106 that extends downward from the lower cover 78 so as to extend in the axial direction of the support rod 106.
  • the pinion is meshed with the rack 107 and rotates as the rotating shaft 103 rotates.
  • the pinion holding section 105 rotatably holds the pinion in the housing 79 of the mounting section.
  • the scale unit 110 is configured by a so-called linear encoder, and mainly includes an encoder section 112 and a scale section 114.
  • the encoder section 112 moves in the Z direction on the scale section 114, and outputs a pulse signal according to the amount of movement during the movement process.
  • the scale unit 110 is one in which the encoder section 112 outputs one pulse every time the encoder section 112 moves, for example, 1/100 mm, but the detection accuracy is not limited to this, and the accuracy may be slightly lower than this. The accuracy may be better than this.
  • the encoder section 112 is connected to the support rod 106 as described above, so when the support rod 106 moves in the Z direction, the encoder section 112 also moves in the Z direction by the amount of movement. Therefore, the encoder section 112 detects and outputs the amount of movement of the support rod 106, that is, the amount of elevation and descent of the stage 26.
  • linear encoders there are two types: incremental type and absolute type.
  • the incremental type outputs a number of pulse signals corresponding to the amount of movement of the scale section 114 by the encoder section 112, and the absolute type outputs the absolute position of the detected point.
  • an incremental type is adopted as the scale unit 110.
  • the purge gas supply mechanism 32 includes an air joint 130 and a purge gas supply device 132 (see FIG. 6).
  • the air joint 130 is provided in the lid portion of the upper cover 76.
  • the purge gas supply device 132 is a device that supplies an inert gas such as nitrogen, and is connected to the air joint 130 via piping (not shown). With this structure, the purge gas supply mechanism 32 supplies inert gas to the inside of the upper cover 76.
  • the control device 38 includes a controller 170 and a plurality of drive circuits 172.
  • the plurality of drive circuits 172 are connected to the electrode 56, the processing gas supply device 74, the purge gas supply device 132, and the display 120.
  • the controller 170 is mainly a computer, including a CPU, ROM, RAM, etc., and is connected to a plurality of drive circuits 172.
  • the controller 170 is connected to the detection sensor 144 and the encoder section 112. Thereby, the controller 170 acquires the detection result of the detection sensor 144, that is, the oxygen concentration inside the cover housing 22, and also acquires the pulse signal output by the encoder section 112.
  • the controller 170 When the controller 170 acquires the pulse signal from the encoder section 112, it counts up or down by one the count value stored in the count area (not shown) secured in the RAM, for example. That is, the controller 170 counts up when the encoder section 112 is moving upward, and counts down when the encoder section 112 is moving downward. Then, the controller 170 calculates the amount of movement of the encoder unit 112 corresponding to the new count value at the timing when the count up/down is executed, and uses the calculated amount of movement to calculate the display area to be referred to when the display 120 displays (Fig. (not shown). As a result, the updated movement amount is displayed on the display 120.
  • the culture solution By irradiating the culture solution with plasma, the culture solution is activated, so plasma is expected to be used in the medical field, such as in the treatment of cancer using the plasma-irradiated culture solution. For this reason, a culture solution irradiated with plasma is generated, and it is preferable that the culture solution is irradiated with plasma under controlled conditions.
  • the atmospheric pressure plasma irradiation device 10 with the above-described configuration, by placing the irradiation block 180 on the stage 26 and sealing the cover housing 22, it is possible to irradiate the culture solution with plasma under predetermined conditions. It is. Below, a method of irradiating a culture solution with plasma under predetermined conditions will be described in detail.
  • the irradiation block 180 is placed on the stage 26.
  • the stage 26 is raised and lowered to an arbitrary height by the raising and lowering device 100.
  • the height of the stage 26 is displayed in units of 1/100 mm on the display 120 as described above, so there is no visual error as in the plasma irradiation apparatus described in Patent Document 1 mentioned above. .
  • the upper cover 76 is lowered to seal the cover housing 22.
  • the purge gas supply mechanism 32 supplies inert gas to the inside of the cover housing 22 .
  • the concentration detection mechanism 34 detects the oxygen concentration within the cover housing 22.
  • plasma is ejected into the cover housing 22 by the plasma generator 20. Note that even when plasma is being irradiated, inert gas is continuously supplied to the inside of the cover housing 22. Further, the culture solution adjusted to a constant flow rate is flowed into the storage section 184 of the irradiation block 180 via the liquid feeding tube 122.
  • the culture fluid stored in the storage section 184 is activated by being irradiated with plasma gas from the plasma generator 20. It is known that the therapeutic effect of the plasma-irradiated culture solution can be exerted by irradiating the culture solution with plasma gas for a predetermined period of time. By storing the culture solution in the storage section 184, plasma gas is irradiated for a predetermined period of time. Further, the culture solution undergoes natural convection within the storage section 184 by being irradiated with plasma gas. This makes it possible to obtain a homogeneous activated culture solution that exhibits a therapeutic effect.
  • the distance between the plasma spout 72 and the culture solution is arbitrarily set. This makes it possible to examine the influence of irradiation distance on the effectiveness of plasma-irradiated culture fluid, and to efficiently generate plasma-treated culture fluid.
  • the plasma-treated culture solution stored in the storage section 184 is discharged via the drain tube 124.
  • the plasma-treated culture solution is discharged from the storage section 184.
  • the culture solution to be subjected to plasma treatment next is flowed into the storage section 184 of the irradiation block 180 via the liquid feeding tube 122.
  • the plasma processing includes plasma irradiation for a predetermined time to the culture solution stored in the storage unit 184, draining of the plasma-treated culture solution, supply of new culture solution to the irradiation block 180, plasma irradiation to the culture solution, etc.
  • the process is performed repeatedly until a predetermined amount of plasma-treated culture fluid is produced.
  • the distance between the plasma spout 72 and the culture medium is set to an appropriate distance, it is necessary to replace the liquid supply tube 122 or the liquid drainage tube 124 for maintenance, for example. do. Due to this replacement work, the distance between the plasma spout 72 and the culture solution inevitably deviates from the appropriate distance.
  • the operator can move the rotary operator 10 so that the amount of movement that matches the amount of movement displayed on the display 120 is displayed after the operation. You can easily and quickly return to the appropriate distance before work by simply operating the .
  • the atmospheric pressure plasma irradiation device 10 of this embodiment includes the irradiation block 180 that stores the culture solution, and the plasma generator 20 that generates plasma to irradiate the culture solution stored in the irradiation block 180.
  • the irradiation block 180 can be moved in either direction towards the plasma generator 20 or away from the plasma generator 20. It includes an elevating device 100 that can be moved, and a scale unit 110 that outputs position information indicating the amount of movement of the irradiation block 180 moved by the elevating device 100.
  • the appropriate distance is again adjusted. It is possible to return to.
  • the atmospheric pressure plasma irradiation device 10 is an example of a "plasma irradiation device.”
  • a culture solution is an example of a "liquid to be treated.”
  • the irradiation block 180 is an example of a “storage container.”
  • the lifting device 100 is an example of a “moving mechanism.”
  • Scale unit 110 is an example of an "encoder.”
  • the atmospheric pressure plasma irradiation apparatus 10 of this embodiment further includes a display 120 that displays position information output by the scale unit 110.
  • the display 120 is an example of a "display device.”
  • the operator can easily return the distance between the culture solution and the plasma generator 20 to the appropriate distance while viewing the position information displayed on the display 120. And it becomes possible to do it quickly.
  • the lifting device 100 also includes a rotary operator 101 that can be rotated clockwise and counterclockwise, and a rack 107 and a pinion that convert the amount of rotation rotated by the rotary operator 101 into the amount of movement of the irradiation block 180. , has.
  • the rack 107 and pinion are an example of a "conversion mechanism.”
  • the atmospheric pressure plasma irradiation apparatus 10 of this embodiment further includes a stage 26 on which the irradiation block 180 is placed, and a support rod 106 connected to the back surface of the stage 26. Then, the lifting device 100 adjusts the distance between the culture solution stored in the irradiation block 180 and the plasma generator 20 by moving the support rod 106 in the vertical direction, and the scale unit 110 moves the support rod 106 in the vertical direction. Position information indicating the amount of movement of the support rod 106 connected and moved by the lifting device 100 is output.
  • the support rod 106 is an example of a "shaft.”
  • the irradiation block 180 also includes a storage section 184 that stores the culture solution, a groove section 183 to which the liquid feeding tube 122 that sends the culture solution from the outside of the plasma irradiation device 10 to the storage section 184 is attached, and the culture solution stored in the storage section 184.
  • a drain hole 184c is provided on the bottom surface 184b of the storage section 184 for draining the culture solution, and a drain section 186 is formed to protrude downward from the irradiation block 180 from a position including the drain hole 184c.
  • the discharge portion 186 has a through hole 186d that communicates with the drain hole 184c, and a discharge lock for attaching a drain tube 124 for discharging the drain fluid passing through the through hole 186d to the outside of the plasma irradiation device 10.
  • a notch 26a is formed in the stage 26 to fit the ejection part 186, and when the irradiation block 180 is placed on the stage 26, the ejection part 186 of the irradiation block 180 is inserted into the stage 26. It is placed by fitting it into the notch 26a of.
  • the liquid feeding tube 122 is an example of a "liquid feeding tube.”
  • the groove portion 183 is an example of a “liquid pipe attachment portion”.
  • the drain tube 124 is an example of a “drain tube.”
  • the discharge locking part 186c is an example of a "drainage pipe attachment part.”
  • FIG. 7 shows an atmospheric pressure plasma irradiation apparatus 10A according to a second embodiment of the present disclosure. Since the atmospheric pressure plasma irradiation apparatus 10A differs from the atmospheric pressure plasma irradiation apparatus 10 of the first embodiment only in a partial configuration of the lifting device 200 and a partial configuration of the control device 38, FIGS. 8, components similar to those in FIGS. 1 and 6 are designated by the same reference numerals, and their descriptions will be omitted as appropriate.
  • the lifting device 200 is obtained by replacing the rotary operator 101 and gear 102 included in the lifting device 100 with an electromagnetic motor 210.
  • a drive circuit 172 for driving the electromagnetic motor 210 is added to the control device 38A, as shown in FIG. Additionally, an UP key 150 for moving the stage 26 upward a predetermined distance and a DOWN key 152 for moving the stage 26 downward a predetermined distance are also added.
  • FIG. 9 shows the procedure of the appropriate distance resetting process executed by the controller 170.
  • S This appropriate distance resetting process includes not only the processes of S24 to S36 for automatically resetting the appropriate distance, but also the processes of S10 to S20 for setting the appropriate distance to be performed before that. However, if the appropriate distance is set in advance, the processes in S10 to S20 may be omitted.
  • the controller 170 first determines whether an appropriate distance has been set (S10). To determine whether the distance is appropriate, for example, actually irradiate the culture solution with plasma while changing the distance between the plasma spout 72 and the culture solution, and check the quality of the plasma-treated culture solution each time. , the distance at which the best quality is obtained is determined to be the optimal distance.
  • the controller 170 determines whether or not the UP key 150 has been pressed (S12), and if the UP key 150 has been pressed (S12: YES), the controller 170 outputs an instruction to the drive circuit 172 to rotate the electromagnetic motor 210 in the forward direction by a predetermined number of rotations (S14). As a result, the support rod 106 is moved upward by a predetermined amount, so that the distance between the plasma spout 72 and the culture solution is reduced by the predetermined amount. Then, the controller 170 reads the count value stored in the count area described above in the first embodiment, obtains the current distance based on the read count value (S20), and then returns the process to S10. .
  • the controller 170 determines whether the DOWN key 152 has been pressed (S16), and determines whether the DOWN key 152 has been pressed. If so (S16: YES), the controller 170 outputs an instruction to the drive circuit 172 to reversely rotate the electromagnetic motor 210 by a predetermined number of rotations (S18). As a result, the support rod 106 moves downward by a predetermined amount, so that the distance between the plasma spout 72 and the culture solution increases by the predetermined amount. Then, the controller 170 advances the process to S20 above, reads out the count value stored in the count area, obtains the current distance based on the read count value, and then returns the process to S10 above.
  • the controller 170 sets the current distance acquired in S20 above as the appropriate distance, for example, in an appropriate distance storage area (not shown) secured in the RAM. (S22).
  • the controller 170 determines whether automatic resetting of the appropriate distance has been instructed (S24). For example, an instruction button (not shown) is provided, and the operator can issue an instruction to automatically reset the appropriate distance by pressing the instruction button. In the judgment in S24, if automatic resetting of the appropriate distance is not instructed (S24: NO), the controller 170 waits until the instruction is given, and when the instruction is given (S24: YES), the controller 170 , the current distance is acquired in the same manner as in S20 above (S26).
  • the controller 170 performs the same steps as in S18 above until the current distance matches the appropriate distance stored in S22 (S36: YES), and if the current distance > appropriate distance (S28: YES). Then, an instruction to reversely rotate the electromagnetic motor 210 by a predetermined number of rotations is output to the drive circuit 172 (S30), and if the current distance ⁇ appropriate distance (S32: YES), the controller 170 performs the same operation as in S14 above. , outputs an instruction to the drive circuit 172 to rotate the electromagnetic motor 210 in the forward direction by a predetermined number of rotations (S34).
  • the support rod 106 is moved in a direction that reduces the discrepancy, so that the distance between the plasma spout 72 and the culture medium is maintained at the appropriate distance.
  • the controller 170 ends the automatic appropriate distance resetting process.
  • the electromagnetic motor 210 is instructed to rotate by a predetermined number of rotations, but the predetermined number of rotations may be the same in each process, or may be different in each process. The number of rotations may be different. Alternatively, the rotation speed may be the same in S14 and S18, and the same rotation speed in S30 and S34, but different rotation speeds may be used in S14 and S30.
  • the lifting device 200 includes the electromagnetic motor 210, the rack 107 and the pinion that convert the amount of rotation of the rotation axis of the electromagnetic motor 210 into the amount of movement of the storage section 184.
  • the electromagnetic motor 210 is an example of a "motor”.
  • the atmospheric pressure plasma irradiation device 10A of this embodiment further includes a controller 170 that controls the electromagnetic motor 210 so that the distance between the culture solution stored in the irradiation block 180 and the plasma generator 20 becomes a specified distance.
  • the controller 170 is an example of a "control unit”. Thereby, it becomes possible to automatically perform the operation for returning the distance between the culture solution and the plasma generator 20 to the appropriate distance again using the electromagnetic motor 210.
  • the atmospheric pressure plasma irradiation apparatus 10A of this embodiment further includes a stage 26 on which the irradiation block 180 is placed, and a support rod 106 connected to the back surface of the stage 26.
  • the lifting device 200 adjusts the distance between the culture solution stored in the irradiation block 180 and the plasma generator 20 by moving the support rod 106 in the vertical direction, and the scale unit 110 moves the support rod 106 in the vertical direction.
  • Position information indicating the amount of movement of the support rod 106 connected and moved by the lifting device 200 is output.
  • a culture solution is used as the object to be processed, but it is possible to use a liquid other than the culture solution as the object to be processed.
  • the present disclosure is applicable not only to the medical field but also to various fields such as the industrial field.

Abstract

An atmospheric-pressure plasma irradiation apparatus 10 includes: a storage section 184 where a culture solution is stored; a plasma generator 20 that generates plasma to irradiate the culture solution stored in the storage section 184; a lifting device 100 capable of moving the storage section 184 either toward the plasma generator 20 or away from the plasma generator 20 to adjust the distance between the culture solution stored in the storage section 184 and the plasma generator 20; and a scale unit 110 that outputs position information indicating the amount of movement of the storage section 184 moved by the lifting device 100.

Description

プラズマ照射装置及びプラズマ処理液体製造方法Plasma irradiation device and plasma treatment liquid manufacturing method
 本開示は、被処理体にプラズマを照射する技術に関するものである。 The present disclosure relates to a technique for irradiating plasma onto an object to be processed.
 特許文献1には、カバーハウジングの内部に向かってプラズマを噴出するプラズマ発生装置と、カバーハウジングの内部にガスを供給するガス供給装置と、カバーハウジングの内部に配設され、被処理体を載置するためのステージと、ステージを移動させ、ステージと、プラズマ発生装置のカバーハウジングの内部へのプラズマの噴出口との間の距離を任意に変更するための移動装置と、を備えるプラズマ照射装置が記載されている。 Patent Document 1 discloses a plasma generator that ejects plasma toward the inside of a cover housing, a gas supply device that supplies gas to the inside of the cover housing, and a plasma generating device that is disposed inside the cover housing and on which an object to be processed is mounted. A plasma irradiation device comprising: a stage for placing the plasma; and a moving device for moving the stage and arbitrarily changing the distance between the stage and the plasma ejection port into the inside of the cover housing of the plasma generator. is listed.
 そして、このプラズマ照射装置では、ステージとプラズマの噴出口との間の距離の調節は、ステージの隣に立設された、目盛り付きの計測ロッドの目盛りを目視することにより行うようにしている。 In this plasma irradiation device, the distance between the stage and the plasma ejection port is adjusted by visually checking the scale of a measuring rod that is installed next to the stage.
特許第6697470号公報Patent No. 6697470
 しかし、特許文献1に記載のプラズマ照射装置では、ステージとプラズマの噴出口との間の距離の調節を、計測ロッドの目盛りを目視することにより行うようにしているので、例えばメンテナンスなどで部品を着脱した場合、ステージとプラズマの噴出口との間の距離が部品を着脱する前と後で変わり、プラズマ照射された被処理液体の品質が低下してしまうことがある。この主要因は、距離調整時のずれや目盛り読取り時の視差による誤差が必然的に生じることである。したがって、特許文献1に記載のプラズマ照射装置では、部品を着脱した後に、着脱前に適正に調整した距離に戻すことは非常に困難である。 However, in the plasma irradiation device described in Patent Document 1, the distance between the stage and the plasma ejection port is adjusted by visually checking the scale of the measurement rod, so parts may be removed during maintenance, for example. When the parts are attached and detached, the distance between the stage and the plasma ejection port changes before and after the parts are attached and detached, which may deteriorate the quality of the liquid to be treated that has been irradiated with plasma. The main reason for this is that errors inevitably occur due to shifts during distance adjustment and parallax when reading scales. Therefore, in the plasma irradiation apparatus described in Patent Document 1, it is very difficult to return the distance to the distance that was properly adjusted before attachment and detachment after attaching and detaching the component.
 本開示は、被処理液体とプラズマ発生装置との距離を適正に調整した後に再度、その適正距離に戻すことが可能となる技術を提供することを目的とする。 An object of the present disclosure is to provide a technique that makes it possible to properly adjust the distance between the liquid to be treated and the plasma generator and then return it to the appropriate distance.
 上記目的を達成するため、本開示のプラズマ照射装置は、被処理液体を貯留する貯留容器と、貯留容器内に貯留された被処理液体に照射するプラズマを発生するプラズマ発生装置と、貯留容器内に貯留された被処理液体とプラズマ発生装置との距離を調節するために、貯留容器をプラズマ発生装置に近づく方向及びプラズマ発生装置から離れる方向のいずれの方向にも移動させることができる移動機構と、移動機構により移動された貯留容器の移動量を示す位置情報を出力するエンコーダと、を備えている。 In order to achieve the above object, the plasma irradiation device of the present disclosure includes a storage container that stores a liquid to be treated, a plasma generator that generates plasma to irradiate the liquid to be treated stored in the storage container, and a a moving mechanism capable of moving the storage container in either direction toward the plasma generator or away from the plasma generator in order to adjust the distance between the liquid to be treated stored in the plasma generator and the plasma generator; , and an encoder that outputs position information indicating the amount of movement of the storage container moved by the movement mechanism.
 本開示によれば、被処理液体とプラズマ発生装置との距離を適正に調整することが可能となる。 According to the present disclosure, it is possible to appropriately adjust the distance between the liquid to be treated and the plasma generator.
本開示の第1実施形態に係る大気圧プラズマ照射装置の斜視図である。FIG. 1 is a perspective view of an atmospheric pressure plasma irradiation device according to a first embodiment of the present disclosure. 図1中のプラズマ発生装置の分解図である。2 is an exploded view of the plasma generator in FIG. 1. FIG. 図1中のプラズマ発生装置の分解図である。2 is an exploded view of the plasma generator in FIG. 1. FIG. 図1中のプラズマ発生装置の断面図である。2 is a sectional view of the plasma generator in FIG. 1. FIG. 照射ブロックの斜視図((a))及びそのBB線における断面斜視図((b))である。They are a perspective view ((a)) of an irradiation block and a cross-sectional perspective view ((b)) taken along the BB line. 図1中の制御装置のブロック図である。2 is a block diagram of a control device in FIG. 1. FIG. 本開示の第2実施形態に係る大気圧プラズマ照射装置の斜視図である。FIG. 2 is a perspective view of an atmospheric pressure plasma irradiation device according to a second embodiment of the present disclosure. 図7中の制御装置のブロック図である。8 is a block diagram of the control device in FIG. 7. FIG. 図8の制御装置に含まれるコントローラが実行する適正距離の再設定処理の手順を示すフローチャートである。9 is a flowchart showing the procedure of an appropriate distance resetting process executed by a controller included in the control device of FIG. 8;
 以下、本開示の実施形態を図面に基づいて詳細に説明する。 Hereinafter, embodiments of the present disclosure will be described in detail based on the drawings.
(第1実施形態)
 図1は、本開示の第1実施形態に係る大気圧プラズマ照射装置10を示している。大気圧プラズマ照射装置10は、大気圧下でプラズマを培養液(「被処理液体」の一例)に照射するための装置であり、プラズマ発生装置20と、カバーハウジング22と、開閉機構24と、ステージ26と、昇降装置100と、パージガス供給機構32(図6参照)と、濃度検出機構34(図6参照)と、制御装置38とを備えている。なお、大気圧プラズマ照射装置10の幅方向をX方向と、大気圧プラズマ照射装置10の奥行方向をY方向と、X方向とY方向とに直行する方向、つまり、上下方向をZ方向と称する。
(First embodiment)
FIG. 1 shows an atmospheric pressure plasma irradiation apparatus 10 according to a first embodiment of the present disclosure. The atmospheric pressure plasma irradiation device 10 is a device for irradiating a culture solution (an example of a "liquid to be treated") with plasma under atmospheric pressure, and includes a plasma generator 20, a cover housing 22, an opening/closing mechanism 24, It includes a stage 26, a lifting device 100, a purge gas supply mechanism 32 (see FIG. 6), a concentration detection mechanism 34 (see FIG. 6), and a control device 38. Note that the width direction of the atmospheric pressure plasma irradiation device 10 is referred to as the X direction, the depth direction of the atmospheric pressure plasma irradiation device 10 is referred to as the Y direction, and the direction perpendicular to the X direction and the Y direction, that is, the vertical direction is referred to as the Z direction. .
 プラズマ発生装置20は、図2~図4に示すように、カバー50と、上部ブロック52と、下部ブロック54と、1対の電極56と、ノズルブロック58とを含む。カバー50は、概して、有蓋四角筒形状をなし、カバー50の内部に、上部ブロック52が配設されている。上部ブロック52は、概して直方体形状をなし、セラミックにより成形されている。上部ブロック52の下面には、1対の円柱状の円柱凹部60が形成されている。 As shown in FIGS. 2 to 4, the plasma generator 20 includes a cover 50, an upper block 52, a lower block 54, a pair of electrodes 56, and a nozzle block 58. The cover 50 generally has the shape of a square cylinder with a lid, and an upper block 52 is disposed inside the cover 50. The upper block 52 has a generally rectangular parallelepiped shape and is molded from ceramic. A pair of cylindrical recesses 60 are formed on the lower surface of the upper block 52 .
 また、下部ブロック54も、概して直方体形状をなし、セラミックにより成形されている。下部ブロック54の上面には、凹部62が形成されており、凹部62は、1対の円柱状の円柱凹部66と、それら1対の円柱凹部66を連結する連結凹部68とによって構成されている。そして、下部ブロック54が、カバー50の下端から突出した状態で、上部ブロック52の下面に固定されており、上部ブロック52の円柱凹部60と、下部ブロック54の円柱凹部66とが連通している。なお、円柱凹部60と円柱凹部66とは、略同径とされている。また、凹部62の底面には、下部ブロック54の下面に貫通するスリット70が形成されている。 The lower block 54 also has a generally rectangular parallelepiped shape and is molded from ceramic. A recess 62 is formed on the upper surface of the lower block 54, and the recess 62 includes a pair of cylindrical recesses 66 and a connecting recess 68 that connects the pair of cylindrical recesses 66. . The lower block 54 is fixed to the lower surface of the upper block 52 while protruding from the lower end of the cover 50, and the cylindrical recess 60 of the upper block 52 and the cylindrical recess 66 of the lower block 54 are in communication. . Note that the cylindrical recess 60 and the cylindrical recess 66 have approximately the same diameter. Furthermore, a slit 70 that penetrates the lower surface of the lower block 54 is formed in the bottom surface of the recess 62 .
 1対の電極56の各々は、上部ブロック52の円柱凹部60と、下部ブロック54の円柱凹部66とによって区画される円柱状の空間に配設されている。なお、電極56の外径は、円柱凹部60,66の内径より小さい。また、ノズルブロック58は、概して平板状をなし、下部ブロック54の下面に固定されている。ノズルブロック58には、下部ブロック54のスリット70と連通する噴出口72が形成されており、その噴出口72は、ノズルブロック58を上下方向に貫通している。 Each of the pair of electrodes 56 is arranged in a cylindrical space defined by a cylindrical recess 60 of the upper block 52 and a cylindrical recess 66 of the lower block 54. Note that the outer diameter of the electrode 56 is smaller than the inner diameter of the cylindrical recesses 60 and 66. Further, the nozzle block 58 has a generally flat plate shape and is fixed to the lower surface of the lower block 54. A jet nozzle 72 is formed in the nozzle block 58 and communicates with the slit 70 of the lower block 54, and the jet nozzle 72 passes through the nozzle block 58 in the vertical direction.
 プラズマ発生装置20は、さらに、処理ガス供給装置74(図6参照)を有している。処理ガス供給装置74は、酸素等の活性ガスと窒素等の不活性ガスとを任意の割合で混合させた処理ガスを供給する装置であり、円柱凹部60,66によって区画される円柱状の空間及び、連結凹部68の上部に、配管(図示せず)を介して、連結されている。これにより、電極56と円柱凹部66との隙間、及び、連結凹部68の上部から、処理ガスが、凹部62の内部に供給される。 The plasma generator 20 further includes a processing gas supply device 74 (see FIG. 6). The processing gas supply device 74 is a device that supplies a processing gas in which an active gas such as oxygen and an inert gas such as nitrogen are mixed in an arbitrary ratio, and is a cylindrical space defined by the cylindrical recesses 60 and 66. And, it is connected to the upper part of the connection recess 68 via a pipe (not shown). As a result, the processing gas is supplied into the recess 62 from the gap between the electrode 56 and the cylindrical recess 66 and from the upper part of the connecting recess 68 .
 このような構造により、プラズマ発生装置20は、ノズルブロック58の噴出口72からプラズマを噴出する。詳しくは、凹部62の内部に、処理ガス供給装置74によって処理ガスが供給される。この際、凹部62では、1対の電極56に電圧が印加されており、1対の電極56間に電流が流れる。これにより、1対の電極56間に放電が生じ、その放電により、処理ガスがプラズマ化される。そして、プラズマが、スリット70を介して、噴出口72から噴出される。 With such a structure, the plasma generator 20 ejects plasma from the ejection port 72 of the nozzle block 58. Specifically, a processing gas is supplied into the recess 62 by a processing gas supply device 74 . At this time, a voltage is applied to the pair of electrodes 56 in the recess 62, and a current flows between the pair of electrodes 56. This causes a discharge between the pair of electrodes 56, and the discharge turns the processing gas into plasma. Then, plasma is ejected from the ejection port 72 through the slit 70.
 また、カバーハウジング22は、図1に示すように、上部カバー76と、下部カバー78とを含む。上部カバー76は、概して有蓋円筒状をなし、上部カバー76の蓋部には、プラズマ発生装置20の下部ブロック54に応じた形状の貫通穴(図示せず)が形成されている。そして、その貫通穴を覆うように、プラズマ発生装置20のカバー50が、上部カバー76の蓋部に立設された状態で固定されている。このため、プラズマ発生装置20の下部ブロック54及びノズルブロック58が、上部カバー76の内部に向かって、Z方向に延びるように、突出している。これにより、プラズマ発生装置20によって発生されたプラズマが、ノズルブロック58の噴出口72から、上部カバー76の内部に向かって、Z方向に噴出される。 Further, the cover housing 22 includes an upper cover 76 and a lower cover 78, as shown in FIG. The upper cover 76 generally has a cylindrical shape with a lid, and a through hole (not shown) having a shape corresponding to the lower block 54 of the plasma generator 20 is formed in the lid portion of the upper cover 76. The cover 50 of the plasma generator 20 is fixed in an upright position on the lid portion of the upper cover 76 so as to cover the through hole. Therefore, the lower block 54 and nozzle block 58 of the plasma generator 20 protrude toward the inside of the upper cover 76 so as to extend in the Z direction. Thereby, the plasma generated by the plasma generator 20 is ejected from the ejection port 72 of the nozzle block 58 toward the inside of the upper cover 76 in the Z direction.
 また、上部カバー76の側面には、3等配の位置に、概して矩形の貫通穴(図示せず)が形成されており、その貫通穴を塞ぐように、透明なガラス板80が配設されている。これにより、ガラス板80を介して、上部カバー76の内部を視認することが可能とされている。 Furthermore, generally rectangular through holes (not shown) are formed at three equally spaced positions on the side surface of the upper cover 76, and a transparent glass plate 80 is disposed to cover the through holes. ing. This makes it possible to visually check the inside of the upper cover 76 through the glass plate 80.
 カバーハウジング22の下部カバー78は、概して、円板形状とされており、大気圧プラズマ照射装置10が載置される載置部の筐体79に固定されている。下部カバー78の外径は、上部カバー76の外径より大きくされており、下部カバー78の上面には、上部カバー76と同径の円環状のパッキン(図示せず)が配設されている。そして、上部カバー76が、開閉機構24によって下方にスライドされることで、上部カバー76がパッキンに密着し、カバーハウジング22の内部が密閉された状態となる。 The lower cover 78 of the cover housing 22 is generally shaped like a disk, and is fixed to a housing 79 of a mounting section on which the atmospheric pressure plasma irradiation device 10 is mounted. The outer diameter of the lower cover 78 is larger than the outer diameter of the upper cover 76, and an annular packing (not shown) having the same diameter as the upper cover 76 is disposed on the upper surface of the lower cover 78. . Then, when the upper cover 76 is slid downward by the opening/closing mechanism 24, the upper cover 76 comes into close contact with the packing, and the inside of the cover housing 22 is in a sealed state.
 開閉機構24は、1対のスライド機構86とエアシリンダ(図示せず)とを含む。各スライド機構86は、支持軸90とスライダ92とを含む。支持軸90は、載置部の筐体79に、Z方向に延びるように立設されている。また、スライダ92は、概して円筒形状をなし、支持軸90の軸方向にスライド可能に、支持軸90に外嵌されている。そして、上部カバー76が、上部ブラケット96と下部ブラケット98とによって、スライダ92に保持されている。これにより、上部カバー76は、Z方向、つまり、上下方向にスライド可能とされている。 The opening/closing mechanism 24 includes a pair of slide mechanisms 86 and an air cylinder (not shown). Each slide mechanism 86 includes a support shaft 90 and a slider 92. The support shaft 90 is provided upright on the housing 79 of the mounting section so as to extend in the Z direction. Further, the slider 92 has a generally cylindrical shape, and is fitted onto the outside of the support shaft 90 so as to be slidable in the axial direction of the support shaft 90. The upper cover 76 is held on the slider 92 by an upper bracket 96 and a lower bracket 98. Thereby, the upper cover 76 is slidable in the Z direction, that is, in the vertical direction.
 ステージ26は、概して、円板形状とされており、ステージ26の上面に、照射ブロック180が載置される。また、ステージ26の外径は、下部カバー78の外径より小さくされている。 The stage 26 is generally disc-shaped, and the irradiation block 180 is placed on the top surface of the stage 26. Further, the outer diameter of the stage 26 is smaller than the outer diameter of the lower cover 78.
 照射ブロック180は、送液チューブ122により送液された培養液を貯留し、貯留した培養液にプラズマ発生装置20から噴出したプラズマを照射することによりプラズマ処理培養液を生成するために用いられる。生成されたプラズマ処理培養液は、排液チューブ124により照射ブロック180から排出される。 The irradiation block 180 is used to store the culture solution sent by the liquid delivery tube 122 and generate a plasma-treated culture solution by irradiating the stored culture solution with the plasma ejected from the plasma generator 20. The generated plasma-treated culture fluid is discharged from the irradiation block 180 by the drain tube 124.
 培養液は、カバーハウジング22の外に設けられた培養液供給部(図示せず)からポンプ(図示せず)を用いて送液チューブ122により、カバーハウジング22内の照射ブロック180に供給される。また、照射ブロック180で生成されたプラズマ処理培養液は、ポンプ(図示せず)を用いて照射ブロック180から排液チューブ124により排液され、カバーハウジング22の外に設けられた一時保管ビン(図示せず)に保管される。したがって、下部カバー78の側面には、送液チューブ122及び排液チューブ124をそれぞれ通す貫通孔123,125が形成されている。 The culture solution is supplied from a culture solution supply section (not shown) provided outside the cover housing 22 to the irradiation block 180 inside the cover housing 22 through the liquid supply tube 122 using a pump (not shown). . Additionally, the plasma-treated culture fluid generated in the irradiation block 180 is drained from the irradiation block 180 through a drainage tube 124 using a pump (not shown), and is stored in a temporary storage bin ( (not shown). Therefore, through holes 123 and 125 are formed in the side surface of the lower cover 78, through which the liquid feeding tube 122 and the liquid draining tube 124 pass, respectively.
 図5は、照射ブロック180の概略構成を示している。そして、図5(a)は、照射ブロック180全体の外観を示す斜視図であり、図5(b)は、図5(a)のBB線における断面斜視図である。なお、左から右へ向かう方向が、培養液が流れる方向である。 FIG. 5 shows a schematic configuration of the irradiation block 180. 5(a) is a perspective view showing the overall appearance of the irradiation block 180, and FIG. 5(b) is a cross-sectional perspective view taken along line BB in FIG. 5(a). Note that the direction from left to right is the direction in which the culture solution flows.
 照射ブロック180は、セラミックにより成形され、概して直方体形状をなす照射ブロック本体部181からなる。なお、照射ブロック180の長辺方向がX方向であり、短辺方向がY方向である。照射ブロック本体部181には、カバーハウジング22に設置された場合に、プラズマ発生装置20と対向する面が開放された溝部183及び貯留部184が形成されている。 The irradiation block 180 is made of ceramic and consists of an irradiation block main body 181 having a generally rectangular parallelepiped shape. Note that the long side direction of the irradiation block 180 is the X direction, and the short side direction is the Y direction. The irradiation block main body part 181 is formed with a groove part 183 and a storage part 184 whose surfaces facing the plasma generator 20 are open when installed in the cover housing 22 .
 溝部183は、YZ断面が上方に向かって開口するU字状である。溝部183を構成する底面183aは湾曲している。この溝部183のYZ断面は、送液チューブ122(図1参照)の断面形状よりも若干狭くされており、可撓性を有する送液チューブ122が溝部183に嵌め込まれることで、送液チューブ122が固定される。 The groove portion 183 has a U-shape in which the YZ cross section opens upward. A bottom surface 183a forming the groove portion 183 is curved. The YZ cross-section of this groove 183 is slightly narrower than the cross-sectional shape of the liquid feeding tube 122 (see FIG. 1), and when the flexible liquid feeding tube 122 is fitted into the groove 183, the liquid feeding tube 122 is fixed.
 貯留部184は、プラズマ照射するために培養液を貯留する。貯留部184は、側面184aと底面184bとからなる円筒状の凹部により構成される。また、貯留部184を構成する底面184bは、溝部183を構成する底面183aよりも下方に位置するように形成されている。さらに、貯留部184を構成する底面184bには、培養液がプラズマ照射されて生成されたプラズマ処理培養液を貯留部184から外に排出するための排液穴184cが形成されている。なお、底面184bは、側面184aから排液穴184cに向かって下方に傾斜する傾斜面となっている。これは、プラズマ処理培養液を排出する際に、貯留部184から迅速に排出させる機能と、貯留部184にプラズマ処理培養液の一部が排出されないで残留する状態を可及的に防止する機能とを実現させるためである。 The storage section 184 stores a culture solution for plasma irradiation. The storage portion 184 is constituted by a cylindrical recess formed of a side surface 184a and a bottom surface 184b. Further, a bottom surface 184b forming the storage section 184 is formed to be located below a bottom surface 183a forming the groove section 183. Further, a drain hole 184c is formed in the bottom surface 184b constituting the storage section 184 for discharging the plasma-treated culture solution generated by plasma irradiation of the culture solution to the outside from the storage section 184. Note that the bottom surface 184b is an inclined surface that slopes downward from the side surface 184a toward the drain hole 184c. This has the function of quickly discharging the plasma-treated culture solution from the storage section 184, and the function of preventing as much as possible a state in which a part of the plasma-treated culture solution remains in the storage section 184 without being discharged. This is to realize the following.
 照射ブロック本体部181は、上記構成の他に、排出部186を有する。排出部186は、照射ブロック本体部181の下面181aであって、貯留部184の排液穴184cを含む位置から下方に突出して形成されている。排出部186は、基部186a、フランジ部186b及び排出係止部186cを有し、各構成要素186a~186cが下方に連結した状態で一体的に形成されている。また、排出部186の中心部には、貫通孔186dがZ方向に形成され、貯留部184の排液穴184cと連通している。 In addition to the above configuration, the irradiation block main body part 181 has a discharge part 186. The discharge part 186 is formed on the lower surface 181a of the irradiation block main body part 181 and protrudes downward from a position including the drain hole 184c of the storage part 184. The discharge portion 186 has a base portion 186a, a flange portion 186b, and a discharge locking portion 186c, and is integrally formed with each component 186a to 186c connected downward. Furthermore, a through hole 186d is formed in the center of the discharge portion 186 in the Z direction, and communicates with the drain hole 184c of the storage portion 184.
 排出部186の外周面において、照射ブロック本体部181の下面181aと連続する部分が基部186aである。基部186aの下方に、フランジ部186bを挟んで形成された排出係止部186cの外周の径は、排液チューブ124(図1参照)の径よりも大きくされている。また、排出係止部186cの上部186c1の外径は、排出係止部186cの外径よりも小さくされている。これにより、可撓性を有する排液チューブ124が上部186c1まで嵌め込まれると、排出係止部186cの外周に沿って排液チューブ124が変形し、排液チューブ124が固定される。また、基部186aとステージ26の切欠き部26a(図1参照)とが嵌め合されることにより、ステージ26に照射ブロック180が固定される。このように、固定具を用いる固定ではないため、照射ブロック180はステージ26に対して容易に着脱することができる。 A portion of the outer peripheral surface of the discharge portion 186 that is continuous with the lower surface 181a of the irradiation block main body portion 181 is the base portion 186a. The diameter of the outer periphery of the discharge locking portion 186c formed below the base portion 186a with the flange portion 186b interposed therebetween is larger than the diameter of the drain tube 124 (see FIG. 1). Further, the outer diameter of the upper portion 186c1 of the discharge locking portion 186c is smaller than the outer diameter of the discharge locking portion 186c. Thereby, when the flexible drain tube 124 is fitted up to the upper part 186c1, the drain tube 124 is deformed along the outer periphery of the drain locking part 186c, and the drain tube 124 is fixed. Moreover, the irradiation block 180 is fixed to the stage 26 by fitting the base 186a and the notch 26a (see FIG. 1) of the stage 26. In this way, since the irradiation block 180 is not fixed using a fixture, it can be easily attached to and detached from the stage 26.
 昇降装置100は、図1に示すように、回転式操作子101、歯車102、回転軸103、ピニオン保持部105、支持ロッド106、ラック107及びピニオン(図示せず)を含んでいる。回転式操作子101は、Y方向を回転軸として、時計回り及び反時計回りのいずれにも回転可能な操作子である。回転式操作子101の回転軸の歯車102方向の端部には、かさ歯車(図示せず)が設けられている。歯車102も、かさ歯車として構成され、両歯車は噛合されている。これにより、回転式操作子101のY方向を回転軸とした回転軸周りの回転が、歯車102を介してX方向を回転軸とする回転軸周りの回転に変換される。 As shown in FIG. 1, the lifting device 100 includes a rotary operator 101, a gear 102, a rotating shaft 103, a pinion holding section 105, a support rod 106, a rack 107, and a pinion (not shown). The rotary operator 101 is an operator that can rotate both clockwise and counterclockwise with the Y direction as the rotation axis. A bevel gear (not shown) is provided at the end of the rotating shaft of the rotary operator 101 in the gear 102 direction. The gear 102 is also configured as a bevel gear, and both gears are meshed. As a result, the rotation of the rotary operator 101 around the rotation axis with the Y direction as the rotation axis is converted via the gear 102 into rotation around the rotation axis with the X direction as the rotation axis.
 歯車102には、X方向の回転軸103が設けられ、歯車102の回転がそのまま、回転軸103の回転となる。回転軸103の歯車102と反対側の端部には、上記ピニオンの回転軸が連結されている。 The gear 102 is provided with a rotating shaft 103 in the X direction, and the rotation of the gear 102 directly becomes the rotation of the rotating shaft 103. The rotating shaft of the pinion is connected to the end of the rotating shaft 103 opposite to the gear 102 .
 下部カバー78には、上下方向に貫通する貫通穴(図示せず)が形成されており、その貫通穴に、支持ロッド106が挿通されている。支持ロッド106の外径は、貫通穴の内径より小さくされており、支持ロッド106は、上下方向、つまり、Z方向に移動可能とされている。その支持ロッド106の上端に、ステージ26の下面が固定されている。 A through hole (not shown) that passes through the lower cover 78 in the vertical direction is formed, and the support rod 106 is inserted into the through hole. The outer diameter of the support rod 106 is smaller than the inner diameter of the through hole, and the support rod 106 is movable in the vertical direction, that is, in the Z direction. The lower surface of the stage 26 is fixed to the upper end of the support rod 106.
 また、ラック107は、支持ロッド106の軸方向に延びるように、支持ロッド106の下部カバー78から下方に延び出す部分の外周面に固定されている。上記ピニオンは、ラック107に噛合されており、回転軸103の回転により回転する。ピニオン保持部105は、ピニオンを載置部の筐体79に回転可能に保持する。 Furthermore, the rack 107 is fixed to the outer peripheral surface of the portion of the support rod 106 that extends downward from the lower cover 78 so as to extend in the axial direction of the support rod 106. The pinion is meshed with the rack 107 and rotates as the rotating shaft 103 rotates. The pinion holding section 105 rotatably holds the pinion in the housing 79 of the mounting section.
 このような構造によって、操作者が回転式操作子101を回転させると、回転式操作子101のY方向を回転軸とする回転が、歯車102を介してX方向を回転軸とする回転に変換される。そして、歯車102の回転が回転軸103を回転させ、これに応じてピニオンが回転することで、支持ロッド106がZ方向に移動し、ステージ26が昇降する。なお、本実施形態では、回転式操作子101を時計回りに回転させたときには、支持ロッド106が上方向に移動して、ステージ26の上面が噴出口72に近づき、回転式操作子101を反時計回りに回転させたときには、支持ロッド106が下方向に移動して、ステージ26の上面が噴出口72から離れるとするが、回転式操作子101の回転方向と、ステージ26と噴出口72とが近接・離隔する方向との関係は、逆であってもよい。 With this structure, when the operator rotates the rotary operator 101, the rotation of the rotary operator 101 about the Y direction as the rotation axis is converted via the gear 102 to rotation about the X direction as the rotation axis. be done. The rotation of the gear 102 rotates the rotating shaft 103, and the pinion rotates accordingly, so that the support rod 106 moves in the Z direction and the stage 26 moves up and down. Note that in this embodiment, when the rotary operator 101 is rotated clockwise, the support rod 106 moves upward, and the upper surface of the stage 26 approaches the spout 72, causing the rotary operator 101 to move backward. When the support rod 106 is rotated clockwise, the support rod 106 moves downward and the upper surface of the stage 26 separates from the spout 72. The relationship between the directions of approaching and separating may be reversed.
 支持ロッド106の下端部は、連結部材108を介してスケールユニット110のエンコーダ部112と連結されている。スケールユニット110は、本実施形態では、いわゆるリニアエンコーダによって構成され、エンコーダ部112と、スケール部114とから主として構成されている。エンコーダ部112は、スケール部114上をZ方向に移動し、その移動の過程で移動量に応じたパルス信号を出力する。本実施形態では、スケールユニット110として、エンコーダ部112が、例えば1/100mm移動する毎に1パルス出力するものを採用しているが、検出精度はこれに限られず、これより多少精度が悪くてもよいし、これより精度が良くてもよい。 The lower end of the support rod 106 is connected to the encoder section 112 of the scale unit 110 via a connecting member 108. In this embodiment, the scale unit 110 is configured by a so-called linear encoder, and mainly includes an encoder section 112 and a scale section 114. The encoder section 112 moves in the Z direction on the scale section 114, and outputs a pulse signal according to the amount of movement during the movement process. In this embodiment, the scale unit 110 is one in which the encoder section 112 outputs one pulse every time the encoder section 112 moves, for example, 1/100 mm, but the detection accuracy is not limited to this, and the accuracy may be slightly lower than this. The accuracy may be better than this.
 エンコーダ部112は、上述のように支持ロッド106と連結されているので、支持ロッド106がZ方向に移動すると、その移動量だけ、エンコーダ部112もZ方向に移動する。したがって、エンコーダ部112は、支持ロッド106の移動量、つまりステージ26の昇降量を検出して出力している。 The encoder section 112 is connected to the support rod 106 as described above, so when the support rod 106 moves in the Z direction, the encoder section 112 also moves in the Z direction by the amount of movement. Therefore, the encoder section 112 detects and outputs the amount of movement of the support rod 106, that is, the amount of elevation and descent of the stage 26.
 リニアエンコーダ(ロータリーエンコーダも同様)には、インクリメンタル型とアブソリュート型の2種類がある。インクリメンタル型は、エンコーダ部112がスケール部114を移動した移動量に応じた数のパルス信号を出力するものであり、アブソリュート型は、検出個所の絶対位置を出力するものである。本実施形態では、スケールユニット110として、インクリメンタル型を採用する。 There are two types of linear encoders (same as rotary encoders): incremental type and absolute type. The incremental type outputs a number of pulse signals corresponding to the amount of movement of the scale section 114 by the encoder section 112, and the absolute type outputs the absolute position of the detected point. In this embodiment, an incremental type is adopted as the scale unit 110.
 パージガス供給機構32は、図1に示すように、エアジョイント130と、パージガス供給装置132(図6参照)とを含む。エアジョイント130は、上部カバー76の蓋部に設けられている。パージガス供給装置132は、窒素等の不活性ガスを供給する装置であり、配管(図示せず)を介して、エアジョイント130に接続されている。このような構造により、パージガス供給機構32は、上部カバー76の内部に、不活性ガスを供給する。 As shown in FIG. 1, the purge gas supply mechanism 32 includes an air joint 130 and a purge gas supply device 132 (see FIG. 6). The air joint 130 is provided in the lid portion of the upper cover 76. The purge gas supply device 132 is a device that supplies an inert gas such as nitrogen, and is connected to the air joint 130 via piping (not shown). With this structure, the purge gas supply mechanism 32 supplies inert gas to the inside of the upper cover 76.
 制御装置38は、図6に示すように、コントローラ170と、複数の駆動回路172とを備えている。複数の駆動回路172は、電極56、処理ガス供給装置74、パージガス供給装置132及びディスプレイ120に接続されている。コントローラ170は、CPU,ROM,RAM等を備え、コンピュータを主体とするものであり、複数の駆動回路172に接続されている。これにより、プラズマ発生装置20、パージガス供給機構32の作動が、コントローラ170によって制御される。また、コントローラ170は、検出センサ144及びエンコーダ部112に接続されている。これにより、コントローラ170は、検出センサ144の検出結果、つまり、カバーハウジング22の内部の酸素濃度を取得するとともに、エンコーダ部112が出力したパルス信号を取得する。 As shown in FIG. 6, the control device 38 includes a controller 170 and a plurality of drive circuits 172. The plurality of drive circuits 172 are connected to the electrode 56, the processing gas supply device 74, the purge gas supply device 132, and the display 120. The controller 170 is mainly a computer, including a CPU, ROM, RAM, etc., and is connected to a plurality of drive circuits 172. As a result, the operations of the plasma generator 20 and the purge gas supply mechanism 32 are controlled by the controller 170. Further, the controller 170 is connected to the detection sensor 144 and the encoder section 112. Thereby, the controller 170 acquires the detection result of the detection sensor 144, that is, the oxygen concentration inside the cover housing 22, and also acquires the pulse signal output by the encoder section 112.
 コントローラ170は、エンコーダ部112からパルス信号を取得すると、例えば、上記RAMに確保したカウント領域(図示せず)に記憶されているカウント値を1ずつカウントアップあるいはカウントダウンする。つまり、コントローラ170は、エンコーダ部112が上方に移動しているときには、カウントアップし、エンコーダ部112が下方に移動しているときには、カウントダウンする。そして、コントローラ170は、カウントアップ/ダウンを実行したタイミングで、新たなカウント値に対応するエンコーダ部112の移動量を算出し、その移動量でディスプレイ120が表示するときに参照する表示領域(図示せず)を書き換える。これにより、ディスプレイ120には、更新された移動量が表示される。 When the controller 170 acquires the pulse signal from the encoder section 112, it counts up or down by one the count value stored in the count area (not shown) secured in the RAM, for example. That is, the controller 170 counts up when the encoder section 112 is moving upward, and counts down when the encoder section 112 is moving downward. Then, the controller 170 calculates the amount of movement of the encoder unit 112 corresponding to the new count value at the timing when the count up/down is executed, and uses the calculated amount of movement to calculate the display area to be referred to when the display 120 displays (Fig. (not shown). As a result, the updated movement amount is displayed on the display 120.
 培養液にプラズマを照射することで、培養液が活性化するため、プラズマ照射された培養液を用いた癌の治療等、医療の分野でのプラズマの活用が期待されている。このため、プラズマ照射された培養液の生成等が行われるが、培養液は、プラズマ照射される際の条件が管理された状態でプラズマ照射されることが好ましい。大気圧プラズマ照射装置10では、上述した構成により、照射ブロック180をステージ26の上に載置し、カバーハウジング22を密閉することで、所定の条件下で培養液にプラズマを照射することが可能である。以下に、所定の条件下で、培養液にプラズマを照射する手法について、詳しく説明する。 By irradiating the culture solution with plasma, the culture solution is activated, so plasma is expected to be used in the medical field, such as in the treatment of cancer using the plasma-irradiated culture solution. For this reason, a culture solution irradiated with plasma is generated, and it is preferable that the culture solution is irradiated with plasma under controlled conditions. In the atmospheric pressure plasma irradiation device 10, with the above-described configuration, by placing the irradiation block 180 on the stage 26 and sealing the cover housing 22, it is possible to irradiate the culture solution with plasma under predetermined conditions. It is. Below, a method of irradiating a culture solution with plasma under predetermined conditions will be described in detail.
 具体的には、まず、照射ブロック180をステージ26の上に載置する。次に、昇降装置100によってステージ26を任意の高さに昇降させる。これにより、プラズマの噴出口72と、プラズマの被照射体としての培養液との間の距離を任意に設定することが可能となる。なお、ステージ26の昇降高さは、上述のようにディスプレイ120上に、1/100mm単位で表示されるので、上述した特許文献1に記載のプラズマ照射装置のように、目視による誤差は生じない。 Specifically, first, the irradiation block 180 is placed on the stage 26. Next, the stage 26 is raised and lowered to an arbitrary height by the raising and lowering device 100. Thereby, it becomes possible to arbitrarily set the distance between the plasma spout 72 and the culture solution as the object to be irradiated with the plasma. Note that the height of the stage 26 is displayed in units of 1/100 mm on the display 120 as described above, so there is no visual error as in the plasma irradiation apparatus described in Patent Document 1 mentioned above. .
 次に、上部カバー76を下降させ、カバーハウジング22を密閉させる。そして、パージガス供給機構32によって、カバーハウジング22の内部に不活性ガスが供給される。この際、濃度検出機構34によって、カバーハウジング22内の酸素濃度が検出される。そして、検出された酸素濃度が予め設定された閾値以下となった後に、プラズマ発生装置20によってプラズマが、カバーハウジング22の内部に噴出される。なお、プラズマが照射されている際も、カバーハウジング22の内部への不活性ガスの供給は、継続して行われる。また、一定の流量に調整された培養液が、送液チューブ122を介して照射ブロック180の貯留部184へ流される。貯留部184に貯留された培養液は、プラズマ発生装置20からプラズマガスが照射されて活性化される。なお、培養液に所定時間、プラズマガスが照射されることで、プラズマ照射された培養液による治療効果は発揮されることがわかっている。培養液が貯留部184に貯留されることにより、所定時間プラズマガスが照射される。また、培養液は、プラズマガスが照射されることにより、貯留部184内で自然対流する。これにより、治療効果が発揮される均質な活性化された培養液とすることができる。 Next, the upper cover 76 is lowered to seal the cover housing 22. Then, the purge gas supply mechanism 32 supplies inert gas to the inside of the cover housing 22 . At this time, the concentration detection mechanism 34 detects the oxygen concentration within the cover housing 22. Then, after the detected oxygen concentration becomes equal to or less than a preset threshold, plasma is ejected into the cover housing 22 by the plasma generator 20. Note that even when plasma is being irradiated, inert gas is continuously supplied to the inside of the cover housing 22. Further, the culture solution adjusted to a constant flow rate is flowed into the storage section 184 of the irradiation block 180 via the liquid feeding tube 122. The culture fluid stored in the storage section 184 is activated by being irradiated with plasma gas from the plasma generator 20. It is known that the therapeutic effect of the plasma-irradiated culture solution can be exerted by irradiating the culture solution with plasma gas for a predetermined period of time. By storing the culture solution in the storage section 184, plasma gas is irradiated for a predetermined period of time. Further, the culture solution undergoes natural convection within the storage section 184 by being irradiated with plasma gas. This makes it possible to obtain a homogeneous activated culture solution that exhibits a therapeutic effect.
 このように、カバーハウジング22の内部に不活性ガスが供給されることで、カバーハウジング22内の空気は、カバーハウジング22の外部に排気される。この際、カバーハウジング22内の酸素濃度が調整されることで、プラズマ照射に影響を及ぼす条件が管理される。詳しくは、プラズマは、活性ラジカルを含んでいるため、酸素と反応すると、オゾンとなり、プラズマ照射の効果が低下する。このため、カバーハウジング22内の酸素濃度を調整することで、プラズマ照射された培養液の効果に対する酸素濃度の影響を調べることが可能となる。また、同一条件下で培養液にプラズマを照射することが可能となる。これにより、効率的にプラズマ処理培養液を生成することが可能となる。 In this way, by supplying the inert gas to the inside of the cover housing 22, the air inside the cover housing 22 is exhausted to the outside of the cover housing 22. At this time, conditions that affect plasma irradiation are managed by adjusting the oxygen concentration within the cover housing 22. Specifically, since plasma contains active radicals, when it reacts with oxygen, it becomes ozone, which reduces the effectiveness of plasma irradiation. Therefore, by adjusting the oxygen concentration within the cover housing 22, it becomes possible to examine the influence of the oxygen concentration on the effectiveness of the culture solution irradiated with plasma. Furthermore, it becomes possible to irradiate the culture solution with plasma under the same conditions. This makes it possible to efficiently generate a plasma-treated culture solution.
 また、大気圧プラズマ照射装置10では、上述したように、プラズマの噴出口72と培養液との間の距離が任意に設定される。これにより、プラズマ照射された培養液の効果に対する照射距離の影響を調べることが可能となり、効率的にプラズマ処理培養液を生成することが可能となる。 Furthermore, in the atmospheric pressure plasma irradiation device 10, as described above, the distance between the plasma spout 72 and the culture solution is arbitrarily set. This makes it possible to examine the influence of irradiation distance on the effectiveness of plasma-irradiated culture fluid, and to efficiently generate plasma-treated culture fluid.
 プラズマ照射が開始された後、所定時間が経過すると、貯留部184に貯留されたプラズマ処理培養液は、排液チューブ124を介して排出される。貯留部184からのプラズマ処理培養液の排出が開始された後、所定時間が経過すると、貯留部184にプラズマ処理培養液が残留していないとみなして、貯留部184からのプラズマ処理培養液の排出を完了する。そして、次にプラズマ処理する培養液が、送液チューブ122を介して照射ブロック180の貯留部184へ流される。以下、貯留部184に貯留された培養液への所定時間のプラズマ照射、プラズマ処理培養液の排液、新たな培養液の照射ブロック180への供給、培養液へのプラズマ照射、…というプラズマ処理工程が、所定量のプラズマ処理培養液が生成されるまで繰り返し実行される。 After a predetermined period of time has elapsed after plasma irradiation was started, the plasma-treated culture solution stored in the storage section 184 is discharged via the drain tube 124. After a predetermined period of time has elapsed after the discharge of the plasma-treated culture solution from the storage section 184 has started, it is assumed that no plasma-treated culture solution remains in the storage section 184, and the plasma-treated culture solution is discharged from the storage section 184. Complete the drain. Then, the culture solution to be subjected to plasma treatment next is flowed into the storage section 184 of the irradiation block 180 via the liquid feeding tube 122. Hereinafter, the plasma processing includes plasma irradiation for a predetermined time to the culture solution stored in the storage unit 184, draining of the plasma-treated culture solution, supply of new culture solution to the irradiation block 180, plasma irradiation to the culture solution, etc. The process is performed repeatedly until a predetermined amount of plasma-treated culture fluid is produced.
 今、プラズマの噴出口72と培養液との間の距離が適正な距離に設定されている状態で、メンテナンスのために、例えば、送液チューブ122あるいは排液チューブ124を交換しなければならないとする。この交換作業により、プラズマの噴出口72と培養液との間の距離は、必然的に適正な距離からずれることになる。しかし、操作者は、作業前にディスプレイ120に表示されていた移動量をメモしておけば、作業後に、その移動量に一致する移動量がディスプレイ120に表示されるように回転式操作子101を操作するだけで簡単かつ迅速に、作業前の適正な距離に戻すことができる。 Now that the distance between the plasma spout 72 and the culture medium is set to an appropriate distance, it is necessary to replace the liquid supply tube 122 or the liquid drainage tube 124 for maintenance, for example. do. Due to this replacement work, the distance between the plasma spout 72 and the culture solution inevitably deviates from the appropriate distance. However, if the operator takes note of the amount of movement displayed on the display 120 before the operation, the operator can move the rotary operator 10 so that the amount of movement that matches the amount of movement displayed on the display 120 is displayed after the operation. You can easily and quickly return to the appropriate distance before work by simply operating the .
 以上説明したように、本実施形態の大気圧プラズマ照射装置10は、培養液を貯留する照射ブロック180と、照射ブロック180内に貯留された培養液に照射するプラズマを発生するプラズマ発生装置20と、照射ブロック180内に貯留された培養液とプラズマ発生装置20との距離を調節するために、照射ブロック180をプラズマ発生装置20に近づく方向及びプラズマ発生装置20から離れる方向のいずれの方向にも移動させることができる昇降装置100と、昇降装置100により移動された照射ブロック180の移動量を示す位置情報を出力するスケールユニット110と、を備えている。 As described above, the atmospheric pressure plasma irradiation device 10 of this embodiment includes the irradiation block 180 that stores the culture solution, and the plasma generator 20 that generates plasma to irradiate the culture solution stored in the irradiation block 180. In order to adjust the distance between the culture solution stored in the irradiation block 180 and the plasma generator 20, the irradiation block 180 can be moved in either direction towards the plasma generator 20 or away from the plasma generator 20. It includes an elevating device 100 that can be moved, and a scale unit 110 that outputs position information indicating the amount of movement of the irradiation block 180 moved by the elevating device 100.
 このように、本実施形態の大気圧プラズマ照射装置10では、スケールユニット110から出力された位置情報に基づいて、培養液とプラズマ発生装置20との距離を適正に調整した後に再度、その適正距離に戻すことが可能となる。 In this way, in the atmospheric pressure plasma irradiation device 10 of this embodiment, after appropriately adjusting the distance between the culture solution and the plasma generation device 20 based on the position information output from the scale unit 110, the appropriate distance is again adjusted. It is possible to return to.
 ちなみに、本実施形態において、大気圧プラズマ照射装置10は、「プラズマ照射装置」の一例である。培養液は、「被処理液体」の一例である。照射ブロック180は、「貯留容器」の一例である。昇降装置100は、「移動機構」の一例である。スケールユニット110は、「エンコーダ」の一例である。 Incidentally, in this embodiment, the atmospheric pressure plasma irradiation device 10 is an example of a "plasma irradiation device." A culture solution is an example of a "liquid to be treated." The irradiation block 180 is an example of a "storage container." The lifting device 100 is an example of a "moving mechanism." Scale unit 110 is an example of an "encoder."
 また、本実施形態の大気圧プラズマ照射装置10は、スケールユニット110が出力した位置情報を表示するディスプレイ120をさらに備えている。ちなみに、ディスプレイ120は、「表示器」の一例である。これにより、操作者は、培養液とプラズマ発生装置20との距離を再度、適正距離に戻すときの操作を、ディスプレイ120に表示された位置情報を見ながら行うことができるので、その操作を簡単かつ迅速に行うことが可能となる。 Furthermore, the atmospheric pressure plasma irradiation apparatus 10 of this embodiment further includes a display 120 that displays position information output by the scale unit 110. Incidentally, the display 120 is an example of a "display device." As a result, the operator can easily return the distance between the culture solution and the plasma generator 20 to the appropriate distance while viewing the position information displayed on the display 120. And it becomes possible to do it quickly.
 また、昇降装置100は、時計回り及び反時計回りに回転可能な回転式操作子101と、回転式操作子101により回転された回転量を照射ブロック180の移動量に変換するラック107及びピニオンと、を有する。ちなみに、ラック107及びピニオンは、「変換機構」の一例である。 The lifting device 100 also includes a rotary operator 101 that can be rotated clockwise and counterclockwise, and a rack 107 and a pinion that convert the amount of rotation rotated by the rotary operator 101 into the amount of movement of the irradiation block 180. , has. Incidentally, the rack 107 and pinion are an example of a "conversion mechanism."
 また、本実施形態の大気圧プラズマ照射装置10は、照射ブロック180を載置するためのステージ26と、ステージ26の裏面に連結された支持ロッド106と、をさらに備えている。そして、昇降装置100は、支持ロッド106を上下方向に移動させることにより、照射ブロック180内に貯留された培養液とプラズマ発生装置20との距離を調節し、スケールユニット110は、支持ロッド106に連結され、昇降装置100により移動された支持ロッド106の移動量を示す位置情報を出力する。ちなみに、支持ロッド106は、「シャフト」の一例である。 Furthermore, the atmospheric pressure plasma irradiation apparatus 10 of this embodiment further includes a stage 26 on which the irradiation block 180 is placed, and a support rod 106 connected to the back surface of the stage 26. Then, the lifting device 100 adjusts the distance between the culture solution stored in the irradiation block 180 and the plasma generator 20 by moving the support rod 106 in the vertical direction, and the scale unit 110 moves the support rod 106 in the vertical direction. Position information indicating the amount of movement of the support rod 106 connected and moved by the lifting device 100 is output. Incidentally, the support rod 106 is an example of a "shaft."
 また、照射ブロック180は、培養液を貯留する貯留部184と、プラズマ照射装置10の外部から貯留部184に培養液を送液する送液チューブ122を取り付ける溝部183と、貯留部184に貯留された培養液を排液するために貯留部184の底面184bに設けられた排液穴184cと、排液穴184cを含む位置から照射ブロック180の下方に突出して形成された排出部186と、を有し、排出部186には、排液穴184cと連通した貫通孔186dと、貫通孔186dを通る排液を、プラズマ照射装置10の外部に排出するための排液チューブ124を取り付ける排出係止部186cと、が形成され、ステージ26には、排出部186を嵌め合わせるための切欠き26aが形成され、照射ブロック180をステージ26に載置するときには、照射ブロック180の排出部186をステージ26の切欠き26aに嵌め合わせることにより載置する。ちなみに、送液チューブ122は、「送液管」の一例である。溝部183は、「送液管取付部」の一例である。排液チューブ124は、「排液管」の一例である。排出係止部186cは、「排液管取付部」の一例である。 The irradiation block 180 also includes a storage section 184 that stores the culture solution, a groove section 183 to which the liquid feeding tube 122 that sends the culture solution from the outside of the plasma irradiation device 10 to the storage section 184 is attached, and the culture solution stored in the storage section 184. A drain hole 184c is provided on the bottom surface 184b of the storage section 184 for draining the culture solution, and a drain section 186 is formed to protrude downward from the irradiation block 180 from a position including the drain hole 184c. The discharge portion 186 has a through hole 186d that communicates with the drain hole 184c, and a discharge lock for attaching a drain tube 124 for discharging the drain fluid passing through the through hole 186d to the outside of the plasma irradiation device 10. A notch 26a is formed in the stage 26 to fit the ejection part 186, and when the irradiation block 180 is placed on the stage 26, the ejection part 186 of the irradiation block 180 is inserted into the stage 26. It is placed by fitting it into the notch 26a of. Incidentally, the liquid feeding tube 122 is an example of a "liquid feeding tube." The groove portion 183 is an example of a “liquid pipe attachment portion”. The drain tube 124 is an example of a "drain tube." The discharge locking part 186c is an example of a "drainage pipe attachment part."
(第2実施形態)
 図7は、本開示の第2実施形態に係る大気圧プラズマ照射装置10Aを示している。大気圧プラズマ照射装置10Aは、上記第1実施形態の大気圧プラズマ照射装置10に対して、昇降装置200の一部構成と制御装置38の一部構成が異なるのみであるため、図7及び図8中、図1及び図6と同様の構成には同一符号を付して、その説明は適宜省略する。
(Second embodiment)
FIG. 7 shows an atmospheric pressure plasma irradiation apparatus 10A according to a second embodiment of the present disclosure. Since the atmospheric pressure plasma irradiation apparatus 10A differs from the atmospheric pressure plasma irradiation apparatus 10 of the first embodiment only in a partial configuration of the lifting device 200 and a partial configuration of the control device 38, FIGS. 8, components similar to those in FIGS. 1 and 6 are designated by the same reference numerals, and their descriptions will be omitted as appropriate.
 昇降装置200は、図7に示すように、昇降装置100に含まれる回転式操作子101及び歯車102を電磁モータ210で置き換えたものである。このため、制御装置38Aには、図8に示すように、電磁モータ210を駆動するための駆動回路172が追加されている。また、ステージ26を上方向に所定距離移動させるためのUPキー150と、ステージ26を下方向に所定距離移動させるためのDOWNキー152も追加されている。 As shown in FIG. 7, the lifting device 200 is obtained by replacing the rotary operator 101 and gear 102 included in the lifting device 100 with an electromagnetic motor 210. For this reason, a drive circuit 172 for driving the electromagnetic motor 210 is added to the control device 38A, as shown in FIG. Additionally, an UP key 150 for moving the stage 26 upward a predetermined distance and a DOWN key 152 for moving the stage 26 downward a predetermined distance are also added.
 図9は、コントローラ170が実行する適正距離の再設定処理の手順をしている。以降、各処理の手順の説明において、ステップを「S」と表記する。この適正距離の再設定処理には、適正距離を自動的に再設定するS24~S36の処理に加え、その前に行うべき適正距離を設定するS10~S20の処理も含まれている。ただし、適正距離が事前に設定されている場合には、S10~S20の処理は省略してもよい。 FIG. 9 shows the procedure of the appropriate distance resetting process executed by the controller 170. Hereinafter, in the description of each processing procedure, a step will be denoted as "S". This appropriate distance resetting process includes not only the processes of S24 to S36 for automatically resetting the appropriate distance, but also the processes of S10 to S20 for setting the appropriate distance to be performed before that. However, if the appropriate distance is set in advance, the processes in S10 to S20 may be omitted.
 図9において、まずコントローラ170は、適正距離が設定されたか否かを判断する(S10)。適正距離であるか否かの判断は、例えば、プラズマの噴出口72と培養液との間の距離を変更しながら実際に培養液にプラズマを照射し、その都度プラズマ処理培養液の品質を調べ、その中で最適な品質が得られた距離を最適距離と判断することにより行う。 In FIG. 9, the controller 170 first determines whether an appropriate distance has been set (S10). To determine whether the distance is appropriate, for example, actually irradiate the culture solution with plasma while changing the distance between the plasma spout 72 and the culture solution, and check the quality of the plasma-treated culture solution each time. , the distance at which the best quality is obtained is determined to be the optimal distance.
 S10の判断において、適正距離が設定されていない場合(S10:NO)、コントローラ170は、UPキー150が押されたか否かを判断し(S12)、UPキー150が押された場合(S12:YES)、コントローラ170は、電磁モータ210を所定回転数だけ正回転させる指示を駆動回路172に出力する(S14)。これにより、支持ロッド106は上方向に所定の移動量だけ移動するので、プラズマの噴出口72と培養液との間の距離が所定の移動量だけ縮まる。そして、コントローラ170は、上記第1実施の形態で上述したカウント領域に記憶されているカウント値を読み出し、読み出したカウント値に基づいて現在距離を取得した(S20)後、処理を上記S10に戻す。 In the determination at S10, if the appropriate distance is not set (S10: NO), the controller 170 determines whether or not the UP key 150 has been pressed (S12), and if the UP key 150 has been pressed (S12: YES), the controller 170 outputs an instruction to the drive circuit 172 to rotate the electromagnetic motor 210 in the forward direction by a predetermined number of rotations (S14). As a result, the support rod 106 is moved upward by a predetermined amount, so that the distance between the plasma spout 72 and the culture solution is reduced by the predetermined amount. Then, the controller 170 reads the count value stored in the count area described above in the first embodiment, obtains the current distance based on the read count value (S20), and then returns the process to S10. .
 一方、上記S12の判断において、UPキー150が押されなかった場合(S12:NO)、コントローラ170は、DOWNキー152が押されたか否かを判断し(S16)、DOWNキー152が押された場合(S16:YES)、コントローラ170は、電磁モータ210を所定回転数だけ逆回転させる指示を駆動回路172に出力する(S18)。これにより、支持ロッド106は下方向に所定の移動量だけ移動するので、プラズマの噴出口72と培養液との間の距離が所定の移動量だけ広がる。そして、コントローラ170は、処理を上記S20に進め、カウント領域に記憶されているカウント値を読み出し、読み出したカウント値に基づいて現在距離を取得した後、処理を上記S10に戻す。 On the other hand, in the determination in S12 above, if the UP key 150 has not been pressed (S12: NO), the controller 170 determines whether the DOWN key 152 has been pressed (S16), and determines whether the DOWN key 152 has been pressed. If so (S16: YES), the controller 170 outputs an instruction to the drive circuit 172 to reversely rotate the electromagnetic motor 210 by a predetermined number of rotations (S18). As a result, the support rod 106 moves downward by a predetermined amount, so that the distance between the plasma spout 72 and the culture solution increases by the predetermined amount. Then, the controller 170 advances the process to S20 above, reads out the count value stored in the count area, obtains the current distance based on the read count value, and then returns the process to S10 above.
 一方、上記S10の判断において、適正距離が設定された場合(S10:YES)、コントローラ170は、上記S20で取得した現在距離を適正距離として、例えば、RAMに確保した適正距離記憶領域(図示せず)に記憶する(S22)。 On the other hand, in the judgment in S10 above, if the appropriate distance is set (S10: YES), the controller 170 sets the current distance acquired in S20 above as the appropriate distance, for example, in an appropriate distance storage area (not shown) secured in the RAM. (S22).
 次にコントローラ170は、適正距離の自動再設定が指示されたか否かを判断する(S24)。適正距離の自動再設定の指示は、例えば、その指示ボタン(図示せず)が設けられており、操作者がその指示ボタンを押すことにより行うようにすればよい。S24の判断において、適正距離の自動再設定が指示されなかった場合(S24:NO)、コントローラ170は、その指示があるまで待機し、その指示がなされると(S24:YES)、コントローラ170は、上記S20と同様にして、現在距離を取得する(S26)。 Next, the controller 170 determines whether automatic resetting of the appropriate distance has been instructed (S24). For example, an instruction button (not shown) is provided, and the operator can issue an instruction to automatically reset the appropriate distance by pressing the instruction button. In the judgment in S24, if automatic resetting of the appropriate distance is not instructed (S24: NO), the controller 170 waits until the instruction is given, and when the instruction is given (S24: YES), the controller 170 , the current distance is acquired in the same manner as in S20 above (S26).
 そして、コントローラ170は、現在距離が上記S22で記憶した適正距離に一致するまで(S36:YES)、現在距離>適正距離の場合には(S28:YES)、コントローラ170は、上記S18と同様にして、電磁モータ210を所定回転数だけ逆回転させる指示を駆動回路172に出力し(S30)、現在距離<適正距離の場合には(S32:YES)、コントローラ170は、上記S14と同様にして、電磁モータ210を所定回転数だけ正回転させる指示を駆動回路172に出力する(S34)。このようにして、現在距離と適正距離との間にずれがある間は、そのずれが小さくなる方向に支持ロッド106を移動させるので、プラズマの噴出口72と培養液との間の距離は適正距離に収束して行き、現在距離と適正距離とが一致すると(S36:YES)、コントローラ170は、適正距離の自動再設定処理を終了する。 Then, the controller 170 performs the same steps as in S18 above until the current distance matches the appropriate distance stored in S22 (S36: YES), and if the current distance > appropriate distance (S28: YES). Then, an instruction to reversely rotate the electromagnetic motor 210 by a predetermined number of rotations is output to the drive circuit 172 (S30), and if the current distance<appropriate distance (S32: YES), the controller 170 performs the same operation as in S14 above. , outputs an instruction to the drive circuit 172 to rotate the electromagnetic motor 210 in the forward direction by a predetermined number of rotations (S34). In this way, while there is a discrepancy between the current distance and the appropriate distance, the support rod 106 is moved in a direction that reduces the discrepancy, so that the distance between the plasma spout 72 and the culture medium is maintained at the appropriate distance. When the current distance and the appropriate distance match (S36: YES), the controller 170 ends the automatic appropriate distance resetting process.
 なお、S14,S18,S30及びS34の処理では、電磁モータ210に対して所定回転数だけ回転を指示しているが、所定回転数は、各処理で同じ回転数でもよいし、各処理で異なった回転数であってもよい。あるいは、S14とS18では同じ回転数であり、かつS30とS34では同じ回転数であるが、S14とS30では異なった回転数であってもよい。 Note that in the processes of S14, S18, S30, and S34, the electromagnetic motor 210 is instructed to rotate by a predetermined number of rotations, but the predetermined number of rotations may be the same in each process, or may be different in each process. The number of rotations may be different. Alternatively, the rotation speed may be the same in S14 and S18, and the same rotation speed in S30 and S34, but different rotation speeds may be used in S14 and S30.
 このように、本実施形態の大気圧プラズマ照射装置10Aでは、昇降装置200は、電磁モータ210と、電磁モータ210の回転軸の回転量を貯留部184の移動量に変換するラック107及びピニオンと、を有している。ちなみに、電磁モータ210は、「モータ」の一例である。 In this way, in the atmospheric pressure plasma irradiation apparatus 10A of this embodiment, the lifting device 200 includes the electromagnetic motor 210, the rack 107 and the pinion that convert the amount of rotation of the rotation axis of the electromagnetic motor 210 into the amount of movement of the storage section 184. ,have. Incidentally, the electromagnetic motor 210 is an example of a "motor".
 また、本実施形態の大気圧プラズマ照射装置10Aは、照射ブロック180内に貯留された培養液とプラズマ発生装置20との距離が指定距離になるように電磁モータ210を制御するコントローラ170をさらに備えている。ちなみに、コントローラ170は、「制御部」の一例である。これにより、培養液とプラズマ発生装置20との距離を再度、適正距離に戻すときの操作を、電磁モータ210により自動的に行うことが可能となる。 The atmospheric pressure plasma irradiation device 10A of this embodiment further includes a controller 170 that controls the electromagnetic motor 210 so that the distance between the culture solution stored in the irradiation block 180 and the plasma generator 20 becomes a specified distance. ing. Incidentally, the controller 170 is an example of a "control unit". Thereby, it becomes possible to automatically perform the operation for returning the distance between the culture solution and the plasma generator 20 to the appropriate distance again using the electromagnetic motor 210.
 また、本実施形態の大気圧プラズマ照射装置10Aは、照射ブロック180を載置するためのステージ26と、ステージ26の裏面に連結された支持ロッド106と、をさらに備えている。そして、昇降装置200は、支持ロッド106を上下方向に移動させることにより、照射ブロック180内に貯留された培養液とプラズマ発生装置20との距離を調節し、スケールユニット110は、支持ロッド106に連結され、昇降装置200により移動された支持ロッド106の移動量を示す位置情報を出力する。 Furthermore, the atmospheric pressure plasma irradiation apparatus 10A of this embodiment further includes a stage 26 on which the irradiation block 180 is placed, and a support rod 106 connected to the back surface of the stage 26. The lifting device 200 adjusts the distance between the culture solution stored in the irradiation block 180 and the plasma generator 20 by moving the support rod 106 in the vertical direction, and the scale unit 110 moves the support rod 106 in the vertical direction. Position information indicating the amount of movement of the support rod 106 connected and moved by the lifting device 200 is output.
 なお、本開示は上記各実施形態に限定されるものでなく、その趣旨を逸脱しない範囲で様々な変更が可能である。 Note that the present disclosure is not limited to the above embodiments, and various changes can be made without departing from the spirit thereof.
 上記各実施形態では、被処理体として、培養液が採用されているが、培養液以外の液体を、被処理体として採用することが可能である。また、医療の分野に限られず、工業分野等の種々の分野に、本開示を適用することが可能である。 In each of the above embodiments, a culture solution is used as the object to be processed, but it is possible to use a liquid other than the culture solution as the object to be processed. Furthermore, the present disclosure is applicable not only to the medical field but also to various fields such as the industrial field.
 10,10A…大気圧プラズマ照射装置、20…プラズマ発生装置、26…ステージ、38,38A…制御装置、72…噴出口、100,200…昇降装置、101…回転式操作子、102…歯車、103…回転軸、105…ピニオン保持部、106…支持ロッド、107…ラック、110…スケールユニット、112…エンコーダ部、114…スケール部、120…ディスプレイ、132…パージガス供給装置、150…UPキー、152…DOWNキー、170…コントローラ、180…照射ブロック、184…貯留部、210…電磁モータ。 10, 10A... Atmospheric pressure plasma irradiation device, 20... Plasma generator, 26... Stage, 38, 38A... Control device, 72... Jet outlet, 100, 200... Lifting device, 101... Rotary operator, 102... Gear, 103... Rotating shaft, 105... Pinion holding part, 106... Support rod, 107... Rack, 110... Scale unit, 112... Encoder part, 114... Scale part, 120... Display, 132... Purge gas supply device, 150... UP key, 152...DOWN key, 170...controller, 180...irradiation block, 184...reservoir, 210...electromagnetic motor.

Claims (8)

  1.  被処理液体を貯留する貯留容器と、
     前記貯留容器内に貯留された前記被処理液体に照射するプラズマを発生するプラズマ発生装置と、
     前記貯留容器内に貯留された前記被処理液体と前記プラズマ発生装置との距離を調節するために、前記貯留容器を前記プラズマ発生装置に近づく方向及び前記プラズマ発生装置から離れる方向のいずれの方向にも移動させることができる移動機構と、
     前記移動機構により移動された前記貯留容器の移動量を示す位置情報を出力するエンコーダと、
    を備えたプラズマ照射装置。
    a storage container that stores the liquid to be treated;
    a plasma generator that generates plasma to irradiate the liquid to be treated stored in the storage container;
    In order to adjust the distance between the liquid to be treated stored in the storage container and the plasma generation device, the storage container is moved in either direction toward the plasma generation device or away from the plasma generation device. A moving mechanism that can move the
    an encoder that outputs position information indicating the amount of movement of the storage container moved by the movement mechanism;
    Plasma irradiation equipment equipped with
  2.  前記エンコーダが出力した前記位置情報を表示する表示器
    をさらに備えた請求項1に記載のプラズマ照射装置。
    The plasma irradiation apparatus according to claim 1, further comprising a display that displays the position information output by the encoder.
  3.  前記移動機構は、
     時計回り及び反時計回りに回転可能な回転式操作子と、
     前記回転式操作子により回転された回転量を前記貯留容器の移動量に変換する変換機構と、
    を有する
    請求項1又は2に記載のプラズマ照射装置。
    The moving mechanism is
    a rotary operator that can rotate clockwise and counterclockwise;
    a conversion mechanism that converts the amount of rotation rotated by the rotary operator into the amount of movement of the storage container;
    The plasma irradiation device according to claim 1 or 2, comprising:
  4.  前記移動機構は、
     モータと、
     前記モータの回転軸の回転量を前記貯留容器の移動量に変換する変換機構と、
    を有する
    請求項1又は2に記載のプラズマ照射装置。
    The moving mechanism is
    motor and
    a conversion mechanism that converts the amount of rotation of the rotation shaft of the motor into the amount of movement of the storage container;
    The plasma irradiation device according to claim 1 or 2, comprising:
  5.  前記貯留容器内に貯留された前記被処理液体と前記プラズマ発生装置との距離が指定距離になるように前記モータを制御する制御部
    をさらに備えた請求項4に記載のプラズマ照射装置。
    The plasma irradiation device according to claim 4, further comprising a control unit that controls the motor so that the distance between the liquid to be treated stored in the storage container and the plasma generation device becomes a specified distance.
  6.  前記貯留容器を載置するためのステージと、
     前記ステージの裏面に連結されたシャフトと、
    をさらに備え、
     前記移動機構は、前記シャフトを上下方向に移動させることにより、前記貯留容器内に貯留された前記被処理液体と前記プラズマ発生装置との距離を調節し、
     前記エンコーダは、前記シャフトに連結され、前記移動機構により移動された前記シャフトの移動量を示す位置情報を出力する、
    請求項1~5のいずれか1項に記載のプラズマ照射装置。
    a stage for placing the storage container;
    a shaft connected to the back surface of the stage;
    Furthermore,
    The moving mechanism adjusts the distance between the liquid to be treated stored in the storage container and the plasma generator by moving the shaft in the vertical direction,
    The encoder is connected to the shaft and outputs position information indicating the amount of movement of the shaft moved by the movement mechanism.
    The plasma irradiation device according to any one of claims 1 to 5.
  7.  前記貯留容器は、前記被処理液体を貯留する貯留部と、前記プラズマ照射装置の外部から前記貯留部に前記被処理液体を送液する送液管を取り付ける送液管取付部と、前記貯留部に貯留された前記被処理液体を排液するために前記貯留部の底面に設けられた排液穴と、前記排液穴を含む位置から前記貯留容器の下方に突出して形成された排出部と、を有し、
     前記排出部には、前記排液穴と連通した貫通孔と、前記貫通孔を通る排液を、前記プラズマ照射装置の外部に排出するための排液管を取り付ける排液管取付部と、が形成され、
     前記ステージには、前記排出部を嵌め合わせるための切欠きが形成され、
     前記貯留容器を前記ステージに載置するときには、前記貯留容器の前記排出部を前記ステージの前記切欠きに嵌め合わせることにより載置する、
    請求項6に記載のプラズマ照射装置。
    The storage container includes a storage part that stores the liquid to be treated, a liquid delivery pipe attachment part that attaches a liquid delivery pipe that sends the liquid to the storage part from outside the plasma irradiation apparatus, and the storage part. a drainage hole provided on the bottom surface of the storage section for draining the liquid to be treated stored in the storage container; and a discharge section formed to protrude downward from the storage container from a position including the drainage hole. , has
    The discharge section includes a through hole that communicates with the drain hole, and a drain pipe attachment section that attaches a drain pipe for discharging the drain fluid passing through the through hole to the outside of the plasma irradiation device. formed,
    A notch is formed in the stage to fit the ejection part,
    When placing the storage container on the stage, the storage container is placed by fitting the discharge part of the storage container into the notch of the stage.
    The plasma irradiation device according to claim 6.
  8.  被処理液体を貯留する貯留容器と、前記貯留容器内に貯留された前記被処理液体に照射するプラズマを発生するプラズマ発生装置と、前記貯留容器内に貯留された前記被処理液体と前記プラズマ発生装置との距離を調節するために、前記貯留容器を前記プラズマ発生装置に近づく方向及び前記プラズマ発生装置から離れる方向のいずれの方向にも移動させることができる移動機構と、前記移動機構により移動された前記貯留容器の移動量を示す位置情報を出力するエンコーダと、を備えたプラズマ照射装置を用いて、前記貯留容器内に貯留された前記被処理液体にプラズマを照射することによりプラズマ処理液体を製造するプラズマ処理液体製造方法。 a storage container that stores a liquid to be treated; a plasma generator that generates plasma to irradiate the liquid to be treated stored in the storage container; and the liquid to be treated stored in the storage container and the plasma generator. a moving mechanism capable of moving the storage container in either direction toward the plasma generating device or away from the plasma generating device in order to adjust the distance from the device; and an encoder that outputs positional information indicating the amount of movement of the storage container, the liquid to be treated stored in the storage container is irradiated with plasma to produce a plasma-treated liquid. A method for producing a plasma processing liquid.
PCT/JP2022/010566 2022-03-10 2022-03-10 Plasma irradiation apparatus and plasma-treated liquid manufacturing method WO2023170857A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/010566 WO2023170857A1 (en) 2022-03-10 2022-03-10 Plasma irradiation apparatus and plasma-treated liquid manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/010566 WO2023170857A1 (en) 2022-03-10 2022-03-10 Plasma irradiation apparatus and plasma-treated liquid manufacturing method

Publications (1)

Publication Number Publication Date
WO2023170857A1 true WO2023170857A1 (en) 2023-09-14

Family

ID=87936425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010566 WO2023170857A1 (en) 2022-03-10 2022-03-10 Plasma irradiation apparatus and plasma-treated liquid manufacturing method

Country Status (1)

Country Link
WO (1) WO2023170857A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001228212A (en) * 2000-02-15 2001-08-24 Tokyo Electron Ltd Method for measuring needle load, method for setting needle load and inspection device
JP2012043769A (en) * 2010-07-21 2012-03-01 Panasonic Corp Plasma generating device and method for producing radical, washing and cleaning device using the same, and compact electrical appliance
WO2017037775A1 (en) * 2015-08-28 2017-03-09 富士機械製造株式会社 Plasma irradiation device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001228212A (en) * 2000-02-15 2001-08-24 Tokyo Electron Ltd Method for measuring needle load, method for setting needle load and inspection device
JP2012043769A (en) * 2010-07-21 2012-03-01 Panasonic Corp Plasma generating device and method for producing radical, washing and cleaning device using the same, and compact electrical appliance
WO2017037775A1 (en) * 2015-08-28 2017-03-09 富士機械製造株式会社 Plasma irradiation device

Similar Documents

Publication Publication Date Title
US11667082B2 (en) Apparatus and method for manufacturing a three-dimensional object
WO2023170857A1 (en) Plasma irradiation apparatus and plasma-treated liquid manufacturing method
JP4490655B2 (en) Thin hole electric discharge machining apparatus, die-sculpting / thin hole combined electric discharge machining apparatus and die-cutting / thin hole combined electric discharge machining method using the same apparatus
EP3549143B1 (en) Systems and methods for dispensing radioactive liquids
EP3502050A1 (en) Method for producing aqueous hydrogen peroxide and method for sterilizing object to be sterilized
TWI801596B (en) Laser processing device
JP6697470B2 (en) Plasma irradiation device
WO2023161991A1 (en) Method for producing plasma processed liquid and plasma irradiation apparatus
WO2022153816A1 (en) Filling device
JP4814642B2 (en) Liquid preparation equipment
JP6973976B2 (en) Anti-tumor aqueous solution manufacturing equipment
WO2023162102A1 (en) Plasma irradiation apparatus and plasma-treated liquid production method
WO2013124720A1 (en) Improvements relating to plasma cutters
WO2023073879A1 (en) Plasma irradiation apparatus and method for manufacturing plasma-processed liquid
WO2020100252A1 (en) Plasma irradiation device
JP2008229421A (en) Liquid substance dropping apparatus and liquid substance dropping method
WO2023073878A1 (en) Plasma irradiation apparatus and plasma treatment liquid manufacturing method
CN213798121U (en) Thermos cup 3D printing apparatus
KR100975978B1 (en) Device measurement automatic air flow for nozzle tundish
JP6823656B2 (en) Anti-tumor aqueous solution manufacturing equipment
CN207703315U (en) A kind of belt conveyer scale
JPH06222151A (en) Radiation detector calibrating apparatus
RU86454U1 (en) DEVICE FOR SUBMITTING OZONIZED SOLUTION TO THE DENTAL TIP AND VALVE FOR REGULATING THE SUPPLY OF THE OZONIZED SOLUTION TO THE DENTAL TIP
JP7127127B2 (en) Atmospheric plasma processing equipment
CN213209959U (en) Stem cell detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930838

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024505754

Country of ref document: JP