WO2023168963A1 - 一种基于磁耦合共振模式的无线充电系统 - Google Patents

一种基于磁耦合共振模式的无线充电系统 Download PDF

Info

Publication number
WO2023168963A1
WO2023168963A1 PCT/CN2022/129416 CN2022129416W WO2023168963A1 WO 2023168963 A1 WO2023168963 A1 WO 2023168963A1 CN 2022129416 W CN2022129416 W CN 2022129416W WO 2023168963 A1 WO2023168963 A1 WO 2023168963A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
wireless charging
magnetic coupling
system based
charging system
Prior art date
Application number
PCT/CN2022/129416
Other languages
English (en)
French (fr)
Inventor
蔡何一郎
浦实
Original Assignee
苏州吾线科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州吾线科技开发有限公司 filed Critical 苏州吾线科技开发有限公司
Publication of WO2023168963A1 publication Critical patent/WO2023168963A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction

Definitions

  • the present application relates to the field of wireless charging, and specifically, to a wireless charging system based on magnetic coupling resonance mode.
  • wireless energy transmission methods can be mainly divided into three categories: microwave radiation transmission, electromagnetic induction transmission and Magnetic coupling resonance transmission.
  • microwave radiation transmission electromagnetic induction transmission
  • Magnetic coupling resonance wireless energy transmission method has become a research and development hotspot in recent years due to its many advantages such as high power, long distance, and no radiation.
  • the existing magnetic coupling resonance wireless energy transmission coils are generally used on the transmitting and receiving sides (SISO) with single input and output components.
  • SISO transmitting and receiving sides
  • the system transmission efficiency and power can reach a high level within a certain distance.
  • the coil is Examples of vertical stacking applied to the transmitting and receiving sides to increase system transmission efficiency and power.
  • the purpose of this application is to provide a wireless charging system based on magnetic coupling resonance mode, which can obtain higher system transmission efficiency and power under medium and long-range transmission distance conditions, and has good robustness to changes in the distance between the transceiver and transceiver coils. .
  • Embodiments of the present application provide a wireless charging system based on magnetic coupling resonance mode, which includes a transmitting coil and a receiving coil arranged oppositely; each of the transmitting coil and the receiving coil includes at least one layer of coil array, and each layer of coil array includes a plurality of Coil units arranged in a matrix.
  • Each coil unit includes a spiral coil and an annular feed coil set on the spiral coil. One side of the feed coil is disconnected in the middle to form an input port and an output port, and the other side is connected in the middle. Adjustable capacitance.
  • the spiral coils of two adjacent coil units in the coil array have opposite directions.
  • Each row of coil units in each layer of coil array is arranged along a curved surface.
  • Each row of coil units is arranged parallel to each other and contains a feed coil. Input ports and output ports are connected in parallel.
  • each layer of coil array includes nine coil units arranged in a matrix of three rows and three columns.
  • both the transmitting coil and the receiving coil include three layers of spaced apart coil arrays.
  • the spacing between adjacent layer coil arrays is 0.5-1.5 cm.
  • the length and width dimensions of the feed coil in the coil unit are 15.4cm ⁇ 15.4cm; the coil gap of the spiral coil is 0.3-0.6cm, and the number of coil turns is 14.25 turns; the spiral coil and the feed coil The diameter is 0.3-0.5cm.
  • the spacing between the centers of the coil arrays of the transmitting coil and the receiving coil is 40-60 cm.
  • each row of coil units in the coil array is arranged along a curved surface with a curvature radius of 40-60 cm.
  • the wireless charging system based on magnetic coupling resonance mode includes a transmitting coil and a receiving coil arranged oppositely; both the transmitting coil and the receiving coil include at least one layer of coil array, and each layer of coil array includes multiple A coil unit arranged in a matrix.
  • Each coil unit includes a spiral coil and an annular feed coil set on the spiral coil. One side of the feed coil is disconnected in the middle to form an input port and an output port, and the other side is disconnected in the middle.
  • An adjustable capacitor is connected.
  • the spiral coils of two adjacent coil units in the coil array have opposite directions.
  • Each row of coil units in each layer of the coil array is arranged along a curved surface.
  • Each row of coil units is arranged parallel to each other and contains a feed.
  • the input port and output port of the coil are connected in parallel.
  • the wireless charging system based on the magnetic coupling resonance mode provided by this application can obtain higher system transmission efficiency and power under medium and long-range transmission distance conditions, and has good robustness to changes in the spacing between the transmitting and receiving coils.
  • Figure 1 is a schematic structural diagram of a wireless charging system based on magnetic coupling resonance mode provided by an embodiment of the present application
  • Figure 2 is a schematic structural diagram of a coil array in a wireless charging system based on magnetic coupling resonance mode provided by an embodiment of the present application;
  • Figure 3 is a schematic structural diagram of a coil unit in a wireless charging system based on magnetic coupling resonance mode provided by an embodiment of the present application;
  • Figure 4 shows the input port and output port of the feed coil included in each row of coil units arranged in parallel in the wireless charging system based on the magnetic coupling resonance mode provided by the embodiment of the present application, respectively connected in parallel with the power supply through an AC-DC converter.
  • Figure 5 is a partial structural schematic diagram of a wireless charging system based on magnetic coupling resonance mode provided by an embodiment of the present application
  • Figure 6 is a schematic diagram of the simulation test results of the total energy transmission efficiency and frequency when both the transmitting coil and the receiving coil adopt a single coil unit in the wireless charging system based on the magnetic coupling resonance mode provided by the embodiment of the present application;
  • Figure 7 is a schematic diagram of the simulation test results of energy transmission efficiency and frequency when both the transmitting coil and the receiving coil adopt a three-layer coil array in the wireless charging system based on the magnetic coupling resonance mode provided by the embodiment of the present application;
  • Figure 8 is a curve of the maximum energy transmission efficiency varying with distance when both the transmitting coil and the receiving coil use a single coil unit in the wireless charging system based on the magnetic coupling resonance mode provided by the embodiment of the present application;
  • Figure 9 is a curve of the maximum energy transmission efficiency varying with distance when both the transmitting coil and the receiving coil adopt a three-layer coil array in the wireless charging system based on the magnetic coupling resonance mode provided by the embodiment of the present application.
  • 100 transmitting coil
  • 110 receiving coil
  • 120 coil array
  • 130 coil unit
  • 140 spiral coil
  • 150 feed coil
  • 160 input port
  • 170 output port
  • 180 adjustable capacitor
  • horizontal does not imply a requirement that the component be absolutely horizontal or overhanging, but may be slightly tilted.
  • “horizontal” only means that its direction is more horizontal than “vertical”. It does not mean that the structure must be completely horizontal, but can be slightly tilted.
  • the terms "setting”, “installation”, “connecting” and “connecting” should be understood in a broad sense.
  • it can be a fixed connection, It can also be a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • the specific meanings of the above terms in this application can be understood on a case-by-case basis.
  • the term “above” or “below” a first feature on a second feature may include direct contact between the first and second features, or may also include the first and second features. Not in direct contact but through additional characteristic contact between them.
  • the terms “above”, “above” and “above” the first feature on the second feature include the first feature being directly above and diagonally above the second feature, or simply mean that the first feature is higher in level than the second feature.
  • “Below”, “under” and “under” the first feature is the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • a wireless charging system based on magnetic coupling resonance mode which includes a transmitting coil 100 and a receiving coil 110 arranged oppositely; the transmitting coil 100 and the receiving coil 110 both include three-layer coil arrays 120.
  • the distance between adjacent layer coil arrays 120 is 1 cm.
  • Each layer of coil array 120 includes nine coil units 130 arranged in a matrix.
  • Each coil unit 130 includes Spiral coil 140 and an annular feed coil 150 set on the spiral coil 140.
  • One side of the feed coil 150 is disconnected in the middle to form an input port 160 and an output port 170.
  • An adjustable capacitor 180 is connected to the middle of the other side as a resonance point, the spiral coils 140 of two adjacent coil units 130 in the coil array 120 have opposite directions.
  • Each row of coil units 130 in each layer of the coil array 120 is arranged along a curved surface with a curvature radius of 50 cm.
  • the coil units 130 in each row are parallel to each other.
  • the input port 160 and the output port 170 of the arranged and included feed coil 150 are respectively connected in parallel with the power supply through an AC-DC converter.
  • the length and width dimensions of the feed coil 150 in the coil unit 130 are 15.4cm ⁇ 15.4cm; the diameters of the spiral coil 140 and the feed coil 150 are 0.4cm, the gap between the spiral coil 140 and the feed coil 150 and the coil of the spiral coil 140 The gap is 0.5cm, the number of coil turns of the spiral coil 140 is 14.25, and the spacing between the centers of the coil array 120 of the transmitting coil 100 and the receiving coil 110 is 50cm.
  • the wireless charging system based on the magnetic coupling resonance mode provided by the embodiment of the present application forms a coil array 120 by arranging nine coil units 130 in a matrix, and separately forming a three-layer coil array 120 to form a transmitting coil 100 and a receiving coil 110 arranged oppositely.
  • each coil unit 130 includes a spiral coil 140 and an annular feed coil 150 sleeved on the spiral coil 140.
  • One side of the feed coil 150 is disconnected in the middle to form the input port 160 and the output port 170, and the other side of the feed coil 150 is disconnected in the middle.
  • An adjustable capacitor 180 is connected, the spiral coils 140 of two adjacent coil units 130 in the coil array 120 have opposite directions of rotation, and each row of coil units 130 in each layer of the coil array 120 is arranged along a curved surface with a curvature radius of 50 cm.
  • the coil units 130 in each row are arranged in parallel with each other and the input port 160 and the output port 170 of the included feed coil 150 are connected in parallel, so that the compact coil array 120 is used to make the magnetic field distribution more concentrated to form an efficient near-field magnetic coupling mode curved surface coil system.
  • the full-wave numerical method-moment method and its thin line approximation algorithm are used to comprehensively analyze the entire system and optimize circuit parameters such as resonant capacitance and load resistance.
  • the resonance point is located near the 19.22GHz frequency band. In this frequency band, the wireless The charging transfer efficiency is about 54.6%.
  • the total energy transfer efficiency is about 83.5%, as shown in As shown in Figures 8 and 9, the maximum energy transmission efficiency changes with distance when both the transmitting coil 100 and the receiving coil 110 use a single coil unit 130.
  • the transmitting coil 100 and the receiving coil 110 both use a three-layer coil array.

Abstract

一种基于磁耦合共振模式的无线充电系统,涉及无线充电领域。该基于磁耦合共振模式的无线充电系统包括相对布置的发射线圈和接收线圈;发射线圈和接收线圈均包括至少一层线圈阵列,每层线圈阵列均包括多个呈矩阵布置的线圈单元,每个线圈单元均包括螺旋线圈及套设于螺旋线圈上的环形的馈电线圈,馈电线圈的一侧中部断开形成输入端口和输出端口,另一侧中部连接有可调电容,线圈阵列中两个相邻线圈单元的螺旋线圈的旋向相反,每层线圈阵列中的各行线圈单元均沿一曲面布置,每行线圈单元相互平行布置且包含的馈电线圈的输入端口和输出端口并联连接。基于磁耦合共振模式的无线充电系统能够在中、远程传输距离条件下获得较高的系统传输效率与功率。

Description

一种基于磁耦合共振模式的无线充电系统 技术领域
本申请涉及无线充电领域,具体而言,涉及一种基于磁耦合共振模式的无线充电系统。
背景技术
随着电子产品充电技术的不断发展,传统有线充电方式逐渐向无线能量传输技术进行转变,根据能量传输原理和传输距离,无线能量传输方法主要可分为三类:微波辐射传输、电磁感应传输和磁耦合共振传输。其中磁耦合共振式无线能量传输方式因其功率大、距离远、无辐射等诸多优点成为近年来的研究与发展热点。
目前现有的磁耦合共振式无线能量传输线圈一般以单输入、输出元件应用于发射、接收侧(SISO),其系统传输效率与功率在一定距离内能够达到较高水平,同时也有将线圈以垂直堆叠的形式应用于发射、接收侧来增加系统传输效率与功率的例子。
但这类磁耦合共振式无线能量传输线圈系统的缺点是:在中、远程距离上不能达到足够高的传输效率且鲁棒性较差,另外需要相对较大的寄生线圈结构来激活整个系统的强耦合磁共振效应。
发明内容
本申请的目的在于提供一种基于磁耦合共振模式的无线充电系统,能够在中、远程传输距离条件下获得较高的系统传输效率与功率,并对收发线圈间距变化具有较好的鲁棒性。
本申请的实施例是这样实现的:
本申请实施例提供一种基于磁耦合共振模式的无线充电系统,其包括相对布置的发射线圈和接收线圈;发射线圈和接收线圈均包括至少一层线圈阵列,每层线圈阵列均包括多个呈矩阵布置的线圈单元,每个线圈单元均包括螺旋线圈及套设于螺旋线圈上的环形的馈电线圈,馈电线圈的一侧中部断开形成输入端口和输出端口,另一侧中部连接有可调电容,线圈阵列中两个相邻线圈单元的螺旋线圈的旋向相反,每层线圈阵列中的各行线圈单元均沿一曲面布置,每行线圈单元相互平行布置且包含的馈电线圈的输入端口和输出端口并联连接。
在一些可选的实施方案中,每层线圈阵列均包括呈三行三列矩阵布置的九个线圈单元。
在一些可选的实施方案中,发射线圈和接收线圈均包括三层间隔布置的线圈阵列。
在一些可选的实施方案中,相邻层线圈阵列之间的间距为0.5-1.5cm。
在一些可选的实施方案中,线圈单元中馈电线圈的长宽尺寸为15.4cm×15.4cm;螺旋线圈的线圈间隙为0.3-0.6cm,线圈圈数为14.25圈;螺旋线圈和馈电线圈的直径为0.3-0.5cm。
在一些可选的实施方案中,发射线圈和接收线圈的线圈阵列中心之间的间距为40-60cm。
在一些可选的实施方案中,线圈阵列中的各行线圈单元均沿曲率半径为40-60cm的曲面布置。
本申请的有益效果是:本申请提供的基于磁耦合共振模式的无线充电系统包括相对布置的发射线圈和接收线圈;发射线圈和接收线圈均包括至少一层线圈阵列,每层线圈阵列均包括多个呈矩阵布置的线圈单元,每个线圈单元均包括螺旋线圈及套设于螺旋线圈上的环形的 馈电线圈,馈电线圈的一侧中部断开形成输入端口和输出端口,另一侧中部连接有可调电容,线圈阵列中两个相邻线圈单元的螺旋线圈的旋向相反,每层线圈阵列中的各行线圈单元均沿一曲面布置,每行线圈单元相互平行布置且包含的馈电线圈的输入端口和输出端口并联连接。本申请提供的基于磁耦合共振模式的无线充电系统能够在中、远程传输距离条件下获得较高的系统传输效率与功率,并对收发线圈间距变化具有较好的鲁棒性。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例提供的基于磁耦合共振模式的无线充电系统的结构示意图;
图2为本申请实施例提供的基于磁耦合共振模式的无线充电系统中线圈阵列的结构示意图;
图3为本申请实施例提供的基于磁耦合共振模式的无线充电系统中线圈单元的结构示意图;
图4为本申请实施例提供的基于磁耦合共振模式的无线充电系统中每行相互平行布置的线圈单元包含的馈电线圈的输入端口和输出端口分别通过AC-DC转换器与电源并联连接的结构示意图;
图5为本申请实施例提供的基于磁耦合共振模式的无线充电系统的局部结构示意图;
图6为本申请实施例提供的基于磁耦合共振模式的无线充电系统中发射线圈和接收线圈均采用单个线圈单元时的总能量传输效率和频率的仿真试验结果示意图;
图7为本申请实施例提供的基于磁耦合共振模式的无线充电系统中发射线圈和接收线圈均采用三层线圈阵列时的能量传输效率和频率的仿真试验结果示意图;
图8为本申请实施例提供的基于磁耦合共振模式的无线充电系统中发射线圈和接收线圈均采用单个线圈单元时的最大能量传输效率随距离变化曲线;
图9为本申请实施例提供的基于磁耦合共振模式的无线充电系统中发射线圈和接收线圈均采用三层线圈阵列时的最大能量传输效率随距离变化曲线。
图中:100、发射线圈;110、接收线圈;120、线圈阵列;130、线圈单元;140、螺旋线圈;150、馈电线圈;160、输入端口;170、输出端口;180、可调电容。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该申请产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
此外,术语“水平”、“竖直”、“悬垂”等术语并不表示要求部件绝对水平或悬垂,而是可以稍微倾斜。如“水平”仅仅是指其方向相对“竖直”而言更加水平,并不是表示该结构一定要完全水平,而是可以稍微倾斜。
在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特 征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
以下结合实施例对本申请的基于磁耦合共振模式的无线充电系统的特征和性能作进一步的详细描述。
如图1、图2、图3、图4和图5所示,本申请实施例提供一种基于磁耦合共振模式的无线充电系统,其包括相对布置的发射线圈100和接收线圈110;发射线圈100和接收线圈110均包括三层线圈阵列120,相邻层线圈阵列120之间的间距为1cm,每层线圈阵列120均包括九个呈矩阵布置的线圈单元130,每个线圈单元130均包括螺旋线圈140及套设于螺旋线圈140上的环形的馈电线圈150,馈电线圈150的一侧中部断开形成输入端口160和输出端口170,另一侧中部连接有可调电容180作为谐振点,线圈阵列120中两个相邻线圈单元130的螺旋线圈140的旋向相反,每层线圈阵列120中的各行线圈单元130均沿曲率半径为50cm的曲面布置,每行线圈单元130相互平行布置且包含的馈电线圈150的输入端口160和输出端口170分别通过AC-DC转换器与电源并联连接。线圈单元130中馈电线圈150的长宽尺寸为15.4cm×15.4cm;螺旋线圈140和馈电线圈150的直径为0.4cm,螺旋线圈140和馈电线圈150之间间隙以及螺旋线圈140的线圈间隙为0.5cm,螺旋线圈140的线圈圈数为14.25圈,发射线圈100和接收线圈110的线圈阵列120中心之间的间距为50cm。
本申请实施例提供的基于磁耦合共振模式的无线充电系统通过将九个线圈单元130呈矩阵布置形成线圈阵列120,并分别将三层线圈阵列120组成形成相对布置的发射线圈100和接收线圈110,每个线圈单元130均包括螺旋线圈140及套设于螺旋线圈140上的环形的馈电线圈150,馈电线圈150的一侧中部断开形成输入端口160和输 出端口170,另一侧中部连接有可调电容180,线圈阵列120中两个相邻线圈单元130的螺旋线圈140的旋向相反,并使每层线圈阵列120中的各行线圈单元130均沿曲率半径为50cm的曲面布置,每行线圈单元130相互平行布置且包含的馈电线圈150的输入端口160和输出端口170并联连接,从而采用紧凑的线圈阵列120使磁场分布更加集中组成高效的近场磁耦合模式的曲面线圈系统,在电路参数可调的情况下,采用全波数值方法-矩量法及其细线逼近算法,对整个系统综合分析并对谐振电容、负载电阻等电路参数进行优化。
如图6所示,本实施例提供的基于磁耦合共振模式的无线充电系统中发射线圈100和接收线圈110均采用单个线圈单元130时的的谐振点位于19.22GHz频段附近,在此频段内无线充电传输效率约为54.6%,如图7所示,基于磁耦合共振模式的无线充电系统中发射线圈100和接收线圈110均采用三层线圈阵列120时的总能量传输效率约为83.5%,如图8和图9所示,发射线圈100和接收线圈110均采用单个线圈单元130时的最大能量传输效率随距离变化曲线如图8所示,发射线圈100和接收线圈110均采用三层线圈阵列120时的最大能量传输效率随距离变化曲线如图9所示,可见本实施例提供的基于磁耦合共振模式的无线充电系统提高了系统效率对收发线圈间距变化的鲁棒性。
以上所描述的实施例是本申请一部分实施例,而不是全部的实施例。本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。

Claims (7)

  1. 一种基于磁耦合共振模式的无线充电系统,其特征在于,其包括相对布置的发射线圈和接收线圈;所述发射线圈和所述接收线圈均包括至少一层线圈阵列,每层所述线圈阵列均包括多个呈矩阵布置的线圈单元,每个所述线圈单元均包括螺旋线圈及套设于所述螺旋线圈上的环形的馈电线圈,所述馈电线圈的一侧中部断开形成输入端口和输出端口,另一侧中部连接有可调电容,所述线圈阵列中两个相邻所述线圈单元的所述螺旋线圈的旋向相反,每层所述线圈阵列中的各行所述线圈单元均沿一曲面布置,每行所述线圈单元相互平行布置且包含的所述馈电线圈的所述输入端口和所述输出端口并联连接。
  2. 根据权利要求1所述的基于磁耦合共振模式的无线充电系统,其特征在于,每层所述线圈阵列均包括呈三行三列矩阵布置的九个所述线圈单元。
  3. 根据权利要求1所述的基于磁耦合共振模式的无线充电系统,其特征在于,所述发射线圈和所述接收线圈均包括三层间隔布置的所述线圈阵列。
  4. 根据权利要求3所述的基于磁耦合共振模式的无线充电系统,其特征在于,相邻层所述线圈阵列之间的间距为0.5-1.5cm。
  5. 根据权利要求1所述的基于磁耦合共振模式的无线充电系统,其特征在于,所述线圈单元中所述馈电线圈的长宽尺寸为15.4cm×15.4cm;所述螺旋线圈的线圈间隙为0.3-0.6cm,线圈圈数为14.25圈,所述螺旋线圈和所述馈电线圈的直径为0.3-0.5cm。
  6. 根据权利要求1所述的基于磁耦合共振模式的无线充电系统,其特征在于,所述发射线圈和所述接收线圈的所述线圈阵列中心之间的间距为40-60cm。
  7. 根据权利要求1所述的基于磁耦合共振模式的无线充电系统,其特征在于,所述线圈阵列中的各行所述线圈单元均沿曲率半径为40-60cm的曲面布置。
PCT/CN2022/129416 2022-03-08 2022-11-03 一种基于磁耦合共振模式的无线充电系统 WO2023168963A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210219836.5A CN114759684A (zh) 2022-03-08 2022-03-08 一种基于磁耦合共振模式的无线充电系统
CN202210219836.5 2022-03-08

Publications (1)

Publication Number Publication Date
WO2023168963A1 true WO2023168963A1 (zh) 2023-09-14

Family

ID=82325765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129416 WO2023168963A1 (zh) 2022-03-08 2022-11-03 一种基于磁耦合共振模式的无线充电系统

Country Status (2)

Country Link
CN (1) CN114759684A (zh)
WO (1) WO2023168963A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114759684A (zh) * 2022-03-08 2022-07-15 苏州吾线科技开发有限公司 一种基于磁耦合共振模式的无线充电系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140340031A1 (en) * 2013-05-15 2014-11-20 The Regents Of The University Of Michigan Wireless power transmission for battery charging
CN104617684A (zh) * 2015-02-13 2015-05-13 哈尔滨工业大学 基于双层阵列的细胞线圈阵列结构的磁耦合谐振式无线电能传输系统的传输线圈
CN104682578A (zh) * 2015-03-13 2015-06-03 喻易强 基于磁谐振耦合的磁场均衡分布型无线电能传输系统
CN206237176U (zh) * 2016-12-14 2017-06-09 武汉大学 一种基于九方形发射线圈的背包内嵌式无线充电系统
US20200212721A1 (en) * 2019-01-02 2020-07-02 Ge Hybrid Technologies, Llc Wireless power transmission apparatus with multiple controllers
CN113224860A (zh) * 2021-01-06 2021-08-06 成都斯普奥汀科技有限公司 一种用于磁共振无线能量传输系统的立体天线装置
CN114759684A (zh) * 2022-03-08 2022-07-15 苏州吾线科技开发有限公司 一种基于磁耦合共振模式的无线充电系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140340031A1 (en) * 2013-05-15 2014-11-20 The Regents Of The University Of Michigan Wireless power transmission for battery charging
CN104617684A (zh) * 2015-02-13 2015-05-13 哈尔滨工业大学 基于双层阵列的细胞线圈阵列结构的磁耦合谐振式无线电能传输系统的传输线圈
CN104682578A (zh) * 2015-03-13 2015-06-03 喻易强 基于磁谐振耦合的磁场均衡分布型无线电能传输系统
CN206237176U (zh) * 2016-12-14 2017-06-09 武汉大学 一种基于九方形发射线圈的背包内嵌式无线充电系统
US20200212721A1 (en) * 2019-01-02 2020-07-02 Ge Hybrid Technologies, Llc Wireless power transmission apparatus with multiple controllers
CN113224860A (zh) * 2021-01-06 2021-08-06 成都斯普奥汀科技有限公司 一种用于磁共振无线能量传输系统的立体天线装置
CN114759684A (zh) * 2022-03-08 2022-07-15 苏州吾线科技开发有限公司 一种基于磁耦合共振模式的无线充电系统

Also Published As

Publication number Publication date
CN114759684A (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
JP5934934B2 (ja) 無線電力伝送システム
US8598744B2 (en) Apparatus for transmitting and receiving wireless energy using meta-material structures having negative refractive index
US8779629B2 (en) Apparatus for transmitting and receiving wireless energy using meta-material structures having zero refractive index
KR20110035196A (ko) 스파이럴 안테나 및 스파이럴 안테나를 이용한 무선전력전송장치
WO2023168963A1 (zh) 一种基于磁耦合共振模式的无线充电系统
CN101904048A (zh) 用于无线功率应用的天线
CN103746466B (zh) 一种适用于多负载传输的磁耦合谐振式无线电能传输装置
CN108736582B (zh) 一种多线圈交叉阵列式无线电能传输系统收发线圈结构
CN103296769A (zh) 一种无线能量传输系统
CN103296776A (zh) 一种无线能量传输系统
CN204992793U (zh) 一种用于无线电能传输的装置
CN112735727B (zh) 一种无线电能传输系统的pcb线圈装置设计方法
CN103366916A (zh) 一种无线能量接收线圈及无线能量传输系统
CN210724332U (zh) 多负载无线充电装置
CN103296781A (zh) 一种无线能量传输系统
CN103368273A (zh) 一种磁共振线圈装置以及无线能量传输系统
CN101594010A (zh) 能量传输系统与能量传输端装置
CN108173355A (zh) 一种电磁场耦合混合无线电能传输系统
CN103296773A (zh) 一种无线能量传输系统
CN103296778A (zh) 一种无线能量传输系统
CN204243914U (zh) 边缘密集嵌套电容加载环谐振器
CN104158303B (zh) 边缘密集嵌套电容加载环谐振器
CN103296775A (zh) 一种无线能量传输系统
CN112953034A (zh) 一种用于电能无线传输的谐振器微结构的拓扑优化方法
CN104953723A (zh) 一种用于无线电能传输的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930586

Country of ref document: EP

Kind code of ref document: A1