WO2023170558A1 - Method for preparing a system for controlled release of antibiotics and bioactive factors, formed by microspheres in a hydrogel - Google Patents

Method for preparing a system for controlled release of antibiotics and bioactive factors, formed by microspheres in a hydrogel Download PDF

Info

Publication number
WO2023170558A1
WO2023170558A1 PCT/IB2023/052113 IB2023052113W WO2023170558A1 WO 2023170558 A1 WO2023170558 A1 WO 2023170558A1 IB 2023052113 W IB2023052113 W IB 2023052113W WO 2023170558 A1 WO2023170558 A1 WO 2023170558A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
microspheres
hydrogel
pva
rpm
Prior art date
Application number
PCT/IB2023/052113
Other languages
Spanish (es)
French (fr)
Inventor
Cristhian Leonardo Pinto Mora
Ingrid Zulay SILVA COTE
Original Assignee
Instituto Distrital De Ciencia Biotecnologia E Innovación En Salud - Idcbis
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instituto Distrital De Ciencia Biotecnologia E Innovación En Salud - Idcbis filed Critical Instituto Distrital De Ciencia Biotecnologia E Innovación En Salud - Idcbis
Publication of WO2023170558A1 publication Critical patent/WO2023170558A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/28Polysaccharides or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/44Medicaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices

Definitions

  • the present invention refers to a method of preparing a controlled release system for antibiotics and bioactive factors that is based on the combination of two types of scaffolds: microspheres included in a hydrogel, with potential for wound healing.
  • the invention has application in the pharmaceutical field, specifically in the technical field of methods for preparing wound dressings.
  • the acceptable time for wound healing is usually affected by various factors, among them is the generation of infections by multiple pathogens and also underlying diseases such as diabetes, which affects the production of certain bioactive factors essential for the healing processes.
  • bioactive molecules is governed by phenomena such as diffusion and degradation of the polymer matrix or scaffolds that contain them. From this, systems can be generated that allow predicting the release rate over a period. of a certain time, and at the same time ensure the delivery of the biomolecules at concentrations that ensure desired therapeutic effects.
  • the combination of scaffolds is currently of great interest since it allows the generation of dual systems, which allow the release of more than one bioactive molecule at the same time.
  • the present invention was born in response to the need to find a method of preparing a controlled release system that consists of two types of combined scaffolds: microspheres included in a hydrogel, which guarantees optimal encapsulation of the bioactive factor in microspheres and produce a hydrogel with excellent release capacity of bioactive molecules and antibiotics that prevents an explosive release of the bioactive factor, as well as optimal degradation values and mechanical properties for use as a controlled release dressing in chronic skin wounds.
  • the wound dressing is prepared from composite microspheres and smart response type hydrogel, and the mass ratio of the composite microspheres to smart response type hydrogel is (1:100)-(1:200);
  • the prepared hydrogel is a composite aqueous solution containing pluronic F68 and pluronic F127; and the composite microsphere comprises a nanoscale sodium alginate single-layer microsphere loaded with a vascular endothelial growth factor (VEGF) and a nanoscale sodium alginate single-layer microsphere loaded with leptin (LP).
  • VEGF vascular endothelial growth factor
  • LP leptin
  • CN1 11228565A refers to a hydrogel composed of hyaluronic acid and gelatin loaded with PLGA microspheres and Gentamicin sulfate. Furthermore, this document describes the method of preparation of both the microspheres and the hydrogel.
  • the preparation method of the microspheres consists of: dissolving the polylactic acid-glycolic acid copolymer in dichloromethane to prepare an oil phase, and the Gentamicin sulfate is dissolved in deionized water to prepare an aqueous phase.
  • the oil phase is mixed with the water phase, stirred and sonicated to obtain a W 1 /O solution; the W 1 /O solution is added to the polyvinyl alcohol solution, stirred, mixed and sonicated, forming a double emulsion; The double emulsion is added to the polyvinyl alcohol solution to form a W 1 /O/W 2 solution.
  • the method to prepare the hydrogel consists of: combining aminoethyl methacrylate hyaluronic acid, methacrylated gelatin and microspheres composed of PLGA and Gentamicin sulfate.
  • the photoinitiator is added to deionized water and irradiated with ultraviolet light to obtain a hyaluronic acid-gelatin composite hydrogel containing PLGA microspheres with Gentamicin sulfate.
  • Figure 1 shows a Scanning Electron Microscopy (SEM) micrograph of the microspheres, where it can be seen that these microspheres have micrometer-sized spherical structures, with a smooth surface without defects.
  • SEM Scanning Electron Microscopy
  • Figure 2 shows a graph of the size distribution for Polycaprolactone (PCL) Microspheres.
  • Figure 3 shows an SEM micrograph for a hydrogel containing a 2:1:1 ratio (PVA:Chitosan:Alginate), where it can be seen that said hydrogel has high porosity and diverse pore sizes.
  • Figure 4 shows a graph of the cumulative release of hepatocyte growth factor (HGF), with Mes (green) being only microspheres containing said HGF and HgA-Mcs (light blue) being the release system composed of microspheres included in a hydrogel.
  • HGF hepatocyte growth factor
  • Figure 5 shows a graph of the cumulative release for three different concentrations of the antibiotic Meropenem, where as the concentration of the antibiotic increases, the release time of therapeutic concentrations also increases.
  • Figure 6 shows the inhibition zones by the agar diffusion method to verify the effect of the biomatehales used in the prepared hydrogel and the concentration of Meropenem (10X and 100X) on the inhibition of the bacteria S. aureus, E. coli , K. pneumoniae P. aeruginosa.
  • the results of the hydrogel without antibiotic (left halo) and the hydrogel with 10X Meropenem (right halo) are shown at the top.
  • the results of the hydrogel with Meropenem 100X are shown at the bottom.
  • Figure 7 shows a graph that indicates the percentage of cell proliferation of the controlled release system of antibiotics and bioactive factors that is based on two types of combined scaffolds: microspheres included in a hydrogel (green bars), prepared by the novel method described. in this technical document. As a control (brown bars), only a hydrogel with a 2:1:1 ratio (PVA:Chitosan:Alginate) was used.
  • Figure 8 shows a photo of the controlled release system for antibiotics and bioactive factors that is based on two types of combined scaffolds: microspheres included in a hydrogel, prepared by the novel method described in this technical document.
  • the present invention refers to a method of preparing a controlled release system that is based on two types of combined scaffolds, which are microspheres and hydrogel.
  • the microspheres are responsible for encapsulating the bioactive factors and are subsequently incorporated into the hydrogel, in which the antibiotic will also be incorporated.
  • the preparation method of said controlled release system consists of two phases, the first is related to the synthesis of microspheres containing bioactive factors, using the W 1 /O/W 2 emulsion technique. that is, a water-organic phase-water method. In this methodology, adjustments were made to some parameters, in order to guarantee greater encapsulation of the bioactive factors of interest.
  • W 1 /O/W 2 emulsion technique that is, a water-organic phase-water method.
  • PVA polyvinyl alcohol
  • O organic phase
  • PCL polycaprolactone
  • a W1/O/W2 method is used, where the W 1 (aqueous) phase is composed of PVA at 3% w/v, bovine serum albumin (BSA) and the bioactive factor of interest,
  • the O (organic) phase is composed of PCL in solution with 5% w/v chloroform and the W 2 phase is composed of a surfactant, in this case it is 5% w/v PVA.
  • PCL is dissolved in chloroform and left stirring at 700 rpm for 30 minutes at room temperature, completely sealed.
  • the container containing the solution should be amber in color since chloroform is a photosensitive solvent.
  • a 10pg/mL solution of the bioactive factor of interest is prepared (for example, a cationic charge bioactive factor, selected from: HGF, TGF- ⁇ 1, TGF- ⁇ 2, TGF- ⁇ 3, TGF - ⁇ 4, VEGF, IGF, NGF and BPM), where the solvent is 1X PBS supplementing with 1% w/v bovine serum albumin (BSA).
  • BSA bovine serum albumin
  • Preparation of the Wi phase Initially, 0.1% w/v BSA and the bioactive factor solution are added to the PVA solution (3% w/v) until a final factor concentration of 1 pg is obtained for each mL of W 1 . Subsequently, the solution is homogenized for 1 minute at 2000rpm. The solutions must be at 4°C.
  • Preparation of the W 1 /O phase to obtain the emulsion, for every 10mL of PCL solution in chloroform, 1 mL of the Wi phase is added, then the mixture is homogenized for 1 minute at 2000 rpm using a homogenizer. It must be guaranteed that the solutions are at 4°C.
  • microspheres Collection, lyophilization and storage: The microspheres are collected by centrifugation at 2500 gravities for 5 min, the supernatant is discarded, and the precipitate is washed with deionized water, the process is repeated 3 times. Finally, a selection of microspheres is made by size; for this, microsieves with a pore size of 40 pm are used, this ensures the elimination of unwanted residues.
  • the product was lyophilized at -47°C and 0.0125 mBar for 24 hours. The lyophilized product obtained was stored at -20°C.
  • hydrogel preparation method is described below:
  • PVA phosphate buffer solution
  • chitosan is dissolved in acetic acid solution (0.1 M), the mixture is left sealed in a container under stirring at 700 rpm for at least 2 hours at room temperature.
  • 2% w/v alginate solution the alginate is dissolved in phosphate buffer solution (PBS) at pH 7.4, leaving the container sealed and stirring at 700 rpm for at least 2 hours at room temperature
  • PBS phosphate buffer solution
  • the biomaterials PVA, chitosan and alginate are mixed in proportion: 50% PVA, 25% chitosan and 25% alginate, an initial stirring is carried out at 700 rpm at room temperature for 1 hour. Then an adjustment of the pH of the solution between 7.2 and 7.4 using sodium hydroxide (NaOH) at 1 M concentration, pH adjustment should be done using a pH meter. The solution continues to stir for 2 more hours before adding the previously synthesized PCL-HGF microspheres (100 mg of microspheres per mL of hydrogel), in turn adding the antibiotic of choice at a concentration of 1 mg per mL of hydrogel, and left stirring constantly for 1 hour or more, then the mixture is poured into molds.
  • sodium hydroxide NaOH
  • the hydrogel obtained with the microspheres and the antibiotic is subjected to 3 cycles of freezing for 20 hours at -30°C and thawing for 4 hours at room temperature. After completing the 3 cycles, the hydrogels are stored frozen between -20°C and -30°C.
  • an encapsulation percentage test was carried out, using Bovine Serum Albumin (BSA) as a model molecule, which is also used in this experiment as a stabilizing agent for bioactive factors.
  • BSA Bovine Serum Albumin
  • An approximate encapsulation efficiency of 70% was obtained for PCL microspheres whose formulation was 3% PVA (W1), 5% PCL (O) and 5% PVA (W2), which meant an increase in encapsulation compared to various works with PCL microspheres whose synthesis principle is based on a W1/0/W2 method.
  • Another key component in the preparation method of the controlled release system described is the method of preparation of the hydrogel that contains the PCL microspheres with the bioactive factor and the antibiotic of interest, in addition to being the support that will be in direct contact with the area. of the wound. Said hydrogel will be responsible for releasing the molecules to the environment where they are required and that is why it is important to develop a method that allows optimal morphological characterization.
  • the hydrogel obtained by means of the described method is the one that preferably contains a 2:1:1 ratio (PVA:Cs:ALG).
  • Figure 3 shows the SEM obtained for said scaffold.
  • HGF heoatocyte growth factor
  • microspheres One of the most common problems when using microspheres is their explosive release, this prevents optimal use of the molecule with therapeutic action during the first hours of release. To solve this problem, it has been decided to incorporate the microspheres in a PVA/Chitosan/Alginate (HgA) hydrogel.
  • HgA PVA/Chitosan/Alginate
  • the patent CN1 13244444A indicated in the state of the art, refers to the encapsulation of VEGF (Vascular Endothelial Growth Factor), using other biomaterials (Alginate for microspheres and Pluronic F127 + F68 for hydrogels) for its encapsulation, due to the difference in the nature of the biomaterials, factors and techniques used for the generation of the dressing, cannot be considered valid to make a comparison with what is proposed in this document.
  • VEGF Vascular Endothelial Growth Factor
  • antibiotics are incorporated (for example, a Carbapenem selected from: Meropenem, Doripenem, Ertapenem, Imipenem, among others), in order to create a synergistic effect. time to treat chronic skin wounds.
  • a Carbapenem selected from: Meropenem, Doripenem, Ertapenem, Imipenem, among others
  • the method described creates a dual release system with the potential to combat infections by various pathogens and at the same time promote cell proliferation through the action of bioactive factors.
  • Meropenem which is an antibiotic that belongs to the Carbapenem family.
  • a Minimum Inhibitory Concentration (MIC) test was carried out for four bacterial strains: S. aureus, E. coli, K. pneumoniae and P. aeruginosa. After the test, it was determined that, to guarantee inhibition of the 4 strains, for at least one day, the minimum inhibitory concentration (MIC) incorporated into the hydrogels should be 10 ⁇ g/mL.
  • the concentration and type of antibiotic that is incorporated into the controlled release system prepared by the described method can be adjusted according to the type of bacteria and stipulated treatment time.
  • X 10 ⁇ g/mL
  • the time at which therapeutic concentrations are released over a longer period of time also increases.
  • the hydrogels with antibiotic at 10X and 100X after 24 hours, the release that was recorded was 55.20 ⁇ 2.43 and 276.491 ⁇ 26.82 ⁇ g/mL, respectively.
  • the hydrogels with 10X and 100X antibiotic recorded a sustained release of 4.66 and 55.93 pg/mL, on average per day, these concentrations are within the concentration range considered susceptible to bacterial inhibition, according to the Clinical and Laboratory Standards Institute (CLSI) (Manual M-100, table 5a).
  • biomaterials used for the preparation of hydrogels are that they have an inherent antibacterial character; this, combined with some antibiotic, generates a synergistic effect that enhances the inhibition of pathogenic agents.
  • the inhibition zone was measured by the method diffusion in agar ( Figure 6). It was found that the hydrogel (PVA/Cs/ALG) without antibiotic presented an inhibition zone for the strains of S. aureus and E. Coii, which can be attributed to a bacteriostatic effect due to the presence of chitosan and alginate in the hydrogel structure.
  • the S. aureus strain was the one with the highest inhibition (16.0 mm), while for E. coli it was 15.3 mm, in the case of K. pneumoniae and P.
  • Table 1 shows the halos obtained for treatments I (only hydrogel), treatment II (hydrogel-Meropenem 10X) and treatment III (hydrogel-Meropenem 100X).
  • the present invention describes a novel method to develop a dual release system that releases so many bioactive factors of interest and antibiotics, allowing to fight infections and in turn promote the healing processes of chronic wounds.
  • the in vitro experiments carried out demonstrated that the release system promotes cell proliferation, thanks to the addition of bioactive factors (for example, HGF).
  • bioactive factors for example, HGF
  • the hydrogel itself was also shown to have inherent antimicrobial properties, allowing the effect that antibiotics can have in treating infections to be enhanced.
  • the addition of PCL microspheres with a bioactive factor in the hydrogel allowed obtaining a release profile without a significant explosive effect. Degradation values and acceptable mechanical properties were also obtained to be used as a release dressing in chronic skin wounds.

Abstract

The present invention relates to a method for preparing a system for controlled release of antibiotics and bioactive factors, which is formed by microspheres in a hydrogel, wherein the method comprises synthesising W1/O/W2 microspheres that contain a bioactive factor, which are included in a hydrogel in a proportion selected from 2:1:1, 1:1:1, 1:2:1 or 1:1:2 (PVA:Cs:ALG) containing an antibiotic, thus obtaining a controlled release system with potential for healing chronic wounds.

Description

MÉTODO DE PREPARACIÓN DE UN SISTEMA DE LIBERACIÓN CONTROLADA DE ANTIBIÓTICOS Y FACTORES BIOACTIVOS CONFORMADO POR MICROESFERAS INCLUIDAS EN UN HIDROGEL METHOD FOR PREPARATION OF A CONTROLLED RELEASE SYSTEM OF ANTIBIOTICS AND BIOACTIVE FACTORS CONSISTING OF MICROSPHERES INCLUDED IN A HYDROGEL
CAMPO DE INVENCIÓN FIELD OF INVENTION
La presente invención se refiere a un método de preparación de un sistema de liberación controlada de antibióticos y factores bioactivos que se basa en la combinación de dos tipos de andamios: microesferas incluidas en un hidrogel, con potencial para curación de heridas. The present invention refers to a method of preparing a controlled release system for antibiotics and bioactive factors that is based on the combination of two types of scaffolds: microspheres included in a hydrogel, with potential for wound healing.
La invención tiene aplicación en el campo farmacéutico, específicamente en el campo técnico de los métodos de preparación de apósitos para heridas. The invention has application in the pharmaceutical field, specifically in the technical field of methods for preparing wound dressings.
ESTADO DE LA TÉCNICA STATE OF THE TECHNIQUE
En muchas ocasiones, el tiempo aceptable para la curación de heridas suele verse afectado por diversos factores, entre ellos está la generación de infecciones por múltiples agentes patógenos y también enfermedades de base como la diabetes, la cual afecta la producción de ciertos factores bioactivos indispensables para los procesos curativos. In many cases, the acceptable time for wound healing is usually affected by various factors, among them is the generation of infections by multiple pathogens and also underlying diseases such as diabetes, which affects the production of certain bioactive factors essential for the healing processes.
Existen tratamientos tradicionales que son aplicados para combatir infecciones y posteriormente cerrar la herida, pero el problema asociado está en la aplicación de fármacos y factores bioactivos a muy altas concentraciones, los cuales pueden ser perjudiciales para los pacientes. Además, estos tratamientos requieren una aplicación frecuente y su eficacia depende en gran parte de la disciplina que tenga el paciente tras iniciar el tratamiento. There are traditional treatments that are applied to combat infections and subsequently close the wound, but the associated problem is the application of drugs and bioactive factors at very high concentrations, which can be harmful to patients. Furthermore, these treatments require frequent application and their effectiveness depends largely on the discipline that the patient has after starting the treatment.
Una opción alternativa a los tratamientos tradicionales son los sistemas de liberación controlada de diversas moléculas bioactivas. Esta liberación se puede lograr a partir de la incorporación o encapsulación de las moléculas bioactivas con una matriz polimérica o andamios mediante diversas técnicas, como las microesferas y los hidrogeles. G.D. Mogosanu and A.M. Grumezescu en “Natural and synthetic polymers for wounds and burns dressing" habla que dependiendo de la aplicación de dichos sistemas de liberación controlada, se pueden usar diversos biomateriales, ya sean sintéticos o naturales, así podemos encontrar al PLA (ácido poliláctico), el PLGA (ácido poli(láctico-co-glicólico)), PCL (policaprolactona) y PVA (alcohol polivinílico), mientras que en el segundo grupo están el colágeno, fibroína, alginato, quitosano y ácido hialurónico. An alternative option to traditional treatments are controlled release systems of various bioactive molecules. This release can be achieved by incorporating or encapsulating the bioactive molecules with a polymeric matrix or scaffolds using various techniques, such as microspheres and hydrogels. GD Mogosanu and AM Grumezescu in "Natural and synthetic polymers for wounds and burns dressing" says that depending on the application of these controlled release systems, various biomaterials can be used, whether synthetic or natural, thus we can find PLA (polylactic acid), PLGA (polylactic acid poly(lactic-co-glycolic)), PCL (polycaprolactone) and PVA (polyvinyl alcohol), while in the second group are collagen, fibroin, alginate, chitosan and hyaluronic acid.
Asimismo, la liberación de las moléculas bioactivas se rige a partir de fenómenos como la difusión y la degradación de la matriz polimérica o andamios que los contienen, a partir de esto se pueden generar sistemas que permitan predecir la tasa de liberación a través de un periodo de tiempo determinado, y a su vez asegurar la entrega de las biomoléculas a concentraciones que aseguren efectos terapéuticos deseados. Likewise, the release of bioactive molecules is governed by phenomena such as diffusion and degradation of the polymer matrix or scaffolds that contain them. From this, systems can be generated that allow predicting the release rate over a period. of a certain time, and at the same time ensure the delivery of the biomolecules at concentrations that ensure desired therapeutic effects.
Son varias las técnicas utilizadas para la fabricación de andamios, entre ellas se encuentran los métodos para elaborar microesferas e hidrogeles. A.A. Chaudhari et al en “Future prospects for scaffolding methods and biomaterials in skin tissue engineering; A review’’ nos indica que las microesferas son de fácil fabricación, con características físicas controladas y son aptas para encapsular casi cualquier tipo de moléculas, aunque uno de los problemas asociados a este tipo de tecnologías es la liberación explosiva y su rango de aplicabilidad limitado cuando no se aplican con una matriz que las soporten. Por su parte, los hidrogeles son redes 3D que están conformados por biomateriales de tipo hidrofílico, cuyas características principales son alta retención de agua, transferencia eficiente de masa, similitud con tejidos naturales, naturaleza blanda que minimiza la fricción de los tejidos circundantes y sensibilidad a los cambios fisiológicos; estas propiedades los hacen atractivos para ser usados como soportes en sistemas de liberación. Además, la combinación de andamios es de gran interés actualmente ya que permite generar sistemas duales, los cuales permiten liberar al mismo tiempo más de una molécula bioactiva. De este modo, la presente invención nace como respuesta a la necesidad de encontrar un método de preparación de un sistema de liberación controlada que conste de dos tipos de andamios combinados: microesferas incluidas en un hidrogel, el cual garantice una óptima encapsulación del factor bioactivo en las microesferas y elabore un hidrogel con excelente capacidad de liberación de moléculas bioactivas y antibióticos que impida una liberación explosiva del factor bioactivo, así como valores de degradación y propiedades mecánicas óptimas para el uso como apósito de liberación controlada en heridas cutáneas crónicas. There are several techniques used to manufacture scaffolds, including methods to produce microspheres and hydrogels. AA Chaudhari et al in “Future prospects for scaffolding methods and biomaterials in skin tissue engineering; A review'' indicates that microspheres are easy to manufacture, with controlled physical characteristics and are suitable for encapsulating almost any type of molecules, although one of the problems associated with this type of technology is explosive release and its limited range of applicability. when they are not applied with a matrix that supports them. For their part, hydrogels are 3D networks that are made up of hydrophilic biomaterials, whose main characteristics are high water retention, efficient mass transfer, similarity to natural tissues, soft nature that minimizes the friction of surrounding tissues and sensitivity to physiological changes; These properties make them attractive to be used as supports in release systems. Furthermore, the combination of scaffolds is currently of great interest since it allows the generation of dual systems, which allow the release of more than one bioactive molecule at the same time. In this way, the present invention was born in response to the need to find a method of preparing a controlled release system that consists of two types of combined scaffolds: microspheres included in a hydrogel, which guarantees optimal encapsulation of the bioactive factor in microspheres and produce a hydrogel with excellent release capacity of bioactive molecules and antibiotics that prevents an explosive release of the bioactive factor, as well as optimal degradation values and mechanical properties for use as a controlled release dressing in chronic skin wounds.
En busca de una respuesta técnica a dicha necesidad, se consultaron diferentes documentos de patente relacionados, tales como el documento CN107496976A que describe un método para preparar un apósito de hidrogel de quitosano con acción antibacteriana y cicatrizante, en donde se preparan microesferas de quitosano que luego se dispersan uniformemente en una solución acuosa con una relación masa-volumen de 1 a 4 % (p/v), y se reticulan con glutaraldehído en una relación de volumen de 1 % (v/ v). Después de 3 horas, se remoja en agua desionizada, se elimina el exceso de agente reticulante y se obtiene un apósito de hidrogel de quitosano, que se almacenó en condiciones estériles a 4 °C. In search of a technical response to this need, different related patent documents were consulted, such as document CN107496976A that describes a method to prepare a chitosan hydrogel dressing with antibacterial and healing action, where chitosan microspheres are prepared that are then They are uniformly dispersed in an aqueous solution with a mass-volume ratio of 1 to 4% (w/v), and cross-linked with glutaraldehyde at a volume ratio of 1% (v/v). After 3 hours, it was soaked in deionized water, the excess cross-linking agent was removed, and a chitosan hydrogel dressing was obtained, which was stored under sterile conditions at 4 °C.
Otra solución técnica considerada muy cercana a la necesidad identificada se encuentra en el documento CN1 13244444A, el cual hace referencia a un apósito para heridas basado en microesferas compuestas de hidrogel. El apósito para heridas es preparado a partir de microesferas compuestas e hidrogel de tipo de respuesta inteligente, y la relación de masa de las microesferas compuestas al hidrogel de tipo de respuesta inteligente es (1 :100)-( 1 :200) ; el hidrogel elaborado es una solución acuosa compuesta que contiene pluronic F68 y pluronic F127; y la microesfera compuesta comprende una microesfera de una sola capa de alginato de sodio a nanoescala cargada con un factor de crecimiento endotelial vascular (VEGF) y una microesfera de una sola capa de alginato de sodio a nanoescala cargada con leptina (LP). El apósito para heridas basado en microesferas compuestas de hidrogel se puede aplicar al tratamiento de heridas combinadas, y se utilizan dos medicamentos con diferentes efectos, de modo que el apósito preparado tiene los efectos duales de regular y controlar el proceso de inmunorreacción y promover la angiogénesis. Another technical solution considered very close to the identified need is found in document CN1 13244444A, which refers to a wound dressing based on microspheres composed of hydrogel. The wound dressing is prepared from composite microspheres and smart response type hydrogel, and the mass ratio of the composite microspheres to smart response type hydrogel is (1:100)-(1:200); The prepared hydrogel is a composite aqueous solution containing pluronic F68 and pluronic F127; and the composite microsphere comprises a nanoscale sodium alginate single-layer microsphere loaded with a vascular endothelial growth factor (VEGF) and a nanoscale sodium alginate single-layer microsphere loaded with leptin (LP). Hydrogel Composite Microspheres Based Wound Dressing Can Be Applied to Wound Treatment combined, and two drugs with different effects are used, so that the prepared dressing has the dual effects of regulating and controlling the immunoreaction process and promoting angiogenesis.
Otro documento relacionado es CN1 11228565A, el cual hace referencia a un hidrogel compuesto de ácido hialurónico y gelatina cargado con microesferas de PLGA y Gentamicina sulfato. Además, dicho documento describe el método de preparación tanto de las microesferas como del hidrogel. El método de preparación de las microesferas consiste en: disolver el copolímero de ácido poliláctico-ácido glicólico en diclorometano para preparar una fase oleosa, y el sulfato de Gentamicina se disuelve en agua desionizada para preparar una fase acuosa. La fase de aceite se mezcla con la fase de agua, se agita y se somete a ultrasonidos para obtener una solución W1/O; la solución W1/O se agrega a la solución de alcohol polivinílico, se agita, se mezcla y se sónica, formando una emulsión doble; se agrega la emulsión doble a la solución de alcohol polivinílico para formar una solución W1/O/W2. El método para preparar el hidrogel consiste en: combinar ácido hialurónico de metacrilato de aminoetilo, gelatina metacrilada y microesferas compuestas de PLGA y Gentamicina sulfato. El fotoiniciador se agrega al agua desionizada y se irradia con luz ultravioleta para obtener un hidrogel compuesto de ácido hialurónico-gelatina que contiene microesferas de PLGA con Gentamicina sulfato. Another related document is CN1 11228565A, which refers to a hydrogel composed of hyaluronic acid and gelatin loaded with PLGA microspheres and Gentamicin sulfate. Furthermore, this document describes the method of preparation of both the microspheres and the hydrogel. The preparation method of the microspheres consists of: dissolving the polylactic acid-glycolic acid copolymer in dichloromethane to prepare an oil phase, and the Gentamicin sulfate is dissolved in deionized water to prepare an aqueous phase. The oil phase is mixed with the water phase, stirred and sonicated to obtain a W 1 /O solution; the W 1 /O solution is added to the polyvinyl alcohol solution, stirred, mixed and sonicated, forming a double emulsion; The double emulsion is added to the polyvinyl alcohol solution to form a W 1 /O/W 2 solution. The method to prepare the hydrogel consists of: combining aminoethyl methacrylate hyaluronic acid, methacrylated gelatin and microspheres composed of PLGA and Gentamicin sulfate. The photoinitiator is added to deionized water and irradiated with ultraviolet light to obtain a hyaluronic acid-gelatin composite hydrogel containing PLGA microspheres with Gentamicin sulfate.
Además, en el estudio realizado por C. Xiao et al en “Synthesis and properties of degradable poly (vinyl alcohol) hydrogel”, se ha preparado un nuevo hidrogel degradable mediante la condensación de alcohol polivinílico (PVA) con ELDA, un di-ácido derivado del ácido láctico. Furthermore, in the study carried out by C. Xiao et al in “Synthesis and properties of degradable poly (vinyl alcohol) hydrogel”, a new degradable hydrogel has been prepared by condensation of polyvinyl alcohol (PVA) with ELDA, a di-acid. derived from lactic acid.
Asimismo, en el estudio realizado por S. Lin et al en “Evaluation of PVA/dextran/chitosan hydrogel for wound dressing”, el poli (alcohol vinilico) (PVA), el dextrano y el quitosano se integran para producir un apósito ideal para heridas en el que se utiliza glutaraldehído (GA) como agente de enlace cruzado. El resultado demostró que se encontró que el hidrogel de PVA al 6% con quitosano al 0,25% proporciona capacidad antimicrobiana. El hidrogel de PVA/quitosano combinado con dextrano al 4% que utiliza reticulación GA también presenta una alta capacidad de proliferación celular, lo que sugiere que el hidrogel tiene potencial como vendaje para heridas. Likewise, in the study carried out by S. Lin et al in “Evaluation of PVA/dextran/chitosan hydrogel for wound dressing”, poly(vinyl alcohol) (PVA), dextran and chitosan are integrated to produce an ideal dressing for wounds in which glutaraldehyde (GA) is used as a cross-linking agent. The result showed that the 6% PVA hydrogel with 0.25% chitosan provides antimicrobial capacity. The PVA/chitosan hydrogel combined with 4% dextran using GA cross-linking also exhibits high cell proliferation capacity, suggesting that the hydrogel has potential as a wound dressing.
Por otro lado, en el estudio realizado por Shamloo et al en “Fabrication and evaluation of Chitosan/Gelatin/PVA hydrogel incorporating Honey for wound healing applications: An In Vitro, In Vivo Study” se desarrollaron hidrogeles reticulados físicamente mediante el método de congelación y descongelación, mientras que se incluyeron diferentes concentraciones de miel en los hidrogeles para acelerar la cicatrización de heridas. El hidrogel estaba compuesto por quitosano, alcohol polivinílico (PVA) y gelatina en una proporción de 2:1 :1 (v/v), respectivamente. Además, se investigó el efecto de las concentraciones de miel sobre las propiedades anti bacterianas y el comportamiento celular. On the other hand, in the study carried out by Shamloo et al in “Fabrication and evaluation of Chitosan/Gelatin/PVA hydrogel incorporating Honey for wound healing applications: An In Vitro, In Vivo Study” physically cross-linked hydrogels were developed using the freezing method and thawing, while different concentrations of honey were included in the hydrogels to accelerate wound healing. The hydrogel was composed of chitosan, polyvinyl alcohol (PVA), and gelatin in a ratio of 2:1:1 (v/v), respectively. In addition, the effect of honey concentrations on antibacterial properties and cellular behavior was investigated.
Adicionalmente, en el estudio realizado por A. Luciani et al en “PCL microspheres based functional scaffolds by bottom-up approach with predefined microstructural properties and release profiles” se describió un procedimiento para elaborar andamios que se obtienen a través del ensamblaje térmico de microesferas de poli(3-caprolactona) (PCL) activadas por proteína preparadas con emulsión doble y microesferas de PCL libres de proteína más grandes obtenidas con emulsión única. En este estudio se muestra que la dimensión de los poros, la interconectividad y las propiedades mecánicas en la compresión del andamio podrían predefinirse mediante una elección adecuada del tamaño de las micropartículas libres de proteínas y las condiciones del proceso. Las micropartículas cargadas con proteínas se incluyeron con éxito dentro del andamio y proporcionaron una entrega sostenida de una proteína modelo (BSA). Additionally, in the study carried out by A. Luciani et al in “PCL microspheres based functional scaffolds by bottom-up approach with predefined microstructural properties and release profiles” a procedure was described to create scaffolds that are obtained through the thermal assembly of microspheres of Protein-activated poly(3-caprolactone) (PCL) prepared with double emulsion and larger protein-free PCL microspheres obtained with single emulsion. In this study it is shown that the pore dimension, interconnectivity and mechanical properties in compression of the scaffold could be predefined by an appropriate choice of the size of the protein-free microparticles and the process conditions. The protein-loaded microparticles were successfully embedded within the scaffold and provided sustained delivery of a model protein (BSA).
Sin embargo, ninguna de las invenciones anteriores logra solucionar totalmente el problema planteado, esto es debido a que, si bien logran desarrollar métodos de preparación de apósitos de microesferas incluidas en un hidrogel, ninguno de los métodos describe la adición de microesferas que garanticen una óptima encapsulación de un factor bioactivo dentro de un hidrogel, en el cual ya se encuentra incorporado un antibiótico, esto asegura una mejoría en capacidad de liberación tanto de las moléculas bioactivas como del antibiótico, impidiendo una liberación explosiva del factor bioactivo. Finalmente, gracias a este método de preparación innovador se puede obtener un apósito de liberación dual que libera tanto factores bioactivos de interés como antibióticos, permitiendo combatir infecciones y a su vez promoviendo los procesos de curación de heridas crónicas. However, none of the previous inventions manages to completely solve the problem posed, this is because, although they manage to develop methods for preparing microsphere dressings included in a hydrogel, none of the methods describe the addition of microspheres that guarantee optimal encapsulation of a bioactive factor within a hydrogel, in which an antibiotic is already incorporated, this ensures an improvement in the release capacity of both the bioactive molecules and the antibiotic, preventing an explosive release of the bioactive factor. Finally, thanks to this innovative preparation method, a dual-release dressing can be obtained that releases both bioactive factors of interest and antibiotics, allowing the fight against infections and in turn promoting the healing processes of chronic wounds.
DESCRIPCIÓN DETALLADA DE LAS FIGURAS DETAILED DESCRIPTION OF THE FIGURES
La figura 1 muestra una micrografía de Microscopía Electrónica de Barrido (SEM por sus siglas en inglés) de las microesferas, donde se puede observar que dichas microesferas poseen estructuras esféricas de tamaño micrométrico, con una superficie lisa sin defectos. Figure 1 shows a Scanning Electron Microscopy (SEM) micrograph of the microspheres, where it can be seen that these microspheres have micrometer-sized spherical structures, with a smooth surface without defects.
La figura 2 muestra un gráfico de la distribución de tamaño para Microesferas de policaprolactona (PCL). Figure 2 shows a graph of the size distribution for Polycaprolactone (PCL) Microspheres.
La figura 3 muestra una micrografía SEM para hidrogel que contiene una proporción 2:1 :1 (PVA:Quitosano:Alginato), donde se puede observar que dicho hidrogel cuenta con alta porosidad y con tamaños de poro diversos. Figure 3 shows an SEM micrograph for a hydrogel containing a 2:1:1 ratio (PVA:Chitosan:Alginate), where it can be seen that said hydrogel has high porosity and diverse pore sizes.
La figura 4 muestra un gráfico de la liberación acumulada del factor de crecimiento de hepatocitos (HGF), siendo Mes (verde) solamente microesferas que contienen dicho HGF y HgA-Mcs (celeste) el sistema de liberación compuesto por microesferas incluidas en un hidrogel. Figure 4 shows a graph of the cumulative release of hepatocyte growth factor (HGF), with Mes (green) being only microspheres containing said HGF and HgA-Mcs (light blue) being the release system composed of microspheres included in a hydrogel.
La figura 5 muestra un gráfico de la liberación acumulada para tres concentraciones diferentes del antibiótico Meropenem, en donde a medida que la concentración del antibiótico aumenta, aumenta también el tiempo de la liberación de concentraciones terapéuticas. La figura 6 muestra los halos de inhibición por el método de difusión en agar para comprobar el efecto de los biomatehales usados en el hidrogel elaborado y la concentración del Meropenem (10X y 100X) en la inhibición de las bacterias S. aureus, E. coli, K. pneumoniae P. aeruginosa. En la parte superior se muestran los resultados del hidrogel sin antibiótico (halo izquierdo) y del hidrogel con Meropenem 10X (halo derecho). Asimismo, en la parte inferior se muestran los resultados del hidrogel con Meropenem 100X. Figure 5 shows a graph of the cumulative release for three different concentrations of the antibiotic Meropenem, where as the concentration of the antibiotic increases, the release time of therapeutic concentrations also increases. Figure 6 shows the inhibition zones by the agar diffusion method to verify the effect of the biomatehales used in the prepared hydrogel and the concentration of Meropenem (10X and 100X) on the inhibition of the bacteria S. aureus, E. coli , K. pneumoniae P. aeruginosa. The results of the hydrogel without antibiotic (left halo) and the hydrogel with 10X Meropenem (right halo) are shown at the top. Likewise, the results of the hydrogel with Meropenem 100X are shown at the bottom.
La figura 7 nos muestra un gráfico que indica el porcentaje de proliferación celular del sistema de liberación controlada de antibióticos y factores bioactivos que se basa en dos tipos de andamios combinados: microesferas incluidas en un hidrogel (barras verdes), elaborado por el método novedoso descrito en el presente documento técnico. Como control (barras marrones) se utilizó solamente un hidrogel de proporción 2:1 :1 (PVA:Quitosano:Alginato). Figure 7 shows a graph that indicates the percentage of cell proliferation of the controlled release system of antibiotics and bioactive factors that is based on two types of combined scaffolds: microspheres included in a hydrogel (green bars), prepared by the novel method described. in this technical document. As a control (brown bars), only a hydrogel with a 2:1:1 ratio (PVA:Chitosan:Alginate) was used.
La figura 8 nos muestra una foto del sistema de liberación controlada de antibióticos y factores bioactivos que se basa en dos tipos de andamios combinados: microesferas incluidas en un hidrogel, elaborado por el método novedoso descrito en el presente documento técnico. Figure 8 shows a photo of the controlled release system for antibiotics and bioactive factors that is based on two types of combined scaffolds: microspheres included in a hydrogel, prepared by the novel method described in this technical document.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
La presente invención se refiere a un método de preparación de un sistema de liberación controlada que se basa en dos tipos de andamios combinados, los cuales son las microesferas y el hidrogel. Las microesferas se encargan de encapsular los factores bioactivos y posteriormente son incorporadas dentro del hidrogel, en el cual se encontrará incorporado también el antibiótico. The present invention refers to a method of preparing a controlled release system that is based on two types of combined scaffolds, which are microspheres and hydrogel. The microspheres are responsible for encapsulating the bioactive factors and are subsequently incorporated into the hydrogel, in which the antibiotic will also be incorporated.
El método de preparación de dicho sistema de liberación controlada consta de dos fases, la primera está relacionada con la síntesis de las microesferas que contienen factores bioactivos, usando la técnica de emulsión W1/O/W2. es decir, un método agua-fase orgánica-agua. En esta metodología se realizaron ajustes en algunos parámetros, esto con la finalidad de garantizar una mayor encapsulación de los factores bioactivos de interés. Para la fase Wi se utilizó un porcentaje de alcohol polivinílico (PVA) en solución al 1 % y 3% p/v. Lo mismo ocurrió en la fase orgánica (O), la cual es una solución de policaprolactona (PCL) en cloroformo al 3% y 5% p/v. Cabe resaltar que los valores superiores para la fase W1 y O no aparecen señalados en otras metodologías del estado del arte. The preparation method of said controlled release system consists of two phases, the first is related to the synthesis of microspheres containing bioactive factors, using the W 1 /O/W 2 emulsion technique. that is, a water-organic phase-water method. In this methodology, adjustments were made to some parameters, in order to guarantee greater encapsulation of the bioactive factors of interest. For the Wi phase, a percentage of polyvinyl alcohol (PVA) in solution at 1% and 3% w/v was used. The same occurred in the organic phase (O), which is a solution of polycaprolactone (PCL) in chloroform at 3% and 5% w/v. It should be noted that the higher values for phase W 1 and O do not appear indicated in other state-of-the-art methodologies.
El método de preparación de las microesferas se describe a continuación: The preparation method of the microspheres is described below:
Preparación de microesferas que contienen factores bioactivos Preparation of microspheres containing bioactive factors
Para la síntesis de microesferas se recurre a un método W1/O/W2, en donde la fase W1 (acuosa) está compuesta por PVA al 3% p/v, albúmina de suero bovino (BSA) y el factor bioactivo de interés, la fase O (orgánica) está compuesta por PCL en solución con cloroformo al 5% p/v y la fase W2 está compuesta por un surfactante, en este caso es PVA al 5% p/v. For the synthesis of microspheres, a W1/O/W2 method is used, where the W 1 (aqueous) phase is composed of PVA at 3% w/v, bovine serum albumin (BSA) and the bioactive factor of interest, The O (organic) phase is composed of PCL in solution with 5% w/v chloroform and the W 2 phase is composed of a surfactant, in this case it is 5% w/v PVA.
Preparación de las soluciones iniciales: Preparation of initial solutions:
Preparación de la solución de PVA al 3% y 5% p/v: para ambos casos, el PVA se disuelve en solución tampón de fosfato (PBS) a pH 7,4, estas se dejan selladas en un recipiente en agitación a 700 rpm por 24 horas a 135°C. Preparation of the 3% and 5% w/v PVA solution: for both cases, the PVA is dissolved in phosphate buffer solution (PBS) at pH 7.4, these are left sealed in a container stirring at 700 rpm. for 24 hours at 135°C.
Preparación de la solución de PCL al 5% p/v: el PCL se disuelve en cloroformo y se deja en agitación a 700 rpm durante 30 minutos a temperatura ambiente, completamente sellado. El envase que contiene la solución debe ser de color ámbar ya que el cloroformo es un solvente fotosensible. Preparation of 5% w/v PCL solution: PCL is dissolved in chloroform and left stirring at 700 rpm for 30 minutes at room temperature, completely sealed. The container containing the solution should be amber in color since chloroform is a photosensitive solvent.
Proceso de síntesis: Synthesis process:
Preparación de la solución del factor bioactivo: se prepara una solución de 10pg/mL del factor bioactivo de interés (por ejemplo, un factor bioactivo de carga catiónica, seleccionado de: HGF, TGF-β1 , TGF-β2, TGF-β3, TGF-β4, VEGF, IGF, NGF y BPM), en donde el solvente es PBS 1 X suplementando con albúmina de suero bovino (BSA) al 1 % p/v. Durante todo el proceso se debe mantener la temperatura de la solución a 4°C, esto con la finalidad de preservar el factor bioactivo usado. Preparation of the bioactive factor solution: a 10pg/mL solution of the bioactive factor of interest is prepared (for example, a cationic charge bioactive factor, selected from: HGF, TGF-β1, TGF-β2, TGF-β3, TGF -β4, VEGF, IGF, NGF and BPM), where the solvent is 1X PBS supplementing with 1% w/v bovine serum albumin (BSA). Throughout the process, the temperature of the solution at 4°C, this in order to preserve the bioactive factor used.
Preparación de la fase Wi: Inicialmente a la solución de PVA (3% p/v) se le agrega BSA al 0,1 % p/v y la solución del factor bioactivo hasta obtener una concentración final del factor de 1 pg por cada mL de W1. Posteriormente, se homogeniza la solución durante 1 minuto a 2000rpm. Las soluciones deben estar a 4°C. Preparation of the Wi phase: Initially, 0.1% w/v BSA and the bioactive factor solution are added to the PVA solution (3% w/v) until a final factor concentration of 1 pg is obtained for each mL of W 1 . Subsequently, the solution is homogenized for 1 minute at 2000rpm. The solutions must be at 4°C.
Preparación de la fase W1/O: para obtener la emulsión, por cada 10mL de solución de PCL en cloroformo, se agrega 1 mL de la fase Wi, luego se homogeniza la mezcla durante 1 minuto a 2000 rpm usando un homogenizador. Se debe garantizar que las soluciones estén a 4°C. Preparation of the W 1 /O phase: to obtain the emulsion, for every 10mL of PCL solution in chloroform, 1 mL of the Wi phase is added, then the mixture is homogenized for 1 minute at 2000 rpm using a homogenizer. It must be guaranteed that the solutions are at 4°C.
Síntesis de microesferas W1/O/W2: La solución Wi/O se agrega a la fase W2 (PVA al 5% p/v) mediante goteo continuo a un flujo de 1 mL por minuto con un inyector. La mezcla se homogeniza a 2000rpm durante 1 min y luego se agita magnéticamente durante 12h a 700rpm, para asegurar que el cloroformo presente en la fase orgánica (O) se evapore completamente. Synthesis of W 1 /O/W 2 microspheres: The Wi/O solution is added to the W2 phase (5% w/v PVA) by continuous dripping at a flow rate of 1 mL per minute with an injector. The mixture is homogenized at 2000rpm for 1 min and then magnetically stirred for 12h at 700rpm, to ensure that the chloroform present in the organic phase (O) is completely evaporated.
Recolección, liofilizado y almacenamiento: Las microesferas se recolectan mediante centrifugación a 2500 gravedades por 5 min, se descarta el sobrenadante, y el precipitado se lava con agua desionizada, el proceso se repite 3 veces. Por último, se hace una selección de microesferas por tamaño, para ello se emplean microtamices de tamaño de poro de 40 pm, esto asegura la eliminación de residuos indeseados. El producto se liofilizó a -47°C y a 0,0125 mBar durante 24 horas, el liofilizado obtenido se almacenó a -20°C. Collection, lyophilization and storage: The microspheres are collected by centrifugation at 2500 gravities for 5 min, the supernatant is discarded, and the precipitate is washed with deionized water, the process is repeated 3 times. Finally, a selection of microspheres is made by size; for this, microsieves with a pore size of 40 pm are used, this ensures the elimination of unwanted residues. The product was lyophilized at -47°C and 0.0125 mBar for 24 hours. The lyophilized product obtained was stored at -20°C.
Como podemos observar, en cuanto a los parámetros críticos que tienen alta influencia en el proceso de encapsulación, se utilizó un número de revoluciones para homogeneización de 2000 rpm durante 1 minuto. También se tuvo en cuenta la temperatura de las soluciones a usar en cada etapa del proceso de síntesis, lo cual no está contemplado en el estado del arte. Este factor es muy importante ya que permite garantizar que los factores bioactivos no vayan a sufrir procesos de inactivación debido a cambios súbitos en la temperatura. Por otra parte, se usó un tiempo de agitación a 12 horas con el fin de asegurar la evaporación total del solvente empleado en la solución orgánica (cloroformo). As we can see, regarding the critical parameters that have a high influence on the encapsulation process, a number of revolutions for homogenization of 2000 rpm for 1 minute was used. The temperature of the solutions to be used in each stage of the production process was also taken into account. synthesis, which is not contemplated in the state of the art. This factor is very important since it allows us to guarantee that the bioactive factors will not suffer inactivation processes due to sudden changes in temperature. On the other hand, a stirring time of 12 hours was used in order to ensure total evaporation of the solvent used in the organic solution (chloroform).
En cuanto a la metodología relacionada con la preparación del hidrogel, se destaca la combinación del PVA (polímero sintético), quitosano (Cs) y alginato de sodio (ALG) (polímeros naturales). La combinación de dichos materiales no se había registrado previamente en el estado del arte. Regarding the methodology related to the preparation of the hydrogel, the combination of PVA (synthetic polymer), chitosan (Cs) and sodium alginate (ALG) (natural polymers) stands out. The combination of these materials had not previously been recorded in the state of the art.
El método de preparación del hidrogel se describe a continuación: The hydrogel preparation method is described below:
Preparación de hidrogel incorporando microesferas y antibióticos Preparation of hydrogel incorporating microspheres and antibiotics
Preparación de las soluciones iniciales: Preparation of initial solutions:
Solución de PVA al 5% p/v: el PVA se disuelve en solución tampón de fosfato (PBS) a pH 7,4, esta se deja sellada en un recipiente en agitación a 700 rpm por 24 horas a 135°C. 5% w/v PVA solution: PVA is dissolved in phosphate buffer solution (PBS) at pH 7.4, this is left sealed in a container stirring at 700 rpm for 24 hours at 135°C.
Solución de quitosano al 2% p/v: el quitosano se disuelve en solución de ácido acético (0,1 M), la mezcla se deja sellada en un recipiente en agitación a 700 rpm durante al menos 2 horas a temperatura ambiente. 2% w/v chitosan solution: chitosan is dissolved in acetic acid solution (0.1 M), the mixture is left sealed in a container under stirring at 700 rpm for at least 2 hours at room temperature.
Solución de alginato al 2% p/v: el alginato se disuelve en solución tampón de fosfato (PBS) a pH 7,4, dejando sellado el recipiente y en agitación a 700 rpm durante al menos 2 horas a temperatura ambiente 2% w/v alginate solution: the alginate is dissolved in phosphate buffer solution (PBS) at pH 7.4, leaving the container sealed and stirring at 700 rpm for at least 2 hours at room temperature
Obtención del hidrogel Obtaining the hydrogel
Los biomateriales PVA, quitosano y alginato se mezclan en proporción: 50% PVA, 25% quitosano y 25% alginato, se realiza una agitación inicial a 700 rpm a temperatura ambiente durante 1 hora. Luego se realiza un ajuste del pH de la solución entre 7,2 y 7,4 usando hidróxido de sodio (NaOH) a concentración 1 M, el ajuste de pH se debe hacer usando un pHmetro. La solución se sigue agitando durante 2 horas más antes de añadir las microesferas de PCL-HGF previamente sintetizadas (100 mg de microesferas por mL de hidrogel), a su vez se agrega el antibiótico de elección a una concentración de 1 mg por cada mL de hidrogel, y se deja en agitación constantemente durante 1 hora o más, luego la mezcla se vierte en moldes. El hidrogel obtenido con las microesferas y el antibiótico se somete a 3 ciclos de congelamiento durante 20h a -30°C y descongelamiento por 4h a temperatura ambiente. Después de completados los 3 ciclos, los hidrogeles se reservan en congelamiento entre -20°C y -30°C. The biomaterials PVA, chitosan and alginate are mixed in proportion: 50% PVA, 25% chitosan and 25% alginate, an initial stirring is carried out at 700 rpm at room temperature for 1 hour. Then an adjustment of the pH of the solution between 7.2 and 7.4 using sodium hydroxide (NaOH) at 1 M concentration, pH adjustment should be done using a pH meter. The solution continues to stir for 2 more hours before adding the previously synthesized PCL-HGF microspheres (100 mg of microspheres per mL of hydrogel), in turn adding the antibiotic of choice at a concentration of 1 mg per mL of hydrogel, and left stirring constantly for 1 hour or more, then the mixture is poured into molds. The hydrogel obtained with the microspheres and the antibiotic is subjected to 3 cycles of freezing for 20 hours at -30°C and thawing for 4 hours at room temperature. After completing the 3 cycles, the hydrogels are stored frozen between -20°C and -30°C.
Se puede observar que se registra como novedad del método descrito la incorporación conjunta de microesferas y antibióticos en el mismo hidrogel. Asimismo, vemos que se preparó un hidrogel a base de PVA/quitosano/alginato (PVA/Cs/ALG) para aprovechar el efecto antimicrobiano y biocompatible del quitosano y el alginato, y para complementarlos con las buenas propiedades mecánicas del PVA. Además, en ensayos previos se utilizaron diferentes proporciones de PVA/Cs/ALG (1/1/1 , 2/1/1 , 1/1/2 y 1/2/1 ) para evaluar el efecto sinérgico de su combinación, encontrando que el candidato más apto para ser usado en el sistema de liberación fue el hidrogel de proporción 2/1/1 . El resultado esperado del estudio fue la mejora de las propiedades del híbrido en términos de sus propiedades mecánicas, químicas, microestructurales y biológicas. It can be seen that the joint incorporation of microspheres and antibiotics in the same hydrogel is registered as a novelty of the method described. Likewise, we see that a hydrogel based on PVA/chitosan/alginate (PVA/Cs/ALG) was prepared to take advantage of the antimicrobial and biocompatible effect of chitosan and alginate, and to complement them with the good mechanical properties of PVA. Furthermore, in previous trials different proportions of PVA/Cs/ALG (1/1/1, 2/1/1, 1/1/2 and 1/2/1) were used to evaluate the synergistic effect of their combination, finding that the most suitable candidate to be used in the release system was the hydrogel with a 2/1/1 ratio. The expected result of the study was the improvement of the properties of the hybrid in terms of its mechanical, chemical, microstructural and biological properties.
Los ensayos que se muestran a continuación buscan demostrar que la elección de los biomateriales para la fabricación del hidrogel y las variaciones en los parámetros en el método de preparación de las microesferas que conllevan a la formación de un sistema de liberación con características óptimas para combatir infecciones y a su vez promoviendo los procesos de curación de heridas crónicas. Eficiencia de encapsulaton y morfología de microesferas The tests shown below seek to demonstrate that the choice of biomaterials for the manufacture of the hydrogel and the variations in the parameters in the preparation method of the microspheres that lead to the formation of a release system with optimal characteristics to combat infections and in turn promoting the healing processes of chronic wounds. Encapsulation efficiency and microsphere morphology
En cuanto a las microesferas, se le realizó un ensayo de porcentaje de encapsulation, usando como molécula modelo la Albúmina de Suero Bovino (BSA), la cual también es usada en este experimento como agente estabilizante para factores bioactivos. Se obtuvo una eficiencia de encapsulation aproximada del 70%, para microesferas de PCL cuya formulación fue 3% PVA (W1 ), 5% PCL (O) y 5% PVA (W2), lo que significó un aumento en la encapsulation en comparación a diversos trabajos con microesferas de PCL cuyo principio de síntesis se basa en un método W1/0/W2. As for the microspheres, an encapsulation percentage test was carried out, using Bovine Serum Albumin (BSA) as a model molecule, which is also used in this experiment as a stabilizing agent for bioactive factors. An approximate encapsulation efficiency of 70% was obtained for PCL microspheres whose formulation was 3% PVA (W1), 5% PCL (O) and 5% PVA (W2), which meant an increase in encapsulation compared to various works with PCL microspheres whose synthesis principle is based on a W1/0/W2 method.
En la micrografía SEM de la figura 1 , se observa que las microesferas poseen estructuras esféricas de tamaño micrométrico, con una superficie lisa sin defectos. Por otro lado, en la figura 2 podemos observar que el diámetro medio de las microesferas medidas fue de 23.75 ± 4.73 μm. In the SEM micrograph of Figure 1, it is observed that the microspheres have micrometer-sized spherical structures, with a smooth surface without defects. On the other hand, in Figure 2 we can see that the average diameter of the measured microspheres was 23.75 ± 4.73 μm.
Estos resultados al ser contrastados con lo divulgado en el estado del arte, por ejemplo, el ensayo descrito por A. Luciani et al, muestran que las variaciones realizadas en el método descrito no representan cambios considerables en el tamaño ni la morfología de las microesferas, pero sí representa un aumento sustancial en la encapsulation, lo cual repercute en un mejor aprovechamiento de las moléculas bioactivas (por ejemplo, HGF). These results, when contrasted with what is disclosed in the state of the art, for example, the test described by A. Luciani et al, show that the variations made in the described method do not represent considerable changes in the size or morphology of the microspheres. but it does represent a substantial increase in encapsulation, which results in better use of bioactive molecules (for example, HGF).
Morfología hidrogeles Hydrogel morphology
Otro componente clave en el método de preparación del sistema de liberación controlada descrito es el método de preparación del hidrogel que contiene las microesferas de PCL con el factor bioactivo y el antibiótico de interés, además de ser el soporte que estará en contacto directo con la zona de la herida. Dicho hidrogel será el encargado de liberar las moléculas al medio donde se requiera y es por ello que radica la importancia de desarrollar un método que permita una óptima caracterización morfológica. El hidrogel obtenido por medio del método descrito es el que contiene preferentemente una proporción 2:1 :1 (PVA:Cs:ALG). En la figura 3 se muestra el SEM obtenido para dicho andamio. Another key component in the preparation method of the controlled release system described is the method of preparation of the hydrogel that contains the PCL microspheres with the bioactive factor and the antibiotic of interest, in addition to being the support that will be in direct contact with the area. of the wound. Said hydrogel will be responsible for releasing the molecules to the environment where they are required and that is why it is important to develop a method that allows optimal morphological characterization. The hydrogel obtained by means of the described method is the one that preferably contains a 2:1:1 ratio (PVA:Cs:ALG). Figure 3 shows the SEM obtained for said scaffold.
A partir de las micrografías SEM del hidrogel, se encontró que su tamaño de poro fue de 15.05 ± 12.16 μm. Además, su porosidad relativa es del 73.57%; lo cual lo hace un hidrogel con alta porosidad y con tamaños de poro diversos, convirtiéndolo en un andamio con excelente capacidad de liberación de moléculas bioactivas y de antibióticos. From the SEM micrographs of the hydrogel, its pore size was found to be 15.05 ± 12.16 μm. Furthermore, its relative porosity is 73.57%; which makes it a hydrogel with high porosity and diverse pore sizes, making it a scaffold with excellent capacity for releasing bioactive molecules and antibiotics.
Degradación y propiedades mecánicas del sistema de liberación controlada obtenido por el método descrito Degradation and mechanical properties of the controlled release system obtained by the described method
Otras propiedades a tener en cuenta en la fabricación de sistemas de liberación controlada que comprenden el uso de hidrogeles, es la degradación y las propiedades mecánicas. En cuanto a la degradación del sistema elaborado, se obtuvieron valores de 63.73 ± 1.96% tras dos meses de estudio. El uso de biomateriales naturales como el quitosano y el alginato, los cuales no se entrecruzan en el hidrogel y la incorporación de microesferas deriva en que el sistema de liberación se degrade más rápido en comparación con hidrogeles que contienen solamente PVA. Estudios como el de C. Xiao, et al., muestra que hidrogeles compuestos solamente por PVA presentan una degradación baja tras 25 días de ensayos (12.5%). Other properties to take into account in the manufacture of controlled release systems that include the use of hydrogels are degradation and mechanical properties. Regarding the degradation of the developed system, values of 63.73 ± 1.96% were obtained after two months of study. The use of natural biomaterials such as chitosan and alginate, which do not cross-link in the hydrogel, and the incorporation of microspheres results in the release system degrading faster compared to hydrogels containing only PVA. Studies such as that of C. Xiao, et al., show that hydrogels composed only of PVA show low degradation after 25 days of testing (12.5%).
En cuanto a las propiedades mecánicas, se obtuvo un valor del módulo de Young de 28.14 ± 4.40 KPa, para el sistema de liberación controlada obtenido por el método descrito. Este valor resultó ser superior en comparación a investigaciones como la de S. Lin et al., 2019; y Shamloo et al., 2021 ; en donde obtuvieron módulos de 2.5 Pa y 6.8 ± 0.82 KPa, respectivamente; para hidrogeles en cuya composición se incluía PVA. En las patentes encontradas en el estado de la técnica no se encuentran resultados relevantes que permitan realizar una comparación con respecto a los resultados obtenidos para el sistema de liberación controlada elaborado por el método descrito en los ítems de degradación y propiedades mecánicas. Regarding the mechanical properties, a Young's modulus value of 28.14 ± 4.40 KPa was obtained for the controlled release system obtained by the described method. This value turned out to be higher compared to research such as that of S. Lin et al., 2019; and Shamloo et al., 2021 ; where they obtained modules of 2.5 Pa and 6.8 ± 0.82 KPa, respectively; for hydrogels whose composition included PVA. In the patents found in the state of the art, there are no relevant results that allow a comparison to be made with respect to the results obtained for the controlled release system prepared by the method described in the degradation and mechanical properties items.
Liberación del factor de crecimiento de heoatocitos (HGF): Release of heoatocyte growth factor (HGF):
Uno de los problemas más comunes al usar microesferas es su liberación de tipo explosiva, esto impide que se aproveche de forma óptima la molécula con acción terapéutica durante las primeras horas de liberación. Para solventar dicho inconveniente, se ha optado por incorporar las microesferas en un hidrogel de PVA/Quitosano/Alginato (HgA). En la figura 4, se observa el efecto de incorporación de las microesferas en el hidrogel; siendo Mes solamente microesferas y HgA-Mcs el sistema de liberación compuesto por las microesferas incluidas en el hidrogel. One of the most common problems when using microspheres is their explosive release, this prevents optimal use of the molecule with therapeutic action during the first hours of release. To solve this problem, it has been decided to incorporate the microspheres in a PVA/Chitosan/Alginate (HgA) hydrogel. In Figure 4, the effect of incorporation of the microspheres into the hydrogel is observed; Mes being only microspheres and HgA-Mcs the release system composed of the microspheres included in the hydrogel.
Al cabo de 15 días, se observó el porcentaje promedio liberado de HGF en el medio fue de 74,88 ± 3,86% para las microesferas (Mes), mientras que para el sistema hidrogel-microesferas (HgA-Mcs) se reportó un valor promedio de 56,28 ± 0,56%. After 15 days, the average percentage released of HGF in the medium was 74.88 ± 3.86% for the microspheres (Mes), while for the hydrogel-microspheres system (HgA-Mcs) a average value of 56.28 ± 0.56%.
El sistema de liberación HgA-Mcs después de las primeras 24 horas libera HGF en un porcentaje aproximado del 3 al 4% por día. Esto indica que por cada 100 mg de microesferas (aproximadamente 700 ng encapsulados de HGF) incorporadas en 1 mL de hidrogel, diariamente se libera entre 21 a 28 ng del HGF, lo cual es una cantidad óptima para estimular la proliferación y migración celular in vitro. The HgA-Mcs release system after the first 24 hours releases HGF at an approximate rate of 3 to 4% per day. This indicates that for every 100 mg of microspheres (approximately 700 ng encapsulated HGF) incorporated into 1 mL of hydrogel, between 21 to 28 ng of HGF is released daily, which is an optimal amount to stimulate cell proliferation and migration in vitro. .
No existe un reporte en la literatura sobre perfiles de liberación de HGF el cual esté encapsulado en microesferas y embebido en hidrogeles, tampoco se encuentra en la revisión de patentes algún perfil de liberación que involucre dicho factor. La patente CN1 13244444A, señalada en el estado de la técnica, hace referencia a la encapsulación del VEGF (Factor de Crecimiento Vascular Endotelial), usando otros biomateriales (Alginato para microesferas y Pluronic F127 + F68 para hidrogeles) para su encapsulación, debido a la diferencia en la naturaleza de los biomateñales, factores y técnicas usadas para la generación del apósito, no puede ser considerado como válido para hacer una comparación con lo propuesto en este documento. There is no report in the literature on the release profiles of HGF which is encapsulated in microspheres and embedded in hydrogels, nor is there a release profile that involves said factor in the patent review. The patent CN1 13244444A, indicated in the state of the art, refers to the encapsulation of VEGF (Vascular Endothelial Growth Factor), using other biomaterials (Alginate for microspheres and Pluronic F127 + F68 for hydrogels) for its encapsulation, due to the difference in the nature of the biomaterials, factors and techniques used for the generation of the dressing, cannot be considered valid to make a comparison with what is proposed in this document.
Liberación de antibiótico Antibiotic release
Al sistema de liberación controlada que comprende microesferas de factores bioactivos incluidas en un hidrogel, se le incorporan antibióticos (por ejemplo, un Carbapenem seleccionado de: Meropenem, Doripenem, Ertapenem, Imipenem, entre otros), con la finalidad de crear un efecto sinérgico al momento de tratar heridas cutáneas crónicas. Así pues, el método descrito elabora un sistema de liberación dual con el potencial para combatir las infecciones de diversos agentes patógenos y a su vez de promover la proliferación celular por medio de la acción de factores bioactivos. To the controlled release system that comprises microspheres of bioactive factors included in a hydrogel, antibiotics are incorporated (for example, a Carbapenem selected from: Meropenem, Doripenem, Ertapenem, Imipenem, among others), in order to create a synergistic effect. time to treat chronic skin wounds. Thus, the method described creates a dual release system with the potential to combat infections by various pathogens and at the same time promote cell proliferation through the action of bioactive factors.
Para este ensayo específico se decidió utilizar el Meropenem, que es un antibiótico que pertenece a la familia de los Carbapenems. Previo a realizar el perfil de liberación para el Meropenem, se realizó un ensayo de Concentración Mínima Inhibitoria (CMI), para cuatro cepas bacterianas: S. aureus, E. coli, K. pneumoniae y P. aeruginosa. Tras el ensayo se determinó que, para garantizar una inhibición de las 4 cepas, durante al menos un día, la concentración mínima inhibitoria (CMI) incorporada en los hidrogeles debería ser de 10 μg/mL. For this specific trial it was decided to use Meropenem, which is an antibiotic that belongs to the Carbapenem family. Before carrying out the release profile for Meropenem, a Minimum Inhibitory Concentration (MIC) test was carried out for four bacterial strains: S. aureus, E. coli, K. pneumoniae and P. aeruginosa. After the test, it was determined that, to guarantee inhibition of the 4 strains, for at least one day, the minimum inhibitory concentration (MIC) incorporated into the hydrogels should be 10 μg/mL.
La concentración y el tipo de antibiótico que se incorpora al sistema de liberación controlada elaborado por el método descrito se puede ajustar acorde al tipo de bacterias y tiempo estipulado de tratamiento. En la figura 5, por ejemplo, se observa la liberación acumulada para tres concentraciones diferentes del antibiótico Meropenem (X=10μg/mL). A medida que la concentración del antibiótico aumenta, aumenta también el tiempo en donde la liberación de concentraciones terapéuticas durante un periodo de tiempo más prolongado. En el caso del hidrogel 1X, liberó la totalidad de su contenido a las 24 horas. En el caso de los hidrogeles con antibiótico a 10X y 100X, después de 24 horas, la liberación que se registró fue de 55,20 ± 2,43 y 276.491 ± 26.82 μg/mL, respectivamente. Después del primer día y hasta el día séptimo, los hidrogeles con antibiótico 10X y 100X registraron una liberación sostenida de 4,66 y 55,93 pg/mL, en promedio por día, dichas concentraciones están dentro del rango de concentración considerado como susceptible para inhibición bacteriana, según el Clinical and Laboratory Standards Institute (CLSI) (Manual M-100, tabla 5a). The concentration and type of antibiotic that is incorporated into the controlled release system prepared by the described method can be adjusted according to the type of bacteria and stipulated treatment time. In Figure 5, for example, the cumulative release is observed for three different concentrations of the antibiotic Meropenem (X=10μg/mL). As the concentration of the antibiotic increases, the time at which therapeutic concentrations are released over a longer period of time also increases. In the case of the 1X hydrogel, it released all of its contents after 24 hours. In the case of the hydrogels with antibiotic at 10X and 100X, after 24 hours, the release that was recorded was 55.20 ± 2.43 and 276.491 ± 26.82 μg/mL, respectively. After the first day and until the seventh day, the hydrogels with 10X and 100X antibiotic recorded a sustained release of 4.66 and 55.93 pg/mL, on average per day, these concentrations are within the concentration range considered susceptible to bacterial inhibition, according to the Clinical and Laboratory Standards Institute (CLSI) (Manual M-100, table 5a).
Antibioqramas: Antibiochemistry:
Una de las ventajas de los biomateriales usados para la preparación de los hidrogeles (quitosano y alginato), es que estos tienen un carácter antibacteriano inherente, esto combinado con algún antibiótico, genera un efecto sinérgico que potencia la inhibición de agentes patógenos. One of the advantages of the biomaterials used for the preparation of hydrogels (chitosan and alginate) is that they have an inherent antibacterial character; this, combined with some antibiotic, generates a synergistic effect that enhances the inhibition of pathogenic agents.
Para comprobar el efecto de los biomateriales usados y la concentración del Meropenem (10X y 100X) en la inhibición de las bacterias: S. aureus, E. coii, K. pneumoniae y P. aeruginosa, se midió el halo de inhibición por el método de difusión en agar (Figura 6). Se encontró que el hidrogel (PVA/Cs/ALG) sin antibiótico presentó un halo de inhibición para las cepas de S. aureus y E. Coii, el cual puede ser atribuido a un efecto bacteriostático debido a la presencia de quitosano y alginato en la estructura del hidrogel. La cepa S. aureus fue la de mayor inhibición (16,0 mm), mientras que para la E. coli fue de 15.3 mm, en el caso de la K. pneumoniae y P. aeruginosa no se registró halo inhibitorio. Se realizó una comparación entre los halos obtenidos en nuestro hidrogel de PVA/Cs/ALG y el hidrogel de quitosano fabricado en la patente CN107496976A, y se encontró que nuestro hidrogel sin ningún componente extra tiene una capacidad más alta de inhibición que el hidrogel fabricado en dicha patente. Por otra parte, al incorporar antibióticos en el hidrogel, ejemplo: Meropenem, se puede evidenciar un aumento en el halo de inhibición a medida que la concentración del antibiótico aumenta. Como se observa en la siguiente tabla 1 , para los tratamientos con antibiótico (II y III), en todos los casos, las bacterias son de carácter susceptible a la inhibición, esto según lo contemplado en el Clinical and Laboratory Standards Institute (CLSI) (Manual M-100, tabla 4A-I), aunque cabe resaltar que para el caso de la E. Coli y S. aureus el halo de inhibición es mayor en comparación a las otras dos cepas. To verify the effect of the biomaterials used and the concentration of Meropenem (10X and 100X) on the inhibition of bacteria: S. aureus, E. coii, K. pneumoniae and P. aeruginosa, the inhibition zone was measured by the method diffusion in agar (Figure 6). It was found that the hydrogel (PVA/Cs/ALG) without antibiotic presented an inhibition zone for the strains of S. aureus and E. Coii, which can be attributed to a bacteriostatic effect due to the presence of chitosan and alginate in the hydrogel structure. The S. aureus strain was the one with the highest inhibition (16.0 mm), while for E. coli it was 15.3 mm, in the case of K. pneumoniae and P. aeruginosa no inhibitory halo was recorded. A comparison was made between the halos obtained in our PVA/Cs/ALG hydrogel and the chitosan hydrogel manufactured in patent CN107496976A, and it was found that our hydrogel without any extra component has a higher inhibition capacity than the hydrogel manufactured in said patent. On the other hand, when incorporating antibiotics into the hydrogel, for example: Meropenem, an increase in the inhibition zone can be seen as the concentration of the antibiotic increases. As seen in the following table 1, for antibiotic treatments (II and III), in all cases, the bacteria are susceptible to inhibition, as contemplated by the Clinical and Laboratory Standards Institute (CLSI) ( Manual M-100, table 4A-I), although it should be noted that in the case of E. Coli and S. aureus the zone of inhibition is greater compared to the other two strains.
En la tabla 1 se observan los halos obtenidos para los tratamientos I (sólo hidrogel), tratamiento II (hidrogel-Meropenem 10X) y tratamiento III (hidrogel- Meropenem 100X).
Figure imgf000018_0001
Table 1 shows the halos obtained for treatments I (only hydrogel), treatment II (hydrogel-Meropenem 10X) and treatment III (hydrogel-Meropenem 100X).
Figure imgf000018_0001
Tabla 1. Halos de inhibición obtenidos para 4 cepas bacterianas (mm) Table 1. Inhibition zones obtained for 4 bacterial strains (mm)
Ensayo de proliferación celular Cell proliferation assay
Se evaluó la proliferación celular usando el método de cuantificación por Resazurina, esto con la finalidad de observar el efecto del sistema de liberación controlada elaborado por el método descrito (con concentración de Meropenem al 100X) sobre células estromales mesenquimales de gelatina de Wharton. Como control se utilizó solamente un hidrogel de proporción 2:1 :1 (PVA:Cs:ALG). Se observó que en el hidrogel la proliferación celular fue superior al 70%, lo cual lo hace apto para su aplicación, ya que cumple con los requerimientos mínimos de citotoxicidad. Asimismo, se evidencia que la encapsulación y liberación de factores bioactivos (por ejemplo, HGF), aumenta la proliferación celular, logrando valores máximos aproximados de 125% después de 48 horas, esto comprueba a su vez que la adición de antibióticos no tiene efecto adverso sobre la proliferación. Estos resultados de proliferación celular están normalizados con un estándar, que es el cultivo de células en placa. Cell proliferation was evaluated using the Resazurin quantification method, in order to observe the effect of the controlled release system prepared by the described method (with 100X concentration of Meropenem) on Wharton's gelatin mesenchymal stromal cells. As a control, only a hydrogel with a 2:1:1 ratio (PVA:Cs:ALG) was used. It was observed that cell proliferation in the hydrogel was greater than 70%, which makes it suitable for its application, since it meets the minimum cytotoxicity requirements. Likewise, it is evident that the encapsulation and release of bioactive factors (for example, HGF) increases cell proliferation, achieving approximate maximum values of 125% after 48 hours, this in turn proves that the addition of antibiotics has no adverse effect. about proliferation. These cell proliferation results are normalized to a standard, which is plate cell culture.
Como podemos ver, la presente invención describe un método novedoso para elaborar un sistema de liberación dual que libera tantos factores bioactivos de interés y antibióticos, permitiendo combatir infecciones y a su vez promover los procesos de curación de heridas crónicas. Los experimentos in vitro realizados, demostraron que el sistema de liberación promueve la proliferación celular, esto gracias a la adición de factores bioactivos (por ejemplo, HGF). También se demostró que el hidrogel por sí solo tiene propiedades antimicrobianas inherentes, lo cual permite potenciar el efecto que pueden tener los antibióticos en el tratamiento de infecciones. La adición de las microesferas de PCL con un factor bioactivo en el hidrogel permitió obtener un perfil de liberación sin un efecto explosivo significativo, también se obtuvieron valores de degradación y propiedades mecánicas aceptables para ser usado como apósito de liberación en heridas cutáneas crónicas. As we can see, the present invention describes a novel method to develop a dual release system that releases so many bioactive factors of interest and antibiotics, allowing to fight infections and in turn promote the healing processes of chronic wounds. The in vitro experiments carried out demonstrated that the release system promotes cell proliferation, thanks to the addition of bioactive factors (for example, HGF). The hydrogel itself was also shown to have inherent antimicrobial properties, allowing the effect that antibiotics can have in treating infections to be enhanced. The addition of PCL microspheres with a bioactive factor in the hydrogel allowed obtaining a release profile without a significant explosive effect. Degradation values and acceptable mechanical properties were also obtained to be used as a release dressing in chronic skin wounds.

Claims

REIVINDICACIONES
1. Método de preparación de un sistema de liberación controlada de antibióticos y factores bioactivos conformado por microesferas incluidas en un hidrogel, en donde el método comprende los siguientes pasos: a) preparar una solución de 10pg/mL de un factor bioactivo de interés, en donde el solvente utilizado es una solución tampón fosfato (PBS) 1X suplementando con albúmina de suero bovino (BSA) al 1 % p/v, a una temperatura de preparación de 4°C; b) agregar BSA al 0,1 % p/v a una solución de alcohol polivinílico (PVA) 3% p/v y luego agregar la solución del factor bioactivo preparada en el paso a) hasta obtener una solución Wi con una concentración final del factor bioactivo de 1 μg por cada mL de la solución obtenida, homogenizando dicha solución durante 1 minuto a 2000 rpm a 4°C; c) agregar 1 mL de la solución W1 obtenida en el paso b) por cada 10 mL de una solución de policaprolactona (PCL) en cloroformo al 5%, homogenizando la mezcla durante 1 minuto a 2000 rpm a 4°C hasta obtener una emulsión W-1/O; d) agregar la emulsión Wi/O obtenida en el paso c) a una solución de PVA al 5% p/v (fase W2) mediante goteo continuo a un flujo de 1 mL por minuto con un inyector, en donde la mezcla se homogeniza a 2000 rpm durante 1 minuto y luego se agita magnéticamente durante 12 horas a 700 rpm para asegurar que el cloroformo presente se evapore completamente y se formen las microesferas; e) recolectar las microesferas mediante centrifugación a 2500 gravedades por 5 minutos, descartando el sobrenadante y lavando el precipitado con agua desionizada, repitiendo dicho proceso 3 veces; f) seleccionar las microesferas por tamaño empleando microtamices de tamaño de poro de 40 pm; g) liofilizar las microesferas entre -45°C y -55 °C, y a 0,0125 mBar durante 24 horas, y almacenarlas entre -20°C y -30°C; h) para la obtención del hidrogel, mezclar una solución de PVA al 5% p/v, una solución de quitosano al 2% p/v y una solución de alginato al 2% p/v en una proporción seleccionada de 2:1 :1 , 1 :1 :1 , 1 :2:1 o 1 :1 :2, con una agitación inicial a 700 rpm a temperatura ambiente durante 1 hora; i) ajustar el pH de la solución obtenida en el paso h) usando hidróxido de sodio (NaOH) a concentración 1 M hasta llegar a un pH entre 7,2 y 7,4; j) agitar el hidrogel obtenido en el paso i) durante 2 horas más y luego añadir las microesferas previamente sintetizadas y almacenadas según lo descrito en el paso g), en donde se agregan 100 mg de microesferas por cada mL de hidrogel obtenido; k) agregar el antibiótico de elección a una concentración de 1 mg por cada mL de hidrogel y dejar en agitación constante durante 1 hora; y l) verter la mezcla en moldes y someter al hidrogel obtenido con las microesferas y el antibiótico a 3 ciclos de congelamiento durante 20h a -30°C y descongelamiento por 4h a temperatura ambiente. 1. Method for preparing a controlled release system for antibiotics and bioactive factors made up of microspheres included in a hydrogel, where the method includes the following steps: a) prepare a solution of 10pg/mL of a bioactive factor of interest, in where the solvent used is a 1X phosphate buffer solution (PBS) supplemented with 1% w/v bovine serum albumin (BSA), at a preparation temperature of 4°C; b) add 0.1% w/w BSA to a 3% w/v polyvinyl alcohol (PVA) solution and then add the bioactive factor solution prepared in step a) until obtaining a solution Wi with a final concentration of the bioactive factor 1 μg for each mL of the solution obtained, homogenizing said solution for 1 minute at 2000 rpm at 4°C; c) add 1 mL of the W 1 solution obtained in step b) for every 10 mL of a 5% solution of polycaprolactone (PCL) in chloroform, homogenizing the mixture for 1 minute at 2000 rpm at 4°C until obtaining a emulsion W- 1 /O; d) add the Wi/O emulsion obtained in step c) to a 5% w/v PVA solution (W 2 phase) by continuous dripping at a flow of 1 mL per minute with an injector, where the mixture is homogenize at 2000 rpm for 1 minute and then stir magnetically for 12 hours at 700 rpm to ensure that the chloroform present is completely evaporated and the microspheres are formed; e) collect the microspheres by centrifugation at 2500 gravities for 5 minutes, discarding the supernatant and washing the precipitate with deionized water, repeating said process 3 times; f) select the microspheres by size using microsieves with a pore size of 40 pm; g) freeze-dry the microspheres between -45°C and -55°C, and at 0.0125 mBar for 24 hours, and store them between -20°C and -30°C; h) to obtain the hydrogel, mix a 5% w/v PVA solution, a 2% w/v chitosan solution and a 2% w/v alginate solution in a selected ratio of 2:1:1, 1:1:1, 1:2:1 or 1:1:2, with initial stirring at 700 rpm at room temperature for 1 hour; i) adjust the pH of the solution obtained in step h) using sodium hydroxide (NaOH) at a 1 M concentration until reaching a pH between 7.2 and 7.4; j) shake the hydrogel obtained in step i) for 2 more hours and then add the microspheres previously synthesized and stored as described in step g), where 100 mg of microspheres are added for each mL of hydrogel obtained; k) add the antibiotic of choice at a concentration of 1 mg for each mL of hydrogel and leave it under constant stirring for 1 hour; and l) pour the mixture into molds and subject the hydrogel obtained with the microspheres and the antibiotic to 3 cycles of freezing for 20 hours at -30°C and thawing for 4 hours at room temperature.
2. El método de la reivindicación 1 , en donde las soluciones de PVA al 3% y al 5% p/v se preparan disolviendo PVA en una solución tampón fosfato (PBS) a pH 7,4, en donde las soluciones obtenidas se dejan selladas en un recipiente en agitación a 700 rpm por 24 horas a una temperatura de 135°C. 2. The method of claim 1, wherein the 3% and 5% w/v PVA solutions are prepared by dissolving PVA in a phosphate buffer solution (PBS) at pH 7.4, wherein the solutions obtained are left sealed in a container stirring at 700 rpm for 24 hours at a temperature of 135°C.
3. El método de la reivindicación 1 o 2, en donde la solución de policaprolactona (PCL) al 5% se prepara disolviendo PCL en cloroformo con una agitación a 700 rpm durante 30 minutos a temperatura ambiente en un envase color ámbar completamente sellado. 3. The method of claim 1 or 2, wherein the 5% polycaprolactone (PCL) solution is prepared by dissolving PCL in chloroform with stirring at 700 rpm for 30 minutes at room temperature in a completely sealed amber container.
4. El método de cualquiera de las reivindicaciones 1 a 3, en donde la solución de quitosano al 2% p/v se prepara disolviendo el quitosano en una solución de ácido acético (0,1 M) dejando la mezcla sellada en un recipiente en agitación a 700 rpm durante al menos 2 horas a temperatura ambiente. 4. The method of any of claims 1 to 3, wherein the 2% w/v chitosan solution is prepared by dissolving the chitosan in a solution of acetic acid (0.1 M) leaving the mixture sealed in a container in stirring at 700 rpm for at least 2 hours at room temperature.
5. El método de cualquiera de las reivindicaciones anteriores, en donde la solución de alginato al 2% p/v se prepara disolviendo el alginato en una solución tampón fosfato (PBS) a pH 7,4, en donde la solución obtenida se deja sellada en un recipiente en agitación a 700 rpm durante al menos 2 horas a temperatura ambiente. 5. The method of any of the preceding claims, wherein the 2% w/v alginate solution is prepared by dissolving the alginate in a phosphate buffer solution (PBS) at pH 7.4, wherein the solution obtained is left sealed. in a container stirring at 700 rpm for at least 2 hours at room temperature.
6. El método de cualquiera de las reivindicaciones anteriores, en donde la proporción de PVA:quitosano:ALG es de 2:1 :1 . 6. The method of any of the preceding claims, wherein the proportion of PVA:chitosan:ALG is 2:1:1.
7. El método de cualquiera de las reivindicaciones anteriores, en donde el factor bioactivo de interés es de carga catiónica. 7. The method of any of the preceding claims, wherein the bioactive factor of interest has a cationic charge.
8. El método de la reivindicación 7, en donde el factor bioactivo de interés es factor de crecimiento de hepatocitos (HGF). 8. The method of claim 7, wherein the bioactive factor of interest is hepatocyte growth factor (HGF).
9. El método de cualquiera de las reivindicaciones anteriores, en donde el antibiótico de elección es un Carbapenem. 9. The method of any of the preceding claims, wherein the antibiotic of choice is a Carbapenem.
10. El método de la reivindicación 9, en donde el antibiótico de elección es Meropenem. 10. The method of claim 9, wherein the antibiotic of choice is Meropenem.
11. El método de cualquiera de las reivindicaciones anteriores, en donde el hidrogel obtenido que incluye las microesferas y el antibiótico se conserva entre -20°C y -30°C. 11. The method of any of the preceding claims, wherein the hydrogel obtained that includes the microspheres and the antibiotic is preserved between -20°C and -30°C.
PCT/IB2023/052113 2022-03-10 2023-03-07 Method for preparing a system for controlled release of antibiotics and bioactive factors, formed by microspheres in a hydrogel WO2023170558A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CONC2022/0002809 2022-03-10
CONC2022/0002809A CO2022002809A1 (en) 2022-03-10 2022-03-10 Preparation method of a controlled release system of antibiotics and bioactive factors made up of microspheres included in a hydrogel

Publications (1)

Publication Number Publication Date
WO2023170558A1 true WO2023170558A1 (en) 2023-09-14

Family

ID=80998338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2023/052113 WO2023170558A1 (en) 2022-03-10 2023-03-07 Method for preparing a system for controlled release of antibiotics and bioactive factors, formed by microspheres in a hydrogel

Country Status (2)

Country Link
CO (1) CO2022002809A1 (en)
WO (1) WO2023170558A1 (en)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BAHADORAN MAEDEH, SHAMLOO AMIR, NOKOORANI YEGANEH DORRI: "Development of a polyvinyl alcohol/sodium alginate hydrogel-based scaffold incorporating bFGF-encapsulated microspheres for accelerated wound healing", SCIENTIFIC REPORTS, vol. 10, no. 1, XP093091502, DOI: 10.1038/s41598-020-64480-9 *
FARAZIN ASHKAN, MOHAMMADIMEHR MEHDI, GHASEMI AMIR HOSSEIN, NAEIMI HOSSEIN: "Design, preparation, and characterization of CS/PVA/SA hydrogels modified with mesoporous Ag 2 O/SiO 2 and curcumin nanoparticles for green, biocompatible, and antibacterial biopolymer film", RSC ADVANCES, vol. 11, no. 52, 4 October 2021 (2021-10-04), pages 32775 - 32791, XP093091503, DOI: 10.1039/D1RA05153A *
SHAMLOO AMIR; SARMADI MORTEZA; AGHABABAIE ZAHRA; VOSSOUGHI MANOUCHEHR: "Accelerated full-thickness wound healing via sustained bFGF delivery based on a PVA/chitosan/gelatin hydrogel incorporating PCL microspheres", INTERNATIONAL JOURNAL OF PHARMACEUTICS, ELSEVIER, NL, vol. 537, no. 1, 27 December 2017 (2017-12-27), NL , pages 278 - 289, XP085337757, ISSN: 0378-5173, DOI: 10.1016/j.ijpharm.2017.12.045 *

Also Published As

Publication number Publication date
CO2022002809A1 (en) 2022-04-08

Similar Documents

Publication Publication Date Title
Tao et al. Chitosan-based drug delivery systems: from synthesis strategy to osteomyelitis treatment–a review
Sun et al. Recent advances of injectable hydrogels for drug delivery and tissue engineering applications
US11607387B2 (en) Efficient aqueous encapsulation and controlled release of bioactive agents
Cevher et al. Characterization of biodegradable chitosan microspheres containing vancomycin and treatment of experimental osteomyelitis caused by methicillin-resistant Staphylococcus aureus with prepared microspheres
Hatefi et al. Biodegradable injectable in situ forming drug delivery systems
Li et al. Tough composite hydrogels with high loading and local release of biological drugs
Chang et al. Delivery of the antibiotic gentamicin sulphate from precipitation cast matrices of polycaprolactone
ES2950857T3 (en) Methods for the preparation of injectable depot compositions
Nelson et al. Extended and sequential delivery of protein from injectable thermoresponsive hydrogels
Soundrapandian et al. Organic–inorganic composites for bone drug delivery
Chen et al. A self-healing, magnetic and injectable biopolymer hydrogel generated by dual cross-linking for drug delivery and bone repair
De Witte et al. Immobilization of nanocarriers within a porous chitosan scaffold for the sustained delivery of growth factors in bone tissue engineering applications
Wan et al. Investigating a new drug delivery nano composite membrane system based on PVA/PCL and PVA/HA (PEG) for the controlled release of biopharmaceuticals for bone infections
Ye et al. Phase-change composite filled natural nanotubes in hydrogel promote wound healing under photothermally triggered drug release
Zhang Injectable biomaterials for stem cell delivery and tissue regeneration
Motasadizadeh et al. Dual drug delivery system of teicoplanin and phenamil based on pH-sensitive silk fibroin/sodium alginate hydrogel scaffold for treating chronic bone infection
Shultz et al. Hydrogel-based local drug delivery strategies for spinal cord repair
Guadalupe et al. Bioactive polymeric nanofiber matrices for skin regeneration
Yao et al. Hollow hydroxyapatite microspheres/chitosan composite as a sustained delivery vehicle for rhBMP-2 in the treatment of bone defects
CN105056286A (en) Liquid band-aid and preparing method thereof
Wan et al. A dual-responsive polydopamine-modified hydroxybutyl chitosan hydrogel for sequential regulation of bone regeneration
Xue et al. A novel controlled-release system for antibacterial enzyme lysostaphin delivery using hydroxyapatite/chitosan composite bone cement
Rodríguez-Évora et al. Bone regeneration induced by an in situ gel-forming poloxamine, bone morphogenetic protein-2 system
Li et al. Fabrication and evaluation of bone morphogenetic protein-2 microspheres coated black phosphorus nanosheets@ polylactic-glycolic acid copolymers scaffold: A multifunctional antibacterial photothermal scaffold for bone regeneration
Ning et al. Recent developments in controlled release of antibiotics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766221

Country of ref document: EP

Kind code of ref document: A1