WO2023169400A1 - 一种光储制氢系统及其运行方法 - Google Patents

一种光储制氢系统及其运行方法 Download PDF

Info

Publication number
WO2023169400A1
WO2023169400A1 PCT/CN2023/080014 CN2023080014W WO2023169400A1 WO 2023169400 A1 WO2023169400 A1 WO 2023169400A1 CN 2023080014 W CN2023080014 W CN 2023080014W WO 2023169400 A1 WO2023169400 A1 WO 2023169400A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat exchange
temperature
hydrogen production
heat exchanger
Prior art date
Application number
PCT/CN2023/080014
Other languages
English (en)
French (fr)
Inventor
卞铁铮
盛赟
高纪凡
刘艋
张臻
Original Assignee
天合光能股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天合光能股份有限公司 filed Critical 天合光能股份有限公司
Publication of WO2023169400A1 publication Critical patent/WO2023169400A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/021Process control or regulation of heating or cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/627Stationary installations, e.g. power plant buffering or backup power supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/635Control systems based on ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6552Closed pipes transferring heat by thermal conductivity or phase transition, e.g. heat pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present application relates to the field of hydrogen production technology, and in particular to a light storage hydrogen production system and its operation method.
  • Hydrogen is a potential support for promoting the green and low-carbon transformation of the global economy and achieving my country's "carbon neutrality" goal. It will provide assistance for the low-carbon transformation of industries such as electricity, transportation, steel, and construction.
  • the current hydrogen production technology route is mainly divided into hydrogen production from fossil raw materials, hydrogen production from chemical raw materials, hydrogen production from industrial by-products and hydrogen production from electrolyzed water according to the source of raw materials. Among them, the hydrogen obtained by electrolyzing water using renewable energy power is called “green hydrogen”. It is a clean and sustainable source of hydrogen and has the greatest potential for cost reduction.
  • CN213013112U discloses a comprehensive thermal management system for a large-scale alkaline electrolytic water hydrogen production device, including an alkaline electrolytic water hydrogen production device and a thermal management device.
  • the alkaline electrolytic water hydrogen production device includes an electrolyzer and a gas-liquid separator.
  • the gas-liquid separation The alkali output end of the device is connected to the electrolytic tank and thermal management device through the alkali circulation loop. It includes a thermal management integrated heat exchanger, a gas-liquid separation heat exchanger and an alkali liquid circulation heat exchanger.
  • the gas-liquid separation heat exchanger is set between the electrolyzer and the gas-liquid separator, and the alkali liquid circulation heat exchanger is set in the alkali liquid circulation.
  • the heat exchange medium inlet and outlet of the gas-liquid separation heat exchanger and the integrated thermal management heat exchanger are connected to form a first heat exchange circuit for cooling the gas-liquid mixed state alkali liquid output from the electrolyzer, and the alkali liquid circulation heat exchanger It is connected with the heat exchange medium inlet and outlet of the thermal management integrated heat exchanger to form a second heat exchange circuit for heating the alkali solution input into the electrolyzer.
  • This solution can achieve effective comprehensive utilization of heat energy and has good adaptability.
  • CN109687002A discloses a distributed combined cooling, heating and power system, in which the hydrogen production and hydrogen storage system electrolyzes high-temperature water vapor to produce oxygen and hydrogen; the first fuel cell system uses oxygen or air, and hydrogen to generate electricity, and uses the generated electric energy Transmitted to the microgrid; the second fuel cell system uses hydrogen or natural gas and air to generate electricity, transports the electric energy to the microgrid, and burns the remaining hydrogen or natural gas and air to produce smoke; the absorption refrigerator uses smoke gas and high-temperature water vapor for refrigeration; the hydrothermal management system exports the heat generated during the operation of the first fuel cell system, hydrogen production and storage system, and absorption refrigerator, and supplies it to users in the form of hot water; renewable energy supply system Generate high-temperature water vapor.
  • This application can realize multi-energy complementation, improve energy supply efficiency and energy security, reduce fossil fuel consumption, without the disadvantage of large CO2 emissions, and can also realize the joint supply of heat, electricity and cooling.
  • CN112944206A discloses a thermal management system for an electrolytic water hydrogen production and hydrogenation station.
  • the system includes an electrolytic water hydrogen production and hydrogenation station and thermal management equipment.
  • the electrolytic water hydrogen production and hydrogenation station includes an electrolytic water hydrogen production equipment, a gas purification device, and a gas purification device.
  • the thermal management equipment includes a heat pump, a first heat exchange tube, a second heat exchange tube, a heat exchanger, a first liquid pump and a second liquid pump, wherein the first heat exchange tube One end is connected to the heat pump, and the other end is connected to a heat exchanger.
  • the heat exchanger is installed on the air pipe and used to cool the air pipe.
  • One end of the second heat exchange pipe is connected to the heat pump, and the other end is connected to the electrolysis water hydrogen production equipment for absorbing water.
  • the heat in the cooling circuit of the electrolytic water hydrogen production equipment prevents the temperature of the hydrogen production equipment from being too high.
  • the system can control the electrolysis of water to produce hydrogen The temperature of the equipment can be adjusted to ensure that the hydrogen temperature reaches the required level during the hydrogenation process, to avoid equipment temperature exceeding the limit causing damage to the equipment life and to avoid excessively high hydrogen temperatures affecting the filling efficiency.
  • the purpose of various embodiments of the present application is to provide a light storage hydrogen production system and its operation method.
  • the light storage hydrogen production system is designed based on the temperature of the heat storage device. , connecting the high-temperature end (lye circulation heat exchanger) and the low-temperature end (lithium-ion battery energy storage device) through a heat pump to improve heat exchange flexibility while reducing energy consumption, maintaining the temperature of the alkali solution when the power supply fluctuates, and improving the electrolytic cell Power adaptability; comprehensive utilization of heat generated by the electrolysis system to provide stable heat energy for energy storage systems when the ambient temperature is low, reducing the risk of accelerated decay of lithium-ion batteries at low temperatures; and introducing external cold sources to prevent the system from being damaged when the ambient temperature is high
  • the heat is too high, especially to ensure that the temperature of the energy storage system does not exceed the upper limit of the suitable operating temperature, and the overall effective and comprehensive utilization of heat energy is achieved.
  • this application provides a light storage and hydrogen production system.
  • the light storage and hydrogen production system includes an electrolysis system heat exchanger, a heat storage device, a lithium ion battery energy storage device, an electrolyzer, a heat pump, and a heat exchange pipeline. , control parts and external cold sources.
  • the electrolysis system heat exchanger includes an alkali circulation heat exchanger and a gas-liquid separation heat exchanger that are connected by pipelines.
  • the heat pump includes heat pump one and heat pump two.
  • the heat exchange pipeline Including heat exchange pipeline one, heat exchange pipeline two, and heat exchange pipeline three;
  • the alkali liquid circulation heat exchanger is connected to the heat pump one through the heat exchange pipeline one, and the heat pump one is connected to the heat storage, the heat pump two, the control part and the external cold source through the pipelines in turn.
  • the gas-liquid separation heat exchanger is connected through the heat exchange pipeline.
  • heat pipe The second connected heat storage device is provided with a lithium-ion battery energy storage device connected through the third heat exchange pipe on the pipeline branch connecting the second heat pump and the control part.
  • the electrolytic tank is connected to the alkali liquid circulation through the pipeline circulation. on the heat exchanger.
  • the designed light storage hydrogen production system uses the heat storage temperature as the benchmark, and connects the high-temperature end (lye circulation heat exchanger) and the low-temperature end (lithium-ion battery energy storage device) through a heat pump to improve the flexibility of heat exchange.
  • it reduces energy consumption, maintains the temperature of the alkali solution when the power supply fluctuates, and improves the power adaptability of the electrolyzer; comprehensively utilizes the heat generated by the electrolysis system to provide stable heat energy for the energy storage system when the ambient temperature is low, and reduces the temperature of the lithium-ion battery at low temperatures. It reduces the risk of accelerated decay; and introduces external cold sources to prevent the overall heat of the system from being too high when the ambient temperature is high. In particular, it ensures that the temperature of the energy storage system does not exceed the upper limit of the suitable operating temperature, and the overall effective and comprehensive utilization of heat energy is achieved.
  • the light storage and hydrogen production system further includes a photovoltaic power generation device, and the photovoltaic power generation device is connected to the heat exchanger of the electrolysis system.
  • the photovoltaic power generation device in this application provides main power to the overall photovoltaic storage and hydrogen production system.
  • the photovoltaic power generation device meets the rated power of electrolysis, the photovoltaic hydrogen production system is in a stable operating state, and the alkali circulation heat exchanger Store excess heat in a heat storage device and use it to maintain the energy storage system at a suitable operating temperature; when the power of the photovoltaic power generation device is higher than the rated power of the electrolysis, the lithium-ion battery energy storage device is charged.
  • the power of the electrolyzer When its power is higher than a certain At the threshold, the power of the electrolyzer is increased, and the temperature of the heat storage is reduced through external cold sources and heat pumps, thereby controlling the temperature of the circulating alkali solution not to exceed the limit value; when the power of the photovoltaic power generation device is lower than the rated power of electrolysis, the lithium-ion battery storage The energy device discharges, and when its power is lower than a certain threshold, the power of the electrolyzer is reduced, and the circulating alkali solution is heated through a heat storage device and a heat pump to prevent the alkali solution from being too low in temperature.
  • the heat exchange temperature of the first heat exchange pipeline is greater than the heat exchange temperature of the second heat exchange pipeline and the heat exchange temperature of the third heat exchange pipeline.
  • the heat exchange temperature of the second heat exchange pipeline is greater than the heat exchange temperature of the third heat exchange pipeline.
  • This application specifically stipulates that the heat exchange temperature of the heat exchange pipeline one is greater than the heat exchange temperature of the heat exchange pipeline two and the heat exchange temperature of the heat exchange pipeline three, and the heat exchange pipeline two is greater than the heat exchange pipeline
  • the heat exchange temperature of When the temperature of the circuit does not meet this condition, it will cause the heat pump system to be overloaded. In severe cases, it will cause forced power reduction of the electrolyzer or forced disconnection of the electrochemical energy storage, which will affect the normal operation of the system. This is because the heat exchange tube Changes in circuit temperature gradient will hinder the cooling effect of the circulating alkali solution or cause inappropriate heating of the electrochemical energy storage system.
  • the heat storage device is an adiabatic heat storage device.
  • control member is an electric valve, and the control member is used to control the opening and closing of the external cold source.
  • the light storage and hydrogen production system is coupled to the source, grid and load energy storage management system.
  • the application provides an operation method of the light storage hydrogen production system described in the first aspect, the operation method includes:
  • the electrolytic cell is heated, and the products enter the alkali circulation heat exchanger and the gas-liquid separation heat exchanger respectively for preliminary heat exchange.
  • the external cold source is turned on or off. cut off, thereby adjusting the operating mode of the light storage and hydrogen production system.
  • an external cold source is turned on to cool the heat storage; when the power of the electrolytic cell is low At rated power, the external cold source is turned off and heat is supplied to the heat storage device through the heat pump.
  • the temperature of the heat storage device is 45°C to 55°C, for example, it can be 45°C, 46°C, 47°C, 48°C, 49°C, 50°C, 51°C, 52°C , 53°C, 54°C, 55°C, but it is not limited to the listed values. Other unlisted values within this numerical range are also applicable.
  • the temperature of the alkali liquid circulation heat exchanger is 75-85°C, for example, it can be 75°C, 76°C, 77°C, 78°C, 79°C, 80°C, 81°C, 82°C, 83°C, 84°C, 85°C, but it is not limited to the listed values. Other unlisted values within this numerical range are also applicable.
  • the temperature of the gas-liquid separation heat exchanger is 55°C to 65°C, for example, it can be 55°C, 56°C, 57°C, 58°C, 59°C, 60°C, 61°C, 62°C, 63°C, 64°C, 65°C, but not limited to the listed values, other unlisted values within this range are also applicable.
  • the temperature of the electrolytic cell is 85°C to 95°C, for example, it can be 85°C, 86°C, 87°C, 88°C, 89°C, 90°C, 91°C, 92°C, 93°C, 94°C, 95°C °C, but is not limited to the listed values, other unlisted values within this range are also applicable.
  • the temperature of the external cold source is 15°C to 25°C, for example, it can be 15°C, 16°C, 17°C, 18°C, 19°C, 20°C, 21°C, 22°C, 23°C, 24°C, 25°C, but not limited to the listed values, other unlisted values within this range are also applicable.
  • This application specifically limits the temperature of the external cold source to 15°C to 25°C because this temperature range is slightly lower than the operating temperature of the lithium-ion battery energy storage system.
  • the temperature of the external cold source exceeds the limit value of 25 °C, the cooling effect on the lithium-ion battery will be weakened, which will in turn cause the lithium-ion battery to accelerate attenuation and affect the life of the system; when the temperature of the external cold source is lower than the limit value of 15 °C, the cooling cycle speed of the lithium-ion battery will be reduced. Slowing down, thereby causing an increase in battery inconsistency, leading to accelerated degradation of system life.
  • the designed light storage hydrogen production system is based on the temperature of the heat storage device and is connected through a heat pump.
  • the high-temperature end (lye circulation heat exchanger) and the low-temperature end (lithium-ion battery energy storage device) improve the flexibility of heat exchange while reducing energy consumption, maintain the temperature of the alkali solution when the power supply fluctuates, and improve the power adaptability of the electrolyzer;
  • Figure 1 is a schematic diagram of the overall structure of a light storage and hydrogen production system provided by a specific embodiment of the present application;
  • 1-alkali liquid circulation heat exchanger 2-gas-liquid separation heat exchanger; 3-electrolyzer; 4-heat pump one; 5-heat pump two; 6-heat storage device; 7-lithium ion battery energy storage device; 8-Control parts; 9-External cold source; 10-Heat exchange pipeline one; 11-Heat exchange pipeline two; 12-Heat exchange pipeline three.
  • the present application provides a light storage and hydrogen production system.
  • the light storage and hydrogen production system includes an electrolysis system heat exchanger, a heat storage device 6, and a lithium-ion battery energy storage device. 7.
  • Electrolyzer 3 heat pump, heat exchange pipeline, control parts 8 and external cold source 9.
  • the electrolysis system heat exchanger includes an alkali circulation heat exchanger 1 and a gas-liquid separation heat exchanger 2 that are connected by pipelines.
  • the heat pump includes Heat pump one 4 and heat pump two 5, the heat exchange pipeline includes heat exchange pipeline one 10, heat exchange pipeline two 11, heat exchange pipeline three 12; alkali liquid circulation heat exchanger 1 is connected to the heat pump through heat exchange pipeline one 10 One 4, heat pump one 4 is connected to heat storage 6, heat pump two 5, control part 8 and external cold source 9 in sequence.
  • Gas-liquid separation heat exchanger 2 is connected to heat storage 6 through heat exchange pipeline two 11.
  • a lithium-ion battery energy storage device 7 connected through a heat exchange pipeline 312 is provided on the branch of the pipeline connected to the control part 8.
  • the electrolytic cell 3 is connected to the alkali solution through a pipeline circulation. On circulating heat exchanger 1.
  • the designed light storage hydrogen production system uses the temperature of the heat storage device 6 as the benchmark, and connects the high-temperature end (alkali liquid circulation heat exchanger 1) and the low-temperature end (lithium-ion battery energy storage device 7) through a heat pump to improve the exchange rate.
  • Thermal flexibility reduces energy consumption at the same time, maintains the temperature of the alkali solution when the power supply fluctuates, and improves the power adaptability of the electrolytic tank 3; comprehensively utilizes the heat generated by the electrolysis system to provide stable heat energy for the energy storage system when the ambient temperature is low, reducing lithium The risk of accelerated decay of ion batteries at low temperatures; and the introduction of external cold sources 9 to prevent the overall system heat from being too high when the ambient temperature is high, especially to ensure that the temperature of the energy storage system does not exceed the upper limit of the appropriate operating temperature, achieving effective comprehensive utilization of heat energy as a whole .
  • the photovoltaic power generation device also includes a photovoltaic power generation device.
  • the photovoltaic power generation device is connected to the heat exchanger of the electrolysis system.
  • the photovoltaic power generation device in this application provides the main power to the overall photovoltaic hydrogen production system.
  • the photovoltaic power generation device meets the rated power of electrolysis
  • the alkali circulation heat exchanger 1 stores excess heat into the heat storage 6 and is used to maintain the energy storage system at a suitable operating temperature; when the power of the photovoltaic power generation device is higher than that of the electrolysis
  • the lithium-ion battery energy storage device 7 is charged.
  • the power of the electrolyzer 3 When its power is higher than a certain threshold, the power of the electrolyzer 3 is increased, and the temperature of the heat storage 6 is reduced through the external cold source 9 and the heat pump 25, thereby controlling the circulating alkali.
  • the liquid temperature does not exceed the limit value; when the power of the photovoltaic power generation device is lower than the rated power of the electrolysis, the lithium-ion battery energy storage device 7 discharges, and when its power is lower than a certain threshold, the power of the electrolyzer 3 is reduced, and the power of the electrolyzer is 6 and heat pump 1-4 heat the circulating alkali solution to prevent the temperature of the alkali solution from being too low.
  • the heat exchange temperature of heat exchange pipeline one 10 is greater than the heat exchange temperature of heat exchange pipeline two 11 and the heat exchange temperature of heat exchange pipeline three 12. Furthermore, the heat exchange temperature of heat exchange pipeline two 11 is greater than the heat exchange temperature of heat exchange pipeline two 11. The heat exchange temperature of pipe three 12.
  • This application specifically stipulates that the heat exchange temperature of the heat exchange pipeline one 10 is greater than the heat exchange temperature of the heat exchange pipeline two 11 and the heat exchange temperature of the heat exchange pipeline three 12, and the heat exchange pipeline two 11 is greater than
  • the heat exchange temperature of heat exchange pipeline 312 is because under this temperature gradient, it ensures that the heat storage device is
  • the cooling effect of circulating alkali liquid also ensures that the temperature of the electrochemical energy storage system does not exceed the limit value; when the temperature of the heat exchange pipeline in the system does not meet this condition, it will cause the heat pump system to be overloaded, and in serious cases, it will cause Forced power reduction of the electrolyzer or forced disconnection of the electrochemical energy storage occurs, which affects the normal operation of the system. This is because the temperature gradient change of the heat exchange pipeline will hinder the cooling effect of the circulating alkali solution or cause damage to the electrochemical energy storage system. inappropriate heating.
  • the heat storage 6 is an adiabatic heat storage; the control part 8 is an electric valve, and the control part 8 is used to control the opening and closing of the external cold source 9.
  • the light storage hydrogen production system is coupled to the source grid load energy storage management system.
  • the present application provides an operation method of a light storage hydrogen production system, the operation method includes:
  • the electrolytic tank 3 is heated, and the products enter the alkali circulation heat exchanger 1 and the gas-liquid separation heat exchanger 2 respectively for preliminary heat exchange.
  • the external cooling is adjusted.
  • the source 9 is turned on or off to adjust the operating mode of the light storage hydrogen production system.
  • the external cooling source 9 After heating the electrolytic tank 3, when the power of the electrolytic tank 3 exceeds the rated power, the external cooling source 9 is turned on to cool the heat storage 6; when the power of the electrolytic tank 3 is lower than the rated power, the external cooling source 9 is turned off. Source 9 supplies heat to the heat storage 6 through a heat pump.
  • the temperature of the heat storage 6 is 45°C ⁇ 55°C
  • the temperature of the alkali circulation heat exchanger 1 is 75°C ⁇ 85°C
  • the temperature of the gas-liquid separation heat exchanger 2 is 55°C ⁇ 65°C
  • the temperature of the electrolytic tank 3 is 85°C to 95°C
  • the temperature of the external cold source 9 is 15°C to 25°C. This application specifically limits the temperature of the external cold source 9 to 15°C to 25°C, because this temperature range is slightly lower than that of lithium The operating temperature of the ion battery energy storage system.
  • the cooling effect on the lithium ion battery will be weakened, which will in turn cause the lithium ion battery to accelerate decay and affect the life of the system; when the When the temperature of the external cold source 9 is lower than the limit value of 15°C, the cooling cycle speed of the lithium-ion battery will be slowed down, which will lead to an increase in battery inconsistency and an accelerated decline in the system life.

Abstract

一种光储制氢系统。所述光储制氢系统中的碱液循环换热器(1)通过换热管路一(10)连接热泵一(4),所述热泵一(4)依次管路连接储热器(6)、热泵二(5)、控制件(8)和外部冷源(9),所述气液分离换热器(2)通过换热管路二(11)连接储热器(6),在所述热泵二(5)和控制件(8)连接的管路分支上设置有通过换热管路三(12)连接的锂离子电池储能装置(7),所述电解槽(3)通过管路循环连接至碱液循环换热器(1)上。

Description

一种光储制氢系统及其运行方法
相关申请的交叉引用
本申请要求于2022年03月11日提交中国专利局、申请号为2022102375675、申请名称为“一种光储制氢系统及其运行方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及制氢技术领域,特别是涉及一种光储制氢系统及其运行方法。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有示例性技术。
在当今世界能源和环保形势不断变化的大背景下,氢能作为终极的清洁能源载体,被寄予厚望。氢气是推动全球经济绿色低碳转型和我国“碳中和”目标实现的潜在支撑,其将为电力、交通、钢铁、建筑等行业低碳转型提供助力。目前制氢技术路线按原料来源主要分为化石原料制氢、化工原料制氢、工业副产氢和电解水制氢等。其中应用可再生能源电力进行电解水所获得的氢气被称为“绿氢”,是清洁、可持续的氢气来源,也具备着最大的降本潜力。CN213013112U公开了一种大型碱性电解水制氢装置的综合热管理系统,包括碱性电解水制氢装置和热管理装置,碱性电解水制氢装置包括电解槽和气液分离器,气液分离器的碱液输出端通过碱液循环回路连接电解槽,热管理装置 包括热管理综合换热器、气液分离换热器和碱液循环换热器,气液分离换热器设置在电解槽和气液分离器之间,碱液循环换热器设置在碱液循环回路中,气液分离换热器和热管理综合换热器的换热介质进出口连通形成用于冷却电解槽输出的气液混合状态碱液的第一换热回路,碱液循环换热器和热管理综合换热器的换热介质进出口连通形成用于加热输入至电解槽中的碱液的第二换热回路,该方案能实现热能的有效综合利用、适应性好。
CN109687002A公开了一种分布式冷热电联供系统,其中制氢和储氢系统电解高温水蒸汽产生氧气和氢气;第一燃料电池系统利用氧气或者空气,以及氢气发电,并将发电产生的电能输送至微电网;第二燃料电池系统利用氢气或者天然气,以及空气进行发电,并将电能输送至微电网,还将剩余的氢气或天然气,以及空气进行燃烧产生烟气;吸收式制冷器利用烟气以及高温水蒸汽进行制冷;水热管理系统导出第一燃料电池系统、制氢和储氢系统以及吸收式制冷器运行时产生的热量,并以热水形式供应用户;可再生能源供能系统生成高温水蒸气。该申请可以实现多能互补,提高供能效率和能源安全性,降低化石燃料消耗,没有CO2排放量大的缺点,还能实现热能、电能、冷量的联合供应。
CN112944206A公开了一种电解水制氢加氢站热管理系统,该系统包括电解水制氢加氢站和热管理设备,电解水制氢加氢站包括电解水制氢设备、气体纯化装置、第一压缩机、第一加氢枪;热管理设备包括热泵、第一换热管、第二换热管、换热器、第一液体泵和第二液体泵,其中,第一换热管的一端连接到热泵,另一端连接到换热器,换热器安装在气管上、用于冷却气管,第二换热管的一端连接到热泵,另一端连接到电解水制氢设备、用于吸收电解水制氢设备的冷却回路中热量,避免制氢设备温度过高。该系统能够控制电解水制氢 设备的温度,并使加氢过程中氢气温度达到要求,避免设备温度越限对设备寿命带来伤害和避免氢气温度过高影响加注效率。
目前,在一个源网荷储系统中,是通过新能源发电为系统提供电力,由于新能源供电的不确定性,在碱性水电解槽进行氢气制备的过程中,需要考虑功率波动对电解效率的影响。
发明内容
针对现有技术存在的不足,本申请的各种实施例的目的在于提供一种光储制氢系统及其运行方法,在本申请中,设计的光储制氢系统以储热器温度作为基准,通过热泵连接高温端(碱液循环换热器)和低温端(锂离子电池储能装置),提升换热灵活度的同时降低能耗,在供电功率波动时保持碱液温度,提升电解槽功率适应性;综合利用电解系统产热,在环境温度低时为储能系统等提供稳定热能,降低锂离子电池在低温下加速衰减的风险;且引入外部冷源,防止环境温度高时系统整体热量过高,特别是保障储能系统温度不超过适宜工作温度上限,整体实现了热能的有效综合利用。
为达此目的,本申请采用以下技术方案:
第一方面,本申请提供了一种光储制氢系统,所述光储制氢系统包括电解系统换热器、储热器、锂离子电池储能装置、电解槽、热泵、换热管路、控制件和外部冷源,所述电解系统换热器包括管路循环连接的碱液循环换热器和气液分离换热器,所述热泵包括热泵一和热泵二,所述换热管路包括换热管路一、换热管路二、换热管路三;
所述碱液循环换热器通过换热管路一连接热泵一,所述热泵一依次管路连接储热器、热泵二、控制件和外部冷源,所述气液分离换热器通过换热管路 二连接储热器,在所述热泵二和控制件连接的管路分支上设置有通过换热管路三连接的锂离子电池储能装置,所述电解槽通过管路循环连接至碱液循环换热器上。
在本申请中,设计的光储制氢系统以储热器温度作为基准,通过热泵连接高温端(碱液循环换热器)和低温端(锂离子电池储能装置),提升换热灵活度的同时降低能耗,在供电功率波动时保持碱液温度,提升电解槽功率适应性;综合利用电解系统产热,在环境温度低时为储能系统等提供稳定热能,降低锂离子电池在低温下加速衰减的风险;且引入外部冷源,防止环境温度高时系统整体热量过高,特别是保障储能系统温度不超过适宜工作温度上限,整体实现了热能的有效综合利用。
作为本申请一种优选的技术方案,所述光储制氢系统还包括光伏发电装置,所述光伏发电装置连接至电解系统换热器上。
需要说明的是,本申请中的光伏发电装置提供给整体光储制氢系统主要电力,当光伏发电装置满足电解的额定功率时,光储制氢系统为平稳运行状态,碱液循环换热器将多余热量储存至储热器中,并用于维持储能系统处于适宜工作温度;当光伏发电装置的功率高于电解的额定功率时,锂离子电池储能装置进行充电,当其电力高于一定阈值时,提升电解槽功率,通过外部冷源及热泵二降低储热器温度,进而控制循环碱液温度不超过限定值;当光伏发电装置的功率低于电解的额定功率时,锂离子电池储能装置进行放电,当其电力低于一定阈值时,降低电解槽功率,通过储热器及热泵一对循环碱液进行加热,防止碱液温度过低。
作为本申请一种优选的技术方案,所述换热管路一的换热温度均大于所述换热管路二的换热温度和所述换热管路三的换热温度。
作为本申请一种优选的技术方案,所述换热管路二的换热温度大于所述换热管路三的换热温度。
本申请中特别限定了所述换热管路一的换热温度均大于换热管路二的换热温度和换热管路三的换热温度,且换热管路二大于换热管路三的换热温度,是因为在这个温度梯度下保障了储热器对电解槽及循环碱液的降温效果,同时保证了电化学储能系统温度不超过限定值;当系统中的换热管路的温度不符合此条件时,会导致热泵系统的超负荷工作,严重的会导致电解槽强制降功率或电化学储能强制断开等情况发生,影响系统正常运行,这是因为换热管路温度梯度变化会阻碍对循环碱液的降温效果或是引起对电化学储能系统的不当升温。
作为本申请一种优选的技术方案,所述储热器为绝热储热器。
作为本申请一种优选的技术方案,所述控制件为电动阀,所述控制件用于控制外部冷源的开启和关断。
作为本申请一种优选的技术方案,所述光储制氢系统耦合连接源网荷储能量管理系统。
第二方面,本申请提供了一种第一方面所述的光储制氢系统的运行方法,所述运行方法包括:
对电解槽进行加热,产物分别进入碱液循环换热器和气液分离换热器进行初步换热,通过控制热泵一和热泵二向换热管路提供的温度,调节外部冷源的开启或关断,从而调整光储制氢系统的运行模式。
作为本申请一种优选的技术方案,对电解槽进行加热后,当所述电解槽的功率超过额定功率时,开启外部冷源用于对储热器进行降温;当所述电解槽的功率低于额定功率时,关断外部冷源,通过热泵向储热器供热。
作为本申请一种优选的技术方案,所述储热器的温度为45℃~55℃,例如可以是45℃、46℃、47℃、48℃、49℃、50℃、51℃、52℃、53℃、54℃、55℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述碱液循环换热器的温度为75~85℃,例如可以是75℃℃、76℃、77℃、78℃、79℃、80℃、81℃、82℃、83℃、84℃、85℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述气液分离换热器的温度为55℃~65℃,例如可以是55℃、56℃、57℃、58℃、59℃、60℃、61℃、62℃、63℃、64℃、65℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述电解槽的温度为85℃~95℃,例如可以是85℃、86℃、87℃、88℃、89℃、90℃、91℃、92℃、93℃、94℃、95℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
优选地,所述外部冷源的温度为15℃~25℃,例如可以是15℃、16℃、17℃、18℃、19℃、20℃、21℃、22℃、23℃、24℃、25℃,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请特别限定了所述外部冷源的温度为15℃~25℃,是因为这一温度范围略低于锂离子电池储能系统的工作温度,当所述外部冷源的温度超过限定值25℃时,会导致对锂离子电池的降温效果减弱,进而导致锂离子电池加速衰减影响系统的寿命;当所述外部冷源的温度低于限定值15℃时,会导致锂离子电池冷却循环速度减缓,进而引起电池不一致性的增加,导致系统寿命的加速衰减。
与现有技术相比,本申请的有益效果为:
在本申请中,设计的光储制氢系统以储热器温度作为基准,通过热泵连接 高温端(碱液循环换热器)和低温端(锂离子电池储能装置),提升换热灵活度的同时降低能耗,在供电功率波动时保持碱液温度,提升电解槽功率适应性;综合利用电解系统产热,在环境温度低时为储能系统等提供稳定热能,降低锂离子电池在低温下加速衰减的风险;且引入外部冷源,防止环境温度高时系统整体热量过高,特别是保障储能系统温度不超过适宜工作温度上限,整体实现了热能的有效综合利用。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
图1为本申请一个具体实施方式提供的光储制氢系统的整体结构示意图;
其中,1-碱液循环换热器;2-气液分离换热器;3-电解槽;4-热泵一;5-热泵二;6-储热器;7-锂离子电池储能装置;8-控制件;9-外部冷源;10-换热管路一;11-换热管路二;12-换热管路三。
具体实施方式
需要理解的是,在本申请的描述中,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。 由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
需要说明的是,在本申请的描述中,除非另有明确的规定和限定,术语“设置”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以通过具体情况理解上述术语在本申请中的具体含义。
本领域技术人员理应了解的是,本申请中必然包括用于实现工艺完整的必要管线、常规阀门和通用泵设备,但以上内容不属于本申请的主要发明点,本领域技术人员可以基于工艺流程和设备结构选型可以自行增设布局,本申请对此不做特殊要求和具体限定。
下面结合附图并通过具体实施方式来进一步说明本申请的技术方案。
在一个具体实施方式中,本申请提供了一种光储制氢系统,如图1所示,所述光储制氢系统包括电解系统换热器、储热器6、锂离子电池储能装置7、电解槽3、热泵、换热管路、控制件8和外部冷源9,电解系统换热器包括管路循环连接的碱液循环换热器1和气液分离换热器2,热泵包括热泵一4和热泵二5,换热管路包括换热管路一10、换热管路二11、换热管路三12;碱液循环换热器1通过换热管路一10连接热泵一4,热泵一4依次管路连接储热器6、热泵二5、控制件8和外部冷源9,气液分离换热器2通过换热管路二11连接储热器6,在热泵二5和控制件8连接的管路分支上设置有通过换热管路三12连接的锂离子电池储能装置7,电解槽3通过管路循环连接至碱液 循环换热器1上。
在本申请中,设计的光储制氢系统以储热器6温度作为基准,通过热泵连接高温端(碱液循环换热器1)和低温端(锂离子电池储能装置7),提升换热灵活度的同时降低能耗,在供电功率波动时保持碱液温度,提升电解槽3功率适应性;综合利用电解系统产热,在环境温度低时为储能系统等提供稳定热能,降低锂离子电池在低温下加速衰减的风险;且引入外部冷源9,防止环境温度高时系统整体热量过高,特别是保障储能系统温度不超过适宜工作温度上限,整体实现了热能的有效综合利用。
光储制氢系统还包括光伏发电装置,光伏发电装置连接至电解系统换热器上,本申请中的光伏发电装置提供给整体光储制氢系统主要电力,当光伏发电装置满足电解的额定功率时,光储制氢系统为平稳运行状态,碱液循环换热器1将多余热量储存至储热器6中,并用于维持储能系统处于适宜工作温度;当光伏发电装置的功率高于电解的额定功率时,锂离子电池储能装置7进行充电,当其电力高于一定阈值时,提升电解槽3功率,通过外部冷源9及热泵二5降低储热器6温度,进而控制循环碱液温度不超过限定值;当光伏发电装置的功率低于电解的额定功率时,锂离子电池储能装置7进行放电,当其电力低于一定阈值时,降低电解槽3功率,通过储热器6及热泵一4对循环碱液进行加热,防止碱液温度过低。
换热管路一10的换热温度均大于换热管路二11的换热温度和换热管路三12的换热温度,进一步地,换热管路二11的换热温度大于换热管路三12的换热温度。本申请中特别限定了所述换热管路一10的换热温度均大于换热管路二11的换热温度和换热管路三12的换热温度,且换热管路二11大于换热管路三12的换热温度,是因为在这个温度梯度下保障了储热器对电解槽及 循环碱液的降温效果,同时保证了电化学储能系统温度不超过限定值;当系统中的换热管路的温度不符合此条件时,会导致热泵系统的超负荷工作,严重的会导致电解槽强制降功率或电化学储能强制断开等情况发生,影响系统正常运行,这是因为换热管路温度梯度变化会阻碍对循环碱液的降温效果或是引起对电化学储能系统的不当升温。
储热器6为绝热储热器;控制件8为电动阀,控制件8用于控制外部冷源9的开启和关断,光储制氢系统耦合连接源网荷储能量管理系统。
在另一个具体实施方式中,本申请提供了一种光储制氢系统的运行方法,所述运行方法包括:
对电解槽3进行加热,产物分别进入碱液循环换热器1和气液分离换热器2进行初步换热,通过控制热泵一4和热泵二5向换热管路提供的温度,调节外部冷源9的开启或关断,从而调整光储制氢系统的运行模式。
对电解槽3进行加热后,当电解槽3的功率超过额定功率时,开启外部冷源9用于对储热器6进行降温;当电解槽3的功率低于额定功率时,关断外部冷源9,通过热泵向储热器6供热。
储热器6的温度为45℃~55℃,碱液循环换热器1的温度为75℃~85℃,气液分离换热器2的温度为55℃~65℃,电解槽3的温度为85℃~95℃,外部冷源9的温度为15℃~25℃,本申请特别限定了所述外部冷源9的温度为15℃~25℃,是因为这一温度范围略低于锂离子电池储能系统的工作温度,当所述外部冷源9的温度超过限定值25℃时,会导致对锂离子电池的降温效果减弱,进而导致锂离子电池加速衰减影响系统的寿命;当所述外部冷源9的温度低于限定值15℃时,会导致锂离子电池冷却循环速度减缓,进而引起电池不一致性的增加,导致系统寿命的加速衰减。
申请人声明,以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,均落在本申请的保护范围和公开范围之内。

Claims (15)

  1. 一种光储制氢系统,所述光储制氢系统包括电解系统换热器、储热器、锂离子电池储能装置、电解槽、热泵、换热管路、控制件和外部冷源,所述电解系统换热器包括管路循环连接的碱液循环换热器和气液分离换热器,所述热泵包括热泵一和热泵二,所述换热管路包括换热管路一、换热管路二和换热管路三;
    所述碱液循环换热器通过换热管路一连接热泵一,所述热泵一依次管路连接储热器、热泵二、控制件和外部冷源,所述气液分离换热器通过换热管路二连接储热器,在所述热泵二和控制件连接的管路分支上设置有通过换热管路三连接的锂离子电池储能装置,所述电解槽通过管路循环连接至碱液循环换热器上。
  2. 根据权利要求1所述的光储制氢系统,其中,所述光储制氢系统还包括光伏发电装置,所述光伏发电装置连接至电解系统换热器上。
  3. 根据权利要求2所述的光储制氢系统,其中,所述换热管路一的换热温度均大于所述换热管路二的换热温度和所述换热管路三的换热温度。
  4. 根据权利要求3所述的光储制氢系统,其中,所述换热管路二的换热温度大于所述换热管路三的换热温度。
  5. 根据权利要求4所述的光储制氢系统,其中,所述储热器为绝热储热器。
  6. 根据权利要求5所述的光储制氢系统,其中,所述控制件为电动阀,所述控制件用于控制外部冷源的开启和关断。
  7. 根据权利要求6所述的光储制氢系统,其中,所述光储制氢系统耦合连接源网荷储能量管理系统。
  8. 一种根据权利要求1-7任一项所述的光储制氢系统的运行方法,所述运行方法包括:
    对电解槽进行加热,产物分别进入碱液循环换热器和气液分离换热器进行初步换热,通过控制热泵一和热泵二向换热管路提供的温度,调节外部冷源的开启或关断,从而调整光储制氢系统的运行模式。
  9. 根据权利要求8所述的运行方法,其中,对电解槽进行加热后,当所述电解槽的功率超过额定功率时,开启外部冷源用于对储热器进行降温。
  10. 根据权利要求8所述的运行方法,其中,对电解槽进行加热后,当所述电解槽的功率低于额定功率时,关断外部冷源,通过热泵向储热器供热。
  11. 根据权利要求8所述的运行方法,其中,所述外部冷源的温度约为15℃~25℃。
  12. 根据权利要求8所述的运行方法,其中,所述碱液循环换热器的温度约为75℃~85℃。
  13. 根据权利要求8所述的运行方法,其中,所述气液分离换热器的温度约为55℃~65℃。
  14. 根据权利要求10所述的运行方法,其中,所述储热器的温度约为45℃~55℃。
  15. 根据权利要求10所述的运行方法,其中,所述电解槽的温度约为85℃~95℃。
PCT/CN2023/080014 2022-03-11 2023-03-07 一种光储制氢系统及其运行方法 WO2023169400A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210237567.5 2022-03-11
CN202210237567.5A CN115992358A (zh) 2022-03-11 2022-03-11 一种光储制氢系统及其运行方法

Publications (1)

Publication Number Publication Date
WO2023169400A1 true WO2023169400A1 (zh) 2023-09-14

Family

ID=85993081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080014 WO2023169400A1 (zh) 2022-03-11 2023-03-07 一种光储制氢系统及其运行方法

Country Status (2)

Country Link
CN (1) CN115992358A (zh)
WO (1) WO2023169400A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016150168A1 (zh) * 2015-03-20 2016-09-29 国家电网公司 一种耦合太阳能光热的高温电解水制氢系统
CN109687002A (zh) * 2018-11-13 2019-04-26 中广核研究院有限公司 一种分布式冷热电联供系统
CN111748822A (zh) * 2020-06-04 2020-10-09 同济大学 一种大型碱性电解水制氢装置的综合热管理系统
CN213013112U (zh) * 2020-06-04 2021-04-20 同济大学 一种大型碱性电解水制氢装置的综合热管理系统
CN112944206A (zh) * 2021-04-07 2021-06-11 清华四川能源互联网研究院 电解水制氢加氢站热管理系统
WO2021248898A1 (zh) * 2020-06-08 2021-12-16 阳光电源股份有限公司 一种可再生能源制氢和储氢系统及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016150168A1 (zh) * 2015-03-20 2016-09-29 国家电网公司 一种耦合太阳能光热的高温电解水制氢系统
CN109687002A (zh) * 2018-11-13 2019-04-26 中广核研究院有限公司 一种分布式冷热电联供系统
CN111748822A (zh) * 2020-06-04 2020-10-09 同济大学 一种大型碱性电解水制氢装置的综合热管理系统
CN213013112U (zh) * 2020-06-04 2021-04-20 同济大学 一种大型碱性电解水制氢装置的综合热管理系统
WO2021248898A1 (zh) * 2020-06-08 2021-12-16 阳光电源股份有限公司 一种可再生能源制氢和储氢系统及其控制方法
CN112944206A (zh) * 2021-04-07 2021-06-11 清华四川能源互联网研究院 电解水制氢加氢站热管理系统

Also Published As

Publication number Publication date
CN115992358A (zh) 2023-04-21

Similar Documents

Publication Publication Date Title
CN111139493B (zh) 一种太阳能光伏光热高温电解水制氢系统及制氢方法
CN106787139A (zh) 一种用于通信基站的制氢‑储氢燃料电池备用电源系统
CN106684407B (zh) 一种控制和优化合金储氢燃料电池氢利用率的系统与方法
CN113364026B (zh) 一种数据中心供能系统及其控制方法
CN103199561A (zh) 一种基于燃料电池、风能、太阳能的风光氢互补并网型电站
CN113851670B (zh) 一种基于质子交换膜燃料电池的冷热电联供方法
CN108167076B (zh) 一种蒸汽优化利用的综合分布式能源系统
CN102800882B (zh) 一种燃料电池发电系统
CN113604827B (zh) 一种利用液态天然气冷能发电制氢的系统
CN113278987B (zh) 一种soec和ael电解耦合固体循环储放氢系统
WO2023169400A1 (zh) 一种光储制氢系统及其运行方法
CN217922341U (zh) 一种含热管理的集装箱式一体化电氢联产装置
CN115411315A (zh) 一种电解水制氢耦合金属固态储氢燃料电池热电联产系统
CN203180547U (zh) 一种基于燃料电池、风能、太阳能的风光氢互补并网型电站
CN115084580A (zh) 基于可逆固体氧化物电池可再生能源就地储能系统及方法
CN111188996B (zh) 一种lng接收站浸没燃烧式气化器的低温余热回收装置
CN219268502U (zh) 一种风光电制氢储能热电氧三联供的系统
CN218241904U (zh) 一种基于太阳能发电制氢的燃料电池冷热电联供系统
CN218274673U (zh) 一种电解水制氢系统中的燃料电池单元
CN218910545U (zh) 一种碱性电解水制氢槽及热量优化系统
CN220491922U (zh) 一种可再生能源耦合燃料电池的冷电联供系统
CN215832035U (zh) 一种基于全可再生能源的零碳型冷热电气联供系统
CN114976168B (zh) 一种发电联合氨电化学制储用的电热氧产供系统
CN220287155U (zh) 一种利用差压余能进行制氢和掺氢的系统
CN220812641U (zh) 一种具有辅助热源的电解槽热管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23765978

Country of ref document: EP

Kind code of ref document: A1