WO2023169301A1 - 一种文本处理方法、装置及电子设备 - Google Patents

一种文本处理方法、装置及电子设备 Download PDF

Info

Publication number
WO2023169301A1
WO2023169301A1 PCT/CN2023/079314 CN2023079314W WO2023169301A1 WO 2023169301 A1 WO2023169301 A1 WO 2023169301A1 CN 2023079314 W CN2023079314 W CN 2023079314W WO 2023169301 A1 WO2023169301 A1 WO 2023169301A1
Authority
WO
WIPO (PCT)
Prior art keywords
text
processed
parameter
reasoning
processing
Prior art date
Application number
PCT/CN2023/079314
Other languages
English (en)
French (fr)
Inventor
林苑
柳志轩
王子豪
李航
Original Assignee
北京有竹居网络技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京有竹居网络技术有限公司 filed Critical 北京有竹居网络技术有限公司
Publication of WO2023169301A1 publication Critical patent/WO2023169301A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/20Natural language analysis
    • G06F40/279Recognition of textual entities
    • G06F40/289Phrasal analysis, e.g. finite state techniques or chunking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/30Semantic analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present disclosure relates to the field of text processing technology, and in particular, to a text processing method, device and electronic equipment.
  • a large-scale neural network-based text processing model can be pre-trained, and the annotated data can be used to adjust the neural network-based text processing model.
  • the adjusted neural network-based text processing model can be used To identify the text to be processed and obtain the text processing results, this method is suitable for natural language recognition tasks that can be solved based on semantic understanding.
  • some logical reasoning processes or number calculation processes are involved. To complete such reasoning tasks, it cannot be achieved through current text processing methods. There is an urgent need for a text processing method that can handle reasoning tasks.
  • the present disclosure provides a text processing method, device and electronic equipment, which can extract at least one parameter and obtain at least one parameter during the process of processing the text to be processed. The logical relationship between them is then generated and executed to obtain text reasoning results, complete logical reasoning or numerical operations, and solve complex reasoning tasks.
  • the present disclosure provides a text processing method, including:
  • the reasoning program consists of at least one operator and at least one parameter, and at least one operator is used to indicate a logical relationship.
  • the method after obtaining the text to be processed, also includes Including: inputting the text to be processed into the text processing model based on the neural network; obtaining the text processing results output by the text processing model based on the neural network;
  • the method also includes: determining the final output result based on the text reasoning result and the text processing result.
  • the text processing model based on neural network corresponds to at least one of the following tasks: text classification task, text extraction task, and text sequence labeling task.
  • obtaining the text to be processed includes: obtaining the initial text; determining at least one parameter from the initial text; and labeling at least one parameter of the initial text to generate the text to be processed.
  • the method further includes: obtaining the target task corresponding to the text to be processed;
  • Identifying the text to be processed based on at least one parameter to obtain a logical relationship between at least one parameter includes: identifying the text to be processed based on the target task and at least one parameter to obtain a logical relationship between at least one parameter.
  • a text processing device which includes:
  • a codec used to extract at least one parameter from the text to be processed identify the text to be processed based on at least one parameter to obtain a logical relationship between at least one parameter; and generate an inference program based on the text to be processed and the logical relationship;
  • Executor used to execute reasoning programs to obtain text reasoning results.
  • the acquisition module is also used to input the text to be processed into a text processing model based on a neural network; and obtain a text processing result output by the text processing model based on a neural network;
  • the device also includes: a selection module, specifically used to determine the final output result based on text reasoning results and text processing results.
  • the acquisition module is specifically configured to obtain the initial text; determine at least one parameter from the initial text; and perform symbol annotation on at least one parameter of the initial text to generate the text to be processed.
  • the acquisition module is also used to acquire the target task corresponding to the text to be processed
  • the codec is specifically used to identify the text to be processed based on the target task and at least one parameter to obtain a logical relationship between at least one parameter.
  • the present disclosure provides an electronic device, including: a processor, a memory, and a computer program stored on the memory and executable on the processor.
  • the computer program is implemented when executed by the processor.
  • the text processing method as described in the first aspect or any optional implementation manner thereof.
  • the present disclosure provides a computer-readable storage medium, including: a computer program stored on the computer-readable storage medium.
  • the computer program When the computer program is executed by a processor, the computer program implements the first aspect or any of its options.
  • the present disclosure provides a computer program product, which is characterized in that: when the computer program product is run on a computer, the computer implements the first aspect or any one thereof.
  • the text processing method provided by the present disclosure first obtains the text to be processed, and extracts at least one parameter from the text to be processed, and then based on at least one parameter , identify the text to be processed to obtain the logical relationship between at least one parameter, further generate an inference program based on the text to be processed and the logical relationship, and finally execute the inference program to obtain the text inference result.
  • the text processing method in the process of processing the text to be processed, at least one parameter is extracted, the logical relationship between at least one parameter is obtained, and then the reasoning program is generated and executed, thereby obtaining the text reasoning result and completing the logical reasoning or Number crunching, solving complex reasoning tasks.
  • Figure 1 is a schematic flowchart 1 of a text processing method according to an embodiment of the present disclosure
  • Figure 2A is a system framework diagram 1 of a text processing method provided by an embodiment of the present disclosure
  • Figure 2B is a system framework diagram 2 of a text processing method provided by an embodiment of the present disclosure
  • Figure 3 is a schematic structural diagram of a text processing device according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of an electronic device according to an embodiment of the present disclosure.
  • a large-scale neural network-based text processing model can be pre-trained, and the annotated data can be used to adjust the neural network-based text processing model.
  • the adjusted neural network-based text processing model can be used To identify the text to be processed and obtain the text processing results, this method is suitable for natural language recognition tasks that can be solved based on semantic understanding.
  • some logical reasoning processes or number calculation processes are involved. To complete such reasoning tasks, it cannot be achieved through current text processing methods. There is an urgent need for a text processing method that can handle reasoning tasks.
  • embodiments of the present disclosure provide a text processing method, device and electronic equipment.
  • a text processing method during the process of processing the text to be processed, at least one parameter is extracted, and at least one parameter is obtained. logical relationship, and then generate and execute the inference program to obtain Obtain text reasoning results, complete logical reasoning or numerical operations, and solve complex reasoning tasks.
  • the text processing method provided in the embodiment of the present disclosure can be implemented through computer equipment, including but not limited to servers, personal computers, notebook computers, tablet computers, smart phones, etc.
  • Computer equipment includes user equipment and network equipment.
  • user equipment includes but is not limited to computers, smartphones, tablets, etc.
  • network equipment includes but is not limited to a single network server, a server group composed of multiple network servers, or a cloud composed of a large number of computers or network servers in cloud computing.
  • cloud computing is a type of distributed computing, a super virtual computer composed of a group of loosely coupled computer sets.
  • the computer device can run alone to implement the present disclosure, or it can be connected to a network and implement the present disclosure through interactive operations with other computer devices in the network.
  • the network where the computer equipment is located includes but is not limited to the Internet, wide area network, metropolitan area network, local area network, virtual private network (Virtual Private Network, VPN) network, etc.
  • Figure 1 is a schematic flowchart 1 of a text processing method provided by an embodiment of the present disclosure.
  • the method includes:
  • the text to be processed can include user-generated content (User Generated Content, UGC), professionally generated content (Professional Generated Content, PGC), multi-channel network product form (Multi-ChannelNetwork, MCN), professional user-generated content (Professional User Generated Content, PUGC).
  • UGC User Generated Content
  • PGC professionally generated content
  • MCN multi-channel network product form
  • MCN multi-ChannelNetwork
  • PUGC professional user-generated content
  • the text to be processed may be text composed of characters in different languages, such as Chinese, English, etc.
  • the language type of the text to be processed is not limited in this disclosure.
  • the text to be processed can be any multimedia data that requires text processing.
  • the text to be processed can be multimedia data sent by the user through the user terminal and received by the server corresponding to the multimedia data publishing platform, or, alternatively, the text to be processed can be any multimedia data that requires text processing. It may be multimedia data to be processed obtained from a preset storage space by a server corresponding to the multimedia publishing platform.
  • the text to be processed can be formatted first.
  • the formatting process includes but is not limited to: unifying fonts, unifying styles, and removing hidden characters. This disclosure does not limit this.
  • the initial text before extracting at least one parameter from the text to be processed, the initial text is obtained, and at least one parameter in the initial text is symbolically annotated to generate the text to be processed.
  • Symbol annotation refers to using symbol pairs that are different from the text.
  • the initial text is: "Dolphins football player Jay Feeley scored 53 points to end this game. In second place, Miami closed in on Feeley's score, kicking 44 points and New York's football player Mike ⁇ Nugent scored 29 points.", and the initial text was marked with symbols to obtain the text to be processed: "Dolphins football player Jay Feeley scored 53@N6 points to end the game. Second place @N7 , Miami closed in on Philly's score, kicking 44@N8 points, and New York's football player Mike Nugent scored 29@N9 points.".
  • the initial text includes the premise text "Sam has 98.0 pennies in the bank and he spent 93.0 pennies.”, and the hypothetical text "He now has 5.0 pennies.”
  • the generated text to be processed includes: the premise text " ⁇ Tom has 98.0@M1 pennies in the bank and he has spent 93.0@M2 pennies. ”, assuming the text “He now has 5.0@N1p”.
  • the symbol used for labeling may be "@" or " ⁇ " in the above example, or may be other types of symbol labeling. This disclosure does not impose specific restrictions on this.
  • the machine can quickly identify the data information in natural language and improve the efficiency of reasoning.
  • the corresponding parameters can be determined according to the marked symbols, for example, according to the aforementioned premise text "Sam has 98.0@M1 pennies in the bank, and he spent 93.0@M2 pennies.” and the hypothetical text " He now has the symbols marked in "5.0@N1 Pennies”. It is determined that the parameter corresponding to M1 is 98.0, the parameter corresponding to M2 is 93.0, and the parameter corresponding to N1 is 5.0, and extracted.
  • a deep learning network is used for semantic recognition, and the logical relationship between at least one parameter is obtained based on the text data before and after the parameter.
  • the deep learning network is used for semantic recognition. There is the verb "save” before the parameter 98.0, the verb "flower” exists before the parameter 93.0, and the verb "have” exists before the parameter 5.0. Then deep learning There is a subtraction operation relationship between these three parameters of network output.
  • a reasoning program consists of at least one operator and at least one parameter, and at least one operator is used to indicate a logical relationship between at least one parameter.
  • an inference program is generated based on the text to be processed and the logical relationship.
  • At least one parameter includes: M1: 98.0, M2: 93.0, N1: 5.0.
  • an inference program "div(add(N6,N8,N9),Q1)" corresponding to each parameter can be determined, representing Q1 parameters.
  • the existing operational relationship between N6, N8, and N9; according to the logical relationship between the premise text and the hypothesis text included in the text to be processed, an inference program corresponding to each parameter can be determined "( ,(-, M1, M2), N1), and for a text to be processed, different inference programs can be generated based on the operational relationship between parameters, where the operator represents the operational relationship between parameters, for example, "div” means dividing two parameters. , returns the quotient; “add” means adding the two parameters and returning the sum, "-” means subtracting the two parameters and returning the difference.
  • Text inference results include calculated values and logical results, such as "42" or "implication” or “Contradiction”.
  • At least one parameter obtained by symbol annotation is brought into the generated inference program to perform corresponding numerical calculations or logical operations to determine the corresponding text inference result.
  • the above S102 to S105 can be realized through the neural symbolic learning model.
  • the training and application process of the neural symbolic learning model will be described below.
  • Neural symbolic learning model The core concept is that symbolic rules are responsible for expressing the knowledge contained in the neural network, and neurons are responsible for learning and reasoning. The generated model has high robustness, high recognition performance and interpretability at the same time. Neural symbolic learning models are used to identify operational relationships in the text to be processed.
  • the neural symbolic learning model can be trained based on training samples and preset labels.
  • the sample data includes different types of text.
  • the labels can be addition, subtraction, multiplication, and division operations, or mixed operations, complex operations, etc., such as calculus. Train until the neural symbolic learning model converges.
  • dialogue text in order to obtain a large number of training samples, dialogue text can be crawled from the Internet, such as forum dialogue text, situational dialogue text, video subtitles, scripts, etc.
  • the neural symbolic learning model is trained, and after obtaining a large number of training samples, the training samples are divided into a training set, a test set and a verification set, and then the training samples are annotated and set with labels, including but not limited to inference program labels, Text inference result labels.
  • the text of an article in the training sample is "Dolphins football player Jay Feeley scored 53 points to end the game. In second place, Miami approached Feeley's score and kicked 44 points, New York The football player Mike Nugent scored 29 points"; the question text is "What is the average score of the top three players?", set the inference program label to "div(add(N6,N8,N9),Q1) ”, the text inference result label is set to “42”.
  • the training samples are labeled in a similar manner.
  • the above training texts and labels are only illustrative.
  • the setting of labels is diversified.
  • At least one parameter is determined from the initial text; at least one parameter in the initial text is symbolically annotated to generate the text to be processed.
  • the symbol used for labeling may be "@" or " ⁇ " in the above example, or may be other types of symbol labeling. This disclosure does not impose specific restrictions on this.
  • the machine can quickly identify the data information in natural language and improve the efficiency of reasoning.
  • the text to be processed is input into a neural symbolic learning model
  • the neural symbolic learning model extracts at least one parameter from the text to be processed, and then based on the at least one parameter, the text to be processed is identified to obtain a logical relationship between at least one parameter,
  • An inference program is further generated based on the text to be processed and logical relationships, and finally the inference program is executed.
  • the neural symbolic learning model outputs text inference results.
  • the operator represents the operational relationship between parameters, and "-" means subtracting two parameters and returning the difference.
  • the text reasoning result is obtained "contains”.
  • multiple neural symbol learning models can be set up in the same system, that is, multiple neural symbol learning models can be set up in one text processing system.
  • each inference program is set for the same text to be processed when training the neural symbol learning model, at least one neural symbol learning model can be obtained. Therefore, multiple inference programs will be generated when identifying the text to be processed, and each inference program consists of at least It consists of an operator and at least one parameter.
  • the text to be processed includes article text and question text.
  • different inference program labels are set according to different question texts. Therefore, multiple inference program labels can be generated when identifying the article text in the text to be processed.
  • the text to be processed before inputting the text to be processed into at least one neural symbol learning model, the text to be processed is encoded, thereby converting the natural language type text to be processed into a computer language form such as a word vector, so that The computing device determines the operational relationship or logical relationship contained in the text to be processed.
  • the number of neural symbolic learning models is two, including neural symbolic learning model 1 and neural symbolic learning model 2.
  • the neural symbolic learning model 1 can generate an inference program 1 "div(add(N6,N8,N9),Q1)" corresponding to at least one parameter based on the operational relationship between the article text and the question text included in the text to be processed. Indicates the operational relationship between Q1 parameters: N6, N8, and N9.
  • inference program 1 "42" is output.
  • the neural Symbol learning model 2 outputs "15".
  • the article text in the text to be processed is used as the question stem, and the question text is used as the title.
  • the text to be processed is input into the neural symbol learning model, and the meaning contained in the title is identified for at least one parameter in the question stem.
  • Perform numerical operations based on a certain operational relationship perform numerical operations based on at least one identified parameter and the operational relationship corresponding to the question to obtain the answer, and output the answer as a text reasoning result.
  • the premise text in the text to be processed is used as the question stem
  • the hypothetical text is used as the title
  • the text to be processed is input into the neural symbol learning model
  • the meaning contained in the title is recognized to determine whether the hypothetical text is correct, and based on the content contained in the premise text
  • the parameters and the parameters and operational relationships contained in the hypothesis text are judged to determine whether the value obtained by the operation based on the premise text matches the parameters contained in the hypothesis text. If they match, the text inference result is determined to be entailment, indicating that the hypothesis text makes The hypothesis is reasonable; if it does not match, the text inference result is determined to be a contradiction, indicating that the hypothesis made by the hypothesis text is inconsistent with the premise text.
  • Figure 2A is a system framework diagram 1 of a text processing method provided by an embodiment of the present disclosure.
  • Figure 2A includes an acquisition module. 200.
  • the acquisition module 200 acquires the text to be processed, and then inputs the text to be processed into the encoder 201, and then processes it by the neural symbol learning model 202.
  • the neural symbolic learning model 202 includes a decoder and an executor. First, the decoder performs symbolic learning to generate a program based on the encoded text to be processed, and then the executor executes the program to obtain the corresponding text reasoning result.
  • the selection module processes the text based on the text.
  • the neural symbol learning model 202 is used to identify the logical relationships included in the text to be processed, thereby completing complex reasoning and solving the problem that existing text processing technology cannot complete the reasoning task.
  • the text to be processed is input into a text processing model based on a neural network, and a text processing result output by the text processing model based on the neural network is obtained.
  • text processing models based on neural networks include but are not limited to: convolutional neural network models (Convolutional Neural Networks, CNN), long short-term memory neural network models (Long Short-Term Memory, LSTM), deep self-attention transformation networks (Transformer).
  • CNN convolutional Neural Networks
  • LSTM Long Short-Term Memory
  • Transformer deep self-attention transformation networks
  • multiple neural network-based text processing models can be set up in the same system, that is, multiple neural network-based text processing models can be set up in one text processing system. Model.
  • the text to be processed is input into at least one neural network-based text processing model, and at least one text processing result output by the at least one neural network-based text processing model is obtained.
  • Figure 2B is a system framework diagram 2 of a text processing method provided by an embodiment of the present disclosure.
  • Figure 2B includes an acquisition module 210, an encoder 211, a neural symbol learning model 212, and a neural network-based text processing Model 213, selection module 214.
  • the encoder 211 can be an encoder shared by the neural symbol learning model 212 and the neural network-based text processing model 213, or it can be a segmentation encoder that provides coding for the neural symbol learning model 212 and the neural network-based text processing model 213 respectively. deal with.
  • the number of neural symbol learning models 212 and neural network-based text processing models 213 may be multiple, Not fully shown in Figure 2B.
  • the acquisition module 210 acquires the text to be processed, and then inputs the text to be processed into the encoder 211, and then processes it by the neural symbol learning model 212 and the neural network-based text processing model 213 respectively.
  • the neural symbol learning model 212 includes a decoder and an executor.
  • the decoder performs symbol learning to generate a program based on the encoded text to be processed, and then the executor executes the program to obtain the corresponding text reasoning result; at the same time, the text based on the neural network
  • the processing model 213 can perform sequence embedding on the encoded text to be processed, and further input it into the prediction model to obtain corresponding text processing results.
  • the final output result is selected according to the text processing task through the selection module. While determining the text processing result from the text to be processed, the text inference result can also be determined, making text processing capable of handling inference tasks.
  • the text processing result 215 in Figure 2B is also a result obtained by reasoning based on the text to be processed, but this kind of reasoning is relatively simple compared to neural symbol learning.
  • the initial neural network-based text processing model before inputting the text to be processed into the neural network-based text processing model, is trained using training samples to obtain a converged neural network-based text processing model.
  • the method of obtaining training samples is the same or similar to the method of obtaining training samples in the aforementioned process of training the neural symbol learning model, and will not be described again here.
  • At least one of the following processing is performed on the training sample: opinion extraction processing, emotional tendency analysis processing, label analysis processing, classification processing, text error correction processing, text review processing, and based on the training sample During the corresponding processing, a mask is set to predict the text covered by the mask to obtain the predicted value. Then the loss function is calculated based on the predicted value and the real value, and the model parameters are adjusted according to the loss function until the initial neural network-based text processing model converges. Obtain text processing model based on neural network.
  • the algorithm service layer can use the algorithm functions of Chinese word segmentation, part-of-speech tagging, named entity recognition, dependency syntax analysis, word vectors, word meaning similarity, and short text similarity. accomplish.
  • Chinese word segmentation refers to the process of dividing continuous natural language text into word sequences with semantic rationality and completeness
  • part-of-speech tagging can refer to the process of assigning a part of speech to each word in the natural language text
  • naming Entity recognition that is, proper name recognition, can refer to identifying entities with specific meanings in natural language texts, mainly including names of people, place names, organization names, times and dates, etc.
  • dependency syntax analysis can refer to inputting a Chinese sentence, and you can get The sentence depends on syntactic structure information, and the dependency relationship between words in the sentence can be used to represent the syntactic structure information of the word (such as subject-predicate, verb-object, definite and other structural relationships), and a tree structure can be used to represent the entire sentence structure (such as subject, predicate, object, definite complement, etc.); word vector refers to inputting a single Chinese word, and the vector representation of the word can be obtained.
  • word vector can be achieved through training methods, which can mainly rely on massive high-quality data and deep neural network technology to map words in the language vocabulary into a fixed-length vector; word meaning similarity can be calculated through word vectorization relying on massive high-quality data and deep neural network technology. degree; short text similarity refers to inputting two short Chinese texts, and the semantic similarity between the texts can be output, which can help quickly implement applications such as recommendation, retrieval, and sorting.
  • the article text and question text included in the text to be processed are determined to determine the nouns and verbs in them.
  • Words, adjectives and other parts of speech, and according to the logical relationship of the article, words with semantic similarity greater than the similarity threshold are used as synonyms to correspond, as shown in Table 1.
  • Table 1 is a synonym correspondence table.
  • the text processing model based on neural networks can be based on the article. Words in the text, find synonyms in the question text.
  • the continuous text to be processed can first be divided into word sequences that are semantically reasonable and complete through Chinese word segmentation, and the words that are not semantically reasonable and complete can be divided into word sequences that are not semantically reasonable and complete.
  • the lexical sequence is annotated; then through dependency syntax analysis, the dependency syntactic structure information for segmenting the lexical sequence into semantically reasonable and complete lexical sequences can be obtained, such as the dependency relationship between words in the sentence (such as subject, predicate, verb, Object, definite and other structural relations) and the structure of the whole sentence (such as subject, predicate, object, definite adverbial complement, etc.); after obtaining the dependent grammatical structure information of the lexical sequence, the lexicon with semantic rationality and completeness can be combined with the grammatical structure information.
  • the vocabulary sub-sequences in the sequence that do not conform to the grammatical structure can be marked; at this time, the previously marked vocabulary sequences that do not meet the semantic rationality and integrity and the vocabulary sub-sequences that do not conform to the grammatical structure can also be marked using the similarity of word meanings and short text similarity.
  • the sequence is replaced with similar words and semantic replacement between texts; after the replacement, the replaced word sequence can be subjected to processing operations such as Chinese word segmentation and dependency syntax analysis again, until a word sequence with semantic rationality, completeness, and grammatical structure is obtained. to the vocabulary sequence, and use the resulting vocabulary sequence as the error-corrected text to be processed.
  • the text to be processed is input to the encoding module to convert the text data into word vectors, and then the word vector corresponding to the text to be processed is input into the neural network-based text processing model for decoding. Get the output text processing results. It can be understood that at least one text processing model based on a neural network is obtained through training, and accordingly, at least one text processing result output by at least one text processing model based on a neural network can be obtained.
  • the text to be processed can be encoded before the text to be processed is input to the neural symbolic learning model or the text processing model based on neural networks, where the text to be processed can be input to the same encoder for encoding, or the text to be processed can be input to at least One neural symbolic learning model inputs the text to be processed into one encoder for encoding, and the text to be processed is input into another encoder for encoding before inputting the text to be processed into at least one neural symbolic learning model.
  • This disclosure places no limit on the number of encoders.
  • the trained text processing models based on neural networks include multiple.
  • the text to be processed includes article text and question text
  • the text to be processed is input into multiple neural network-based text processing models, where The first text processing model based on neural networks. Since article text and question text contain different emotional colors, especially question text, which has a questioning meaning, it is based on neural network.
  • the text processing model divides the text to be processed into article text and question text based on emotional tendency analysis; the second text processing model based on neural network extracts keywords in the text, which can be names of people (Jay Feeley , Miami, Mike Nugent), scores (53 points, 44 points, 29 points), etc.; among them, the third text processing model based on neural network performs text sequence annotation on the text, which can be to mark Jay Feeley as First place and so on.
  • the final output result is determined based on text reasoning results and text processing results.
  • the final output result may be a text reasoning result, a text processing result, or a text reasoning result and a text processing result.
  • the final output result is determined based on the target task corresponding to the text to be processed. If the target task corresponding to the text to be processed is different, the final output result will be different.
  • the target task includes an inference task and a natural language recognition task.
  • the natural language recognition task is Tasks corresponding to the text processing model of neural networks, in which reasoning tasks include but are not limited to question and answer tasks and inference tasks, and natural language recognition tasks include but are not limited to text classification tasks, text extraction tasks, and text sequence annotation tasks.
  • the target task corresponding to the text to be processed is a question and answer task, and the text to be processed is taken as input and the text reasoning result is output
  • the text to be processed includes article text and question text
  • the question and answer task is based on the question text.
  • the questions raised are answered using the article text. Therefore, the final output result is the text inference result, which is the value (Result) calculated based on the question text.
  • the text to be processed includes article text and question text.
  • the article text is "Dolphins football player Jay Feeley scored 53 points to end the game. In the second place, Miami approached Feeley's score and kicked out 44 points, New York team football player Mike Nugent scored 29 points"; the question text is "What is the average score of the top three players?"
  • the output is " 42"
  • the text inference result obtained based on the text to be processed is "42”
  • the final output result is "42".
  • the target task corresponding to the text to be processed is an inference task, and the text to be processed has been obtained as input and the text inference result has been output
  • the inference task is to determine whether the hypothesis text is based on the premise Whether the text is "entailment” or "contradiction", so the text inference result corresponding to the inference task is to judge whether the assumption made by the hypothetical text is correct or wrong. If the assumption is correct, the final output result is " Implication"; in the case of incorrect assumptions, the final output result is "contradiction".
  • the final output result can also include the inference program generated by the neural symbolic learning model, thereby intuitively displaying the natural language processing process and improving the understandability of the final output result.
  • the target task corresponding to the text to be processed is a text classification task, and the text to be processed is obtained as input and the text processing result is output, since the text to be processed includes article text and question Question text, or premise text and hypothesis text, so the text classification task is to classify the text to be processed, as shown in Table 2.
  • Table 2 shows the text processing results and is also the final output result when the target task is a text classification task.
  • Table 2 is only an exemplary illustration, and the final output result can also be premise text and hypothesis text. This disclosure will not be described in detail here.
  • the target task corresponding to the text to be processed is a text extraction task, and the text to be processed is taken as input and the text processing result is output, for the text extraction task, the keywords extracted from the text to be processed are used as the final
  • Table 3 shows the keywords obtained by extracting text from the article text based on the question text.
  • the target task corresponding to the text to be processed is a text extraction task, and the text to be processed is obtained as input and the text processing result is output, for the text sequence annotation task, the text sequence marked from the text to be processed is used as the final
  • Table 4 shows the text sequence marked in the article text.
  • the text processing model based on neural networks labels the text to be processed "Sam has 98.0 pennies in the bank, he spent 93.0 pennies, and he now has 5.0 pennies", and can label the names of people in the text to be processed. , verbs, numerals, etc., get Sam @A1 deposits @A2 in the bank with 98.0@A3 pennies, he He spent 93.0@A5 pennies on @A4, and he now has 5.0@A6 pennies, which corresponds to the text sequence labeling task.
  • the final output result is: “Sam”, “Save”, “98.0”, “Flower”, "93.0”, "5.0”, therefore, without changing the meaning of the original natural language, important information is annotated and the task of text sequence annotation is completed.
  • the annotated text sequence can also be used as the final output result.
  • the target task corresponding to the text to be processed is obtained; one or more results associated with the target task are determined from at least one text reasoning result and at least one text processing result, wherein one or more results associated with the target task are It can be one or more results obtained by combining multiple tasks, for example, a text classification task is associated with an inference task, or a text classification task is associated with a question and answer task; based on one or more results, the final output result is generated. It realizes the combination of text recognition and text reasoning, and provides the reasoning process for complex reasoning, which effectively improves the effect of natural language processing.
  • Table 5 is the final output result when the text classification task and the inference task are associated. These include text processing results corresponding to text classification tasks, and text reasoning results corresponding to reasoning tasks.
  • the text to be processed is used as input, and the target tasks are text classification tasks and text reasoning tasks.
  • the final output results include text reasoning results and text processing results.
  • text classification tasks the text to be processed is classified to obtain article text and question text.
  • the truth value obtained by the program is "42".
  • the corresponding parameters N6, N8, N9, and Q1 in the inference program are determined based on the symbol annotation of the text to be processed. "Jay Feeley, a football player of the Dolphins, obtained 53 @N6 points ended the game.
  • the target task is a text classification task and a text reasoning task associated with the text classification task, it not only outputs the true value to show the user the answer to the question, but also outputs the reasoning program to explain to the user the reasoning process to obtain the true value in more detail. , improves the interpretability of text reasoning and improves the generalization of text processing.
  • the text to be processed can be input into at least one neural symbolic learning model to obtain at least one text reasoning result output by at least one neural symbolic learning model; the text to be processed can be input into at least one text processing model based on neural networks to obtain at least At least one text processing result output by a neural network-based text processing model; the final output result is determined from at least one text reasoning result and at least one text processing result.
  • at least one text reasoning result of the output can be obtained through at least one neural symbolic learning model, wherein the at least one neural symbolic learning model utilizes symbolic rules and neurons according to the neural network to extract the text from the text to be processed. Identify logical relationships to complete reasoning and solve complex reasoning tasks.
  • FIG 3 is a schematic structural diagram of a text processing device according to an embodiment of the present disclosure. As shown in Figure 3, an embodiment of the present disclosure provides a text processing device, which includes:
  • Acquisition module 301 used to obtain text to be processed
  • the codec 302 is used to extract at least one parameter from the text to be processed; identify the text to be processed based on the at least one parameter to obtain a logical relationship between at least one parameter; and generate a reasoning program based on the text to be processed and the logical relationship;
  • Executor 303 is used to execute the reasoning program to obtain text reasoning results.
  • the acquisition module 301 is also used to input the text to be processed into a text processing model based on a neural network; and obtain a text processing result output by the text processing model based on a neural network;
  • the device also includes: a selection module 304, specifically configured to determine the final output result based on text reasoning results and text processing results.
  • the acquisition module 301 is specifically configured to obtain the initial text; determine at least one parameter from the initial text; and perform symbol annotation on at least one parameter of the initial text to generate the text to be processed.
  • the acquisition module 301 is also used to acquire the target task corresponding to the text to be processed;
  • the codec 302 is specifically configured to identify the text to be processed based on the target task and at least one parameter to obtain a logical relationship between at least one parameter.
  • the above codec 302 is composed of an encoder and a decoder, and can implement the functions of the encoder and decoder in Figure 2A and Figure 2B; the acquisition module 301 implements the acquisition module 200 in Figure 2A or the acquisition module 210 in Figure 2B.
  • the selection module 304 can implement the functions of the selection module 204 in Figure 2A or the selection module 214 in Figure 2B, which will not be described in detail here.
  • the text processing device provided by the embodiment of the present disclosure first obtains the text to be processed through the acquisition module, and then uses the codec to extract at least one parameter from the text to be processed, and then based on the at least one parameter, the text to be processed is Recognition is performed to obtain a logical relationship between at least one parameter, and an inference program is further generated based on the text to be processed and the logical relationship. Finally, the executor executes the inference program to obtain the text inference result.
  • extract at least one parameter obtain the logical relationship between at least one parameter, and then generate and execute the reasoning program to obtain the text reasoning results, complete logical reasoning or numerical operations, and solve complex reasoning Task.
  • an embodiment of the present disclosure provides an electronic device.
  • the electronic device includes: a processor, a memory, and a computer program stored on the memory and executable on the processor.
  • the computer program is When the processor is executed, each process of the text processing method in the above method embodiment is implemented. And can achieve the same technical effect. To avoid repetition, they will not be described again here.
  • Embodiments of the present disclosure provide a computer-readable storage medium, which is characterized in that a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, each process of the text processing method in the above method embodiment is implemented, and can achieve the same technical effect, so to avoid repetition, we will not repeat them here.
  • the computer-readable storage medium can be read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • Embodiments of the present disclosure provide a computing program product.
  • the computer program product stores a computer program.
  • the computer program is executed by a processor, each process of the text processing method in the above method embodiment is implemented, and the same technical effect can be achieved. In order to avoid Repeat, I won’t go into details here.
  • embodiments of the present disclosure may be provided as methods, systems, or computer program products. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein.
  • the processor can be a central processing unit (Central Processing Unit, CPU), or other general-purpose processor, digital signal processor (Digital Signal Processor, DSP), application specific integrated circuit (Application Specific Integrated Circuit, ASIC) , off-the-shelf programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA off-the-shelf programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • memory may include non-permanent memory in computer-readable media, random access memory (RAM) and/or non-volatile memory, such as read-only memory (ROM) or flash memory (flash RAM).
  • RAM random access memory
  • ROM read-only memory
  • flash RAM flash memory
  • computer-readable media includes both persistent and non-transitory, removable and non-removable storage media.
  • Storage media can be implemented by any method or technology to store information, and information can be computer-readable instructions, data structures, program modules, or other data. Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), and read-only memory.
  • PRAM phase change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • read-only memory read-only memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory or other memory technology
  • compact disc read-only memory CD-ROM
  • DVD digital versatile disc
  • Magnetic tape cassettes disk storage or other magnetic storage devices, or any other non-transmission medium, can be used to store information that can be accessed by a computing device.
  • computer-readable media does not include transitory media, such as modulated data signals and carrier waves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Machine Translation (AREA)

Abstract

本公开涉及一种文本处理方法、装置及电子设备,涉及文本处理技术领域。该方法包括:获取待处理文本;从待处理文本中提取至少一个参数;基于至少一个参数,识别待处理文本,以得到至少一个参数之间的逻辑关系;基于待处理文本和逻辑关系,生成推理程序;执行推理程序,以获取文本推理结果。本公开实施例用于解决现有文本处理技术无法完成推理任务的问题。

Description

一种文本处理方法、装置及电子设备
相关申请的交叉引用
本申请基于申请号为202210231619.8、申请日为2022年03月10日,名称为“一种文本处理方法、装置及电子设备”的中国专利申请提出,并要求该中国专利申请的优先权,上述中国专利申请的公开内容全文以引入方式并入本文。
技术领域
本公开涉及文本处理技术领域,尤其涉及一种文本处理方法、装置及电子设备。
背景技术
目前在处理文本数据过程中,可以预先训练大规模的基于神经网络的文本处理模型,并利用标注数据,去调整该基于神经网络的文本处理模型,最后通过调整后的基于神经网络的文本处理模型来识别待处理文本,得到文本处理结果,该方法适用于基于语义理解即可较好解决的自然语言识别任务,但是针对一些文本中涉及的推理任务,涉及到一些逻辑推理过程或者数字运算过程,想要完成这样的推理任务,就无法通过目前的文本处理方式实现,亟需一种可以处理推理任务的文本处理方法。
发明内容
为了解决上述技术问题或者至少部分地解决上述技术问题,本公开提供了一种文本处理方法、装置及电子设备,可以在对待处理文本的进行处理的过程中,提取至少一个参数,得到至少一个参数之间的逻辑关系,然后生成推理程序并执行,从而获取到文本推理结果,完成逻辑推理或数字运算,解决了复杂的推理任务。
为了实现上述目的,本公开实施例提供的技术方案如下:
第一方面,本公开提供一种文本处理方法,包括:
获取待处理文本;
从待处理文本中提取至少一个参数;
基于至少一个参数,识别待处理文本,以得到至少一个参数之间的逻辑关系;
基于待处理文本和逻辑关系,生成推理程序;
执行推理程序,以获取文本推理结果。
作为本公开实施例一种可选的实施方式,推理程序由至少一个操作符和至少一个参数组成,至少一个操作符用于指示逻辑关系。
作为本公开实施例一种可选的实施方式,获取待处理文本之后,该方法还包 括:将待处理文本输入基于神经网络的文本处理模型;获取基于神经网络的文本处理模型输出的文本处理结果;
该方法还包括:基于文本推理结果和文本处理结果,确定最终输出结果。
作为本公开实施例一种可选的实施方式,基于神经网络的文本处理模型对应以下至少一种任务:文本分类任务、文本抽取任务、文本序列标注任务。
作为本公开实施例一种可选的实施方式,获取待处理文本,包括:获取初始文本;从初始文本中确定至少一个参数;对初始文本的至少一个参数进行符号标注,以生成待处理文本。
作为本公开实施例一种可选的实施方式,该方法还包括:获取待处理文本对应的目标任务;
基于至少一个参数,识别待处理文本,以得到至少一个参数之间的逻辑关系,包括:基于目标任务和至少一个参数,识别待处理文本,以得到至少一个参数之间的逻辑关系。
第二方面,本公开提供一种文本处理装置,该装置包括:
获取模块,用于获取待处理文本;
编解码器,用于从待处理文本中提取至少一个参数;基于至少一个参数,识别待处理文本,以得到至少一个参数之间的逻辑关系;基于待处理文本和逻辑关系,生成推理程序;
执行器,用于执行推理程序,以获取文本推理结果。
作为本公开实施例一种可选的实施方式,获取模块,还用于将待处理文本输入基于神经网络的文本处理模型;获取基于神经网络的文本处理模型输出的文本处理结果;
该装置还包括:选择模块,具体用于基于文本推理结果和文本处理结果,确定最终输出结果。
作为本公开实施例一种可选的实施方式,获取模块,具体用于获取初始文本;从初始文本中确定至少一个参数;对初始文本的至少一个参数进行符号标注,以生成待处理文本。
作为本公开实施例一种可选的实施方式,获取模块,还用于获取待处理文本对应的目标任务;
编解码器,具体用于基于目标任务,至少一个参数,识别待处理文本,以得到至少一个参数之间的逻辑关系。
第三方面,本公开提供一种电子设备,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第一方面或其任意一种可选的实施方式所述的文本处理方法。
第四方面,本公开提供一种计算机可读存储介质,包括:所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如第一方面或其任意一种可选的实施方式所述的文本处理方法。
第五方面,本公开提供一种计算机程序产品,其特征在于,包括:当所述计算机程序产品在计算机上运行时,使得所述计算机实现如第一方面或其任意一种 可选的实施方式所述的文本处理方法。
本公开实施例提供的技术方案与现有技术相比具有如下优点:本公开提供的一种文本处理方法,首先获取待处理文本,并从待处理文本中提取至少一个参数,然后基于至少一个参数,对待处理文本进行识别以得到至少一个参数之间的逻辑关系,进一步的基于待处理文本和逻辑关系生成推理程序,最后执行推理程序得到文本推理结果。通过上述文本处理方法,在对待处理文本的进行处理的过程中,提取至少一个参数,得到至少一个参数之间的逻辑关系,然后生成推理程序并执行,从而获取到文本推理结果,完成逻辑推理或数字运算,解决了复杂的推理任务。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例所述一种文本处理方法的流程示意图一;
图2A本公开实施例提供的一种文本处理方法的系统框架图一;
图2B本公开实施例提供的一种文本处理方法的系统框架图二;
图3为本公开实施例所述一种文本处理装置的结构示意图;
图4为本公开实施例所述一种电子设备的结构示意图。
具体实施方式
为了能够更清楚地理解本公开的上述目的、特征和优点,下面将对本公开的方案进行进一步描述。需要说明的是,在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本公开,但本公开还可以采用其他不同于在此描述的方式来实施;显然,说明书中的实施例只是本公开的一部分实施例,而不是全部的实施例。
目前在处理文本数据过程中,可以预先训练大规模的基于神经网络的文本处理模型,并利用标注数据,去调整该基于神经网络的文本处理模型,最后通过调整后的基于神经网络的文本处理模型来识别待处理文本,得到文本处理结果,该方法适用于基于语义理解即可较好解决的自然语言识别任务,但是针对一些文本中涉及的推理任务,涉及到一些逻辑推理过程或者数字运算过程,想要完成这样的推理任务,就无法通过目前的文本处理方式实现,亟需一种可以处理推理任务的文本处理方法。
为了解决上述问题,本公开实施例提供了一种文本处理方法、装置及电子设备,通过上述文本处理方法,在对待处理文本的进行处理的过程中,提取至少一个参数,得到至少一个参数之间的逻辑关系,然后生成推理程序并执行,从而获 取到文本推理结果,完成逻辑推理或数字运算,解决了复杂的推理任务。
本公开实施例中提供的文本处理方法,可以为通过计算机设备设备实现,计算机设备包括但不限于服务器、个人电脑、笔记本电脑、平板电脑、智能手机等。计算机设备包括用户设备与网络设备。其中,用户设备包括但不限于电脑、智能手机、平板电脑等;网络设备包括但不限于单个网络服务器、多个网络服务器组成的服务器组或于云计算的由大量计算机或网络服务器构成的云,其中,云计算是分布式计算的一种,由一群松散耦合的计算机集组成的一个超级虚拟计算机。其中,计算机设备可单独运行来实现本公开,也可接入网络并通过与网络中的其他计算机设备的交互操作来实现本公开。其中,计算机设备所处的网络包括但不限于互联网、广域网、城域网、局域网、虚拟专用(Virtual Private Network,VPN)网络等。
如图1所示,图1为本公开实施例提供的一种文本处理方法的流程示意图一,该方法包括:
S101、获取待处理文本。
其中,待处理文本可以包括用户原创内容(User Generated Content,UGC)、专业生产内容(Professional Generated Content,PGC)、多频道网络产品形态(Multi-ChannelNetwork,MCN)、专业用户生产内容(Professional User Generated Content,PUGC)。待处理文本可以是不同语言的文字构成的文本,比如,中文,英文等,本公开中不限定待处理文本的语言类型。
待处理文本可以是需要进行文本处理的任意多媒体数据,在一些可选的实施例中,待处理文本可以是多媒体数据发布平台对应的服务器接收到的用户通过用户终端发送的多媒体数据,或者,也可以是多媒体发布平台对应的服务器从预设的存储空间中获取到的待处理多媒体数据。一些实施例中,获取到待处理文本之后,可以首先将待处理文本进行格式化处理,格式化处理包括但不限于:统一字体、统一样式、去掉隐藏字符。本公开对此不做限定。
S102、从待处理文本中提取至少一个参数。
一些实施例中,在从待处理文本中提取至少一个参数之前,获取初始文本,对初始文中的至少一个参数进行符号标注,以生成待处理文本其中,符号标注是指利用不同于文本的符号对文本中的数词进行标注,可以理解的是,进行符号标注时不仅标注阿拉伯数字还标注汉语数字例如“一、二”等,汉语数字还可以是大写的汉语数字,例如“壹、贰”等。
示例性的,初始文本为:“海豚队的足球运动员杰伊·菲利获得53分结束了这场比赛。第二名,迈阿密逼近菲利的得分,踢出44分,纽约队的足球运动员迈克·纽金特获得29分……”,对该初始文本进行符号标注得到待处理文本:“海豚队的足球运动员杰伊·菲利获得53@N6分结束了这场比赛。第二@N7名,迈阿密逼近菲利的得分,踢出44@N8分,纽约队的足球运动员迈克·纽金特获得29@N9分……”。
又示例性的,初始文本包括前提文本“山姆银行里存有98.0便士,他花了93.0便士。”,以及假设文本“他现在有5.0便士”。生成的待处理文本包括:前提文本“山 姆银行里存有98.0@M1便士,他花了93.0@M2便士。”,假设文本“他现在有5.0@N1便士”。
针对初始文本中的参数进行符号标注时,标注所使用的符号可以是上述示例中的“@”也可以是“^”,还可以是其他类型的符号标注本公开对此不做具体限制。
通过对初始文本中的参数进行符号标注,便于机器快速识别自然语言中的数据信息,提高了推理效率。
针对已经进行符号标注的待处理文本,可以根据标注的符号确定对应的参数,例如根据前述的前提文本“山姆银行里存有98.0@M1便士,他花了93.0@M2便士。”以及假设文本“他现在有5.0@N1便士”中标注的符号,确定M1对应的参数为98.0,M2对应的参数为93.0,N1对应的参数为5.0,并进行提取。
S103、基于至少一个参数,识别待处理文本,以得到至少一个参数之间的逻辑关系。
一些实施例中,在提取至少一个参数后,识别待处理文本的过程中,利用深度学习网络进语义识别,根据参数前后的文本数据的得到至少一个参数之间的逻辑关系。
沿用上例,提取98.0、93.0、5.0之后,利用深度学习网络进行语义识别,参数98.0之前存在动词“存”,参数93.0之前存在动词“花”,参数5.0之前存在动词“有”,则深度学习网络输出这三个参数存在减法运算关系。
S104、基于待处理文本和逻辑关系,生成推理程序。
其中,一个推理程序由至少一个操作符和至少一个参数组成,至少一个操作符用于指示至少一个参数之间的逻辑关系。
一些实施例中,在提取至少一个参数并且得到至少一个参数之间的逻辑关系之后,基于待处理文本和逻辑关系,生成推理程序。
示例性的,至少一个参数包括:M1:98.0,M2:93.0,N1:5.0,这三个参数之间的逻辑关系是减法运算关系,生成推理程序(=,(-,M1,M2),N1)。
又例如,根据待处理文本中包括的文章文本和问题文本之间的运算关系,可确定各个参数对应的一个推理程序“div(add(N6,N8,N9),Q1)”,表示Q1个参数:N6,N8,N9之间的存在的运算关系;根据待处理文本中包括的前提文本和假设文本之间存在的逻辑关系,可确定各个参数所对应的一个推理程序“(=,(-,M1,M2),N1),并且针对一个待处理文本可以根据参数之间的运算关系生成不同的推理程序,其中操作符表示参数之间的运算关系,例如“div”表示将两个参数相除,返回商;“add”表示将两个参数相加返回和、“-”表示将两个参数相减返回差。
S105、执行所述推理程序,以获取文本推理结果。
文本推理结果包括计算值、逻辑结果,例如“42”或“蕴含”或“矛盾(Contradiction)”。
一些实施例中,将符号标注得到的至少一个参数带入生成的推理程序进行相应的数值计算或逻辑运算,确定对应的文本推理结果。
示例性的,执行推理程序“div(add(N6,N8,N9),Q1)”时,将N6、N8、N9、Q1代入公式Result=(N6+N8+N9)/Q1,得到问题文本对应的文本推理结果“42”。
又例如,执行推理程序“(=,(-,M1,M2),N1)”时,将M1、M2、N1代入公式N1=M1-M2,得到N1=5.0,根据假设文本中符号标注后的参数N1,确定假设文本对应的文本推理结果为“蕴含”。
上述S102~S105可通过神经符号学习模型来实现,以下将针对神经符号学习模型的训练和应用过程进行说明。
神经符号学习模型:其核心理念为符号规则负责表述神经网络中蕴含的知识,而神经元负责学习和推理,所生成的模型同时具备高鲁棒性、高识别性能以及可解释性。神经符号学习模型用于识别待处理文本中的运算关系。
(1)神经符号学习模型的训练过程
神经符号学习模型可基于训练样本和预设标签进行训练,样本数据包括不同类型的文本,标签可以是加减乘除运算,还可以是混合运算、复杂运算等,例如微积分。训练直至神经符号学习模型收敛。
一些实施例中,为了获取大量的训练样本,可以从互联网爬取对话文本,如论坛对话文本、情景对话文本、视频字幕、剧本等。为了保证训练样本的准确性,还可以对爬取到的训练样本进行数据清洗,例如,去除训练样本中的特殊字符和无意义的空格、链接和图片等等。
一些实施例中,针对神经符号学习模型进行训练,获取大量的训练样本之后,将训练样本分成训练集、测试集和验证集,然后对训练样本进行标注设置标签,包括但不限于推理程序标签、文本推理结果标签。
示例性的,训练样本中某个文章文本为“海豚队的足球运动员杰伊·菲利获得53分结束了这场比赛。第二名,迈阿密逼近菲利的得分,踢出44分,纽约队的足球运动员迈克·纽金特获得29分……”;问题文本为“前三名运动员的平均得分是多少?”,设置推理程序标签为“div(add(N6,N8,N9),Q1)”,文本推理结果标签设置为“42”。根据类似的方式将训练样本进行标注。
上述训练文本、标签仅为示例性说明,标签的设置是多元化的,例如,问题文本还可以为“第二名比第一名差多少分”,对应推理程序标签为“(=(-,N6,N7))”,或者问题文本为“杰伊·菲利比迈阿密多多少分”对应推理程序标签仍为“(=(-,N6,N7))”等类似的推理程序标签。
示例性的,训练文本中包括前提(Premise)文本和假设(Hypothesis)文本,其中,前提文本是“山姆银行里存有98.0便士,他花了93.0便士。”,假设文本是“他现在有5.0便士”,设置推理程序标签为“(=,(-,M1,M2),N1)”,设置文本推理结果标签为“蕴含(Entailment)”。可以理解的是,根据推理程序标签可以表示文本中数据之间的运算关系,确定98.0为M1并且93.0为M2时则根据“(=,(-,M1,M2),N1)”得到N1=5.0,结合假设文本中的数据,可以确定假设文本推理是正确的,因此文本推理标签为“蕴含”。
在标注训练样本、设置标签之后,建立初始模型,将训练集输入初始模型,调整初始模型中的模型参数,训练过程中可进行掩膜处理,将训练集中的文本信息进行遮掩,从而获取预测值,再与测试集进行比较,计算模型参数的损失函数,调整神经符号学习模型直至损失函数值小于预设阈值,表示神经符号学习模型收 敛,最后利用验证集确定神经符号学习模型的准确性,得到收敛的神经符号学习模型,针对神经符号学习模型的训练过程结束。
(2)神经符号学习模型的应用过程
一些实施例中,在将待处理文本输入神经符号学习模型之前,从初始文本中确定至少一个参数;对初始文中的至少一个参数进行符号标注,以生成待处理文本。
针对初始文本中的参数进行符号标注时,标注所使用的符号可以是上述示例中的“@”也可以是“^”,还可以是其他类型的符号标注本公开对此不做具体限制。
通过对初始文本中的参数进行符号标注,便于机器快速识别自然语言中的数据信息,提高了推理效率。
一些实施例中,将待处理文本输入神经符号学习模型,由神经符号学习模型从待处理文本中提取至少一个参数,然后基于至少一个参数,识别待处理文本得到至少一个参数之间的逻辑关系,进一步的基于待处理文本和逻辑关系生成推理程序,最后执行推理程序,该神经符号学习模型输出文本推理结果。
示例性的,根据待处理文本中包括的前提文本和假设文本之间存在的逻辑关系,可确定各个参数所对应的一个推理程序“(=,(-,M1,M2),N1),并且针对一个待处理文本可以根据参数之间的运算关系生成不同的推理程序,其中操作符表示参数之间的运算关系,“-”表示将两个参数相减返回差。执行推理程序后得到文本推理结果“蕴含”。
在实际应用中,为了提高模型在文本处理过程中的通用性,可以将多个神经符号学习模型设置在同一系统中,即在一个文本处理系统中设置多个神经符号学习模型。
由于在训练神经符号学习模型时针对同一待处理文本设置有多个推理程序,可以得到至少一个神经符号学习模型,因此针对待处理文本进行识别时会生成多个推理程序,每个推理程序由至少一个操作符和至少一个参数组成。
沿用前例,针对待处理文本中包括文章文本和问题文本,在训练神经符号学习模型时根据不同的问题文本设置有不同的推理程序标签,因此针对待处理文本中的文章文本进行识别时可生成多个推理程序标签:“div(add(N6,N8,N9),Q1)”、“(=(-,N6,N7))”。其中,“div”表示将两个参数相除,返回商;“add”表示将两个参数相加返回和。
需要说明的是,一些实施例中,在将待处理文本输入至少一个神经符号学习模型之前,对待处理文本进行编码处理,从而将自然语言类型的待处理文本转换为词向量等计算机语言形式,以便于计算机设备确定待处理文本中蕴含的运算关系或逻辑关系。
沿用上例,神经符号学习模型的数量为两个,其中包括神经符号学习模型1和神经符号学习模型2。神经符号学习模型1根据待处理文本中包括的文章文本和问题文本之间的运算关系,可生成至少一个参数对应的一个推理程序1“div(add(N6,N8,N9),Q1)”,表示Q1个参数:N6,N8,N9之间的存在的运算关系,执行推理程序1后输出“42”。神经符号学习模型1根据待处理文本中包括的文章文 本和问题文本之间的运算关系,可生成至少一个参数对应的推理程序2“(=(-,N6,N7))”,表示N6和N7之间的运算关系,执行推理程序2之后,神经符号学习模型2输出“15”。
综上,为便于理解,将待处理文本中的文章文本作为题干,问题文本作为题目,将待处理文本输入神经符号学习模型,识别到题目包含的的意义是针对题干中的至少一个参数进行基于某种运算关系的数值运算,并根据识别到的至少一个参数以及题目对应的运算关系进行数值运算得到答案,将答案作为文本推理结果输出。
再例如,将待处理文本中的前提文本作为题干,假设文本作为题目,将待处理文本输入神经符号学习模型,识别到题目包含的意义是对判断假设文本是否正确,并根据前提文本中包含的参数以及假设文本中包含的参数和运算关系进行判断,判断基于前提文本运算所得的数值与假设文本中包含的参数是否匹配,若匹配则确定文本推理结果为蕴含,表示假设文本所做出的假设合理;若不匹配,则确定文本推理结果为矛盾,表示假设文本所做出的假设与前提文本相矛盾。
一些实施例中,本公开基于神经符号学习模型获取文本推理结果的过程如图2A所示,图2A为本公开实施例提供的一种文本处理方法的系统框架图一,图2A中包括获取模块200、编码器201、神经符号学习模型202、选择模块203。获取模块200获取待处理文本,再将待处理文本输入编码器201,然后由神经符号学习模型202进行处理。神经符号学习模型202中包括解码器和执行器,首先由解码器根据编码后的待处理文本进行符号学习生成程序,再由执行器执行程序得到对应的文本推理结果,最后通过选择模块根据文本处理任务选择最终输出结果。实现了通过神经符号学习模型202识别待处理文本中包括的逻辑关系,从而完成复杂的推理,解决现有的文本处理技术无法完成推理任务的问题。
一些实施例中,在获取待处理文本之后,将待处理文本输入基于神经网络的文本处理模型,获取基于神经网络的文本处理模型输出的文本处理结果。
其中,基于神经网络的文本处理模型包括但不限于:卷积神经网络模型(Convolutional Neural Networks,CNN)、长短期记忆神经网络模型(Long Short-Term Memory,LSTM),基于深度自注意力变换网络(Transformer)。
在实际应用中,为了提高模型在文本处理过程中的通用性,可以将多个基于神经网络的文本处理模型设置在同一系统中,即在一个文本处理系统中设置多个基于神经网络的文本处理模型。
一些实施例中,将待处理文本输入至少一个基于神经网络的文本处理模型,获取至少一个基于神经网络的文本处理模型输出的至少一个文本处理结果。
如图2B所示,图2B为本公开实施例提供的一种文本处理方法的系统框架图二,图2B中包括获取模块210、编码器211、神经符号学习模型212、基于神经网络的文本处理模型213、选择模块214。其中编码器211可以是神经符号学习模型212和基于神经网络的文本处理模型213共享的编码器,也可以是分割编码器,给神经符号学习模型212和基于神经网络的文本处理模型213分别提供编码处理。神经符号学习模型212以及基于神经网络的文本处理模型213的数量可以是多个, 图2B中并未完全示出。
如图2B所示,获取模块210获取待处理文本,再将待处理文本输入编码器211,然后分别由神经符号学习模型212和基于神经网络的文本处理模型213进行处理。神经符号学习模型212中包括解码器和执行器,首先由解码器根据编码后的待处理文本进行符号学习生成程序,再由执行器执行程序得到对应的文本推理结果;同时,基于神经网络的文本处理模型213可以对编码后的待处理文本进行序列嵌入,进一步输入预测模型,得到对应的文本处理结果。最后通过选择模块根据文本处理任务选择最终输出结果。实现了从待处理文本确定文本处理结果的同时,也可以确定文本推理结果使得文本处理具备了处理推理任务的能力。
需要说明的是,图2B中文本处理结果215也是一种基于待处理文本进行推理所得到的结果,但是相较于神经符号学习这种推理比较简单。
一些实施例中,在将待处理文本输入基于神经网络的文本处理模型之前,利用训练样本对初始基于神经网络的文本处理模型进行训练,以得到收敛的基于神经网络的文本处理模型。在对初始基于神经网络的文本处理模型进行训练的过程中,获取训练样本的方式与前述训练神经符号学习模型的过程中获取训练样本的方式相同或相似,在此不做赘述。
进一步的,在获取训练样本之后,对训练样本进行下述至少一项处理:观点抽取处理、情感倾向分析处理、标签分析处理、分类处理、文本纠错处理文本审核处理的处理,在根据训练样本进行相应处理的过程中,设置掩膜对掩膜遮盖的文本进行预测得到预测值,然后根据预测值与真实值计算损失函数,根据损失函数调整模型参数,直至初始基于神经网络的文本处理模型收敛得到基于神经网络的文本处理模型。
一些实施例中,针对上述至少一项处理,均可以借助其算法服务层具有的中文分词、词性标注、命名实体识别、依存句法分析、词向量、词义相似度以及短文本相似度的算法功能共同实现。
其中,中文分词指的是将连续的自然语言文本,切分成具有语义合理性和完整性的词汇序列的过程;词性标注可以指的是自然语言文本中的每个词汇赋予一个词性的过程;命名实体识别,即专名识别,可以指的是识别自然语言文本中具有特定意义的实体,主要包括人名、地名、机构名、时间日期等;依存句法分析可以指的是输入中文句子,即可获得该句的依存句法结构信息,并可以利用句子中词与词之间的依存关系来表示词语的句法结构信息(如主谓、动宾、定中等结构关系),并用树状结构来表示整句的结构(如主谓宾、定状补等);词向量指的是输入单个中文词语,即可获得该词语的向量表示,词向量的计算可以通过训练的方法实现,主要可以依托海量优质数据和深度神经网络技术,以将语言词表中的词映射成一个长度固定的向量;词义相似度可以通过依托海量优质数据和深度神经网络技术,通过词语向量化来计算两个词之间的相似度;短文本相似度指的是输入两段中文短文本,即可输出文本间的语义相似度,其可以帮助快速实现推荐、检索、排序等应用。
示例性的,待处理文本中包括的文章文本和问题文本,确定其中的名词、动 词、形容词等词性,并根据文章的逻辑关系将语义相似度大于相似度阈值的词作为同义词进行对应,如表1所示,表1为同义词对应表,基于神经网络的文本处理模型可以根据文章文本中的词,在问题文本中找到同义词。
表1
作为一种示例,在对待处理文本进行文本纠错处理时,首先可以通过中文分词将连续的待处理文本切分成具有语义合理性和完整性的词汇序列,将不符合语义合理性和完整性的词汇序列进行标注;然后可以通过依存句法分析,获得针对切分为具有语义合理性和完整性的词汇序列的依存句法结构信息,例如句子中词与词之间的依存关系(如主谓、动宾、定中等结构关系)以及整句的结构(如主谓宾、定状补等);在获得词汇序列的依存语法结构信息之后,可以通过语法结构信息将具有语义合理性和完整性的词汇序列中不符合语法结构的词汇子序列进行标注;此时还可以通过词义相似度以及短文本相似度,对先前标注的不符合语义合理性和完整性的词汇序列以及不符合语法结构的词汇子序列进行相似词的替换以及文本间的语义替换;在进行替换后可以对替换后的词汇序列再次进行中文分词以及依存句法分析等处理操作,直至得到具有语义合理性和完整性以及符合语法结构的词汇序列为止,并将得到的词汇序列作为已纠错待处理文本。
需要说明的是,在实现自然语言识别上,针对调用不同自然语言识别服务接口以及采用不同自然语言识别服务算法,与不同服务接口之间的调用组合,以及不同自然语言识别服务算法之间的使用组合,本公开实施例不加以限制。
在训练得到收敛的基于神经网络的文本处理模型之后,将待处理文本输入编码模块进行将文本数据转化为词向量,然后将待处理文本对应的词向量输入基于神经网络的文本处理模型进行解码,获取输出的文本处理结果。可以理解的是,训练得到至少一个基于神经网络的文本处理模型,相应的,能够获取至少一个基于神经网络的文本处理模型输出的至少一个文本处理结果。
需要强调的是,在将待处理文本输入神经符号学习模型或基于神经网络的文本处理模型之前可进行编码,其中待处理文本可以输入同一个编码器进行编码,也可以在将待处理文本输入至少一个神经符号学习模型之前将待处理文本输入一个编码器进行编码,在将待处理文本输入至少一个神经符号学习模型之前将待处理文本输入另一个编码器进行编码。本公开对编码器的数量不做限制。
一些实施例中,训练得到的基于神经网络的文本处理模型包括多个,举例来说,待处理文本中包括文章文本和问题文本,将待处理文本输入多个基于神经网络的文本处理模型,其中第一个基于神经网络的文本处理模型由于文章文本和问题文本包含的情感色彩不同,尤其是问题文本带有疑问意味,所以基于神经网络 的文本处理模型根据情感倾向分析处理将待处理文本分为文章文本和问题文本;其中第二个基于神经网络的文本处理模型对文本中的关键字进行提取,可以是人名(杰伊·菲利、迈阿密、迈克·纽金特)、分数(53分、44分、29分)等;其中第三个基于神经网络的文本处理模型对文本进行文本序列标注,可以是标注杰伊·菲利为第一名等。
一些实施例中,基于文本推理结果和文本处理结果,确定最终输出结果。其中,最终输出结果可以是文本推理结果,可以是文本处理结果,还可以是文本推理结果以及文本处理结果。
一些实施例中,基于待处理文本对应的目标任务确定最终输出结果,待处理文本对应的目标任务不同,则最终输出结果不同,其中目标任务包括推理任务和自然语言识别任务,自然语言识别任务是于神经网络的文本处理模型对应的任务,其中推理任务包括但不限于问答任务、推断任务,自然语言识别任务包括但不限于文本分类任务、文本抽取任务、文本序列标注任务。
下述将针对待处理文本所对应的不同的目标任务,对最终输出结果的确定方式进行介绍:
A、问答任务
在待处理文本对应的目标任务为问答任务时,并且已经获取到将待处理文本作为输入,输出得到的文本推理结果之后,由于待处理文本包括文章文本和问题文本,问答任务是针对问题文本所提出的问题利用文章文本进行回答,因此,最终输出结果是文本推理结果,是基于问题文本进行计算所得到的值(Result)。
示例性的,待处理文本包括文章文本和问题文本,文章文本为“海豚队的足球运动员杰伊·菲利获得53分结束了这场比赛。第二名,迈阿密逼近菲利的得分,踢出44分,纽约队的足球运动员迈克·纽金特获得29分……”;问题文本为“前三名运动员的平均得分是多少?”,将待处理文本输入神经符号学习模型之后,输出得到“42”,因此,根据待处理文本得到的文本推理结果为“42”,因此最终输出结果为“42”。
B、推断任务
在待处理文本对应的目标任务为推断任务,并且已经获取到将待处理文本作为输入,输出得到的文本推理结果之后,由于待处理文本包括前提文本和假设文本,推断任务是确定假设文本基于前提文本是“蕴含(Entailment)”还是“矛盾(Contradiction)”,因此推断任务对应的文本推理结果是判断假设文本所做出的假设是正确还是错误,在假设正确的情况下,最终输出结果为“蕴含”;在假设错误的情况下,最终输出结果为“矛盾”。
针对上述问答任务和推断任务,最终输出结果中还可以包括神经符号学习模型生成的推理程序,从而直观的展示自然语言处理的过程,提升了最终输出结果的可理解性。
C、文本分类任务
在待处理文本对应的目标任务为文本分类任务,并且已经获取到将待处理文本作为输入,输出得到的文本处理结果之后,由于待处理文本包括文章文本和问 题文本,或者前提文本和假设文本,因此文本分类任务是将待处理文本进行分类,如表2所示,表2为文本处理结果,也是目标任务为文本分类任务时的最终输出结果。
表2
表2仅为示例性说明,最终输出结果还可以是前提文本和假设文本。本公开在此不做赘述。
D、文本抽取任务
在待处理文本对应的目标任务为文本抽取任务,并且已经获取到将待处理文本作为输入,输出得到的文本处理结果之后,针对文本抽取任务,将从待处理文本中抽取得到的关键字作为最终输出结果,如表3所示,表3为针对问题文本对文章文本进行文本抽取得到的关键字。
表3
(5)文本序列标注任务
在待处理文本对应的目标任务为文本抽取任务,并且已经获取到将待处理文本作为输入,输出得到的文本处理结果之后,针对文本序列标注任务,将从待处理文本中标注的文本序列作为最终输出结果,如表4所示,表4为文章文本中标注的文本序列。
表4
如表4所示,基于神经网络的文本处理模型将待处理文本“山姆在银行里存有98.0便士,他花了93.0便士,他现在有5.0便士”进行标注,可以标注待处理文本中的人名、动词、数词等,得到山姆@A1在银行里存@A2有98.0@A3便士,他 花@A4了93.0@A5便士,他现在有5.0@A6便士,则对应文本序列标注任务,最终输出结果为:“山姆”、“存”、“98.0”、“花”、“93.0”、“5.0”,因此在不改变原有自然语言的含义的基础上,将重要信息进行标注,完成了文本序列标注任务。
另外,针对文本序列标注任务还可以将标注的文本序列作为最终的输出结果。
一些实施例中,获取待处理文本对应的目标任务;从至少一个文本推理结果和至少一个文本处理结果中确定与目标任务关联的一个或多个结果,其中与目标任务关联的一个或多个结果可以是多个任务组合得到的一个或多个结果,例如文本分类任务和推理任务相关联,或者文本分类任务和问答任务相关联;基于一个或多个结果,生成最终输出结果。实现了将文本识别和文本推理相结合,针对复杂推理给出推理过程,有效提升了自然语言处理的效果。
示例性的,最终输出结果如表5所示,表5为文本分类任务和推理任务相关联时的最终输出结果。其中包括文本分类任务对应的文本处理结果,以及推理任务对应的文本推理结果。
表5
如表5所示,待处理文本作为输入,目标任务为文本分类任务和文本推理任务,则最终输出结果包括文本推理结果和文本处理结果。针对文本分类任务,待处理文本进行分类得到文章文本和问题文本,针对文本推理任务,根据待处理文本进行符号学习得到对应的推理程序“Result=(N6+N8+N9)/Q1”以及执行推理程序所得到的真值“42”,其中,推理程序中对应的参数N6、N8、N9、Q1是根据待处理文本进行符号标注来确定的,“海豚队的足球运动员杰伊·菲利获得53@N6分结束了这场比赛。第二@N7名,迈阿密逼近菲利的得分,踢出44@N8分,纽约队的足球运动员迈克·纽金特获得29@N9分……”,因此,N6为53,N8为44,N9 为29,Q1为3,然后根据推理程序和参数得到真值。
在目标任务为文本分类任务以及和文本分类任务相关联的文本推理任务时,不仅输出真值向用户展示问题的答案,还输出了推理程序,向用户解释得到真值的推理过程,更加详细具体,提升了文本推理的可解释性,提升了文本处理的泛化性。
综上所述,可以将待处理文本输入至少一个神经符号学习模型,获取至少一个神经符号学习模型输出的至少一个文本推理结果;将待处理文本输入至少一个基于神经网络的文本处理模型,获取至少一个基于神经网络的文本处理模型输出的至少一个文本处理结果;从至少一个文本推理结果和至少一个文本处理结果中,确定最终输出结果。通过该方案,可以在处理待处理文本过程中,通过至少一个神经符号学习模型获取输出的至少一个文本推理结果,其中至少一个神经符号学习模型根据神经网络利用符号规则和神经元从待处理文本中识别逻辑关系,从而完成推理,解决复杂的推理任务。
图3为本公开实施例所述一种文本处理装置的结构示意图,如图3所示,本公开实施例提供一种文本处理装置,该装置包括:
获取模块301,用于获取待处理文本;
编解码器302,用于从待处理文本中提取至少一个参数;基于至少一个参数,识别待处理文本,以得到至少一个参数之间的逻辑关系;基于待处理文本和逻辑关系,生成推理程序;
执行器303,用于执行推理程序,以获取文本推理结果。作为本公开实施例一种可选的实施方式,获取模块301,还用于将待处理文本输入基于神经网络的文本处理模型;获取基于神经网络的文本处理模型输出的文本处理结果;
该装置还包括:选择模块304,具体用于基于文本推理结果和文本处理结果,确定最终输出结果。
作为本公开实施例一种可选的实施方式,获取模块301,具体用于获取初始文本;从初始文本中确定至少一个参数;对初始文本的至少一个参数进行符号标注,以生成待处理文本。
作为本公开实施例一种可选的实施方式,获取模块301,还用于获取待处理文本对应的目标任务;
编解码器302,具体用于基于目标任务,至少一个参数,识别待处理文本,以得到至少一个参数之间的逻辑关系。
上述编解码器302,由编码器和解码器组成,可以实现如图2A、图2B中编码器和解码器的功能;获取模块301实现如图2A中获取模块200或图2B中获取模块210的功能;选择模块304可以实现如图2A中选择模块204或图2B中选择模块214的功能,本公开在此不做赘述。综上所述,本公开实施例提供的一种文本处理装置,首先通过获取模块获取待处理文本,再由编解码器从待处理文本中提取至少一个参数,然后基于至少一个参数,对待处理文本进行识别以得到至少一个参数之间的逻辑关系,进一步的基于待处理文本和逻辑关系生成推理程序,最后由执行器执行推理程序得到文本推理结果。通过上述文本处理装置,在对待处 理文本的进行处理的过程中,提取至少一个参数,得到至少一个参数之间的逻辑关系,然后生成推理程序并执行,从而获取到文本推理结果,完成逻辑推理或数字运算,解决了复杂的推理任务。
如图4所示,本公开实施例提供一种电子设备,该电子设备包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述方法实施例中的文本处理方法的各个过程。且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例提供一种计算机可读存储介质,其特征在于,该计算机可读存储介质上存储计算机程序,该计算机程序被处理器执行时实现上述方法实施例中文本处理方法的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,该计算机可读存储介质可以为只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本公开实施例提供一种计算程序产品,该计算机程序产品存储有计算机程序,计算机程序被处理器执行时实现上述方法实施例中文本处理方法的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本领域技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质上实施的计算机程序产品的形式。
本公开中,处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
本公开中,存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。存储器是计算机可读介质的示例。
本公开中,计算机可读介质包括永久性和非永久性、可移动和非可移动存储介质。存储介质可以由任何方法或技术来实现信息存储,信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。根据本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上仅是本公开的具体实施方式,使本领域技术人员能够理解或实现本公开。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本公开的精神或范围的情况下,在其它实施例中实现。因此,本公开将不会被限制于本文的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (12)

  1. 一种文本处理方法,其特征在于,包括:
    获取待处理文本;
    从所述待处理文本中提取至少一个参数;
    基于所述至少一个参数,识别所述待处理文本,以得到所述至少一个参数之间的逻辑关系;
    基于所述待处理文本和所述逻辑关系,生成推理程序;
    执行所述推理程序,以获取文本推理结果。
  2. 根据权利要求1所述的方法,其特征在于,所述推理程序由至少一个操作符和至少一个参数组成,所述至少一个操作符用于指示所述逻辑关系。
  3. 根据权利要求1所述的方法,其特征在于,所述获取待处理文本之后,所述方法还包括:
    将所述待处理文本输入基于神经网络的文本处理模型;
    获取所述基于神经网络的文本处理模型输出的文本处理结果;
    所述方法还包括:
    基于所述文本推理结果和所述文本处理结果,确定最终输出结果。
  4. 根据权利要求3所述的方法,其特征在于,所述基于神经网络的文本处理模型对应以下至少一种任务:
    文本分类任务、文本抽取任务、文本序列标注任务。
  5. 根据权利要求1所述的方法,其特征在于,所述获取待处理文本,包括:
    获取初始文本;
    从所述初始文本中确定所述至少一个参数;
    对所述初始文本的所述至少一个参数进行符号标注,以生成所述待处理文本。
  6. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    获取所述待处理文本对应的目标任务;
    所述基于所述至少一个参数,识别所述待处理文本,以得到所述至少一个参数之间的逻辑关系,包括:
    基于所述目标任务和所述至少一个参数,识别所述待处理文本,以得到所述 至少一个参数之间的逻辑关系。
  7. 一种文本处理装置,其特征在于,包括:
    获取模块,用于获取待处理文本;
    编解码器,用于从所述待处理文本中提取至少一个参数;
    基于所述至少一个参数,识别所述待处理文本,以得到所述至少一个参数之间的逻辑关系;基于所述待处理文本和所述逻辑关系,生成推理程序;
    执行器,用于执行所述推理程序,以获取文本推理结果。
  8. 根据权利要求7所述的装置,其特征在于,包括:所述获取模块,还用于将所述待处理文本输入基于神经网络的文本处理模型;
    获取所述基于神经网络的文本处理模型输出的文本处理结果;
    该装置还包括:
    选择模块,具体用于基于所述文本推理结果和所述文本处理结果,确定最终输出结果。
  9. 根据权利要求7所述的装置,其特征在于,包括:所述获取模块,具体用于获取初始文本;
    从所述初始文本中确定所述至少一个参数;
    对所述初始文本的所述至少一个参数进行符号标注,以生成所述待处理文本。
  10. 根据权利要求7所述的装置,其特征在于,包括:所述获取模块,还用于获取所述待处理文本对应的目标任务;
    所述编解码器,具体用于基于所述目标任务,所述至少一个参数,识别所述待处理文本,以得到所述至少一个参数之间的逻辑关系。
  11. 一种电子设备,其特征在于,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至6中任一项所述的文本处理方法。
  12. 一种计算机可读存储介质,其特征在于,包括:所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求1至6中任一项所述的文本处理方法。
PCT/CN2023/079314 2022-03-10 2023-03-02 一种文本处理方法、装置及电子设备 WO2023169301A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210231619.8 2022-03-10
CN202210231619.8A CN114896973A (zh) 2022-03-10 2022-03-10 一种文本处理方法、装置及电子设备

Publications (1)

Publication Number Publication Date
WO2023169301A1 true WO2023169301A1 (zh) 2023-09-14

Family

ID=82714481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079314 WO2023169301A1 (zh) 2022-03-10 2023-03-02 一种文本处理方法、装置及电子设备

Country Status (2)

Country Link
CN (1) CN114896973A (zh)
WO (1) WO2023169301A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114896973A (zh) * 2022-03-10 2022-08-12 北京有竹居网络技术有限公司 一种文本处理方法、装置及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6363374B1 (en) * 1998-12-31 2002-03-26 Microsoft Corporation Text proximity filtering in search systems using same sentence restrictions
CN113255295A (zh) * 2021-04-27 2021-08-13 西安电子科技大学 一种自然语言到pptl形式化规约自动生成方法及系统
CN113486146A (zh) * 2021-07-06 2021-10-08 中国建设银行股份有限公司 一种文本处理方法、装置、电子设备及计算机可读介质
CN114896973A (zh) * 2022-03-10 2022-08-12 北京有竹居网络技术有限公司 一种文本处理方法、装置及电子设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111539529B (zh) * 2020-04-15 2023-06-20 东莞证券股份有限公司 一种事件推理方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6363374B1 (en) * 1998-12-31 2002-03-26 Microsoft Corporation Text proximity filtering in search systems using same sentence restrictions
CN113255295A (zh) * 2021-04-27 2021-08-13 西安电子科技大学 一种自然语言到pptl形式化规约自动生成方法及系统
CN113486146A (zh) * 2021-07-06 2021-10-08 中国建设银行股份有限公司 一种文本处理方法、装置、电子设备及计算机可读介质
CN114896973A (zh) * 2022-03-10 2022-08-12 北京有竹居网络技术有限公司 一种文本处理方法、装置及电子设备

Also Published As

Publication number Publication date
CN114896973A (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
WO2020119075A1 (zh) 通用文本信息提取方法、装置、计算机设备和存储介质
JP6909832B2 (ja) オーディオにおける重要語句を認識するための方法、装置、機器及び媒体
CN110704576B (zh) 一种基于文本的实体关系抽取方法及装置
CN111738016A (zh) 多意图识别方法及相关设备
CN112328800A (zh) 自动生成编程规范问题答案的系统及方法
CN116304748B (zh) 一种文本相似度计算方法、系统、设备及介质
CN113849623A (zh) 文本视觉问答方法和装置
Lee Natural Language Processing: A Textbook with Python Implementation
CN117609419A (zh) 基于元学习与知识增强的领域检索方法
CN113779227A (zh) 案情事实抽取方法及系统及装置及介质
CN112185361B (zh) 一种语音识别模型训练方法、装置、电子设备及存储介质
WO2022095370A1 (zh) 一种文本匹配方法、装置、终端设备和存储介质
WO2023169301A1 (zh) 一种文本处理方法、装置及电子设备
CN116258147A (zh) 一种基于异构图卷积的多模态评论情感分析方法及系统
CN115203388A (zh) 机器阅读理解方法、装置、计算机设备和存储介质
CN112883713A (zh) 基于卷积神经网络的评价对象抽取方法及装置
CN113705207A (zh) 语法错误识别方法及装置
CN117251555A (zh) 一种语言生成模型训练方法和装置
Chakkarwar et al. A Review on BERT and Its Implementation in Various NLP Tasks
Yin Fuzzy information recognition and translation processing in English interpretation based on a generalized maximum likelihood ratio algorithm
CN111401069A (zh) 会话文本的意图识别方法、意图识别装置及终端
CN115238711A (zh) 数据处理方法、装置、设备、程序产品及存储介质
Murugathas et al. Domain specific question & answer generation in tamil
CN114662496A (zh) 信息识别方法、装置、设备、存储介质及产品
Latha et al. Visual audio summarization based on NLP models

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23765879

Country of ref document: EP

Kind code of ref document: A1