WO2023170758A1 - Method for predicting received power and system for predicting received power - Google Patents

Method for predicting received power and system for predicting received power Download PDF

Info

Publication number
WO2023170758A1
WO2023170758A1 PCT/JP2022/009799 JP2022009799W WO2023170758A1 WO 2023170758 A1 WO2023170758 A1 WO 2023170758A1 JP 2022009799 W JP2022009799 W JP 2022009799W WO 2023170758 A1 WO2023170758 A1 WO 2023170758A1
Authority
WO
WIPO (PCT)
Prior art keywords
received power
communication terminal
predetermined time
information
prediction
Prior art date
Application number
PCT/JP2022/009799
Other languages
French (fr)
Japanese (ja)
Inventor
元晴 佐々木
憲一 河村
尚希 澁谷
渉 山田
稔 猪又
伸晃 久野
貴庸 守山
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/009799 priority Critical patent/WO2023170758A1/en
Publication of WO2023170758A1 publication Critical patent/WO2023170758A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a received power prediction method and a received power prediction system.
  • Techniques for predicting wireless communication quality in wireless communication systems are known. For example, assuming a static environment where the blocker is a building, tree, or other object whose position and size do not change on a second-by-second basis, the reception power of the communication terminal is Techniques for predicting power are known.
  • Embodiments of the present invention have been made in view of the above-mentioned problems, and in a dynamic environment where a mobile object exists, the received power of a communication terminal is predicted by taking into account the interruption of radio waves by the mobile object.
  • the present invention provides a method for predicting received power.
  • a received power prediction method includes an acquisition process in which a received power prediction system acquires dynamic environmental information of an object in a predetermined area, and a process of acquiring the position of the communication terminal located in the area, a process of predicting the predicted position of the communication terminal after a predetermined time has elapsed, and a process of predicting the dynamic environmental information after the elapse of the predetermined time.
  • the predetermined A prediction process of predicting the reception power of the communication terminal after a lapse of time is executed.
  • a received power prediction method that can predict the received power of a communication terminal in a dynamic environment where a mobile body exists, taking into account the interruption of radio waves by the mobile body.
  • FIG. 1 is a diagram illustrating an example of a system configuration of a received power prediction system according to the present embodiment.
  • FIG. 3 is a diagram for explaining reception power prediction processing according to the present embodiment.
  • FIG. 3 is a diagram for explaining pre-processing according to the present embodiment.
  • FIG. 3 is a diagram illustrating another example of the system configuration of the received power prediction system according to the present embodiment.
  • 7 is a flowchart illustrating an example of received power prediction processing according to the present embodiment. It is a flow chart which shows an example of pre-processing concerning this embodiment.
  • FIG. 2 is a diagram showing an example of a hardware configuration of a prediction device according to the present embodiment.
  • FIG. 2 is a diagram illustrating an example of the hardware configuration of a communication terminal according to the present embodiment.
  • FIG. 1 is a diagram (1) for explaining a problem of the present embodiment.
  • FIG. 2 is a diagram (2) for explaining the problem of this embodiment.
  • a received power prediction system 1 is a system that predicts received power received by a communication terminal from a wireless base station in a wireless communication network.
  • Non-Patent Document 1 predict wireless communication quality from actual measured values of communication quality at evaluation points obtained in advance, the current position of the communication terminal, movement information of the communication terminal, etc. There is.
  • this conventional technology for example, as shown in FIG. 9, in a static environment 900 where there are only stationary objects such as a building 903, communication is made from a wireless base station 901 based on an actual measured value of received power obtained in advance. The received power received by terminal 902 can be predicted.
  • the received power prediction system 1 is configured to be able to predict the received power received by the communication terminal 902 in a dynamic environment 1000 where a mobile body exists, taking into account the interruption of radio waves by the mobile body. , for example, has the system configuration shown in FIG. 1 or FIG. 4.
  • FIG. 1 is a diagram showing an example of a system configuration of a received power prediction system according to this embodiment.
  • the received power prediction system 1 is realized by a prediction device 100.
  • the prediction device 100 is an information processing device having a computer configuration or a system including multiple computers.
  • the prediction device 100 executes a predetermined program on a computer included in the prediction device 100 to obtain an environment information acquisition unit 101, a terminal position acquisition unit 102, a terminal position prediction unit 103, an environment information prediction unit 104, and a received power prediction unit 105. , the communication unit 106, and other functional configurations. Note that at least some of the above functional configurations may be realized by hardware.
  • the prediction device 100 realizes an environment information storage unit 111, a terminal position storage unit 112, an angle profile storage unit 113, etc. using a storage device, a memory, etc. included in the prediction device 100.
  • the environmental information acquisition unit 101 executes an acquisition process to acquire dynamic environmental information about objects in a predetermined area.
  • the environmental information acquisition unit 101 uses a three-dimensional sensor such as a LiDAR 211, a stereo camera 212, a depth camera 213, a camera 214, or a wireless sensing device 215 to obtain information in a predetermined area.
  • Dynamic environmental information within the building 201 is acquired.
  • This dynamic environment information includes, for example, information indicating the positions of the moving objects 202a, 202b, and 202c within the building 201.
  • LiDAR Light Detection And Ranging, or Laser Imaging Detection And Ranging
  • the environmental information acquisition unit 101 uses the LiDAR 211 to acquire three-dimensional point cloud data by sensing a predetermined area, such as inside the building 201, and converts the acquired three-dimensional point cloud data into dynamic environmental information. You can also use it as
  • the stereo camera 212 is a camera that can measure images of the object and the distance to the object by simultaneously photographing the object from two different directions.
  • the environmental information acquisition unit 101 uses a stereo camera 212 to sense a predetermined area, such as inside a building 201, to acquire three-dimensional point cloud data, and dynamically converts the acquired three-dimensional point cloud data. It may also be used as environmental information.
  • the depth camera 213 is a camera that captures a depth image including depth data indicating the distance to the target object by photographing the target object.
  • the environmental information acquisition unit 101 may use the depth camera 213 to acquire depth data by photographing a predetermined area, such as inside the building 201, and use the acquired depth data as dynamic environmental information.
  • the camera 214 is, for example, a monocular camera that takes a normal camera image that does not include depth data. Deep learning has been used to estimate depth images from monocular camera images that do not contain depth data.
  • the environmental information acquisition unit 101 may generate depth data using deep learning from a camera image taken by the camera 214, and use the generated depth data as dynamic environmental information.
  • the wireless sensing device 215 is a device that measures the position of an object using wireless communication or reflection of radio waves. For example, by acquiring the CSI (Channel State Information) of each subcarrier using multiple subcarriers such as wireless LAN (Local Area Network) communication, and inputting the acquired CSI into a trained machine learning model, Techniques have been developed to acquire the position of objects. Further, the wireless sensing device 215 may be a millimeter wave radar or the like that can measure the distance, angle, speed, etc. to the target object.
  • the environmental information acquisition unit 101 uses the wireless sensing device 215 to sense a predetermined area, such as inside the building 201, to obtain position data of objects in the predetermined area, and uses the obtained position data etc. It may also be dynamic environmental information.
  • the environmental information acquisition unit 101 may acquire dynamic environmental information about objects in a predetermined area using other positioning methods.
  • the dynamic environmental information acquired by the environmental information acquisition unit 101 includes 3D point cloud data, depth data, position data, etc. of objects acquired by a 3D sensor, and includes objects within a predetermined area. Any data that can identify the position of the moving object may be used.
  • the positioning method for acquiring dynamic environmental information may be any positioning method.
  • the terminal location acquisition unit 102 executes processing to acquire the location of a communication terminal in a predetermined area. For example, the communication terminal adds position information (coordinate information) indicating the location of the communication terminal and transmits request information requesting the prediction device 100 to obtain a predicted value of received power.
  • the terminal position acquisition unit 102 may acquire the position of the communication terminal from, for example, request information that the communication unit 106 receives from the communication terminal.
  • the present invention is not limited to this, and similarly to the environmental information acquisition section 101, the terminal position acquisition section 102 may acquire the position of the communication terminal using various three-dimensional sensors.
  • the terminal position prediction unit 103 executes a process of predicting the predicted position of the communication terminal after a predetermined time (t seconds) has elapsed from the current time. For example, the terminal location acquisition unit 102 stores the acquired location of the communication terminal in the terminal location storage unit 112. Furthermore, the terminal position prediction unit 103 predicts the position of the communication terminal after a predetermined time has elapsed, based on the history of the position of the communication terminal stored in the terminal position storage unit 112, for example, by linear prediction.
  • the terminal position prediction unit 103 may be included in the communication terminal.
  • the terminal position prediction unit 103 of the communication terminal calculates a predetermined time period ( The predicted position of the communication terminal after t seconds has elapsed is calculated. Further, the communication terminal adds the position of the communication terminal and the predicted position of the communication terminal after a predetermined time has elapsed, and transmits request information to the prediction device 100 requesting acquisition of the predicted value of received power.
  • the environmental information prediction unit 104 executes a process of predicting dynamic environmental information after a predetermined time (t seconds) has elapsed from the current time.
  • the environment information acquisition unit 101 stores the acquired dynamic environment information in the environment information storage unit 111.
  • the environmental information prediction unit 104 predicts dynamic environmental information after a predetermined time has elapsed, based on the history of dynamic environmental information stored in the environmental information storage unit 111, for example, by linear prediction or the like. .
  • the environmental information prediction unit 104 acquires the positions of the moving objects 202a, 202b, and 202c as shown in FIG.
  • the information is stored in the information storage unit 111 or the like.
  • the environmental information prediction unit 104 calculates the movement of the moving body (moving direction, moving speed, etc.) from the history of the position of the moving body stored in the environmental information storage unit 111 etc., and calculates the current position of the moving body and the moving body.
  • the position of the moving object after a predetermined period of time may be predicted based on the movement of the moving object.
  • the environmental information prediction unit 104 inputs the movement history of the moving object into a prediction model that has been machine-learned in advance to predict the position of the moving object after a predetermined period of time, based on the movement history of the moving object. , the position of the moving body after a predetermined time has elapsed may be predicted.
  • the received power prediction unit 105 is based on the angle profile information of the received power measured in advance at the predicted position of the communication terminal or evaluation points around the predicted position, and the position of the moving body (object) after a predetermined time has elapsed. Then, the reception power of the communication terminal after a predetermined time has elapsed is predicted.
  • the angle profile information 204 indicates the received power for each arrival angle of the radio waves of the communication terminal 203.
  • the dynamic environment information after a predetermined time period includes information indicating the position of a mobile object in a predetermined area after a predetermined time period has elapsed.
  • the dynamic environment information after a predetermined time period includes information representing the position and shape of a moving object in a predetermined area after a predetermined time period has elapsed.
  • the received power prediction unit 105 deletes the angle profile in the direction c of the mobile object 202 after a predetermined time has elapsed from the received power angle profile information 204 measured in advance at evaluation points around the predicted position of the communication terminal 203. By doing so, the received power of communication terminal 203 after a predetermined time has elapsed is predicted.
  • the prediction device 100 stores in the angle profile storage unit 113 in advance the angle profile information 204 at a plurality of evaluation points, which has been obtained in advance through pre-processing as shown in FIG. 3, for example.
  • FIG. 3 is a diagram for explaining the pre-processing according to this embodiment.
  • This pre-processing is executed by, for example, an information processing device having a computer configuration using a measuring device that measures received power for each arrival angle of radio waves.
  • the information processing device used for the pre-processing may be the same information processing device as the prediction device 100, or may be a different information processing device from the prediction device 100.
  • the information processing device obtains static environmental information from a building DB (Database) (or map DB) 311 representing the structure of the building 201, CAD (Computer Aided Design) data 312, BIM (Building Information Modeling) data 313, etc. Acquire (step S11).
  • a building DB Database
  • map DB Map DB
  • CAD Computer Aided Design
  • BIM Building Information Modeling
  • the information processing device sets a plurality of evaluation points 301 in the building 201, which is an example of a predetermined area, and measures the angle profile information 204 at each of the set evaluation points 301 using the measurement device ( Step S12).
  • the measurement of the angle profile information 204 may be performed by an administrator, a worker, or the like using a measuring device.
  • angle profile information 204 measured in advance at a plurality of evaluation points 301 within the building 201 can be obtained.
  • the prediction device 100 stores the angle profile information 204 obtained through this pre-processing in the angle profile storage unit 113 in advance.
  • the communication unit 106 executes communication processing to communicate with the communication terminal 203 and the like via the communication network.
  • the environmental information storage unit 111 stores dynamic environmental information etc. acquired by the environmental information acquisition unit 101.
  • the terminal location storage unit 112 stores the location of the communication terminal 203 acquired by the terminal location acquisition unit 102.
  • the angle profile storage unit 113 stores in advance angle profile information 204 obtained through pre-processing and measured in advance at a plurality of evaluation points.
  • the environmental information acquisition unit 101 of the prediction device 100 acquires dynamic environmental information using various three-dimensional sensors, for example, as shown in FIG. 2 (step S1).
  • This dynamic environment information includes, for example, information indicating the positions of the moving bodies 202a, 202b, and 202c within a predetermined area.
  • the terminal position acquisition unit 102 of the prediction device 100 acquires the position of the communication terminal 203 (step S2).
  • the terminal position prediction unit 103 of the prediction device 100 predicts the predicted position of the communication terminal 203 after a predetermined time (t seconds) has elapsed, and the environmental information prediction unit 104 predicts the predicted position of the communication terminal 203 after the elapse of a predetermined time (t seconds). predict environmental information (step S3).
  • the received power prediction unit 105 of the prediction device 100 stores the angle profile information 204 measured in advance at the predicted position of the communication terminal 203 after a predetermined time has elapsed or at evaluation points around the predicted position in the angle profile storage unit 113. Get from. Further, from the acquired angle profile information 204, after a predetermined time has elapsed, the received power prediction unit 105 deletes the angle profile in a direction of the mobile object 202c, and the reception power of the communication terminal 203 after a predetermined time has elapsed. Predict power.
  • the received power prediction system 1 can predict the received power of the communication terminal 203 in a dynamic environment where a mobile body exists, taking into account the interruption of radio waves by the mobile body.
  • the communication terminal 203 may have at least a part of each functional configuration that the prediction device 100 has.
  • FIG. 4 shows another example of the system configuration of the received power prediction system according to this embodiment.
  • the received power prediction system 1 includes a prediction device 100 and a communication terminal 203 that can communicate with the prediction device 100 via the communication network 2.
  • the communication terminal 203 not the prediction device 100, has the terminal position acquisition unit 102 and the terminal position prediction unit 103 described in FIG.
  • the communication terminal 203 is a wireless communication device having a computer configuration.
  • the communication terminal 203 realizes the functional configuration of the terminal position acquisition unit 102, the terminal position prediction unit 103, the communication unit 401, etc. by executing a predetermined program on a computer included in the communication terminal 203. Note that at least some of the above functional configurations may be realized by hardware.
  • the terminal position acquisition unit 102 acquires the current position of the communication terminal 203 on the communication terminal 203 side, for example, by positioning using a GPS (Global Positioning System) device and autonomous navigation using sensors such as an acceleration sensor and an angle sensor. .
  • GPS Global Positioning System
  • the terminal position prediction unit 103 executes, on the communication terminal 203 side, a process of predicting the predicted position of the communication terminal after a predetermined time (t seconds) has elapsed from the current time. For example, the terminal position prediction unit 103 predicts the position of the communication terminal 203 after a predetermined period of time, based on the history of the position of the communication terminal 203 acquired by the terminal position acquisition unit 102, for example, by linear prediction or the like. Good too.
  • the terminal position prediction unit 103 calculates a predetermined time (t seconds) based on the current position of the communication terminal 203 and the movement (moving direction, moving speed, etc.) of the communication terminal measured by a sensor such as an acceleration sensor or an angle sensor. The predicted position of the communication terminal 203 after elapsed may be calculated.
  • the communication unit 401 connects to the communication network 2 through predetermined wireless communication, such as 5G (5th Generation) or LTE (Long Term Evolution), and executes communication processing to communicate with the prediction device 100 and the like. For example, the communication unit 401 adds communication terminal information, the position of the communication terminal 203, the predicted position of the communication terminal 203, etc. to request information requesting the prediction device 100 to predict received power, and transmits the request information to the prediction device 100. do. Furthermore, the communication unit 401 receives the received power prediction result transmitted by the prediction device 100.
  • 5G Fifth Generation
  • LTE Long Term Evolution
  • the prediction device 100 includes the request information that the communication unit 106 receives from the communication terminal 203, including the position of the communication terminal 203, the predicted position of the communication terminal 203 after a predetermined period of time, etc. ing. Therefore, the prediction device 100 does not need to include the terminal position acquisition unit 102, the terminal position prediction unit 103, and the like.
  • each functional configuration included in the prediction device 100 described in FIG. 1 only needs to be included in the received power prediction system 1, and may be included in any device within the system.
  • FIG. 5 is a flowchart illustrating an example of received power prediction processing according to the present embodiment.
  • This process is an example of a received power prediction process in which the received power prediction system 1 having the functional configuration as shown in FIG. 1 or 4 predicts the received power of the communication terminal 203 after a predetermined time has elapsed. There is. It is assumed that at the start of the process shown in FIG. 5, the angle profile storage unit 113 stores angle profile information 204 that has been measured in advance at a plurality of evaluation points within a predetermined area.
  • the environmental information acquisition unit 101 acquires dynamic environmental information about objects in a predetermined area.
  • the environmental information acquisition unit 101 acquires dynamic environmental information using a LiDAR 211, a stereo camera 212, a depth camera 213, a camera 214, a wireless sensing device 215, or the like installed in a predetermined area.
  • This dynamic environment information includes information indicating the position of a mobile object within a predetermined area.
  • step S502 the terminal location acquisition unit 102 acquires the location of the communication terminal 203 in a predetermined area. Note that this process may be executed by the prediction device 100 or by the communication terminal 203.
  • step S503 the terminal position prediction unit 103 predicts the predicted position of the communication terminal 203 after t seconds (after a predetermined time has elapsed). Note that this process may be executed by the prediction device 100 or by the communication terminal 203.
  • step S504 the environmental information prediction unit 104 predicts dynamic environmental information after t seconds (after a predetermined time has elapsed).
  • the dynamic environment information predicted here includes information indicating the predicted position of the moving object in the predetermined area after t seconds.
  • step S505 the received power prediction unit 105 predicts, at the predicted position of the communication terminal 203 after t seconds, the angle profile information that will be interrupted by the predicted position of the mobile object after t seconds.
  • the received power prediction unit 105 acquires the angle profile information 204 measured in advance at the predicted position of the communication terminal 203 after t seconds or at an evaluation point around the predicted position. Further, the received power prediction unit 105 predicts, from the acquired angle profile information 204, angle profile information (for example, the arrival angle of the radio wave) that will be blocked by the predicted position of the moving object after t seconds.
  • angle profile information for example, the arrival angle of the radio wave
  • step S506 the received power prediction unit 105 subtracts the received power according to the angle profile information to be cut off from the acquired angle profile information, and predicts the communication terminal 203 after t seconds.
  • the received power prediction unit 105 subtracts the received power according to the angle profile information that will be interrupted by the moving object 202c after t seconds from the acquired angle profile information 204, and calculates the received power by t.
  • the received power of the communication terminal 203 after a second is calculated.
  • the received power prediction system 1 can predict the received power of the communication terminal 203 in a dynamic environment where a mobile body exists, taking into account the interruption of radio waves by the mobile body.
  • FIG. 6 is a flowchart illustrating an example of pre-processing according to this embodiment. This process is an example of a process in which an information processing apparatus having a computer configuration acquires angle profile information at a plurality of evaluation points within a predetermined area.
  • step S601 the information processing device acquires static environmental information of a predetermined area from the building DB (or map DB) 311, CAD data 312, BIM data 313, etc.
  • This static environment information includes, for example, information indicating the positions of objects that basically do not move, such as buildings, walls, floors, etc.
  • step S602 the information processing device sets the position of the wireless base station in the static environmental information of a predetermined area.
  • step S603 the information processing device sets a plurality of evaluation points in the static environmental information of a predetermined area.
  • step S604 the information processing device measures angle profile information at each evaluation point using a measuring device.
  • the information processing device can acquire angle profile information measured at a plurality of evaluation points to be stored in the angle profile storage unit 113.
  • FIG. 7 is a diagram showing an example of the hardware configuration of the prediction device according to the present embodiment.
  • the prediction device 100 includes, for example, the configuration of a computer 700 as shown in FIG.
  • the computer 700 includes a processor 701, a memory 702, a storage device 703, a communication device 704, an input device 705, an output device 706, a bus B, and the like.
  • the processor 701 is, for example, an arithmetic device such as a CPU (Central Processing Unit) that implements various functions by executing a predetermined program.
  • the memory 702 is a storage medium readable by the computer 700, and includes, for example, RAM (Random Access Memory), ROM (Read Only Memory), and the like.
  • the storage device 703 is a computer-readable storage medium, and may include, for example, an HDD (Hard Disk Drive), an SSD (Solid State Drive), various optical disks, magneto-optical disks, and the like.
  • the communication device 704 includes one or more hardware (communication devices) for communicating with other devices via a wireless or wired network.
  • the input device 705 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 706 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 705 and the output device 706 may have an integrated configuration (for example, an input/output device such as a touch panel display).
  • Bus B is commonly connected to each of the above components, and transmits, for example, address signals, data signals, and various control signals.
  • the processor 701 is not limited to a CPU, and may be, for example, a DSP (Digital Signal Processor), a PLD (Programmable Logic Device), or an FPGA (Field Programmable Gate Array).
  • FIG. 8 is a diagram showing an example of the hardware configuration of the communication terminal according to the present embodiment.
  • the communication terminal 203 includes, for example, a GPS device 801, a sensor 802, and the like.
  • the GPS device 801 is a positioning device that receives positioning signals transmitted by GPS satellites and outputs position information indicating the current position of the communication terminal 203.
  • the sensor 802 is, for example, a detection device such as an acceleration sensor or an angle sensor that detects the movement of the communication terminal 203.
  • the prediction device 100 in this embodiment is not limited to implementation by a dedicated device, but may be implemented by a general-purpose computer. In that case, a program for realizing this function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read into a computer system and executed.
  • the "computer system” herein includes hardware such as an OS and peripheral devices.
  • computer-readable recording medium includes various storage devices such as flexible disks, magneto-optical disks, ROMs, CD-ROMs, and other portable media, and hard disks built into computer systems.
  • a “computer-readable recording medium” refers to a storage medium that dynamically stores a program for a short period of time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It may also include a device that retains a program for a certain period of time, such as a volatile memory inside a computer system that is a server or client in that case.
  • the above-mentioned program may be one for realizing a part of the above-mentioned functions, and further may be one that can realize the above-mentioned functions in combination with a program already recorded in the computer system. It may be realized using hardware such as a PLD (Programmable Logic Device) or an FPGA (Field Programmable Gate Array).
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • ⁇ Effects of embodiment> it is possible to provide a received power prediction method that can predict the received power of a communication terminal in a dynamic environment where a mobile body exists, taking into account the interruption of radio waves by the mobile body.
  • the received power prediction system an acquisition process that acquires dynamic environmental information of objects in a predetermined area; a process of acquiring the position of a communication terminal in the predetermined area; A process of predicting a predicted position of the communication terminal after a predetermined time has elapsed; a process of predicting the dynamic environmental information after the predetermined time has elapsed; the predetermined time based on the received power angle profile information measured in advance at the predicted position of the communication terminal or an evaluation point around the predicted position and the dynamic environment information after the predetermined time elapses.
  • a prediction process that predicts the received power of the communication terminal after passing; A method for predicting received power.
  • (Section 2) The received power prediction method according to claim 1, wherein the dynamic environment information acquired in the acquisition process includes three-dimensional point group data, depth data, or position data of the object acquired by a three-dimensional sensor. (Section 3) 2. The received power prediction method according to claim 1, wherein the angle profile information includes information on received power for each angle of arrival of radio waves measured in advance at the evaluation point. (Section 4) 4. The received power prediction method according to claim 3, wherein the received power prediction system has the angle profile information measured in advance at a plurality of evaluation points within the predetermined area.
  • the dynamic environment information after the predetermined time period includes information indicating the position of the mobile object in the predetermined area after the predetermined time period has elapsed;
  • the prediction process subtracts the received power from the arrival angle of a radio wave that is blocked by a mobile object in the predetermined area after the predetermined time has elapsed from the angle profile information of the received power measured in advance at the evaluation point.
  • the received power prediction method according to claim 3, wherein the received power of the communication terminal after the predetermined time has elapsed is predicted.
  • (Section 6) an environmental information acquisition unit configured to acquire dynamic environmental information of objects in a predetermined area; a terminal location acquisition unit configured to acquire the location of a communication terminal in the predetermined area; a terminal position prediction unit configured to predict a predicted position of the communication terminal after a predetermined time has elapsed; an environmental information prediction unit configured to predict the dynamic environmental information after the predetermined time has elapsed; the predetermined time based on the received power angle profile information measured in advance at the predicted position of the communication terminal or an evaluation point around the predicted position and the dynamic environment information after the predetermined time elapses. a received power prediction unit configured to predict received power of the communication terminal after elapse of; A received power prediction system.

Abstract

In this method for predicting received power, a system for predicting received power executes: acquisition processing for acquiring dynamic environment information of an object that is in a predetermined area; processing for acquiring the position of a communication terminal that is in the predetermined area; processing for predicting a predicted position of the communication terminal after a predetermined amount of time has elapsed; processing for predicting the dynamic environment information after the predetermined amount of time has elapsed; and prediction processing for predicting the received power of the communication terminal after the predetermined amount of time has elapsed, on the basis of received-power angle profile information measured in advance at an evaluation point at the predicted position of the communication terminal or in the vicinity of the predicted position, and on the basis of the dynamic environment information after the predetermined amount of has time elapsed.

Description

受信電力予測方法、及び受信電力予測システムReception power prediction method and reception power prediction system
 本発明は、受信電力予測方法、及び受信電力予測システムに関する。 The present invention relates to a received power prediction method and a received power prediction system.
 無線通信システムにおける無線通信品質を予測する技術が知られている。例えば、遮断物として建物、樹木等、秒単位では位置、大きさが変動しない物体の静的な環境を想定して、過去のその位置における受信電力の実測値をベースにして、通信端末の受信電力を予測する技術が知られている。 Techniques for predicting wireless communication quality in wireless communication systems are known. For example, assuming a static environment where the blocker is a building, tree, or other object whose position and size do not change on a second-by-second basis, the reception power of the communication terminal is Techniques for predicting power are known.
 しかし、従来の技術では、例えば、人、車両、ロボット等の移動体が存在する動的な環境において、移動体による電波の遮断を考慮して、通信端末の受信電力を予測することは困難である。 However, with conventional technology, it is difficult to predict the received power of a communication terminal in a dynamic environment where there are moving objects such as people, vehicles, and robots, taking into account the interruption of radio waves by the moving objects. be.
 本発明の実施形態は、上記の問題点に鑑みてなされたものであって、移動体が存在する動的な環境において、移動体による電波の遮断を考慮して、通信端末の受信電力を予測できる受信電力予測方法を提供する。 Embodiments of the present invention have been made in view of the above-mentioned problems, and in a dynamic environment where a mobile object exists, the received power of a communication terminal is predicted by taking into account the interruption of radio waves by the mobile object. The present invention provides a method for predicting received power.
 上記の課題を解決するため、本発明の実施形態に係る受信電力予測方法は、受信電力予測システムが、所定のエリアにある物体の動的な環境情報を取得する取得処理と、前記所定のエリアにある通信端末の位置を取得する処理と、所定の時間を経過後の前記通信端末の予測位置を予測する処理と、前記所定の時間を経過後の前記動的な環境情報を予測する処理と、前記通信端末の予測位置又は前記予測位置の周辺の評価地点で予め測定した受信電力の角度プロファイル情報と、前記所定の時間を経過後の前記動的な環境情報とに基づいて、前記所定の時間を経過後の前記通信端末の受信電力を予測する予測処理と、を実行する。 In order to solve the above problems, a received power prediction method according to an embodiment of the present invention includes an acquisition process in which a received power prediction system acquires dynamic environmental information of an object in a predetermined area, and a process of acquiring the position of the communication terminal located in the area, a process of predicting the predicted position of the communication terminal after a predetermined time has elapsed, and a process of predicting the dynamic environmental information after the elapse of the predetermined time. , based on the received power angle profile information measured in advance at the predicted position of the communication terminal or evaluation points around the predicted position, and the dynamic environment information after the elapse of the predetermined time, the predetermined A prediction process of predicting the reception power of the communication terminal after a lapse of time is executed.
 本発明の実施形態によれば、移動体が存在する動的な環境において、移動体による電波の遮断を考慮して、通信端末の受信電力を予測できる受信電力予測方法を提供することができる。 According to the embodiments of the present invention, it is possible to provide a received power prediction method that can predict the received power of a communication terminal in a dynamic environment where a mobile body exists, taking into account the interruption of radio waves by the mobile body.
本実施形態に係る受信電力予測システムのシステム構成の一例を示す図である。FIG. 1 is a diagram illustrating an example of a system configuration of a received power prediction system according to the present embodiment. 本実施形態に係る受信電力の予測処理について説明するための図である。FIG. 3 is a diagram for explaining reception power prediction processing according to the present embodiment. 本実施形態に係る事前処理について説明するための図である。FIG. 3 is a diagram for explaining pre-processing according to the present embodiment. 本実施形態に係る受信電力予測システムのシステム構成の別の一例を示す図である。FIG. 3 is a diagram illustrating another example of the system configuration of the received power prediction system according to the present embodiment. 本実施形態に係る受信電力の予測処理の例を示すフローチャートである。7 is a flowchart illustrating an example of received power prediction processing according to the present embodiment. 本実施形態に係る事前処理の例を示すフローチャートである。It is a flow chart which shows an example of pre-processing concerning this embodiment. 本実施形態に係る予測装置のハードウェア構成の例を示す図である。FIG. 2 is a diagram showing an example of a hardware configuration of a prediction device according to the present embodiment. 本実施形態に係る通信端末のハードウェア構成の例を示す図である。FIG. 2 is a diagram illustrating an example of the hardware configuration of a communication terminal according to the present embodiment. 本実施形態の課題について説明するための図(1)である。FIG. 1 is a diagram (1) for explaining a problem of the present embodiment. 本実施形態の課題について説明するための図(2)である。FIG. 2 is a diagram (2) for explaining the problem of this embodiment.
 以下、図面を参照して本発明の実施の形態(本実施形態)を説明する。以下で説明する実施形態は一例に過ぎず、本発明が適用される実施形態は、以下の実施形態に限られない。 Hereinafter, an embodiment of the present invention (this embodiment) will be described with reference to the drawings. The embodiments described below are merely examples, and the embodiments to which the present invention is applied are not limited to the following embodiments.
 <システム構成>
 本実施形態に係る受信電力予測システム1は、無線通信ネットワークにおいて、通信端末が無線基地局から受信する受信電力を予測するシステムである。
<System configuration>
A received power prediction system 1 according to the present embodiment is a system that predicts received power received by a communication terminal from a wireless base station in a wireless communication network.
 非特許文献1に示すような従来の品質予測システムは、事前に取得した評価地点の通信品質の実測値、現在の通信端末の位置、及び通信端末の移動情報等から無線通信品質を予測している。この従来の技術により、例えば、図9に示すように、建物903等の静止物のみがある静的な環境900において、事前に取得した受信電力の実測値に基づいて、無線基地局901から通信端末902が受信する受信電力を予測することができる。 Conventional quality prediction systems such as those shown in Non-Patent Document 1 predict wireless communication quality from actual measured values of communication quality at evaluation points obtained in advance, the current position of the communication terminal, movement information of the communication terminal, etc. There is. With this conventional technology, for example, as shown in FIG. 9, in a static environment 900 where there are only stationary objects such as a building 903, communication is made from a wireless base station 901 based on an actual measured value of received power obtained in advance. The received power received by terminal 902 can be predicted.
 しかし、この方法では、例えば、図10に示すように、車両1001、人1022、ロボット1003等の移動体がある動的な環境1000では、移動体により電波が遮られるため、無線基地局901から通信端末902が受信する受信電力を予測することは困難である。 However, with this method, for example, as shown in FIG. 10, in a dynamic environment 1000 where there are moving objects such as a vehicle 1001, a person 1022, and a robot 1003, radio waves are blocked by the moving objects, so It is difficult to predict the received power received by communication terminal 902.
 そこで、本実施形態に係る受信電力予測システム1は、移動体が存在する動的な環境1000において、移動体による電波の遮断を考慮して、通信端末902が受信する受信電力を予測できるように、例えば、図1、又は図4に示すシステム構成を有している。 Therefore, the received power prediction system 1 according to the present embodiment is configured to be able to predict the received power received by the communication terminal 902 in a dynamic environment 1000 where a mobile body exists, taking into account the interruption of radio waves by the mobile body. , for example, has the system configuration shown in FIG. 1 or FIG. 4.
 (システム構成1)
 図1は、本実施形態に係る受信電力予測システムのシステム構成の一例を示す図である。図1の例では、受信電力予測システム1は、予測装置100によって実現される。
(System configuration 1)
FIG. 1 is a diagram showing an example of a system configuration of a received power prediction system according to this embodiment. In the example of FIG. 1, the received power prediction system 1 is realized by a prediction device 100.
 予測装置100は、コンピュータの構成を有する情報処理装置、又は複数のコンピュータを含むシステムである。予測装置100は、予測装置100が備えるコンピュータで所定のプログラムを実行することにより、環境情報取得部101、端末位置取得部102、端末位置予測部103、環境情報予測部104、受信電力予測部105、及び通信部106等の機能構成を実現している。なお、上記の各機能構成のうち、少なくとも一部は、ハードウェアによって実現されるものであってもよい。 The prediction device 100 is an information processing device having a computer configuration or a system including multiple computers. The prediction device 100 executes a predetermined program on a computer included in the prediction device 100 to obtain an environment information acquisition unit 101, a terminal position acquisition unit 102, a terminal position prediction unit 103, an environment information prediction unit 104, and a received power prediction unit 105. , the communication unit 106, and other functional configurations. Note that at least some of the above functional configurations may be realized by hardware.
 また、予測装置100は、予測装置100が備えるストレージデバイス、及びメモリ等により、環境情報記憶部111、端末位置記憶部112、及び角度プロファイル記憶部113等を実現している。 Furthermore, the prediction device 100 realizes an environment information storage unit 111, a terminal position storage unit 112, an angle profile storage unit 113, etc. using a storage device, a memory, etc. included in the prediction device 100.
 環境情報取得部101は、所定のエリアにある物体の動的な環境情報を取得する取得処理を実行する。例えば、環境情報取得部101は、図2に示すように、LiDAR211、ステレオカメラ212、深度カメラ213、カメラ214、又は無線センシングデバイス215等の3次元センサを用いて、所定のエリアの一例である建物201内の動的な環境情報を取得する。この動的な環境情報には、例えば、建物201内にある移動体202a、202b、202cの位置を示す情報が含まれる。 The environmental information acquisition unit 101 executes an acquisition process to acquire dynamic environmental information about objects in a predetermined area. For example, as shown in FIG. 2, the environmental information acquisition unit 101 uses a three-dimensional sensor such as a LiDAR 211, a stereo camera 212, a depth camera 213, a camera 214, or a wireless sensing device 215 to obtain information in a predetermined area. Dynamic environmental information within the building 201 is acquired. This dynamic environment information includes, for example, information indicating the positions of the moving objects 202a, 202b, and 202c within the building 201.
 LiDAR(Light Detection And Ranging、又はLaser Imaging Detection And Ranging)211は、対象物にレーザー光等の光を照射し、その反射光を光センサ等で検知することにより、対象物までの距離を測定するデバイスである。環境情報取得部101は、LiDAR211を使って、例えば、建物201内等の所定のエリアをセンシングして3次元の点群データを取得し、取得した3次元の点群データを動的な環境情報としてもよい。 LiDAR (Light Detection And Ranging, or Laser Imaging Detection And Ranging) 211 measures the distance to an object by irradiating the object with light such as a laser beam and detecting the reflected light with an optical sensor. It is a device. The environmental information acquisition unit 101 uses the LiDAR 211 to acquire three-dimensional point cloud data by sensing a predetermined area, such as inside the building 201, and converts the acquired three-dimensional point cloud data into dynamic environmental information. You can also use it as
 ステレオカメラ212は、対象物を2つの異なる方向から同時に撮影することにより、対象物の画像と共に、対象物までの距離を測定可能なカメラである。環境情報取得部101は、ステレオカメラ212を使って、例えば、建物201内等の所定のエリアをセンシングして3次元の点群データを取得し、取得した3次元の点群データを動的な環境情報としてもよい。 The stereo camera 212 is a camera that can measure images of the object and the distance to the object by simultaneously photographing the object from two different directions. The environmental information acquisition unit 101 uses a stereo camera 212 to sense a predetermined area, such as inside a building 201, to acquire three-dimensional point cloud data, and dynamically converts the acquired three-dimensional point cloud data. It may also be used as environmental information.
 深度カメラ213は、対象物を撮影することにより、対象物までの距離を示す深度データを含む深度画像を撮影するカメラである。環境情報取得部101は、深度カメラ213を使って、例えば、建物201内等の所定のエリアを撮影して深度データを取得し、取得した深度データを動的な環境情報としてもよい。 The depth camera 213 is a camera that captures a depth image including depth data indicating the distance to the target object by photographing the target object. The environmental information acquisition unit 101 may use the depth camera 213 to acquire depth data by photographing a predetermined area, such as inside the building 201, and use the acquired depth data as dynamic environmental information.
 カメラ214は、例えば、深度データを含まない通常のカメラ画像を撮影する単眼のカメラである。深度データを含まない単眼のカメラ画像から、深度画像を推定する技術が深層学習で実現されている。環境情報取得部101は、カメラ214で撮影したカメラ画像から、深層学習で深度データを生成し、生成した深度データを動的な環境情報としてもよい。 The camera 214 is, for example, a monocular camera that takes a normal camera image that does not include depth data. Deep learning has been used to estimate depth images from monocular camera images that do not contain depth data. The environmental information acquisition unit 101 may generate depth data using deep learning from a camera image taken by the camera 214, and use the generated depth data as dynamic environmental information.
 無線センシングデバイス215は、無線通信、又は電波の反射を利用して、対象物の位置等を測定するデバイスである。例えば、無線LAN(Local Area Network)通信等の複数のサブキャリアを使って、各サブキャリアのCSI(Channel State Information)を取得し、取得したCSIを学習済の機械学習モデルに入力することにより、対象物の位置等を取得する技術が開発されている。また、無線センシングデバイス215は、対象物との距離、角度、又は速度等を測定可能なミリ波レーダー等であってもよい。環境情報取得部101は、無線センシングデバイス215を使って、例えば、建物201内等の所定のエリアをセンシングして、所定のエリアにある物体の位置データ等を取得し、取得した位置データ等を動的な環境情報としてもよい。 The wireless sensing device 215 is a device that measures the position of an object using wireless communication or reflection of radio waves. For example, by acquiring the CSI (Channel State Information) of each subcarrier using multiple subcarriers such as wireless LAN (Local Area Network) communication, and inputting the acquired CSI into a trained machine learning model, Techniques have been developed to acquire the position of objects. Further, the wireless sensing device 215 may be a millimeter wave radar or the like that can measure the distance, angle, speed, etc. to the target object. The environmental information acquisition unit 101 uses the wireless sensing device 215 to sense a predetermined area, such as inside the building 201, to obtain position data of objects in the predetermined area, and uses the obtained position data etc. It may also be dynamic environmental information.
 さらに、環境情報取得部101は、他の測位手法により、所定のエリアにある物体の動的な環境情報を取得してもよい。このように、環境情報取得部101が取得する動的な環境情報は、3次元センサで取得した、物体の3次元点群データ、深度データ、又は位置データ等を含み、所定のエリア内にある移動体の位置を特定可能なデータであればよい。また、動的な環境情報を取得する測位方法は、任意の測位方法であってよい。 Furthermore, the environmental information acquisition unit 101 may acquire dynamic environmental information about objects in a predetermined area using other positioning methods. In this way, the dynamic environmental information acquired by the environmental information acquisition unit 101 includes 3D point cloud data, depth data, position data, etc. of objects acquired by a 3D sensor, and includes objects within a predetermined area. Any data that can identify the position of the moving object may be used. Moreover, the positioning method for acquiring dynamic environmental information may be any positioning method.
 端末位置取得部102は、所定のエリアにある通信端末の位置を取得する処理を実行する。例えば、通信端末は、自端末の位置を示す位置情報(座標情報)を付加して、予測装置100に対して受信電力の予測値の取得を要求する要求情報を送信する。端末位置取得部102は、例えば、通信部106が通信端末から受信した要求情報から、通信端末の位置を取得してもよい。ただし、これに限られず、端末位置取得部102は、環境情報取得部101と同様に、各種の3次元センサを用いて、通信端末の位置を取得してもよい。 The terminal location acquisition unit 102 executes processing to acquire the location of a communication terminal in a predetermined area. For example, the communication terminal adds position information (coordinate information) indicating the location of the communication terminal and transmits request information requesting the prediction device 100 to obtain a predicted value of received power. The terminal position acquisition unit 102 may acquire the position of the communication terminal from, for example, request information that the communication unit 106 receives from the communication terminal. However, the present invention is not limited to this, and similarly to the environmental information acquisition section 101, the terminal position acquisition section 102 may acquire the position of the communication terminal using various three-dimensional sensors.
 端末位置予測部103は、現時点から所定の時間(t秒)を経過後の通信端末の予測位置を予測する処理を実行する。例えば、端末位置取得部102は、取得した通信端末の位置を、端末位置記憶部112に記憶しておく。また、端末位置予測部103は、端末位置記憶部112に記憶した通信端末の位置の履歴に基づいて、例えば、線形予測等により、所定の時間を経過後の通信端末の位置を予測する。 The terminal position prediction unit 103 executes a process of predicting the predicted position of the communication terminal after a predetermined time (t seconds) has elapsed from the current time. For example, the terminal location acquisition unit 102 stores the acquired location of the communication terminal in the terminal location storage unit 112. Furthermore, the terminal position prediction unit 103 predicts the position of the communication terminal after a predetermined time has elapsed, based on the history of the position of the communication terminal stored in the terminal position storage unit 112, for example, by linear prediction.
 別の一例として、端末位置予測部103は、通信端末が有していてもよい。この場合、通信端末の端末位置予測部103は、通信端末の現在位置と、加速度センサ、角度センサ等のセンサで測定した通信端末の動き(移動方向、移動速度等)とから、所定の時間(t秒)を経過後の通信端末の予測位置を算出する。また、通信端末は、通信端末の位置と、所定の時間を経過後の通信端末の予測位置とを付加して、受信電力の予測値の取得を要求する要求情報を予測装置100に送信する。 As another example, the terminal position prediction unit 103 may be included in the communication terminal. In this case, the terminal position prediction unit 103 of the communication terminal calculates a predetermined time period ( The predicted position of the communication terminal after t seconds has elapsed is calculated. Further, the communication terminal adds the position of the communication terminal and the predicted position of the communication terminal after a predetermined time has elapsed, and transmits request information to the prediction device 100 requesting acquisition of the predicted value of received power.
 環境情報予測部104は、現時点から所定の時間(t秒)を経過後の動的な環境情報を予測する処理を実行する。例えば、環境情報取得部101は、取得した動的な環境情報を環境情報記憶部111に記憶しておく。また、環境情報予測部104は、環境情報記憶部111に記憶した動的な環境情報の履歴に基づいて、例えば、線形予測等により、所定の時間を経過後の動的な環境情報を予測する。 The environmental information prediction unit 104 executes a process of predicting dynamic environmental information after a predetermined time (t seconds) has elapsed from the current time. For example, the environment information acquisition unit 101 stores the acquired dynamic environment information in the environment information storage unit 111. Furthermore, the environmental information prediction unit 104 predicts dynamic environmental information after a predetermined time has elapsed, based on the history of dynamic environmental information stored in the environmental information storage unit 111, for example, by linear prediction or the like. .
 例えば、環境情報予測部104は、動的な環境情報から、図2に示すような移動体202a、202b、202cの位置を取得し、取得した移動体202a、202b、202cの位置の履歴を環境情報記憶部111等に記憶しておく。また、環境情報予測部104は、環境情報記憶部111等に記憶した移動体の位置の履歴から、移動体の動き(移動方向、移動速度等)を算出し、移動体の現在位置と移動体の動きとから、所定の時間を経過後の移動体の位置を予測してもよい。或いは、環境情報予測部104は、移動体の移動履歴から、所定の時間を経過後の移動体の位置を予測するように予め機械学習した予測モデルに、移動体の移動履歴を入力することにより、所定の時間を経過後の移動体の位置を予測してもよい。 For example, the environmental information prediction unit 104 acquires the positions of the moving objects 202a, 202b, and 202c as shown in FIG. The information is stored in the information storage unit 111 or the like. Further, the environmental information prediction unit 104 calculates the movement of the moving body (moving direction, moving speed, etc.) from the history of the position of the moving body stored in the environmental information storage unit 111 etc., and calculates the current position of the moving body and the moving body. The position of the moving object after a predetermined period of time may be predicted based on the movement of the moving object. Alternatively, the environmental information prediction unit 104 inputs the movement history of the moving object into a prediction model that has been machine-learned in advance to predict the position of the moving object after a predetermined period of time, based on the movement history of the moving object. , the position of the moving body after a predetermined time has elapsed may be predicted.
 受信電力予測部105は、通信端末の予測位置、又は予測位置の周辺の評価地点で予め測定した受信電力の角度プロファイル情報と、所定の時間を経過後の移動体(物体)の位置とに基づいて、所定の時間を経過後の通信端末の受信電力を予測する。 The received power prediction unit 105 is based on the angle profile information of the received power measured in advance at the predicted position of the communication terminal or evaluation points around the predicted position, and the position of the moving body (object) after a predetermined time has elapsed. Then, the reception power of the communication terminal after a predetermined time has elapsed is predicted.
 例えば、図2に示すように、角度プロファイル情報204は、通信端末203の電波の到来角度ごとの受信電力を示している。また、所定の時間を経過後の動的な環境情報は、所定の時間を経過後に所定のエリアにある移動体の位置を示す情報を含む。好ましくは、所定の時間を経過後の動的な環境情報は、所定の時間を経過後に所定のエリアにある移動体の位置と形状を表す情報を含む。受信電力予測部105は、通信端末203の予測位置の周辺の評価地点で予め測定した受信電力の角度プロファイル情報204から、所定の時間を経過後に移動体202のcがある方向の角度プロファイルを削除することにより、所定の時間を経過後の通信端末203の受信電力を予測する。 For example, as shown in FIG. 2, the angle profile information 204 indicates the received power for each arrival angle of the radio waves of the communication terminal 203. The dynamic environment information after a predetermined time period includes information indicating the position of a mobile object in a predetermined area after a predetermined time period has elapsed. Preferably, the dynamic environment information after a predetermined time period includes information representing the position and shape of a moving object in a predetermined area after a predetermined time period has elapsed. The received power prediction unit 105 deletes the angle profile in the direction c of the mobile object 202 after a predetermined time has elapsed from the received power angle profile information 204 measured in advance at evaluation points around the predicted position of the communication terminal 203. By doing so, the received power of communication terminal 203 after a predetermined time has elapsed is predicted.
 なお、予測装置100は、例えば、図3に示すような事前処理で予め取得した、複数の評価地点における角度プロファイル情報204を、角度プロファイル記憶部113に予め記憶しておく。 Note that the prediction device 100 stores in the angle profile storage unit 113 in advance the angle profile information 204 at a plurality of evaluation points, which has been obtained in advance through pre-processing as shown in FIG. 3, for example.
 図3は、本実施形態に係る事前処理について説明するための図である。この事前処理は、例えば、コンピュータの構成を有する情報処理装置が、電波の到来角度ごとの受信電力を測定する測定装置を用いて実行する。なお、事前処理に用いる情報処理装置は、予測装置100と同じ情報処理装置であってもよいし、予測装置100とは異なる情報処理装置であってもよい。 FIG. 3 is a diagram for explaining the pre-processing according to this embodiment. This pre-processing is executed by, for example, an information processing device having a computer configuration using a measuring device that measures received power for each arrival angle of radio waves. Note that the information processing device used for the pre-processing may be the same information processing device as the prediction device 100, or may be a different information processing device from the prediction device 100.
 情報処理装置は、建物201の構造を表す建物DB(Database)(又は地図DB)311、CAD(Computer Aided Design)データ312、又はBIM(Building Information Modeling)データ313等から、静的な環境情報を取得する(ステップS11)。 The information processing device obtains static environmental information from a building DB (Database) (or map DB) 311 representing the structure of the building 201, CAD (Computer Aided Design) data 312, BIM (Building Information Modeling) data 313, etc. Acquire (step S11).
 また、情報処理装置は、所定のエリアの一例である建物201内に、複数の評価地点301を設定し、測定装置を用いて、設定された各評価地点301で角度プロファイル情報204を測定する(ステップS12)。なお、角度プロファイル情報204の測定は、測定装置を用いて、管理者、又は作業者等が実行してもよい。 Further, the information processing device sets a plurality of evaluation points 301 in the building 201, which is an example of a predetermined area, and measures the angle profile information 204 at each of the set evaluation points 301 using the measurement device ( Step S12). Note that the measurement of the angle profile information 204 may be performed by an administrator, a worker, or the like using a measuring device.
 これにより、例えば、建物201内の複数の評価地点301で予め測定した角度プロファイル情報204が得られる。予測装置100は、この事前処理で得られた角度プロファイル情報204を、角度プロファイル記憶部113に予め記憶しておく。 As a result, for example, angle profile information 204 measured in advance at a plurality of evaluation points 301 within the building 201 can be obtained. The prediction device 100 stores the angle profile information 204 obtained through this pre-processing in the angle profile storage unit 113 in advance.
 ここで、図1に戻り、予測装置100の機能構成の説明を続ける。通信部106は、通信ネットワークを介して、通信端末203等と通信する通信処理を実行する。 Here, returning to FIG. 1, the description of the functional configuration of the prediction device 100 will be continued. The communication unit 106 executes communication processing to communicate with the communication terminal 203 and the like via the communication network.
 環境情報記憶部111は、環境情報取得部101が取得した動的な環境情報等を記憶する。端末位置記憶部112は、端末位置取得部102が取得した通信端末203の位置を記憶する。角度プロファイル記憶部113は、事前処理で取得した、複数の評価地点で予め測定した角度プロファイル情報204を、予め記憶している。 The environmental information storage unit 111 stores dynamic environmental information etc. acquired by the environmental information acquisition unit 101. The terminal location storage unit 112 stores the location of the communication terminal 203 acquired by the terminal location acquisition unit 102. The angle profile storage unit 113 stores in advance angle profile information 204 obtained through pre-processing and measured in advance at a plurality of evaluation points.
 上記の各機能構成により、予測装置100の環境情報取得部101は、例えば、図2に示すように、各種の3次元センサを用いて動的な環境情報を取得する(ステップS1)。この動的な環境情報には、例えば、所定のエリア内の移動体202a、202b、202cの位置を示す情報が含まれる。また、予測装置100の端末位置取得部102は、通信端末203の位置を取得する(ステップS2)。 With each of the above functional configurations, the environmental information acquisition unit 101 of the prediction device 100 acquires dynamic environmental information using various three-dimensional sensors, for example, as shown in FIG. 2 (step S1). This dynamic environment information includes, for example, information indicating the positions of the moving bodies 202a, 202b, and 202c within a predetermined area. Furthermore, the terminal position acquisition unit 102 of the prediction device 100 acquires the position of the communication terminal 203 (step S2).
 続いて、予測装置100の端末位置予測部103は、所定の時間(t秒)を経過後の通信端末203の予測位置を予測し、環境情報予測部104は、所定の時間を経過後の動的な環境情報を予測する(ステップS3)。 Subsequently, the terminal position prediction unit 103 of the prediction device 100 predicts the predicted position of the communication terminal 203 after a predetermined time (t seconds) has elapsed, and the environmental information prediction unit 104 predicts the predicted position of the communication terminal 203 after the elapse of a predetermined time (t seconds). predict environmental information (step S3).
 また、予測装置100の受信電力予測部105は、所定の時間を経過後の通信端末203の予測位置、又は予測位置の周辺の評価地点で予め測定した角度プロファイル情報204を、角度プロファイル記憶部113から取得する。さらに、受信電力予測部105は、取得した角度プロファイル情報204から、所定の時間を経過後に、移動体202cがある方向の角度プロファイルを削除して、所定の時間を経過後の通信端末203の受信電力を予測する。 Further, the received power prediction unit 105 of the prediction device 100 stores the angle profile information 204 measured in advance at the predicted position of the communication terminal 203 after a predetermined time has elapsed or at evaluation points around the predicted position in the angle profile storage unit 113. Get from. Further, from the acquired angle profile information 204, after a predetermined time has elapsed, the received power prediction unit 105 deletes the angle profile in a direction of the mobile object 202c, and the reception power of the communication terminal 203 after a predetermined time has elapsed. Predict power.
 上記の処理により、受信電力予測システム1は、移動体が存在する動的な環境において、移動体による電波の遮断を考慮して、通信端末203の受信電力を予測することができる。 Through the above processing, the received power prediction system 1 can predict the received power of the communication terminal 203 in a dynamic environment where a mobile body exists, taking into account the interruption of radio waves by the mobile body.
 なお、図1に示した受信電力予測システム1のシステム構成は一例である。予測装置100が有する各機能構成のうち、少なくとも一部は、通信端末203が有していてもよい。 Note that the system configuration of the received power prediction system 1 shown in FIG. 1 is an example. The communication terminal 203 may have at least a part of each functional configuration that the prediction device 100 has.
 (システム構成2)
 図4は、本実施形態に係る受信電力予測システムのシステム構成の別の一例を示している。図4の例では、受信電力予測システム1は、予測装置100と、予測装置100と通信ネットワーク2を介して通信可能な通信端末203とを含む。
(System configuration 2)
FIG. 4 shows another example of the system configuration of the received power prediction system according to this embodiment. In the example of FIG. 4, the received power prediction system 1 includes a prediction device 100 and a communication terminal 203 that can communicate with the prediction device 100 via the communication network 2.
 図4に示す受信電力予測システム1では、図1で説明した端末位置取得部102と端末位置予測部103とを、予測装置100ではなく、通信端末203が有している。 In the received power prediction system 1 shown in FIG. 4, the communication terminal 203, not the prediction device 100, has the terminal position acquisition unit 102 and the terminal position prediction unit 103 described in FIG.
 通信端末203は、コンピュータの構成を有する無線通信装置である。通信端末203は、通信端末203が備えるコンピュータで所定のプログラムを実行することにより、端末位置取得部102、端末位置予測部103、及び通信部401等の機能構成を実現している。なお、上記の各機能構成のうち、少なくとも一部は、ハードウェアによって実現されるものであってもよい。 The communication terminal 203 is a wireless communication device having a computer configuration. The communication terminal 203 realizes the functional configuration of the terminal position acquisition unit 102, the terminal position prediction unit 103, the communication unit 401, etc. by executing a predetermined program on a computer included in the communication terminal 203. Note that at least some of the above functional configurations may be realized by hardware.
 端末位置取得部102は、例えば、GPS(Global Positioning System)デバイスによる測位、及び加速度センサ、角度センサ等のセンサによる自律航法等により、通信端末203の現在の位置を、通信端末203側で取得する。 The terminal position acquisition unit 102 acquires the current position of the communication terminal 203 on the communication terminal 203 side, for example, by positioning using a GPS (Global Positioning System) device and autonomous navigation using sensors such as an acceleration sensor and an angle sensor. .
 端末位置予測部103は、現時点から所定の時間(t秒)を経過後の通信端末の予測位置を予測する処理を、通信端末203側で実行する。例えば、端末位置予測部103は、端末位置取得部102が取得した通信端末203の位置の履歴に基づいて、例えば、線形予測等により、所定の時間を経過後に通信端末203の位置を予測してもよい。 The terminal position prediction unit 103 executes, on the communication terminal 203 side, a process of predicting the predicted position of the communication terminal after a predetermined time (t seconds) has elapsed from the current time. For example, the terminal position prediction unit 103 predicts the position of the communication terminal 203 after a predetermined period of time, based on the history of the position of the communication terminal 203 acquired by the terminal position acquisition unit 102, for example, by linear prediction or the like. Good too.
 或いは、端末位置予測部103は、通信端末203の現在位置と、加速度センサ、角度センサ等のセンサで測定した通信端末の動き(移動方向、移動速度等)とから、所定の時間(t秒)を経過後の通信端末203の予測位置を算出してもよい。 Alternatively, the terminal position prediction unit 103 calculates a predetermined time (t seconds) based on the current position of the communication terminal 203 and the movement (moving direction, moving speed, etc.) of the communication terminal measured by a sensor such as an acceleration sensor or an angle sensor. The predicted position of the communication terminal 203 after elapsed may be calculated.
 通信部401は、例えば、5G(5th. Generation)、LTE(Long Term Evolution)等の所定の無線通信で通信ネットワーク2に接続し、予測装置100等と通信する通信処理を実行する。例えば、通信部401は、予測装置100に受信電力の予測を要求する要求情報に、通信端末の情報、通信端末203の位置、通信端末203の予測位置等を付加して、予測装置100に送信する。また、通信部401は、予測装置100が送信する受信電力の予測結果を受信する。 The communication unit 401 connects to the communication network 2 through predetermined wireless communication, such as 5G (5th Generation) or LTE (Long Term Evolution), and executes communication processing to communicate with the prediction device 100 and the like. For example, the communication unit 401 adds communication terminal information, the position of the communication terminal 203, the predicted position of the communication terminal 203, etc. to request information requesting the prediction device 100 to predict received power, and transmits the request information to the prediction device 100. do. Furthermore, the communication unit 401 receives the received power prediction result transmitted by the prediction device 100.
 図4のシステム構成では、予測装置100は、通信部106が通信端末203から受信した要求情報に、通信端末203の位置、及び所定の時間を経過後の通信端末203の予測位置等が含まれている。従って、予測装置100は、端末位置取得部102、及び端末位置予測部103等を有していなくてもよい。 In the system configuration of FIG. 4, the prediction device 100 includes the request information that the communication unit 106 receives from the communication terminal 203, including the position of the communication terminal 203, the predicted position of the communication terminal 203 after a predetermined period of time, etc. ing. Therefore, the prediction device 100 does not need to include the terminal position acquisition unit 102, the terminal position prediction unit 103, and the like.
 このように、図1で説明した予測装置100が備える各機能構成は、受信電力予測システム1が有していればよく、システム内のいずれの装置が有していてもよい。 In this way, each functional configuration included in the prediction device 100 described in FIG. 1 only needs to be included in the received power prediction system 1, and may be included in any device within the system.
 <処理の流れ>
 続いて、本実施形態に係る受信電力の予測方法の処理の流れについて説明する。
<Processing flow>
Next, the processing flow of the reception power prediction method according to this embodiment will be described.
 (受信電力の予測処理)
 図5は、本実施形態に係る受信電力の予測処理の例を示すフローチャートである。この処理は、図1、又は図4に示すような機能構成を有する受信電力予測システム1が、通信端末203の所定の時間を経過後の受信電力を予測する受信電力予測処理の例を示している。なお、図5に示す処理の開始時点において、角度プロファイル記憶部113には、所定のエリア内の複数の評価地点で予め測定した角度プロファイル情報204が記憶されているものとする。
(Received power prediction processing)
FIG. 5 is a flowchart illustrating an example of received power prediction processing according to the present embodiment. This process is an example of a received power prediction process in which the received power prediction system 1 having the functional configuration as shown in FIG. 1 or 4 predicts the received power of the communication terminal 203 after a predetermined time has elapsed. There is. It is assumed that at the start of the process shown in FIG. 5, the angle profile storage unit 113 stores angle profile information 204 that has been measured in advance at a plurality of evaluation points within a predetermined area.
 ステップS501において、環境情報取得部101は、所定のエリアにある物体の動的な環境情報を取得する。例えば、環境情報取得部101は、所定のエリア内に設置したLiDAR211、ステレオカメラ212、深度カメラ213、カメラ214、又は無線センシングデバイス215等を用いて、動的な環境情報を取得する。この動的な環境情報には、所定のエリア内にある移動体の位置を示す情報が含まれる。 In step S501, the environmental information acquisition unit 101 acquires dynamic environmental information about objects in a predetermined area. For example, the environmental information acquisition unit 101 acquires dynamic environmental information using a LiDAR 211, a stereo camera 212, a depth camera 213, a camera 214, a wireless sensing device 215, or the like installed in a predetermined area. This dynamic environment information includes information indicating the position of a mobile object within a predetermined area.
 ステップS502において、端末位置取得部102は、所定のエリアにある通信端末203の位置を取得する。なお、この処理は、予測装置100が実行してもよいし、通信端末203が実行してもよい。 In step S502, the terminal location acquisition unit 102 acquires the location of the communication terminal 203 in a predetermined area. Note that this process may be executed by the prediction device 100 or by the communication terminal 203.
 ステップS503において、端末位置予測部103は、t秒後(所定の時間を経過後)の通信端末203の予測位置を予測する。なお、この処理は、予測装置100が実行してもよいし、通信端末203が実行してもよい。 In step S503, the terminal position prediction unit 103 predicts the predicted position of the communication terminal 203 after t seconds (after a predetermined time has elapsed). Note that this process may be executed by the prediction device 100 or by the communication terminal 203.
 ステップS504において、環境情報予測部104は、t秒後(所定の時間を経過後)の動的な環境情報を予測する。ここで予測した動的な環境情報には、所定のエリアにある移動体のt秒後の予測位置を示す情報が含まれる。 In step S504, the environmental information prediction unit 104 predicts dynamic environmental information after t seconds (after a predetermined time has elapsed). The dynamic environment information predicted here includes information indicating the predicted position of the moving object in the predetermined area after t seconds.
 ステップS505において、受信電力予測部105は、t秒後の通信端末203の予測位置において、t秒後の移動体の予測位置により遮断される角度プロファイル情報を予測する。 In step S505, the received power prediction unit 105 predicts, at the predicted position of the communication terminal 203 after t seconds, the angle profile information that will be interrupted by the predicted position of the mobile object after t seconds.
 例えば、受信電力予測部105は、t秒後の通信端末203の予測位置、又は当該予測位の周辺の評価地点で予め測定した角度プロファイル情報204を取得する。また、受信電力予測部105は、取得した角度プロファイル情報204から、t秒後の移動体の予測位置により遮断される角度プロファイル情報(例えば、電波の到来角度)を予測する。 For example, the received power prediction unit 105 acquires the angle profile information 204 measured in advance at the predicted position of the communication terminal 203 after t seconds or at an evaluation point around the predicted position. Further, the received power prediction unit 105 predicts, from the acquired angle profile information 204, angle profile information (for example, the arrival angle of the radio wave) that will be blocked by the predicted position of the moving object after t seconds.
 ステップS506において、受信電力予測部105は、取得した角度プロファイル情報から、遮断される角度プロファイル情報による受信電力を差し引いて、t秒後の通信端末203を予測する。 In step S506, the received power prediction unit 105 subtracts the received power according to the angle profile information to be cut off from the acquired angle profile information, and predicts the communication terminal 203 after t seconds.
 例えば、受信電力予測部105は、図2のステップS4に示すように、取得した角度プロファイル情報204から、t秒後の移動体202cによって遮断される角度プロファイル情報による受信電力を減算して、t秒後の通信端末203の受信電力を算出する。 For example, as shown in step S4 in FIG. 2, the received power prediction unit 105 subtracts the received power according to the angle profile information that will be interrupted by the moving object 202c after t seconds from the acquired angle profile information 204, and calculates the received power by t. The received power of the communication terminal 203 after a second is calculated.
 図5の処理により、受信電力予測システム1は、移動体が存在する動的な環境において、移動体による電波の遮断を考慮して、通信端末203の受信電力を予測することができる。 Through the process shown in FIG. 5, the received power prediction system 1 can predict the received power of the communication terminal 203 in a dynamic environment where a mobile body exists, taking into account the interruption of radio waves by the mobile body.
 (事前処理)
 図6は、本実施形態に係る事前処理の例を示すフローチャートである。この処理は、コンピュータの構成を有する情報処理装置が、所定のエリア内の複数の評価地点における角度プロファイル情報を取得する処理の例を示している。
(pre-processing)
FIG. 6 is a flowchart illustrating an example of pre-processing according to this embodiment. This process is an example of a process in which an information processing apparatus having a computer configuration acquires angle profile information at a plurality of evaluation points within a predetermined area.
 ステップS601において、情報処理装置は、建物DB(又は地図DB)311、CADデータ312、又はBIMデータ313等から、所定のエリアの静的な環境情報を取得する。この静的な環境情報には、例えば、建物、壁、床等、基本的に移動しない物体の位置を示す情報が含まれる。 In step S601, the information processing device acquires static environmental information of a predetermined area from the building DB (or map DB) 311, CAD data 312, BIM data 313, etc. This static environment information includes, for example, information indicating the positions of objects that basically do not move, such as buildings, walls, floors, etc.
 ステップS602において、情報処理装置は、所定のエリアの静的な環境情報に、無線基地局の位置を設定する。 In step S602, the information processing device sets the position of the wireless base station in the static environmental information of a predetermined area.
 ステップS603において、情報処理装置は、所定のエリアの静的な環境情報に、複数の評価地点を面的に設定する。 In step S603, the information processing device sets a plurality of evaluation points in the static environmental information of a predetermined area.
 ステップS604において、情報処理装置は、測定装置で、各評価地点における角度プロファイル情報を測定する。 In step S604, the information processing device measures angle profile information at each evaluation point using a measuring device.
 図6の処理により、情報処理装置は、角度プロファイル記憶部113に記憶するための、複数の評価地点で測定した角度プロファイル情報を取得することができる。 Through the process in FIG. 6, the information processing device can acquire angle profile information measured at a plurality of evaluation points to be stored in the angle profile storage unit 113.
 <ハードウェア構成例>
 (予測装置のハードウェア構成)
 図7は、本実施形態に係る予測装置のハードウェア構成の例を示す図である。予測装置100は、例えば、図7に示すようなコンピュータ700の構成を備えている。図7の例では、コンピュータ700は、プロセッサ701、メモリ702、ストレージデバイス703、通信装置704、入力装置705、出力装置706、及びバスB等を有する。
<Hardware configuration example>
(Hardware configuration of prediction device)
FIG. 7 is a diagram showing an example of the hardware configuration of the prediction device according to the present embodiment. The prediction device 100 includes, for example, the configuration of a computer 700 as shown in FIG. In the example of FIG. 7, the computer 700 includes a processor 701, a memory 702, a storage device 703, a communication device 704, an input device 705, an output device 706, a bus B, and the like.
 プロセッサ701は、例えば、所定のプログラムを実行することにより、様々な機能を実現するCPU(Central Processing Unit)等の演算装置である。メモリ702は、コンピュータ700が読み取り可能な記憶媒体であり、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)等を含む。ストレージデバイス703は、コンピュータ読み取り可能な記憶媒体であり、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)、各種の光ディスク、及び光磁気ディスク等を含み得る。 The processor 701 is, for example, an arithmetic device such as a CPU (Central Processing Unit) that implements various functions by executing a predetermined program. The memory 702 is a storage medium readable by the computer 700, and includes, for example, RAM (Random Access Memory), ROM (Read Only Memory), and the like. The storage device 703 is a computer-readable storage medium, and may include, for example, an HDD (Hard Disk Drive), an SSD (Solid State Drive), various optical disks, magneto-optical disks, and the like.
 通信装置704は、無線、又は有線のネットワークを介して他の装置と通信を行うための1つ以上のハードウェア(通信デバイス)を含む。入力装置705は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置706は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカ、LEDランプ等)である。なお、入力装置705と出力装置706とは、一体となった構成(例えば、タッチパネルディスプレイ等の入出力装置)であってもよい。 The communication device 704 includes one or more hardware (communication devices) for communicating with other devices via a wireless or wired network. The input device 705 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside. The output device 706 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 705 and the output device 706 may have an integrated configuration (for example, an input/output device such as a touch panel display).
 バスBは、上記の各構成要素に共通に接続され、例えば、アドレス信号、データ信号、及び各種の制御信号等を伝送する。なお、プロセッサ701は、CPUに限られず、例えば、DSP(Digital Signal Processor)、PLD(Programmable Logic Device)、又はFPGA(Field Programmable Gate Array)等であってもよい。 Bus B is commonly connected to each of the above components, and transmits, for example, address signals, data signals, and various control signals. Note that the processor 701 is not limited to a CPU, and may be, for example, a DSP (Digital Signal Processor), a PLD (Programmable Logic Device), or an FPGA (Field Programmable Gate Array).
 (通信端末のハードウェア構成)
 図8は、本実施形態に係る通信端末のハードウェア構成の例を示す図である。通信端末203は、図7で説明したコンピュータ700のハードウェア構成に加えて、例えば、GPSデバイス801、及びセンサ802等を有する。
(Hardware configuration of communication terminal)
FIG. 8 is a diagram showing an example of the hardware configuration of the communication terminal according to the present embodiment. In addition to the hardware configuration of the computer 700 described in FIG. 7, the communication terminal 203 includes, for example, a GPS device 801, a sensor 802, and the like.
 GPSデバイス801は、GPS衛星が送信する測位信号を受信し、通信端末203の現在の位置を示す位置情報を出力する測位デバイスである。センサ802は、例えば、加速度センサ、角度センサ等の通信端末203の動きを検出する検出デバイスである。 The GPS device 801 is a positioning device that receives positioning signals transmitted by GPS satellites and outputs position information indicating the current position of the communication terminal 203. The sensor 802 is, for example, a detection device such as an acceleration sensor or an angle sensor that detects the movement of the communication terminal 203.
 (補足)
 本実施形態における予測装置100は専用装置による実現に限らず、汎用コンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
(supplement)
The prediction device 100 in this embodiment is not limited to implementation by a dedicated device, but may be implemented by a general-purpose computer. In that case, a program for realizing this function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read into a computer system and executed. Note that the "computer system" herein includes hardware such as an OS and peripheral devices.
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の様々な記憶装置を含む。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。 Furthermore, the term "computer-readable recording medium" includes various storage devices such as flexible disks, magneto-optical disks, ROMs, CD-ROMs, and other portable media, and hard disks built into computer systems. Furthermore, a "computer-readable recording medium" refers to a storage medium that dynamically stores a program for a short period of time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It may also include a device that retains a program for a certain period of time, such as a volatile memory inside a computer system that is a server or client in that case.
 また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良く、PLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されるものであってもよい。 Further, the above-mentioned program may be one for realizing a part of the above-mentioned functions, and further may be one that can realize the above-mentioned functions in combination with a program already recorded in the computer system. It may be realized using hardware such as a PLD (Programmable Logic Device) or an FPGA (Field Programmable Gate Array).
 <実施形態の効果>
 本実施形態によれば、移動体が存在する動的な環境において、移動体による電波の遮断を考慮して、通信端末の受信電力を予測できる受信電力予測方法を提供することができる。
<Effects of embodiment>
According to the present embodiment, it is possible to provide a received power prediction method that can predict the received power of a communication terminal in a dynamic environment where a mobile body exists, taking into account the interruption of radio waves by the mobile body.
 また、上記の効果により、無線通信システムにおいて、通信品質の劣化による通信端末の収容先(無線基地局)の切り替え、通信パラメータの制御、又は自動運転車における走行ルートの変更等、無線通信、又はアプリケーションの安定利用が可能になる。 In addition, due to the above-mentioned effects, in wireless communication systems, it is possible to switch the accommodation destination (wireless base station) of communication terminals due to deterioration of communication quality, control communication parameters, or change the driving route of self-driving cars, etc. Stable use of applications becomes possible.
 <実施形態のまとめ>
 本明細書には、少なくとも下記各項の無線通信方法、及び無線通信システムが開示されている。
(第1項)
 受信電力予測システムが、
 所定のエリアにある物体の動的な環境情報を取得する取得処理と、
 前記所定のエリアにある通信端末の位置を取得する処理と、
 所定の時間を経過後の前記通信端末の予測位置を予測する処理と、
 前記所定の時間を経過後の前記動的な環境情報を予測する処理と、
 前記通信端末の予測位置又は前記予測位置の周辺の評価地点で予め測定した受信電力の角度プロファイル情報と、前記所定の時間を経過後の前記動的な環境情報とに基づいて、前記所定の時間を経過後の前記通信端末の受信電力を予測する予測処理と、
 を実行する、受信電力予測方法。
(第2項)
 前記取得処理で取得する前記動的な環境情報は、3次元センサで取得した前記物体の3次元点群データ、深度データ、又は位置データを含む、第1項に記載の受信電力予測方法。
(第3項)
 前記角度プロファイル情報は、前記評価地点で予め測定した電波の到来角度ごとの受信電力の情報を含む、第1項に記載の受信電力予測方法。
(第4項)
 前記受信電力予測システムは、前記所定のエリア内の複数の評価地点で予め測定した前記角度プロファイル情報を有する、第3項に記載の受信電力予測方法。
(第5項)
 前記所定の時間を経過後の前記動的な環境情報は、前記所定の時間を経過後に前記所定のエリアにある移動体の位置を示す情報を含み、
 前記予測処理は、前記評価地点で予め測定した受信電力の角度プロファイル情報から、前記所定の時間を経過後に前記所定のエリアにある移動体によって遮断される電波の到来角度からの受信電力を差し引いて、前記所定の時間を経過後の前記通信端末の受信電力を予測する、第3項に記載の受信電力予測方法。
(第6項)
 所定のエリアにある物体の動的な環境情報を取得するように構成されている環境情報取得部と、
 前記所定のエリアにある通信端末の位置を取得するように構成されている端末位置取得部と、
 所定の時間を経過後の前記通信端末の予測位置を予測するように構成されている端末位置予測部と、
 前記所定の時間を経過後の前記動的な環境情報を予測するように構成されている環境情報予測部と、
 前記通信端末の予測位置又は前記予測位置の周辺の評価地点で予め測定した受信電力の角度プロファイル情報と、前記所定の時間を経過後の前記動的な環境情報とに基づいて、前記所定の時間を経過後の前記通信端末の受信電力を予測するように構成されている受信電力予測部と、
 を有する、受信電力予測システム。
<Summary of embodiments>
This specification discloses at least the following wireless communication methods and wireless communication systems.
(Section 1)
The received power prediction system
an acquisition process that acquires dynamic environmental information of objects in a predetermined area;
a process of acquiring the position of a communication terminal in the predetermined area;
A process of predicting a predicted position of the communication terminal after a predetermined time has elapsed;
a process of predicting the dynamic environmental information after the predetermined time has elapsed;
the predetermined time based on the received power angle profile information measured in advance at the predicted position of the communication terminal or an evaluation point around the predicted position and the dynamic environment information after the predetermined time elapses. a prediction process that predicts the received power of the communication terminal after passing;
A method for predicting received power.
(Section 2)
2. The received power prediction method according to claim 1, wherein the dynamic environment information acquired in the acquisition process includes three-dimensional point group data, depth data, or position data of the object acquired by a three-dimensional sensor.
(Section 3)
2. The received power prediction method according to claim 1, wherein the angle profile information includes information on received power for each angle of arrival of radio waves measured in advance at the evaluation point.
(Section 4)
4. The received power prediction method according to claim 3, wherein the received power prediction system has the angle profile information measured in advance at a plurality of evaluation points within the predetermined area.
(Section 5)
The dynamic environment information after the predetermined time period includes information indicating the position of the mobile object in the predetermined area after the predetermined time period has elapsed;
The prediction process subtracts the received power from the arrival angle of a radio wave that is blocked by a mobile object in the predetermined area after the predetermined time has elapsed from the angle profile information of the received power measured in advance at the evaluation point. , the received power prediction method according to claim 3, wherein the received power of the communication terminal after the predetermined time has elapsed is predicted.
(Section 6)
an environmental information acquisition unit configured to acquire dynamic environmental information of objects in a predetermined area;
a terminal location acquisition unit configured to acquire the location of a communication terminal in the predetermined area;
a terminal position prediction unit configured to predict a predicted position of the communication terminal after a predetermined time has elapsed;
an environmental information prediction unit configured to predict the dynamic environmental information after the predetermined time has elapsed;
the predetermined time based on the received power angle profile information measured in advance at the predicted position of the communication terminal or an evaluation point around the predicted position and the dynamic environment information after the predetermined time elapses. a received power prediction unit configured to predict received power of the communication terminal after elapse of;
A received power prediction system.
 以上、本実施形態について説明したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the present embodiment has been described above, the present invention is not limited to such specific embodiment, and various modifications and changes can be made within the scope of the gist of the present invention as described in the claims. It is.
 1 受信電力予測システム
 101 環境情報取得部
 102 端末位置取得部
 103 端末位置予測部
 104 環境情報予測部
 105 受信電力予測部
 113 角度プロファイル記憶部
 203 通信端末
 204 角度プロファイル情報
 211 LiDAR
 212 ステレオカメラ
 213 深度カメラ
 214 カメラ
 215 無線センシングデバイス
 301 評価地点
1 Received power prediction system 101 Environmental information acquisition unit 102 Terminal position acquisition unit 103 Terminal position prediction unit 104 Environmental information prediction unit 105 Received power prediction unit 113 Angle profile storage unit 203 Communication terminal 204 Angle profile information 211 LiDAR
212 Stereo camera 213 Depth camera 214 Camera 215 Wireless sensing device 301 Evaluation point

Claims (6)

  1.  受信電力予測システムが、
     所定のエリアにある物体の動的な環境情報を取得する取得処理と、
     前記所定のエリアにある通信端末の位置を取得する処理と、
     所定の時間を経過後の前記通信端末の予測位置を予測する処理と、
     前記所定の時間を経過後の前記動的な環境情報を予測する処理と、
     前記通信端末の予測位置又は前記予測位置の周辺の評価地点で予め測定した受信電力の角度プロファイル情報と、前記所定の時間を経過後の前記動的な環境情報とに基づいて、前記所定の時間を経過後の前記通信端末の受信電力を予測する予測処理と、
     を実行する、受信電力予測方法。
    The received power prediction system
    an acquisition process that acquires dynamic environmental information of objects in a predetermined area;
    a process of acquiring the position of a communication terminal in the predetermined area;
    A process of predicting a predicted position of the communication terminal after a predetermined time has elapsed;
    a process of predicting the dynamic environmental information after the predetermined time has elapsed;
    the predetermined time based on the received power angle profile information measured in advance at the predicted position of the communication terminal or an evaluation point around the predicted position and the dynamic environment information after the predetermined time elapses. a prediction process that predicts the received power of the communication terminal after passing;
    A method for predicting received power.
  2.  前記取得処理で取得する前記動的な環境情報は、3次元センサで取得した前記物体の3次元点群データ、深度データ、又は位置データを含む、請求項1に記載の受信電力予測方法。 The received power prediction method according to claim 1, wherein the dynamic environment information acquired in the acquisition process includes three-dimensional point group data, depth data, or position data of the object acquired by a three-dimensional sensor.
  3.  前記角度プロファイル情報は、前記評価地点で予め測定した電波の到来角度ごとの受信電力の情報を含む、請求項1に記載の受信電力予測方法。 The received power prediction method according to claim 1, wherein the angle profile information includes information on received power for each arrival angle of radio waves measured in advance at the evaluation point.
  4.  前記受信電力予測システムは、前記所定のエリア内の複数の評価地点で予め測定した前記角度プロファイル情報を有する、請求項3に記載の受信電力予測方法。 The received power prediction method according to claim 3, wherein the received power prediction system has the angle profile information measured in advance at a plurality of evaluation points within the predetermined area.
  5.  前記所定の時間を経過後の前記動的な環境情報は、前記所定の時間を経過後に前記所定のエリアにある移動体の位置を示す情報を含み、
     前記予測処理は、前記評価地点で予め測定した受信電力の角度プロファイル情報から、前記所定の時間を経過後に前記所定のエリアにある移動体によって遮断される電波の到来角度からの受信電力を差し引いて、前記所定の時間を経過後の前記通信端末の受信電力を予測する、請求項3に記載の受信電力予測方法。
    The dynamic environment information after the predetermined time period includes information indicating the position of the mobile object in the predetermined area after the predetermined time period has elapsed;
    The prediction process subtracts the received power from the arrival angle of a radio wave that is blocked by a mobile object in the predetermined area after the predetermined time has elapsed from the angle profile information of the received power measured in advance at the evaluation point. 4. The received power prediction method according to claim 3, wherein the received power of the communication terminal after the predetermined time has elapsed is predicted.
  6.  所定のエリアにある物体の動的な環境情報を取得するように構成されている環境情報取得部と、
     前記所定のエリアにある通信端末の位置を取得するように構成されている端末位置取得部と、
     所定の時間を経過後の前記通信端末の予測位置を予測するように構成されている端末位置予測部と、
     前記所定の時間を経過後の前記動的な環境情報を予測するように構成されている環境情報予測部と、
     前記通信端末の予測位置又は前記予測位置の周辺の評価地点で予め測定した受信電力の角度プロファイル情報と、前記所定の時間を経過後の前記動的な環境情報とに基づいて、前記所定の時間を経過後の前記通信端末の受信電力を予測するように構成されている受信電力予測部と、
     を有する、受信電力予測システム。
    an environmental information acquisition unit configured to acquire dynamic environmental information of objects in a predetermined area;
    a terminal location acquisition unit configured to acquire the location of a communication terminal in the predetermined area;
    a terminal position prediction unit configured to predict a predicted position of the communication terminal after a predetermined time has elapsed;
    an environmental information prediction unit configured to predict the dynamic environmental information after the predetermined time has elapsed;
    the predetermined time based on the received power angle profile information measured in advance at the predicted position of the communication terminal or an evaluation point around the predicted position and the dynamic environment information after the predetermined time elapses. a received power prediction unit configured to predict received power of the communication terminal after elapse of;
    A received power prediction system.
PCT/JP2022/009799 2022-03-07 2022-03-07 Method for predicting received power and system for predicting received power WO2023170758A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/009799 WO2023170758A1 (en) 2022-03-07 2022-03-07 Method for predicting received power and system for predicting received power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/009799 WO2023170758A1 (en) 2022-03-07 2022-03-07 Method for predicting received power and system for predicting received power

Publications (1)

Publication Number Publication Date
WO2023170758A1 true WO2023170758A1 (en) 2023-09-14

Family

ID=87936368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009799 WO2023170758A1 (en) 2022-03-07 2022-03-07 Method for predicting received power and system for predicting received power

Country Status (1)

Country Link
WO (1) WO2023170758A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011176743A (en) * 2010-02-25 2011-09-08 Softbank Mobile Corp Communication quality estimating system, program, and estimated quality estimating method
JP2018026728A (en) * 2016-08-10 2018-02-15 Kddi株式会社 Communication quality prediction device, robot, communication quality prediction method, and program
JP2021184545A (en) * 2020-05-22 2021-12-02 株式会社日立製作所 Radio operation management system and radio operation support method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011176743A (en) * 2010-02-25 2011-09-08 Softbank Mobile Corp Communication quality estimating system, program, and estimated quality estimating method
JP2018026728A (en) * 2016-08-10 2018-02-15 Kddi株式会社 Communication quality prediction device, robot, communication quality prediction method, and program
JP2021184545A (en) * 2020-05-22 2021-12-02 株式会社日立製作所 Radio operation management system and radio operation support method

Similar Documents

Publication Publication Date Title
US20190011571A1 (en) Systems, methods and devices for satellite navigation reconciliation
US9475195B2 (en) Anticipatory robot navigation
AU2019210587B2 (en) Object detection based on lidar intensity
EP3152586B1 (en) Mobile device position uncertainty based on a measure of potential hindrance of an estimated trajectory
KR20160078469A (en) Utilizing a mobile device to learn parameters of a radio heat map
TW201144759A (en) Using filtering with mobile device positioning in a constrained environment
KR20160090332A (en) Motion state based mobile device positioning
CN108628318A (en) Congestion environment detection method, device, robot and storage medium
KR102180523B1 (en) A method and apparatus for location estimation of terminal in a wireless communication system
US20240126283A1 (en) Systems and methods for navigation of an autonomous system
JP7160257B2 (en) Information processing device, information processing method, and program
WO2023170758A1 (en) Method for predicting received power and system for predicting received power
KR20200010506A (en) Method and apparatus for determining the location of a static object
WO2023170759A1 (en) Reception power predicting method, and reception power predicting system
WO2021024665A1 (en) Information processing system, information processing device, and information processing method
JP2020154913A (en) Object detection device and method, traffic support server, computer program and sensor device
WO2021024685A1 (en) Information processing device, information processing method, information processing program
EP4113065A1 (en) Systems and methods for navigation of an autonomous system
Ghantous et al. Augmented reality indoor navigation based on Wi-Fi trilateration
WO2024009440A1 (en) Received power prediction system, received power prediction device, received power prediction method, and program
KR20210017303A (en) A method and apparatus for location estimation of terminal in mobile communication system
Özbay et al. A high frequency 3D LiDAR with enhanced measurement density via Papoulis-Gerchberg
JP7072311B1 (en) Movement route generation method and program of moving object, management server, management system
EP3982079A1 (en) Generating a point cloud capture plan
US20220317302A1 (en) Occupancy clustering according to radar data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930744

Country of ref document: EP

Kind code of ref document: A1