WO2023169278A1 - 一种数据传输方法、电子设备和装置 - Google Patents

一种数据传输方法、电子设备和装置 Download PDF

Info

Publication number
WO2023169278A1
WO2023169278A1 PCT/CN2023/079027 CN2023079027W WO2023169278A1 WO 2023169278 A1 WO2023169278 A1 WO 2023169278A1 CN 2023079027 W CN2023079027 W CN 2023079027W WO 2023169278 A1 WO2023169278 A1 WO 2023169278A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
processor
beacon frame
data
bluetooth module
Prior art date
Application number
PCT/CN2023/079027
Other languages
English (en)
French (fr)
Inventor
潘锦玲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210420162.5A external-priority patent/CN116781718A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023169278A1 publication Critical patent/WO2023169278A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application belongs to the field of communication technology, and in particular relates to a data transmission method, electronic equipment and device.
  • electronic devices themselves generate and accumulate data.
  • Some electronic devices are usually always connected to the Internet and can automatically synchronize (or upload) the generated and accumulated data to the server in real time.
  • a mobile phone that supports cellular communication can synchronize local photos to the server at any time and is connected to the home gateway.
  • the camera can synchronize the recorded video to the server at any time.
  • Other electronic devices are usually always connected to other electronic devices, and the data generated and accumulated can be transmitted and backed up to other electronic devices in real time.
  • embodiments of the present application provide a data transmission method, electronic equipment and device, which can obtain important data in the electronic equipment that generates data at any time, back up or further synchronize these important data to the server, and prevent the important data from being covered or lost.
  • a first aspect of an embodiment of the present application provides an electronic device, which at least includes a first processor, a second processor, and a Bluetooth module.
  • the first processor is coupled to the second processor
  • the Bluetooth module is coupled to at least one of the first processor and the second processor.
  • the first processor is used to configure Beacon frame response conditions of the electronic device.
  • the second processor is configured to wake up the first processor when the first processor is powered off or in a sleep state and the Bluetooth module receives the first Beacon frame that meets the above Beacon frame response conditions.
  • the first processor is also configured to obtain the above-mentioned first Beacon frame that meets the above-mentioned Beacon frame response conditions after being awakened by the second processor.
  • the above-mentioned Beacon frame response conditions include one or more of the following: the identity of the sending device carried by the Beacon frame is in the white list of the electronic device, the format of the Beacon frame conforms to the preset format, and the Beacon frame carries the identity of the sending device in the electronic device. Information about the first user account that logged in.
  • the first processor may be an application processor of the electronic device
  • the second processor may be a processor with auxiliary functions of the electronic device, such as a micro-controller unit (MCU). ), intelligent sensor hub (SensorHub), etc.
  • the first processor can be used to perform most core functions in electronic devices, such as generating user graphical interfaces, communicating with the Internet, establishing high-speed data transmission channels (such as Wi-Fi channels) with other devices, and responding to messages that meet certain conditions. to perform preset functions, etc.
  • the second processor may be used to perform auxiliary functions of the electronic device, such as controlling and managing sensor modules, Bluetooth modules, etc. in the electronic device.
  • the first processor may enter a power-off or hibernation state to save overall power consumption of the electronic device when, for example, the screen of the electronic device is turned off and/or is running in a low-power mode. At the same time, this also prevents the electronic device from performing core functions.
  • the power consumption of the second processor is much lower than the power consumption of the first processor. Therefore, when the first processor is powered off or in hibernation, the second processor usually remains powered on or in a working state.
  • the embodiment of the present application proposes to use the second processor to conditionally wake up the first processor when the first processor is in a power-off or sleep state. Thereby, the first processor is restored to the power-on or working state to execute the core functions of the electronic device. For example, in response to the Bluetooth module receiving the first Beacon frame, the second processor wakes up the first processor, so that the first processor obtains the first Beacon frame.
  • the first Beacon frame carries important data generated by the sending device of the first Beacon frame, so that the first processor parses the first Beacon frame to obtain and store the data generated by the sending device of the first Beacon frame.
  • the first Beacon frame is configured to instruct the receiving end device of the first Beacon frame to perform a preset function, so that the first processor that obtains the first Beacon frame can respond to the first Beacon frame. Execute the corresponding preset function. For example, the first processor triggers the electronic device to establish a Wi-Fi connection with the sending device that sends the first Beacon frame, so as to obtain important data generated by the sending device of the first Beacon frame.
  • the first aspect of the embodiment of the present application can also configure the Beacon frame response condition of the electronic device through the first processor. Only the first Beacon that meets the Beacon response condition frame, the second processor can wake up the first processor.
  • the electronic device provided by the embodiment of the present application can obtain important data generated by other devices in a timely manner to prevent these important data from being overwritten or lost.
  • the first processor is further configured to, in response to the first Beacon frame, trigger the electronic device to communicate with the sending end device of the first Beacon frame (for example, as described in the specific embodiments).
  • the second electronic device establishes a data transmission channel, so that the electronic device obtains the data collected by the sending end device of the first Beacon frame through the data transmission channel.
  • the first processor may be configured to, in response to the first Beacon frame, trigger the electronic device to establish a data transmission channel with the sending end of the first Beacon frame, so as to obtain relatively large data through the data transmission channel.
  • the data transmission channel may be a Wi-Fi channel
  • the data collected by the sending end device of the first Beacon frame includes multimedia data.
  • the Wi-Fi channel can be Wi-Fi direct, WiFi P2P (peer-to-peer) connection, etc. Therefore, the two transmit larger multimedia data through the Wi-Fi channel, which can improve the efficiency of data transmission.
  • the first processor is further configured to determine, according to the first Beacon frame, that the sending end device of the first Beacon frame detects the first type of key event.
  • one or more fields of the first Beacon frame may be pre-configured to carry event numbers, and different event numbers correspond to different types of key events detected by the sending device of the first Beacon frame.
  • the sending device of the first Beacon frame as a driving recorder as an example
  • different event numbers may correspond to different types of key events detected by the driving recorder, such as sudden braking, collision, yaw, etc.
  • the electronic device can learn the type of key event detected by the sending end device of the first Beacon frame through the first Beacon frame.
  • the electronic device can record in time the key events detected by the sending device of the first Beacon frame; in other embodiments, the electronic device can further respond to a specific type of key event, triggering Establish a data transmission channel with the sending device of the first Beacon frame to obtain information corresponding to the specific Type of key event multimedia data (such as audio and/or video files).
  • the second processor is specifically configured to: when the first processor is in a power-off or sleep state, and the Bluetooth module receives the first Beacon frame, and electronically When the device is in the first motion state, wake up the first processor. That is to say, for the specific condition for the second processor to wake up the first processor, there may also be added: the electronic device is in the first motion state (a certain specific motion state). Therefore, it can be avoided that the first processor is accidentally awakened when the electronic device is not in the first motion state. For example, taking the device that sends the first Beacon frame as a driving recorder, the first motion state may be a driving state. Only when the electronic device is in a driving state, the second processor of the electronic device will wake up the first processor when the Bluetooth module of the electronic device receives the first Beacon frame.
  • the electronic device further includes a sensor module; the second processor is further configured to determine that the electronic device is in the first motion state based on the sensor data collected by the sensor module.
  • the second processor can obtain sensor data collected by the sensor module, and determine the current motion state of the electronic device based on the sensor data.
  • the sensor data may include, for example, acceleration data, gyroscope data, etc.
  • the Bluetooth module is configured to send the first signal to the second processor when receiving the first Beacon frame; the second processor is also configured to respond In response to the first signal, wake up the first processor.
  • the Bluetooth module can be configured to determine whether one or some fields in the received Bluetooth message meet the preset conditions, for example, through logical operations (AND, OR, NOT, XOR).
  • One or some fields (such as manufacturer-defined fields) of the first Beacon frame can be configured as a specific value, and the Bluetooth module can, after judging that the field is a specific value, send a request to the second processor coupled with the Bluetooth module.
  • the format of the above-mentioned Beacon frame conforms to the preset format, specifically including: one or some fields of the Beacon frame are preset values. For example, one or several bits in the manufacturer-defined field of the Beacon frame are preset values. Therefore, the Bluetooth module itself can determine whether the Beacon frame monitored by the air interface is the Beacon frame to which the Bluetooth module responds through simple logical operations, thereby avoiding triggering the second processor to frequently wake up the first processor. .
  • the Bluetooth module includes a Bluetooth low energy (bluetooth low energy, BLE) module.
  • BLE Bluetooth low energy
  • the BLE module consumes lower power, thus saving the power consumption of electronic devices as much as possible.
  • the power consumption of the first processor is higher than the power consumption of the second processor, or the volume of the first processor is larger than that of the second processor. Volume, or the computing power of the first processor is greater than the computing power of the second processor.
  • the second aspect of the embodiment of the present application provides a data transmission method.
  • the method is applied to a first electronic device.
  • the method includes: the first electronic device configures the Beacon frame response condition of the first electronic device; the first electronic device is in In the first state, receive the first Beacon frame broadcast by the second electronic device; the first electronic device determines to respond to the first Beacon frame according to the first Beacon frame meeting the above-mentioned Beacon frame response conditions; the first electronic device determines to respond to the first Beacon frame When, the first electronic device switches from the first state to the second state; the first electronic device is at In the second state, a data transmission channel is established with the second electronic device to obtain the first data sent by the second electronic device.
  • the above-mentioned Beacon frame response conditions include one or more of the following: the identity of the second electronic device carried by the Beacon frame is in the white list of the first electronic device, the format of the Beacon frame conforms to the preset format, and the Beacon frame carries the identity of the first electronic device. Information about the first user account logged into the electronic device. And, the power consumption of the first electronic device in the first state is greater than the power consumption of the first electronic device in the second state.
  • the first electronic device when the first electronic device is in the first state of lower power consumption, the first electronic device can still respond to the data sent by the second electronic device that is consistent with the first electronic device.
  • the Beacon frame responds to the first Beacon frame of the condition, switches to a second state with higher power consumption, and establishes a data transmission channel with the second electronic device in the second state to obtain the first data. This avoids the first data being overwritten or lost due to the inability of the second electronic device to back up the first data to other devices in time.
  • the data transmission channel is a Wi-Fi channel
  • the first data is multimedia data collected by the second electronic device.
  • the Wi-Fi channel can be Wi-Fi direct, WiFi P2P (peer-to-peer) connection, etc. Therefore, the two transmit larger multimedia data through the Wi-Fi channel, which can improve the efficiency of data transmission.
  • the first Beacon frame is used to indicate that the second electronic device detects a first type of key event, and the first data is data corresponding to the key event. Therefore, the first electronic device can learn the type of key event detected by the second electronic device through the first Beacon frame. In response to a first type of key event, the first electronic device may trigger the establishment of a data transmission channel with the second electronic device to obtain multimedia data (such as audio and/or audio) corresponding to the first type of key event through the data transmission channel. video file). It can be understood that if the first electronic device obtains the second type of key event, the first electronic device may not trigger the establishment of a data transmission channel with the second electronic device.
  • the first electronic device may be pre-configured to trigger or not trigger the establishment of a data transmission channel with the second electronic device in response to different types of key events. Only when the first electronic device learns that the type of key event detected by the second electronic device is a type that requires transmission of multimedia data, the first electronic device obtains the multimedia data. If the type of key event detected by the second electronic device is a type that does not require the transmission of multimedia data, the first electronic device can know that the key event of this type has occurred through the first Beacon frame and record it without establishing data transmission. aisle. Thus, the configurability of important data backup is improved.
  • the first electronic device determines to respond to the first Beacon frame based on the first Beacon frame meeting the Beacon frame response conditions, specifically including: when the first electronic device is in the first movement In the case of status, the first electronic device determines to respond to the first Beacon frame based on the first Beacon frame meeting the Beacon frame response condition. That is to say, for the specific condition for the first electronic device to determine to respond to the first Beacon frame, it may also be added that the first electronic device is in a first motion state (a certain specific motion state). Therefore, it can be avoided that the first electronic device also responds to the first Beacon frame when it is not in the first motion state. For example, assuming that the second electronic device is a driving recorder, the first motion state may be a driving state. Only when the first electronic device is in a driving state, the first electronic device will respond when receiving the first Beacon frame.
  • the method further includes: the first electronic device uploads the first data to the server.
  • the first electronic device may delete the first data in the first electronic device to save storage space of the first electronic device.
  • the first electronic device can delete the first data in the first electronic device only after obtaining the user's permission.
  • the method further includes: switching the first electronic device from the second state to the first state. Therefore, after completing the backup of the first data, the first electronic device can be restored to an operating state with lower power consumption, thereby reducing power consumption.
  • switching the first electronic device from the first state to the second state specifically includes: switching the application processor of the first electronic device from a power-off or sleep state to a power-on state. power or working status.
  • the application processor can be used to perform most of the core functions in electronic devices, such as generating user graphical interfaces, communicating with the Internet, establishing high-speed data transmission channels with other devices (such as Wi-Fi channels), and responding to reports that meet certain conditions. text to perform preset functions, etc.
  • the application processor is powered off or in a sleep state, which can save power consumption of the first electronic device, but also makes the first electronic device unable to perform most core functions.
  • the application processor In the second state, the application processor is in a powered on or working state. At this time, the first electronic device can perform most of the core functions, but the power consumption is high. Therefore, in this method, the first electronic device switches from the first state to the second state when necessary, which not only saves the power consumption of the first electronic device as much as possible, but also enables the first electronic device to have the ability to respond in a timely manner.
  • the first electronic device configures the Beacon frame response condition of the first electronic device, specifically including: the first electronic device configures the first electronic device for broadcasting by the second electronic device. Response conditions for Beacon frames. That is to say, the first electronic device may specifically configure the response conditions of the Beacon frame broadcast by the second electronic device. This is because the second electronic device may have multiple business functions. In addition to broadcasting Beacon frames for triggering backup of important data, the second electronic device may also broadcast Beacon frames for other business functions.
  • the first electronic device configures response conditions for the Beacon frame broadcast by the second electronic device in a targeted manner, which can prevent the first electronic device from responding to the Beacon frame broadcast by the second electronic device for other business functions.
  • the third aspect of the embodiment of the present application provides a processor.
  • the processor is installed in an electronic device.
  • the processor is coupled to an application processor and a Bluetooth module in the electronic device.
  • the power consumption of the processor is less than that of the application processor.
  • power consumption, or the size of the processor is smaller than that of the application processor, or the computing power of the processor is weaker than the computing power of the application processor; the processor is used when the application processor is powered off or in a sleep state.
  • the Bluetooth module receives the first Beacon frame that meets the preset Beacon frame response conditions, it wakes up the application processor.
  • the preset Beacon frame response conditions may include one or more of the following: the identity of the Beacon frame sending device carried in the Beacon frame is in the white list of the electronic device, and the format of the Beacon frame conforms to the preset format. , the Beacon frame carries the information of the first user account logged in the electronic device.
  • the above-mentioned processor may be the second processor in the first aspect of the embodiment of the present application.
  • the processor provided by the embodiment of the present application can enable the electronic device to promptly respond to the preset Beacon The first Beacon of the frame response condition.
  • the processor is further configured to receive a first signal sent by the Bluetooth module, and wake up the application processor in response to the first signal.
  • the Bluetooth module in the electronic device can be configured to determine whether one or some fields in the received Bluetooth message meet the preset conditions, for example, through logical operations (AND, OR, NOT, XOR). judge.
  • One or some fields (such as manufacturer-defined fields) of the first Beacon frame can be configured as a specific value, and the Bluetooth module can send a message to the processor coupled with the Bluetooth module after judging that the field is a specific value.
  • the first signal so when the processor receives the first signal, it knows that the Bluetooth module has now received the Beacon frame that needs to wake up the application processor to process, so the processor wakes up the application processor in response to the first signal, so that The application processor obtains the first Beacon frame and then responds to the first Beacon frame.
  • the processor is further coupled with a sensor in the electronic device; the processor is further configured to determine that it is currently in the first motion state based on sensor data collected by the sensor; The processor is specifically configured to wake up the application processor when the application processor is powered off or in a sleep state, the Bluetooth module receives the first Beacon frame that meets the preset Beacon frame response conditions, and is currently in the first motion state.
  • the processor may also be added: it is currently in the first motion state (a certain specific motion state). Therefore, it can be avoided that the processor also wakes up the application processor when it is not in the first motion state.
  • the first motion state may be a driving state. The processor will only wake up the application processor if the electronic device is currently driving.
  • the processor is also used to configure the Bluetooth module's filtering conditions for the received Beacon frames.
  • the processor configures the Bluetooth module's filtering conditions for received Beacon frames according to instructions issued by the application processor.
  • the above filtering conditions may include: which logical operation is used by the Bluetooth module to filter which field or fields in the received Beacon frame. Therefore, the Bluetooth module's filtering of Beacons monitored by the air interface is configurable. In different application scenarios, the Bluetooth module can be configured with different Beacon frame filtering conditions. Improve the configurability of Bluetooth modules.
  • a fourth aspect of the embodiments of the present application provides a computer-readable storage medium.
  • the computer-readable storage medium includes instructions. When the above instructions are executed, the electronic device installed with the computer-readable storage medium executes the second aspect. Or the data transmission method described in any possible implementation manner in the second aspect.
  • a fifth aspect of the embodiments of the present application provides a data transmission system.
  • the data transmission system includes a first electronic device and a second electronic device, wherein the first electronic device may be the above-mentioned second aspect or any one of the second aspects.
  • the first electronic device in a possible implementation manner, the second electronic device may be the second electronic device in the above second aspect or any possible implementation manner in the second aspect.
  • a sixth aspect of the embodiments of the present application provides another electronic device, which may be the second electronic device in the above second aspect or any possible implementation of the second aspect.
  • the other electronic device is configured to send the first Beacon frame when a key event is detected.
  • the other electronic device can also establish a data transmission channel with the receiving end device of the first Beacon frame (such as the first electronic device) to transmit the other electronic device to the first Beacon frame.
  • the important data collected by the device (such as multimedia data) is sent to the receiving end of the first Beacon frame. This enables timely backup of important data and prevents important data from being overwritten or lost.
  • Figure 1 is a schematic diagram of an implementation method for connecting a driving recorder and a mobile phone provided by an embodiment of the present application
  • Figure 2 is a schematic diagram of another implementation of the connection between a driving recorder and a mobile phone provided by an embodiment of the present application;
  • Figure 3 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Figure 4 is a software structure block diagram of an electronic device provided by an embodiment of the present application.
  • Figure 5 is a partial structural schematic diagram of a first electronic device provided by an embodiment of the present application.
  • Figure 6 is a device interaction diagram of a data transmission method provided by an embodiment of the present application.
  • FIG. 7(a)-(c) are schematic diagrams of the user interface of a first electronic device provided by an embodiment of the present application.
  • Figure 8 is a partial structural schematic diagram of another first electronic device provided by an embodiment of the present application.
  • Figure 9 is a partial structural schematic diagram of yet another first electronic device provided by an embodiment of the present application.
  • FIGS. 10(a)-(b) are schematic user interface diagrams of another first electronic device provided by an embodiment of the present application.
  • Figure 11 is a partial structural schematic diagram of a second electronic device provided by an embodiment of the present application.
  • FIG. 13(a)-(c) are schematic diagrams of user interfaces of yet another first electronic device provided by an embodiment of the present application.
  • the term “if” may be interpreted as “when” or “once” or “in response to determining” or “in response to detecting” depending on the context. ". Similarly, the phrase “if determined” or “if [the described condition or event] is detected” may be interpreted, depending on the context, to mean “once determined” or “in response to a determination” or “once the [described condition or event] is detected ]” or “in response to detection of [the described condition or event]”.
  • the driving recorder can record the audio and video data generated during the driving of the vehicle (such as the video recorded by the camera, the audio collected by the microphone), and can also detect and record abnormal data such as vehicle collision, sudden braking, yaw, etc., and store these data.
  • SD local security digital
  • eMMC embedded multi-media card
  • the operation is cumbersome, resulting in a low frequency of interaction between the user and the driving recorder and the infrequent synchronization of data.
  • the storage space of the driving recorder is limited, and the newly generated data will overwrite the previous data, making it impossible to synchronize the data in a timely manner. In severe cases, key data may be lost.
  • the connection between the driving recorder and the mobile phone can be achieved as shown in Figure 1.
  • the driving recorder 10 serves as an access point (AP) device (or works in AP mode) to provide a WiFi hotspot
  • the mobile phone 20 serves as a station (station, STA) device (or works in AP mode).
  • STA mode accesses the WiFi hotspot provided by the driving recorder 10 as an AP device.
  • a data transmission channel is established between the mobile phone 20 and the driving recorder 10.
  • the driving recorder 10 transmits its locally stored data to the mobile phone through the data transmission channel. 20.
  • the mobile phone 20 can store the received data locally on the mobile phone 20 , and optionally, the mobile phone 20 can also upload these data to the server 30 .
  • the user first needs to operate the driving recorder 10 (for example, long press the function key of the driving recorder 10) to trigger the driving recorder 10 to enter the AP mode. Then, the user needs to operate the mobile phone 20 and select the WiFi hotspot provided by the driving recorder from the list of accessible wireless networks displayed on the display interface of the mobile phone 20 . Finally, the user needs to enter the password of the WiFi hotspot or the personal identification number (PIN) of the driving recorder 10 so that the mobile phone 20 can access the WiFi hotspot of the driving recorder 10 .
  • the driving recorder 10 for example, long press the function key of the driving recorder 10
  • the connection between the driving recorder and the mobile phone can also be achieved as shown in Figure 2.
  • the driving recorder 10 and the mobile phone 20 assist in network configuration through Bluetooth low energy (BLE), that is, the negotiation of the key and the server identifier (service set identifier, SSID) is completed through BLE.
  • BLE Bluetooth low energy
  • an encrypted channel is established between the driving recorder 10 and the mobile phone 20 according to the negotiated key and SSID.
  • the driving recorder 10 transmits its locally stored data to the mobile phone 20 through the encrypted channel.
  • the mobile phone 20 can also Upload this data to server 30.
  • the user needs to open an application (APP) related to the driving recorder 10 on the mobile phone 20, click on the control used to trigger the establishment of a connection with the driving recorder 10, and trigger the execution of the mobile phone 20 and the driving recorder 10.
  • APP application
  • the mobile phone 20 displays a prompt message that the connection is established successfully, so that the user knows that the connection is successful and can perform subsequent data synchronization operations.
  • a part of the storage space can be divided from the storage space of the driving recorder to store key data (such as data generated during sudden braking and collision).
  • This part of the divided storage space is configured as It will not be overwritten by newly generated data.
  • embodiments of the present application provide a data transmission method.
  • a connection can be automatically established between the driving recorder and the mobile phone, and the driving recorder can automatically transfer the data.
  • the mobile phone can synchronize the received data to the server.
  • FIG. 3 exemplarily shows a schematic structural diagram of an electronic device 100 provided by an embodiment of the present application.
  • the electronic device 100 may be the first electronic device or the second electronic device described in the following embodiments, or may be the server.
  • Electronic device 100 may include a mobile phone, a foldable electronic device, a tablet computer, a desktop computer, a laptop computer, a handheld computer, a notebook computer, an ultra-mobile personal computer (UMPC), a netbook, a cellular phone, a personal computer Digital assistant (personal digital assistant, PDA), augmented reality (AR) device, virtual reality (VR) device, artificial intelligence (artificial intelligence, AI) device, wearable device, vehicle-mounted device, smart home equipment, or at least one of smart city equipment.
  • smart home devices may include but are not limited to the following examples: smart large screens, smart TVs, smart speakers, sweepers, smart lights, and smart toilets.
  • the embodiment of the present application does not place any special restrictions on the specific type of the electronic device 100 .
  • the electronic device 100 may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) connector 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, an antenna 2 , mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, headphone interface 170D, sensor module 180, button 190, motor 191, indicator 192, camera 193, display screen 194, and Subscriber identification module (SIM) card interface 195, etc.
  • SIM Subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyro sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, and ambient light. Sensor 180L, bone conduction sensor 180M, etc.
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the electronic device 100 .
  • the electronic device 100 may include more or fewer components than shown in the figures, or some components may be combined, some components may be separated, or some components may be arranged differently.
  • the components illustrated may be implemented in hardware, software, or a combination of software and hardware.
  • the processor 110 may include one or more processing units.
  • the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processing unit (GPU), and an image signal processor. (image signal processor, ISP), controller, video codec, digital signal processor (DSP), baseband processor, micro-controller unit (MCU), and/or neural network processing (neural-network processing unit, NPU), etc.
  • application processor application processor
  • AP application processor
  • modem processor graphics processing unit
  • GPU graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • DSP digital signal processor
  • MCU micro-controller unit
  • NPU neural network processing
  • the processor 110 can generate operation control signals according to the instruction operation code and timing signals to complete the control of fetching and executing instructions.
  • the processor 110 may also be provided with a memory for storing instructions and data.
  • the memory in processor 110 may be a cache memory.
  • the memory may store instructions or data that have been used by the processor 110 or are used more frequently. If the processor 110 needs to use the instructions or data, it can be called directly from the memory. Repeated access is avoided and the waiting time of the processor 110 is reduced, thus improving the efficiency of the system.
  • processor 110 may include one or more interfaces. Interfaces may include integrated circuit (inter-integrated circuit, I2C) interface, integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, pulse code modulation (pulse code modulation, PCM) interface, universal asynchronous receiver and transmitter (universal asynchronous receiver/transmitter (UART) interface, mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (SIM) interface, and /or universal serial bus (USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • UART universal asynchronous receiver and transmitter
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB universal serial bus
  • the interface connection relationships between the modules illustrated in the embodiments of the present application are only schematic illustrations and do not constitute a structural limitation of the electronic device 100 .
  • the electronic device 100 may also adopt different interface connection methods in the above embodiments, or a combination of multiple interface connection methods.
  • the USB connector 130 is an interface that complies with USB standard specifications and can be used to connect the electronic device 100 and peripheral devices. Specifically, it can be a Mini USB connector, a Micro USB connector, a USB Type C connector, etc.
  • the USB connector 130 can be used to connect to a charger to charge the electronic device 100, or can be used to connect to other electronic devices to transfer data between the electronic device 100 and other electronic devices. It can also be used to connect headphones to output audio stored in electronic devices through the headphones. This connector can also be used to connect other electronic devices, such as VR devices.
  • the standard specifications of the universal serial bus may be USB1.x, USB2.0, USB3.x, and USB4.
  • the charging management module 140 is used to receive charging input from the charger.
  • the charger can be a wireless charger or a wired charger.
  • the charging management module 140 may receive charging input from the wired charger through the USB interface 130 .
  • the charging management module 140 may receive wireless charging input through the wireless charging coil of the electronic device 100 . While the charging management module 140 charges the battery 142, it can also provide power to the electronic device through the power management module 141.
  • the power management module 141 is used to connect the battery 142, the charging management module 140 and the processor 110.
  • the power management module 141 receives input from the battery 142 and/or the charging management module 140, and supplies power to the processor 110, the internal memory 121, the display screen 194, the camera 193, the wireless communication module 160, and the like.
  • the power management module 141 can also be used to monitor battery capacity, battery cycle times, battery health status (leakage, impedance) and other parameters.
  • the power management module 141 may also be provided in the processor 110 .
  • the power management module 141 and the charging management module 140 may also be provided in the same device.
  • the wireless communication function of the electronic device 100 can be implemented through the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modem processor and the baseband processor.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in electronic device 100 may be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization. For example: Antenna 1 can be reused as a diversity antenna for a wireless LAN. In other embodiments, antennas may be used in conjunction with tuning switches.
  • the mobile communication module 150 can provide solutions for wireless communication including 2G/3G/4G/5G applied on the electronic device 100 .
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA), etc.
  • the mobile communication module 150 can receive electromagnetic waves through the antenna 1, perform filtering, amplification and other processing on the received electromagnetic waves, and transmit them to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modem processor and convert it into electromagnetic waves through the antenna 1 for radiation.
  • at least part of the functional modules of the mobile communication module 150 may be disposed in the processor 110 .
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be provided in the same device.
  • a modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low-frequency baseband signal to be sent into a medium-high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low-frequency baseband signal.
  • the demodulator then transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the application processor outputs sound signals through audio devices (not limited to speaker 170A, receiver 170B, etc.), or displays images or videos through display screen 194.
  • the modem processor may be a stand-alone device.
  • the modem processor may be independent of the processor 110 and may be provided in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 can provide applications on the electronic device 100 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) network), Bluetooth (bluetooth, BT), and Bluetooth low power. consumption (bluetooth low energy, BLE), ultra wide band (ultra wide band, UWB), global navigation satellite system (global navigation satellite system, GNSS), frequency modulation (frequency modulation, FM), near field communication, NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2 , frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110, frequency modulate it, amplify it, and convert it into electromagnetic waves through the antenna 2 for radiation.
  • the antenna 1 of the electronic device 100 is coupled to the mobile communication module 150, and the antenna 2 is coupled to the wireless communication module 160, so that the electronic device 100 can communicate with the network and other electronic devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband code Wideband code division multiple access (WCDMA), time-division code division multiple access (TD-SCDMA), long term evolution (LTE), BT, GNSS, WLAN, NFC, FM, and/or IR technology, etc.
  • the GNSS may include global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), quasi-zenith satellite system (quasi- zenith satellite system (QZSS) and/or satellite based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation systems
  • the electronic device 100 can implement display functions through a GPU, a display screen 194, an application processor, and the like.
  • the GPU is an image processing microprocessor and is connected to the display screen 194 and the application processor. GPUs are used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 110 may include one or more GPUs that execute program instructions to generate or alter display information.
  • the processor may not include a GPU and use a non-GPU processing unit to implement the above functions.
  • the display screen 194 is used to display images, videos, etc.
  • Display 194 includes a display panel.
  • the display panel can use a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active matrix organic light emitting diode or an active matrix organic light emitting diode (active-matrix organic light emitting diode).
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • AMOLED organic light-emitting diode
  • FLED flexible light-emitting diode
  • Miniled MicroLed, Micro-oLed, quantum dot light emitting diode (QLED), etc.
  • electronic device 100 may include one or more display screens 194.
  • the electronic device 100 can realize the camera function through the camera module 193, ISP, video codec, GPU, display screen 194, application processor AP, neural network processor NPU, etc.
  • the camera module 193 can be used to collect color image data and depth data of the photographed object.
  • the ISP can be used to process color image data collected by the camera module 193 . For example, when taking a photo, the shutter is opened and the light is transmitted to the camera sensor through the lens. The light signal is converted into an electrical signal. The camera sensor passes the electrical signal to the ISP for processing and converts it into an image visible to the naked eye. ISP can also perform algorithm optimization on image noise, brightness, and skin color. ISP can also optimize the exposure, color temperature and other parameters of the shooting scene. In some embodiments, the ISP may be provided in the camera module 193 .
  • the camera module 193 may be composed of a color camera module and a 3D sensing module.
  • the photosensitive element of the camera of the color camera module may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CCD charge coupled device
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the optical signal into an electrical signal, and then passes the electrical signal to the ISP to convert it into a digital image signal.
  • ISP outputs digital image signals to DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other format image signals.
  • the 3D sensing module may be a time of flight (TOF) 3D sensing module or a structured light (structured light) 3D sensing module.
  • structured light 3D sensing is an active depth sensing technology.
  • the basic components of the structured light 3D sensing module can include infrared (Infrared) emitters, IR camera modules, etc.
  • the working principle of the structured light 3D sensing module is to first emit a specific pattern of light spots on the object being photographed, and then receive the light spot pattern coding (light coding) on the surface of the object, and then compare the similarities and differences with the original projected light spots. And use the principle of trigonometry to calculate the three-dimensional coordinates of the object.
  • the three-dimensional coordinates include the distance between the electronic device 100 and the photographed object.
  • TOF 3D sensing can be active depth sensing technology, and the basic components of the TOF 3D sensing module can include infrared (Infrared) emitters, IR camera modules, etc.
  • the working principle of the TOF 3D sensing module is to calculate the distance (i.e., depth) between the TOF 3D sensing module and the photographed object through the time of infrared retracement to obtain a 3D depth map.
  • Structured light 3D sensing modules can also be used in face recognition, somatosensory game consoles, industrial machine vision inspection, etc. field.
  • TOF 3D sensing modules can also be used in game consoles, augmented reality (AR)/virtual reality (VR) and other fields.
  • AR augmented reality
  • VR virtual reality
  • the camera module 193 may also be composed of two or more cameras.
  • the two or more cameras may include color cameras, and the color cameras may be used to collect color image data of the photographed objects.
  • These two or more cameras can use stereo vision technology to collect depth data of the object being photographed.
  • Stereo vision technology is based on the principle of human eye parallax. Under natural light sources, two or more cameras capture images of the same object from different angles, and then perform triangulation and other calculations to obtain the relationship between the electronic device 100 and the object.
  • the distance information between the photographed objects is the depth information.
  • the electronic device 100 may include one or more camera modules 193 .
  • the electronic device 100 may include a front camera module 193 and a rear camera module 193 .
  • the front camera module 193 can usually be used to collect the color image data and depth data of the photographer facing the display screen 194, and the rear camera module can be used to collect the shooting objects (such as people, scenery, etc.) facing the photographer. etc.) color image data and depth data.
  • the CPU, GPU, or NPU in the processor 110 can process the color image data and depth data collected by the camera module 193 .
  • the NPU can identify the color image data collected by the camera module 193 (specifically, the color camera module) through the neural network algorithm based on the bone point recognition technology, such as the convolutional neural network algorithm (CNN). to determine the skeletal points of the person being photographed.
  • the CPU or GPU can also run a neural network algorithm to determine the skeletal points of the person being photographed based on the color image data.
  • the CPU or GPU or NPU can also be used to confirm the figure (such as body) of the person being photographed based on the depth data collected by the camera module 193 (which may be a 3D sensing module) and the identified bone points. Proportions, fatness and thinness of body parts between bone points), and can further determine the body beautification parameters for the photographed character, and finally process the photographed image of the photographed character according to the body beautification parameters, so that the photographed image
  • the body shape of the person being photographed is beautified. Subsequent embodiments will describe in detail how to perform body beautification processing on the image of the person being photographed based on the color image data and depth data collected by the camera module 193, so we will not go into details here.
  • Digital signal processors are used to process digital signals and can also process other digital signals. For example, when the electronic device 100 selects a frequency point, the digital signal processor is used to perform Fourier transform on the frequency point energy.
  • Video codecs are used to compress or decompress digital video.
  • Electronic device 100 may support one or more video codecs. In this way, the electronic device 100 can play or record videos in multiple encoding formats, such as moving picture experts group (MPEG) 1, MPEG2, MPEG3, MPEG4, etc.
  • MPEG moving picture experts group
  • MPEG2 MPEG2, MPEG3, MPEG4, etc.
  • NPU is a neural network (NN) computing processor.
  • NN neural network
  • Intelligent cognitive applications of the electronic device 100 can be implemented through the NPU, such as image recognition, face recognition, speech recognition, text understanding, etc.
  • the external memory interface 120 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the electronic device 100.
  • the external memory card communicates with the processor 110 through the external memory interface 120 to implement the data storage function. Such as saving music, videos, etc. files in external memory card. Or transfer music, video and other files from electronic devices to external memory cards.
  • Internal memory 121 may be used to store computer executable program code, which includes instructions.
  • the internal memory 121 may include a program storage area and a data storage area. Among them, the stored program area can store operations Operating system, at least one application required for the function (such as sound playback function, image playback function, etc.), etc.
  • the storage data area may store data created during use of the electronic device 100 (such as audio data, phone book, etc.).
  • the internal memory 121 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, universal flash storage (UFS), etc.
  • the processor 110 executes various functional methods or data processing of the electronic device 100 by executing instructions stored in the internal memory 121 and/or instructions stored in a memory provided in the processor.
  • the electronic device 100 can implement audio functions through the audio module 170, the speaker 170A, the receiver 170B, the microphone 170C, the headphone interface 170D, and the application processor. Such as music playback, recording, etc.
  • the audio module 170 is used to convert digital audio information into analog audio signal output, and is also used to convert analog audio input into digital audio signals. Audio module 170 may also be used to encode and decode audio signals. In some embodiments, the audio module 170 may be provided in the processor 110 , or some functional modules of the audio module 170 may be provided in the processor 110 .
  • Speaker 170A also called “speaker” is used to convert audio electrical signals into sound signals.
  • the electronic device 100 can listen to music through the speaker 170A, or output audio signals for hands-free calls.
  • Receiver 170B also called “earpiece” is used to convert audio electrical signals into sound signals.
  • the electronic device 100 answers a call or a voice message, the voice can be heard by bringing the receiver 170B close to the human ear.
  • Microphone 170C also called “microphone” or “microphone” is used to convert sound signals into electrical signals. When making a call or sending a voice message, the user can speak close to the microphone 170C with the human mouth and input the sound signal to the microphone 170C.
  • the electronic device 100 may be provided with at least one microphone 170C. In other embodiments, the electronic device 100 may be provided with two microphones 170C, which in addition to collecting sound signals, may also implement a noise reduction function. In other embodiments, the electronic device 100 can also be provided with three, four or more microphones 170C to collect sound signals, reduce noise, identify sound sources, and implement directional recording functions, etc.
  • the headphone interface 170D is used to connect wired headphones.
  • the headphone interface 170D may be a USB interface 130, or may be a 3.5mm open mobile terminal platform (OMTP) standard interface, or a Cellular Telecommunications Industry Association of the USA (CTIA) standard interface.
  • OMTP open mobile terminal platform
  • CTIA Cellular Telecommunications Industry Association of the USA
  • the pressure sensor 180A is used to sense pressure signals and can convert the pressure signals into electrical signals.
  • pressure sensor 180A may be disposed on display screen 194 .
  • pressure sensors 180A there are many types of pressure sensors 180A, such as resistive pressure sensors, inductive pressure sensors, capacitive pressure sensors, etc.
  • a capacitive pressure sensor may include at least two parallel plates of conductive material.
  • the electronic device 100 determines the intensity of the pressure based on the change in capacitance.
  • the electronic device 100 detects the strength of the touch operation according to the pressure sensor 180A.
  • the electronic device 100 may also calculate the touched position based on the detection signal of the pressure sensor 180A.
  • touch operations acting on the same touch location but with different touch operation intensities may correspond to different operation instructions. For example: when a touch operation with a touch operation intensity smaller than the first pressure threshold is applied to the short message application icon, an instruction to view the short message is executed. When a touch operation with a touch operation intensity greater than or equal to the first pressure threshold is applied to the short message application icon, an instruction to create a new short message is executed.
  • the gyro sensor 180B may be used to determine the motion posture of the electronic device 100 .
  • the angular velocity of electronic device 100 about three axes may be determined by gyro sensor 180B.
  • the gyro sensor 180B can be used for image stabilization. For example, when the shutter is pressed, the gyro sensor 180B detects the angle at which the electronic device 100 shakes, calculates the distance that the lens module needs to compensate based on the angle, and controls the reverse movement of the lens to offset the shake of the electronic device 100 to achieve anti-shake.
  • the gyro sensor 180B can also be used for navigation and somatosensory game scenes.
  • Air pressure sensor 180C is used to measure air pressure.
  • the electronic device 100 calculates the altitude based on the air pressure value measured by the air pressure sensor 180C to assist positioning and navigation.
  • Magnetic sensor 180D includes a Hall sensor.
  • the electronic device 100 may utilize the magnetic sensor 180D to detect opening and closing of the flip holster.
  • the magnetic sensor 180D can be used to detect the folding or unfolding of the electronic device, or the folding angle.
  • the electronic device 100 may detect the opening and closing of the flip according to the magnetic sensor 180D. Then, based on the detected opening and closing status of the leather case or the opening and closing status of the flip cover, features such as automatic unlocking of the flip cover are set.
  • the acceleration sensor 180E can detect the acceleration of the electronic device 100 in various directions (generally three axes). When the electronic device 100 is stationary, the magnitude and direction of gravity can be detected. It can also be used to identify the posture of electronic devices and be used in horizontal and vertical screen switching, pedometer and other applications.
  • Distance sensor 180F for measuring distance.
  • Electronic device 100 can measure distance via infrared or laser. In some embodiments, when shooting a scene, the electronic device 100 may utilize the distance sensor 180F to measure distance to achieve fast focusing.
  • Proximity light sensor 180G may include, for example, a light emitting diode (LED) and a light detector, such as a photodiode.
  • the light emitting diode may be an infrared light emitting diode.
  • the electronic device 100 emits infrared light outwardly through the light emitting diode.
  • Electronic device 100 uses photodiodes to detect infrared reflected light from nearby objects. When the intensity of the detected reflected light is greater than the threshold, it may be determined that there is an object near the electronic device 100 . When the intensity of the detected reflected light is less than the threshold, the electronic device 100 may determine that there is no object near the electronic device 100 .
  • the electronic device 100 can use the proximity light sensor 180G to detect when the user holds the electronic device 100 close to the ear for talking, so as to automatically turn off the screen to save power.
  • the proximity light sensor 180G can also be used in holster mode, and pocket mode automatically unlocks and locks the screen.
  • the ambient light sensor 180L can be used to sense ambient light brightness.
  • the electronic device 100 can adaptively adjust the brightness of the display screen 194 according to the perceived ambient light brightness.
  • the ambient light sensor 180L can also be used to automatically adjust the white balance when taking pictures.
  • the ambient light sensor 180L can also cooperate with the proximity light sensor 180G to detect whether the electronic device 100 is blocked, for example, the electronic device is in a pocket. When it is detected that the electronic device is covered or in a pocket, some functions (such as touch functions) can be disabled to prevent misoperation.
  • Fingerprint sensor 180H is used to collect fingerprints.
  • the electronic device 100 can use the collected fingerprint characteristics to achieve fingerprint unlocking, access to application locks, fingerprint photography, fingerprint answering of incoming calls, etc.
  • Temperature sensor 180J is used to detect temperature.
  • the electronic device 100 utilizes the temperature detected by the temperature sensor 180J to execute the temperature processing strategy. For example, when the temperature detected by the temperature sensor 180J exceeds a threshold, the electronic device 100 performs reducing the performance of the processor so as to reduce the power consumption of the electronic device to implement thermal protection.
  • electronic device 100 heats battery 142 when the temperature detected by temperature sensor 180J is below another threshold. In some other embodiments, electronic device 100 may boost the output voltage of battery 142 when the temperature is below yet another threshold.
  • Touch sensor 180K also known as "touch device”.
  • the touch sensor 180K can be disposed on the display screen 194.
  • the touch sensor 180K and the display screen 194 form a touch screen, which is also called a "touch screen”.
  • Touch sensor for 180K Used to detect touches on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the touch event type.
  • Visual output related to the touch operation may be provided through display screen 194 .
  • the touch sensor 180K may also be disposed on the surface of the electronic device 100 at a location different from that of the display screen 194 .
  • Bone conduction sensor 180M can acquire vibration signals.
  • the bone conduction sensor 180M can acquire the vibration signal of the vibrating bone mass of the human body's vocal part.
  • the bone conduction sensor 180M can also contact the human body's pulse and receive blood pressure beating signals.
  • the bone conduction sensor 180M can also be provided in an earphone and combined into a bone conduction earphone.
  • the audio module 170 can analyze the voice signal based on the vibration signal of the vocal vibrating bone obtained by the bone conduction sensor 180M to implement the voice function.
  • the application processor can analyze the heart rate information based on the blood pressure beating signal obtained by the bone conduction sensor 180M to implement the heart rate detection function.
  • the buttons 190 may include a power button, a volume button, etc.
  • Key 190 may be a mechanical key. It can also be a touch button.
  • the electronic device 100 may receive key inputs and generate key signal inputs related to user settings and function control of the electronic device 100 .
  • the motor 191 can generate vibration prompts.
  • the motor 191 can be used for vibration prompts for incoming calls and can also be used for touch vibration feedback.
  • touch operations for different applications can correspond to different vibration feedback effects.
  • the motor 191 can also respond to different vibration feedback effects for touch operations in different areas of the display screen 194 .
  • Different application scenarios such as time reminders, receiving information, alarm clocks, games, etc.
  • the touch vibration feedback effect can also be customized.
  • the indicator 192 may be an indicator light, which may be used to indicate charging status, power changes, or may be used to indicate messages, missed calls, notifications, etc.
  • the SIM card interface 195 is used to connect a SIM card.
  • the SIM card can be connected to or separated from the electronic device 100 by inserting it into the SIM card interface 195 or pulling it out from the SIM card interface 195 .
  • the electronic device 100 may support one or more SIM card interfaces.
  • SIM card interface 195 can support Nano SIM card, Micro SIM card, SIM card, etc. Multiple cards can be inserted into the same SIM card interface 195 at the same time. Multiple cards can be of the same type or different types.
  • the SIM card interface 195 is also compatible with different types of SIM cards.
  • the SIM card interface 195 is also compatible with external memory cards.
  • the electronic device 100 interacts with the network through the SIM card to implement functions such as calls and data communications.
  • the electronic device 100 uses an eSIM, that is, an embedded SIM card.
  • the eSIM card can be embedded in the electronic device 100 and cannot be separated from the electronic device 100 .
  • the software system of the electronic device 100 may adopt a layered architecture, an event-driven architecture, a microkernel architecture, a microservice architecture, or a cloud architecture.
  • the embodiment of this application takes the Android system with a layered architecture as an example to illustrate the software structure of the electronic device 100 .
  • FIG. 4 schematically shows a software structure block diagram of an electronic device 100 provided by an embodiment of the present application.
  • the layered architecture divides the software into several layers, and each layer has clear roles and division of labor.
  • the layers communicate through software interfaces.
  • the Android system is divided into five layers, from top to bottom: application layer, application framework layer, Android runtime (Android runtime, ART) and native C/C++ library, hardware abstraction layer (Hardware Abstract Layer, HAL) and the kernel layer.
  • the application layer can include a series of application packages.
  • the application package can include camera, gallery, calendar, call, map, navigation, WLAN, Bluetooth, music, video, short message and other applications.
  • the application framework layer provides an application programming interface (API) and programming framework for applications in the application layer.
  • API application programming interface
  • the application framework layer includes some predefined functions.
  • the application framework layer can include window manager, content provider, view system, resource manager, notification manager, activity manager, input manager, etc.
  • the window manager provides window management service (Window Manager Service, WMS).
  • WMS can be used for window management, window animation management, surface management, and as a transfer station for the input system.
  • Content providers are used to store and retrieve data and make this data accessible to applications.
  • This data can include videos, images, audio, calls made and received, browsing history and bookmarks, phone books, etc.
  • the view system includes visual controls, such as controls that display text, controls that display pictures, etc.
  • a view system can be used to build applications.
  • the display interface can be composed of one or more views.
  • a display interface including a text message notification icon may include a view for displaying text and a view for displaying pictures.
  • the resource manager provides various resources to applications, such as localized strings, icons, pictures, layout files, video files, etc.
  • the notification manager allows applications to display notification information in the status bar, which can be used to convey notification-type messages and can automatically disappear after a short stay without user interaction.
  • the notification manager is used to notify download completion, message reminders, etc.
  • the notification manager can also be notifications that appear in the status bar at the top of the system in the form of charts or scroll bar text, such as notifications for applications running in the background, or notifications that appear on the screen in the form of conversation windows. For example, text information is prompted in the status bar, a beep sounds, the electronic device vibrates, the indicator light flashes, etc.
  • the input manager can provide input management service (Input Manager Service, IMS).
  • IMS can be used to manage system input, such as touch screen input, key input, sensor input, etc.
  • IMS takes out events from the input device node and distributes the events to appropriate windows through interaction with WMS.
  • the Android runtime includes core libraries and Android runtime.
  • the Android runtime is responsible for converting source code into machine code.
  • the Android runtime mainly includes the use of ahead of time (ahead or time, AOT) compilation technology and just in time (just in time, JIT) compilation technology.
  • the core library is mainly used to provide basic Java class library functions, such as basic data structures, mathematics, IO, tools, databases, networks and other libraries.
  • the core library provides APIs for users to develop Android applications. .
  • Native C/C++ libraries can include multiple function modules. For example: surface manager (surface manager), media framework (Media Framework), libc, OpenGL ES, SQLite, Webkit, etc.
  • the surface manager is used to manage the display subsystem and provides the integration of 2D and 3D layers for multiple applications.
  • the media framework supports playback and recording of a variety of commonly used audio and video formats, as well as static image files, etc.
  • the media library can support a variety of audio and video encoding formats, such as: MPEG4, H.264, MP3, AAC, AMR, JPG, PNG, etc.
  • OpenGL ES provides the drawing and manipulation of 2D graphics and 3D graphics in applications. SQLite provides a lightweight relational database for electronic device 100 applications.
  • the hardware abstraction layer runs in user space, encapsulates the kernel layer driver, and provides a calling interface to the upper layer.
  • the kernel layer is the layer between hardware and software.
  • the kernel layer contains at least display driver, camera driver, audio driver moving, sensor driven.
  • the following exemplifies the workflow of the software and hardware of the electronic device 100 in conjunction with capturing the photographing scene.
  • the corresponding hardware interrupt is sent to the kernel layer.
  • the kernel layer processes touch operations into raw input events (including touch coordinates, timestamps of touch operations, and other information). Raw input events are stored in the kernel layer.
  • the application framework layer obtains the original input event from the kernel layer and identifies the control corresponding to the input event. Taking the touch operation as a touch click operation and the control corresponding to the click operation as a camera application icon control as an example, the camera application calls the interface of the application framework layer to start the camera application, and then starts the camera driver by calling the kernel layer. Camera 193 captures still images or video.
  • FIG. 5 exemplarily shows a partial structural diagram of a first electronic device provided by an embodiment of the present application.
  • the first electronic device may include a first processor 51 , a second processor 52 , a sensor module 53 module and/or a Bluetooth block 54 .
  • the partial structure may mean that the figure shows only a part of the structure of the first electronic device but not the entire structure.
  • the first processor 51 can be, for example, an application processor (AP), CPU, etc.
  • the second processor 52 can be, for example, a micro-controller unit (MCU), an intelligent sensor Hub (SensorHub), etc.
  • the first processor 51 may have stronger computing power, higher power consumption, larger volume, and support more functions than the second processor 52 .
  • the sensor module 53 may refer to the sensor module 180 described in the embodiment of FIG. 3 , and may include, for example, an acceleration sensor 180E, a gyroscope sensor 180C, and the like. Sensor module 53 may include more or fewer sensors than sensor module 180 described in the FIG. 3 embodiment.
  • the Bluetooth module 54 may be part of the wireless communication module 160 in the embodiment of FIG. 3 for providing Bluetooth communication capabilities.
  • the Bluetooth described in the embodiments of the present application may include various forms of Bluetooth such as Classic Bluetooth (Bluetooth Classic), High Speed Bluetooth (Bluetooth High Speed), and/or Bluetooth Low Energy (BLE).
  • BLE can be preferably used, that is, the specific implementation form of the Bluetooth module 54 can be a BLE module. Since BLE usually has lower power consumption than other forms of Bluetooth, electronics can be saved as much as possible. Therefore, using the BLE module to implement the method provided by this application can more prominently obtain the beneficial effect of reducing the power consumption of electronic equipment.
  • Bluetooth Bluetooth
  • the first processor 51 and the second processor 52 may be two independent chips, and the two are electrically connected through an interface (such as a pin) on the chip.
  • the first processor 51 is electrically connected to the sensor module 53 and/or the Bluetooth module 54
  • the second processor 52 is also electrically connected to the sensor module 53 and/or the Bluetooth module 54 .
  • the second processor 52 can be used to control the sensor module 53 and/or the Bluetooth module 54 .
  • the sensor module 53 is controlled to report the frequency of sensor data collected by the sensor module 53 to the first processor 51;
  • the Bluetooth module 54 is controlled to report the received message to the first processor 51, or the Bluetooth module 54 is controlled to report the received message to the first processor 51 according to the preset value.
  • the rule reports a part of the received messages to the first processor 51 .
  • the second processor 52 can be used to control the sensor module 53 and/or Or the filtering conditions of the Bluetooth module 54.
  • This filter condition can be used to filter out preset data.
  • the preset data may be a Bluetooth message that conforms to a specific format, or a Bluetooth message in which one or some fields have a specific value.
  • the second processor 52 determines how to control the sensor module 53 and/or the Bluetooth module 54 according to instructions issued by the first processor 51 . That is to say, the first processor 51 can instruct the second processor 52 to issue a certain preset filtering condition to the sensor module 53 and/or the Bluetooth module 54, and then the sensor module 53 and/or the Bluetooth module 54 can use the filtering condition according to the filtering condition. , only the part of the sensor data and/or Bluetooth messages that it obtains that meets the filtering conditions is reported, and the sensor data and/or Bluetooth messages that it obtains that do not meet the filtering conditions are directly discarded.
  • the sensor module 53 and/or the Bluetooth module 54 responds to acquiring sensor data and/or Bluetooth messages that meet the filtering conditions, and temporarily stores the sensor data and/or Bluetooth messages that meet the filtering conditions. , and sends a preset signal to the second processor 52; in response to the preset signal, the second processor 52 wakes up the first processor 51; after the first processor 51 is awakened, the sensor module 53 and/or the Bluetooth module 54 The sensor data and/or Bluetooth packets that meet the filtering conditions are reported to the first processor 51 .
  • the sensor module 53 and/or the Bluetooth module 54 in response to acquiring sensor data and/or Bluetooth messages that meet the filtering conditions, report the sensor data and/or Bluetooth messages that meet the filtering conditions to the third party.
  • the second processor 52 sends a preset signal to the second processor 52; in response to the preset signal, the second processor 52 wakes up the first processor 51 and sends the sensor data and/or Bluetooth messages that meet the filtering conditions. It is further reported to the first processor 51.
  • the first processor 51 when the screen of the first electronic device is on or working, the first processor 51 is in a powered-on working state, and the sensor module 53 and/or the Bluetooth module 54 transmit data through the path with the first processor 51 Reported to the first processor 51; at this time, the second processor 52 can usually power off or sleep, and of course, does not need to power off or sleep.
  • the second processor 52 when the first electronic device is in a screen-off or sleep state (or after entering the screen-off or sleep state for a period of time), the second processor 52 is in the power-on working state, and the sensor module 53 and/or the Bluetooth module 54 The data is reported to the second processor 52 through the path between the first processor 51 and the second processor 52; at this time, the first processor 51 can usually be powered off or put into sleep mode, and of course, the first processor 51 may not be powered down or put into sleep mode. In this implementation, the first processor 51 and the second processor 52 can take over the sensor module 53 and/or respectively in a manner similar to a dip switch when the electronic device is in different working states. Or Bluetooth module 54.
  • the second processor 52 is responsible for managing (or controlling) the sensor module 53 and/or the Bluetooth module 54; when the electronic device is in the second working state, the first processor 51 is responsible for Manage (or control) the sensor module 52 and/or the Bluetooth module 54.
  • the second processor 52 Since the second processor 52 usually consumes less power than the first processor 51, when the second processor 52 takes over the sensor module 53 and/or the Bluetooth module 54, the first processor 51 can be powered off or put into sleep mode. , the second processor 52 with lower power consumption processes and responds to the data reported by the sensor module 53 and/or the Bluetooth module 54. This achieves the technical effect of saving power consumption, and enables the first electronic device to still have the ability to process and respond to data reported by the sensor module 54 and/or the Bluetooth module 54 when the first processor 51 is powered off or in sleep state.
  • the second processor 52 can also wake up the first processor when receiving preset data. 51, so that the first processor 51 returns to the power-on working state to respond to the preset data. Therefore, the first electronic device can respond to the preset data and perform the preset function in a timely manner.
  • the above-mentioned preset data may be, for example, a Bluetooth message that conforms to a specific format, or a Bluetooth message in which one or some fields have a specific value.
  • the first electronic device is preconfigured Set to perform a preset function in response to preset data.
  • the preset function must be completed with the participation of the first processor 51 . Therefore, when the first electronic device does not receive the preset data, the first processor 51 powers off or goes to sleep to save power consumption, and the second processor 52 determines whether the preset data is received; when the second processor 52 determines When receiving the preset data, the first processor 51 is awakened to respond to the preset data to execute the preset function. In this way, the first electronic device can respond when necessary, reduce power consumption as much as possible when not needed, and maintain a listening state, so that it can be woken up at any time.
  • the second processor 52 can operate with extremely low power consumption, so the power consumption of the first electronic device can be significantly reduced.
  • the first processor 51 and the second processor 52 may be two independent chips, electrically connected between them; the second processor 52 is connected to the sensor module 53 and/or Bluetooth. There may be no direct electrical connection between the first processor 51 and the sensor module 53 and/or the Bluetooth module 54 .
  • the first processor 51 and the second processor 52 are both powered on and the sensor module 53 And/or the Bluetooth module 54 reports the data to the second processor 52 through the path with the second processor 52; the second processor 52 may process the data and report it to the first processor 51, or may not process the data. Instead, the data is transparently transmitted to the first processor 51. Of course, the second processor 52 may not report data to the first processor 51.
  • the first processor 51 when the screen of the first electronic device is off or in sleep state, the first processor 51 is powered off or in sleep state, and the second processor is still in the powered-on working state, and the sensor module 53 and/or the Bluetooth module 54 transfer the data It is reported to the second processor 52 through the channel with the second processor 52, and the second processor 52 processes and responds.
  • the first processor 51 obtains the data reported by the sensor module 53 and/or the Bluetooth module 54 through the second processor 52. If the first processor 51 is powered off or sleeps, the second processor 52 responsible for processing and responding to data reported by the sensor module 53 and/or the Bluetooth module 54.
  • this connection relationship can also have the beneficial effects of the connection relationship shown in (a) of Figure 5, which will not be described again here.
  • the first processor 51 and the second processor 52 can be integrated in the same chip and are two processing units in the same chip. This structure can be called a built-in structure.
  • the chip is electrically connected to the sensor module 53 and/or the Bluetooth module 54 .
  • the first processor 51 and the second processor 52 can both be in the powered-on working state, and the sensor module 53 and/or the Bluetooth module 54 reports the data to the chip through the channel with the chip, and is processed by the first processor 51 and/or the second processor 52 .
  • the first processor 51 when the screen of the first electronic device is off or in hibernation, the first processor 51 is powered off or in hibernation, and the second processor 52 is still in the power-on working state, and the sensor module 53 and/or the Bluetooth module 54 will The data is reported to the chip through the channel with the chip and processed by the second processor 52 .
  • the chip is fully powered on when the screen of the electronic device 100 is on or working, and only part of the processing unit is powered on when the screen of the first electronic device is turned off or in sleep mode to process and respond to the sensor module 54 and/or data reported by the Bluetooth module 54.
  • this connection relationship can also have the beneficial effects of the connection relationship shown in (a) of Figure 5, which will not be described again here.
  • Figure 5 only shows several examples of possible connection relationships.
  • the embodiments of the present application do not limit the specific form of the connection relationships.
  • Those skilled in the art can apply any method suitable for the data transmission provided by the embodiments of the present application.
  • the connection relationship of the solution does not exceed the scope covered by the embodiments of this application.
  • the structure of the first electronic device shown in Figure 5 can enable the first electronic device to only perform part of the processing in certain scenarios (for example, in the screen off or sleep state, in the power saving mode, when the battery is low, etc.) appliance electrician operation, the other part of the processor is powered off or in hibernation to achieve the technical effect of saving power consumption.
  • the part of the processor that is still in the power-on working state can wake up the part of the power-off or hibernating processor after receiving the preset data, so that they can resume the power-on working state to respond to the preset data and execute Preset functions.
  • the mobile phone applies a structure as shown in the embodiment of FIG. 5 (that is, a structure including a first processor 51 and a second processor 52 ):
  • the driving recorder is installed in the vehicle, and the mobile phone carried by the user when driving is also in the vehicle.
  • the two have the physical conditions for short-range wireless communication (closer distance). Since the user is driving and cannot interact with the mobile phone frequently, the mobile phone is usually in a screen-off or dormant state. When the phone is in the off-screen or hibernation state, for the purpose of power consumption control, the phone usually disconnects from other electronic devices, such as disconnecting Bluetooth and Wi-Fi connections.
  • the first processor 51 in the mobile phone powers off or sleeps
  • the second processor 52 is responsible for managing the sensor module 53 and/or the Bluetooth module 54 .
  • the second processor 52 can send preset filtering conditions to the Bluetooth module 54.
  • the Bluetooth module 54 will only respond to Bluetooth messages that meet the preset filtering conditions (such as Beacon frames of a certain format). Bluetooth packets with filter conditions are directly discarded.
  • the second processor 52 may deliver preset filtering conditions to the Bluetooth module 54 according to instructions from the first processor 51 .
  • the second processor 52 can obtain the sensor data collected by the sensor module 53, and then determine whether the mobile phone is currently in a driving state (or, in other words, determine whether the mobile phone is currently on a moving vehicle) based on the sensor data, and then determine whether the mobile phone is currently in a driving state. When in the driving state, the second processor 52 sends the preset filtering conditions to the Bluetooth module 54 .
  • the driving recorder can determine that a key event has occurred based on the data collected by the sensor module in the driving recorder, and start broadcasting the preset Beacon frame (such as the first Beacon frame below) ).
  • the preset Beacon frame may be a Beacon frame with a specific format, or it may be a Beacon frame with a specific value in one or more fields.
  • the preset Beacon frame is a Bluetooth message that meets the filtering conditions of the Bluetooth module 54 in the mobile phone.
  • the Bluetooth module 54 in the mobile phone in the off-screen or dormant state responds to receiving the preset Beacon frame.
  • the Bluetooth module 54 Since the preset Beacon frame meets the filtering conditions, the Bluetooth module 54 temporarily stores the preset Beacon frame. Preset the Beacon frame and send the preset signal to the second processor 52 . In response to the preset signal, the second processor 52 wakes up the first processor 51 (ie, restores the first processor 51 to a power-on working state). Therefore, the Bluetooth module 54 reports the preset Beacon frame to the first processor 51 . In another implementation, the Bluetooth module 54 in the mobile phone in the off-screen or dormant state responds to receiving the preset Beacon frame. Since the preset Beacon frame meets the filtering conditions, the preset Beacon frame is reported to The second processor 52 sends a preset signal to the second processor 52 . In response to the preset signal, the second processor 52 wakes up the first processor 51 and further reports the preset Beacon frame to the first processor 51 .
  • the first processor 51 is in a power-on working state. Then the process of the second processor 52 waking up the first processor can be omitted at this time. At this time, the first processor 51 can directly obtain the preset Beacon frame reported by the Bluetooth module 54, or directly obtain the preset Beacon frame transparently transmitted by the second processor 52.
  • the first processor 51 receives the preset Beacon frame and can respond according to the preset response strategy. For example, if the preset Beacon frame indicates that the key event is sudden braking or yaw, then the first processor 51 records that sudden braking or yaw occurs; if the preset Beacon frame indicates that the key event is a collision, then the first processor 51 records A collision occurred, and, The first processor 51 can further trigger the mobile phone to establish a communication connection (such as a Wi-Fi connection) with the driving recorder, and the mobile phone receives the media content corresponding to the key event of the collision transmitted by the driving recorder (such as the occurrence of the collision recorded by the driving recorder). audio and video files for a period of time before and after the time).
  • a communication connection such as a Wi-Fi connection
  • the driving recorder can automatically establish a connection with the mobile phone and send key data to the mobile phone, avoiding key data being overwritten and lost.
  • the phone can pop up a prompt message based on the key events recorded, for example: "A total of 3 yaws occurred during this trip. Please stay focused during driving to avoid accidents.” "; Another example: "A collision occurred during this driving process.
  • the collision-related video has been saved locally on the mobile phone. Would you like to synchronize it to the cloud?" If the user agrees, the mobile phone can further send the collision-related video to the server. Make a backup.
  • the mobile phone applies a structure as shown in the embodiment of Figure 5 (that is, a structure including a first processor 51 and a second processor 52) :
  • the smart toothbrush can record brushing behavior data such as brushing duration, time, and mode. Since smart toothbrushes are usually Bluetooth devices and do not have Wi-Fi capabilities, they usually cannot be connected to a home gateway (such as a router at home) and cannot upload recorded toothbrushing behavior data to the server at any time.
  • a home gateway such as a router at home
  • Smart toothbrushes can broadcast preset Beacon frames every time the user finishes brushing their teeth.
  • the first processor 51 and/or the second processor 52 in the mobile phone in this example can also perform a process similar to that in the above driving recorder example, which will not be described again here. As a result, the mobile phone obtains the toothbrushing behavior data.
  • the mobile phone can pop up a prompt message, for example: "The brushing time this time is 2 minutes, which is lower than the recommended brushing time (3 minutes). It is recommended to extend the brushing time to ensure the brushing effect.”
  • the mobile phone can pop up a prompt message, for example: "It is recorded that a total of brushing your teeth was recorded once today, which is lower than the recommended number of brushings (2 times). Remember to brush your teeth before going to bed.”
  • the mobile phone can automatically obtain the brushing behavior data recorded by the smart toothbrush and promptly prompt the user to optimize the brushing behavior and ensure oral health.
  • the mobile phone can automatically obtain the data recorded by such electronic devices.
  • the mobile phone can further remind users to optimize their living habits based on the acquired data, so that such electronic devices can fully exert their functions.
  • Figure 6 exemplarily shows a device interaction diagram of a data transmission method provided by an embodiment of the present application.
  • This method can be applied to a system including at least a first electronic device 61 and a second electronic device 62 , and optionally, the system can also include a server 63 .
  • This method can be used to transmit the first data in the second electronic device 62 to the first electronic device 61 , and optionally, the first electronic device 61 can also transmit the first data to the server 63 .
  • the data transmission method may specifically include steps S601 to S607. It should be understood that not every step in steps S601 to S607 is a required step, and those skilled in the art may omit or add certain steps according to actual conditions. For example, any one or more of steps S601, S602, S605, S606, and S607 may not be executed.
  • Step S601 The first electronic device 61 registers the second electronic device 62 as an agent.
  • the first user account is logged in the first electronic device 61 .
  • the first electronic device 61 registering the second electronic device 62 as an agent can be understood as: with the assistance of the first electronic device 61 , a binding relationship is established between the second electronic device 62 and the first user account.
  • the binding relationship is It may be used to indicate that the second electronic device 62 is a device belonging to the first user account, or is a device associated with the first user account.
  • the first electronic device 61 can record the binding relationship.
  • the server 63 and/or the second electronic device 62 can also record the binding relationship.
  • the first electronic device 61 and the second electronic device 62 may send each other's identifications to each other. Therefore, the first electronic device 61 can obtain the identification of the second electronic device 62, and the second electronic device 62 can also obtain the identification of the first electronic device 61.
  • the identification may be a device identification, for example, may include any one or more of a media access control (media access control, MAC) address, a serial number (SN), and a product identification code (product identification, prodID).
  • the identification may be unique, that is to say, the identification may be a unique identification and may be used to uniquely identify an electronic device.
  • the first electronic device 61 may send the identification of the first user account to the second electronic device 62 .
  • the identifier of the first user account may be the hash value of the first user account.
  • the hash value of the first user account has a one-to-one correspondence with the first user account. That is to say, it can be based on The hash value of the first user account uniquely identifies the first user account.
  • the first electronic device 61 can also send the first user account itself to the second electronic device 62 .
  • the second electronic device 62 may use the identification of the first user account or the first user account in subsequent step S603. For example, the identifier of the first user account or the first user account is carried in the first Beacon frame. Therefore, in step S604, the first electronic device 61 may determine that it needs to respond to the first Beacon frame based on the identification of the first user account or the first user account carried in the first Beacon frame.
  • step S601 may be automatically executed when a connection is first established between the first electronic device 61 and the second electronic device 62 . If the connection between the first electronic device 61 and the second electronic device 62 is not established for the first time, step S601 may not be executed.
  • the user may trigger the execution of step S601 by operating the first electronic device 61 .
  • FIG. 7 exemplarily shows a schematic user interface diagram of a first electronic device 61 provided by an embodiment of the present application.
  • it may be a schematic diagram of the user interface of the first electronic device 61 when the first electronic device 61 and the second electronic device 62 establish a connection for the first time.
  • FIG. 7 takes the first electronic device 61 as a mobile phone and the second electronic device 62 as a driving recorder as an example.
  • a speaker control 71 is displayed in the "My Device" interface.
  • the speaker corresponding to the speaker control 71 has been established with the user account (first user account) logged in on the mobile phone. Binding relationship.
  • the user can click the "+” control 71, and the mobile phone pops up an option list in response to the click operation.
  • the option list Can include controls such as "Add”, “Delete”, “Manage”, etc. Then, the user can click the "Add” control 73 in the option list, and in response to the click operation, the mobile phone starts a device scanning process to discover visible devices around it.
  • the mobile phone can display the user interface shown in (b) in Figure 7 and pop up the card 74. It can be understood that in some implementations, the mobile phone may actively discover the driving recorder and automatically pop up the card 74 without the user's triggering (for example, without the user clicking the "Add” control 73 ).
  • the card 74 may include prompt information "A driving recorder was found, do you want to add it to my device?".
  • the user can click the "Yes" control 75, and in response to the click operation, the mobile phone establishes a binding relationship between the driving recorder and the first user account, and adds the driving recorder to "My Devices".
  • the mobile phone can display the user interface as shown in (c) in Figure 7, and the driving recorder control 76 has been successfully added to "My Devices".
  • the mobile phone can also communicate with the server 63, so that the server also records the binding relationship between the driving recorder and the first user account.
  • the mobile phone can automatically execute step S601 to complete the agent registration of the driving recorder.
  • agent registration process may include one or more sub-steps.
  • the embodiment of the present application does not limit the specific implementation of step S601.
  • Step S602 The first electronic device 61 configures Beacon frame response conditions.
  • Step S603 The second electronic device 62 sends (for example, broadcast, multicast) a first Beacon frame; correspondingly, the first electronic device 61 receives the first Beacon frame sent by the second electronic device 62.
  • Step S604 The first electronic device 62 determines to respond to the first Beacon frame according to the preconfigured Beacon frame response condition.
  • the Beacon frame response condition configured in step S602 can be understood as a Beacon frame filtering mechanism, so that the first electronic device 61 determines whether to respond to the numerous Beacon frames it receives based on the Beacon frame response condition.
  • the first electronic device 61 may filter the received Beacon frames based on the whitelist mechanism.
  • step S602 may be: the first electronic device 61 adds the identity of the second electronic device 62 to a whitelist that contains the sending end device of the Beacon frame that the first electronic device 61 needs to respond to. logo. Then, when the first electronic device 61 receives a certain Beacon frame, the first electronic device 61 determines whether the Beacon frame carries the identification of the second electronic device 62 . If so, the first electronic device 61 determines to respond to the Beacon frame; otherwise, the first electronic device 61 determines not to respond to the Beacon frame.
  • the first electronic device 61 can determine whether the received Beacon frame carries information in the white list (or, in other words, determine whether the information carried in the Beacon frame is included in the white list; or, in other words, determine whether certain information in the Beacon frame is included in the white list). Whether the information indicated by a preset field is recorded in the whitelist), to determine whether it is necessary to respond to the Beacon frame.
  • the identification of the second electronic device 62 may include, for example, any one or more of the MAC address, SN, and prodId of the second electronic device, which is not limited in the embodiments of the present application. As mentioned above, the identification of the second electronic device 62 may be unique.
  • the first electronic device 61 may filter the received Beacon frames based on the format of the Beacon frames.
  • step S602 may be: the first electronic device 61 configures a preset format of a Beacon frame that requires a response. Then, when the first electronic device 61 receives a certain Beacon frame, the first electronic device 61 determines whether the format of the Beacon frame conforms to the preset format; if it does, the first electronic device 61 does respond to the Beacon frame; otherwise, the first electronic device 61 responds to the Beacon frame. An electronic device 61 determines not to respond to the Beacon frame. Therefore, the first electronic device 61 can determine whether it needs to respond to the Beacon frame by determining whether the format of the received Beacon frame conforms to the preset format.
  • the format of the Beacon frame may include the number, type, arrangement order, length, etc. of the fields in the Beacon frame, and may also include whether one or some fields in the frame are preset information.
  • Beacon frames can usually include fields reserved for manufacturers to customize, and manufacturers can customize the uses of these fields and the matching rules for these fields. For example, vendors can use these fields to configure filter conditions. When the values of these fields match the preset values, the first electronic device 61 that receives the Beacon frame determines that the Beacon frame meets the filtering conditions; otherwise, the first electronic device 61 determines that the Beacon frame does not meet the filtering conditions.
  • the first electronic device 61 can also filter the received Beacon frames based on the above-mentioned whitelist mechanism and the above-mentioned Beacon frame format. Then when the first electronic device 61 receives a certain Beacon frame, the first electronic device 61 determines whether the Beacon frame carries information in the whitelist, and determines whether the format of the Beacon frame conforms to the preset format; in both judgments If "Yes", the first electronic device 61 does respond to the Beacon frame; otherwise, the first electronic device 61 does not respond to the Beacon frame. Therefore, the first electronic device 61 can determine whether the received Beacon frame needs to respond to the Beacon frame by determining whether it carries information in the whitelist and whether it conforms to the preset format.
  • the first electronic device 61 can set some preset conditions. When the first electronic device 62 determines that the received Beacon frame meets the preset conditions, the first electronic device 62 determines to respond to the Beacon frame.
  • the above embodiments exemplarily describe several possible implementations of preset conditions in the whitelist and/or Beacon frame format.
  • the preset condition may also include, for example, that the Beacon frame contains the first user account information (such as the first user account, or the identification of the first user account), where the first user account is the first user account. The account logged into the electronic device 61. It should be understood that the embodiments of the present application do not limit the specific form of the preset condition.
  • the first electronic device 61 applies part of the structure shown in the embodiment of FIG. 5 , that is, the first electronic device 61 may include a first processor 51 and a second processor 52 .
  • the first processor 51 can be powered off or put into sleep mode, while the second processor 52 is still powered on or working. It is assumed that the first electronic device 61 filters the Beacon frames received by the first electronic device 61 based on the whitelist mechanism and the format of the Beacon frame.
  • the Bluetooth module 54 determines to respond to the Beacon frame based on the fact that one or some fields (such as manufacturer-defined fields) in the Beacon frame have a specific value. Then, the Bluetooth module temporarily stores the Beacon frame and sends a preset signal to the second processor 52 . In response to the preset signal, the second processor 52 wakes up the first processor 51 so that the first processor 51 returns to the power-on or working state. Therefore, the Bluetooth module reports the temporarily stored Beacon frame to the first processor 51 .
  • the first processor 51 determines whether the identity of the sending device (ie, the identity of the second electronic device 62 ) carried in the Beacon frame is in the white list pre-recorded by the first electronic device 61 . If yes, the first processor 51 determines to respond to the Beacon frame; if not, the first processor 51 determines not to respond to the Beacon frame. At this time, the first processor 51 can re-enter the power-off or sleep state. Therefore, in the screen off or sleep state, the first electronic device 61 can reduce power consumption and still be able to respond to the data reported by the Bluetooth module 54 .
  • the second processor 52 can wake up the first processor 51 when certain conditions are met, that is, restore the first processor 51 to a power-on or working state to perform preset functions.
  • step S602 may be: the second processor 52 sends a preset to the Bluetooth module according to the instruction of the first processor 51. Beacon frame filtering conditions are set; wherein, the second processor 52 and the first processor 51 are included in the first electronic device 61 .
  • the first processor 51 when the first processor 51 is powered on or in a working state, the first processor 51 can send a preset instruction to the second processor 52.
  • the preset instruction is used to instruct to configure the Beacon frame filtering conditions of the Bluetooth module.
  • the second processor 52 delivers the preset Beacon frame filtering conditions to the Bluetooth module; optionally, the preset Beacon frame filtering conditions may be filtering conditions corresponding to the above preset instructions.
  • the Bluetooth module When the Bluetooth module is configured with preset Beacon frame filtering conditions, when the Bluetooth module receives a Beacon frame, it can be judged through logical operations (such as one or more of AND, OR, NOT, and XOR). Whether one or more fields of the Beacon frame match the values indicated in the preset Beacon frame filter conditions.
  • logical operations such as one or more of AND, OR, NOT, and XOR.
  • the Bluetooth module can directly discard the Beacon frame. If it is met, and the first processor 51 is still powered on or working at this time, the Bluetooth module can report the Beacon frame to the first processor 51, and the first processor 51 then performs the preset function in response to the Beacon frame. . If so, and the first processor 51 is in a power-off or sleep state at this time, the Bluetooth module can temporarily store the Beacon frame and send a preset signal to the second processor 52, and the second processor 52 responds to the preset signal.
  • the signal wakes up the first processor 51, causing the first processor 51 to enter the power-on or working state, and then the Bluetooth module can report the Beacon frame to the first processor 51, and the first processor 51 then executes in response to the Beacon frame.
  • the preset function may correspond to the Beacon frame. That is to say, the first electronic device 61 is configured in advance to execute the preset function corresponding to the Beacon frame when acquiring the Beacon frame.
  • the preset function performed by the first processor 51 in response to the Beacon frame may be step S605, step S606, and/or step S607 as described below.
  • the first processor 51 may further determine whether to respond to the Beacon frame.
  • the first processor 51 determines that it is necessary to respond to the Beacon frame, the first processor 51 responds to the Beacon frame and executes the preset function. For example, whether to respond to the Beacon frame is determined according to one or more of the following conditions: whether the identity of the sending device (ie, the identity of the second electronic device 62) carried in the Beacon frame is in a preset white list; Whether the frame carries the first user account (that is, the account logged in to the first electronic device 61); etc.
  • the Bluetooth module can report the Beacon frame to the second processor 52 .
  • the second processor 52 can further determine whether to respond to the Beacon frame. For example, whether to respond to the Beacon frame is determined according to one or more of the following conditions: whether the identity of the sending device (ie, the identity of the second electronic device 62) carried in the Beacon frame is in a preset white list; Whether the frame carries the first user account (that is, the account logged in to the first electronic device 61); etc.
  • the second processor 52 determines that it needs to respond to the Beacon frame, if the first processor 51 is powered off or in a sleep state at this time, the second processor 52 wakes up the first processor 51 and then reports the Beacon frame. to the first processor 51.
  • the second processor 52 determines that it needs to respond to the Beacon frame, if the first processor 51 is in the power-on working state at this time, the second processor 52 does not need to wake up the first processor 51 and can directly process the Beacon frame. Report to the first processor 51.
  • the second processor 52 sends the Bluetooth message Beacon frame to the first processor 51, which may be reporting the original Beacon frame received by the Bluetooth module without processing.
  • the first processor 51 may also process the Beacon frame received by the Bluetooth module (for example, decapsulate, decrypt, and/or extract the information of one or more fields in it) and then report it to the first processor 51. Processor 51. After acquiring the Beacon frame, the first processor 51 executes the preset function corresponding to the Beacon frame.
  • the functions performed by the second processor 52 in the above embodiments may be implemented through the backconnect sensing module 81 in the second processor 52 .
  • the back-connection sensing module 81 may be a software module that includes pre-written computer instructions.
  • the second processor 52 executes these instructions to implement the functions performed by the second processor 52 in the above embodiments.
  • the first processor 51 can communicate with the second processor 52 and send one or more of the Beacon frame filtering conditions, the identification of the second electronic device 62, the first user account and other information to the second processor. 52.
  • the backconnect sensing module 81 in the second processor 52 manages or controls the Bluetooth module based on this information, sends the preset Beacon frame filtering conditions to the Bluetooth module, determines whether to respond to the acquired Beacon frame, and/or Whether to wake up the first processor 51, etc.
  • the second processor 52 may also include a motion state sensing module 82 .
  • the motion state sensing module 82 may be a software module that includes pre-written computer instructions.
  • the second processor 52 can obtain sensor data collected by the sensor module 53, such as acceleration data collected by the acceleration sensor 180E, gyroscope data collected by the gyro sensor 180B, etc. Therefore, the motion state sensing module 82 can determine whether it is currently in a preset motion state based on these sensor data. For example, the current motion state is determined through a motion state awareness algorithm.
  • the motion state perception algorithm can refer to the existing technology and will not be described in detail here.
  • the reconnection sensing module 81 When the motion state sensing module 82 determines that it is in the preset motion state, the reconnection sensing module 81 is disabled.
  • the enabling can be understood as pulling up the processes related to the reconnection sensing module 81 so that the reconnection sensing module can realize the functions performed by the second processor 52 in the above embodiments.
  • the above-mentioned preset motion state may be a driving state. Therefore, the motion state sensing module 82 only disables the backconnection sensing module 81 when it determines that it is currently in a driving state based on the sensor data (or in other words, when the first electronic device 61 is currently on a moving vehicle). That is to say, only when the first electronic device 61 determines that it is currently in a driving state, the first electronic device 61 will execute step S604 and subsequent steps (if any). This can prevent the first processor 51 from waking up due to the driving recorder (second electronic device 62) mistakenly sending Beacon frames.
  • the driving recorder does not send Beacon frames because it detects abnormal events such as collision, sudden braking, and yaw.
  • step S602 may be triggered by a user's operation on the first electronic device 61 .
  • Figure 10 exemplarily shows a schematic diagram of a user interface of a first electronic device 61 provided by an embodiment of the present application.
  • FIG. 10 takes the first electronic device 61 as a mobile phone and the second electronic device 62 as a driving recorder as an example.
  • the driving recorder control 76 is displayed in the "My Device" interface.
  • the user can click the driving recorder control 76, and in response to the click operation, the mobile phone can display the user interface as shown in (b) of Figure 10.
  • the user interface shown in (b) of Figure 10 may include an option to switch the driving recorder function on and off.
  • the functions of the driving recorder can include the "critical event monitoring” function. The user can turn on or off the "key event monitoring” function by clicking the switch control 77.
  • the user interface shown in (b) in Figure 10 can also include introductory information on "key event monitoring", for example: "When key events such as collision, sudden braking, and yaw occur during driving, When an incident occurs, turning on this function allows the mobile phone to automatically obtain and record key events detected by the driving recorder, and obtain key event media content in a timely manner.”
  • the mobile phone may trigger the execution of step S602 in response to the user clicking the switch control 77 so that the switch control 77 changes from the "off" state to the "on” state.
  • step S602 Various possible implementation examples of step S602 are as mentioned above and will not be described again here.
  • the mobile phone can also trigger the mobile phone to deconfigure the Beacon frame response condition in response to the user clicking the switch control 77 and causing the switch control 77 to change from the "on" state to the "off” state.
  • the mobile phone Configuring Beacon frame response conditions through the whitelist mechanism as an example. If the user turns on the "Key Event Monitoring” function, the mobile phone will add the identity of the driving recorder to the whitelist, so that when the phone receives the Beacon frame broadcast by the driving recorder, it will respond; if the user turns off the "Key Event Monitoring” ” function, the mobile phone will delete the identity of the driving recorder from the white list, so that the mobile phone will not respond to the Beacon frame broadcast by the driving recorder.
  • step S603 the second electronic device 62 sends the first Beacon frame, specifically:
  • the second electronic device 62 broadcasts the first Beacon frame. At this time, other electronic devices located within the signal receiving range of the second electronic device 62 can receive the first Beacon frame. In some embodiments, it may also be: the second electronic device 62 multicasts the first Beacon frame. At this time, the electronic device located within the signal receiving range of the second electronic device 62 and whose address belongs to the multicast range can receive the first Beacon frame.
  • FIG. 11 exemplarily shows a partial structural diagram of a second electronic device 62 provided by an embodiment of the present application.
  • the second electronic device 62 may include a third processor 55 Bluetooth module 56 and, optionally, a sensor module 57 .
  • the partial structure may mean that the figure shows only a part of the structure of the second electronic device but not the entire structure.
  • the third processor 55 may be, for example, a micro-controller unit (micro-controller unit,
  • MCUs usually have lower power consumption and lower cost, and can be used in electronic devices that do not require very powerful computing capabilities, such as Internet of Things devices.
  • the third processor 55 can also be other types of processors, which is not limited in the embodiment of the present application.
  • the Bluetooth module 56 may be part of the wireless communication module 160 in the embodiment of FIG. 3 for providing Bluetooth communication capabilities. In some implementations, the Bluetooth module 56 may be a BLE module, thereby enabling Bluetooth communication capabilities with lower power consumption.
  • the sensor module 57 may refer to the sensor module 180 described in the embodiment of FIG. 3 , and may include, for example, an acceleration sensor 180E, a gyroscope sensor 180B, and the like. Sensor module 57 may include more or fewer sensors than sensor module 180 described in the FIG. 3 embodiment.
  • the second electronic device 62 sending the first Beacon frame in step S603 may specifically include: the third processor 55 sends the first Beacon frame to the BLE module 56, and the BLE module 56 converts the first Beacon frame into a wireless The signal is sent out.
  • the first Beacon frame sent by the third processor 55 to the BLE module 56 may be binary or hexadecimal (for example: 0xFA3234FAB3223).
  • step S603 may have a trigger condition.
  • the trigger condition may be: the third processor 55 determines that the first Beacon frame needs to be sent based on the sensing data reported by the sensor module 57 .
  • the second electronic device 62 as a driving recorder as an example:
  • the sensor module 57 in the driving recorder can collect sensing data (such as acceleration collected by the acceleration sensor). degree, data collected by the gyroscope sensor) and reported to the third processor 55.
  • the third processor 55 is pre-configured with some detection algorithms, which can detect whether key events such as collision, sudden braking, and yaw have occurred based on the received sensor data. When the third processor 55 detects that a key event occurs, the driving recorder can be triggered to send the first Beacon frame.
  • each type of key event may be preset to correspond to an event number.
  • each type of critical event can also be preset corresponding to priority and/or response strategy.
  • the third processor 55 may carry the event number in the first Beacon frame to indicate what type of event occurred to the receiving end device of the first Beacon frame (eg, the first electronic device 61 ).
  • the event number can be carried in the preset field of the first Beacon frame.
  • the driving recorder if it includes a speaker, it can make a verbal announcement to remind the user when it detects that certain key events have occurred. For example, when a yaw is detected, the driving recorder can make a voice announcement: "A yaw is detected, please pay more attention and concentrate on driving.”
  • Table 1 exemplarily shows an example of a key event type, event number, priority and response strategy provided by the embodiment of the present application.
  • Table 1 Key event types, event numbers, priorities and response strategies
  • the vehicle When a collision occurs, the vehicle may be damaged to a certain extent due to the collision, which involves liability determination and insurance compensation. Therefore, the media content (such as audio and video files) recorded by the driving recorder when the collision occurs is very critical.
  • the driving recorder needs to record the collision in time.
  • the media content related to the event is sent to other electronic devices for backup to prevent the data from being overwritten or lost due to user forgetfulness or driving recorder failure. Therefore, as shown in Table 1, the priority of the key event of the collision type can be configured as "high”, the response strategy is configured to send the first Beacon frame, and the driving recorder is connected to other electronic devices (such as the first electronic device 61 ) After establishing the data transmission channel, send the collision event media content to the other electronic device.
  • the priority of a critical event of the sudden braking type can be configured as "medium”, and the response strategy can be configured to send the first Beacon frame; the priority of a key event of the yaw type can be configured as "low”, and the response strategy can be configured as "low”. Configure to send the first Beacon frame and perform voice broadcast.
  • the priorities and/or response strategies for different types of critical events may be driving recorder related software (for example, an operating system of the driving recorder, a driving recorder related application installed in the first electronic device 61 preset by the developer of the program).
  • driving recorder related software for example, an operating system of the driving recorder, a driving recorder related application installed in the first electronic device 61 preset by the developer of the program.
  • priorities and/or response strategies for different types of critical events may be user-customized by operating the first electronic device 61 .
  • FIG. 12 exemplarily shows a schematic diagram of a user interface of a first electronic device 61 provided by an embodiment of the present application.
  • FIG. 12 takes the first electronic device 61 as a mobile phone and the second electronic device 62 as a driving recorder as an example.
  • the driving recorder can have a "key event monitoring” function, and the switch control 77 is in the “on” state, so the "key event monitoring” function is turned on at this time.
  • Users can click "Close "Key event monitoring” function control 78.
  • the mobile phone can display the user interface as shown in (b) in Figure 12.
  • the user interface as shown in (b) in Figure 12 can include separate key events for each type.
  • Switch controls for setting such as switch controls 791, 792, and 793. In the user interface shown in (b) in Figure 12, switch controls 791, 792, and 793 are all in the "on” state.
  • the mobile phone when the mobile phone receives a collision The mobile phone will respond to the first Beacon frame of the corresponding event number, the event number corresponding to the sudden braking, or the event number corresponding to the yaw. If the collision switch control 791 is set to the "off" state, when the mobile phone receives When the first Beacon frame carries the event number corresponding to the collision, the mobile phone does not respond. For example, the mobile phone does not record the collision event, and the mobile phone does not trigger the process of establishing a connection with the driving recorder and transmitting data. In some embodiments, since collisions are high-priority events, developers can configure the key event monitoring function so that the phone must respond to collision events when the key event monitoring function is turned on, and users are not allowed to customize whether the phone responds to collision events.
  • users can also configure response strategies for key events set to respond.
  • the user can click the "yaw" configuration control 710 in the user interface shown in (b) of Figure 12, and in response to the click operation, the mobile phone can display the user interface shown in (c) of Figure 12.
  • the user interface shown in (c) of Figure 12 may include multiple options from which the user can select to configure the response strategy for the yaw event. For example, four options may be included: "Record event, obtain media content and voice broadcast”, “Record event and obtain media content”, “Record event and voice broadcast”, “Record event only”.
  • the mobile phone can record the configuration information and send the configuration information to the driving recorder, and the driving recorder also records the configuration information. Therefore, when the driving recorder detects that a yaw has occurred, the driving recorder sends the first Beacon frame carrying the event number corresponding to the yaw, and the mobile phone responds to receiving the first Beacon frame, according to the first Beacon frame carrying the event number corresponding to the yaw.
  • the event number records the yaw event, and the mobile phone and/or driving recorder performs a voice broadcast, such as playing a pre-recorded audio: "A yaw has been detected, please increase your attention and focus on driving.”
  • the mobile phone can record the configuration information and send the configuration information to the driving recorder, and the driving recorder also records the configuration information. Therefore, when the driving recorder detects a collision, the driving recorder sends the first Beacon frame carrying the event number corresponding to the collision, and the mobile phone responds to receiving the first Beacon frame according to the first Beacon frame carrying the event number corresponding to the collision. , record the collision event, and trigger the step of establishing a data transmission channel with the driving recorder (step S605).
  • the driving recorder transmits the audio and video files (first data) recorded for a period of time before and after the collision event through the data transmission channel. Sent to the mobile phone, the mobile phone receives the audio and video files and stores them locally in the mobile phone (step S606), or further uploads the audio and video files to the server (step S607).
  • the triggering condition may be: the third processor 55 determines that the first Beacon frame needs to be sent.
  • the second electronic device 62 as a smart toothbrush as an example:
  • Smart toothbrushes usually include buttons, and users can start or stop the motor vibration of the smart toothbrush by touching or pressing the buttons.
  • users can also select different brushing modes through button operations.
  • the motor vibrates at different vibration frequencies and/or amplitudes.
  • the third processor 55 is pre-configured with a brushing behavior detection algorithm, which can obtain brushing behavior information based on the received user key information, such as one or more information such as brushing start time, end time, duration, mode, etc.
  • the smart toothbrush can be triggered to send the first Beacon frame.
  • the third processor 55 can carry the tooth brushing behavior information in the first Beacon frame, so that the receiving end device of the first Beacon frame (for example, the first electronic device 61) can obtain the tooth brushing behavior through the first Beacon frame. information.
  • the smart toothbrush includes an indicator light
  • the indicator light can flash to remind the user when a brushing behavior such as insufficient brushing time is detected.
  • the user can also configure the priority, response strategy, etc. of the smart toothbrush for different brushing behaviors by operating the first electronic device 61 . No further details will be given here.
  • the first electronic device 61 may respond to the first Beacon frame according to a preconfigured response policy.
  • the first electronic device 61 as a mobile phone and the second electronic device 62 as a driving recorder as an example:
  • the first processor 51 of the mobile phone After the first processor 51 of the mobile phone is awakened by the second processor 52 and obtains the first Beacon frame, it can be determined based on the format of the first Beacon frame that the first Beacon frame is a Beacon frame used to inform the driving recorder of key events. ; Determine the type of key event based on the event number carried in the first Beacon frame. Thereby, the first processor 51 executes the preset response process corresponding to the type of the key event.
  • the first processor 51 records the collision event (for example, records that a collision event occurred at 18:50), and triggers the mobile phone
  • the process of establishing a data transmission channel with the driving recorder is executed (step S605), so that the mobile phone receives the media content corresponding to the collision event sent by the driving recorder (step S606).
  • the mobile phone can further synchronize the media content corresponding to the collision event to the server (step S607).
  • Step S605 A data transmission channel is established between the first electronic device 61 and the second electronic device 62. This step is optional.
  • the first electronic device 61 may establish a data transmission channel with the second electronic device 62 if it determines to respond to the first Beacon frame in step S604.
  • the data transmission channel may be, for example, a wireless communication data transmission channel, such as a Wi-Fi channel.
  • a wireless communication data transmission channel such as a Wi-Fi channel.
  • the bandwidth that Wi-Fi can support is usually higher than that of Bluetooth. Therefore, when relatively large data such as audio and video needs to be transmitted between the first electronic device 61 and the second electronic device 62, it is preferable to establish Wi-Fi. channel so that data can be transferred quickly.
  • step S605 may specifically include: the first processor 51 triggers The Wi-Fi module (not shown in FIG. 5 ) of the first electronic device 61 establishes a data transmission channel with the Wi-Fi module (not shown in FIG. 11 ) of the second electronic device 62 .
  • the third processor 55 triggers the Wi-Fi module of the second electronic device 62 to establish a data transmission channel with the Wi-Fi module of the first electronic device 61 .
  • step S605 may refer to the existing technology of establishing a Wi-Fi connection between two electronic devices.
  • the embodiment of the present application does not limit how the data transmission channel is established in step S605.
  • the first electronic device 61 as a mobile phone and the second electronic device 62 as a driving recorder as an example:
  • step S605 when performing step S605, the mobile phone can turn on the screen and display a prompt message to remind the user to automatically establish a connection with the driving recorder. ; When performing step S606, a prompt message is displayed to remind the user that the data transmitted by the driving recorder is currently being obtained.
  • Figure 13 schematically illustrates a user of a first electronic device 61 provided by an embodiment of the present application. Interface diagram. FIG. 13 takes the first electronic device 61 as a mobile phone and the second electronic device 62 as a driving recorder as an example.
  • the mobile phone when executing step S605, can display a notification message 711 on the lock screen interface.
  • the notification message 711 can include prompt information, for example: "A collision has been detected, and the driving record is in progress.” "Establish a connection with the dash cam to obtain the video recorded by the dash cam” is used to inform the user that the mobile phone is currently establishing a connection with the dash cam.
  • an icon 712 may also be included to indicate that a connection is currently being established.
  • Step S606 The second electronic device 62 sends the first data to the first electronic device 61.
  • the first electronic device 61 receives the first data sent by the second electronic device 62 . This step is optional.
  • step S606 may specifically be: the second electronic device 62 sends the first data to the first electronic device 61 through the data transmission channel established in step S605.
  • the first electronic device 61 receives the first data sent by the second electronic device 62 through the data transmission channel established in step S605.
  • the first electronic device 61 as a mobile phone and the second electronic device 62 as a driving recorder as an example:
  • the first data may be media content (such as audio and video files) corresponding to key events recorded by the driving recorder during driving.
  • media content such as audio and video files
  • the driving recorder can extract the video recorded in the 18:49-18:51 time period from the video recorded by it, and use this video as the corresponding video of the collision event.
  • Media content sent to mobile phones. In this way, the mobile phone can obtain the media content corresponding to the key event in a timely manner, avoiding the media content corresponding to the key event being overwritten and lost.
  • the mobile phone when performing step S606, may display a notification message 713 on the lock screen interface, and the notification message 713 may include prompt information, such as: "Connection successful. Obtaining the video recorded by the driving recorder" is used to inform the user that the mobile phone is currently obtaining data from the driving recorder.
  • a progress bar 714 may also be included for indicating the current data transmission progress.
  • a pause control 715 and/or a stop control 716 may also be included.
  • the mobile phone when step S606 is completed, can display a notification message 717 on the lock screen interface, and the notification message 717 can include prompt information, such as: "Transmission successful. ! is used to inform the user that the data transfer has been completed.
  • step S606 after the execution of step S606 is completed, for example, after a preset time (for example, 3 seconds, 5 seconds) after the execution of step S606 is completed, the mobile phone can automatically turn off the screen or sleep. After the screen is turned off or dormant for a preset period of time, the first processor 51 in the mobile phone can be powered off or put into sleep mode, so that after the data transmission is completed, the phone resumes screen off or dormant and enters a low power consumption state.
  • a preset time for example, 3 seconds, 5 seconds
  • the mobile phone can trigger the first processor 51 to power on when data needs to be transmitted, and can also trigger the first processor 51 to power off or sleep after the data transmission is completed, which not only reduces the power consumption of the mobile phone, but also ensures
  • the phone can still perform certain preset functions when the screen is off or in sleep mode.
  • the entire process can be executed automatically and does not require the user to trigger the mobile phone to establish a connection with the driving recorder, which greatly simplifies the user's operation and is conducive to timely backup of the data in the driving recorder to avoid data being overwritten and lost.
  • Step S607 The first electronic device 61 sends the first data to the server 63. This step is optional.
  • the first electronic device 61 may further upload the first data to the server 63 . Therefore, in addition to saving the first data in the first electronic device 61, the first data is also saved in the server 63, realizing double backup of data. On the other hand, when the first data is uploaded to the server, the first data stored locally on the first electronic device 61 can be deleted, thereby releasing the storage space of the first electronic device 61 .
  • step S607 may be automatically retriggered. For example, when the first electronic device 61 determines that the Internet can currently be accessed by accessing the Wi-Fi network provided by other electronic devices (such as routers), the first electronic device 61 uploads the first data to the server 63 . That is to say, the first electronic device 61 can automatically perform cloud backup of the first data when accessing the Wi-Fi network.
  • step S607 may also be user-triggered.
  • the user manually uploads the first data to the server 63 by operating the first electronic device 61 .
  • the first electronic device 61 detects that the Internet is currently accessed through the cellular network when the user manually triggers it, the first electronic device 61 can prompt the user: "Currently using the cellular network will consume a certain amount of data traffic and generate communication charges. Do you want to continue uploading?" In response to this prompt message, the user can choose to upload later, or still upload.
  • the disclosed devices/electronic devices and methods can be implemented in other ways.
  • the device/electronic device embodiments described above are only illustrative.
  • the division of modules or units is only a logical function division. In actual implementation, there may be other division methods, such as multiple units. Or components can be combined or can be integrated into another system, or some features can be omitted, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, indirect coupling or communication connection of devices or units, which may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated module/unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the present application can implement all or part of the processes in the methods of the above embodiments, which can also be completed by instructing relevant hardware through a computer program.
  • the computer program can be stored in a computer-readable storage medium, and the computer can When the program is executed by the processor, the steps of each of the above method embodiments can be implemented.
  • the computer program includes computer program code, which may be in the form of source code, object code, executable file or some intermediate form.
  • the computer-readable storage medium may include: any entity or device capable of carrying the computer program code, recording media, U disk, mobile hard disk, magnetic disk, optical disk, computer memory, read-only memory (ROM, Read-Only Memory ), random access memory (RAM, Random Access Memory), electrical carrier signals, telecommunications signals, and software distribution media, etc. It should be noted that the content contained in the computer-readable storage medium can be appropriately added or deleted according to the requirements of legislation and patent practice in the jurisdiction. For example, in some jurisdictions, according to legislation and patent practice, computer-readable storage media Storage media does not include electrical carrier signals and telecommunications signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种数据传输方法、电子设备和装置。其中,上述电子设备至少包括第一处理器,第二处理器,以及蓝牙模块。第一处理器与所述第二处理器耦合,蓝牙模块与第一处理器和第二处理器中的至少一者耦合。第一处理器用于配置该电子设备的Beacon帧响应条件。第二处理器用于在第一处理器处于下电或休眠状态,且蓝牙模块接收到符合上述Beacon帧响应条件的第一Beacon帧时,唤醒第一处理器。第一处理器还用于在被第二处理器唤醒后,获取上述符合上述Beacon帧响应条件的第一Beacon帧。从而,该电子设备能够及时获取到第一Beacon帧的发送端设备中的重要数据,避免重要数据被覆盖或丢失。

Description

一种数据传输方法、电子设备和装置 技术领域
本申请属于通信技术领域,尤其涉及一种数据传输方法、电子设备和装置。
背景技术
在使用过程中,电子设备自身会产生并积累数据。一些电子设备通常会一直处于联网状态,可以将产生和积累的数据实时自动同步(或者说,上传)到服务器,例如:支持蜂窝通信的手机可以随时将本地照片同步到服务器,接入了家庭网关的摄像头能够随时将录制的视频同步到服务器。另一些电子设备通常会一直处于与其他电子设备连接的状态,可以将产生和积累的数据实时传输备份到其他电子设备中。
然而,仍有一些电子设备通常不会一直处于联网状态,或者一直处于与其他电子设备连接的状态,不能够及时将本地数据进行同步、备份,造成数据被覆盖或丢失。
发明内容
有鉴于此,本申请实施例提供了一种数据传输方法、电子设备和装置,能够随时获取产生数据的电子设备中的重要数据,将这些重要数据进行备份或进一步同步到服务器,避免重要数据被覆盖或丢失。
本申请实施例的第一方面提供了一种电子设备,该电子设备至少包括第一处理器,第二处理器,以及蓝牙模块。其中,第一处理器与所述第二处理器耦合,蓝牙模块与第一处理器和第二处理器中的至少一者耦合。第一处理器用于配置该电子设备的Beacon帧响应条件。第二处理器用于在第一处理器处于下电或休眠状态,且蓝牙模块接收到符合上述Beacon帧响应条件的第一Beacon帧时,唤醒第一处理器。第一处理器还用于在被第二处理器唤醒后,获取上述符合上述Beacon帧响应条件的第一Beacon帧。其中,上述Beacon帧响应条件包括以下一项或多项:Beacon帧携带的发送端设备的标识在该电子设备的白名单中,Beacon帧的格式符合预设格式,Beacon帧携带有该电子设备中登录的第一用户账号的信息。
在一些实施例中,上述第一处理器可以是该电子设备的应用处理器,上述第二处理可以是该电子设备的起到辅助功能的处理器,例如微控制单元(micro-controller unit,MCU)、智能传感集线器(SensorHub)等。第一处理器可用于执行电子设备中的大部分核心功能,例如生成用户图形界面、与互联网通信、与其他设备建立高速数据传输通道(如Wi-Fi通道)、响应符合某种条件的报文以执行预设功能等。第二处理器可用于执行电子设备的辅助功能,例如控制和管理该电子设备中的传感器模块、蓝牙模块等。
第一处理器可以在例如电子设备屏幕熄灭和/或以低功耗模式运行时,进入下电或休眠状态,以节省电子设备整体的功耗,同时,这也使得电子设备无法执行核心功能。而第二处理器的功耗大大低于第一处理器的功耗,因此,在第一处理器下电或休眠时,第二处理器通常仍旧保持上电或工作状态。
因此本申请实施例提出了使用第二处理器来在第一处理器处于下电或休眠状态时,有条件地唤醒第一处理器。从而使得第一处理器恢复上电或工作状态,来执行电子设备的核心功能。示例性地,第二处理器响应于蓝牙模块接收到第一Beacon帧,唤醒第一处理器,从而第一处理器获取到该第一Beacon帧。
在一些实施例中,第一Beacon帧携带了第一Beacon帧的发送端设备产生的重要数据,从而第一处理器解析第一Beacon帧以获取并存储第一Beacon帧的发送端设备产生的数据。在另一些实施例中,第一Beacon帧被配置为用于指示第一Beacon帧的接收端设备执行预设功能,从而获取到第一Beacon帧的第一处理器可以响应于该第一Beacon帧执行对应的预设功能。例如,第一处理器触发电子设备与发送该第一Beacon帧的发送端设备建立Wi-Fi连接,以获取该第一Beacon帧的发送端设备产生的重要数据。
此外,为了避免任意一个Beacon帧都会触发电子设备进行响应,本申请实施例的第一方面还可以通过第一处理器来配置电子设备的Beacon帧响应条件,只有符合该Beacon响应条件的第一Beacon帧,才可以使得第二处理器唤醒第一处理器。
从而,本申请实施例提供的电子设备,可以及时地将获取其他设备产生的重要数据,避免这些重要数据被覆盖或丢失。
根据第一方面,在一种可能的实现方式中,第一处理器还用于响应于第一Beacon帧,触发该电子设备与第一Beacon帧的发送端设备(例如具体实施方式中所描述的第二电子设备)建立数据传输通道,以使得该电子设备通过该数据传输通道获取第一Beacon帧的发送端设备采集的数据。
可以理解,Beacon帧作为一种蓝牙报文,其能够承载的数据量是较为有限的。如果第一Beacon帧的发送端设备采集的数据(要备份的数据)的体积较大,则无法通过Beacon帧携带。因此,第一处理器可以被配置为响应于第一Beacon帧,触发电子设备与第一Beacon帧的发送端建立数据传输通道,以通过该数据传输通道获取体积较大的数据。
根据第一方面的上述可能的实现方式,该数据传输通道可以为Wi-Fi通道,第一Beacon帧的发送端设备采集的数据包括多媒体数据。该Wi-Fi通道可以是Wi-Fi直连(Wi-Fi direct)、WiFi P2P(peer-to-peer)连接等。从而,两者通过Wi-Fi通道传输体积较大的多媒体数据,可以提高数据传输的效率。
根据第一方面,以及第一方面的上述可能的实现方式,第一处理器还用于根据第一Beacon帧,确定第一Beacon帧的发送端设备检测到第一类型的关键事件。示例性地,第一Beacon帧的某个或某些字段可以被预先配置为用于携带事件号,不同的事件号对应于第一Beacon帧的发送端设备检测到的不同类型的关键事件。以第一Beacon帧的发送端设备为行车记录仪为例,则不同的事件号可以分别对应于行车记录仪检测到的例如急刹、碰撞、偏航等不同类型的关键事件。从而,电子设备通过第一Beacon帧就可以得知第一Beacon帧的发送端设备检测到的关键事件的类型。在一些实施例中,电子设备可以将第一Beacon帧的发送端设备检测到的关键事件及时记录下来;在另一些实施例中,电子设备也可以进一步响应于某种特定类型的关键事件,触发与第一Beacon帧的发送端设备建立数据传输通道,以通过该数据传输通道获取对应于该特定 类型的关键事件的多媒体数据(例如音频和/或视频文件)。
根据第一方面,以及第一方面的上述任意一种可能的实现方式,第二处理器具体用于在第一处理器处于下电或休眠状态,且蓝牙模块接收到第一Beacon帧,且电子设备处于第一运动状态时,唤醒所述第一处理器。也就是说,对于第二处理器唤醒第一处理器的特定条件,还可以附加有:电子设备处于第一运动状态(某种特定的运动状态)。从而,可以避免第一处理器在电子设备未处于第一运动状态时被误唤醒。示例性地,以发送第一Beacon帧的设备为行车记录仪为例,则第一运动状态可以是行驶状态。只有当电子设备处于行驶状态时,电子设备的第二处理器才会在电子设备的蓝牙模块接收到第一Beacon帧时唤醒第一处理器。
根据第一方面的上述可能的实现方式,电子设备还包括传感器模块;第二处理器还用于根据传感器模块采集的传感器数据,确定电子设备处于第一运动状态。示例性地,第二处理器可以获取传感器模块采集的传感器数据,并根据传感器数据判断电子设备当前所处的运动状态。其中,传感器数据例如可以包括加速度数据、陀螺仪数据等。
根据第一方面,以及第一方面的上述任意一种可能的实现方式,蓝牙模块用于在接收到第一Beacon帧时,向第二处理器发送第一信号;第二处理器还用于响应于第一信号,唤醒第一处理器。可以理解,蓝牙模块可以被配置为判断接收到的蓝牙报文中的某个或某些字段是否符合预设条件,例如,通过逻辑运算(与、或、非、异或)来判断。第一Beacon帧的某个或某些字段(如厂商自定义字段)可以被配置为特定数值,则蓝牙模块可以在判断该字段为特定数值的情况下,向与蓝牙模块耦合的第二处理器发送第一信号,从而当第二处理器接收到第一信号,就知道蓝牙模块现在收到了需要唤醒第一处理器来处理的Beacon帧了,从而第二处理器响应于第一信号唤醒第一处理器,以使得第一处理器获取第一Beacon帧,进而响应第一Beacon帧。
根据第一方面,以及第一方面的上述任意一种可能的实现方式,上述Beacon帧的格式符合预设格式,具体包括:Beacon帧的某个或某些字段为预设数值。例如,Beacon帧的厂商自定义字段中的某个或某几个比特位为预设数值。从而,蓝牙模块自身就可以通过简单的逻辑运算,确定空口监听到Beacon帧是否是蓝牙模块要响应的Beacon帧,避免触发第二处理器频繁唤醒第一处理器。。
根据第一方面,以及第一方面的上述任意一种可能的实现方式,蓝牙模块包括蓝牙低功耗(bluetooth low energy,BLE)模块。BLE模块相较于经典蓝牙模块,功耗更低,从而可以尽可能地节省电子设备的功耗。
根据第一方面,以及第一方面的上述任意一种可能的实现方式,第一处理器的功耗高于第二处理器的功耗,或者,第一处理器的体积大于第二处理器的体积,或者,第一处理器的计算能力强于第二处理器的计算能力。
本申请实施例的第二方面提供了一种数据传输方法,该方法应用于第一电子设备,该方法包括:第一电子设备配置第一电子设备的Beacon帧响应条件;第一电子设备在处于第一状态时,接收第二电子设备广播的第一Beacon帧;第一电子设备根据第一Beacon帧符合上述Beacon帧响应条件,确定响应第一Beacon帧;第一电子设备确定响应第一Beacon帧时,第一电子设备由第一状态切换为第二状态;第一电子设备在处 于第二状态时,与第二电子设备建立数据传输通道,以获取第二电子设备发送的第一数据。
其中,上述Beacon帧响应条件包括以下一项或多项:Beacon帧携带的第二电子设备的标识在第一电子设备的白名单中,Beacon帧的格式符合预设格式,Beacon帧携带有第一电子设备中登录的第一用户账号的信息。以及,第一状态下第一电子设备的功耗大于第二状态下所述第一电子设备的功耗。
从而本申请实施例第二方面提供的数据传输方法,在第一电子设备处于较低功耗的第一状态下,第一电子设备仍能够响应于第二电子设备发送的符合第一电子设备的Beacon帧响应条件的第一Beacon帧,切换到较高功耗的第二状态,在第二状态下与第二电子设备建立数据传输通道以获取第一数据。避免了第二电子设备由于无法及时将第一数据备份到其他设备所导致的第一数据被覆盖或丢失。
根据第二方面,在一种可能的实现方式中,上述数据传输通道为Wi-Fi通道,上述所述第一数据为第二电子设备采集的多媒体数据。该Wi-Fi通道可以是Wi-Fi直连(Wi-Fi direct)、WiFi P2P(peer-to-peer)连接等。从而,两者通过Wi-Fi通道传输体积较大的多媒体数据,可以提高数据传输的效率
根据第二方面,以及第二方面的上述可能的实现方式,第一Beacon帧用于指示第二电子设备检测到第一类型的关键事件,第一数据是对应于该关键事件的数据。从而,第一电子设备通过第一Beacon帧就可以得知第二电子设备检测到的关键事件的类型。第一电子设备可以响应于第一类型的关键事件,触发与第二电子设备建立数据传输通道,以通过该数据传输通道获取对应于该第一类型的关键事件的多媒体数据(例如音频和/或视频文件)。可以理解,如果第一电子设备获取到第二类型的关键事件,则第一电子设备可以不触发与第二电子设备建立数据传输通道。也就是说,第一电子设备可以被预先配置为了响应于不同类型的关键事件,触发或者不触发与第二电子设备建立数据传输通道。只有当第一电子设备得知第二电子设备检测到的关键事件的类型为需要传输多媒体数据的类型时,第一电子设备才去获取该多媒体数据。如果第二电子设备检测到的关键事件的类型为不需要传输多媒体数据的类型时,第一电子设备通过第一Beacon帧就可以得知发生了该类型的关键事件并进行记录,无需建立数据传输通道。从而,提高了重要数据备份的可配置性。
根据第二方面,以及第二方面的上述可能的实现方式,第一电子设备根据第一Beacon帧符合Beacon帧响应条件,确定响应第一Beacon帧,具体包括:在第一电子设备处于第一运动状态的情况下,第一电子设备根据所述第一Beacon帧符合Beacon帧响应条件,确定响应第一Beacon帧。也就是说,对于第一电子设备确定响应第一Beacon帧的特定条件,还可以附加有:第一电子设备处于第一运动状态(某种特定的运动状态)。从而,可以避免第一电子设备未处于第一运动状态时也响应第一Beacon帧。示例性地,以第二电子设备为行车记录仪为例,则第一运动状态可以是行驶状态。只有当第一电子设备处于行驶状态时,第一电子设备才会在接收到第一Beacon帧时进行响应。
根据第二方面,以及第二方面的上述可能的实现方式,在第一电子设备获取第一数据后,该方法还包括:第一电子设备将第一数据上传至服务器。从而,除了在第一 电子设备本地备份第一数据,还可以在服务器也进行备份,进一步提高了第一数据(重要数据)的安全性,避免第一数据被覆盖、丢失。可选地,当第一电子设备将第一数据上传到服务器后,第一电子设备可以将第一电子设备中的第一数据删除,以节省第一电子设备的存储空间。在一些实施例中,第一电子设备经过用户允许之后才可以将第一电子设备中的第一数据删除。
根据第二方面,以及第二方面的上述可能的实现方式,在第一电子设备获取第一数据后,该方法还包括:所述第一电子设备由第二状态切换为第一状态。从而,在完成了第一数据的备份后,第一电子设备可以重新恢复为较低功耗的运行状态,减小电量消耗。
根据第二方面,以及第二方面的上述可能的实现方式,第一电子设备由第一状态切换为第二状态,具体包括:第一电子设备的应用处理器由下电或休眠状态切换为上电或工作状态。其中,应用处理器可用于执行电子设备中的大部分核心功能,例如生成用户图形界面、与互联网通信、与其他设备建立高速数据传输通道(如Wi-Fi通道)、响应符合某种条件的报文以执行预设功能等。在第一状态下,应用处理器处于下电或休眠状态,这样可以节省第一电子设备的功耗,但也会使得第一电子设备无法执行大部分核心功能。在第二状态下,应用处理器处于上电或工作状态,此时第一电子设备能够执行大部分核心功能,但功耗较高。从而,该方法中第一电子设备在有需要的时候由第一状态切换为第二状态,既可以尽可能节省第一电子设备的功耗,还使得第一电子设备具备及时响应的能力。
根据第二方面,以及第二方面的上述可能的实现方式,第一电子设备配置第一电子设备的Beacon帧响应条件,具体包括:第一电子设备配置第一电子设备针对第二电子设备广播的Beacon帧的响应条件。也就是说,第一电子设备可以是针对性地对第二电子设备广播的Beacon帧的响应条件进行配置。这是因为,第二电子设备可能具有多种业务功能,第二电子设备除了会广播用于触发对重要数据进行备份的Beacon帧,还会广播用于其他业务功能的Beacon帧。第一电子设备真正需要相应的仅仅是第二电子设备广播的用于触发对重要数据进行备份的Beacon帧,而不需要响应第二电子设备广播的用于其他业务功能的Beacon帧。因此,第一电子设针对针对性地对第二电子设备广播的Beacon帧的响应条件进行配置,可以避免第一电子设备响应第二电子设备广播的用于其他业务功能的Beacon帧。
本申请实施例第三方面提供了一种处理器,该处理器安装于电子设备中,该处理器与该电子设备中的应用处理器、蓝牙模块耦合;该处理器的功耗小于应用处理器的功耗,或者,该理器的体积小于应用处理器的体积,或者,该处理器的计算能力弱于应用处理器的计算能力;该处理器用于在应用处理器处于下电或休眠状态,且蓝牙模块接收到符合预设的Beacon帧响应条件的第一Beacon帧时,唤醒应用处理器。
在一些实施例中,预设的Beacon帧响应条件可以包括以下一项或多项:Beacon帧携带的Beacon帧发送端设备的标识在该电子设备的白名单中,Beacon帧的格式符合预设格式,Beacon帧携带有该电子设备中登录的第一用户账号的信息。
在一些实施例中,上述处理器可以本申请实施例第一方面中的第二处理器。
从而,本申请实施例提供的处理器可以使得电子设备及时响应符合预设的Beacon 帧响应条件的第一Beacon。
根据第三方面,在一种可能的实现方式中,该处理器还用于接收蓝牙模块发送的第一信号,并响应于第一信号,唤醒应用处理器。可以理解,电子设备中的蓝牙模块可以被配置为判断接收到的蓝牙报文中的某个或某些字段是否符合预设条件,例如,通过逻辑运算(与、或、非、异或)来判断。第一Beacon帧的某个或某些字段(如厂商自定义字段)可以被配置为特定数值,则蓝牙模块可以在判断该字段为特定数值的情况下,向与蓝牙模块耦合的该处理器发送第一信号,从而当该处理器接收到第一信号,就知道蓝牙模块现在收到了需要唤醒应用处理器来处理的Beacon帧了,从而该处理器响应于第一信号唤醒应用处理器,以使得应用处理器获取第一Beacon帧,进而响应第一Beacon帧。
根据第三方面,以及第三方面的上述可能的实现方式,该处理器还与电子设备中的传感器耦合;该处理器还用于根据传感器采集的传感器数据,确定当前处于第一运动状态;该处理器具体用于在应用处理器处于下电或休眠状态,蓝牙模块接收到符合预设的Beacon帧响应条件的第一Beacon帧,且当前处于第一运动状态时,唤醒应用处理器。
也就是说,对于该处理器唤醒应用处理器的特定条件,还可以附加有:当前处于第一运动状态(某种特定的运动状态)。从而,可以避免在未处于第一运动状态时该处理器也唤醒应用处理器。示例性地,以第一Beacon帧的发送端设备为行车记录仪为例,则第一运动状态可以是行驶状态。只有电子设备当前处于行驶状态时,该处理器才会唤醒应用处理器。
根据第三方面,以及第三方面的上述可能的实现方式,该处理器还用于配置蓝牙模块对接收到的Beacon帧的过滤条件。在一些实施例中,该处理器根据应用处理器下发的指令,配置蓝牙模块对接收到的Beacon帧的过滤条件。其中,上述过滤条件可以包括:蓝牙模块采用何种逻辑运算来筛选接收到的Beacon帧中的哪个或哪些字段。从而,使得蓝牙模块对于空口监听到的Beacon的过滤是可配置的。在不同的应用场景中,蓝牙模块可以被配置不同的Beacon帧过滤条件。提高蓝牙模块的可配置性。
本申请实施例的第四方面提供一种计算机可读存储介质,该计算机可读存储介质包括指令,当上述指令被执行时,使得安装有该计算机可读存储介质的电子设备执行如第二方面或第二方面中任意一种可能的实现方式中所述的数据传输方法。
本申请实施例的第五方面提供一种数据传输系统,该数据传输系统包括第一电子设备和第二电子设备,其中,该第一电子设备可以是上述第二方面或第二方面中任意一种可能的实现方式中的第一电子设备,该第二电子设备可以是上述第二方面或第二方面中任意一种可能的实现方式中的第二电子设备。
本申请实施例的第六方面提供另一种电子设备,该另一种电子设备可以是上述第二方面或第二方面中任意一种可能的实现方式中的第二电子设备。该另一种电子设备被配置为在检测到关键事件时,发送第一Beacon帧。在一些实施例中,在发送第一Beacon帧后,该另一种电子设备还可以与第一Beacon帧的接收端(如第一电子设备)设备建立数据传输通道,以将该另一种电子设备采集的重要数据(如多媒体数据)发送给第一Beacon帧的接收端。从而实现重要数据的及时备份,避免重要数据被覆盖或 丢失。
附图说明
图1是本申请一实施例提供的一种行车记录仪和手机连接的实现方式示意图;
图2是本申请一实施例提供的另一种行车记录仪和手机连接的实现方式示意图;
图3是本申请一实施例提供的一种电子设备的结构示意图;
图4是本申请一实施例提供的一种电子设备的软件结构框图;
图5是本申请一实施例提供的一种第一电子设备的部分结构示意图;
图6是本申请一实施例提供的一种数据传输方法设备交互图;
图7(a)-(c)是本申请一实施例提供的一种第一电子设备的用户界面示意图;
图8是本申请一实施例提供的另一种第一电子设备的部分结构示意图;
图9是本申请一实施例提供的又一种第一电子设备的部分结构示意图;
图10(a)-(b)是本申请一实施例提供的另一种第一电子设备的用户界面示意图;
图11是本申请一实施例提供的一种第二电子设备的部分结构示意图;
图12(a)-(c)是本申请一实施例提供的又一种第一电子设备的用户界面示意图;
图13(a)-(c)是本申请一实施例提供的再一种第一电子设备的用户界面示意图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
应当理解,当在本申请说明书和所附权利要求书中使用时,术语“包括”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
如在本申请说明书和所附权利要求书中所使用的那样,术语“如果”可以依据上下文被解释为“当...时”或“一旦”或“响应于确定”或“响应于检测到”。类似地,短语“如果确定”或“如果检测到[所描述条件或事件]”可以依据上下文被解释为意指“一旦确定”或“响应于确定”或“一旦检测到[所描述条件或事件]”或“响应于检测到[所描述条件或事件]”。
另外,在本申请说明书和所附权利要求书的描述中,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本申请说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是 以其他方式另外特别强调。
如背景技术中所述,目前有一些电子设备通常不会一直处于联网状态、一直处于与其他电子设备连接的状态,不能够及时将本地数据进行同步、备份,造成数据被覆盖、丢失,影响用户的使用体验。
例如,目前大部分行车记录仪不支持蜂窝通信能力,通常不会一直处于联网状态,也不会一直处于与其他电子设备(例如用户的手机)连接的状态。行车记录仪能够记录车辆行驶过程中产生的音视频数据(如通过摄像头录制的视频、通过麦克风采集的音频),也能够检测并记录车辆碰撞、急刹、偏航等异常数据,将这些数据存储在行车记录仪本地的安全数码(security digital,SD)卡或嵌入式多媒体卡(embedded multi-media card,eMMC)中。当用户想要获取行车记录仪中存储的数据时,用户需要手动将行车记录仪与手机连接,操作繁琐,造成用户与行车记录的交互频率不高,不会经常去同步数据。而行车记录仪存储空间有限,新产生的数据会覆盖掉之前的数据,无法及时进行数据同步,严重时会造成关键数据的丢失。
在一些可能的实现方式中,行车记录仪和手机的连接可以通过如图1所示的方式实现。如图1所示,行车记录仪10作为接入点(access point,AP)设备(或者说,工作在AP模式)提供WiFi热点,手机20作为站点(station,STA)设备(或者说,工作在STA模式)接入作为AP设备的行车记录仪10提供的WiFi热点,手机20和行车记录仪10之间建立数据传输通道,行车记录仪10通过该数据传输通道将它本地存储的数据传输给手机20。手机20可以将接收到的数据存储在手机20本地,可选地,手机20也可将这些数据上传到服务器30。
在该实现方式中,用户首先需要操作行车记录仪10(例如长按行车记录仪10的功能键)来触发行车记录仪10进入AP模式。然后,用户需要操作手机20,在手机20显示界面中显示的可接入的无线网络列表中选择行车记录仪提供的WiFi热点。最后,用户需要输入该WiFi热点的密码或行车记录仪10的个人识别码(personal identification number,PIN),以使手机20接入行车记录仪10的WiFi热点。
在一些可能的实现方式中,行车记录仪和手机的连接也可以通过如图2所示的方式实现。如图2所示,首先行车记录仪10和手机20之间通过蓝牙低功耗(bluetooth low energy,BLE)辅助配网,即通过BLE完成密钥和服务器标识(service set identifier,SSID)的协商,然后行车记录仪10和手机20之间根据协商好的密钥和SSID建立加密通道,行车记录仪10通过该加密通道将它本地存储的数据传输给手机20,可选地,手机20也可将这些数据上传到服务器30。
在该实现方式中,用户需要打开手机20上的行车记录仪10相关的应用程序(application,APP),点击用于触发与行车记录仪10建立连接的控件,触发手机20和行车记录仪10执行上述流程,稍加等待后手机20显示连接建立成功的提示消息,从而用户得知连接成功,以进行后续数据同步操作。
以上所述实现方式,均需要用户或多或少进行操作,来建立行车记录仪和手机之间的连接,才可以进行数据传输。若用户不经常进行连接操作、手动同步数据,十分容易造成数据被覆盖、丢失。并且,出于功耗控制的考虑,目前大部分手机被设计为在灭屏进入待机(或者说休眠)状态一段时间之后,断开与其他设备的WiFi、BLE连 接,因此即使用户手动操作让手机和行车记录仪建立了连接,该连接通常也不会是一直存在的。
在一些可能的实现方式中,可以从行车记录仪的存储空间中,划分出一部分存储空间用于存储关键数据(例如急刹、碰撞时产生的数据),划分出来的这部分存储空间被配置为不会被新产生的数据覆盖。虽然这种实现方式能够改善数据被覆盖的问题,但当需要导出数据时,仍需要用户进行一系列操作,十分复杂。
有鉴于此,本申请实施例提供了一种数据传输方法,在符合一定条件时,不需要用户干预的情况下,行车记录仪和手机之间就可以自动建立连接,行车记录仪可以自动将数据传输给手机,可选地,手机可以将接收到的数据同步到服务器。从而,实现了行车记录仪本地数据的及时传输和备份,避免关键数据的丢失。
以上部分以行车记录仪和手机为例进行描述,但应理解,本申请实施例提供的数据传输方法的应用场景不限于此。本领域技术人员可以将本申请实施例提供的数据传输方法应用于任意一种符合条件的电子设备、系统中,均不超出本申请实施例覆盖的范围。
接下来,结合附图详细描述本申请实施例提供的数据传输方法、电子设备和系统。
图3示例性展示了本申请实施例提供的一种电子设备100的结构示意图。电子设备100可以是以下实施例中所述第一电子设备或所述第二电子设备,也可以是所述服务器。
电子设备100可以包括手机、可折叠电子设备、平板电脑、桌面型计算机、膝上型计算机、手持计算机、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本、蜂窝电话、个人数字助理(personal digital assistant,PDA)、增强现实(augmented reality,AR)设备、虚拟现实(virtual reality,VR)设备、人工智能(artificial intelligence,AI)设备、可穿戴式设备、车载设备、智能家居设备、或智慧城市设备中的至少一种。其中,智能家居设备可以包括但不限于以下举例:智能大屏、智能电视、智能音箱、扫地机、智能灯、智能马桶。本申请实施例对该电子设备100的具体类型不作特殊限制。
电子设备100可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接头130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本申请实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,微控制单元(micro-controller unit,MCU),和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
处理器110可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器可以为高速缓冲存储器。该存储器可以保存处理器110用过或使用频率较高的指令或数据。如果处理器110需要使用该指令或数据,可从该存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。处理器110可以通过以上至少一种接口连接触摸传感器、音频模块、无线通信模块、显示器、摄像头等模块。
可以理解的是,本申请实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对电子设备100的结构限定。在本申请另一些实施例中,电子设备100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
USB接头130是一种符合USB标准规范的接口,可以用于连接电子设备100和外围设备,具体可以是Mini USB接头,Micro USB接头,USB Type C接头等。USB接头130可以用于连接充电器,实现充电器为该电子设备100充电,也可以用于连接其他电子设备,实现电子设备100与其他电子设备之间传输数据。也可以用于连接耳机,通过耳机输出电子设备中存储的音频。该接头还可以用于连接其他电子设备,例如VR设备等。在一些实施例中,通用串行总线的标准规范可以为USB1.x、USB2.0、USB3.x和USB4。
充电管理模块140用于接收充电器的充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块140可以通过USB接口130接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块140可以通过电子设备100的无线充电线圈接收无线充电输入。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为电子设备供电。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,显示屏194,摄像头193,和无线通信模块160等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施 例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。
电子设备100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。电子设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在电子设备100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在电子设备100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),蓝牙低功耗(bluetooth low energy,BLE),超宽带(ultra wide band,UWB),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,电子设备100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得电子设备100可以通过无线通信技术与网络和其他电子设备通信。该无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM, 和/或IR技术等。该GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
电子设备100可以通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。当然,处理器也可不包括GPU,使用非GPU处理单元来实现上述功能。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,电子设备100可以包括1个或多个显示屏194。
电子设备100可以通过摄像模组193,ISP,视频编解码器,GPU,显示屏194以及应用处理器AP、神经网络处理器NPU等实现摄像功能。
摄像模组193可用于采集拍摄对象的彩色图像数据以及深度数据。ISP可用于处理摄像模组193采集的彩色图像数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将该电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,肤色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像模组193中。
在一些实施例中,摄像模组193可以由彩色摄像模组和3D感测模组组成。
在一些实施例中,彩色摄像模组的摄像头的感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。
在一些实施例中,3D感测模组可以是(time of flight,TOF)3D感测模块或结构光(structured light)3D感测模块。其中,结构光3D感测是一种主动式深度感测技术,结构光3D感测模组的基本零组件可包括红外线(Infrared)发射器、IR相机模等。结构光3D感测模组的工作原理是先对被拍摄物体发射特定图案的光斑(pattern),再接收该物体表面上的光斑图案编码(light coding),进而比对与原始投射光斑的异同,并利用三角原理计算出物体的三维坐标。该三维坐标中就包括电子设备100距离被拍摄物体的距离。其中,TOF 3D感测可以是主动式深度感测技术,TOF 3D感测模组的基本组件可包括红外线(Infrared)发射器、IR相机模等。TOF 3D感测模组的工作原理是通过红外线折返的时间去计算TOF 3D感测模组跟被拍摄物体之间的距离(即深度),以得到3D景深图。
结构光3D感测模组还可应用于人脸识别、体感游戏机、工业用机器视觉检测等 领域。TOF 3D感测模组还可应用于游戏机、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)等领域。
在另一些实施例中,摄像模组193还可以由两个或更多个摄像头构成。这两个或更多个摄像头可包括彩色摄像头,彩色摄像头可用于采集被拍摄物体的彩色图像数据。这两个或更多个摄像头可采用立体视觉(stereo vision)技术来采集被拍摄物体的深度数据。立体视觉技术是基于人眼视差的原理,在自然光源下,透过两个或两个以上的摄像头从不同的角度对同一物体拍摄影像,再进行三角测量法等运算来得到电子设备100与被拍摄物之间的距离信息,即深度信息。
在一些实施例中,电子设备100可以包括1个或多个摄像模组193。具体的,电子设备100可以包括1个前置摄像模组193以及1个后置摄像模组193。其中,前置摄像模组193通常可用于采集面对显示屏194的拍摄者自己的彩色图像数据以及深度数据,后置摄像模组可用于采集拍摄者所面对的拍摄对象(如人物、风景等)的彩色图像数据以及深度数据。
在一些实施例中,处理器110中的CPU或GPU或NPU可以对摄像模组193所采集的彩色图像数据和深度数据进行处理。在一些实施例中,NPU可以通过骨骼点识别技术所基于的神经网络算法,例如卷积神经网络算法(CNN),来识别摄像模组193(具体是彩色摄像模组)所采集的彩色图像数据,以确定被拍摄人物的骨骼点。CPU或GPU也可来运行神经网络算法以实现根据彩色图像数据确定被拍摄人物的骨骼点。在一些实施例中,CPU或GPU或NPU还可用于根据摄像模组193(可以是3D感测模组)所采集的深度数据和已识别出的骨骼点来确认被拍摄人物的身材(如身体比例、骨骼点之间的身体部位的胖瘦情况),并可以进一步确定针对该被拍摄人物的身体美化参数,最终根据该身体美化参数对被拍摄人物的拍摄图像进行处理,以使得该拍摄图像中该被拍摄人物的体型被美化。后续实施例中会详细介绍如何基于摄像模组193所采集的彩色图像数据和深度数据对被拍摄人物的图像进行美体处理,这里先不赘述。
数字信号处理器用于处理数字信号,还可以处理其他数字信号。例如,当电子设备100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。电子设备100可以支持一种或多种视频编解码器。这样,电子设备100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现电子设备100的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展电子设备100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。或将音乐,视频等文件从电子设备传输至外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,该可执行程序代码包括指令。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操 作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储电子设备100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。处理器110通过运行存储在内部存储器121的指令,和/或存储在设置于处理器中的存储器的指令,执行电子设备100的各种功能方法或数据处理。
电子设备100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模块设置于处理器110中。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。电子设备100可以通过扬声器170A收听音乐,或输出免提通话的音频信号。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当电子设备100接听电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。电子设备100可以设置至少一个麦克风170C。在另一些实施例中,电子设备100可以设置两个麦克风170C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,电子设备100还可以设置三个,四个或更多麦克风170C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口170D用于连接有线耳机。耳机接口170D可以是USB接口130,也可以是3.5mm的开放移动电子设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。压力传感器180A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少两个具有导电材料的平行板。当有力作用于压力传感器180A,电极之间的电容改变。电子设备100根据电容的变化确定压力的强度。当有触摸操作作用于显示屏194,电子设备100根据压力传感器180A检测该触摸操作强度。电子设备100也可以根据压力传感器180A的检测信号计算触摸的位置。在一些实施例中,作用于相同触摸位置,但不同触摸操作强度的触摸操作,可以对应不同的操作指令。例如:当有触摸操作强度小于第一压力阈值的触摸操作作用于短消息应用图标时,执行查看短消息的指令。当有触摸操作强度大于或等于第一压力阈值的触摸操作作用于短消息应用图标时,执行新建短消息的指令。
陀螺仪传感器180B可以用于确定电子设备100的运动姿态。在一些实施例中,可以通过陀螺仪传感器180B确定电子设备100围绕三个轴(即,x,y和z轴)的角速度。 陀螺仪传感器180B可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器180B检测电子设备100抖动的角度,根据角度计算出镜头模组需要补偿的距离,控制镜头反向运动抵消电子设备100的抖动,实现防抖。陀螺仪传感器180B还可以用于导航,体感游戏场景。
气压传感器180C用于测量气压。在一些实施例中,电子设备100根据气压传感器180C测得的气压值计算海拔高度,辅助定位和导航。
磁传感器180D包括霍尔传感器。电子设备100可以利用磁传感器180D检测翻盖皮套的开合。当电子设备为可折叠电子设备,磁传感器180D可以用于检测电子设备的折叠或展开,或折叠角度。在一些实施例中,当电子设备100是翻盖机时,电子设备100可以根据磁传感器180D检测翻盖的开合。进而根据检测到的皮套的开合状态或翻盖的开合状态,设置翻盖自动解锁等特性。
加速度传感器180E可检测电子设备100在各个方向上(一般为三轴)加速度的大小。当电子设备100静止时可检测出重力的大小及方向。还可以用于识别电子设备姿态,应用于横竖屏切换,计步器等应用。
距离传感器180F,用于测量距离。电子设备100可以通过红外或激光测量距离。在一些实施例中,拍摄场景,电子设备100可以利用距离传感器180F测距以实现快速对焦。
接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。电子设备100通过发光二极管向外发射红外光。电子设备100使用光电二极管检测来自附近物体的红外反射光。当检测到的反射光的强度大于阈值时,可以确定电子设备100附近有物体。当检测到的反射光的强度小于阈值时,电子设备100可以确定电子设备100附近没有物体。电子设备100可以利用接近光传感器180G检测用户手持电子设备100贴近耳朵通话,以便自动熄灭屏幕达到省电的目的。接近光传感器180G也可用于皮套模式,口袋模式自动解锁与锁屏。
环境光传感器180L可以用于感知环境光亮度。电子设备100可以根据感知的环境光亮度自适应调节显示屏194亮度。环境光传感器180L也可用于拍照时自动调节白平衡。环境光传感器180L还可以与接近光传感器180G配合,检测电子设备100是否被遮挡,例如电子设备在口袋里。当检测到电子设备被遮挡或在口袋里,可以使部分功能(例如触控功能)处于禁用状态,以防误操作。
指纹传感器180H用于采集指纹。电子设备100可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
温度传感器180J用于检测温度。在一些实施例中,电子设备100利用温度传感器180J检测的温度,执行温度处理策略。例如,当通过温度传感器180J检测的温度超过阈值,电子设备100执行降低处理器的性能,以便降低电子设备的功耗以实施热保护。在另一些实施例中,当通过温度传感器180J检测的温度低于另一阈值时,电子设备100对电池142加热。在其他一些实施例中,当温度低于又一阈值时,电子设备100可以对电池142的输出电压升压。
触摸传感器180K,也称“触控器件”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用 于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于电子设备100的表面,与显示屏194所处的位置不同。
骨传导传感器180M可以获取振动信号。在一些实施例中,骨传导传感器180M可以获取人体声部振动骨块的振动信号。骨传导传感器180M也可以接触人体脉搏,接收血压跳动信号。在一些实施例中,骨传导传感器180M也可以设置于耳机中,结合成骨传导耳机。音频模块170可以基于该骨传导传感器180M获取的声部振动骨块的振动信号,解析出语音信号,实现语音功能。应用处理器可以基于该骨传导传感器180M获取的血压跳动信号解析心率信息,实现心率检测功能。
按键190可以包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。电子设备100可以接收按键输入,产生与电子设备100的用户设置以及功能控制有关的键信号输入。
马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于显示屏194不同区域的触摸操作,马达191也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。
指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口195用于连接SIM卡。SIM卡可以通过插入SIM卡接口195,或从SIM卡接口195拔出,实现和电子设备100的接触和分离。电子设备100可以支持1个或多个SIM卡接口。SIM卡接口195可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口195可以同时插入多张卡。多张卡的类型可以相同,也可以不同。SIM卡接口195也可以兼容不同类型的SIM卡。SIM卡接口195也可以兼容外部存储卡。电子设备100通过SIM卡和网络交互,实现通话以及数据通信等功能。在一些实施例中,电子设备100采用eSIM,即:嵌入式SIM卡。eSIM卡可以嵌在电子设备100中,不能和电子设备100分离。
电子设备100的软件系统可以采用分层架构,事件驱动架构,微核架构,微服务架构,或云架构。本申请实施例以分层架构的Android系统为例,示例性说明电子设备100的软件结构。
图4示例性展示了本申请实施例提供的一种电子设备100的软件结构框图。
分层架构将软件分成若干个层,每一层都有清晰的角色和分工。层与层之间通过软件接口通信。在一些实施例中,将Android系统分为五层,从上至下分别为应用程序层,应用程序框架层,安卓运行时(Android runtime,ART)和原生C/C++库,硬件抽象层(Hardware Abstract Layer,HAL)以及内核层。
应用程序层可以包括一系列应用程序包。
如图3所示,应用程序包可以包括相机,图库,日历,通话,地图,导航,WLAN,蓝牙,音乐,视频,短信息等应用程序。
应用程序框架层为应用程序层的应用程序提供应用编程接口(application programming interface,API)和编程框架。应用程序框架层包括一些预先定义的函数。
如图3所示,应用程序框架层可以包括窗口管理器,内容提供器,视图系统,资源管理器,通知管理器,活动管理器,输入管理器等。
窗口管理器提供窗口管理服务(Window Manager Service,WMS),WMS可以用于窗口管理、窗口动画管理、surface管理以及作为输入系统的中转站。
内容提供器用来存放和获取数据,并使这些数据可以被应用程序访问。该数据可以包括视频,图像,音频,拨打和接听的电话,浏览历史和书签,电话簿等。
视图系统包括可视控件,例如显示文字的控件,显示图片的控件等。视图系统可用于构建应用程序。显示界面可以由一个或多个视图组成的。例如,包括短信通知图标的显示界面,可以包括显示文字的视图以及显示图片的视图。
资源管理器为应用程序提供各种资源,比如本地化字符串,图标,图片,布局文件,视频文件等等。
通知管理器使应用程序可以在状态栏中显示通知信息,可以用于传达告知类型的消息,可以短暂停留后自动消失,无需用户交互。比如通知管理器被用于告知下载完成,消息提醒等。通知管理器还可以是以图表或者滚动条文本形式出现在系统顶部状态栏的通知,例如后台运行的应用程序的通知,还可以是以对话窗口形式出现在屏幕上的通知。例如在状态栏提示文本信息,发出提示音,电子设备振动,指示灯闪烁等。
活动管理器可以提供活动管理服务(Activity Manager Service,AMS),AMS可以用于系统组件(例如活动、服务、内容提供者、广播接收器)的启动、切换、调度以及应用进程的管理和调度工作。
输入管理器可以提供输入管理服务(Input Manager Service,IMS),IMS可以用于管理系统的输入,例如触摸屏输入、按键输入、传感器输入等。IMS从输入设备节点取出事件,通过和WMS的交互,将事件分配至合适的窗口。
安卓运行时包括核心库和安卓运行时。安卓运行时负责将源代码转换为机器码。安卓运行时主要包括采用提前(ahead or time,AOT)编译技术和及时(just in time,JIT)编译技术。
核心库主要用于提供基本的Java类库的功能,例如基础数据结构、数学、IO、工具、数据库、网络等库。核心库为用户进行安卓应用开发提供了API。。
原生C/C++库可以包括多个功能模块。例如:表面管理器(surface manager),媒体框架(Media Framework),libc,OpenGL ES、SQLite、Webkit等。
其中,表面管理器用于对显示子系统进行管理,并且为多个应用程序提供了2D和3D图层的融合。媒体框架支持多种常用的音频,视频格式回放和录制,以及静态图像文件等。媒体库可以支持多种音视频编码格式,例如:MPEG4,H.264,MP3,AAC,AMR,JPG,PNG等。OpenGL ES提供应用程序中2D图形和3D图形的绘制和操作。SQLite为电子设备100的应用程序提供轻量级关系型数据库。
硬件抽象层运行于用户空间(user space),对内核层驱动进行封装,向上层提供调用接口。
内核层是硬件和软件之间的层。内核层至少包含显示驱动,摄像头驱动,音频驱 动,传感器驱动。
下面结合捕获拍照场景,示例性说明电子设备100软件以及硬件的工作流程。
当触摸传感器180K接收到触摸操作,相应的硬件中断被发给内核层。内核层将触摸操作加工成原始输入事件(包括触摸坐标,触摸操作的时间戳等信息)。原始输入事件被存储在内核层。应用程序框架层从内核层获取原始输入事件,识别该输入事件所对应的控件。以该触摸操作是触摸单击操作,该单击操作所对应的控件为相机应用图标的控件为例,相机应用调用应用框架层的接口,启动相机应用,进而通过调用内核层启动摄像头驱动,通过摄像头193捕获静态图像或视频。
图5示例性展示了本申请实施例提供的一种第一电子设备的部分结构示意图。如图5所示,第一电子设备可以包括第一处理器51、第二处理器52、传感器模块53模和/或蓝牙块54。其中,所述部分结构的含义可以指:图中仅仅示出第一电子设备的一部分结构而非全部结构。
在一些实施例中,第一处理器51例如可以是应用处理器(application processor,AP)、CPU等,第二处理器52例如可以是微控制单元(micro-controller unit,MCU)、智能传感集线器(SensorHub)等。通常情况下,第一处理器51可以具有比第二处理器52更强的计算能力、更高的功耗、更大的体积,支持更多的功能。
在一些实施例中,传感器模块53可以参考图3实施例中所述传感器模块180,可以包括例如加速度传感器180E、陀螺仪传感器180C等。传感器模块53可以包括比图3实施例中所述传感器模块180更多或更少的传感器。
在一些实施例中,蓝牙模块54可以是图3实施例中所述无线通信模块160中的一部分,用于提供蓝牙通信能力。
示例性地,本申请实施例所述蓝牙,可以包括经典蓝牙(Bluetooth Classic)、高速蓝牙(Bluetooth High Speed)和/或蓝牙低功耗(Bluetooth low energy,BLE)等多种形式的蓝牙。其中,在一些实施例中,可以优选地采用BLE,即,蓝牙模块54的具体实现形式可以是一BLE模块,由于BLE通常比其他形式的蓝牙具有更低的功耗,可以尽可能地节省电子设备的电量消耗,因此采用BLE模块实现本申请实施提供的方法能够更为突出地获得降低电子设备功耗的有益效果。本领域技术人员也可以以通常的含义来理解本申请实施例所述“蓝牙”。
图5中(a)、(b)、(c)分别展示了第一处理器51、第二处理器52、传感器模块53和/或蓝牙模块54之间几种不同的连接关系。
如图5中(a)所示,第一处理器51和第二处理器52可以是相互独立的两块芯片,两者之间通过芯片上的接口(如管脚)电连接。第一处理器51与传感器模块53和/或蓝牙模块54之间电连接,第二处理器52也与传感器模块53和/或蓝牙模块54之间电连接。
基于图5中(a)所示连接关系,在一些实现方式中,第二处理器52可用于控制传感器模块53和/或蓝牙模块54。例如,控制传感器模块53向第一处理器51上报传感器模块53采集的传感器数据的频率;控制蓝牙模块54是否将接收到的报文上报给第一处理器51,或者控制蓝牙模块54根据预设规则将接收到的报文中的一部分报文上报给第一处理器51。可以理解为,第二处理器52可以用于控制传感器模块53和/ 或蓝牙模块54的过滤条件。该过滤条件可以用于筛选出预设数据。示例性地,预设数据例如可以是符合特定格式的蓝牙报文,或者某个或某些字段为特定数值的蓝牙报文。
在一种可能的实现方式中,第二处理器52根据第一处理器51下发的指令确定以何种方式控制传感器模块53和/或蓝牙模块54。也就是说,第一处理器51可以指示第二处理器52给传感器模块53和/或蓝牙模块54下发预设的某种过滤条件,进而传感器模块53和/或蓝牙模块54根据该过滤条件,只将其获取到的符合过滤条件的那一部分传感器数据和/或蓝牙报文上报,而将其获取到的不符合过滤条件的传感器数据和/或蓝牙报文直接丢弃。
具体地,在一种实现方式中,传感器模块53和/或蓝牙模块54响应于获取到符合过滤条件的传感器数据和/或蓝牙报文,暂存符合过滤条件的传感器数据和/或蓝牙报文,并向第二处理器52发送预设信号;第二处理器52响应于该预设信号,唤醒第一处理器51;第一处理器51被唤醒后,传感器模块53和/或蓝牙模块54将该符合过滤条件的传感器数据和/或蓝牙报文上报给第一处理器51。在另一种实现方式中,传感器模块53和/或蓝牙模块54响应于获取到符合过滤条件的传感器数据和/或蓝牙报文,将符合过滤条件的传感器数据和/或蓝牙报文上报给第二处理器52,并向第二处理器52发送预设信号;第二处理器52响应于该预设信号,唤醒第一处理器51,并将符合过滤条件的传感器数据和/或蓝牙报文进一步上报给第一处理器51。
在一些场景下,例如第一电子设备亮屏或工作状态下,第一处理器51处于上电工作状态,传感器模块53和/或蓝牙模块54将数据通过与第一处理器51之间的通路上报给第一处理器51;此时第二处理器52通常可以下电或休眠,当然也可以不下电或休眠。在另一些场景下,例如第一电子设备灭屏或休眠状态下(或进入灭屏或休眠状态一段时间后),第二处理器52处于上电工作状态,传感器模块53和/或蓝牙模块54将数据通过与第二处理器52之间的通路上报给第二处理器52;此时第一处理器51通常可以下电或休眠,当然也可以不下电或休眠。在这种实现方式中,第一处理器51和第二处理器52之间可以以一种类似于拨码开关的方式,在电子设备处于不同的工作状态下时,分别接管传感器模块53和/或蓝牙模块54。例如,电子设备在第一工状态下时,第二处理器52负责管理(或者说控制)传感器模块53和/或蓝牙模块54;电子设备在第二工作状态下时,第一处理器51负责管理(或者说控制)传感器模块52和/或蓝牙模块54。
由于第二处理器52相较于第一处理器51功耗通常更低,因此当第二处理器52接管了传感器模块53和/或蓝牙模块54,第一处理器51就可以下电或休眠,由较低功耗的第二处理器52来处理和响应传感器模块53和/或蓝牙模块54上报的数据。从而实现节省功耗的技术效果,并且能够使得第一电子设备在第一处理器51下电或休眠时仍具备对传感器模块54和/或蓝牙模块54上报的数据的处理和响应能力。
此外,当第一处理器51下电或休眠、由第二处理器52接管传感器模块54和/或蓝牙模块54时,第二处理器52还可以在接收到预设数据时,唤醒第一处理器51,使得第一处理器51恢复上电工作状态,来响应预设数据。从而第一电子设备可以及时响应预设数据、执行预设功能。在一些实施例中,上述预设数据例如可以是符合特定格式的蓝牙报文,或者某个或某些字段为特定数值的蓝牙报文。第一电子设备被预先配 置为响应于预设数据执行预设功能。在一些实施例中,该预设功能必须有第一处理器51的参与才能够完成。从而,当第一电子设备没有接收到预设数据时,第一处理器51下电或休眠以节省功耗,由第二处理器52确定是否接收到预设数据;当第二处理器52确定接收到预设数据时,唤醒第一处理器51来响应该预设数据以执行预设功能。这样可以使得第一电子设备在有需要的时候进行响应,在不需要的时候尽可能降低功耗,并保持监听状态,随时能够唤醒。第二处理器52可以以极低的功耗工作,因此可以显著降低第一电子设备的功耗。
如图5中(b)所示,第一处理器51和第二处理器52可以是相互独立的两块芯片,两者之间电连接;第二处理器52与传感器模块53和/或蓝牙模块54之间电连接;第一处理器51与传感器模块53和/或蓝牙模块54之间可以不具有直接的电连接。
基于图5中(b)所示连接关系,在一些场景下,例如第一电子设备亮屏或工作状态下,第一处理器51、第二处理器52都处于上电工作状态,传感器模块53和/或蓝牙模块54将数据通过与第二处理器52之间的通路上报给第二处理器52;第二处理器52可以将数据处理后上报给第一处理器51,也可以不处理数据而是将数据透传给第一处理器51,当然,第二处理器52也可以不向第一处理器51上报数据。在另一些场景下,例如第一电子设备灭屏或休眠状态下,第一处理器51下电或休眠,第二处理器仍处于上电工作状态,传感器模块53和/或蓝牙模块54将数据通过与第二处理器52之间的通路上报给第二处理器52,由第二处理器52进行处理和响应。在这种实现方式中,第一处理器51通过第二处理器52来获取传感器模块53和/或蓝牙模块54上报的数据,若第一处理器51下电或休眠则由第二处理器52负责处理和响应传感器模块53和/或蓝牙模块54上报的数据。类似地,这种连接关系也可以具备如图5中(a)所示连接关系的有益效果,此处不再重复描述。
如图5中(c)所示,第一处理器51和第二处理器52可以集成在同一块芯片中,是同一块芯片中的两部分处理单元。可以将这种结构称为内置型结构。该芯片与传感器模块53和或/蓝牙模块54之间电连接。基于图5中(c)所示连接关系,在一些场景下,例如第一电子设备亮屏或工作状态下,第一处理器51、第二处理器52可以都处于上电工作状态,传感器模块53和/或蓝牙模块54将数据通过与该芯片的通路上报给该芯片,由第一处理器51和/或第二处理器52进行处理。在另一些场景下,例如第一电子设备灭屏或休眠状态下,第一处理器51下电或休眠,第二处理器52仍处于上电工作状态,传感器模块53和/或蓝牙模块54将数据通过与该芯片的通路上报给该芯片,由第二处理器52进行处理。在这种实现方式中,该芯片在电子设备100亮屏或工作时全部上电工作,在第一电子设备灭屏或休眠时仅保留部分处理单元上电工作,用来处理和响应传感器模块54和/或蓝牙模块54上报的数据。类似地,这种连接关系也可以具备如图5中(a)所示连接关系的有益效果,此处不再重复描述。
应理解,图5仅展示了可能的连接关系中的几种示例,本申请实施例不限定该连接关系的具体形式,本领域技术人员可以应用任意一种适用于本申请实施例提供的数据传输方案的连接关系,而不超出本申请实施例覆盖的范围。
可见,图5所示的第一电子设备的这种结构,能够使得第一电子设备在某些场景下(例如,灭屏或休眠状态下、省电模式下、低电量时等)只有一部分处理器上电工 作,另一部分处理器下电或休眠,实现节省功耗的技术效果。此外,仍处于上电工作状态的这部分处理器可以在接收到预设数据的情况下,唤醒下电或休眠的那部分处理器,使它们恢复上电工作状态,来响应预设数据、执行预设功能。
以第一电子设备为手机,第二电子设备为行车记录仪为例,其中,手机应用了如图5实施例所示的结构(即,包含第一处理器51和第二处理器52的结构):
行车记录仪安装于车辆中,用户在开车时随身携带的手机也处于车辆中,两者具备进行近距离无线通信的物理条件(距离较近)。由于用户在开车,无法时常与手机交互,因此手机通常处于灭屏或休眠状态。在手机处于灭屏或休眠状态时,出于功耗控制的目的,手机通常会断开与其他电子设备的连接,例如断开蓝牙、Wi-Fi连接。灭屏或休眠状态下或者进入灭屏或休眠状态一段时间后,手机中的第一处理器51下电或休眠,第二处理器52负责管理传感器模块53和/或蓝牙模块54。例如,第二处理器52可以向蓝牙模块54下发预设的过滤条件,蓝牙模块54只响应符合预设的过滤条件的蓝牙报文(例如某种格式的Beacon帧),将不符合预设的过滤条件的蓝牙报文直接丢弃。在一些实施例中,第二处理器52可以是根据第一处理器51的指令来向蓝牙模块54下发预设的过滤条件的。在一些实施例中,第二处理器52可以获取传感器模块53采集的传感器数据,进而根据传感器数据判断手机当前是否处于行驶状态(或者说,判断手机当前是否处于行驶的车辆上),在确定当前处于行驶状态时,第二处理器52向蓝牙模块54下发预设的过滤条件。
当车辆发生碰撞、急刹、偏航等关键事件时,行车记录仪可以基于行车记录仪中的传感器模块采集的数据,判定发生了关键事件,开始广播预设Beacon帧(如下述第一Beacon帧)。示例性地,预设Beacon帧可以是具有特定格式的Beacon帧,也可以是某个或某些字段为特定数值的Beacon帧。可以理解,该预设Beacon帧是符合手机中的蓝牙模块54的过滤条件的蓝牙报文。此时,在一种实现方式中,灭屏或休眠状态下的手机中的蓝牙模块54响应于接收到该预设Beacon帧,由于该预设Beacon帧符合过滤条件,因此蓝牙模块54暂存该预设Beacon帧并向第二处理器52发送预设信号。第二处理器52响应于该预设信号,唤醒第一处理器51(即,使第一处理器51恢复上电工作状态)。从而蓝牙模块54将该预设Beacon帧上报给第一处理器51。在另一种实现方式中,灭屏或休眠状态下的手机中的蓝牙模块54响应于接收到该预设Beacon帧,由于该预设Beacon帧符合过滤条件,因此将该预设Beacon帧上报给第二处理器52并向第二处理器52发送预设信号。第二处理器52响应于该预设信号,唤醒第一处理器51,并将该预设Beacon帧进一步上报给第一处理器51。
当然,如果行车记录仪广播预设Beacon帧时,手机处于亮屏或工作状态(例如用户正使用手机导航功能的情况下),此时第一处理器51处于上电工作状态。则此时可以省略第二处理器52唤醒第一处理器的过程。此时,第一处理器51可以直接获取蓝牙模块54上报的预设Beacon帧,或者,直接获取由第二处理器52透传上来的预设Beacon帧。
第一处理器51接收到预设Beacon帧,可以按照预设的响应策略进行响应。例如,若预设Beacon帧指示关键事件为急刹或偏航,则第一处理器51记录发生了急刹或偏航;若预设Beacon帧指示关键事件为碰撞,则第一处理器51记录发生了碰撞,并且, 第一处理器51还可以进一步触发手机与行车记录仪建立通信连接(例如Wi-Fi连接),手机接收行车记录仪传输的此次碰撞关键事件对应的媒体内容(例如行车记录仪录制的碰撞发生时刻前后一段时间的音视频文件)。
从而,用户不需要进行任何操作,在符合一定条件时,行车记录仪就可以自动与手机建立连接,将关键数据发送给手机,避免了关键数据被覆盖、丢失。
当用户结束此次行驶,开始查看手机时,手机可以基于记录的关键事件弹出提示消息,例如:“此次行驶过程中共计发生3次偏航,请在驾驶过程中保持专注,避免意外事故发生”;又例如:“此次驾驶过程中发生1次碰撞,已将碰撞相关视频保持至手机本地,请问是否同步至云端?”,若用户同意,则手机可以进一步将该碰撞相关视频发送至服务器进行备份。
以第一电子设备为手机,第二电子设备为智能牙刷为例,其中,手机应用了如图5实施例所示的结构(即,包含第一处理器51、第二处理器52的结构):
用户在使用智能牙刷刷牙时,智能牙刷可以记录刷牙时长、时间、模式等刷牙行为数据。由于智能牙刷通常为蓝牙设备,不具备Wi-Fi功能,因此通常不能够接入家庭网关(例如家中的路由器),不能够随时将记录的刷牙行为数据上传到服务器。
假设智能牙刷放置在家中。当用户的手机也处于家中时,两者具备进行近距离无线通信的物理条件(距离较近)。智能牙刷可以在用户每次刷牙完时,广播预设Beacon帧。
类似于上述行车记录仪示例,此示例中手机中的第一处理器51和/或第二处理器52也可以执行与上述行车记录仪示例中类似的过程,此处不再赘述。从而,手机获取此次刷牙行为数据。
当用户后续与手机进行交互时,手机可以弹出提示消息,例如:“此次刷牙时长2分钟,低于推荐刷牙时长(3分钟),建议延长刷牙时间,以保证刷牙效果”。或者,当用户入睡前,手机可以弹出提示消息,例如:“记录到今日共计刷牙1次,低于推荐刷牙次数(2次),记得睡前要去刷牙哟”。
从而,用户不需要主动去操作手机以触发手机与智能牙刷建立连接,手机就能够自动获取到智能牙刷记录的刷牙行为数据,及时提示用户优化刷牙行为,保障口腔健康。
类似地,目前还有像智能体重秤、智能温湿度计等电子设备,通常只具备蓝牙功能而不具备Wi-Fi功能。现有技术中,用户必须手动操作手机,触发手机连接这类电子设备来获取它们记录的数据。
应用了本申请实施例提供的数据传输方法,只要手机处于这些电子设备的广播的蓝牙报文的覆盖范围内,手机就可以自动获取到这类电子设备记录的数据。可选地,手机还可以基于获取到的数据,进一步提醒用户优化生活习惯,让这类电子设备充分发挥其功能。
图6示例性展示了本申请实施例提供的一种数据传输方法设备交互图。该方法可以应用于至少包括第一电子设备61和第二电子设备62的系统中,可选地,该系统还可以包括服务器63。该方法可以用于实现将第二电子设备62中的第一数据传输给第一电子设备61,可选地,第一电子设备61还可以将第一数据传输给服务器63。
该数据传输方法具体可以包括步骤S601-步骤S607。应理解,步骤S601-步骤S607中并非每个步骤都是必选步骤,本领域技术人员可以根据实际情况舍弃、增加某些步骤。例如,可以不执行步骤S601、步骤S602、步骤S605、步骤S606、步骤S607中的任意一个或多个步骤。
步骤S601、第一电子设备61代理注册第二电子设备62。
在一些实施例中,第一电子设备61中登录有第一用户账号。所述第一电子设备61代理注册第二电子设备62可以理解为:在第一电子设备61的协助下,使得第二电子设备62与第一用户账号之间建立绑定关系,该绑定关系可用于指示第二电子设备62是属于第一用户账号的设备,或者,是与第一用户账号关联的设备。第一电子设备61可以记录该绑定关系。可选地,服务器63和/或第二电子设备62也可以记录该绑定关系。
在一些实施例中,在执行步骤S601的过程中,第一电子设备61和第二电子设备62可以互相发送彼此的标识。从而,第一电子设备61可以获取第二电子设备62的标识,第二电子设备62也可以获取第一电子设备61的标识。所述标识可以是设备标识,例如可以包括媒体访问控制(media access control,MAC)地址、序列号(serial number,SN)、产品标识码(product identification,prodID)中的任意一种或多种。在一些实施例中,所述标识可以具有唯一性,也就是说,标识可以是唯一标识,可以用于唯一确定一个电子设备。
在一些实施例中,在建立第二电子设备62与第一用户账号之间的绑定关系后,第一电子设备61可以将第一用户账号的标识发送给第二电子设备62。在一些实施例中,第一用户账号的标识可以为第一用户账号户的哈希值,第一用户账号户的哈希值与第一用户账号具有一一对应关系,也就是说,可以根据第一用户账号的哈希值唯一地确定第一用户账号。当然,第一电子设备61也可以将第一用户账户本身发送给第二电子设备62。
在一些实施例中,第二电子设备62可以在后续的步骤S603中使用该第一用户账号的标识或者第一用户账号。例如,将第一用户账号的标识或者第一用户账号携带在第一Beacon帧中。从而,第一电子设备61可以在步骤S604中,根据第一Beacon帧中携带有第一用户账号的标识或者第一用户账号,确定需要响应于第一Beacon帧。
在一些实施例中,步骤S601可以在第一电子设备61与第二电子设备62之间首次建立连接时,自动执行。若第一电子设备61与第二电子设备62之间非首次建立连接,则步骤S601可以不执行。
在一些实施例中,用户可以通过操作第一电子设备61来触发步骤S601的执行。
图7示例性展示了本申请实施例提供的一种第一电子设备61的用户界面示意图。例如,可以是第一电子设备61和第二电子设备62首次建立连接时,第一电子设备61的用户界面示意图。图7以第一电子设备61为手机、第二电子设备62为行车记录仪为示例。
如图7中(a)所示用户界面,“我的设备”界面中显示有音箱控件71,此时音箱控件71所对应的音箱已经建立与手机中登录的用户账号(第一用户账号)的绑定关系。用户可以点击“+”控件71,手机响应于该点击操作,弹出选项列表,选项列表 可以包括例如“添加”、“删除”、“管理”等控件。然后,用户可以点击选项列表中的“添加”控件73,手机响应于该点击操作,启动设备扫描流程,来发现周围的可见设备。当手机发现了行车记录仪,手机可以显示如图7中(b)所示用户界面,弹出卡片74。可以理解,在一些实现方式中,手机也可以不需要用户的触发(例如不需要用户点击“添加”控件73)而主动发现行车记录仪、自动弹出卡片74。卡片74中可以包括提示信息“发现行车记录仪,是否添加到我的设备?”。用户可以点击“是”控件75,手机响应于该点击操作,建立行车记录仪与第一用户账号的绑定关系,将行车记录仪添加到“我的设备”中。从而手机可以显示如图7中(c)所示用户界面,行车记录仪控件76已被成功添加到“我的设备”中。在此过程中,手机还可以与服务器63通信,使得服务器也记录行车记录仪和第一用户账号的绑定关系。在用户点击“是”控件75,至手机显示图7中(c)所示用户界面的过程中,手机可以自动执行步骤S601,完成行车记录仪的代理注册。
应理解,该代理注册过程可以包括一至多个子步骤,具体可以参考现有技术,本申请实施例对步骤S601的具体实现方式不做限定。
步骤S602、第一电子设备61配置Beacon帧响应条件。
步骤S603、第二电子设备62发送(例如广播、组播)第一Beacon帧;相应地,第一电子设备61接收第二电子设备62发送的第一Beacon帧。
步骤S604、第一电子设备62根据预先配置的Beacon帧响应条件,确定响应所述第一Beacon帧。
第一电子设备61周围可能存在许多电子设备,每个电子设备可能都会广播Beacon帧。因此第一电子设备61可能会接收到众多的Beacon帧。然而,第一电子设备61并不是每个Beacon帧都需要响应。因此需要一种机制,过滤、筛选出第一电子设备61真正需要响应的Beacon帧。步骤S602中所配置的Beacon帧响应条件即可理解为一种Beacon帧的过滤机制,从而第一电子设备61根据该Beacon帧响应条件,判断是否响应其接收到的众多的Beacon帧。
例如,第一电子设备61可以基于白名单机制对接收到的Beacon帧进行过滤。
具体地,在一些实施例中,步骤S602具体可以为:第一电子设备61将第二电子设备62的标识加入白名单,该白名单包含第一电子设备61需要响应的Beacon帧的发送端设备的标识。则,当第一电子设备61接收到了某一个Beacon帧,第一电子设备61判断该Beacon帧中是否携带有第二电子设备62的标识。若是,则第一电子设备61确定响应该Beacon帧;否则,第一电子设备61确定不响应该Beacon帧。从而,第一电子设备61可以通过判定接收到的Beacon帧是否携带有白名单中的信息(或者说,判定Beacon帧中携带的信息是否包含在白名单中;或者说,判定Beacon帧中的某个预设字段指示的信息是否记录在白名单中),来确定是否需要响应该Beacon帧。
在一些实施例中,第二电子设备62的标识可以包括例如第二电子设备的MAC地址、SN、prodId中的任意一种或多种,本申请实施例对此不做限定。如前所述,第二电子设备62的标识可以具有唯一性。
又例如,第一电子设备61可以基于Beacon帧的格式对接收到的Beacon帧进行过滤。
具体地,在一些实施例中,步骤S602具体可以为:第一电子设备61配置需要响应的Beacon帧的预设格式。则,当第一电子设备61接收到了某一个Beacon帧,第一电子设备61判断该Beacon帧的格式是否符合预设格式;若符合,则第一电子设备61确响应该Beacon帧;否则,第一电子设备61确定不响应该Beacon帧。从而,第一电子设备61可以通过判定接收到的Beacon帧的格式是否符合预设格式,来确定是否需要响应该Beacon帧。示例性地,所述Beacon帧的格式可以包括Beacon帧内的字段的数量、类型、排列顺序、长度等,也可以包括帧内的某个或某些字段是否为预设信息。可以理解,Beacon帧中通常可以包括预留给厂商自定义的字段,厂商可以自定义这些字段的用途,也可以自定义这些字段的匹配规则。例如,厂商可以将这些字段用于配置过滤条件。当这些字段的数值与预设数值相匹配时,则接收到该Beacon帧的第一电子设备61确定该Beacon帧符合过滤条件;否则,第一电子设备61确定该Beacon帧不符合过滤条件。
再例如,第一电子设备61还可以同时基于上述白名单机制以及上述Beacon帧的格式对接收到的Beacon帧进行过滤。则当第一电子设备61接收到了某一个Beacon帧,第一电子设备61判断该Beacon帧中是否携带有白名单中的信息,并且,判断该Beacon帧的格式是否符合预设格式;在都判断为“是”的情况下,第一电子设备61确响应该Beacon帧;否则,第一电子设备61确响不响应该Beacon帧。从而,第一电子设备61可以通过判定接收到的Beacon帧是否携带有白名单中的信息,以及,是否符合预设格式,来确定是否需要响应该Beacon帧。
总之,第一电子设备61可以设定一些预设条件,在第一电子设备62判定接收到的Beacon帧符合预设条件的情况下,第一电子设备62才确定要响应该Beacon帧。以上实施例以白名单和/或Beacon帧格式示例性描述了预设条件的几种可能的实现方式。除此之外,预设条件还可以包括例如Beacon帧中包含第一用户账号信息(如,第一用户账号户,或者,第一用户账号的标识),其中,该第一用户账号是第一电子设备61中登录的账号。应理解,本申请实施例不限定该预设条件的具体形式。
在一些实施例中,第一电子设备61应用了如图5实施例所示的部分结构,即,第一电子设备61可以包括第一处理器51和第二处理器52。当第一电子设备61灭屏或休眠时,为了降低功耗,第一处理器51可以下电或休眠,第二处理器52仍处于上电或工作状态。假设第一电子设备61基于白名单机制以及Beacon帧的格式对第一电子设备61接收到的Beacon帧进行过滤。则此时,当蓝牙模块54接收到某一Beacon帧时,蓝牙模块54根据该Beacon帧中的某一或某些字段(例如厂商自定义字段)为特定数值,确定要响应该Beacon帧。进而蓝牙模块暂存该Beacon帧,并向第二处理器52发送预设信号。第二处理器52响应于该预设信号,唤醒第一处理器51,使得第一处理器51恢复为上电或工作状态。从而蓝牙模块将暂存的该Beacon帧上报给第一处理器51。第一处理器51获取到该Beacon帧后,判断该Beacon帧中携带的发送端设备的标识(即第二电子设备62的标识)是否在第一电子设备61预先记录的白名单中。若是,则第一处理器51确定响应该Beacon帧;若否,第一处理器51确定不响应该Beacon帧,此时,第一处理器51可以重新进入下电或休眠状态。从而,在灭屏或休眠状态下,第一电子设备61可以降低功耗,并且仍能够响应蓝牙模块54上报的数据。 第二处理器52可以在符合一定条件时唤醒第一处理器51,即,使第一处理器51恢复上电或工作状态,来执行预设功能。
基于第一电子设备61应用了如图5实施例所示的部分结构,在一些实施例中,步骤S602可以是:第二处理器52根据第一处理器51的指令来向蓝牙模块下发预设的Beacon帧过滤条件;其中,第二处理器52和第一处理器51包含于第一电子设备61。
具体地,在第一处理器51处于上电或工作状态时,第一处理器51可以向第二处理器52发送一预设指令,该预设指令用于指示配置蓝牙模块的Beacon帧过滤条件。第二处理器52响应于该预设指令,向蓝牙模块下发预设的Beacon帧过滤条件;可选地,该预设的Beacon帧过滤条件可以是对应于上述预设指令的过滤条件。
蓝牙模块在被配置了预设的Beacon帧过滤条件的情况下,当蓝牙模块接收到一Beacon帧时,可以通过逻辑运算(例如与、或、非、异或中的一种或多种)判断该Beacon帧的某个或某些字段是否符合预设的Beacon帧过滤条件中所指示的数值。
若不符合,蓝牙模块可以直接丢弃该Beacon帧。若符合,且此时第一处理器51仍处于上电或工作状态,则蓝牙模块可以将该Beacon帧上报给第一处理器51,第一处理器51进而响应于该Beacon帧执行预设功能。若符合,且此时第一处理器51处于下电或休眠状态,则蓝牙模块可以暂存该Beacon帧,并向第二处理器52发送预设信号,第二处理器52响应于该预设信号,唤醒第一处理器51,使得第一处理器51进入上电或工作状态,进而蓝牙模块可以将该Beacon帧上报给第一处理器51,第一处理器51进而响应于该Beacon帧执行预设功能。该预设功能可以是对应于该Beacon帧的,也就是说,第一电子设备61预先被配置为了获取到该Beacon帧时执行该Beacon帧对应的预设功能。第一处理器51响应于该Beacon帧所执行的预设功能,可以是如下所述步骤S605,步骤S606,和/或步骤S607。
在一些实施例中,第一处理器51在获取到该Beacon帧后,还可以进一步判断是否要响应该Beacon帧。在第一处理器51判断要响应该Beacon帧的情况下,第一处理器51才响应该Beacon帧执行预设功能。例如,通过以下一种或多种条件判断是否响应该Beacon帧:该Beacon帧中携带的发送端设备的标识(即第二电子设备62的标识)是否在预先设定的白名单中;该Beacon帧中是否携带有第一用户账号(即第一电子设备61中登录的账号);等。
在另一些实施例中,若该Beacon帧符合预设的Beacon帧过滤条件,则蓝牙模块可以将该Beacon帧上报给第二处理器52。第二处理器52获取到该Beacon帧后,可以进一步判断是否响应该Beacon帧。例如,通过以下一种或多种条件判断是否响应该Beacon帧:该Beacon帧中携带的发送端设备的标识(即第二电子设备62的标识)是否在预先设定的白名单中;该Beacon帧中是否携带有第一用户账号(即第一电子设备61中登录的账号);等。在第二处理器52判断要响应该Beacon帧的情况下,若此时第一处理器51处于下电或休眠状态,则第二处理器52唤醒第一处理器51,然后将该Beacon帧上报给第一处理器51。在第二处理器52判断要响应该Beacon帧的情况下,若此时第一处理器51处于上电工作状态,则第二处理器52无需唤醒第一处理器51,可直接将该Beacon帧上报给第一处理器51。其中,第二处理器52将该蓝牙报文Beacon帧给第一处理器51,可以是将蓝牙模块所接收到的原始的Beacon帧不经处理地上报 给第一处理器51,也可以是对蓝牙模块接收到的Beacon帧进行处理(例如,进行解封装,解密,和/或,提取其中的某个或某些字段的信息)后上报给第一处理器51。第一处理器51获取到该Beacon帧后,执行该该Beacon帧对应的预设功能。
请参阅图8。在一些实施例中,上述各实施例中第二处理器52执行的功能可以是通过第二处理器52中的回连感知模块81实现的。回连感知模块81可以是一软件模块,该软件模块包括预先编写的计算机指令,第二处理器52通过执行这些指令实现上述各实施例中第二处理器52执行的功能。示例性地,第一处理器51可以与第二处理器52通信,将Beacon帧过滤条件、第二电子设备62的标识、第一用户账号等信息中的一种或多种发送给第二处理器52,第二处理器52中的回连感知模块81根据这些信息管理或控制蓝牙模块,向蓝牙模块下发预设的Beacon帧过滤条件,判断是否要响应获取到的Beacon帧,和/或是否唤醒第一处理器51,等。
基于图8,请参阅图9。在一些实施例中,第二处理器52中还可以包括运动状态感知模块82。运动状态感知模块82可以是一软件模块,该软件模块包括预先编写的计算机指令。第二处理器52可以获取传感器模块53采集的传感器数据,例如加速度传感器180E采集的加速度数据、陀螺仪传感器180B采集的陀螺仪数据等。从而运动状态感知模块82可以根据这些传感器数据判断当前是否处于预设运动状态。例如,通过运动状态感知算法确定当前的运动状态。运动状态感知算法可参考现有技术,此处不做赘述。当运动状态感知模块82确定此时处于预设运动状态时,才去使能回连感知模块81。所述使能可以理解为拉起回连感知模块81相关的进程,使得回连感知模块得以实现上述各实施例中第二处理器52执行的功能。
以第二电子设备62为行车记录仪为例,则上述预设运动状态可以为行驶状态。从而,运动状态感知模块82根据传感器数据确定当前处于行驶状态时(或者说,当前第一电子设备61处于行驶中的车辆上时),才去使能回连感知模块81。也就是说,仅在第一电子设备61确定当前处于行驶状态时,第一电子设备61才会执行步骤S604及后续的步骤(若有)。这样可以防止因行车记录仪(第二电子设备62)误发送Beacon帧而导致第一处理器51被唤醒。比如,用户手持着行车记录仪进行剧烈地摇晃,误触发了行车记录仪发送Beacon帧。但实际上此时行车记录仪并不是因为检测到例如碰撞、急刹、偏航等异常事件而发送Beacon帧。
在一些实施例中,步骤S602的执行可以由用户对第一电子设备61的操作触发。
例如,请参阅图10。图10示例性展示了本申请实施例提供的一种第一电子设备61用户界面示意图。图10以第一电子设备61为手机、第二电子设备62为行车记录仪为示例。
如图10中(a)所示用户界面,由于已经建立了行车记录仪与手机中登录的第一用户账户的绑定关系,因此,“我的设备”界面中显示有行车记录仪控件76。用户可以点击行车记录仪控件76,手机响应于该点击操作,可以显示如图10中(b)所示用户界面。图10中(b)所示用户界面中可以包括对行车记录仪功能的开关选项。其中,行车记录仪的功能可以包括“关键事件监控”功能。用户可以通过点击开关控件77,来开启或者关闭“关键事件监控”功能。图10中(b)所示用户界面中还可以包括对“关键事件监控”的介绍信息,例如:“当行驶过程中发生碰撞、急刹、偏航等关键 事件时,开启该功能可以让手机自动获取并记录行车记录仪检测到的关键事件,及时获取关键事件媒体内容”。
在一些实施例中,手机可以响应于用户点击开关控件77、使得开关控件77由“关”状态变为“开”状态的操作,触发步骤S602的执行。步骤S602多种可能的实现方式的实施例,如前所述,此处不再重复描述。相应地,手机也可以响应于用户点击开关控件77、使得开关控件77由“开”状态变为“关”状态的操作,触发手机取消配置Beacon帧响应条件。
以手机通过白名单机制配置Beacon帧响应条件为例。则若用户开启了“关键事件监控”功能,则手机就将行车记录仪的标识加入白名单,从而当手机接收到行车记录仪广播的Beacon帧,就进行响应;若用户关闭了“关键事件监控”功能,则手机就将行车记录仪的标识从白名单中删除,从而手机不响应行车记录仪广播的Beacon帧。
在一些实施例中,步骤S603中第二电子设备62发送第一Beacon帧,具体可以是:
第二电子设备62广播第一Beacon帧。此时,位于第二电子设备62的信号接收范围内的其他电子设备都可以接收到该第一Beacon帧。在一些实施例中,也可以是:第二电子设备62组播第一Beacon帧。此时,位于第二电子设备62的信号接收范围内且地址属于组播范围内的电子设备可以接收到该第一Beacon帧。
请参阅图11。图11示例性展示了本申请实施例提供的一种第二电子设备62的部分结构示意图。如图11所示,第二电子设备62可以包括第三处理器55蓝牙模块56,可选地,还可以包括传感器模块57。其中,所述部分结构的含义可以指:图中仅仅示出第二电子设备的一部分结构而非全部结构。
在一些实施例中,第三处理器55例如可以是微控制单元(micro-controller unit,
MCU)。MCU通常具有较低功耗、较低成本,可以应用于例如物联网设备等不需要非常强大的运算能力的电子设备中。当然,第三处理器55也可以是其他类型的处理器,本申请实施例对此不做限定。
在一些实施例中,蓝牙模块56可以是图3实施例中所述无线通信模块160中的一部分,用于提供蓝牙通信能力。在一些实现方式中,蓝牙模块56具体可以是BLE模块,从而可以以较低的功耗实现蓝牙通信能力。
在一些实施例中,传感器模块57可以参考图3实施例中所述传感器模块180,可以包括例如加速度传感器180E、陀螺仪传感器180B等。传感器模块57可以包括比图3实施例中所述传感器模块180更多或更少的传感器。
基于第二电子设备62应用了如图11实施例所示的部分结构:
在一些实施例中,步骤S603中第二电子设备62发送第一Beacon帧具体可以是:第三处理器55向BLE模块56下发第一Beacon帧,BLE模块56将第一Beacon帧转换为无线信号发送出去。在一些实施例中,第三处理器55向BLE模块56下发的第一Beacon帧可以是二进制、十六进制(例如:0xFA3234FAB3223)。
在一些实施例中,步骤S603的执行可以具有触发条件。
例如,触发条件可以是:第三处理器55根据传感器模块57上报的传感数据,判定需要发送第一Beacon帧。以第二电子设备62是行车记录仪为例:
行车记录仪中的传感器模块57可以采集传感数据(例如加速度传感器采集的加速 度、陀螺仪传感器采集的数据)并上报给第三处理器55。第三处理器55中预先配置了一些检测算法,可以基于接收到的传感数据,检测是否发生了例如碰撞、急刹、偏航等关键事件。当第三处理器55检测到发生了关键事件,可以触发行车记录仪发送第一Beacon帧。
在一些实施例中,每种类型的关键事件可以预设了对应于一种事件号。可选地,每种类型的关键事件还可以预设了对应于优先级和/或响应策略。
在一些实施例中,第三处理器55可以通过在第一Beacon帧中携带该事件号,用来指示第一Beacon帧的接收端设备(例如第一电子设备61)发生了什么类型的事件。例如,可以在第一Beacon帧的预设字段中携带该事件号。
在一些实施例中,行车记录仪若包含扬声器,则可以在检测到发生了某些关键事件时,语言播报以提醒用户。例如,在检测到发生了偏航时,行车记录仪可以语音播报:“检测到发生了偏航,请提高注意力,专注驾驶”。
表1示例性展示了本申请实施例提供的一种关键事件类型、事件号、优先级及响应策略的示例。
表1:关键事件类型、事件号、优先级及响应策略
当碰撞发生时,车辆可能一定程度上因碰撞被损坏,涉及到责任判定、保险赔偿,因此碰撞发生时行车记录仪录制的媒体内容(例如音视频文件)非常关键,行车记录仪需要及时将碰撞事件相关联的媒体内容发送给其他电子设备进行备份,以防因用户忘记或者行车记录仪故障,导致这些数据被覆盖、丢失。因此,如表1所示,可以将碰撞类型的关键事件的优先级配置为“高”,响应策略配置为发送第一Beacon帧,并在行车记录仪与其他电子设备(例如第一电子设备61)建立数据传输通道后,向该其他电子设备发送碰撞事件媒体内容。以此类比,可以将急刹类型的关键事件的优先级配置为“中”,响应策略配置为发送第一Beacon帧;可以将偏航类型的关键事件的优先级配置为“低”,响应策略配置为发送第一Beacon帧,并进行语音播报。
在一些实施例中,不同类型的关键事件的优先级和/或响应策略可以是行车记录仪相关软件(例如,行车记录仪的操作系统、第一电子设备61中安装的行车记录仪相关的应用程序)的开发者预先设定的。
在一些实施例中,不同类型的关键事件的优先级和/或响应策略可以是用户通过操作第一电子设备61自定义的。
例如,请参阅图12,图12示例性展示了本申请实施例提供的一种第一电子设备61用户界面示意图。图12以第一电子设备61为手机、第二电子设备62为行车记录仪为示例。
如图12中(a)所示用户界面,行车记录仪可以具有“关键事件监控”功能,开关控件77处于“开”状态,因此此时“关键事件监控”功能开启。用户可以点击“关 键事件监控”功能控件78,手机响应于该点击操作,可以显示如图12中(b)所示用户界面。图12中(b)所示用户界面中可以包括对每种类型的关键事件分别进行设置的开关控件,如开关控件791、792、793。图12中(b)所示用户界面中,开关控件791、792、793均处于“开”状态,因此,当手机接收到携带有碰撞对应的事件号,急刹对应的事件号,或者偏航对应的事件号的第一Beacon帧时,手机都会进行响应。如果将碰撞的开关控件791设置为“关”状态,则当手机接收到携带有碰撞对应的事件号的第一Beacon帧时,则手机不响应,例如,手机不记录此次碰撞事件,手机也不触发与行车记录仪建立连接、传输数据的流程。在一些实施例中,由于碰撞属于高优先级事件,开发者可以将关键事件监控功能配置为在关键事件监控功能开启的情况下手机必须响应碰撞事件,不允许用户自定义手机是否对碰撞事件进行响应。
进一步地,在一些实施例中,用户还可以针对设置为进行响应的关键事件,配置响应策略。示例性地,用户可以点击图12中(b)所示用户界面中“偏航”配置控件710,手机响应于该点击操作,可以显示如图12中(c)所示用户界面。在图12中(c)所示用户界面中可以包括多个选项,用户可以从中选择,以配置偏航事件的响应策略。例如,可以包括4个选项:“记录事件、获取媒体内容并语音播报”、“记录事件并获取媒体内容”、“记录事件并语音播报”、“仅记录事件”。
如果用户将偏航事件的响应策略配置为“记录事件并语音播报”,则手机可以记录该配置信息,并将该配置信息发送给行车记录仪,行车记录仪也记录该配置信息。从而,当行车记录仪检测到发生偏航,行车记录仪发送携带有偏航对应的事件号的第一Beacon帧,手机响应于接收到第一Beacon帧,根据第一Beacon帧携带有偏航对应的事件号,记录此次偏航事件,并且,手机和/或行车记录仪进行语音播报,例如播放预先录制的音频:“检测到发生了偏航,请提高注意力,专注驾驶”。
用户也可以通过类似的操作,配置其他类型的关键事件的响应策略。比如,如果用户将碰撞事件的响应策略配置为“记录事件并获取媒体内容”,则手机可以记录该配置信息,并将该配置信息发送给行车记录仪,行车记录仪也记录该配置信息。从而,当行车记录仪检测到发生碰撞,行车记录仪发送携带有碰撞对应的事件号的第一Beacon帧,手机响应于接收到第一Beacon帧,根据第一Beacon帧携带有碰撞对应的事件号,记录此次碰撞事件,并触发与行车记录仪建立数据传输通道的步骤(步骤S605),行车记录仪将碰撞事件发生时前后一段时间录制的音视频文件(第一数据)通过该数据传输通道发送给手机,手机接收该音视频文件并存储在手机本地(步骤S606),或进一步将该音视频文件上传至服务器(步骤S607)。
又例如,触发条件可以是:第三处理器55判定需要发送第一Beacon帧。以第二电子设备62是智能牙刷为例:
智能牙刷中通常包括按键,用户可以通过触摸或按压按键,启动或停止智能牙刷的电机震动。对于支持不同刷牙模式的智能牙刷,用户还可以通过按键操作来选择不同的刷牙模式,在不同的刷牙模式下,电机以不同的震动频率和/或幅度震动。第三处理器55中预先配置了刷牙行为检测算法,可以基于接收到的用户按键信息,获取刷牙行为信息,比如刷牙起始时间、结束时间、时长、模式等一种或多种信息。当第三处理器55检测到一次刷牙行为结束,可以触发智能牙刷发送第一Beacon帧。
在一些实施例中,第三处理器55可以将刷牙行为信息携带在第一Beacon帧中,从而第一Beacon帧的接收端设备(例如第一电子设备61)可以通过第一Beacon帧获取刷牙行为信息。在一些实施例中,智能牙刷若包含指示灯,则可以在检测到例如用户刷牙时长不足等刷牙行为时,闪烁指示灯以提示用户。在一些实施例中,与前述行车记录仪示例类似,用户也可通过操作第一电子设备61来配置智能牙刷对不同刷牙行为的优先级、响应策略等。此处不再赘述。
在一些实施例中,第一电子设备61确定响应第一Beacon帧之后,第一电子设备61可以按照预先配置的响应策略,响应第一Beacon帧。
具体地,以第一电子设备61为手机、第二电子设备62为行车记录仪为例:
手机的第一处理器51被第二处理器52唤醒且获取到第一Beacon帧后,可以根据第一Beacon帧的格式,确定第一Beacon帧是用于告知行车记录仪的关键事件的Beacon帧;根据第一Beacon帧中携带的事件号,确定关键事件的类型。从而第一处理器51执行关键事件的类型相对应的预设的响应流程。例如,若第一Beacon帧中携带的事件号指示关键事件类型为“碰撞”,则第一处理器51记录碰撞事件(比如,记录18:50分,发生了1次碰撞事件),并触发手机执行与行车记录仪建立数据传输通道的流程(步骤S605),从而手机接收行车记录仪发送的此次碰撞事件对应的媒体内容(步骤S606)。可选地,手机还可以进一步将此次碰撞事件对应的媒体内容同步到服务器(步骤S607)。
步骤S605、第一电子设备61和第二电子设备62之间建立数据传输通道。此步骤为可选步骤。
在一些实施例中,第一电子设备61可以在步骤S604确定响应第一Beacon帧的情况下,建立与第二电子设备62之间的数据传输通道。
在一些实施例中,所述数据传输通道例如可以是无线通信数据传输通道,如Wi-Fi通道。Wi-Fi所能支持的带宽通常比蓝牙高,因此当第一电子设备61和第二电子设备62之间需要传输如音视频这类体积比较大的数据时,优选地,可以建立Wi-Fi通道,从而可以快速传输数据。
在一些实施例中,基于第一电子设备61采用了如图5所示的部分结构、第二电子设备采用了如图11所示的部分结构,步骤S605具体可以包括:第一处理器51触发第一电子设备61的Wi-Fi模块(图5中未示出)建立与第二电子设备62的Wi-Fi模块(图11中未示出)之间的数据传输通道。类似地,第三处理器55触发第二电子设备62的Wi-Fi模块建立与第一电子设备61的Wi-Fi模块之间的数据传输通道。
步骤S605的具体实现方式,可以参考两个电子设备之间建立Wi-Fi连接的现有技术。本申请实施例对步骤S605中数据传输通道如何建立不做限定。
以第一电子设备61为手机、第二电子设备62为行车记录仪为例:
在一些实施例中,假设手机在灭屏或休眠状态下执行了步骤S605之前的步骤,则在执行步骤S605时,手机可以亮屏,显示提示信息,提醒用户当前开始自动与行车记录仪建立连接;在执行步骤S606时,显示提示信息,提醒用户当前正在获取行车记录仪传输的数据。
请参阅图13,图13示例性展示了本申请实施例提供的一种第一电子设备61用户 界面示意图。图13以第一电子设备61为手机、第二电子设备62为行车记录仪为示例。
如图13中(a)所示用户界面,在执行步骤S605时,手机可以在锁屏界面显示通知消息711,通知消息711中可以包括提示信息,例如:“检测到发生碰撞,正在与行车记录仪建立连接,以获取行车记录仪录制的视频”,用于告知用户当前手机正在与行车记录仪建立连接。可选地,还可以包括图标712,用于指示当前正在建立连接。
步骤S606、第二电子设备62向第一电子设备61发送第一数据。相应地,第一电子设备61接收第二电子设备62发送的第一数据。此步骤为可选步骤。
在一些实施例中,步骤S606具体可以是:第二电子设备62通过步骤S605中建立的数据传输通道向第一电子设备61发送第一数据。相应地,第一电子设备61通过步骤S605中建立的数据传输通道接收第二电子设备62发送的第一数据。
以第一电子设备61为手机、第二电子设备62为行车记录仪为例:
第一数据可以是行驶过程中行车记录仪录制的关键事件对应的媒体内容(如音视频文件)。假设车辆在18:50分发生了碰撞,则行车记录仪可以从其录制的视频中,提取出在18:49-18:51时间段内录制的视频,将该视频作为此次碰撞事件对应的媒体内容,发送给手机。从而手机可以及时获取到关键事件对应的媒体内容,避免了关键事件对应的媒体内容被覆盖、丢失。
在一些实施例中,如图13中(b)所示用户界面,在执行步骤S606时,手机可以在锁屏界面显示通知消息713,通知消息713中可以包括提示信息,例如:“连接成功,正在获取行车记录仪录制的视频”,用于告知用户当前手机正在从行车记录仪获取数据。可选地,还可以包括进度条714,用于指示当前数据传输进度。可选地,还可以包括暂停控件715和/或停止控件716。
在一些实施例中,如图13中(c)所示用户界面,当执行完成步骤S606时,手机可以在锁屏界面显示通知消息717,通知消息717中可以包括提示信息,例如:“传输成功!”,用于告知用户数据已完成传输。
在一些实施例中,在步骤S606执行完成后,例如在步骤S606执行完成的一段预设时间(例如3秒、5秒)后,手机可以自动灭屏或休眠。当灭屏或休眠一段预设时间后,手机中的第一处理器51可以下电或休眠,从而在数据传输完成之后,手机重新恢复灭屏或休眠,进入低功耗状态。从而,手机既可以在有数据需要传输时触发第一处理器51上电工作,又可以在数据传输完成后触发第一处理器51下电或休眠,在降低手机功耗的同时,又保证了手机仍可在灭屏或休眠状态下执行某些预设的功能。整个过程可以自动执行,不需要用户的触发手机与行车记录仪建立连接,大大简化了用户的操作,有利于及时备份行车记录仪中的数据,避免数据被覆盖、丢失。
步骤S607、第一电子设备61向服务器63发送第一数据。此步骤为可选步骤。
在一些实施例中,第一电子设备61在获取到第一数据后,还可以进一步将第一数据上传到服务器63。从而,除了在第一电子设备61中保存第一数据,服务器63中也保存第一数据,实现数据的双重备份。另一方面,当第一数据上传到了服务器,就可以将第一电子设备61本地保存的第一数据删除,从而释放第一电子设备61的存储空间。
在一些实施例中,步骤S607的执行可以是自动重触发的。例如,当第一电子设备 61判断当前可通过接入其他电子设备(例如路由器)提供的Wi-Fi网络访问互联网时,第一电子设备61将第一数据上传到服务器63。也就是说,第一电子设备61可以在接入Wi-Fi网络时,自动进行第一数据的上云备份。
在一些实施例中,步骤S607的执行也可以是用户触发的。例如,用户通过操作第一电子设备61,将第一数据手动上传到服务器63。可选地,如果用户手动触发时,第一电子设备61检测到当前通过蜂窝网络访问互联网,第一电子设备61可以提示用户:“当前使用蜂窝网络,会消耗一定的数据流量、产生通信资费,是否继续上传?”,响应于该提示信息,用户可以选择稍后上传,或者,仍旧上传。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置/电子设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/电子设备实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读存储介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读存储介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读存储介质不包括电载波信号和电信信号。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (25)

  1. 一种电子设备,包括:
    第一处理器;
    第二处理器;
    蓝牙模块;
    其特征在于,所述第一处理器与所述第二处理器耦合,所述蓝牙模块与所述第一处理器和所述第二处理器中的至少一者耦合;
    所述第一处理器,用于配置所述电子设备的Beacon帧响应条件;
    所述第二处理器,用于在所述第一处理器处于下电或休眠状态,且所述蓝牙模块接收到符合所述Beacon帧响应条件的第一Beacon帧时,唤醒所述第一处理器;
    所述第一处理器,还用在被所述第二处理器唤醒后,获取所述第一Beacon帧;
    其中,所述Beacon帧响应条件包括以下一项或多项:Beacon帧携带的发送端设备的标识在所述电子设备的白名单中,Beacon帧的格式符合预设格式,Beacon帧携带有所述电子设备中登录的第一用户账号的信息。
  2. 根据权利要求1所述的电子设备,其特征在于,
    所述第一处理器,还用于响应于所述第一Beacon帧,触发所述电子设备与所述第一Beacon帧的发送端设备建立数据传输通道,以使得所述电子设备通过所述数据传输通道获取所述第一Beacon帧的发送端设备采集的数据。
  3. 根据权利要求2所述的电子设备,其特征在于,所述数据传输通道为Wi-Fi通道,所述第一Beacon帧的发送端设备采集的数据包括多媒体数据。
  4. 根据权利要求1-3中任一项所述的电子设备,其特征在于,
    所述第一处理器,还用于根据所述第一Beacon帧,确定所述第一Beacon帧的发送端设备检测到第一类型的关键事件。
  5. 根据权利要求1-4中任一项所述的电子设备,其特征在于,
    所述第二处理器,具体用于在所述第一处理器处于下电或休眠状态,且所述蓝牙模块接收到所述第一Beacon帧,且所述电子设备处于第一运动状态时,唤醒所述第一处理器。
  6. 根据权利要求5所述的电子设备,其特征在于,
    所述电子设备还包括传感器模块;
    所述第二处理器,还用于根据所述传感器模块采集的传感器数据,确定所述电子设备处于所述第一运动状态。
  7. 根据权利要求1-6中任一项所述的电子设备,其特征在于,
    所述蓝牙模块,用于在接收到所述第一Beacon帧时,向所述第二处理器发送第一信号;所述第二处理器,还用于响应于所述第一信号,唤醒所述第一处理器。
  8. 根据权利要求1-7中任一项所述的电子设备,其特征在于,所述Beacon帧的格式符合预设格式,具体包括:所述Beacon帧的某个或某些字段为预设数值。
  9. 根据权利要求1-8中任一项所述的电子设备,其特征在于,所述蓝牙模块包括蓝牙低功耗BLE模块。
  10. 根据权利要求1-9中任一项所述的电子设备,其特征在于,所述第一处理器的 功耗高于所述第二处理器的功耗,或者,所述第一处理器的体积大于所述第二处理器的体积,或者,所述第一处理器的计算能力强于所述第二处理器的计算能力。
  11. 一种数据传输方法,应用于第一电子设备,其特征在于,所述方法包括:
    所述第一电子设备配置所述第一电子设备的Beacon帧响应条件;
    所述第一电子设备在处于第一状态时,接收第二电子设备广播的第一Beacon帧;
    所述第一电子设备根据所述第一Beacon帧符合所述Beacon帧响应条件,确定响应所述第一Beacon帧;
    所述第一电子设备确定响应所述第一Beacon帧时,由所述第一状态切换为第二状态;
    所述第一电子设备在处于所述第二状态时,与所述第二电子设备建立数据传输通道,以获取所述第二电子设备发送的第一数据;
    其中,
    所述Beacon帧响应条件包括以下一项或多项:Beacon帧携带的所述第二电子设备的标识在所述第一电子设备的白名单中,Beacon帧的格式符合预设格式,Beacon帧携带有所述第一电子设备中登录的第一用户账号的信息;
    所述第一状态下所述第一电子设备的功耗大于所述第二状态下所述第一电子设备的功耗。
  12. 根据权利要求11所述的方法,其特征在于,所述数据传输通道为Wi-Fi通道,所述第一数据为所述第二电子设备采集的多媒体数据。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第一Beacon帧用于指示所述第二电子设备检测到第一类型的关键事件,所述第一数据是对应于所述关键事件的数据。
  14. 根据权利要求11-13中任一项所述的方法,其特征在于,
    所述第一电子设备根据所述第一Beacon帧符合所述Beacon帧响应条件,确定响应所述第一Beacon帧,具体包括:
    在所述第一电子设备处于第一运动状态的情况下,所述第一电子设备根据所述第一Beacon帧符合所述Beacon帧响应条件,确定响应所述第一Beacon帧。
  15. 根据权利要求11-14中任一项所述的方法,其特征在于,在所述第一电子设备获取所述第一数据后,所述方法还包括:
    所述第一电子设备将所述第一数据上传至服务器。
  16. 根据权利要求11-15中任一项所述的方法,其特征在于,在所述第一电子设备获取所述第一数据后,所述方法还包括:
    所述第一电子设备由所述第二状态切换为所述第一状态。
  17. 根据权利要求11-16中任一项所述的方法,其特征在于,
    所述第一电子设备由所述第一状态切换为第二状态,具体包括:
    所述第一电子设备的应用处理器由所述下电或休眠状态切换为上电或工作状态。
  18. 根据权利要求11-17中任一项所述的方法,其特征在于,
    所述第一电子设备配置所述第一电子设备的Beacon帧响应条件,具体包括:
    所述第一电子设备配置所述第一电子设备针对所述第二电子设备广播的Beacon 帧的响应条件。
  19. 一种处理器,其特征在于,
    所述处理器安装于电子设备中,所述处理器与所述电子设备中的应用处理器、蓝牙模块耦合;所述处理器的功耗小于所述应用处理器的功耗,或者,所述处理器的体积小于所述应用处理器的体积,或者,所述处理器的计算能力弱于所述应用处理器的计算能力;
    所述处理器,用于在所述应用处理器处于下电或休眠状态,且所述蓝牙模块接收到符合预设的Beacon帧响应条件的第一Beacon帧时,唤醒所述应用处理器。
  20. 根据权利要求19所述的处理器,其特征在于,
    所述处理器,还用于接收所述蓝牙模块发送的第一信号,并响应于所述第一信号,唤醒所述应用处理器。
  21. 根据权利要求19或20所述的处理器,其特征在于,所述处理器还与所述电子设备中的传感器耦合;
    所述处理器,还用于根据所述传感器采集的传感器数据,确定当前处于第一运动状态;
    所述处理器,具体用于在所述应用处理器处于下电或休眠状态,所述蓝牙模块接收到符合预设的所述Beacon帧响应条件的所述第一Beacon帧,且当前处于所述第一运动状态时,唤醒所述应用处理器。
  22. 根据权利要求19-21中任一项所述的处理器,其特征在于,
    所述处理器,还用于配置所述蓝牙模块对接收到的Beacon帧的过滤条件。
  23. 根据权利要求22所述的处理器,其特征在于,
    所述处理器,具体用于根据所述应用处理器下发的预设指令,配置所述蓝牙模块对接收到的Beacon帧的过滤条件。
  24. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括指令,当所述指令被执行时,使得安装有所述计算机可读存储介质的电子设备执行如权利要求11-18中任一项所述的方法。
  25. 一种数据传输系统,其特征在于,所述系统包括如权利要求11-18中任一项所述的方法中的第一电子设备和第二电子设备。
PCT/CN2023/079027 2022-03-10 2023-03-01 一种数据传输方法、电子设备和装置 WO2023169278A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210230102 2022-03-10
CN202210230102.7 2022-03-10
CN202210420162.5 2022-04-20
CN202210420162.5A CN116781718A (zh) 2022-03-10 2022-04-20 一种数据传输方法、电子设备和装置

Publications (1)

Publication Number Publication Date
WO2023169278A1 true WO2023169278A1 (zh) 2023-09-14

Family

ID=87937218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079027 WO2023169278A1 (zh) 2022-03-10 2023-03-01 一种数据传输方法、电子设备和装置

Country Status (1)

Country Link
WO (1) WO2023169278A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117811604A (zh) * 2023-12-28 2024-04-02 智慧尘埃(上海)通信科技有限公司 一种可重构的通信感知装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070140199A1 (en) * 2002-02-25 2007-06-21 Palm, Inc. Power saving in multi-processor device
US20160099936A1 (en) * 2014-10-01 2016-04-07 Gopro, Inc. Bluetooth low energy hostless private address resolution
CN109348431A (zh) * 2018-11-14 2019-02-15 Oppo广东移动通信有限公司 蓝牙扫描方法、装置、设备及存储介质
CN112996089A (zh) * 2019-12-17 2021-06-18 Oppo广东移动通信有限公司 数据传输方法、装置、存储介质及电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070140199A1 (en) * 2002-02-25 2007-06-21 Palm, Inc. Power saving in multi-processor device
US20160099936A1 (en) * 2014-10-01 2016-04-07 Gopro, Inc. Bluetooth low energy hostless private address resolution
CN109348431A (zh) * 2018-11-14 2019-02-15 Oppo广东移动通信有限公司 蓝牙扫描方法、装置、设备及存储介质
CN112996089A (zh) * 2019-12-17 2021-06-18 Oppo广东移动通信有限公司 数据传输方法、装置、存储介质及电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117811604A (zh) * 2023-12-28 2024-04-02 智慧尘埃(上海)通信科技有限公司 一种可重构的通信感知装置及方法

Similar Documents

Publication Publication Date Title
WO2021213120A1 (zh) 投屏方法、装置和电子设备
CN113885759B (zh) 通知消息处理方法、设备、系统及计算机可读存储介质
WO2021052214A1 (zh) 一种手势交互方法、装置及终端设备
CN111369988A (zh) 一种语音唤醒方法及电子设备
WO2021185141A1 (zh) Wi-Fi Aware的建链方法、系统、电子设备和存储介质
WO2021104104A1 (zh) 一种高能效的显示处理方法及设备
WO2020062159A1 (zh) 无线充电方法及电子设备
WO2021052410A1 (zh) 一种应用管理方法及装置
WO2021043046A1 (zh) 一种资源管控方法及设备
WO2020056684A1 (zh) 通过转发模式连接的多tws耳机实现自动翻译的方法及装置
US20230189366A1 (en) Bluetooth Communication Method, Terminal Device, and Computer-Readable Storage Medium
WO2021043198A1 (zh) 一种蓝牙配对方法及相关装置
WO2021017909A1 (zh) 一种通过nfc标签实现功能的方法、电子设备及系统
WO2021052139A1 (zh) 手势输入方法及电子设备
WO2021175266A1 (zh) 身份验证方法、装置和电子设备
WO2021197071A1 (zh) 无线通信系统及方法
CN113676339B (zh) 组播方法、装置、终端设备及计算机可读存储介质
WO2020051852A1 (zh) 一种通信过程中信息的记录及显示方法及终端
WO2023169278A1 (zh) 一种数据传输方法、电子设备和装置
CN113596942B (zh) 通信管理方法、用户设备、系统及存储介质
WO2022170854A1 (zh) 视频通话的方法与相关设备
WO2022152174A9 (zh) 一种投屏的方法和电子设备
WO2021218544A1 (zh) 一种提供无线上网的系统、方法及电子设备
CN116781718A (zh) 一种数据传输方法、电子设备和装置
WO2023025059A1 (zh) 一种通信系统及通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23765856

Country of ref document: EP

Kind code of ref document: A1