WO2023170323A1 - Method for manufacturing channels, wells and/or complex structures in glass - Google Patents

Method for manufacturing channels, wells and/or complex structures in glass Download PDF

Info

Publication number
WO2023170323A1
WO2023170323A1 PCT/ES2023/070124 ES2023070124W WO2023170323A1 WO 2023170323 A1 WO2023170323 A1 WO 2023170323A1 ES 2023070124 W ES2023070124 W ES 2023070124W WO 2023170323 A1 WO2023170323 A1 WO 2023170323A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
laser
metal sheet
channels
wells
Prior art date
Application number
PCT/ES2023/070124
Other languages
Spanish (es)
French (fr)
Inventor
Maria del Carmen BAO VARELA
Ana Isabel Gomez Varela
Raul SANCHEZ CRUZ
Maria Teresa Flores Arias
Bastian CARNERO GROBA
Original Assignee
Universidade De Santiago De Compostela
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade De Santiago De Compostela filed Critical Universidade De Santiago De Compostela
Publication of WO2023170323A1 publication Critical patent/WO2023170323A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/18Working by laser beam, e.g. welding, cutting or boring using absorbing layers on the workpiece, e.g. for marking or protecting purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/122Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in a liquid, e.g. underwater
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/146Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor the fluid stream containing a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/54Glass

Definitions

  • the present invention relates to a process for processing glass using a laser source. More particularly, this process comprises the realization of structures with different geometries and depths on glass substrates, using an underwater indirect laser ablation method.
  • Microfluidics is a field of great interest due to its multiple applications in chemistry, engineering and medicine. Microfluidic devices can have very complex structures, in which the channel can be considered the most basic unit. Through laser ablation it is possible to create structures with varied dimensions and geometries on glass substrates. Glass is one of the most interesting substrates in the field of microfluidics because it offers better conditions for experiments in terms of chemical stability and optical quality for inspection. Furthermore, a master of a microfluidics device made of glass can be reused numerous times.
  • This technique consists of focusing a laser on a metallic target located under glass or a transparent material at the wavelength of the laser used (Zhang J, Sugioka K, Midorikawa K. Laser-induced plasma-assisted ablation of fused quartz using the fourth harmonic of a Nd +:YAG laser. Appl Phys A Mater Sci Process 1998;67:545-9).
  • the plasma generated by the interaction of the laser with the metallic target allows the ablation of the rear face of the glass to begin (Zhang, J., Sugioka, K. & Midorikawa, K. High-quality and high- efficiency machining of glass materials by laser-induced plasma-assisted ablation using conventional nanosecond UV, visible, and infrared lasers.
  • the authors of the present invention have developed a procedure that allows manufacturing channels, wells and/or complex structures in a glass with straight walls, that is, perpendicular to the faces of the glass.
  • the procedure allows manufacturing these channels, wells and/or complex structures with a minimum depth of 500 pm ensuring that the walls are straight. But in addition, the procedure also allows achieving greater depths, up to 5 mm, keeping the walls straight.
  • the invention is directed to glasses with these channels, wells and/or complex structures and to the manufacturing process.
  • the present invention refers to a glass characterized by having channels, wells and/or complex structures with vertical walls and the depth of the channels, wells and/or complex structures being greater than 500 pm.
  • the invention is also directed to a procedure for manufacturing channels, wells and/or complex structures in glass, which comprises: focusing a laser beam on a metal sheet through the glass, where the glass is placed parallel to the metal sheet, and between the glass and the metal sheet there is a transparent liquid selected from the group consisting of deionized water, distilled water, ethanol, methanol and acetone.
  • the invention is also directed to a glass characterized by having channels, wells and/or complex structures with vertical walls and the depth being greater than 500 pm, obtainable by the process of the invention.
  • Figure 1 shows a diagram with the experimental setup in the ablation zone. Fasteners (2) are placed on the glass substrate (1) to prevent the glass from moving due to the pressure exerted during the manufacturing process.
  • the figure also represents the laser beam (3), the metallic target (4), separators (5) and deionized water (6).
  • Figure 2a shows a reconstructed 3D confocal image of a representative rectangular channel, and in Figure 2b its corresponding profile.
  • Figure 3a shows a top view of an array of 3 mm diameter wells made of soda-lime glass.
  • Figure 3b you can see the depth of the wells manufactured.
  • wells refers to holes with walls perpendicular to the faces of the glass whose base can have different shapes, among others circular, oval, rectangular or square.
  • complex structures refers to structures composed of the combination of straight channels and channels that draw curves, or combinations of channels with different geometries and combinations of wells and/or wells and channels.
  • the expression “straight wall” refers to the fact that the lateral faces of the channels and/or wells and/or complex structures are perpendicular to the faces of the glass.
  • the term "passes" refers to the number of times the laser is struck on the metal following the pattern of the previously designed shape.
  • the term "refocus” refers to refocusing the laser beam onto the metallic target.
  • the present invention refers to a glass characterized by having channels, wells and/or complex structures with vertical walls and the depth of the channels, wells and/or complex structures being greater than 500 pm.
  • the depth of the channels, wells and/or complex structures is preferably between 500 mm and 2 mm, more preferably between 2 mm and 5 mm, more preferably between 3 mm and 5 mm, even more preferably between 4 mm and 5 mm. mm.
  • the manufacture of channels, wells and/or complex structures in glass with vertical walls and the depth of the channels, wells and/or complex structures being greater than 500 pm, preferably between 500 pm and 2mm, more preferably between 2 mm and 5 mm , more preferably between 3 mm and 5 mm, even more preferably between 4 mm and 5 mm, is possible thanks to the method of the invention.
  • the laser beam is focused on the metal sheet through the glass.
  • the metal sheet absorbs the wavelength of the laser, as a target to induce the plasma.
  • an indirect ablation is achieved.
  • the glass is ablated by the action of the plasma generated in the process of interaction of the laser beam with the metal, unlike direct ablation in which the laser action takes place on the glass directly.
  • the effects of mechanical shock waves, the induced ablation plume and the generation of cavitation bubbles are combined to give rise to the ablation of the rear face of the glass, the face facing the metal sheet. .
  • Lfri an expert in the field, knows and is capable of selecting the necessary parameters in the experiment for indirect ablation to occur.
  • the values of these parameters and their combinations are known in the art or may arise from testing them, such as power, pulse duration, frequency, and speed at which the laser moves.
  • the expert will be able to reach the optimal combinations for each case.
  • a transparent liquid selected from the group consisting of deionized water, distilled water, ethanol, methanol and acetone is used.
  • This liquid facilitates the expulsion of the material during glass ablation. Due to the effect of the liquid, the thermal load and the redeposition of material remains in the work area of interest are reduced because the specific heat capacity of the liquid used and the thermal conductivity are greater than that of air. Thanks to this, excess heat is transported by the liquid away from the work area faster than through air. The liquid may have a cooling effect. Likewise, the extracted material is prevented from solidifying again on the substrate. On the other hand, the plasma generated in the ablation process absorbs part of the incident laser energy and reduces the coupling of the laser energy with the surface of the material.
  • the incorporation of the liquid causes both the size and duration of the plasma to be reduced.
  • the delay in the start of plasma formation causes the overlap with the laser pulse to decrease, reducing the shielding effect and improving the efficiency of the process.
  • the liquid incorporated in the process can be sealed or introduced as a flow. In the latter case, the flow further favors the dragging of excess material extracted from the substrate.
  • the process described in the present invention has the advantage of allowing shapes to be obtained in the glass that can be simple such as channels or wells, and also complex structures.
  • this process has the advantage that the walls obtained in these shapes are straight, straighter than those obtained with other techniques. It is even possible to achieve structures with walls perpendicular to the faces of the substrate with a minimum depth of 500 pm.
  • One of the main advantages of the method of the invention is that it allows the manufacture of channels, wells and/or complex structures with depths ranging from 500 ⁇ m to 1.4 mm, with vertical walls and without the need to refocus the laser, with surfaces interiors with roughness between 10 and 20 pm (as demonstrated in example 1). It also allows greater depths to be reached, even up to 5 mm, after successive refocusing of the laser beam and the introduction of a liquid flow, which favors the removal of excess material (as demonstrated in example 2).
  • a possible experimental scheme to carry out the process of the invention is illustrated in Figure 1.
  • the procedure includes an additional stage in which the laser is refocused.
  • the method may also comprise another additional step in which the flow of the liquid is introduced.
  • the process comprises an additional heat treatment step.
  • This thermal treatment allows the roughness of the structures to be modified, which will depend on the heating ramps and the time and temperature maintained during the treatment.
  • the thermal heating is maintained between 1.5 hours and 3 hours at a temperature between 500°C and 650°C.
  • a nanosecond pulsed laser is preferably used.
  • the Nd:YVO4 laser emitting at the fundamental wavelength of 1064 nm, and the Nd:YAG laser emitting at the fundamental wavelength or at 532 nm, at 355 nm and at 266 nm are preferred.
  • the metal sheet could be made of any metal since all of them can be treated with a laser by selecting the appropriate laser parameters.
  • the metal sheet is selected from a sheet of steel, brass, chrome and silver.
  • the steel can be carbon steel or stainless steel.
  • the glass is soda-lime, borosilicate glass, pyrex® or quartz.
  • One way of carrying out the invention is to place the glass at a distance from the metal sheet of between 0.07 mm and 0.58 mm. This ensures that the effect of material ablation on the glass is more efficient.
  • the liquid covers a portion of the glass less than 80% of the thickness of the glass, preferably less than 70%, more preferably less than 50%.
  • the glass-metal sheet assembly is arranged so that displacement is avoided and is flat.
  • the laser beam moves along the metal sheet. In a more particular embodiment, this displacement is carried out by means of a system of galvanometric mirrors.
  • the laser light has a beam travel speed of between 200 mm/s and 600 mm/s. At speeds different from this range there may be damage to the edges of the structure. In a preferred embodiment, the laser has a repetition rate of between 8 and 12 kHz. At repetition rates different from this range there may be an increase in damage to the edges of the structure.
  • the laser light is applied in a number of passes equal to or greater than 10 passes. In this way it is possible to obtain straight walls in channels, wells and/or complex structures of only 500 pm. To obtain greater depths it is possible to increase the number of passes, for example between 10 and 75 passes, and preferably between 20 and 50 passes.
  • the best results when manufacturing rectangular wall channels, wells and/or other complex structures are obtained when the following work parameters are used: 30 passes, average power of 4.92 W, repetition rate of 10 kHz and beam travel speed of 200 mm/s.
  • the procedure of the present invention in addition to allowing structures of very varied sizes to be manufactured, presents other advantages such as simplicity and flexibility of design, making it possible to manufacture complex elements with great depth compared to other glass structuring procedures, such as direct writing by laser ablation, selecting the appropriate machining parameters for each structure.
  • the starting point is an experimental setup as shown in Figure 1.
  • This setup includes the generation of plasma through the ablation of a 150 m thick steel target (H+S PR ⁇ ZISIONSFOLIEN GmbH, VohenstrauB, Germany) using a Q laser.
  • -Nd:YVO4 switch (Rofin; Madison, MI, USA), emitting at a wavelength of 1064 nm, and with a pulse duration of 20 ns.
  • the glass to be structured is a soda-lime glass transparent at the wavelength of the laser source and which is kept separated from the metal sheet by a distance equal to 145 ⁇ 15 pm.
  • the glass-metal sheet assembly is immersed in deionized water and a set of weights is placed on it to prevent displacement during the structuring of the glass and guarantee the flatness of the system.
  • a set of weights is placed on it to prevent displacement during the structuring of the glass and guarantee the flatness of the system.
  • cavitation bubbles and shock waves are produced that propagate from the metal to the glass, favoring the ablation process.
  • the following working parameters are used: average power of 4.92 W, repetition rate of 10 kHz and movement speed of the 200mm/s beam.
  • the results obtained by confocal microscopy are shown in Table 1.
  • Table 1 Relationship between the depth obtained for the channels depending on the number of laser passes performed.
  • FIG. 2a A reconstructed 3D confocal image of a representative rectangular channel is shown in Figure 2a) and the corresponding profile in Figure 2b).
  • the working laser parameters used in this case are an operating wavelength of 1064 nm, beam travel speed of 200 mm/s and 30 laser passes.
  • Another parameter that can be modified during manufacturing is the roughness of the bottom of the channels.
  • Table 2 shows the evolution of the roughness evaluated based on the arithmetic mean of the surface S(a) over an area of 250x250 pm 2 with the laser repetition rate, using an average power of 4.92 W. and beam travel speed of 200 mm/s.
  • Table 2 Values obtained for the bottom roughness based on the arithmetic mean of the surface (Sa) of the channels as a function of the laser repetition rate. The measurements have been carried out in accordance with the ISO 25178 standard. Example 2.
  • channels, or other types of structures, with greater depths can be achieved.
  • a flow of water is introduced that allows the waste material generated during the ablation to be carried away, avoiding the redeposition of said waste on the bottom and on the edges of the channels.
  • the laser beam is refocused on the steel metal sheet to guarantee the continuity of the ablation process.
  • rectangular channels and wells have been manufactured, such as those shown in Figure 3, with a depth of 4.22 mm.
  • the procedure of the invention allows controlling the depth of the manufactured rectangular channels and their roughness by varying the working laser parameters and the number of laser passes used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Optical Measuring Cells (AREA)
  • Laminated Bodies (AREA)
  • Laser Beam Processing (AREA)

Abstract

The present invention relates to a process for processing glass using a laser source. More particularly, this process comprises making structures with different geometries and depths in glass substrates, using a subaquatic indirect laser ablation method.

Description

DESCRIPCIÓN DESCRIPTION
Procedimiento para fabricar canales, pocilios y/o estructuras complejas en vidrioProcedure to manufacture channels, wells and/or complex structures in glass
Sector de la invención Invention sector
La presente invención se refiere a un proceso para el procesado de vidrio utilizando una fuente láser. Más particularmente, este proceso comprende la realización de estructuras con diferentes geometrías y profundidades en substratos de vidrio, utilizando un método de ablación láser indirecto subacuático. The present invention relates to a process for processing glass using a laser source. More particularly, this process comprises the realization of structures with different geometries and depths on glass substrates, using an underwater indirect laser ablation method.
Antecedentes Background
La microfluídica es un campo de gran interés por sus múltiples aplicaciones en química, ingeniería y medicina. Los dispositivos microfluídicos pueden tener estructuras muy complejas, en las que el canal puede considerarse la unidad más básica. Mediante la ablación láser es posible realizar estructuras con dimensiones y geometrías variadas sobre sustratos de vidrio. El vidrio es uno de los sustratos más interesantes en el campo de la microfluídica porque ofrece mejores condiciones para los experimentos en términos de estabilidad química y calidad óptica para la inspección. Además, un máster de un dispositivo de microfluídica fabricado con vidrio puede ser reutilizado numerosas veces. Microfluidics is a field of great interest due to its multiple applications in chemistry, engineering and medicine. Microfluidic devices can have very complex structures, in which the channel can be considered the most basic unit. Through laser ablation it is possible to create structures with varied dimensions and geometries on glass substrates. Glass is one of the most interesting substrates in the field of microfluidics because it offers better conditions for experiments in terms of chemical stability and optical quality for inspection. Furthermore, a master of a microfluidics device made of glass can be reused numerous times.
Aprovechando las impurezas del vidrio es posible fabricar estructuras por ablación láser, incluso para sustratos que son transparentes a la longitud de onda del láser. Sin embargo, las dimensiones de estas estructuras son del orden de decenas de micrómetros (Daniel Nieto, Justo Arines, and María Teresa Flores- Arias, "Fluence ablation threshold dependence on tin impurities in commercial soda-lime glass," Appl. Opt. 53, 5416-5420 (2014)). Para fabricar estructuras de mayor tamaño (en el rango de los milímetros), la técnica más adecuada es la ablación láser indirecta o ablación asistida por plasma inducido por láser (LIPAA). Esta técnica consiste en enfocar un láser sobre un blanco metálico situado bajo un vidrio o un material transparente a la longitud de onda del láser utilizado (Zhang J, Sugioka K, Midorikawa K. Laser-induced plasma-assisted ablation of fused quartz using the fourth harmonic of a Nd +:YAG laser. Appl Phys A Mater Sci Process 1998;67:545-9). El plasma generado por la interacción del láser con el blanco metálico permite iniciar la ablación de la cara posterior del vidrio (Zhang, J., Sugioka, K. & Midorikawa, K. High-quality and high- efficiency machining of glass materials by laser-induced plasma-assisted ablation using conventional nanosecond UV, visible, and infrared lasers . Appl Phys A 69, S879-S882 (1999), Koji Sugioka, Katsumi Midorikawa, Hiroshi Yamaoka, Yutaka Gomi, Masayoshi Otsuki, Ming Hui Hong, Dong Jiang Wu, Lai Lee Wong, and Tow Chong Chong "Glass microprocessing by laser-induced plasma-assisted ablation: fundamental to industrial applications", Proc. SPIE 5506, Nonresonant Laser-Matter Interaction (NLMI-11), (15 July 2004)). A modo de ejemplo, con esta técnica se han fabricado estructuras de dimensiones milimétricas que simulan grandes vasos sanguíneos, en particular, bifurcaciones de arterias coronarias (Aymerich M, Alvarez E, Bao-Varela C, Moscoso I, González-Juanatey JR, Flores-Arias MT. Laser technique for the fabrication of blood vessels-like models for preclinical studies of pathologies under flow conditions. Biofabrication 2017;9:025033). En este caso, fue necesario refocalizar el láser para conseguir canales con una profundidad máxima de 1,2 mm con la limitación de que el método sólo permite obtener paredes inclinadas. Taking advantage of the impurities in the glass, it is possible to manufacture structures by laser ablation, even for substrates that are transparent at the laser wavelength. However, the dimensions of these structures are on the order of tens of micrometers (Daniel Nieto, Justo Arines, and María Teresa Flores-Arias, "Fluence ablation threshold dependence on tin impurities in commercial soda-lime glass," Appl. Opt. 53 , 5416-5420 (2014)). To fabricate larger structures (in the millimeter range), the most appropriate technique is indirect laser ablation or laser-induced plasma-assisted ablation (LIPAA). This technique consists of focusing a laser on a metallic target located under glass or a transparent material at the wavelength of the laser used (Zhang J, Sugioka K, Midorikawa K. Laser-induced plasma-assisted ablation of fused quartz using the fourth harmonic of a Nd +:YAG laser. Appl Phys A Mater Sci Process 1998;67:545-9). The plasma generated by the interaction of the laser with the metallic target allows the ablation of the rear face of the glass to begin (Zhang, J., Sugioka, K. & Midorikawa, K. High-quality and high- efficiency machining of glass materials by laser-induced plasma-assisted ablation using conventional nanosecond UV, visible, and infrared lasers. Appl Phys A 69, S879-S882 (1999), Koji Sugioka, Katsumi Midorikawa, Hiroshi Yamaoka, Yutaka Gomi, Masayoshi Otsuki, Ming Hui Hong, Dong Jiang Wu, Lai Lee Wong, and Tow Chong Chong "Glass microprocessing by laser-induced plasma-assisted ablation: fundamental to industrial applications", Proc. SPIE 5506, Nonresonant Laser-Matter Interaction (NLMI-11), (15 July 2004)). As an example, with this technique, structures of millimeter dimensions have been manufactured that simulate large blood vessels, in particular, bifurcations of coronary arteries (Aymerich M, Alvarez E, Bao-Varela C, Moscoso I, González-Juanatey JR, Flores- Arias MT. Laser technique for the fabrication of blood vessels-like models for preclinical studies of pathologies under flow conditions. Biofabrication 2017;9:025033). In this case, it was necessary to refocus the laser to obtain channels with a maximum depth of 1.2 mm with the limitation that the method only allows obtaining inclined walls.
La fabricación de diferentes elementos en vidrio con profundidades del orden de varios milímetros sigue siendo un reto a día de hoy. La profundidad de los canales obtenidos por LIPAA es limitada, principalmente debido a la acumulación del material ablacionado entre el vidrio y el blanco. An et al. (An R, Li Y, Dou Y, Yang H, Gong Q. Simultaneous multimicrohole drilling of soda-lime glass by water-assisted ablation with femtosecond laser pulses. Opt Express 2005; 13 : 1855) propusieron el uso de agua para reducir la redeposición de material y el efecto de bloqueo del haz láser al perforar agujeros micrométricos en vidrio sodocálcico mediante pulsos de láser de femtosegundo. En este caso, el láser se enfoca a la parte posterior del sustrato de vidrio que se perfora directamente con el láser y a medida que se fabrica el canal se va rellenando de agua. Se obtienen canales internos con diámetros máximos de entre 3 y 20 micrómetros y longitud de hasta 90 micrómetros aproximadamente. The manufacture of different glass elements with depths of the order of several millimeters continues to be a challenge today. The depth of the channels obtained by LIPAA is limited, mainly due to the accumulation of the ablated material between the glass and the target. An et al. (An R, Li Y, Dou Y, Yang H, Gong Q. Simultaneous multimicrohole drilling of soda-lime glass by water-assisted ablation with femtosecond laser pulses. Opt Express 2005; 13 : 1855) proposed the use of water to reduce the Material redeposition and the laser beam blocking effect when drilling micrometer holes in soda-lime glass using femtosecond laser pulses. In this case, the laser is focused on the back of the glass substrate that is drilled directly with the laser and as the channel is manufactured it is filled with water. Internal channels are obtained with maximum diameters of between 3 and 20 micrometers and lengths of up to approximately 90 micrometers.
Breve descripción de la invención Brief description of the invention
Los autores de la presente invención han desarrollado un procedimiento que permite fabricar canales, pocilios y/o estructuras complejas en un vidrio con paredes rectas, es decir, perpendiculares a las caras del vidrio. El procedimiento permite fabricar estos canales, pocilios y/o estructuras complejas con una profundidad mínima de 500 pm asegurando que las paredes sean rectas. Pero además, el procedimiento también permite alcanzar mayores profundidades, de hasta 5 mm, manteniendo las paredes rectas. Así, la invención se dirige a los vidrios con estos canales, pocilios y/o estructuras complejas y al procedimiento de fabricación. The authors of the present invention have developed a procedure that allows manufacturing channels, wells and/or complex structures in a glass with straight walls, that is, perpendicular to the faces of the glass. The procedure allows manufacturing these channels, wells and/or complex structures with a minimum depth of 500 pm ensuring that the walls are straight. But in addition, the procedure also allows achieving greater depths, up to 5 mm, keeping the walls straight. Thus, the invention is directed to glasses with these channels, wells and/or complex structures and to the manufacturing process.
La presente invención se refiere a un vidrio caracterizado por tener canales, pocilios y/o estructuras complejas con paredes verticales y siendo la profundidad de los canales, pocilios y/o estructuras complejas superior a 500 pm. The present invention refers to a glass characterized by having channels, wells and/or complex structures with vertical walls and the depth of the channels, wells and/or complex structures being greater than 500 pm.
La invención también se dirige a un procedimiento para fabricar canales, pocilios y/o estructuras complejas en vidrio, que comprende: enfocar un haz láser sobre una lámina metálica a través del vidrio, donde el vidrio está colocado en paralelo respecto a la lámina metálica, y entre el vidrio y la lámina metálica hay un líquido transparente seleccionado de entre el grupo que consiste en agua desionizada, agua destilada, etanol, metanol y acetona. The invention is also directed to a procedure for manufacturing channels, wells and/or complex structures in glass, which comprises: focusing a laser beam on a metal sheet through the glass, where the glass is placed parallel to the metal sheet, and between the glass and the metal sheet there is a transparent liquid selected from the group consisting of deionized water, distilled water, ethanol, methanol and acetone.
La invención también se dirige a un vidrio caracterizado por tener canales, pocilios y/o estructuras complejas con paredes verticales y siendo la profundidad superior a 500 pm, obtenible mediante el procedimiento de la invención. The invention is also directed to a glass characterized by having channels, wells and/or complex structures with vertical walls and the depth being greater than 500 pm, obtainable by the process of the invention.
Descripción de las figuras Description of the figures
Para complementar la descripción de la presente invención y con objeto de ayudar a una mayor comprensión de las características de la misma, se acompañan ciertas figuras que tiene exclusivamente carácter ilustrativo y no son limitativas. To complement the description of the present invention and in order to help a greater understanding of its characteristics, certain figures are attached that are exclusively illustrative and are not limiting.
La Figura 1 muestra un esquema con la disposición experimental en la zona de ablación. Sobre el sustrato de vidrio (1) se colocan unas sujeciones (2) para impedir el desplazamiento del vidrio debido a la presión ejercida durante el proceso de fabricación. En la figura se representa también el haz láser (3), el blanco metálico (4), separadores (5) y agua desionizada (6). Figure 1 shows a diagram with the experimental setup in the ablation zone. Fasteners (2) are placed on the glass substrate (1) to prevent the glass from moving due to the pressure exerted during the manufacturing process. The figure also represents the laser beam (3), the metallic target (4), separators (5) and deionized water (6).
La Figura 2a muestra una imagen confocal 3D reconstruida de un canal rectangular representativo, y en la Figura 2b su perfil correspondiente. Figure 2a shows a reconstructed 3D confocal image of a representative rectangular channel, and in Figure 2b its corresponding profile.
La Figura 3a muestra una vista superior de una matriz de pocilios de 3 mm de diámetro fabricados en un vidrio sodocálcico. En la Figura 3b se puede visualizar la profundidad de los pocilios fabricados. Descripción detallada de la invención Figure 3a shows a top view of an array of 3 mm diameter wells made of soda-lime glass. In Figure 3b you can see the depth of the wells manufactured. Detailed description of the invention
Definiciones Definitions
En la presente invención, el término “pocilios” se refiere a agujeros de paredes perpendiculares a las caras del vidrio cuya base puede presentar diferentes formas, entre otras forma circular, ovalada, rectangular o cuadrada. In the present invention, the term "wells" refers to holes with walls perpendicular to the faces of the glass whose base can have different shapes, among others circular, oval, rectangular or square.
En la presente invención, la expresión “estructuras complejas” se refiere a estructuras compuestas por la combinación de canales rectos y canales que dibujen curvas, o combinaciones de canales con distintas geometrías y combinaciones de pocilios y/o pocilios y canales. In the present invention, the expression "complex structures" refers to structures composed of the combination of straight channels and channels that draw curves, or combinations of channels with different geometries and combinations of wells and/or wells and channels.
En la presente invención, la expresión “pared recta” se refiere a que las caras laterales de los canales y/o pocilios y/o estructuras complejas son perpendiculares a las caras del vidrio.In the present invention, the expression “straight wall” refers to the fact that the lateral faces of the channels and/or wells and/or complex structures are perpendicular to the faces of the glass.
En la presente invención, el término “pasadas” se refiere al número de veces que se hace incidir el láser sobre el metal siguiendo el patrón de la forma previamente diseñada. In the present invention, the term "passes" refers to the number of times the laser is struck on the metal following the pattern of the previously designed shape.
En la presente invención, el término “refocalizar” se refiere a volver a enfocar el haz láser sobre el blanco metálico. In the present invention, the term "refocus" refers to refocusing the laser beam onto the metallic target.
La presente invención se refiere a un vidrio caracterizado por tener canales, pocilios y/o estructuras complejas con paredes verticales y siendo la profundidad de los canales, pocilios y/o estructuras complejas superior a 500 pm. En una realización particular la profundidad de los canales, pocilios y/o estructuras complejas es preferiblemente entre 500 pm y 2mm, más preferiblemente entre 2 mm y 5 mm, más preferiblemente entre 3 mm y 5 mm, aún más preferiblemente entre 4 mm y 5 mm. The present invention refers to a glass characterized by having channels, wells and/or complex structures with vertical walls and the depth of the channels, wells and/or complex structures being greater than 500 pm. In a particular embodiment the depth of the channels, wells and/or complex structures is preferably between 500 mm and 2 mm, more preferably between 2 mm and 5 mm, more preferably between 3 mm and 5 mm, even more preferably between 4 mm and 5 mm. mm.
La fabricación de canales, pocilios y/o estructuras complejas en vidrio con paredes verticales y siendo la profundidad de los canales, pocilios y/o estructuras complejas superior a 500 pm, preferiblemente entre 500 pm y 2mm, más preferiblemente entre 2 mm y 5 mm, más preferiblemente entre 3 mm y 5 mm, aún más preferiblemente entre 4 mm y 5 mm, es posible gracias al procedimiento de la invención. En el procedimiento de la invención se enfoca el haz láser sobre la lámina metálica a través del vidrio. La lámina metálica absorbe la longitud de onda del láser, como blanco para inducir el plasma. De este modo se consigue una ablación indirecta. En esta ablación indirecta, se produce la ablación del vidrio por la acción del plasma generado en el proceso de interacción del haz láser con el metal, a diferencia de la ablación directa en la que la acción del láser tiene lugar sobre el vidrio directamente. En el procedimiento de la invención se combinan los efectos de las ondas de choque mecánicas, la pluma de ablación inducida y la generación de burbujas de cavitación, para dar lugar a la ablación de la cara posterior del vidrio, la cara enfrentada a la lámina metálica. The manufacture of channels, wells and/or complex structures in glass with vertical walls and the depth of the channels, wells and/or complex structures being greater than 500 pm, preferably between 500 pm and 2mm, more preferably between 2 mm and 5 mm , more preferably between 3 mm and 5 mm, even more preferably between 4 mm and 5 mm, is possible thanks to the method of the invention. In the method of the invention, the laser beam is focused on the metal sheet through the glass. The metal sheet absorbs the wavelength of the laser, as a target to induce the plasma. In this way an indirect ablation is achieved. In this indirect ablation, the glass is ablated by the action of the plasma generated in the process of interaction of the laser beam with the metal, unlike direct ablation in which the laser action takes place on the glass directly. In the procedure of the invention, the effects of mechanical shock waves, the induced ablation plume and the generation of cavitation bubbles are combined to give rise to the ablation of the rear face of the glass, the face facing the metal sheet. .
Lfri experto en la materia conoce y es capaz de seleccionar los parámetros necesarios en el experimento para que se produzca la ablación indirecta. Los valores de esos parámetros y sus combinaciones son conocidos en la técnica o pueden surgir del ensayo de los mismos, como por ejemplo, la potencia, la duración del pulso, la frecuencia y la velocidad a la que se mueve el láser. El experto podrá llegar a las combinaciones óptimas para cada caso. Lfri, an expert in the field, knows and is capable of selecting the necessary parameters in the experiment for indirect ablation to occur. The values of these parameters and their combinations are known in the art or may arise from testing them, such as power, pulse duration, frequency, and speed at which the laser moves. The expert will be able to reach the optimal combinations for each case.
En el procedimiento de la invención se emplea un líquido transparente seleccionado de entre el grupo que consiste en agua desionizada, agua destilada, etanol, metanol y acetona. Este líquido facilita la expulsión del material durante la ablación del vidrio. Debido al efecto del líquido, la carga térmica y la redeposición de restos de material en el área de trabajo de interés se reducen debido a que la capacidad calorífica específica del líquido empleado y la conductividad térmica son mayores que la del aire. Gracias a ello, el exceso de calor es transportado por el líquido lejos de la zona de trabajo más rápido que a través del aire. El líquido puede tener un efecto refrigerante. Asimismo, se evita que el material extraído vuelva a solidificarse sobre el sustrato. Por otro lado, el plasma que se genera en el proceso de ablación absorbe parte de la energía láser incidente y reduce el acoplamiento de la energía del láser con la superficie del material. La incorporación del líquido provoca que tanto el tamaño como la duración del plasma se reduzcan. El retraso en el inicio de la formación de plasma provoca que la superposición con el pulso láser disminuya, reduciendo el efecto blindaje y mejorando la eficiencia del proceso. El líquido incorporado en el proceso puede estar estanco o ser introducido como un flujo. En este último caso, el flujo favorece aún más el arrastre de material sobrante extraído del sustrato. El proceso descrito en la presente invención tiene la ventaja de permitir obtener formas en el vidrio que pueden ser sencillas como canales o pocilios, y también estructuras complejas.In the process of the invention, a transparent liquid selected from the group consisting of deionized water, distilled water, ethanol, methanol and acetone is used. This liquid facilitates the expulsion of the material during glass ablation. Due to the effect of the liquid, the thermal load and the redeposition of material remains in the work area of interest are reduced because the specific heat capacity of the liquid used and the thermal conductivity are greater than that of air. Thanks to this, excess heat is transported by the liquid away from the work area faster than through air. The liquid may have a cooling effect. Likewise, the extracted material is prevented from solidifying again on the substrate. On the other hand, the plasma generated in the ablation process absorbs part of the incident laser energy and reduces the coupling of the laser energy with the surface of the material. The incorporation of the liquid causes both the size and duration of the plasma to be reduced. The delay in the start of plasma formation causes the overlap with the laser pulse to decrease, reducing the shielding effect and improving the efficiency of the process. The liquid incorporated in the process can be sealed or introduced as a flow. In the latter case, the flow further favors the dragging of excess material extracted from the substrate. The process described in the present invention has the advantage of allowing shapes to be obtained in the glass that can be simple such as channels or wells, and also complex structures.
Además este proceso tiene la ventaja de que las paredes que se obtienen en estas formas son rectas, más rectas que las obtenidas con otras técnicas. Incluso, es posible conseguir estructuras con paredes perpendiculares a las caras del sustrato con una profundidad mínima de 500 pm. Furthermore, this process has the advantage that the walls obtained in these shapes are straight, straighter than those obtained with other techniques. It is even possible to achieve structures with walls perpendicular to the faces of the substrate with a minimum depth of 500 pm.
Una de las principales ventajas del procedimiento de la invención es que permite la fabricación de canales, pocilios y/o estructuras complejas con profundidades que comprenden desde 500 pm a 1,4 mm, con paredes verticales y sin necesidad de refocalizar el láser, con superficies interiores con rugosidades de entre 10 y 20 pm (como se demuestra en el ejemplo 1). También permite alcanzar profundidades mayores, incluso hasta 5 mm, tras sucesivas refocalizaciones del haz láser y la introducción de un flujo del líquido, que favorece el arrastre del material sobrante (como se demuestra en el ejemplo 2). Un posible esquema experimental para realizar el proceso de la invención se ilustra en la figura 1.One of the main advantages of the method of the invention is that it allows the manufacture of channels, wells and/or complex structures with depths ranging from 500 μm to 1.4 mm, with vertical walls and without the need to refocus the laser, with surfaces interiors with roughness between 10 and 20 pm (as demonstrated in example 1). It also allows greater depths to be reached, even up to 5 mm, after successive refocusing of the laser beam and the introduction of a liquid flow, which favors the removal of excess material (as demonstrated in example 2). A possible experimental scheme to carry out the process of the invention is illustrated in Figure 1.
Así, el procedimiento comprende una etapa adicional en la que se refocaliza el láser. Y el procedimiento también puede comprender otra etapa adicional en la que se introduce el flujo del líquido. Thus, the procedure includes an additional stage in which the laser is refocused. And the method may also comprise another additional step in which the flow of the liquid is introduced.
En una realización particular, el procedimiento comprende una etapa adicional de tratamiento térmico. Este tratamiento térmico permite modificar la rugosidad de las estructuras, que va a depender de las rampas de calentamiento y del tiempo y temperatura que se mantengan durante el tratamiento. En una realización particular, el calentamiento térmico se mantiene entre 1,5 horas y 3 horas a una temperatura de entre 500°C y 650°C. In a particular embodiment, the process comprises an additional heat treatment step. This thermal treatment allows the roughness of the structures to be modified, which will depend on the heating ramps and the time and temperature maintained during the treatment. In a particular embodiment, the thermal heating is maintained between 1.5 hours and 3 hours at a temperature between 500°C and 650°C.
Posibles materiales empleados Possible materials used
Para la invención se usan de manera preferida un láser pulsado de nanosegundos. Así, entre los láseres pulsados de nanosegundos son preferidos el láser de Nd:YVO4 emitiendo a la longitud de onda fundamental de 1064 nm, y el láser de Nd:YAG emitiendo a la longitud de onda fundamental o a 532 nm, a 355 nm y a 266 nm. En general, la lámina metálica podría estar constituida por cualquier metal ya que todos ellos puede ser tratados con un láser seleccionando los parámetros láser adecuados. En una realización particular, la lámina metálica se selecciona entre una lámina de acero, latón, cromo y plata. El acero puede ser acero carbono o acero inoxidable. For the invention, a nanosecond pulsed laser is preferably used. Thus, among the nanosecond pulsed lasers, the Nd:YVO4 laser emitting at the fundamental wavelength of 1064 nm, and the Nd:YAG laser emitting at the fundamental wavelength or at 532 nm, at 355 nm and at 266 nm, are preferred. nm. In general, the metal sheet could be made of any metal since all of them can be treated with a laser by selecting the appropriate laser parameters. In a particular embodiment, the metal sheet is selected from a sheet of steel, brass, chrome and silver. The steel can be carbon steel or stainless steel.
En el procedimiento de la invención, los mejores resultados se obtienen cuando el vidrio es sodo-cálcico, vidrio borosilicato, pyrex® o cuarzo. In the process of the invention, the best results are obtained when the glass is soda-lime, borosilicate glass, pyrex® or quartz.
Una forma de realizar la invención es colocar el vidrio a una distancia de la lámina metálica de entre 0,07 mm y 0,58 mm. De este modo se asegura que el efecto de la ablación de material sobre el vidrio es más eficiente. One way of carrying out the invention is to place the glass at a distance from the metal sheet of between 0.07 mm and 0.58 mm. This ensures that the effect of material ablation on the glass is more efficient.
En una realización particular, el líquido cubre una parte del vidrio inferior al 80% del espesor del vidrio, preferiblemente inferior al 70%, más preferiblemente inferior al 50%. In a particular embodiment, the liquid covers a portion of the glass less than 80% of the thickness of the glass, preferably less than 70%, more preferably less than 50%.
En otra realización preferida, el conjunto vidrio-lámina metálica se dispone de manera que se evitan desplazamientos y es plano. In another preferred embodiment, the glass-metal sheet assembly is arranged so that displacement is avoided and is flat.
También es posible desplazar el conjunto de la lámina metálica, el vidrio, y opcionalmente el líquido entre ambos, manteniendo fija la dirección de incidencia del haz láser. It is also possible to move the entire metal sheet, the glass, and optionally the liquid between them, keeping the direction of incidence of the laser beam fixed.
Parámetros optimizados Optimized parameters
En una realización particular, el haz láser se desplaza a lo largo de la lámina metálica. En una realización más particular, ese desplazamiento se realiza mediante un sistema de espejos galvanométricos. En una realización preferida, la luz láser tiene una velocidad de desplazamiento del haz de entre 200 mm/s y 600 mm/s. A velocidades diferentes de este rango pueden existir daños en los bordes de la estructura. En una realización preferida, el láser tiene una tasa de repetición de entre 8 y 12 kHz. A tasas de repetición diferentes de este rango pueden existir un aumento de daños en los bordes de la estrucura. In a particular embodiment, the laser beam moves along the metal sheet. In a more particular embodiment, this displacement is carried out by means of a system of galvanometric mirrors. In a preferred embodiment, the laser light has a beam travel speed of between 200 mm/s and 600 mm/s. At speeds different from this range there may be damage to the edges of the structure. In a preferred embodiment, the laser has a repetition rate of between 8 and 12 kHz. At repetition rates different from this range there may be an increase in damage to the edges of the structure.
Para optimizar los resultados del procedimiento, la luz láser se aplica en un número de pasadas igual o superior a 10 pasadas. De este modo es posible obtener paredes rectas en canales, pocilios y/o estructuras complejas de tan sólo 500 pm. Para obtener profundidades mayores es posible aumentar el número de pasadas, por ejemplo entre 10 y 75 pasadas, y de manera preferida entre 20 y 50 pasadas. En la presente invención, los mejores resultados a la hora de fabricar canales de paredes rectangulares, pocilios y/u otras estructuras complejas se obtienen cuando se utilizan los siguientes parámetros de trabajo: 30 pasadas, potencia media de 4,92 W, tasa de repetición de 10 kHz y velocidad de desplazamiento del haz de 200 mm/s. To optimize the results of the procedure, the laser light is applied in a number of passes equal to or greater than 10 passes. In this way it is possible to obtain straight walls in channels, wells and/or complex structures of only 500 pm. To obtain greater depths it is possible to increase the number of passes, for example between 10 and 75 passes, and preferably between 20 and 50 passes. In the present invention, the best results when manufacturing rectangular wall channels, wells and/or other complex structures are obtained when the following work parameters are used: 30 passes, average power of 4.92 W, repetition rate of 10 kHz and beam travel speed of 200 mm/s.
En comparación con otros procesos de mecanizado del vidrio, el procedimiento de la presente invención además de permitir fabricar estructuras de tamaños muy variados, presenta otras ventajas como la sencillez y la flexibilidad de diseño, siendo posible fabricar elementos complejos con una gran profundidad en comparación con otros procedimientos de estructuración del vidrio, como por ejemplo la escritura directa por ablación láser, seleccionando los parámetros de mecanizado adecuados para cada estructura. Compared to other glass machining processes, the procedure of the present invention, in addition to allowing structures of very varied sizes to be manufactured, presents other advantages such as simplicity and flexibility of design, making it possible to manufacture complex elements with great depth compared to other glass structuring procedures, such as direct writing by laser ablation, selecting the appropriate machining parameters for each structure.
Métodos y diseño experimental Methods and experimental design
Los siguientes ejemplos sirven para ilustrar la presente invención y no suponen una limitación de la misma. The following examples serve to illustrate the present invention and do not constitute a limitation thereof.
Ejemplo 1. Example 1.
Se parte de una disposición experimental como es la mostrada en la figura 1. Dicha disposición comprende la generación de plasma mediante la ablación de un blanco de acero de 150 m de espesor (H+S PRÁZISIONSFOLIEN GmbH, VohenstrauB, Alemania) utilizando un láser Q-Switch de Nd:YVO4 (Rofin; Plymouth, MI, USA), emitiendo a una longitud de onda de 1064 nm, y con una duración de pulso de 20 ns. El vidrio a estructurar es un vidrio sodo-cálcico transparente a la longitud de onda de la fuente láser y que se mantiene separado de la lámina metálica una distancia igual a 145 ± 15 pm. El conjunto vidrio-lámina metálica se sumerge en agua desionizada y se coloca sobre él un conjunto de pesos para evitar desplazamientos durante el estructurado del vidrio y garantizar la planitud del sistema. Durante la generación del plasma inducido por la interacción del láser con la lámina metálica se producen burbujas de cavitación y ondas de choque que se propagan desde el metal hacia el vidrio favoreciendo el proceso de ablación. Para obtener canales de perfil rectangular y diferentes profundidas se utilizan los siguientes parámetros de trabajo: potencia media de 4,92 W, tasa de repetición de 10 kHz y velocidad de desplazamiento del haz de 200 mm/s. Los resultados obtenidos mediante microscopía confocal se muestran en la Tabla 1.
Figure imgf000011_0001
The starting point is an experimental setup as shown in Figure 1. This setup includes the generation of plasma through the ablation of a 150 m thick steel target (H+S PRÁZISIONSFOLIEN GmbH, VohenstrauB, Germany) using a Q laser. -Nd:YVO4 switch (Rofin; Plymouth, MI, USA), emitting at a wavelength of 1064 nm, and with a pulse duration of 20 ns. The glass to be structured is a soda-lime glass transparent at the wavelength of the laser source and which is kept separated from the metal sheet by a distance equal to 145 ± 15 pm. The glass-metal sheet assembly is immersed in deionized water and a set of weights is placed on it to prevent displacement during the structuring of the glass and guarantee the flatness of the system. During the generation of plasma induced by the interaction of the laser with the metal sheet, cavitation bubbles and shock waves are produced that propagate from the metal to the glass, favoring the ablation process. To obtain rectangular profile channels and different depths, the following working parameters are used: average power of 4.92 W, repetition rate of 10 kHz and movement speed of the 200mm/s beam. The results obtained by confocal microscopy are shown in Table 1.
Figure imgf000011_0001
Tabla 1. Relación entre la profundidad obtenida para los canales en función del número de pasada láser realizadas. Table 1. Relationship between the depth obtained for the channels depending on the number of laser passes performed.
En la figura 2a) se muestra una imagen confocal 3D reconstruida de un canal rectangular representativo y en la figura 2b) el perfil correspondiente. Los parámetros láser de trabajo utilizados en este caso son una longitud de onda de operación de 1064 nm, velocidad de desplazamiento del haz de 200 mm/s y 30 pasadas láser. Otro parámetro que se puede modificar durante la fabricación es la rugosidad del fondo de los canales. En la Tabla 2 se muestra la evolución de la rugosidad evaluada en base a la media aritmética de la superficie S(a) sobre un área de of 250x250 pm2 con la tasa de repetición del láser, utilizando una potencia media de 4,92 W y velocidad de desplazamiento del haz de 200 mm/s.
Figure imgf000011_0002
A reconstructed 3D confocal image of a representative rectangular channel is shown in Figure 2a) and the corresponding profile in Figure 2b). The working laser parameters used in this case are an operating wavelength of 1064 nm, beam travel speed of 200 mm/s and 30 laser passes. Another parameter that can be modified during manufacturing is the roughness of the bottom of the channels. Table 2 shows the evolution of the roughness evaluated based on the arithmetic mean of the surface S(a) over an area of 250x250 pm 2 with the laser repetition rate, using an average power of 4.92 W. and beam travel speed of 200 mm/s.
Figure imgf000011_0002
Tabla 2. Valores obtenidos de la rugosidad del fondo en base a la media aritmética de la superficie (Sa) de los canales en función de la tasa de repetición del láser. Las medidas han sido realizadas de acuerdo a la norma ISO 25178. Ejemplo 2. Table 2. Values obtained for the bottom roughness based on the arithmetic mean of the surface (Sa) of the channels as a function of the laser repetition rate. The measurements have been carried out in accordance with the ISO 25178 standard. Example 2.
Utilizando una variante del ejemplo anterior se pueden conseguir canales, u otro tipo de estructuras, con profundidades superiores. En este caso, en lugar de un recipiente con agua estanca se introduce un flujo de agua que permite arrastrar los residuos de material generados durante la ablación, evitado la redeposición de dichos residuos sobre el fondo y en los bordes de los canales. Además, en este ejemplo el haz láser se refocaliza sobre la lámina metálica de acero para garantizar la continuidad del proceso de ablación. En particular, manteniendo los parámetros de trabajo láser del ejemplo 1, se han fabricado canales rectangulares y pocilios, como los mostrados en la figura 3, con una profundidad de 4,22 mm. Using a variant of the previous example, channels, or other types of structures, with greater depths can be achieved. In this case, instead of a container with sealed water, a flow of water is introduced that allows the waste material generated during the ablation to be carried away, avoiding the redeposition of said waste on the bottom and on the edges of the channels. Furthermore, in this example the laser beam is refocused on the steel metal sheet to guarantee the continuity of the ablation process. In particular, maintaining the laser working parameters of example 1, rectangular channels and wells have been manufactured, such as those shown in Figure 3, with a depth of 4.22 mm.
Como se puede observar de los resultados de los ejemplos 1 y 2, el procedimiento de la invención permite controlar la profundidad de los canales rectangulares fabricados y su rugosidad variando los parámetros láser de trabajo y el número de pasadas láser empleadas. As can be seen from the results of examples 1 and 2, the procedure of the invention allows controlling the depth of the manufactured rectangular channels and their roughness by varying the working laser parameters and the number of laser passes used.

Claims

REIVINDICACIONES
1. Procedimiento para fabricar canales, pocilios y/o estructuras complejas en un sustrato de vidrio del tipo de los que presentan paredes verticales y siendo la profundidad de los canales, pocilios y/o estructuras complejas superior a 500 pm, caracterizado por que comprende: colocar el sustrato de vidrio en paralelo respecto a una lámina metálica y disponer entre el vidrio y la lámina metálica un líquido transparente seleccionado de entre el grupo que consiste en agua desionizada, agua destilada, etanol, metanol y acetona, dicho líquido facilita la expulsión del material durante la ablación del vidrio, enfocar un haz láser sobre una lámina metálica a través del vidrio, de manera que la lámina metálica absorbe la longitud de onda del láser e induce plasma para producir una ablación indirecta de la cara del vidrio que está enfrentada a la lámina metálica, y donde la luz láser procede de un láser pulsado de nanosegundos. 1. Procedure for manufacturing channels, wells and/or complex structures in a glass substrate of the type that has vertical walls and the depth of the channels, wells and/or complex structures being greater than 500 pm, characterized in that it comprises: place the glass substrate parallel to a metal sheet and place between the glass and the metal sheet a transparent liquid selected from the group consisting of deionized water, distilled water, ethanol, methanol and acetone, said liquid facilitates the expulsion of the material during glass ablation, focusing a laser beam on a metal sheet through the glass, so that the metal sheet absorbs the wavelength of the laser and induces plasma to produce an indirect ablation of the face of the glass that faces it. the metal sheet, and where the laser light comes from a nanosecond pulsed laser.
2. Procedimiento según la reivindicación 1, que comprende una etapa adicional de refocalización del láser. 2. Method according to claim 1, comprising an additional laser refocusing step.
3. Procedimiento según cualquiera de las reivindicaciones anteriores, que comprende introducir un flujo del líquido. 3. Method according to any of the preceding claims, which comprises introducing a flow of liquid.
4. Procedimiento según cualquiera de las reivindicaciones anteriores, que comprende una etapa adicional de tratamiento térmico para modificar la rugosidad de las estructuras. 4. Method according to any of the preceding claims, which comprises an additional heat treatment step to modify the roughness of the structures.
5. Procedimiento según cualquiera de las reivindicaciones anteriores, donde el vidrio se coloca a una distancia de la lámina metálica de entre 0,07 mm y 0,58 mm. 5. Procedure according to any of the previous claims, where the glass is placed at a distance from the metal sheet of between 0.07 mm and 0.58 mm.
6. Procedimiento según cualquiera de las reivindicaciones anteriores, donde la luz láser se desplaza a lo largo de la lámina metálica a una velocidad de desplazamiento del haz de entre 200 mm/s y 600 mm/s. 6. Method according to any of the preceding claims, wherein the laser light moves along the metal sheet at a beam travel speed of between 200 mm/s and 600 mm/s.
7. Procedimiento según cualquiera de las reivindicaciones anteriores, donde la luz láser tiene una tasa de repetición del haz de entre 8 y 12 kHz. 7. Method according to any of the preceding claims, wherein the laser light has a beam repetition rate of between 8 and 12 kHz.
8. Procedimiento según cualquiera de las reivindicaciones anteriores, donde la luz láser se aplica en un número de pasadas igual o superior a 10 pasadas. Procedimiento según cualquiera de las reivindicaciones anteriores, donde la luz láser se aplica con una potencia media de 4,92 W, se desplaza a lo largo de la lámina metálica a una velocidad de desplazamiento del haz de entre 200 mm/s y 600 mm/s, con una tasa de repetición de 10kHz y se aplica en 30 pasadas. 8. Method according to any of the preceding claims, wherein the laser light is applied in a number of passes equal to or greater than 10 passes. Method according to any of the previous claims, wherein the laser light is applied with an average power of 4.92 W, and moves along the metal sheet at a beam displacement speed of between 200 mm/s and 600 mm/s. , with a repetition rate of 10kHz and is applied in 30 passes.
PCT/ES2023/070124 2022-03-11 2023-03-07 Method for manufacturing channels, wells and/or complex structures in glass WO2023170323A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP202230206 2022-03-11
ES202230206A ES2912039B2 (en) 2022-03-11 2022-03-11 Procedure for manufacturing channels, wells and/or complex structures in glass

Publications (1)

Publication Number Publication Date
WO2023170323A1 true WO2023170323A1 (en) 2023-09-14

Family

ID=81653390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2023/070124 WO2023170323A1 (en) 2022-03-11 2023-03-07 Method for manufacturing channels, wells and/or complex structures in glass

Country Status (2)

Country Link
ES (1) ES2912039B2 (en)
WO (1) WO2023170323A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050025445A1 (en) * 2003-07-31 2005-02-03 Schoroeder Joseph F. Method of making at least one hole in a transparent body and devices made by this method
US20170291850A1 (en) * 2015-01-06 2017-10-12 Nippon Electric Glass Co., Ltd. Micro-hole array and method for manufacturing same
US20170326688A1 (en) * 2015-01-29 2017-11-16 Imra America, Inc. Laser-based modification of transparent materials
US20190233321A1 (en) * 2018-01-26 2019-08-01 Corning Incorporated Liquid-assisted laser micromachining of transparent dielectrics

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050025445A1 (en) * 2003-07-31 2005-02-03 Schoroeder Joseph F. Method of making at least one hole in a transparent body and devices made by this method
US20170291850A1 (en) * 2015-01-06 2017-10-12 Nippon Electric Glass Co., Ltd. Micro-hole array and method for manufacturing same
US20170326688A1 (en) * 2015-01-29 2017-11-16 Imra America, Inc. Laser-based modification of transparent materials
US20190233321A1 (en) * 2018-01-26 2019-08-01 Corning Incorporated Liquid-assisted laser micromachining of transparent dielectrics

Also Published As

Publication number Publication date
ES2912039A1 (en) 2022-05-24
ES2912039B2 (en) 2023-04-03

Similar Documents

Publication Publication Date Title
KR101972466B1 (en) Method and system for scribing brittle material followed by chemical etching
US20170326688A1 (en) Laser-based modification of transparent materials
Neuenschwander et al. Processing of metals and dielectric materials with ps-laserpulses: results, strategies, limitations and needs
Duocastella et al. Bessel and annular beams for materials processing
US10780525B2 (en) Device for mask projection of femtosecond and picosecond laser beams with blade, mask, and lens system
US6995336B2 (en) Method for forming nanoscale features
Herman et al. Laser micromachining of transparent fused silica with 1-ps pulses and pulse trains
CN111014963B (en) Three-dimensional micromachining method for hard and brittle material
KR20190125224A (en) Method for producing fine structures in the volume of a substrate composed of hard brittle material
TW201536463A (en) Laser processing of slots and holes
CN110997220A (en) Device and method for synchronously processing transparent workpiece by multiple lasers
Tangwarodomnukun et al. A comparison of dry and underwater laser micromachining of silicon substrates
JP7379662B2 (en) How to process the workpiece
Hidai et al. Curved drilling via inner hole laser reflection
Liu et al. Photoetching of spherical microlenses on glasses using a femtosecond laser
Bhuyan et al. Ultrafast Bessel beams for high aspect ratio taper free micromachining of glass
Chu et al. Micro-channel etching characteristics enhancement by femtosecond laser processing high-temperature lattice in fused silica glass
Zukerstein et al. Formation of tubular structures and microneedles on silicon surface by doughnut-shaped ultrashort laser pulses
TW201625494A (en) Micro-hole array and method for manufacturing same
KR20240046475A (en) Method for preparing and/or performing the separation of a substrate element and substrate sub-element
ES2912039B2 (en) Procedure for manufacturing channels, wells and/or complex structures in glass
CN116685562A (en) Method for reducing raised structures on a glass element and glass element manufactured according to the method
CN111168233A (en) Method for inducing periodic structure on surface of optical glass by picosecond laser
JP2018002501A (en) Parting method of tubular brittle member, and parting device
Karnakis et al. Comparison of glass processing using high-repetition femtosecond (800 nm) and UV (255 nm) nanosecond pulsed lasers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766194

Country of ref document: EP

Kind code of ref document: A1