WO2023168694A1 - Blank for dimensionally stable foodstuff container with greater bending stiffness for bending in first composite direction than for bending in further composite direction - Google Patents

Blank for dimensionally stable foodstuff container with greater bending stiffness for bending in first composite direction than for bending in further composite direction Download PDF

Info

Publication number
WO2023168694A1
WO2023168694A1 PCT/CN2022/080344 CN2022080344W WO2023168694A1 WO 2023168694 A1 WO2023168694 A1 WO 2023168694A1 CN 2022080344 W CN2022080344 W CN 2022080344W WO 2023168694 A1 WO2023168694 A1 WO 2023168694A1
Authority
WO
WIPO (PCT)
Prior art keywords
blank
container
preferred
grooves
bending
Prior art date
Application number
PCT/CN2022/080344
Other languages
French (fr)
Inventor
Thomas Keck
Jannis OCHSMANN
Original Assignee
Sig Combibloc Services Ag
Sig Combibloc (Suzhou) Co. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sig Combibloc Services Ag, Sig Combibloc (Suzhou) Co. Ltd. filed Critical Sig Combibloc Services Ag
Priority to PCT/CN2022/080344 priority Critical patent/WO2023168694A1/en
Priority to TW112107118A priority patent/TW202406802A/en
Publication of WO2023168694A1 publication Critical patent/WO2023168694A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D5/00Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper
    • B65D5/42Details of containers or of foldable or erectable container blanks
    • B65D5/72Contents-dispensing means
    • B65D5/74Spouts
    • B65D5/746Spouts formed separately from the container
    • B65D5/747Spouts formed separately from the container with means for piercing or cutting the container wall or a membrane connected to said wall
    • B65D5/748Spouts formed separately from the container with means for piercing or cutting the container wall or a membrane connected to said wall a major part of the container wall or membrane being left inside the container after the opening

Definitions

  • the present invention refers to a blank of a planar composite, wherein the blank
  • - comprises a plurality of grooves arranged and configured such that by folding the blank along the grooves of the plurality of grooves and joining portions of the blank, a first part of a container wall surrounding a container interior of the closed container is obtainable, and
  • - comprises a first transverse margin and a further transverse margin, which is, along a longitudinal direction of the closed container, opposite to the first transverse margin;
  • the further transverse margin is arranged and configured to obtain a first part of a head portion of the closed container by folding the further transverse margin along grooves of the plurality of grooves and joining portions of the further transverse margin; wherein an edge of the further transverse margin surrounds a further part of the head portion; wherein a bending stiffness of the blank for bending in a first composite direction is greater than for bending in a further composite direction perpendicular to the first composite direction; wherein along at least 50 %of its length, the edge runs in an angular range of ⁇ 30° about the first composite direction.
  • the invention further pertains to a use of the blank, to a container precursor, to a closed container and further to processes of making a blank, making a container precursor and making a closed container as well as to corresponding products of these processes.
  • foodstuffs have been preserved, whether they be foodstuffs for human consump-tion or else animal feed products, by storing them either in a can or in a jar closed by a lid.
  • shelf life can be increased firstly by separately and very substantially sterilising the foodstuff and the container in each case, here the jar or can, and then introducing the foodstuff into the container and closing the container.
  • these measures of increasing the shelf life of foodstuffs which have been tried and tested over a long period, have a series of disadvantages, for example the need for another sterilisation later on. Cans and jars, because of their essentially cylindrical shape, have the disadvantage that very dense and space-saving storage is not possible.
  • cans and jars have considerable intrinsic weight, which leads to increased energy expenditure in transport. Moreover, production of glass, tinplate or aluminium, even when the raw materials used for the purpose are recycled, necessitates quite a high expenditure of energy. In the case of jars, an aggravating factor is elevated expenditure on transport.
  • the jars are usually prefabricated in a glass factory and then have to be transported to the facility where the foodstuff is dispensed with utilisation of considerable transport volumes.
  • jars and cans can be opened only with considerable expenditure of force or with the aid of tools and hence in a rather laborious manner. In the case of cans, there is a high risk of injury emanating from sharp edges that arise on opening.
  • a further object of the invention is to provide a dimensionally stable foodstuff container made of laminate which is characterised by an improved shelf life.
  • a further object of the invention is to provide a dimensionally stable foodstuff container made of laminate which, in particular through good stacking behaviour, allows the most efficient uti-lisation of transport volumes when supplying such foodstuff containers.
  • the above-described advantageous foodstuff con-tainer is particularly suitable for stationary household use, in particular due to its relatively large capacity.
  • the advantageous foodstuff container described above is particularly suitable for mobile use, especially due to its good grip stiffness.
  • one of the advantageous foodstuff contain-ers described above is additionally characterised by good standing stability of the individual container.
  • a contribution to at least partly fulfilling at least one, preferably more than one, of the above-mentioned objects is made by any of the embodiments of the invention.
  • a 1 st embodiment of the invention is a blank of a planar composite, wherein the blank
  • - comprises a plurality of grooves arranged and configured such that by folding the blank along the grooves of the plurality of grooves and joining portions of the blank, a first part of a container wall surrounding a container interior of the closed container is obtainable, and
  • - comprises a first transverse margin and a further transverse margin, which is, along a longitudinal direction of the closed container, opposite to the first transverse margin;
  • the further transverse margin is arranged and configured to obtain a first part of a head portion of the closed container by folding the further transverse margin along grooves of the plurality of grooves and joining portions of the further transverse margin; wherein an edge of the further transverse margin surrounds a further part of the head portion; wherein a bending stiffness of the blank for bending in a first composite direction is greater than for bending in a further composite direction perpendicular to the first composite direction; wherein, along at least 50 %, preferably at least 60 %, more preferably at least 70 %, more preferably at least 80 %, more preferably at least 90 %, still more preferably at least 95 %, most preferably 100 %, of its length, the edge runs in an angular range of ⁇ 30°, preferably ⁇ 25°, more preferably ⁇ 20°, more preferably ⁇ 15°, more preferably ⁇ 10°, more preferably ⁇ 5°, still more preferably ⁇ 3°, most preferably 0°, about the
  • the edge of the further transverse margin concerned here is preferably a cut edge of the blank.
  • the cut edge is to be distinguished from an edge formed by a fold.
  • the first part of the head portion has an opening which is surrounded by the edge.
  • the edge forms a perimeter of the opening.
  • the opening is preferably closed by the further part of the head portion.
  • the blank is designed to produce the closed container of the invention according to any one of its embodiments.
  • the planar composite comprises a carrier layer.
  • This preferred embodiment is a 2 nd embodiment of the invention, that preferably depends on the 1 st embodiment of the invention.
  • planar composite additionally comprises an inner polymer layer superimposing the carrier layer on its inner side.
  • This preferred embodiment is a 3 rd embodiment of the invention, that preferably depends on the 2 nd embodiment of the invention.
  • the planar composite additionally comprises a barrier layer superimposing the carrier layer and disposed between the carrier layer and the inner polymer layer.
  • This preferred embodiment is a 4 th embodiment of the invention, that preferably depends on the 3 rd embodiment of the invention.
  • planar composite additionally comprises an intermediate polymer layer superimposing the carrier layer and disposed between the carrier layer and the barrier layer.
  • This preferred embodiment is a 5 th embodiment of the invention, that preferably depends on the 4 th embodiment of the invention.
  • planar composite additionally comprises an outer polymer layer superimposing the carrier layer on its outer side.
  • This preferred embodiment is a 6 th embodiment of the invention, that preferably depends on any one of the 2 nd to 5 th embod-iments of the invention.
  • the outer polymer layer is adjacent to the carrier layer.
  • the outer polymer layer preferably comprises at least 50 %by weight, preferably at least 60 %by weight, more preferably at least 70 %by weight, even more preferably at least 80 %by weight, most preferably at least 90 %by weight, in each case based on the weight of the outer polymer layer, of a polyolefin, preferably a polyethylene or a polypropylene or both.
  • the outer polymer layer comprises at least 50 %by weight, preferably at least 60 %by weight, more preferably at least 70 %by weight, even more preferably at least 80 %by weight, most preferably at least 90 %by weight, each based on the weight of the outer polymer layer, of an LDPE.
  • This preferred embodiment is a 7 th embodi-ment of the invention, that preferably depends on the 6 th embodiment of the invention.
  • the planar composite additionally comprises a colour application, preferably a decoration, superimposing the carrier layer on its outer side.
  • a colour application preferably a decoration
  • This preferred embodiment is a 8 th embodiment of the invention, that preferably depends on any one of the 2 nd to 7 th embodiments of the invention.
  • the colour application is adjacent to the carrier layer. Alternatively or additionally preferred, the colour application is adjacent to the outer polymer layer.
  • a preferred colour ap-plication is a printed colour application, preferably a printed decoration.
  • the colour application comprises at least one colourant, more preferably at least 2, more preferably at least 3, more preferably at least 4, still more preferably at least 5, most preferably at least 6, colourants.
  • the aforementioned colourants preferably each have different colours.
  • the colour application comprises at least one colourant in a proportion of at least 4 %by weight, more preferably at least 6 %by weight, more preferably at least 8 %by weight, in each case based on the weight of the colour application.
  • the colour application superimposes the outer polymer layer on a side of the outer polymer layer remote from the carrier layer.
  • This preferred embodiment is a 9 th embodiment of the invention, that preferably depends on the 8 th embodiment of the invention.
  • the colour application is not superimposed by any layer of the same ply of the planar composite on its side facing away from the outer polymer layer.
  • the colour application is printed on the outer polymer layer.
  • the colour application is arranged between the carrier layer and the outer polymer layer.
  • This preferred embodiment is a 10 th embodiment of the invention, that preferably depends on the 8 th embodiment of the invention.
  • the colour application is printed on the carrier layer.
  • one selected from the group consisting of the inner polymer layer, the intermediate polymer layer and the outer polymer layer, or a combina-tion of at least two thereof comprises, preferably consists of, a polyolefin, preferably a polyeth-ylene or a polypropylene or a mixture of both.
  • This preferred embodiment is an 11 th embodiment of the invention, that preferably depends on any one of the 3 rd to 10 th embodiments of the inven-tion.
  • one selected from the group consisting of the inner polymer layer, the intermediate polymer layer and the outer polymer layer, or a combination of at least two thereof comprises the polyolefin, preferably the polyethylene or the polypropylene or a mixture thereof, in a pro-portion of at least 50 %by weight, preferably at least 60 %by weight, more preferably at least 70 %by weight, even more preferably at least 80 %by weight, most preferably at least 90 %by weight, each based on the weight of the respective layer.
  • the carrier layer comprises, preferably consists of, one selected from the group consisting of cardboard, paperboard, and paper, or a combination of at least two thereof.
  • This preferred embodiment is a 12 th embodiment of the invention, that preferably depends on any one of the 2 nd to 11 th embodiments of the invention.
  • cardboard is preferably a material that has a combination of properties of paperboard and paper.
  • cardboard preferably has a basis weight in a range of 150 to 600 g/m 2 .
  • the barrier layer comprises, preferably consists of, one selected from the group consisting of a plastic, a metal, and a metal oxide, or a combination of at least two thereof.
  • This preferred embodiment is a 13 th embodiment of the invention, that preferably depends on any one of the 4 th to 12 th embodiments of the invention.
  • the container interior has a capacity in a range from 100 to 2000 ml, preferably from 100 to 1500 ml, more preferably from 100 to 1200 ml, more preferably from 100 to 1000 ml, more preferably from 100 to 900 ml, more preferably from 100 to 800 ml, more preferably from 100 to 700 ml, more preferably from 100 to 600 ml, more preferably from 100 to 500 ml, more preferably from 100 to 480 ml, more preferably from 100 to 460 ml, more preferably from 100 to 440 ml, more preferably from 100 to 420 ml, more preferably from 100 to 400 ml, more preferably from 100 to 380 ml, more preferably from 100 to 360 ml, more preferably from 110 to 360 ml, more preferably from 120 to 360 ml, more preferably from 130 to 360 ml, more preferably from 140 to 360 ml, more preferably from 150 to 360 ml, more
  • the container interior has a capacity in a range from 150 to 2000 ml, more preferably from 200 to 2000 ml, more preferably from 250 to 2000 ml, more preferably from 300 to 2000 ml, more preferably from 350 to 2000 ml, more preferably from 400 to 2000 ml, more preferably from 420 to 2000 ml, more preferably from 440 to 2000 ml, more preferably from 460 to 2000 ml, more preferably from 480 to 2000 ml, more preferably from 480 to 1800 ml, more preferably from 480 to 1600 ml, more preferably from 480 to 1400 ml, more preferably from 480 to 1200 ml, most preferably from 480 to 1150 ml, more preferably from 480 to 1100 ml, still more preferably from 490 to 1100 ml.
  • the carrier layer comprises a plurality of fibres; wherein the plurality of fibres has an orientation in the first composite direction.
  • This preferred embodiment is a 15 th embodiment of the invention, that preferably depends on any one of the 2 nd to 14 th embodiments of the invention.
  • a length of at least 55 %of the fibres of the plurality of fibres is oriented in an angular range of ⁇ 30°, preferably ⁇ 25°, more preferably ⁇ 20°, more preferably ⁇ 15°, more preferably ⁇ 10°, more preferably ⁇ 5°, still more preferably ⁇ 3°, most preferably 0°, around the first composite direction.
  • the bending stiffness of the blank with respect to a direction of bending of the blank, has a maximum for bending in the first composite direction.
  • This preferred embodiment is a 16 th embodiment of the invention, that preferably depends on any one of the preceding embodiments of the invention.
  • the blank has a first bending stiffness for bending in the first composite direction and a further bending stiffness for bending in the further compo-site direction; wherein a ratio of the further bending stiffness to the first bending stiffness is in a range of 1: 10 to 1: 1.5 preferably from 1: 9 to 1: 1.5, more preferably from 1: 8 to 1: 1.5, more preferably from 1: 7 to 1: 1.5, more preferably from 1: 6 to 1: 1.5, even more preferably from 1: 5 to 1: 1.5, most preferably from 1: 5 to 1: 2.
  • This preferred embodiment is a 17 th embodiment of the invention, that preferably depends on any one of the preceding embodiments of the invention.
  • the blank has a first bending stiffness for bending in the first composite direction and a further bending stiffness for bending in the further compo-site direction; wherein the first bending stiffness is greater than the further bending stiffness by at least 10 mN, more preferably by at least 20 mN, more preferably by at least 30 mN, more preferably by at least 40 mN, more preferably by at least 50 mN, more preferably by at least 60 mN, more preferably by at least 70 mN, more preferably by at least 80 mN, more preferably by at least 90 mN, still more preferably by at least 100 mN, most preferably by at least 150 mN.
  • This preferred embodiment is a 18 th embodiment of the invention, that preferably depends on any one of the preceding embodiments of the invention.
  • the blank has a first bending stiffness for bending in the first composite direction and a further bending stiffness for bending in the further composite direction; wherein the first bending stiffness is in a range from 50 to 800 mN, more preferably from 50 to 750 mN.
  • This preferred embodiment is a 19 th embodiment of the invention, that preferably depends on any one of the preceding embodiments of the invention.
  • the first bending stiffness is in a range of from 60 to 800 mN, more preferably from 70 to 800 mN, more preferably from 80 to 800 mN, more preferably from 90 to 800 mN, more preferably from 100 to 800 mN, most preferably from 100 to 750 mN.
  • the blank has a first bending stiffness for bending in the first composite direction and a further bending stiffness for bending in the further compo-site direction; wherein the further bending stiffness is in a range from 50 to 750 mN, more pref-erably from 100 to 700 mN.
  • This preferred embodiment is a 20 th embodiment of the invention, that preferably depends on any one of the preceding embodiments of the invention.
  • the first transverse margin is arranged and con-figured such that by folding the first transverse margin along grooves of the plurality of grooves and joining portions of the first transverse margin a standing base of the closed container, which in counter direction to the longitudinal direction of the closed container is opposite to the head portion, is obtainable.
  • This preferred embodiment is a 21 st embodiment of the invention, that preferably depends on any one of the preceding embodiments of the invention.
  • the blank comprises a first longitudinal margin and a further longitudinal margin opposite the first longitudinal margin in a circumferential di-rection of the closed container; wherein the first longitudinal margin and the further longitudinal margin are arranged and configured such that a longitudinal seam of the closed container is obtainable by joining the first longitudinal margin to the further longitudinal margin.
  • This pre-ferred embodiment is a 22 nd embodiment of the invention, that preferably depends on any one of the preceding embodiments of the invention.
  • the circumferential direction and the longitudinal direction of the closed container are perpendicular to each other.
  • the closed container tapers in the head portion along the longitudinal direction of the closed container, at least in sections.
  • This preferred em-bodiment is a 23 rd embodiment of the invention, that preferably depends on any one of the pre-ceding embodiments of the invention.
  • the head portion comprises at least 3, preferably 3 to 12, more preferably 3 to 10, more preferably 3 to 8, more preferably 3 to 6, still more preferably 3 or 4, most preferably 4, preferably planar, head side surfaces formed from the blank; wherein the head side surfaces are inclined to each other in the longitudinal direction of the closed container such that the closed container tapers at least in sections in the head portion.
  • This preferred embodiment is a 24 th embodiment of the invention, that preferably depends on any one of the preceding embodiments of the invention.
  • each of the head side surfaces is substantially trapezoidal.
  • substantially substantially means that deviations that do not fundamentally lead away from the basic geometric shape of the trapezoid are possible.
  • one base side of the trapezoid can be curved.
  • the head portion comprises at least 3, preferably from 3 to 12, more preferably from 3 to 10, more preferably from 3 to 8, more preferably from 3 to 6, still more preferably 3 or 4, most preferably 4, preferably planar, head side surfaces formed from the blank; wherein the head side surfaces are inclined to each other in the longitu-dinal direction of the closed container; wherein each of the head side surfaces is at an angle in a range from 55 to 70°, preferably from 55 to 69°, more preferably from 55 to 68°, more preferably from 55 to 67°, more preferably from 55 to 66°, more preferably from 55 to 65°, more preferably from 55 to 64°, more preferably from 56 to 63°, more preferably from 57 to 62°, more preferably from 58 to 61°, still more preferably from 58.5 to 60.0°, to the longitudinal direction.
  • This pre-ferred embodiment is a 25 th embodiment of the invention, that preferably depends on any one of the preceding embodiments of the invention.
  • each of the head side surfaces is at an angle in a range from 56 to 70°, more preferably from 57 to 70°, more preferably from 58 to 70°, more preferably from 59 to 70°, more preferably from 60 to 70°, more preferably from 61 to 70°, more preferably from 62 to 69°, more preferably from 63 to 68°, more preferably from 64 to 67°, still more preferably from 65.0 to 66.0°, to the longitudinal direction
  • each of the head side surfaces is respectively formed by a plurality of side edges of the head portion; wherein each of the plural-ities of side edges comprises a pair of steep edges opposed to each other in a circumferential direction of the closed container, which is perpendicular to the longitudinal direction of the closed container; wherein each pair of steep edges is formed along a pair of grooves of the plu-rality of grooves.
  • This preferred embodiment is a 26 th embodiment of the invention, that prefer-ably depends on the 24 th or 25 th embodiment of the invention.
  • the grooves of each of the pairs of grooves lie in a plane of planar extension of the blank and, in this plane of planar extension, run at an angle in the range from 40 to 60°, more preferably from 41 to 59°, more preferably from 42 to 58°, more preferably from 43 to 57°, more preferably from 44 to 57°, more preferably from 45 to 57°, more preferably from 46 to 57°, more preferably from 47 to 57°, more preferably from 48 to 57°, more preferably from 49 to 57°, more preferably from 50 to 57°, more preferably from 51 to 57°, more preferably from 52 to 57°, more preferably from 53 to 56°, more preferably from 53.5 to 55.5°, still more preferably from 54.0 to 55.0°, to one another.
  • This preferred embodiment is a 27 th embodiment of the invention, that preferably depends on the 26 th embodiment of the invention.
  • the grooves of each of the pairs of grooves lie in a plane of planar ex-tension of the blank and run at an angle in the range of from 43 to 56°, more preferably from 43 to 55°, more preferably from 43 to 54°, more preferably from 43 to 53°, more preferably from 43 to 52°, more preferably from 43 to 51°, more preferably from 43 to 50°, more preferably from 43 to 49°, more preferably from 43 to 48°, more preferably from 43 to 47°, more preferably from 44.0 to 46.0°, still more preferably from 44.5 to 45.5°, to one another.
  • each of the plural-ities of side edges comprises a base edge which is convexly curved towards the first transverse margin with respect to the head side surface whose perimeter is formed by said side edges.
  • This preferred embodiment is a 28 th embodiment of the invention, that preferably depends on the 26 th or 27 th embodiment of the invention.
  • each of these base edges is arcuate convex, more preferably circular arcuate convex.
  • the head side surfaces together form substantially a lateral surface of a regular truncated pyramid.
  • This preferred embodiment is a 29 th embodiment of the invention, that preferably depends on any one of the 24 th to 28 th embodiments of the in-vention.
  • the edges of the base surface of the regular truncated pyramid can be curved.
  • the edges of the base surface of the regular truncated pyramid, with respect to the adjacent head side surface are con-vexly curved, preferably arcuately convex, more preferably circularly convex.
  • the side edges of each of the head side surfaces preferably consist of the pair of steep edges, an edge of a top surface of the regular truncated pyramid and an edge of a base surface of the regular trun-cated pyramid.
  • the angle at which the grooves of each of the pairs of grooves run relative to each other in the plane of planar extension of the blank is an angle included by the 2 steep edges of each side face of the supplementary pyramid of the regular truncated pyramid at the apex of that supplementary pyramid.
  • the regular truncated pyramid has a base surface in the form of a polygon.
  • This preferred embodiment is a 30 th embodiment of the invention, that preferably depends on the 29 th embodiment of the invention.
  • a preferred polygon is a regular polygon. Alternatively or additionally preferred, the polygon has 3 to 12, more preferably 3 to 10, more preferably 3 to 8, more preferably 3 to 6, still more preferably 3 or 4, most preferably 4, corners. A preferred polygon with 4 corners is a rectangle. A preferred rectangle is a square. Preferably, the head portion of the closed container has as many head side faces as the polygon has corners.
  • the grooves of the plurality of grooves at least partially include line-shaped indentations on an outer side of the blank.
  • This preferred embodi-ment is a 31 st embodiment of the invention, that preferably depends on any one of the preceding embodiments of the invention.
  • a preferred line-shaped indentation is a line-shaped material displacement.
  • the grooves of the plurality of grooves are formed as line-shaped depressions on the outer side of the blank. Further preferably, the grooves of the plurality of grooves have bulges on an inner side of the blank.
  • the blank is configured such that the head portion of the closed container is formed by the first part of the head portion and a further part of the head portion; wherein the further part comprises, preferably consists of, an element other than the blank.
  • This preferred embodiment is a 32 nd embodiment of the invention, that preferably depends on any one of the preceding embodiments of the invention.
  • the element other than the blank forms a top surface of the head portion of the closed container.
  • a preferred top surface is the top surface of a regular truncated pyramid.
  • the element other than the blank forms a further part of the container wall of the closed container.
  • a preferred element other than the blank is a non-planar component.
  • a preferred non-planar component is a moulded component.
  • a preferred moulded component is an injection moulded component.
  • the element other than the blank comprises
  • This preferred embodiment is a 33 rd embodiment of the invention, that preferably depends on the 32 nd embodiment of the invention.
  • the base member comprises
  • This preferred embodiment is a 34 th embodiment of the invention, that preferably depends on the 33 rd embodiment of the invention.
  • the first side of the base plate in the closed container faces the container interior and the further side of the base plate in the closed container faces away from the container interior.
  • each of the side walls of the base member are inclined towards each other in a longitudinal direction of the element other than the blank extending from the base element to the spout; wherein each of the side walls includes an angle in the range from 55 to 70°, preferably from 55 to 69°, preferably from 55 to 68°, more preferably from 55 to 67°, more preferably from 55 to 66°, more preferably from 55 to 65°, more preferably from 55 to 64°, more preferably from 56 to 63°, more preferably from 57 to 62°, more preferably from 58 to 61°, still more preferably from 58.5 to 60.0°, with the longitudinal direction of the element other than the blank.
  • This preferred embodiment is a 35 th embodiment of the invention, that preferably depends on the 34 th embodiment of the invention.
  • each of the side walls includes an angle in the range from 56 to 70°, more preferably from 57 to 70°, more preferably from 58 to 70°, more preferably from 59 to 70°, more preferably from 60 to 70°, more preferably from 61 to 70°, more preferably from 62 to 69°, more preferably from 63 to 68°, more preferably from 64 to 67°, still more preferably from 65.0 to 66.0°, with the longitudinal direction of the element other than the blank.
  • the longitudinal direction of the element other than the blank is perpendicular to the base plate.
  • the longitudinal direction is perpendicular to a circumferential direction of the element other than the blank.
  • the longitudinal direction of the element other than the blank in the closed container runs along a length of the closed container, i.e. along the longitudinal direction of the closed container.
  • the element other than the blank consists of the base element and the spout.
  • a preferred element other than the blank is configured as a further part of the container wall of the closed container.
  • the base plate has a base surface in the form of a polygon.
  • This preferred embodiment is a 36 th embodiment of the invention, that preferably de-pends on the 34 th or 35 th embodiment of the invention.
  • a preferred polygon is a regular polygon. Alternatively or additionally preferred, the polygon has 3 to 12, more preferably 3 to 10, more preferably 3 to 8, more preferably 3 to 6, still more preferably 3 or 4, most preferably exactly 4, corners.
  • a preferred polygon with 4 corners is a rectangle.
  • a preferred rectangle is a square.
  • the base member has as many side walls as the polygon has corners.
  • each 2 of the side walls which are next to each other in a circumferential direction of the element other than the blank, adjoin each other forming a side edge of the base member.
  • This preferred embodiment is a 37 th embodiment of the inven-tion, that preferably depends on any one of the 34 th to 36 th embodiments of the invention.
  • the base member and the spout are formed in one piece with each other.
  • This preferred embodiment is a 38 th embodiment of the invention, that preferably depends on any one of the 33 rd to 37 th embodiments of the invention.
  • the element other than the blank is formed in one piece.
  • the first part of the container wall is formed from the blank; wherein a further part of the container wall is formed from the element other than the blank; wherein the first part and the further part together form the container wall such that the closed container is closed.
  • This preferred embodiment is a 39 th embodiment of the invention, that preferably depends on any one of the 32 nd to 38 th embodiments of the invention.
  • the further part of the container wall is cup-shaped.
  • This preferred embodiment is a 40 th embodiment of the invention, that preferably de-pends on the 39 th embodiment of the invention.
  • the element other than the blank bounds the container interior in the longitudinal direction of the closed container.
  • This preferred embodi-ment is a 41 st embodiment of the invention, that preferably depends on any one of the 32 nd to 40 th embodiments of the invention.
  • the element other than the blank forms a top of the closed container for this purpose.
  • the blank bounds the container interior laterally, or in a direction opposite to the longitudinal direction of the closed container, or both.
  • This preferred embodiment is a 42 nd embodiment of the invention, that preferably depends on any one of the preceding embodiments of the invention.
  • the plurality of grooves includes 4 longitudinal grooves, each longitudinal groove being arranged and configured to obtain a longitudinal edge of the closed container by folding along the respective longitudinal groove, each longitudinal edge of the closed container extending along the longitudinal direction of the closed container from the standing base to the head portion, wherein the closed container has a square cross-section along its longitudinal direction between the standing base and the head portion at least in sections, preferably continuously, wherein the shortest of the 4 longitudinal grooves has a length l, wherein a ratio of the length l to an edge length a of the square cross-section lies in a range from 1.3 to 2.95, preferably from 1.35 to 2.95, more preferably from 1.38 to 2.8, most preferably from 1.39 to 2.8.
  • the length l is the height of the closed container excluding its head portion.
  • the 4 longitudinal grooves are of equal length. In principle, however, it is also possible that, for example, 2 longitudinal grooves are shorter than the other two longitudinal grooves. In this case, the length l designates the shorter longitudinal grooves.
  • the plurality of grooves comprises at least one auxiliary groove, preferably at least 2 auxiliary grooves, more preferably at least 3 auxiliary grooves, most preferably 4 auxiliary grooves; wherein each auxiliary groove is arranged next to a longitudinal groove of the plurality of grooves in the first transverse margin such that a bending radius of a longitudinal fold along this longitudinal groove is increased at least in sections of the longitudinal fold.
  • each auxiliary groove curves away from the respective longitudinal groove.
  • each auxiliary groove is arranged on a side of the respective longitudinal groove which faces away from a centre of the blank, based on a cir-cumferential direction of the closed container which is perpendicular to the longitudinal direc-tion of the closed container.
  • a 43 rd embodiment of the invention is a process comprising as process steps:
  • grooves of the plurality of grooves are arranged and configured such that by folding the blank along the grooves of the plurality of grooves and joining portions of the blank, a first part of a container wall surrounding a container interior of the closed container is obtainable;
  • the further transverse margin is arranged and configured to provide a first part of a head portion of the closed container by folding the further transverse margin along grooves of said plurality of grooves and joining portions of the further transverse margin; wherein an edge of the further transverse margin surrounds a further part of the head portion; wherein along at least 50%, preferably at least 60%, more preferably at least 70%, more preferably at least 80%, more preferably at least 90%, still more preferably at least 95%, most preferably 100%, of its length, the edge runs in an angular range of ⁇ 30°, preferably ⁇ 25°, more preferably ⁇ 20°, more pref-erably ⁇ 15°, more preferably ⁇ 10°, more preferably ⁇ 5°, still more preferably ⁇ 3°, most preferably 0°, about the first composite direction.
  • the process is preferably a process for producing the blank, more preferably of producing the blank.
  • a preferred blank is configured to produce at least one, preferably exactly one, closed container.
  • a preferred closed container is a closed foodstuff container. Additionally or alterna-tively preferred, the closed container is the closed container of the invention according to any of its embodiments. Additionally or alternatively preferred, the blank is the blank of the invention according to any of its embodiments.
  • the planar composite precursor comprises a carrier layer.
  • This preferred embodiment is a 44 th embodiment of the invention, that preferably depends on the 43 rd embodiment of the invention.
  • the carrier layer is de-signed and arranged according to one of the embodiments of the blank according to the invention.
  • planar composite precursor in the process step a) comprises as layers of a sequence of layers superimposing each other in a direction from an outer side of the planar composite precursor to an inner side of the planar composite precursor:
  • This preferred embodiment is a 45 th embodiment of the invention, that preferably depends on the 44 th embodiment of the invention.
  • the carrier layer, the barrier layer, or the inner polymer layer, or a combination of at least two of these is configured and arranged according to any one of the embodiments of the blank according to the invention.
  • the planar composite precursor in the process step a) additionally comprises an outer polymer layer superimposing the carrier layer on a side facing an outer side of the planar composite precursor.
  • This preferred embodiment is a 46 th em-bodiment of the invention, that preferably depends on the 44 th or 45 th embodiment of the inven-tion.
  • the outer polymer layer is configured and arranged according to any one of the embodiments of the blank according to the invention.
  • the planar composite precursor in the process step a) additionally comprises an intermediate polymer layer between the carrier layer and the barrier layer.
  • This preferred embodiment is a 47 th embodiment of the invention, that preferably depends on the 45 th or 46 th embodiment of the invention.
  • the intermediate polymer layer is configured and arranged according to any one of the embodiments of the blank according to the invention.
  • the introducing of the grooves of the plurality of grooves takes place as an introducing of a plurality of line-shaped depressions on a side of the carrier layer, which, in the planar composite, faces an outer side of the planar composite.
  • This preferred embodiment is a 48 th embodiment of the invention, that preferably depends on any one of the 44 th to 47 th embodiments of the invention.
  • the introducing is performed by contacting the planar composite precursor on the side of the carrier layer facing away from the barrier layer in the planar composite and preferably simultaneously on an opposite side of the planar composite precursor with at least one grooving tool.
  • a, preferably linear, region of the planar composite precursor on the aforemen-tioned opposite side is preferably received in a recess in the grooving tool.
  • the region is preferably pressed into the recess.
  • the linear depressions are preferably obtained as lin-ear material displacements.
  • a preferred grooving tool has a multi-part structure.
  • the groov-ing tool preferably comprises a part with a recess and another part which is designed for pressing the planar composite precursor into the recess. Accordingly, these two parts are preferably de-signed to engage with each other.
  • the planar composite precursor in the process step a) additionally comprises a colour application superimposing the carrier layer on its side facing an outer side of the planar composite precursor.
  • This preferred embodiment is a 49 th em-bodiment of the invention, that preferably depends on any one of the 44 th to 48 th embodiments of the invention.
  • the colour application is configured and arranged according to any one of the embodiments of the blank according to the invention.
  • the plurality of grooves comprises at least one auxiliary groove, preferably at least 2 auxiliary grooves, more preferably at least 3 auxiliary grooves, most preferably 4 auxiliary grooves; wherein each auxiliary groove is arranged next to a longitudinal groove of the plurality of grooves in the first transverse margin such that a bending radius of a longitudinal fold along this longitudinal groove is increased at least in sections of the longitudinal fold.
  • each auxiliary groove curves away from the respective longitudinal groove.
  • each auxiliary groove is arranged on a side of the respective longitudinal groove which faces away from a centre of the blank, based on a cir-cumferential direction of the closed container which is perpendicular to the longitudinal direc-tion of the closed container.
  • a 50 th embodiment of the invention is a blank of a planar composite obtainable by the process according to any one of the 44 th to 49 th embodiments of the invention.
  • the blank is the blank of the invention according to any one of the 1 st to 42 nd embodiments.
  • a 51 st embodiment of the invention is a container precursor of the closed container, the container precursor comprising the blank according to any one of the 1 st to 42 nd , or 50 th embodiments of the invention.
  • the blank has at least two folds, preferably at least 3 folds, more preferably at least 4 folds.
  • This preferred embodiment is a 52 nd embodiment of the invention, that preferably depends on the 51 st embodiment of the invention
  • the blank comprises a first longi-tudinal margin and a further longitudinal margin opposite the first longitudinal margin in a cir-cumferential direction of the container precursor; wherein the first longitudinal margin is joined to the further longitudinal margin to form a longitudinal seam of the container precursor.
  • This preferred embodiment is a 53 rd embodiment of the invention, that preferably depends on the 51 st or 52 nd embodiment of the invention.
  • the circumferential direction and the longitu-dinal direction of the container precursor are perpendicular to each other.
  • a 54 th embodiment of the invention is a closed container comprising the blank according to any one of the 1 st to 42 nd , or 50 th embodiments of the invention.
  • the closed container according to the invention is a closed foodstuff container.
  • a first part of the container wall is formed by the blank which has been folded along grooves of the plurality of grooves and portions of the blank have been joined to one another.
  • This preferred embodiment is a 55 th embodiment of the invention, that preferably depends on the 54 th embodiment of the invention.
  • the closed container additionally comprises the element other than the blank.
  • This preferred embodiment is a 56 th embodiment of the inven-tion, that preferably depends on the 54 th or 55 th embodiment of the invention.
  • the element other than the blank forms a further part of the container wall.
  • the first part and the further part together form the container wall such that the closed container is closed.
  • a 57 th embodiment of the invention is a closed container comprising
  • the blank has a bending stiffness which is greater for bending in a first composite direc-tion than for bending in a further composite direction perpendicular to the first composite direc-tion;
  • the element other than the blank forms a further part of the container wall; wherein the further transverse margin is joined to the element other than the blank; wherein an edge of the further transverse margin surrounds the element other than the blank; wherein along at least 50 %, preferably at least 60 %, more preferably at least 70 %, more preferably at least 80 %, more preferably at least 90 %, still more preferably at least 95 %, most preferably 100 %, of its length, the edge runs in an angular range of ⁇ 30°, preferably ⁇ 25°, more preferably ⁇ 20°, more preferably ⁇ 15°, more preferably ⁇ 10°, more preferably ⁇ 5°, still more preferably ⁇ 3°, most preferably 0°, about the first composite direction.
  • the first part of the container wall and the further part of the container wall together form the container wall such that the closed container is closed.
  • the further transverse margin forms a first part of a head portion of the closed container; wherein the edge of the further transverse margin surrounds a further part of the head portion.
  • the further part of the head por-tion preferably comprises the element other than the blank.
  • the further transverse margin, preferably the edge of the further transverse margin encloses the element other than the blank, preferably along an entire circumference of the element other than the blank.
  • the planar composite comprises a carrier layer.
  • this carrier layer has the features of the carrier layer according to one of the embodiments of the blank according to the invention.
  • the planar composite has the features of the planar composite according to one of the embodiments of the blank according to the invention.
  • the blank has the features of the blank according to one of the embodiments of the blank according to the invention.
  • the element other than the blank has the features of the element other than the blank accord-ing to one of the embodiments of the blank according to the invention.
  • the closed container has the features of the closed container according to one of the embodiments of the blank according to the invention.
  • the container interior has a capacity in a range of from 100 to 2000 ml, preferably from 100 to 1500 ml, more preferably from 100 to 1200 ml, more preferably from 100 to 1000 ml, more preferably from 100 to 900 ml, more preferably from 100 to 800 ml, more preferably from 100 to 700 ml, more preferably from 100 to 600 ml, more preferably from 100 to 500 ml, more preferably from 100 to 480 ml, more preferably from 100 to 460 ml, more preferably from 100 to 440 ml, more preferably from 100 to 420 ml, more preferably from 100 to 400 ml, more preferably from 100 to 380 ml, more preferably from 100 to 360 ml, more preferably from 110 to 360 ml, more preferably from 120 to 360 ml, more preferably from 130 to 360 ml, more preferably from 140 to 360 ml, more preferably from 150 to 360 ml,
  • the container interior has a capacity in a range from 150 to 2000 ml, more preferably from 200 to 2000 ml, more preferably from 250 to 2000 ml, more preferably from 300 to 2000 ml, more preferably from 350 to 2000 ml, more preferably from 400 to 2000 ml, more preferably from 420 to 2000 ml, more preferably from 440 to 2000 ml, more preferably from 460 to 2000 ml, more preferably from 480 to 2000 ml, more preferably from 480 to 1800 ml, more preferably from 480 to 1600 ml, more preferably from 480 to 1400 ml, more preferably from 480 to 1200 ml, most preferably from 480 to 1150 ml, more preferably from 480 to 1100 ml, still more preferably from 490 to 1100 ml.
  • the container comprises a standing base comprising the first transverse margin and, in the longitudinal direction of the closed con-tainer opposite the standing base, a head portion comprising the further transverse margin.
  • This preferred embodiment is a 59 th embodiment of the invention, that preferably depends on any of the 54 th to 58 th embodiments of the invention.
  • the standing base is formed from the blank.
  • the blank comprises a first longitudinal margin and a further longitudinal margin opposite the first longitudinal margin in a circumfer-ential direction of the closed container; wherein the first longitudinal margin is joined to the further longitudinal margin to form a longitudinal seam of the closed container.
  • This preferred embodiment is a 60 th embodiment of the invention, that preferably depends on any of the 54 th to 59 th embodiments of the invention.
  • the circumferential direction and the longitudinal direction of the closed container are perpendicular to each other.
  • the closed container tapers in the head portion along the longitudinal direction of the closed container at least in sections.
  • This preferred embodiment is a 61 st embodiment of the invention, that preferably depends on the 59 th or 60 th embodiment of the invention.
  • the head portion comprises at least 3, preferably 3 to 12, more preferably 3 to 10, more preferably 3 to 8, more preferably 3 to 6, even more preferably 3 or 4, most preferably 4, preferably planar, head side surfaces formed from the blank; wherein the head side surfaces are inclined to each other in the longitudinal direction of the closed container such that the closed container tapers at least in sections in the head portion; wherein the head side surfaces which are inclined to each other in the longitudinal direction of the closed container such that the closed container tapers at least in sections in the head portion.
  • This preferred embodiment is a 62 nd embodiment of the invention, that preferably depends on any of the 59 th to 61 st embodiments of the invention.
  • the head portion comprises at least 3, preferably 3 to 12, more preferably 3 to 10, more preferably 3 to 8, more preferably 3 to 6, even more preferably 3 or 4, most preferably 4, preferably planar, head side surfaces formed from the blank; wherein the head side surfaces are inclined to each other in the longitudinal direction of the closed container; wherein each of the head side surfaces is at an angle in a range from 55 to 70°, preferably from 55 to 69°, more preferably from 55 to 68°, more preferably from 55 to 67°, more preferably from 55 to 66°, more preferably from 55 to 65°, more preferably from 55 to 64°, more preferably from 56 to 63°, more preferably from 57 to 62°, more preferably from 58 to 61°, still more preferably from 58.5 to 60.0°, to the longitudinal direction.
  • This preferred embodiment is a 63 rd embodiment of the invention, that preferably depends on any of the 59 th to 62 nd embod-iments of the invention.
  • each of the head side surfaces is at an angle in a range from56 to 70°, more preferably from 57 to 70°, more preferably from 58 to 70°, more preferably from 59 to 70°, more preferably from 60 to 70°, more preferably from 61 to 70°, more preferably from 62 to 69°, more preferably from 63 to 68°, more preferably from 64 to 67°, still more preferably from 65.0 to 66.0°, to the longitudinal direction.
  • a perimeter of each of the head side surfaces is respectively formed by a plurality of side edges of the head portion; wherein each of the pluralities of side edges comprises a pair of steep edges opposed to each other in a circum-ferential direction of the closed container, which is perpendicular to the longitudinal direction of the closed container.
  • This preferred embodiment is a 64 th embodiment of the invention, that preferably depends on the 62 nd or 63 rd embodiment of the invention.
  • each pair of steep edges of each of the head side surfaces lie in a plane of the respective head side surface and, in this plane of the respective head side surface, run at an angle in the range of from 40 to 60°, more preferably from 41 to 59°, more preferably from 42 to 58°, more preferably from 43 to 57°, more preferably from 44 to 57°, more preferably from 45 to 57°, more preferably from 46 to 57°, more preferably from 47 to 57°, more preferably from 48 to 57°, more preferably from 49 to 57°, more preferably from 50 to 57°, more preferably from 51 to 57°, more preferably from 52 to 57°, more preferably from 53 to 56°, more preferably from 53.5 to 55.5°, still more preferably from 54.0 to 55.0°, to one other.
  • This preferred embodiment is a 65 th embodiment of the invention, that preferably depends on the 64 th embodiment of the invention.
  • the steep edges of each pair of steep edges of each of the head side surfaces lie in a plane of the respective head side surface and, in this plane of the respective head side surface, run at an angle in the range of from 43 to 56°, more preferably from 43 to 55°, more preferably from 43 to 54°, more preferably from 43 to 53°, more preferably from 43 to 52°, more preferably from 43 to 51°, more preferably from 43 to 50°, more preferably from 43 to 49°, more preferably from 43 to 48°, more preferably from 43 to 47°, more preferably from 44.0 to 46.0°, still more preferably from 44.5 to 45.5°, to one other.
  • each of the head side surfaces is substantially trapezoidal.
  • substantially means that deviations that do not fundamentally depart from the basic geometric shape of the trapezoid are possible.
  • one base side of the trapezoid can be curved.
  • each of said pluralities of side edges comprises a base edge convexly curved toward the first transverse margin with respect to the head side surface whose perimeter is formed by said side edges.
  • This preferred embodiment is a 66 th embodiment of the invention, that preferably depends on the 64 th or 65 th embodiment of the invention.
  • each of these base edges is curved in an arcuate convex manner, more preferably in a circular arcuate convex manner.
  • the head side surfaces together form substantially a lateral surface of a regular truncated pyramid.
  • This preferred embodiment is a 67 th embodiment of the invention, that preferably depends on any of the 62 nd to 66 th embodi-ments of the invention.
  • the edges of the base of the regular truncated pyramid can be curved.
  • the edges of the base surface of the regular truncated pyramid, with respect to the adjacent head side surface are convexly curved, preferably arcuately convex, more preferably circularly convex.
  • the side edges of each of the head side surfaces preferably consist of the pair of steep edges, an edge of a top surface of the regular truncated pyramid and an edge of a base surface of the regular truncated pyramid.
  • the angle at which the steep edges of each pair of steep edges extend relative to each other in the plane of the respective head side face is an angle included by the 2 steep edges of each side face of the supplementary pyramid of the regular truncated pyramid at the apex of that supplementary pyramid.
  • the regular truncated pyramid has a base surface in the form of a polygon.
  • This preferred embodiment is a 68 th embodiment of the invention, that preferably depends on the 67 th embodiment of the invention.
  • a preferred polygon is a regular polygon. Alternatively or additionally preferred, the polygon has 3 to 12, more preferably 3 to 10, more preferably 3 to 8, more preferably 3 to 6, still more preferably 3 or 4, most preferably 4, corners. A preferred polygon with 4 corners is a rectangle. A preferred rectangle is a square. Preferably, the head portion of the closed container has as many head side faces as the polygon has corners.
  • the head portion of the closed container comprises, preferably consists of, a first part of the head portion and a further part of the head portion; wherein the first part of the head portion is formed by the blank; wherein the further part of the head portion comprises, preferably consisting of, the element other than the blank.
  • This preferred embodiment is a 69 th embodiment of the invention, that preferably depends on any of the 59 th to 68 th embodiments of the invention.
  • the element other than the blank forms a top surface of the head portion of the closed container.
  • a preferred top surface is the top surface of a regular truncated pyramid.
  • This preferred embodiment is a 70 th embodiment of the invention, that preferably depends on any of the 55 th to 69 th embodiments of the invention.
  • the base member comprises
  • the spout is arranged on a first side of the base plate; wherein the side walls are arranged on a further side of the base plate opposite to the first side.
  • This preferred embodiment is a 71 st embodiment of the invention, that preferably depends on the 70 th embodiment of the invention.
  • the first side of the base plate faces the container interior and the further side of the base plate faces away from the container interior.
  • the blank and the element other than the blank are glued or sealed together or both.
  • This preferred embodiment is a 72 nd embodiment of the invention, that preferably depends on any of the 55 th to 71 st embodiments of the invention.
  • the further transverse margin of the blank is glued or sealed or both to the element other than the blank.
  • the blank is joined, preferably directly, to one of the side walls, preferably to each of the side walls, of the element other than the blank.
  • This preferred embodiment is a 73 rd embodiment of the invention, that preferably depends on the 71 st or 72 nd embodiment of the invention.
  • the element other than the blank, pref-erably the spout comprises a screw thread.
  • This preferred embodiment is a 74 th embodiment of the invention, that preferably depends on any of the 55 th to 73 rd embodiments of the invention.
  • the base member and the spout are formed in one piece with each other.
  • This preferred embodiment is a 75 th embodiment of the invention, that preferably depends on any of the 70 th to 74 th embodiments of the invention.
  • the element other than the blank is formed in one piece.
  • the closed container further comprises a cap, preferably a screw cap, which is arranged at the element other than the blank such that the cap covers a pouring aperture of the spout.
  • a cap preferably a screw cap, which is arranged at the element other than the blank such that the cap covers a pouring aperture of the spout.
  • the cap is screwed onto the spout.
  • a preferred cap includes a second polymer com-position.
  • the cap consists of the second polymer composition.
  • the second polymer composition comprises a polyolefin or a polycondensate or both.
  • the second polymer composition comprises the polyolefin or the polycondensate or both together in a pro-portion in a range of from 70 to 100 %by weight, preferably from 80 to 99 %by weight, more preferably from 90 to 98 %by weight, each based on the second polymer composition.
  • a pre-ferred polyolefin is a polyethylene or a polypropylene or both.
  • a preferred polyethylene is an HDPE.
  • a preferred polycondensate is a polyester or polyamide (PA) or both.
  • a preferred poly-ester is a polyethylene terephthalate (PET) .
  • a preferred second polymer composition addition-ally includes a colourant.
  • the second polymer composition preferably has a melting temperature in a range from 90 to 350 °C, preferably from 90 to 300 °C, more preferably from 90 to 280 °C, more preferably from 90 to 260 °C, more preferably from 90 to 240 °C, more preferably from 90 to 220 °C, more preferably from 100 to 200 °C, more preferably from 100 to 190 °C, more preferably from 100 to 180 °C, more preferably from 100 to 170 °C, more preferably from 100 to 160 °C, more preferably from 110 to 150 °C, more preferably from 120 to 140 °C, still more preferably from 125 to 140 °C, most preferably from 128 to 136 °C.
  • the closed container further comprises an opening aid; wherein the opening aid is arranged at the spout, preferably in the spout.
  • This preferred embodiment is a 77 th embodiment of the invention, that preferably depends on any one of the 70 th to 76 th embodiments of the invention.
  • the opening aid is designed and arranged for opening a pouring aperture of the spout.
  • the opening aid is arranged at the cap, preferably in the cap.
  • a preferred opening aid is a cutting aid or a tearing aid or both.
  • the opening aid is annular.
  • a preferred annular cutting aid is a cutting ring.
  • a pre-ferred annular tear aid is a tear ring.
  • a preferred opening aid comprises a third polymer composition.
  • the opening aid consists of the third polymer composition.
  • the third polymer composition comprises a polyolefin or a polycondensate or both.
  • the third polymer composition comprises the polyolefin or the polycondensate or both together in a proportion in a range from 50 to 100 %by weight, more preferably from 60 to 100 %by weight, more preferably from 70 to 100 %by weight, even more preferably from 80 to 100 %by weight, most preferably from 90 to 100 %by weight, each based on the third polymer composition.
  • a preferred polyolefin is a polyethylene or a polypropylene or both.
  • a preferred polyethylene is an HDPE.
  • a preferred polycondensate is a polyester or polyamide (PA) or both.
  • a preferred polyester is a polyethylene terephthalate (PET) .
  • a preferred third polymer composition additionally includes a colourant.
  • the third pol-ymer composition preferably has a melting temperature in a range from 90 to 350 °C, preferably from 90 to 300 °C, more preferably from 90 to 280 °C, more preferably from 90 to 260 °C, more preferably from 90 to 240 °C, more preferably from 90 to 220 °C, more preferably from 100 to 200 °C, more preferably from 100 to 190 °C, more preferably from 110 to 180 °C, most prefer-ably from 120 to 170 °C.
  • the opening aid is arranged and con-figured to open the pouring aperture by removing the cap from the spout.
  • This preferred embodiment is a 78 th embodiment of the invention, that preferably depends on the 77 th embodi-ment of the invention
  • the element other than the blank com-prises preferably consists of, a first polymer composition.
  • This preferred embodiment is a 79 th embodiment of the invention, that preferably depends on any of the 55 th to 78 th embodiments of the invention
  • the base member or the spout or both comprises the first polymer composition.
  • the base member or the spout or both consists of the first pol-ymer composition.
  • the first polymer composition com-prises a polyolefin or a polycondensate or both.
  • This preferred embodiment is an 80 th embodi-ment of the invention, that preferably depends on the 79 th embodiment of the invention.
  • the first polymer composition comprises the polyolefin or the polycondensate or both together in a proportion in a range of from 70 to 100 %by weight, preferably from 80 to 99 %by weight, more preferably from 90 to 98 %by weight, each based on the first polymer compo-sition.
  • a preferred polycondensate is a polyester or polyamide (PA) or both.
  • a preferred poly-ester is a polyethylene terephthalate (PET) .
  • the polyolefin is a polyethylene or a polypropylene or both.
  • This preferred embodiment is an 81 st embodiment of the invention, that preferably depends on the 80 th embodiment of the invention.
  • the polyethylene is an HDPE.
  • This preferred embodiment is an 82 nd embodiment of the invention, that preferably depends on the 81 st embodiment of the invention.
  • the first polymer composition com-prises a colourant.
  • This preferred embodiment is an 83 rd embodiment of the invention, that pref-erably depends on any of the 79 th to 82 nd embodiments of the invention.
  • the first polymer composition comprises the colourant in a proportion in a range from 0.5 to 5 %by weight, preferably from 0.5 to 4 %by weight, more preferably from 0.5 to 3 %by weight, in each case based on the first polymer composition.
  • the first polymer composition has a melting temperature in a range from 90 to 350 °C, preferably from 90 to 300 °C, more preferably from 90 to 280 °C, more preferably from 90 to 260 °C, more preferably from 90 to 240 °C, more preferably from 90 to 220 °C, more preferably from 100 to 200 °C, more preferably from 100 to 190 °C, more preferably from 100 to 180 °C, more preferably from 100 to 170 °C, more prefer-ably from 100 to 160 °C, more preferably from 110 to 150 °C, more preferably from 120 to 140 °C, even more preferably from 125 to 140 °C, most preferably from 128 to 136 °C.
  • This preferred embodiment is an 84 th embodiment of the invention, that preferably depends on any of the 79 th to 83 rd embodiments of the invention.
  • the first part of the container wall is cup-shaped.
  • This preferred embodiment is an 85 th embodiment of the invention, that preferably depends on any of the 54 th to 84 th embodiments of the invention.
  • the element other than the blank bounds the container interior in the longitudinal direction of the closed container.
  • This preferred embodiment is an 86 th embodiment of the invention, that preferably depends on any of the 55 th to 85 th embodiments of the invention.
  • the element other than the blank forms a top of the closed container for this purpose.
  • the blank bounds the container interior laterally, or in a direction opposite to the longitudinal direction of the closed container, or both.
  • This preferred embodiment is an 87 th embodiment of the invention, that preferably depends on any of the 54 th to 86 th embodiments of the invention.
  • the container wall is dimensionally stable.
  • This preferred embodiment is an 88 th embodiment of the invention, that preferably de-pends on any of the 54 th to 87 th embodiments of the invention.
  • the closed container is dimensionally stable.
  • the closed container is a closed foodstuff container.
  • the closed container is liquid-tight.
  • the closed container has 4 longitudinal edges, each longitu-dinal edge of the closed container running along the longitudinal direction of the closed container from the standing base to the head portion, wherein the closed container has a square cross-section at least in sections, preferably continuously, along its longitudinal direction between the standing base and the head portion, wherein the shortest of the 4 longitudinal edges has a length l, wherein a ratio of the length l to an edge length a of the square cross-section is in a range from 1.3 to 2.95, preferably from 1.35 to 2.95, more preferably from 1.38 to 2.8, most preferably from 1.39 to 2.8.
  • the length l is the height of the closed container excluding its head portion.
  • the 4 longitudinal edges are of equal length. In principle, however, it is also possible that, for example, 2 longitudinal edges are shorter than the other 2 longitudinal edges. In this case, the length l designates the shorter longitudinal edges.
  • An 89 th embodiment of the invention is a process comprising as process steps:
  • the blank comprising a first longitudinal margin and a further longitudinal margin;
  • the process is a process of making a container precursor, preferably of the closed container of the invention according to any one of its embodiments.
  • a 90 th embodiment of the invention is a container precursor obtainable by the process according the 89 th embodiment of the invention.
  • the container precursor is the container pre-cursor of the invention according to any one of the 51 st to 53 rd embodiments.
  • a 91 st embodiment of the invention is a process comprising as process steps:
  • the head portion of the container precursor preferably has the features of the head portion of the closed container of the invention according to one of its embodiments.
  • the standing base of the container precursor has the features of the standing base of the closed container according to the invention, according to one of its embodiments.
  • the process is a process for manufacturing the closed container, preferably of manufacturing the closed container.
  • the closed container is the closed container of the invention according to any one of its embodiments.
  • the process forming and closing the head portion in the process step B) comprises joining the blank to an element other than the blank.
  • This preferred embodi-ment is a 92 nd embodiment of the invention, that preferably depends on the 91 st embodiment of the invention.
  • the element other than the blank of the container precursor preferably has the features of the element other than the blank of the closed container of the invention according to one of its embodiments.
  • the blank and the element other than the blank in the process step B) are pressed to each other in a first pressing step at a first contact pressure and in a further pressing step at a further contact pressure; wherein the first contact pressure is less than the further contact pressure, preferably by at least 100 mbar, more preferably by at least 200 mbar, more preferably by at least 300 mbar, more preferably by at least 400 mbar, more preferably by at least 500 mbar, more preferably by at least 600 mbar, more preferably by at least 700 mbar, more preferably by at least 800 mbar, even more preferably by at least 900 mbar, most preferably by at least 1,000 mbar.
  • This preferred embodiment is a 93 rd embodiment of the invention, that preferably depends on the 92 nd embodiment of the invention.
  • the first pressing step is conducted prior to the further pressing step.
  • the first pressing step is conducted after the further pressing step.
  • the first pressing step is conducted in temporal overlap with the further pressing step or simultaneously to the further pressing step.
  • the first pressing step includes pressing in one or two first pressing directions and the further pressing step includes pressing in one or two further pressing directions which are different from the first pressing directions. In the case of two first pressing directions, these are preferably opposite to one another. In the case of two further pressing directions, these are preferably opposite to one another.
  • each first pressing direction is substantially perpendicular to each further pressing direction.
  • the first contact pressure is in the range from 800 to 3,000 mbar, preferably from 1,000 to 2, 800 mbar, more preferably from 1, 200 to 2, 600 mbar.
  • the further contact pressure is in the range from 2,000 to 4,000 mbar, preferably from 2, 200 to 3, 800 mbar, more preferably from 2, 400 to 3, 600 mbar.
  • the first pressing step the blank and the element other than the blank are pressed to each other on a first pair of opposite sides of the element other than the blank.
  • none of the sides of the first pair of opposite sides of the element other than the blank is pressed to the longitudinal seam of the container precursor in the first pressing step at the first contact pressure.
  • the blank is pressed to 2 side walls of the base member, which are opposite to one another.
  • the blank and the element other than the blank are pressed to each other on a further pair of opposite sides of the element other than the blank.
  • the sides of the further pair of opposite sides are different from the sides of the first pair of opposite sides.
  • the element other than the blank is pressed to the longitudinal seam of the container precursor at the further contact pressure.
  • the blank is pressed to 2 side walls of the base member, which are opposite to one another.
  • the joining in the method step B) is performed as a gluing or a sealing or both.
  • This preferred embodiment is a 94 th embodiment of the invention, that preferably depends on the 92 nd or 93 rd embodiment of the invention.
  • a preferred sealing is a heat sealing or an ultrasonic sealing or both.
  • a preferred heat sealing involves heating the blank or the element other than the blank or both by contact with a solid or a gas or both.
  • process part of the blank, or part of the element other than the blank, or both is heated to a temperature in the range from 220 to 420 °C, preferably from 240 to 400 °C, more preferably from 260 to 380 °C, in the process step B) .
  • This preferred embodiment is a 95 th embodiment of the invention, that preferably depends on any of the 92 nd to 94 th embodiments of the invention.
  • the sealing is performed with a sealant provided at least in part by the element other than the blank.
  • This preferred embodiment is a 96 th embod-iment of the invention, that preferably depends on the 94 th or 95 th embodiment of the invention.
  • the sealant is partially provided by the blank, preferably by the inner polymer layer.
  • the element other than the blank is partially melted for the joining in the method step B) .
  • This preferred embodiment is a 97 th embodiment of the invention, that preferably depends on any one of the 92 nd to 96 th embodiments of the invention.
  • a 98 th embodiment of the invention is a closed container obtainable by the process according to any one of the 91 st to 97 th embodiments of the invention.
  • the closed container is the closed container of the invention according to any one of its embodiments.
  • a 99 th embodiment of the invention is use of the blank according to any one of the 1 st to 42 nd , or 50 th embodiments of the invention, or of the container precursor according to any one of the 51 st to 53 rd , or 90 th embodiments of the invention, in each case for producing a closed container.
  • the closed container is one selected from the group, consisting of a foodstuff container, a dimensionally stable container, and a liquid-tight container, or a combination at least two thereof.
  • This preferred embodiment is a 100 th embodiment of the invention, that preferably depends on the 99 th embodiment of the invention.
  • the blank of the invention has been cut to size from a planar composite. Accordingly, the below definitions and preferences for the planar composite hold also for the blank of the invention. This holds beyond this “Planar composites” -section.
  • planar composites from which a blank according to the invention may be obtained.
  • Planar com-posites for the manufacture of foodstuff containers are also referred to as laminates.
  • Such planar composites have a sequence of layers superimposing each other in a planar manner.
  • the planar composites are often composed of a thermoplastic polymer layer, referred to herein as the outer polymer layer, a carrier layer, often made of cardboard or paper, which gives the container its dimensional stability, an optional thermoplastic polymer layer, referred to herein as the interme-diate polymer layer and/or an optional adhesion promoter layer, a barrier layer and a further thermoplastic polymer layer, referred to herein as the inner polymer layer.
  • planar composite preferably, refers to a semi-endless roll material.
  • the blank ac-cording to the invention has, preferably, been obtained by cutting such a semi-endless roll ma-terial to size.
  • the blank is preferably designed to produce a single closed container.
  • the planar composite, and also the blank can be a flat or three-dimensional object. The latter is, in particular the case, if the planar composite has been rolled up or the blank has been folded. In any case, the planar composite and the blank are each sheet-like. Therefore, the planar composite may also be referred to as sheet-like composite.
  • the layers of the planar composite form a layer sequence. Accordingly, the layers are joined to each other over their entire surfaces. Two layers are joined together when their adhesion to each other exceeds Van der Waals forces of attraction.
  • layers joined with one another are one selected from the group consisting of joined with one another by coating, laminated together, sealed together, glued together, and pressed together, or a combination of at least two thereof.
  • Layers joined with one another by coating are preferably joined with one another by melt coating or by vapour deposition.
  • a preferred melt coating is a melt extrusion coating.
  • a layer sequence includes enumerated layers means that at least the speci-fied layers are present in the specified order. This formulation does not necessarily mean that these layers immediately follow each other.
  • a formulation in which two layers are adjacent to each other means that these two layers follow each other immediately and thus without an inter-mediate layer. However, this formulation does not say anything about whether the two layers are joined or not. Rather, these two layers may be in contact with each other. Preferably, however, these two layers are joined with one another, preferably in a planar manner.
  • the outer side of the planar composite or blank is a surface of the planar composite or blank which is intended to be in contact with the environment of the container in a container to be made with the planar composite or blank. This is not precluded by the fact that in individual areas of the container, the outer surfaces of different areas of the composite or blank are folded on top of each other or joined to each other, for example sealed to each other.
  • the inner side of the planar composite or blank is a surface of the planar composite or blank which is intended to be in contact with the contents of the container, preferably a foodstuff, in a container to be made with the planar composite or blank.
  • a groove is a linear material modification intended to facilitate folding of the planar composite or blank along the groove.
  • the groove is intended to allow a fold to be produced as precisely as possible along the groove.
  • a closed container can be formed from a planar composite or blank having a corresponding groove pattern consisting of grooves by folding along the grooves.
  • This groove pattern is also referred to herein as the first plurality of grooves.
  • the planar composite may include further pluralities of grooves, each of which is arranged and configured to form a respective further container.
  • the first plurality of grooves and each further plurality of grooves are identical.
  • the planar composite preferably has a depression, preferably in the form of a material displacement, on one side, preferably its outer side. On the opposite side, preferably the inner side, the planar composite preferably has a bulge along the groove.
  • the production of the closed container includes the joining of areas of the planar composite or blank that have been contacted by way of the folding.
  • Grooving tools are used to introduce the grooves into the planar composite or blank, a process known as grooving.
  • a grooving tool in the context of the invention may be any tool suitable for grooving a planar composite, a blank or a carrier layer.
  • the grooving tool prefera-bly includes a linear elevation which has a shape of the linear depression. By contacting the planar composite, blank or carrier layer with the linear elevation, the linear depression can be introduced into the planar composite, blank or carrier layer.
  • the grooving tool can also be referred to as a pressing tool.
  • the grooving tool may also include a negative tool.
  • the negative tool includes a linear recess, which may also be referred to as groove-shaped.
  • the linear recess preferably has, in a direction of its linear extension, the shape of the linear elevation of the positive tool and is further configured to at least partially receive material of the planar composite, blank or carrier layer displaced by the positive tool during grooving.
  • polymer layer refers in particular to the inner polymer layer, the intermediate polymer layer and the outer polymer layer.
  • the polymer layers are each based on a polymer or a polymer blend, i.e., the polymer layers comprise a majority of the polymer or polymer blend.
  • a preferred polymer is a thermoplastic polymer, more preferably a polyolefin.
  • the polymer layers are preferably incorporated or applied into the planar composite material in an extrusion process, preferably by melt extrusion coating.
  • each polymer layer may comprise further components.
  • the further constituents of the polymer layers are preferably constituents which do not adversely affect the behaviour of the polymer melt when applied as a layer.
  • the further constituents may be, for example, inor-ganic compounds, such as metal salts, or further plastics, such as further thermoplastics.
  • suitable polymers for the polymer layers are in particular those which are easy to process due to good extrusion behaviour.
  • polymers obtained by chain polymeri-sation are suitable, in particular polyolefins, whereby cyclic olefin co-polymers (COC) , poly-cyclic olefin co-polymers (POC) , in particular polyethylene and polypropylene, are particu-larly preferred and polyethylene is especially preferred.
  • Suitable polymers preferably, have a melt flow rate (MFR) in a range from 1 to 25 g/10 min, preferably in a range from 2 to 20 g/10 min and particularly preferably in a range from 2, 5 to 15 g/10 min.
  • MFR melt flow rate
  • suitable polymer layers have a density in a range of 0.890 g/cm 3 to 0.980 g/cm 3 , preferably in a range of 0.895 g/cm 3 to 0.975 g/cm 3 , and more preferably in a range of 0.900 g/cm 3 to 0.970 g/cm 3 .
  • the polymer layers preferably have at least one melting tempera-ture in a range from 80 to 155 °C, preferably in a range from 90 to 145 °C, and more prefera-bly in a range from 95 to 135 °C.
  • the inner polymer layer is based on at least one thermoplastic polymer, wherein the inner poly-mer layer may comprise a particulate inorganic solid.
  • the inner polymer layer comprises at least 70 %by weight, preferably at least 80 %by weight and partic-ularly preferably at least 95 %by weight, in each case based on the total weight of the inner polymer layer, of one or more thermoplastic polymers.
  • the polymer or polymer blend of the inner polymer layer has a density (according to ISO 1183-1: 2004) in a range from 0.900 to 0.980 g/cm 3 , more preferably in a range from 0.900 to 0.960 g/cm 3 and most preferably in a range from 0.900 to 0.940 g/cm 3 .
  • the polymer is a polyolefin.
  • the inner polymer layer comprises a polyethylene or a polypropylene or both.
  • a particularly pre-ferred polyethylene is an LDPE.
  • the inner polymer layer comprises the polyethylene or the polypropylene or both together in a proportion of at least 30 %by weight, more preferably at least 40 %by weight, most preferably at least 50 %by weight, each based on the total weight of the inner polymer layer.
  • the inner polymer layer preferably comprises an HDPE, preferably in an amount of at least 5 %by weight, more preferably at least 10 %by weight, more preferably at least 15 %by weight, most preferably at least 20 %by weight, each based on the total weight of the inner polymer layer.
  • the inner polymer layer preferably comprises a polymer produced by means of a metallocene catalyst, preferably an mPE.
  • the inner polymer layer com-prises the mPE in a proportion of at least 3 %by weight, more preferably at least 5 %by weight, in each case based on the total weight of the inner polymer layer.
  • the inner polymer layer may comprise 2 or more, preferably 2 or 3, of the aforementioned polymers in a polymer blend, for example at least a proportion of the LDPE and the mPE, or at least a proportion of the LDPE and the HDPE.
  • the inner polymer layer may comprise 2 or more, preferably 3, sublayers superimposing each other, which preferably form the inner polymer layer. These sub-layers are preferably layers obtained by co-extrusion.
  • the inner polymer layer comprises, in the direction from the outer side of the planar composite to the inner side of the planar composite, a first sublayer comprising an LDPE in an amount of at least 50 %by weight, preferably at least 60 %by weight, more preferably at least 70 %by weight, even more preferably at least 80 %by weight, most preferably at least 90 %by weight, each based on the weight of the first sub-layer; and a further sub-layer comprising a blend, wherein the blend comprises an LDPE in a proportion of at least 30 %by weight, preferably at least 40 %by weight, more preferably at least 50 %by weight, more pref-erably at least 60 %by weight, most preferably at least 65 %by weight, and an mPE in a pro-portion of at least 10 %by weight, preferably at least 15 %by weight, more preferably at least 20 %by weight, most preferably at least 25 %by weight, in each case based on the
  • the further sublayer preferably comprises the blend in a proportion of at least 50 %by weight, preferably at least 60 %by weight, more preferably at least 70 %by weight, even more preferably at least 80 %by weight, most preferably at least 90 %by weight, in each case based on the weight of the further sublayer.
  • the further sub-layer consists of the blend.
  • the inner polymer layer comprises, in the direction from the outer side of the planar composite to the inner side of the planar composite, a first sub-layer comprising an HDPE in an amount of at least 30 %by weight, preferably at least 40 %by weight, more preferably at least 50 %by weight, more preferably at least 60 %by weight, most prefer-ably at least 70 %by weight, and an LDPE in an amount of at least 10 %by weight, preferably at least 15 %by weight, more preferably at least 20%by weight, in each case based on the weight of the first sub-layer; a second sub-layer comprising an LDPE in an amount of at least 50 %by weight, preferably at least 60 %by weight, more preferably at least 70 %by weight, still more preferably at least 80 %by weight, most preferably at least 90 %by weight, in each case based on the weight of the second sub-layer;
  • the blend comprises an LDPE in an amount of at least 30 %by weight, preferably at least 40 %by weight, more preferably at least 50 %by weight, even more preferably at least 60%, most preferably at least 65%by weight, and an mPE in a proportion of at least 10 %, preferably at least 15 %, more preferably at least 20 %, most preferably at least 25 %, by weight, each based on the weight of the blend.
  • the third sub-layer preferably comprises the blend in a proportion of at least 50 %by weight, preferably at least 60 %by weight, more preferably at least 70 %by weight, even more preferably at least 80 %by weight, most preferably at least 90 %by weight, in each case based on the weight of the third sub-layer.
  • the third sub-layer consists of the blend.
  • the outer polymer layer preferably comprises a polyethylene or a polypropylene or both.
  • Pre-ferred polyethylenes are LDPE and HDPE as well as mixtures thereof.
  • a preferred outer polymer layer comprises at least 50 %by weight, preferably at least 60 %by weight, more preferably at least 70 %by weight, even more preferably at least 80 %by weight, most preferably at least 90 %by weight, in each case based on the weight of the outer polymer layer, of one or more LDPE.
  • the intermediate polymer layer preferably comprises at least one polyethylene or at least one polypropylene or both.
  • particularly preferred polyethylenes are LDPE.
  • the in-termediate polymer layer comprises the at least one polyethylene or the at least one polypropyl-ene or both together in a proportion of at least 20 %by weight, more preferably at least 30 %by weight, more preferably at least 40 %by weight, more preferably at least 50 %by weight, more preferably at least 60 %by weight, more preferably at least 70 %by weight, more preferably at least 80 %by weight, most preferably at least 90 %by weight, in each case based on the total weight of the intermediate polymer layer.
  • the intermediate polymer layer preferably includes an HDPE, preferably in a proportion of at least 10 %by weight, more preferably at least 20 %by weight, more preferably at least 30 %by weight, more preferably at least 40 %by weight, more preferably at least 50 %by weight, more preferably at least 60 %by weight, more preferably at least 70 %by weight, more preferably at least 80 %by weight, most preferably at least 90 %by weight, each based on the total weight of the intermediate polymer layer.
  • the intermediate polymer layer preferably comprises the aforementioned polymers in a polymer blend.
  • the barrier layer can be any material which seems suitable to the skilled person for this purpose, which has a sufficient barrier effect, especially against oxygen.
  • the barrier layer preferably has an oxygen permeation rate of less than 50 cm 3 / (m 2 . day . atm) , preferably less than 40 cm 3 / (m 2 . day . atm) , more preferably less than 30 cm 3 / (m 2 . day . atm) , more preferably less than 20 cm 3 / (m 2 . day . atm) , more preferably less than 10 cm 3 / (m 2 . day . atm) , even more preferably less than 3 cm 3 (m 2 . day .
  • the barrier layer preferably additionally exhibits a barrier effect against water vapour.
  • the barrier layer is preferably an oxygen barrier layer and further preferably additionally a water vapour barrier layer.
  • the barrier layer preferably has a barrier effect against visible light, i.e. it is additionally a light barrier layer.
  • the barrier layer is preferably selected from
  • the barrier layer according to alternative a. is a plastic layer, this preferably comprises at least 70 %by weight, particularly preferably at least 80 %by weight and most preferably at least 95 %by weight of at least one plastic which is known to the person skilled in the art for this purpose, in particular because of aroma or gas barrier properties suitable for packaging containers.
  • Plas-tics, in particular thermoplastics, which can be considered here are N-or O-bearing plastics both by themselves and in mixtures of two or more.
  • the plastic layer may prove advan-tageous if the plastic layer has a melting temperature in a range of more than 155 to 300 °C, preferably in a range of 160 to 280 °C and particularly preferably in a range of 170 to 270 °C.
  • the plastic layer has a basis weight in a range from 2 to 120 g/m 2 , preferably in a range from 3 to 60 g/m 2 , particularly preferably in a range from 4 to 40 g/m 2 and more preferably from 6 to 30 g/m 2 .
  • the plastic layer is obtainable from melts, for example by extrusion, in particular layer extrusion.
  • the plastic layer can also be introduced into the planar composite by lamination. In this case, it is preferred that a film is incorporated into the planar composite.
  • plastic lay-ers can also be selected which are obtainable by deposition from a solution or dispersion of plastics.
  • Suitable polymers are preferably those having a weight average molecular weight, determined by gel permeation chromatography (GPC) using light scattering, in a range of 3 ⁇ 10 3 to 1 ⁇ 10 7 g/mol, preferably in a range of 5 ⁇ 10 3 to 1 ⁇ 10 6 g/mol and particularly preferably in a range of 6 ⁇ 10 3 to 1 ⁇ 10 5 g/mol.
  • Suitable polymers are in particular polyamide (PA) or polyethylene vinyl alcohol (EVOH) or a mixture thereof.
  • PA polyamide
  • EVOH polyethylene vinyl alcohol
  • EVOHs that appear suitable to the person skilled in the art for use according to the invention can be considered as EVOH. Examples of these are commercially available under the trade names EVAL TM of EVAL Europe NV, Belgium in a variety of different versions, for example the grades EVAL TM F104B or EVAL TM LR171B.
  • Preferred EVOH have at least one, two, mul-tiple or all of the following properties:
  • - a melting point in a range of more than 155 °C and up to 235 °C, preferably from 165 to 225 °C;
  • an MFR value (210 °C/2.16kg when T S (EVOH ) ⁇ 210 °C; 230 °C/2.16kg when 210 °C ⁇ T S (EVOH ) ⁇ 230 °C) in a range from 1 to 25 g/10min, preferably from 2 to 20 g/10min;
  • an oxygen permeation rate in a range of 0.05 to 3.2 cm 3 ⁇ 20 ⁇ m/ (m 2 ⁇ day ⁇ atm) , preferably in a range of 0.1 to 1 cm 3 ⁇ 20 ⁇ m/ (m 2 ⁇ day ⁇ atm) .
  • At least one polymer layer, more preferably the inner polymer layer, or preferably all polymer layers have a melting temperature below the melting temperature of the barrier layer.
  • the barrier layer is formed of a plastic.
  • the melting tem-perature of the at least one polymer layer, in particular the inner polymer layer, and the melting temperature of the barrier layer preferably differ by at least 1 K, particularly preferably by at least 10 K, even more preferably by at least 50 K, and furthermore preferably by at least 100 K.
  • the temperature difference should preferably only be selected so high that it does not result in a melting of the barrier layer, in particular not in a melting of the plastic layer, during folding.
  • the barrier layer is a metal layer.
  • the metal layer can be present as a foil or as a deposited layer, e.g. after physical vapour deposition.
  • the metal layer is an uninterrupted layer.
  • the metal layer has a thickness in a range from 3 to 20 ⁇ m, preferably in a range from 3.5 to 12 ⁇ m and particularly preferably in a range from 4 to 10 ⁇ m.
  • Preferred metals are aluminium, iron or copper.
  • a steel layer, e.g., in the form of a foil, may be preferred as the iron layer.
  • the metal layer is a layer with aluminium, prefer-ably an aluminium layer, further preferably an aluminium foil.
  • the aluminium layer can suitably consist of an aluminium alloy, for example AlFeMn, AlFe1.5Mn, AlFeSi or AlFeSiMn. The purity is often 97.5 %and higher, preferably 98.5 %and higher, based on the entire aluminium layer.
  • the metal layer consists of an aluminium foil.
  • Suitable alu-minium foils have a ductility of more than 1 %, preferably more than 1.3 %and particularly preferably more than 1.5 %, and/or a tensile strength of more than 30 N/mm 2 , preferably more than 40 N/mm 2 and particularly preferably more than 50 N/mm 2 .
  • Suitable aluminium foils show a drop size in the pipette test of more than 3 mm, preferably more than 4 mm and particularly preferably more than 5 mm.
  • Suitable alloys for creating aluminium layers or foils are commer-cially available under the designations EN AW 1200, EN AW 8079 or EN AW 8111 from Hydro Aluminium GmbH or Amcor Flexibles Singen GmbH.
  • an adhesion promoter layer can be provided on one or both sides of the metal layer, preferably adjacent to the metal layer on its respective side.
  • an oxide layer can be selected as the barrier layer according to alternative c. All oxide layers that are familiar to the person skilled in the art and appear suitable for achieving a barrier effect against light, vapour and/or gas can be considered as oxide layers.
  • a preferred oxide layer is a semi-metal oxide layer or a metal oxide layer or both.
  • a preferred semi-metal oxide layer is a layer based on one or more silicon oxide compounds (SiOx layer) .
  • Preferred metal oxide layers are layers based on the previously mentioned metals aluminium, iron or cop-per, as well as such metal oxide layers based on titanium oxide compounds, whereby an alumin-ium oxide layer (AlOx layer) is particularly preferred.
  • the oxide layer may be present as a deposited layer.
  • a deposited oxide layer is exemplarily produced by vapour deposition of the oxide layer on a barrier substrate.
  • a preferred process for this is physical vapour deposition (PVD) or chemical vapour deposition (CVD) , preferably plasma-assisted.
  • the oxide layer is preferably an uninterrupted layer.
  • the barrier substrate can consist of any material which appears to the skilled person to be suita-ble for use as a barrier substrate according to the invention.
  • the barrier substrate is preferably suitable for being coated with an oxide layer.
  • a layer surface is sufficiently smooth for this purpose.
  • the barrier substrate has a thickness in a range from 2 to 30 ⁇ m, preferably from 2 to 28 ⁇ m, more preferably from 2 to 26 ⁇ m, more preferably from 3 to 24 ⁇ m, more preferably from 4 to 22 ⁇ m, most preferably from 5 to 20 ⁇ m.
  • the barrier substrate preferably exhibits a barrier effect against oxygen or water vapour or both.
  • a barrier effect of the barrier substrate against permeation of oxygen is greater than a barrier effect of the oxide layer against permeation of oxygen.
  • the barrier substrate has an oxygen permeation rate in a range from 0.1 to 50 cm 3 / (m 2 . d . bar) , preferably from 0.2 to 40 cm 3 / (m 2 . d . bar) , more preferably from 0.3 to 30 cm 3 / (m 2 . d . bar) .
  • a preferred barrier substrate includes, more preferably consists of, cellulose or a polymer or both.
  • a preferred pol-ymer here is an oriented polymer.
  • the oriented polymer is mono-axially oriented or bi-axially oriented.
  • a preferred polymer is a thermoplastic polymer.
  • the barrier sub-strate consists of the polymer.
  • the barrier substrate comprises a polymer selected from the group consisting of a polycondensate, a polyethylene, a polypropylene, a polyvinyl alcohol, or a combination of at least two of them in a proportion of at least 50 %by weight, preferably at least 60 %by weight, more preferably at least 70 %by weight, more preferably at least 80 %by weight, most preferably at least 90 %by weight, each based on the weight of the barrier substrate. More preferably, the barrier substrate consists of the aforementioned polymer.
  • a preferred polypropylene is oriented, in particular monoaxially oriented (oPP) or biaxially ori-ented (BoPP) .
  • a preferred polycondensate is a polyester or polyamide (PA) or both.
  • a preferred polyester is one selected from the group consisting of a polyethylene terephthalate (PET) , a pol-ylactide (PLA) , and a vinyl polymer, or a combination of at least two thereof.
  • a preferred vinyl polymer is a vinyl alcohol copolymer or a polyvinyl alcohol or both.
  • a preferred polyvinyl alcohol is a vinyl alcohol copolymer.
  • a preferred vinyl alcohol copolymer is an ethylene-vinyl alcohol copolymer.
  • the carrier layer can be any material suitable to the skilled person for this purpose, which has sufficient strength and rigidity to give the container sufficient stability that the container sub-stantially retains its shape when filled.
  • this is a necessary feature of the carrier layer as the invention relates to the technical field of dimensionally stable containers.
  • dimen-sionally stable containers are fundamentally to be distinguished from bags and pouches, which are usually made of thin films.
  • plant-based fibrous materials in particular cellulose, preferably sized, bleached and/or unbleached cellulose, are preferred, with paper and cardboard being particularly preferred.
  • a preferred carrier layer includes a plurality of fibres.
  • the basis weight of the carrier layer is preferably in a range of 120 to 450 g/m 2 , more preferably in a range of 130 to 400 g/m 2 and most preferably in a range of 150 to 380 g/m 2 .
  • a preferred cardboard generally has a single or multi-layer structure and may be coated on one or both sides with one or more top layers. Furthermore, a preferred cardboard has a residual moisture content of less than 20 %by weight, preferably from 2 to 15 %by weight and particularly preferably from 4 to 10 %by weight based on the total weight of the cardboard.
  • a particularly preferred cardboard has a multi-layer structure.
  • the cardboard pref-erably has on the surface facing the environment at least one, but particularly preferably at least two, plies of a cover layer known to the skilled person as a "paper coating" .
  • a preferred cardboard has a Scott-Bond value (according to Tappi 569) in a range from 100 to 360 J/m 2 , preferably from 120 to 350 J/m 2 and particularly preferably from 135 to 310 J/m 2 . The above ranges make it possible to provide a composite from which a container can be folded with high tightness, easily and to low tolerances.
  • the carrier layer preferably has a bending stiffness in a first direction in a range from 70 to 700 mN, more preferably from 80 to 650 mN.
  • the first direction is preferably an orientation direction of the fibres.
  • a carrier layer com-prising a plurality of fibres further preferably has a bending stiffness in a further direction perpendicular to the first direction in a range from 10 to 350 mN, more preferably from 20 to 300 mN.
  • a preferred planar composite with the carrier layer has a bending stiffness in the first direction in a range of 100 to 700 mN. Further preferably, the aforementioned planar composite has a bending stiffness in the further direction in a range of 50 to 500 mN.
  • the carrier layer comprises at least 2, more preferably at least 3, particularly prefer-ably exactly 3 or 5, sub-layers, each of a fibre-containing material, wherein the sub-layers are superimposed to one another and joined to one another.
  • the fibre-containing materials of the individual sub-layers may differ at least partially from one another or may all be the same.
  • a further particularly preferred carrier layer comprises, as superimposed and interconnected sub-layers of a sub-layer sequence, preferably in a direction from an outer side of the carrier layer to an inner side of the carrier layer, a first sub-layer comprising a fibrous material, a second sub-layer comprising a fibrous material and a third sub-layer comprising a fibrous material.
  • a preferred carrier layer includes at least one cover layer as a further sub-layer.
  • the layer sequence of first to third sub-layers is superimposed on an outer side of the carrier layer with at least one cover layer as a further sub-layer.
  • the layer sequence of first to third sub-layers is superimposed on an inner side of the carrier layer with at least one cover layer as a further sub-layer.
  • an average fibre length of the plurality of fibres of the fibrous material of the first sub-layer is less than an average fibre length of the plurality of fibres of the fibrous material of the third sub-layer, preferably by 0.1 to 3 mm, more preferably by 0.5 to 2.5 mm, most preferably by 1 to 2.0 mm.
  • a preferred cover layer is a "paper coating” .
  • a “paper coating” is a cover layer comprising inorganic solid particles, preferably pigments and additives.
  • the "paper coating” is preferably applied as a liquid phase, preferably as a suspension or dispersion, to a surface of a paper-or cardboard-comprising layer.
  • a preferred dispersion is an aqueous dispersion.
  • a pre-ferred suspension is an aqueous suspension.
  • Another preferred liquid phase includes inorganic solid particles, preferably pigments; a binder; and additives.
  • a preferred pigment is selected from the group consisting of calcium carbonate, kaolin, talc, silicate, a plastic pigment and tita-nium dioxide.
  • a preferred kaolin is a calcined kaolin.
  • a preferred calcium carbonate is one se-lected from the group consisting of marble, chalk and a precipitated calcium carbonate (PCC) or a combination of at least two thereof.
  • a preferred silicate is a layered silicate.
  • a preferred plastic pigment is spherical, preferably hollow spherical.
  • a preferred binder is one selected from the group consisting of styrene-butadiene, acrylate, acrylonitrile, a starch and a polyvinyl alcohol or a combination of at least two thereof, acrylate being preferred.
  • a preferred starch is one selected from the group consisting of cationically modified, anionically modified, and fragmented or a combination of at least two thereof.
  • a preferred additive is one selected from the group consist-ing of a rheology modifier, a shade dye, an optical brightener, a carrier, a flocculant, a deaerator, and a surface energy modifier, or a combination of at least two thereof.
  • a preferred deaerator is a coating colour deaerator, preferably silicone-based or fatty acid-based or both.
  • a preferred surface energy modifier is a surfactant.
  • the fibrous material includes a plurality of fibres, and preferably at least one further con-stituent.
  • a preferred further constituent is a sizing agent.
  • a preferred sub-layer of a fibrous ma-terial includes a plurality of fibres and at least one sizing agent.
  • the fibres of a fibre-containing material can be any fibre which appears to the skilled person to be suitable for use in accordance with the invention, in particular any fibre known in the manu-facture of paper, cardboard or paperboard.
  • Fibres are linear, longitudinally extended structures having a ratio of length to diameter or thickness of at least 3: 1. For some fibres, the aforemen-tioned ratio is not greater than 100: 1.
  • long fibres have an average fibre length in a range of 3 to 4 mm and short fibres have an average fibre length in a range of 0.4 to 2 mm.
  • Preferred fibres are plant fibres.
  • Plant fibre is a collective term for fibres of plant origin, i.e. fibres obtained from plants. Plant fibres occur in plants as conducting bundles in the stem or trunk, the bark (for example as bast) and as seed appendages.
  • a subdivision is made according to DIN 60001-1: 2001-05 Textile fibre materials -Part 1: "Natural fibres and abbreviations” , Beuth Verlag, Berlin 2001, p. 2 into seed fibres, bast fibres and hard fibres or according to DIN EN ISO 6938: 2015-01 "Textiles -Natural fibres -Generic names and definitions" , Beuth Verlag, Berlin 2015, p. 4.
  • preferred plant fibres are predom-inantly produced from the wood of trees.
  • a preferred wood in this respect is a coniferous wood, i.e., a wood of a coniferous tree, or a deciduous wood, i.e. a wood of a deciduous tree.
  • coniferous wood tracheids are preferred.
  • deciduous wood libriforms are preferred.
  • preferred fibres comprise cellulose pulp or a wood pulp, or both, and preferably the fibres consist thereof.
  • a preferred wood pulp is one selected from the group consisting of groundwood pulp, pressure groundwood pulp, and a thermo-mechanical pulp (TMP) , or a combination of at least two thereof.
  • TMP thermo-mechanical pulp
  • a preferred thermo-mechanical pulp is a che-mithermo-mechanical pulp (CTMP) .
  • CTMP che-mithermo-mechanical pulp
  • the wood pulp is characterised by a greater proportion of lignin compared to the cellulose pulp, which can be detected by means of red colouring with phloroglucin solution.
  • preferred fibres are ob-tained from the wood of a tree selected from the group consisting of spruce, pine, birch, and eucalyptus, or a combination of at least two thereof.
  • the fibres of the plurality of fibres of a preferred fibre-containing material have at least one of the following properties:
  • a preferred polyolefin is a polyethylene (PE) or a polypropylene (PP) or both.
  • PE polyethylene
  • PP polypropylene
  • a preferred pol-yethylene is one selected from the group consisting of an LDPE, an LLDPE, and an HDPE, or a combination of at least two thereof.
  • Another preferred polyolefin is an mPolyolefin (polyolefin produced by means of a metallocene catalyst) .
  • MFI -melt flow index MFR -melt flow rate
  • An mPolymer is a polymer produced by means of a metallocene catalyst.
  • a metallocene is an organometallic compound in which a central metal atom is located between two organic ligands, such as cyclopentadienyl ligands.
  • a preferred mPolymer is an mPolyolefin, preferably an mPol-yethylene or an mPolypropylene or both.
  • a preferred mPolyethylene is one selected from the group consisting of an mLDPE, an mLLDPE, and an mHDPE, or a combination of at least two thereof.
  • a preferred mPolyolefin is characterised by at least a first melting temperature and a second melting temperature.
  • the mPolyolefin is characterised by a third melting tem-perature in addition to the first and second melting temperatures.
  • a preferred first melting tem-perature is in a range from 84 to 108 °C, preferably from 89 to 103 °C, more preferably from 94 to 98 °C.
  • a preferred second melting temperature is in a range from 100 to 124 °C, preferably from 105 to 119 °C, more preferably from 110 to 114 °C.
  • An adhesion promoter layer is a layer of the planar composite that includes at least one adhesion promoter in a sufficient amount such that the adhesion promoter layer improves adhesion be-tween layers adjacent to the adhesion promoter layer.
  • the adhesion promoter layer preferably comprises an adhesion promoter polymer.
  • the adhesion promoter layers are preferably polymeric layers.
  • An adhesion promoter layer may be located between layers of the planar composite which are not directly adjacent to each other, preferably between the barrier layer and the inner polymer layer.
  • Suitable adhesion promoters in an adhesion pro-moter layer are all plastics which, by functionalisation by means of suitable functional groups, are suitable for producing a firm bond by forming ionic bonds or covalent bonds to a surface of a respective adjacent layer.
  • these are functionalised polyolefins, in particular acrylic acid copolymers obtained by co-polymerisation of ethylene with acrylic acids such as acrylic acid, methacrylic acid, crotonic acid, acrylates, acrylate derivatives or double bond-bearing car-boxylic acid anhydrides, for example maleic anhydride, or at least two thereof.
  • EAK polyethylene-maleic anhydride graft polymers
  • EAA ethylene-acrylic acid copolymers
  • EMA ethylene-methacrylic acid copolymers
  • Ethylene-alkyl acrylate copolymers are also preferred as adhesion promoters.
  • the alkyl group preferably selected is a methyl, ethyl, propyl, i-propyl, butyl-, i-butyl or a pentyl group.
  • the adhesion promoter layer may comprise blends of two or more different ethylene alkyl acrylate copolymers.
  • the ethylene alkyl acrylate copolymer may have two or more different alkyl groups in the acrylate function, e.g., an ethylene alkyl acrylate co-polymer in which both methyl acrylate units and ethyl acrylate units are present in the same copolymer.
  • the adhesion between the carrier layer, a polymer layer or the barrier layer to the respective next layer is at least 0.5 N/15mm, preferably at least 0.7 N/15mm and particularly preferably at least 0.8 N/15mm.
  • the adhesion between a polymer layer and a carrier layer is at least 0.3 N/15mm, preferably at least 0.5 N/15mm and particularly preferably at least 0.7 N/15mm.
  • the adhesion between the barrier layer and a polymer layer is at least 0.8 N/15mm, preferably at least 1.0 N/15mm and particularly preferably at least 1.4 N/15mm.
  • the adhesion between the barrier layer and the adhesion pro-moter layer is at least 1.8 N/15mm, preferably at least 2.2 N/15mm and particularly preferably at least 2.8 N/15mm.
  • the adhesion between the individual layers is so strong that the adhesion test results in a tearing of the carrier layer, in particular, in the case of cardboard as the carrier layer in a so-called cardboard fibre tear.
  • a container precursor is a preliminary stage of the container that is created during the production of a, preferably closed, container.
  • the container precursor comprises the blank.
  • the blank can be unfolded or folded.
  • a preferred container precursor is cut to size and designed to produce a single, preferably closed, container.
  • a preferred container precursor which is cut to size and designed to produce a single container is also referred to as a sleeve.
  • the sleeve includes the blank folded, preferably along at least 2 longitudinal folds, more preferably along 4 longitudinal folds. These longitudinal folds are preferably, but not necessarily, arranged and configured to form longitudinal edges of a container formed in part from the container precursor.
  • the sleeve includes a longitudinal seam along which a first longitudinal margin of the planar composite is joined to a further longitudinal margin.
  • the sleeve is open in a top region and a bottom region.
  • a preferred container precursor is formed in one piece.
  • the closed container according to the invention is preferably one selected from the group, con-sisting of a foodstuff container, a dimensionally stable container, and a liquid-tight container, or a combination at least two thereof.
  • the container wall of the closed container according to the invention is thus preferably dimensionally stable, i.e., substantially retains its shape during fill-ing of the container and handling for transport as well as for storage.
  • the closed container according to the invention includes a standing base and a head portion opposite the standing base in the longitudinal direction of the closed container.
  • a central portion of the closed container is arranged between the standing base and the head portion.
  • the central portion is at least partially, preferably completely, substantially prism-shaped, pref-erably cuboid-shaped.
  • the head portion is at least partially substantially in the shape of a regular truncated pyramid.
  • the standing base is adjacent to the central portion.
  • the central portion is adjacent to the head portion.
  • the container interior of a closed container according to the invention contains a foodstuff.
  • the container wall is liquid-tight.
  • the container wall may consist of different materials.
  • the container wall comprises the blank and preferably also the element other than the blank.
  • a preferred element other than the blank is a non-planar component, preferably a moulded component, preferably made of plastic.
  • the con-tainer wall may comprise one or more further non-planar components, such as one or more fur-ther moulded components, which are preferably made of plastic. Such further moulded compo-nent can be used in particular in the head portion or the standing base.
  • At least 50 %, preferably at least 60 %, more preferably at least 70 %, particularly preferably at least 80 %, and furthermore preferably at least 90 %, of the surface of the container wall facing away from the container interior (outer surface) consists of the blank.
  • the further transverse margin preferably the edge of the further transverse margin, surrounds the element other than the blank, preferably along an entire circumference of the ele-ment other than the blank.
  • the edge of the further transverse margin concerned here is preferably a cut edge of the blank.
  • the cut edge is to be distinguished from an edge formed by a fold.
  • the head portion of the container has an opening surrounded by the edge.
  • the edge forms a perimeter of this opening.
  • the opening is preferably closed by the element other than the blank.
  • the first composite direction as well as the further composite direction lie in a plane of planar extension of the blank.
  • any element which appears suitable to the person skilled in the art in the context of the invention can be used as an element other than the blank.
  • a preferred element other than the blank is a non-planar component.
  • the non-planar component is three-dimensional, i.e., not pla-nar or sheet-like.
  • a preferred non-planar component is a moulded component.
  • a preferred moulded component is an injection moulded component.
  • the element other than the blank is made of plastic.
  • An alternatively or additionally preferred element other than the blank is formed in one piece.
  • the element other than the blank forms a top surface of the head portion of the closed container.
  • a preferred top surface is the top surface of a regular truncated pyramid.
  • the element other than the blank forms a further part of the container wall of the closed container, while the blank forms a first part of the container wall of the closed container.
  • the element other than the blank includes a base member and a spout arranged on the base member.
  • a spout is a component, the shape of which is intended to facilitate the targeted pouring of liquid.
  • a preferred spout takes the form of a tube.
  • the tube includes a screw thread on its outer side.
  • the spout has a pouring aperture which is closed by a closure element.
  • a preferred closure element is planar.
  • a preferred planar closure element is a laminate or a foil.
  • a preferred foil is a plastic foil.
  • the base member preferably includes a base plate, and at least 3, preferably 3 to 12, more preferably 3 to 10, more preferably 3 to 8, more preferably 3 to 6, still more preferably 3 or 4, most preferably exactly 4, side walls; the spout being arranged on a first side of the base plate; the side walls being arranged on a further side of the base plate opposite the first side.
  • the further side of the base plate in the closed container faces the container interior and the first side of the base plate in the closed container faces away from the container interior.
  • the base plate preferably has a base surface in the form of a polygon.
  • a preferred polygon here is a regular polygon.
  • the polygon has 3 to 12, more preferably 3 to 10, more preferably 3 to 8, more preferably 3 to 6, still more preferably 3 or 4, most preferably exactly 4, corners.
  • a preferred polygon with 4 corners is a rectangle.
  • a preferred rectangle is a square.
  • the base member has as many side walls as the polygon has corners.
  • each 2 of the side walls which follow one another in the circumferential direction of the element other than the blank adjoin one an-other, forming a side edge of the base member.
  • the base member and the spout are in one piece with one another.
  • the element other than the blank is formed in one piece.
  • the blank and the element other than the blank are glued or sealed together or both.
  • the further transverse margin of the blank is glued or sealed or both to the element other than the blank.
  • the blank is joined to one of the side walls, preferably each of the side walls, of the element other than the blank, preferably directly.
  • a preferred element other than the blank, preferably the spout includes a screw thread.
  • a pouring aperture of the spout is preferably closed.
  • an opening aid is arranged in the spout.
  • the closed container preferably also includes the opening aid.
  • a preferred opening aid is a cutting aid or a tearing aid or both. Alternatively or additionally preferred, the opening aid is annular.
  • a pre-ferred annular cutting aid is a cutting ring.
  • a preferred annular tear aid is a tear ring.
  • a cap preferably a screw cap, is preferably arranged on the element other than the blank in such a way that the pouring aperture of the spout is covered by the cap.
  • the cap is screwed onto the spout.
  • the closed container preferably also includes the cap.
  • a preferred joining method is a material-to-material joining method.
  • a material-to-material joint is understood herein to be a joint between joining partners which is produced by attractive forces between materials or within a material. A distinction must be made between this and, in particular, form-fitting and friction-fitting joints that are created by geomet-ric shapes or frictional forces.
  • a preferred material-to-material joining method may be one se-lected from the group consisting of a sealing, a welding, a gluing, and a pressing, or a combination of at least two of them.
  • the joint is created by means of a liquid and its solidification.
  • chemical bonds are formed between the surfaces of the two objects to be joined, which create the joint. It is often advantageous in the case of sealing, welding or gluing to press the surfaces to be joined together.
  • a preferred pressing of two layers is a pressing of a respective first surface of a first of the two layers onto a second surface of the second of the two layers facing the first surface over at least 20 %, prefer-ably at least 30 %, more preferably at least 40 %, more preferably at least 50 %, more preferably at least 60 %, more preferably at least 70 %, still more preferably at least 80 %, still more pref-erably at least 90 %, most preferably at least 95 %, of the first surface.
  • a particularly preferred joining is a sealing or welding.
  • a preferred sealing or welding includes as steps a contacting, a heating and a pressing, wherein the steps are preferably performed in this sequence. Another sequence is also conceivable, in particular the sequence of heating, contacting and pressing.
  • a preferred heating is a heating of a polymer layer, preferably a thermoplastic layer, more pref-erably a polyethylene layer or a polypropylene layer or both.
  • Another preferred heating is a heating of a polyethylene layer to a temperature in a range from 80 to 140 °C, more preferably from 90 to 130 °C, most preferably from 100 to 120 °C.
  • Another preferred heating is a heating of a polypropylene layer to a temperature in a range from 120 to 200 °C, more preferably from 130 to 180 °C, most preferably from 140 to 170 °C.
  • Another preferred heating is to a sealing temperature of the polymer layer.
  • a further preferred heating is a heating of an element other than the blank, preferably of at least one side wall of a base member, preferably to a temperature above a melting temperature of the first polymer composition.
  • Preferred heating may be by fric-tion, by radiation, by hot gas, by hit solid contact, by mechanical vibration, preferably by ultra-sound, by convection, or by a combination of at least two of these.
  • An extruder is a device for shaping a mass, preferably a polymer mass, by pressing through a shaping orifice.
  • a pre-ferred extruder is a screw extruder.
  • a melt extrusion coating is an application of a mass by pressing a melt, forming the mass, through the shaping orifice of an extruder onto a substrate so that a planar layer of the mass superimposing the substrate is obtained.
  • the mass is preferably melted for extrusion coating.
  • the polymers are typically heated to temperatures of 210 to 350 °C, measured at the molten polymer film below the exit at the extruder die.
  • Extrusion can be carried out by means of com-mercially available extrusion tools known to the person skilled in the art, such as extruders, extruder screws, feedblocks, etc.
  • extruders Extruders, extruder screws, feedblocks, etc.
  • the orifice can have any shape that allows the polymer melt to be extruded.
  • the orifice may be angular, oval or round.
  • the orifice has the shape of a slot of a funnel.
  • the melt layer is allowed to cool for the purpose of heat-setting, this cooling preferably being effected by quenching via contact with a surface maintained at a temperature in a range from 5 to 50 °C, more preferably in a range from 10 to 30 °C.
  • the separation can be carried out in any way that is familiar to the skilled person and appears suitable in order to separate the flanks quickly, as accurately as possible and cleanly.
  • the separation is carried out by means of a knife, laser beam or water jet, or a combination of two or more of these, whereby the use of knives, in particular a pot knife, is particularly preferred.
  • the superimposing the carrier layer with the barrier layer can be carried out by laminating.
  • the prefabricated carrier and barrier layers are joined with the aid of a suitable laminating agent.
  • a preferred laminating agent comprises, preferably con-sists of, an intermediate polymer composition, from which an intermediate polymer layer is pref-erably obtained.
  • foodstuffs All food products known to the skilled person for human consumption and also animal feed may be considered as foodstuffs.
  • Preferred foodstuff is liquid above 5 °C, for example dairy products, soups, sauces and, preferably non-carbonated, beverages.
  • Edges are defined herein as both the linear regions of the container wall of the container accord-ing to the invention, which are formed by a folding of the planar composite and at which in each case two, preferably flat, regions of the planar composite adjoin each other, and edges which delimit the dimensions of the blank.
  • the first-mentioned edges are folding edges. These include the side edges of the head portion of the closed container according to the invention and its longitudinal edges.
  • the second-mentioned edges are cut edges. These include in particular the edge of the further transverse margin.
  • the term "cut edge” herein does not necessarily mean that the planar composite has been cut by a knife. Rather, the blank can also have been punched out of the planar component.
  • the longitudinal direction of the closed container runs from the standing base to the head portion.
  • the longitudinal direction runs along a straight line.
  • the longitudinal direction of the closed container runs along a height of the closed container.
  • the circumferential direction of the closed container is perpendicular to the longitudinal direction. Since the circumferential direction runs along the circumference of the closed container, it does not follow a straight line.
  • the blank of the invention has directions corresponding to the longitudinal direction and the circumferential direction of the closed container. On the blank, if it is flat, the longitudinal di-rection and the circumferential direction are still perpendicular to each other, but here both di-rections run along straight lines that lie in the plane of planar extension of the blank.
  • the first composite direction and the further composite direction are perpendicular to each other. Both composite directions lie in the plane of planar extension of the blank.
  • the plane of planar extension of the blank is not necessarily plane in Cartesian coordinates. In particular, if the blank is bent or folded, the plane follows this bend or fold. This is particularly the case for the blank as part of the closed container according to the invention.
  • the longitudinal direction of the element other than the blank runs along a straight line from the base element to the spout.
  • the longitudinal direction of the element other than the blank runs along a height of the element other than the blank.
  • the longitudinal direction of the element other than the blank runs along a longitudinal axis of the spout.
  • the longitudinal direction of the ele-ment other than the blank is perpendicular to the base plate.
  • the circumferential direction of the element other than the blank is perpendicular to its longitudinal direction. Since the circumfer-ential direction runs along the circumference of the element other than the blank, it does not follow a straight line.
  • the longitu-dinal directions of the closed container and of the element other than the blank are identical.
  • the circumferential directions of the closed container and of the element other than the blank are identical.
  • process steps of the processes according to the invention are carried out in the order of their symbols.
  • process steps with immediately successive symbols can be carried out one after the other, at the same time or overlapping in time.
  • colourant is the collective term for all colouring substances, in particular for dyes and pigments.
  • a preferred colourant is a pig-ment.
  • a preferred pigment is an organic pigment.
  • Pigments of note in the context of the invention are, in particular, those described in DIN 55943: 2001-10 and those described in "Industrial Or-ganic Pigments, Third Edition” . (Willy Herbst, Klaus Hunger 2004 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim ISBN: 3-527-30576-9) .
  • a pigment is a colourant that is preferably insoluble in the application medium.
  • a dye is a colourant that is preferably soluble in the application medium.
  • the layer to be examined is first separated from the laminate as described below. Three sample pieces of the laminate are cut to size. For this purpose, unfolded and ungrooved areas of the laminate are used, unless otherwise specified. Unless otherwise specified, the sample pieces shall be 4 cm ⁇ 4 cm. If other dimensions of the layer to be examined are necessary for the examination to be carried out, sufficiently large sample pieces are cut from the laminate. The sample pieces are placed in an acetic acid bath heated to 60 °C (30 %acetic acid solution: 30 %by weight CHCOOH 3 , remainder to 100 %by weight H 2 O) for 30 minutes. This detaches the layers from each other.
  • the layers can also be carefully peeled off from each other manually. If the desired layer cannot be detached sufficiently well, alternatively new sample pieces are used and these are treated in an ethanol bath (99 %ethanol) as described above. If there are remnants of the carrier layer (especially in the case of a cardboard layer as carrier layer) on the layer to be examined (for example the outer polymer layer or the intermediate polymer layer) , these are carefully removed with a brush. From each of the three films prepared in this way, a sample of sufficient size for the test to be carried out is cut out (unless otherwise specified, with an area of 4 cm 2 ) . These samples are then stored at 23 °C for 4 hours and thus dried. The three samples can then be examined. Unless otherwise stated, the test result is the arithmetic mean of the results for the three samples.
  • the MFR value is measured according to ISO 1133-1: 2012, method A (mass determination method) , unless otherwise stated at 190 °C and 2.16 kg) .
  • the density is measured according to the ISO 1183-1: 2013 standard.
  • the Scott Bond value is determined in accordance with Tappi 569.
  • the melting temperature is determined using the DSC method ISO 11357-1, -3.
  • the device is calibrated according to the manufacturer's instructions using the following measurements:
  • the recorded measurement curve can show multiple local maxima (melting peaks) , i.e., multiple melting temperatures. If a melting temperature above a certain value is required herein, this condition is fulfilled if one of the measured melting temperatures is above this value. Where reference is made herein to a melting temperature of a polymer layer, a polymer composition or a polymer, the highest melting temperature is always meant in the case of multiple measured melting temperatures (melting peaks) , unless otherwise stated.
  • the viscosity number of PA is measured in 95 %sulphuric acid according to the standard DIN EN ISO 307 (2013) .
  • the molecular weight distribution is measured by gel permeation chromatography using light scattering: ISO 16014-3/-5 (2009-09) .
  • the residual moisture content of the cardboard is measured according to the ISO 287: 2009 stand-ard.
  • the oxygen permeation rate is determined according to ASTM D3985-05 (2010) .
  • the layer thickness of the test specimen is 90 ⁇ m ⁇ 2 ⁇ m.
  • the area of the test specimen is 50 cm 2 .
  • the measurements are carried out at an ambient temperature of 23 °C, an ambient air pressure of 100 kPa (0.986 atm) and a relative humidity of 50 %.
  • the tester is an Ox-Tran 2/22 from Mocon, Neuwied, Germany.
  • a 90° peel test device for example from the company Instron "German rotating wheel fixture” , on a rotating roller that rotates at 40 mm/min during the measurement.
  • the samples were previously cut into 15 mm wide strips.
  • the layers are detached from each other and the detached end is clamped in a pulling device that points vertically upwards.
  • a measuring device is attached to the pulling device to determine the pulling force.
  • the roller is rotated, the force required to separate the layers from each other is measured. This force corresponds to the adhesion of the layers to each other and is given in N/15 mm.
  • the separation of the individual layers can be done mechanically, for example, or by a specific pre-treatment, for example by soaking the sample for 3 min in 60 °C warm, 30 %acetic acid.
  • the following devices are used to determine the bending stiffness of a sheet-like material, in particular a planar composite, blank or cardboard:
  • the material to be tested is climatised for 24 h in a standard climate (23 °C, 50 %relative hu-midity) .
  • the measurement is also carried out in a standard climate.
  • Specimens with a width of 38.1 mm and a length of 69.85 mm are punched out of the material to be tested.
  • the specimens are taken at 5 positions distributed over the width of the web.
  • 2 specimens with their length in the corresponding bending direction of the material are punched out of the material at each speci-men-taking position.
  • Specimens may only be taken from areas of the material to be tested which neither have grooves nor folds.
  • the bending stiffness (in mN) of the outer side and the opposite inner side is determined.
  • the specimen is placed in the bending stiff-ness tester with the side to be measured facing forwards and the measurement is started by press-ing the green button.
  • the same number of specimens is measured.
  • a 2-point bending test is carried out by the bending stiffness measuring device. In this test, the specimen clamped at one end is deflected at its other end by a measuring edge through a bending angle of 15°.
  • a direction in which the material has the bending stiffness is the direction of a straight line connecting the two points at which bending forces are exerted to the specimen in the 2-point bending test.
  • this direction is the direction of the short-est straight line from the clamp to the measuring edge.
  • the specimen forms a curve during bending.
  • a straight fold line would form if the spec-imen were bent far enough for this.
  • the free clamping length of the specimen is 50 mm. Each specimen may only be used for one measurement. Measurements of the outer side and the inner side on the same specimen are not permitted. The individual measured values are read from the display.
  • the arithmetic mean over the specimens is calculated for each of the combinations individually.
  • the arithmetic mean values are then used as values for each of the combinations of bending direction and material side.
  • the bending stiffness in a specific bending direction is the geometric mean over the values for the combinations of this bending direction/outer side and this bending direction/inner side.
  • Crystal oil 60 from Shell Chemicals with methylene blue is used as the test agent for testing the liquid tightness of a container.
  • 250 identical containers of this container type are tested. Each of the 250 containers is cut open along its circumference so as to obtain a first open cup-like container part containing the sealed container bottom and a second open cup-like container part containing the sealed container top.
  • the first container part with the container bottom and the second container part with the con-tainer top are each first emptied and then filled with an amount of the test agent sufficient to completely cover the bottom of the respective cup-like container part. Then the container parts are stored for 24 hours.
  • each container part is examined on its outer side with the naked eye to see whether the test agent has produced a blue discolouration there in the event of a leak. If in this test not more than 1 of the 500 container parts of the 250 identical containers shows such a discolouration, these containers are considered to be liquid-tight.
  • test 5 containers are manufactured and filled with water before closing.
  • the test serves to determine the stability of the container against compression along its longitudinal axis and can be used to evaluate the load capacity of filled containers in the static case of storage and in the dynamic case of transport.
  • the test is carried out on the individual containers in accordance with DIN EN ISO12048.
  • the previous storage of the containers is carried out according to DIN EN ISO 2233: 2000.
  • a TIRA test 28025 with force transducer 1000 N (Tira GmbH; Eisfelder Strasse 23/25; 96528 Schalkau, Germany) is used as measuring instrument.
  • the mean value of the maximum breaking load (load value) is determined. This describes the value that leads to the failure of the container.
  • the test setup is shown in Figure 20.
  • the tensile testing machine is equipped with the plastic balls. Containers of the same weight and filling level are always to be compared with the test.
  • the test setup is shown in Figure 21.
  • the blank In order to determine the angle, at which the grooves of a pair of steep edges run in relation to each other in a plane of planar extension of the blank of a planar composite, the blank is fixed flat on a white sheet of paper. For this purpose, the blank can be stapled to the sheet of paper. Then the two grooves for the pair of steep edges are extended in a straight line on the sheet of paper with a pencil so that the extensions intersect. Now, measure the angle between one groove and its extension, on the one hand, and the other groove and its extension, on the other hand, with a geometry set square.
  • the sealing seams of the container precursor are carefully and slowly loosened man-ually and the blank of the planar composite is unfolded so that it is flat. Then proceed as de-scribed above.
  • the container In order to determine the angle ⁇ at which the steep edges of a pair of steep edges of a head side surface run to each other on a container, the container is prepared as follows.
  • the container is opened below its (possibly truncated pyramid-shaped) head portion with a knife by a lateral cut through 3 of the 4 sides of the container and then emptied. Furthermore, the bottom of the container is unfolded. For this purpose, the sealing of the ears on the bottom is first loosened manually. The seam that closes the bottom of the container is not yet released. Next, the container is cut open along its length with scissors. The cut is made on the side of the container opposite its longitudinal seam. The cut begins at the cut edge below the head portion which has been obtained described above. The cut is made in the direction of the bottom of the container. This is illustrated in Figure 18a) . Then the seam closing the bottom is slowly loosened manually from the inside to the outside. This is illustrated in Figure 18b) .
  • the sample prepared as described above is now fixed flat on a white sheet of paper.
  • the composite can be stapled to the sheet of paper.
  • the two grooves for the pair of steep edges are extended in a straight line on the sheet of paper with a pencil so that the exten-sions intersect.
  • the angle at which one groove and its extension, one the one hand, runs to the other groove and its extension, on the other hand, is measured with a geometry set square.
  • Figure 19 shows the measuring arrangement.
  • the container In order to determine the angle ⁇ of inclination of the head side faces of a container (the side faces of the truncated pyramid) , the container is fixed flat with one side on a white sheet of paper. Then one steep edge of the head side surface, whose angle of inclination is to be determined, and the adjoining longitudinal edge of the container are transferred as straight lines onto the sheet of paper with a pencil. Now measure the angle between the straight lines representing the steep edge and the longitudinal edge on the sheet of paper with a geometry set square. This measuring process is repeated for the other steep edge of the same head side surface. The angle of inclination of this head side surface is then the mean value of the angles determined for the two steep edges.
  • the angle ⁇ of inclination of the side walls of the base member of the element other than the blank, in particular the non-planar component, is determined with respect to the longitudinal direction of the element other than the blank, which runs from the base member to the spout.
  • a flat object with a plane surface is positioned on the side wall of the base member in such a way that the plane surface makes the same angle with the longitudinal direction as the side wall.
  • the lower edge of a geometry set square is placed on the underside of the element other than the blank (the side opposite the spout) in such a way that the angle of the plane surface to the longitudinal direction can be read off the geometry set square as the angle ⁇ .
  • Table 1 Structure of the laminates of the examples and the comparative examples
  • the laminates for the examples and comparative examples are produced using a melt extrusion coating line from Davis Standard.
  • the extrusion temperature is in a range of approx. 280 to 330 °C.
  • the carrier layer which is provided as roll mate-rial, for each container to be produced, and then the outer polymer layer is applied to the full surface of the carrier layer by melt extrusion coating.
  • the barrier layer together with the adhesion promoter layer and the intermediate polymer layer as laminating agents, is applied over the entire surface of the carrier layer previously coated with the outer polymer layer.
  • the inner polymer layer is extrusion coated over the entire surface of the barrier layer.
  • the polymers are melted in an extruder. When applying a polymer in a layer, the resulting melt is transferred via a feed block into a die and extruded onto the carrier layer.
  • Groove patterns are introduced into the web-shaped laminate obtained as described above on the outer side.
  • Each groove pattern consists of a plurality of grooves with 4 longitudinal grooves of equal length.
  • the grooved web-shaped laminate is divided into blanks for individual containers, each blank having one of the above holes and one of the groove patterns.
  • a sleeve-like container precursor is obtained from the blank (cf. Figures 4 to 6) .
  • Containers with a cuboid-shaped body and a truncated pyramid-shaped head portion arranged thereon are produced.
  • This con-tainer shape is basically shown in Figure 11.
  • the cuboid-shaped container body has a square cross-section with edge length a.
  • the following filling machines are used for the production of the containers.
  • Table 2 Filling machines to be used for the comparative examples and examples
  • the sleeve-like container precursor is first folded into a cuboid shape. Then the truncated pyramid-shaped head portion is folded and joined to an injection moulded component of the shape shown in Figures 7a) and 7b) by heat sealing with hot air. In this process, the fold protrusions, called ears, are sealed to the side surfaces of the head portion.
  • the resulting container open at the bottom, is sterilised with hydrogen peroxide. Furthermore, the open container (upside down) is filled with water. The bottom area of the container is closed by folding and ultrasonic sealing, thus obtaining a closed container in the shape of a cuboid with a truncated pyramid-shaped head portion.
  • the carrier layer is made of cardboard.
  • the latter is a material with an orientation direction.
  • the cardboard fibres are mainly oriented in the machine direction (MD) of the cardboard production.
  • MD machine direction
  • the carrier layer, and thus the laminate containing it, has a greater bending stiffness for bending in the orientation direction of the cardboard fibres than for bending perpendicular to it. More precisely, the bending stiffness of the laminate for bending in the ori-entation direction has a maximum, related to the bending direction.
  • the orientation direc-tion of the carrier layer refers to the direction of predominant orientation of the fibres of the carrier layer being either substantially perpendicular or substantially parallel to the upper edge of the laminate in the container.
  • the upper laminate edge in this case is the edge of the laminate that runs around the moulded component (cf. 216 in Figures 2 to 6 and 11) .
  • the bending stiffness of the laminate has a minimum for bending in the direction of the upper laminate edge.
  • the bending stiffness of the laminate has a maximum for bending in the direction of the upper laminate edge, i.e., the bending stiffness of the laminate for bending about the direction of the upper laminate edge is greater than the bending stiffness for bending of the laminate in any other direction.
  • Table 3 compares containers with a truncated pyramid-shaped head portion with straight base edges with containers with a truncated pyramid-shaped head portion, the base edges of which are convexly curved in relation to the respective side face (head side surface) of the head portion (cf. 1105 in Figure 11) .
  • the results in Table 3 demonstrate an advantageous effect of a convex curvature of the base edges of the truncated pyramid-shaped head portion on the shelf life of the containers and the sealing of the ears. If the fold protrusions (cf.
  • containers with straight base edges of their truncated pyramid-shaped head portions and parallel fibre orientation of the carrier layer with respect to the upper laminate edge are considered.
  • the influence of the length l of the longitudinal edges of the container formed along the longi-tudinal grooves on basic usage properties of the container is studied while the edge length a remains constant.
  • the length l is determined as the length of the longitudinal grooves in the groove pattern of the respective container. It denotes the height of the container without any truncated pyramid-shaped head portion.
  • Example 5 67.5 87, 5 1, 296 ++ - + Example 6 67.5 94.0 1.393 + + + + Example 7 67.5 189 2.8 + + + + Example 8 67.5 202, 5 3, 0 - ++ + Example 9 47.5 61, 5 1, 295 ++ -- ++ Example 10 47.5 66 1.389 + 0 ++ Example 11 47.5 133 2.8 + 0 ++ Example 12 47.5 142, 5 3, 0 - + ++
  • a ratio l/a of less than 1.3 leads to low capacities.
  • a ratio l/a of more than 2.95 always has a detrimental effect on the standing stability of the containers, i.e., the containers tend to fall over easily.
  • Containers with a ratio l/a in the range of 1.35 to 2.95 are always suffi-ciently standing-stable and have sufficient capacities. In this range, i.e., with sufficient standing stability, the larger edge length a allows a larger capacity.
  • the smaller edge length a allows a particularly good grip stiffness with sufficient standing stability. These con-tainers are particularly easy to handle. While containers with a larger edge length a are particu-larly suitable for stationary household use, containers with a smaller edge length a are particu-larly suitable for mobile use.
  • the angle ⁇ is the angle that is included by the two steep edges of each side face (head side surface) of the truncated pyramid-shaped head portion in the plane of the respective side face. This angle is measured in the plane of the laminate as described above before the container is made.
  • Table 5 On the influence of the angle ⁇ on the compression stability and the sealing of the ears The results summarised in Table 5 show that containers with and angle ⁇ in a specific range are more compression-resistant along their length. This makes such containers more suitable for stacking for transport and helps to make the transport of filled containers to retailers more effi-cient. Furthermore, selection of a suitable angle ⁇ improves the sealing of the ears and, thus, helps to reduce the number of interruptions of the filling machine in production of the containers.
  • the influence of the angle ⁇ , at which the side surfaces of the truncated pyramid-shaped head portion of the container are inclined to the longitudinal direction (height) of the container (cf. 802 in Figure 8) , on the shelf life of the containers is considered.
  • containers with truncated pyramid-shaped head portions with straight base edges are manufactured accord-ing to Examples 15, 21, 28 and 34, whereby their angle ⁇ is varied.
  • the angle ⁇ (cf. 712 in Figure 7a) ) of the moulded component reflects the angle ⁇ of the head side surfaces.
  • the angle ⁇ indi-cates the inclination of the side walls of the moulded component to the longitudinal direction of the moulded component (same as the longitudinal direction of the container in the container) .
  • angles ⁇ and ⁇ in the range from 55 to 70° are beneficial for the shelf life of the containers.
  • Analyses of the containers show that angles ⁇ and ⁇ outside the aforementioned range promote the formation of so-called pockets, i.e., unsealed cavities, on the interfaces between the laminate and the moulded component in the head portion. Such cavities reduce the tightness of the head portion. This can be proven with the "liquid tightness" test described above. Further-more, germs can increasingly hold and multiply in such cavities. Both reduced tightness and increased germ growth shorten the shelf life of the containers.
  • Example 37 see example 15 54 +
  • Example 38 see example 15 55 ++
  • Example 39 see example 15 59 +++
  • Example 40 see example 15 66 ++++
  • Example 41 see example 15 70 ++
  • Example 42 see example 15 71 +
  • Example 43 see example 21 54 +
  • Example 44 see example 21 55 ++
  • Example 45 see example 21 59 +++
  • Example 46 see example 21 66 ++++
  • Example 47 see example 21 70 ++
  • Example 48 see example 21 71 +
  • Example 49 see example 28 54 +
  • Example 50 see example 28 55 ++
  • Example 51 see example 28 59 ++++
  • Example 52 see example 28 66 +++
  • Example 53 see example 28 70 ++
  • Example 54 see example 28 71 +
  • Example 55 see example 34 54 +
  • Example 56 see example 34 55 ++
  • Example 57 see example 34 59 ++++
  • Example 58 see example 34 66 +++
  • Example 59 see example 34 70 ++
  • Example 60 see example 34 71 +
  • Figure 1 a schematic representation of a planar composite
  • Figure 2 a schematic representation of a blank according to the invention of the planar composite of Figure 1;
  • Figure 3 a further schematic representation of the blank of Figure 2;
  • Figure 4 a schematic representation of a container precursor according to the invention
  • Figure 5 a further schematic representation of the container precursor of Figure 4.
  • Figure 6 a further schematic representation of the container precursor of Figure 4.
  • Figure 7a a schematic perspective view of an element other than the blank con-tainer element according to the invention.
  • Figure 7b a schematic top view of the element of Figure 7a) ;
  • Figure 8 a schematic sectional view of the element of Figure 7a) ;
  • Figure 9a a schematic partial view of a further section through the element of Figure 7a) ;
  • Figure 9b an enlarged partial representation of Figure 9a) ;
  • Figure 10a a schematic representation of the cap in Figure 7a) with opening aid
  • Figure 10b a schematic representation of the opening aid from Figure 10a) ;
  • Figure 11 a schematic perspective view of a container according to the inven-tion
  • FIG. 12a) to 12d) schematic side views of the container according to the invention from Figure 11;
  • Figure 13a a schematic top view of the container according to the invention from Figure 11;
  • Figure 13b a schematic bottom view of the container according to the invention from Figure 11;
  • Figure 14 a schematic partial representation of a section through the planar com-posite of Figure 1;
  • Figure 15 a flow chart of a process according to the invention of manufacturing a blank of a planar composite
  • Figure 16 a flow chart of a process of manufacturing a container precursor
  • Figure 17 a flow chart of a process according to the invention of manufacturing a closed container
  • Figures 18a) to 18f) illustrations of the preparation of a closed container to determine the angle ⁇ of a pair of steep edges
  • Figure 19 an illustration of the test method for determining the angle ⁇ of a pair of steep edges
  • Figure 20 a test setup to determine compression stability
  • Figure 21 a test setup to determine the grip stiffness.
  • Figure 1 shows a schematic top view of a planar composite 100.
  • the planar composite 100 is a web-shaped, semi-endless roll material, of which here only a section can be shown.
  • the planar composite 100 comprises a first plurality of grooves 101 and more than 50 further pluralities of grooves 102.
  • Figure 2 shows a schematic plan view of a blank 200 according to the invention.
  • This is a blank 200 of the planar composite 100 of Figure 1.
  • the blank 200 is designed to produce the closed container 1100 of Figure 11.
  • the blank 200 includes only the first plurality of grooves 101. These grooves are arranged and configured such that by folding the blank 200 along the grooves of the first plurality of grooves 101 and joining portions of the blank 200, a first part of a container wall 1101 surrounding a container interior of the closed container 1100 is obtainable.
  • the closed container 1100 includes a standing base 1103 and, in a longitudinal direction 201, extending along a length of the closed container 1100, opposite the standing base 1103, a head portion 1102.
  • the first plurality of grooves 101 includes grooves 204 in a first transverse margin 207 to form the standing base 1103 and grooves 203 in a further transverse margin 208 to form the head portion 1102. Furthermore, the first plurality of grooves 101 in-cludes exactly 4 longitudinal grooves 213 for forming 4 longitudinal edges 1107 of the closed container 1100.
  • the latter includes 4 head side surfaces 209 formed from the blank 200.
  • the head side surfaces 209 are inclined to each other in the longitudinal direction 201 in such a way that the closed container 1100 tapers in the head portion 1102.
  • the 4 head side surfaces 209 together form substantially a lateral surface of the head portion 1102, which is substantially in the shape of a regular truncated pyramid with a square base.
  • the 4 base edges 1105 of the regular truncated pyramid are convexly curved towards the standing base 1103, relative to their respec-tive head side surfaces 209.
  • the first plurality of grooves 101 includes 4 corresponding grooves 212 for forming the 4 base edges 1105.
  • a perimeter of each of the 4 head side surfaces 209 is formed by a respective plurality of side edges of the head portion 1102.
  • Each of these pluralities of side edges includes a pair of steep edges 1104 opposing each other in a circumferential direc-tion 202 of the closed container 1100 perpendicular to the longitudinal direction 201.
  • Each pair of steep edges 1104 is formed along a pair of grooves 210 of the first plurality of grooves 101.
  • each of these pairs of grooves 201 extend in a plane of planar extension of the blank 200 at an angle 211 in the range of 40 to 60° with respect to each other. Accordingly, in the closed container 1100, the steep edges of each of the pairs of steep edges 1104 also include the angle 211 in the range of 40 to 60°. This angle 211 is also referred to herein as ⁇ .
  • the blank 200 has a first longitudinal margin 205, a further longitudinal margin 206 opposite thereto in the circumferential direction 202, the first transverse margin 207 and the further transverse margin 208 opposite thereto in the longitudinal direction 201.
  • Each of the first longitudinal margin 205, the further longitudinal margin 206, the first transverse margin 207 and the further transverse margin 208 includes a cut edge of the blank 200.
  • a bending stiffness of the blank 200 for bending in a first composite direction 214 is greater than for bending in a further composite direction 215 perpendicular to the first composite direction 214.
  • the first composite direction 214 as well as the further composite direction 215 lie in the plane of planar extension of the blank 200.
  • the further transverse margin 208 is arranged and configured to provide a first part of the head portion 1102 of the closed container 1100 by folding the further transverse margin 208 along grooves of the first plurality of grooves 101 and joining portions of the further transverse margin 208 with one another.
  • the edge 216 of the further transverse margin 208 surrounds an element 701 other than the blank 200, which forms a further part of the head portion 1102 in the closed container 1100.
  • the edge 216 runs along its entire length parallel to the first composite direction 214 (cf. Fig 11) .
  • the first plurality of grooves 101 further comprises 4 auxiliary grooves 217.
  • Each of the auxiliary grooves 217 is arranged next to one of the longitudinal grooves 213 in the first transverse margin 207 such that a bending radius of a longitudinal fold along this longitu-dinal groove 213 is increased at least in sections of the longitudinal fold. Further, each of the auxiliary grooves 217 is curved away from the respective longitudinal groove 213.
  • each of the auxiliary grooves 217 is arranged on a side of the respective longitudinal groove 213 which faces away from a centre of the blank 200, based on the circumferential direction 202.
  • Forming the standing base 1103 includes particularly severe folding of the blank 200.
  • the aux-iliary grooves 217 described above allow to reduce mechanical stress to the blank 200 upon forming the standing base 1103. This helps to reduce the risk of leaks at the bottom of the con-tainer 1100 and, thus, contributes to a long shelf life.
  • Figure 3 shows a schematic perspective view of the blank 200 of Figure 2.
  • Figure 4 shows a schematic top view of a container precursor 400 according to the invention.
  • This includes the blank 200 of Figure 2.
  • the blank 200 has a first longitudinal fold 402 and a further longitudinal fold 403, both along longitudinal grooves 213.
  • the container precursor 400 is folded flat along these longitudinal folds.
  • the first longitudinal margin 205 and the further longitudinal margin 206 of the blank 200 are sealed together forming a longitudinal seam 401 of the container precursor 400.
  • Figure 5 shows a further schematic top view of the container precursor 400 of Figure 4.
  • the container precursor 400 which continues to be folded flat, can be seen from the side opposite the longitudinal seam 401.
  • Figure 6 shows a schematic perspective view of the container precursor 400 of Figure 4.
  • Figure 7a shows a schematic perspective view of an element 701 other than the blank 200 and a cap 707.
  • the element 701 other than the blank 200 is a non-planar component.
  • the non-planar component is an injection moulded component.
  • the element 701 other than the blank 200 is designed to form a further part of the container wall 1101 of the closed container 1100 in Figure 11, while the blank 200 of Figure 2 in folded state forms a first part of this container wall 1101, which is an open, cup-shaped container, so that the container 1100 is closed as shown in Figure 11.
  • the further part of the container wall 1101 is encompassed by the head portion 1102 of the closed container 1100.
  • the element 701 other than the blank 200 bounds the container interior in the longitudinal direction 201 of the closed container 1100 and forms a top surface of the truncated pyramid-shaped head portion 1102.
  • the element 701 other than the blank 200 is made of HDPE, comprises a base member 702 and a spout 703 arranged thereon, a pouring aperture 804 (see Figure 8) of which is covered by the cap 707. The latter is screwed onto the spout 703.
  • the cap 707 is also made of HDPE.
  • the base member 702 comprises a base plate 704 and exactly 4 side walls 705.
  • the spout 703 is arranged on a first side of the base plate 704.
  • the side walls 705 are arranged on a further side of the base plate 704 opposite the first side.
  • the element 701 other than the blank 200 is formed in one piece and is obtainable by injection moulding. Further, the side walls 705 are inclined towards each other in a longitudinal direction 708 of the element 701 other than the blank 200 extending from the base member 702 to the spout 703 so that each of the side walls 705 is inclined at an angle ⁇ 712 in a range of from 55 to 70° to the longitudinal direction 708.
  • the longitudinal direction 708 of the element 701 other than the blank 200 is the same as the longi-tudinal direction 201 of the closed container 1100.
  • a circumferential direction 709 of the non-planar component 701 is perpendicular to the longitudinal direction 708.
  • a first sealant reservoir 710 is arranged on an outer side of each of the side walls 705, respectively. Each of these first sealant reservoirs 710 is elongated in the circumferential direction 709 of the element 701 other than the blank 200. Further, each of the first sealant reservoirs 710 is formed as 4 lamellae.
  • a further sealant reservoir 711 is arranged on each side edge 706 of the base member 702, respec-tively. Each of the further sealant reservoirs 711 is arranged and formed to stand fin-like on the respective side edge 706.
  • the element 701 other than the blank 200 has been heat-sealed to the blank 200 with a sealant that has been provided at least in part by the first 710 and further sealant reservoirs 711 of the element 701 other than the blank 200.
  • Figure 7b) shows a schematic top view of the element 701 other than the blank 200 of Figure 7a) .
  • Figure 8 shows a schematic sectional view of the element 701 other than the blank 200 of Figure 7a) .
  • an opening aid 801 in the form of a cutting ring 801 is arranged in the spout 703.
  • the cutting ring 801 is made of PP.
  • the element 701 other than the blank 200 here is joined to the blank 200 of Figure 2 which has been folded along grooves of the first plurality of grooves 101.
  • the element 701 other than the blank 200 and the blank 200 together form the container wall 1101 of the closed container 1100 of Figure 11.
  • the head side surfaces 209 of the closed container 1100 are inclined to each other in the longitudinal directions 201 in such a way that they include an angle 802 in a range from 55 to 70° with the longitudinal direction 201.
  • This angle 802 is also referred to herein as ⁇ .
  • Figure 8 shows that the spout 703 includes a screw thread 803 for screwing on the cap 707.
  • a pouring aperture 804 of the spout 703 is covered by the cap 707.
  • the pouring aperture 804 is closed by a closure element 805 which is a plastic foil.
  • Figure 9a shows a schematic partial view of a further section through the element 701 other than the blank 200 of Figure 7a) .
  • Figure 9b) shows an enlarged partial representation of the circled area of Figure 9a) .
  • Figure 10a shows a schematic representation of the cap 707 of Figure 7a) with the opening aid 801.
  • Figure 10b) shows a schematic representation of the opening aid 801 from Figure 10a) .
  • FIG 11 shows a schematic perspective view of a closed container 1100 according to the in-vention.
  • the closed container 1100 comprises the blank of Figure 2 and the element 701 other than the blank 200 of Figure 7a) .
  • the blank 200 has been folded along grooves of the first plu-rality of grooves 101.
  • a container wall 1101 completely surrounds a container interior.
  • the closed container 1100 is a closed and liquid-tight foodstuff container.
  • a first part of the container wall 1101 is formed by the blank 200.
  • a further part of the container wall 1101 is formed by the element 701 other than the blank 200.
  • the blank 200 and the element 701 other than the blank 200 are joined to one another by heat sealing.
  • the closed container 1100 includes a standing base 1103 and, in the longitudinal direction 201, extending along the length of the closed container 1100, opposite the standing base 1103, a head portion 1102.
  • the head portion 1102 includes exactly 4 head side surfaces 209 formed from the blank 200, which are inclined relative to each other in the longitudinal direction 201 such that the closed container 1100 tapers in the head portion 1102 in the longitudinal direction 201.
  • a perimeter of each of the head side surfaces 209 is respectively formed by a plurality of side edges of the head portion 1102.
  • Each of these pluralities of side edges includes a pair of steep edges 1104 opposing each other in a circumferential direction 202 of the closed container 1100, which runs perpendicular to the lon-gitudinal direction 201.
  • each pair of steep edges 1104 of each of the head side surfaces 209 extend in a plane of the respective head side surface 209 at an angle ⁇ in the range from 40 to 60° with respect to each other. This angle corresponds to the angle ⁇ 211 in Figure 2, and may be determined as shown in Figures 18a) to 18f) and 19.
  • the closed container 1100 has 4 longitudinal edges 1107.
  • Each of the head side surfaces 209 includes an angle ⁇ 802 (cf. Figure 8) in the range from 55 to 70° with the longitudinal direction 201.
  • the 4 head side surfaces 209 together form substantially a lateral surface of the head portion 1102, which is substantially in the form of a regular truncated pyramid with a square base.
  • FIG. 11 shows the first part of the head portion 1102 obtained by folding the further transverse margin 208 of the blank 200 of Figure 2 along grooves 203 of the first plurality of grooves 101 and joining portions of the further transverse margin 208 to one another.
  • the edge 216 of the further transverse margin 208 surrounds the further part of the head portion 1102. This further part of the head portion 1102 is formed by the element 701 other than the blank 200.
  • the edge 216 runs along its entire length parallel to the first composite direction 214.
  • Figures 12a) to 12d) show schematic side views of the closed container 1100 of the invention from Figure 11 from all 4 sides.
  • Figure 12c) shows the longitudinal seam 401 of the closed container 1100.
  • Figure 13a shows a schematic top view of the closed container 1100 according to the invention from Figure 11.
  • Figure 13b shows a schematic bottom view of the closed container 1100 of Figure 11 according to the invention.
  • FIG 14 shows a schematic partial representation of a section through the planar composite 100 of Figure 1.
  • the planar composite 100 comprises, as superimposed layers of a layer se-quence in the direction from an outer side 1401 of the planar composite 100 to an inner side 1402 of the planar composite 100, an outer polymer layer 1403, a carrier layer 1404, an inter-mediate polymer layer 1405, an adhesion promoter layer 1406, a barrier layer 1407 and an inner polymer layer 1408.
  • the blank 200 of Figure 2 shares the aforementioned layer structure with the planar composite 100.
  • the carrier layer 1404 consists of cardboard. A main fibre direction of the cardboard in the closed container 1100 runs approximately parallel to the edge 216 of the further transverse margin 208. Further, the carrier layer 1404 renders the container wall 1101 and, thus, the closed container 1100 dimensionally stable.
  • FIG 15 shows a flow chart of a process 1500 according to the invention of manufacturing the blank 200 from Figure 2 of the planar composite 100 from Figure 1.
  • the process 1500 comprises a process step a) 1501 of providing a planar composite precursor, which has a bending stiffness that is greater for bending in a first composite direction 214 than for bending in a further com-posite direction 215 perpendicular to the first composite direction 214.
  • a process step b) 1502 the plurality of grooves 101 is introduced into the planar composite precursor. Thereby, the pla-nar composite 100 is obtained.
  • the blank 200 for making the closed container 1100 of Figure 11 is cut from the planar composite 100.
  • Figure 16 shows a flow chart of a process 1600 according to the invention of manufacturing the container precursor 400 of Figure 4.
  • a process step a. 1601 the blank 200 of Figure 2 is provided.
  • the blank 200 is folded along its longitudinal grooves 213.
  • a process step c. 1603 the first longitudinal margin 205 and the further longitudinal margin 206 are contacted with each other and joined together by heat sealing, so that a longitudinal seam 401 is obtained.
  • Figure 17 shows a flow chart of a process 1700 according to the invention of manufacturing a closed container 1100 of Figure 11.
  • a process step A) 1701 the container precursor 400 of Figure 4 and the element 701 other than the blank 200 of Figure 7a) are first provided.
  • the head portion 1102 is formed and closed by folding and joining the container precursor 400 to the element 701 other than the blank 200.
  • a process step C) 1703 the container precursor 400, which is open at the bottom, is filled upside down with a foodstuff.
  • the standing base 1103 is formed and closed by folding the blank 200 along grooves of the first plurality of grooves 101 and sealing portions of the blank 200 together to obtain the closed container 1100.
  • Figures 18a) to 18f) show illustrations of the preparation of a closed container 1100 for deter-mining the angle ⁇ 211 of a pair of steep edges 1104.
  • Figure 19 shows an illustration of the test method for determining the angle ⁇ 211of a pair of steep edges 1104.
  • Figure 20 shows a test setup 2000 with a universal tensile testing machine TIRA test 28025 with force transducer 1000 N as measuring device 2001 for determining the compression stability of the closed container 1100.
  • Figure 21 shows a test setup 2100 with a universal tensile testing machine TIRA test 28025 with force transducer 1000 N as measuring device 2001 for determining the grip stiffness of the closed container 1100.
  • the tensile testing machine was equipped with 2 non-elastic plastic balls 2101 for this purpose.
  • the closed container 1100 was positioned by means of an XY-coordinate table 2102.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cartons (AREA)

Abstract

A blank (200) of a planar composite (100) is provided. The blank (200) is designed to produce a closed container (1100). The blank (200) comprises a plurality of grooves (101, 213) arranged and configured such that by folding the blank (200) along the grooves (101, 213) and joining portions of the blank (200), a first part of a container wall (1101) is obtainable. The blank (200) comprises a first transverse margin (207) and a further transverse margin (208). The further transverse margin (208) is arranged and configured to obtain a first part of a head portion (1102) of the closed container (1100) by folding the further transverse margin (208) along further grooves (210, 212) and joining portions of the further transverse margin (208). An edge (216) of the further transverse margin (208) surrounds a further part of the head portion (1102). A bending stiffness of the blank (200) for bending in a first composite direction (214) is greater than for bending in a further composite direction (215). The edge (216) runs in an angular range of ± 30° about the first composite direction (214) along at least 50 % of its length. A use of the blank (200), a container precursor (400), a closed container (1100) and processes (1500, 1600, 1700) of making a blank (200), a container precursor (400), a closed container (1100) and corresponding products of these processes (1500, 1600, 1700) are provided.

Description

Blank for dimensionally stable foodstuff container with greater bending stiffness for bending in first composite direction than for bending in further composite direction
The present invention refers to a blank of a planar composite, wherein the blank
- is designed to produce a closed container,
- comprises a plurality of grooves arranged and configured such that by folding the blank along the grooves of the plurality of grooves and joining portions of the blank, a first part of a container wall surrounding a container interior of the closed container is obtainable, and
- comprises a first transverse margin and a further transverse margin, which is, along a longitudinal direction of the closed container, opposite to the first transverse margin;
wherein the further transverse margin is arranged and configured to obtain a first part of a head portion of the closed container by folding the further transverse margin along grooves of the plurality of grooves and joining portions of the further transverse margin; wherein an edge of the further transverse margin surrounds a further part of the head portion; wherein a bending stiffness of the blank for bending in a first composite direction is greater than for bending in a further composite direction perpendicular to the first composite direction; wherein along at least 50 %of its length, the edge runs in an angular range of ± 30° about the first composite direction. The invention further pertains to a use of the blank, to a container precursor, to a closed container and further to processes of making a blank, making a container precursor and making a closed container as well as to corresponding products of these processes.
For some time, foodstuffs have been preserved, whether they be foodstuffs for human consump-tion or else animal feed products, by storing them either in a can or in a jar closed by a lid. In this case, shelf life can be increased firstly by separately and very substantially sterilising the foodstuff and the container in each case, here the jar or can, and then introducing the foodstuff into the container and closing the container. However, these measures of increasing the shelf life of foodstuffs, which have been tried and tested over a long period, have a series of disadvantages, for example the need for another sterilisation later on. Cans and jars, because of their essentially cylindrical shape, have the disadvantage that very dense and space-saving storage is not possible.
Moreover, cans and jars have considerable intrinsic weight, which leads to increased energy expenditure in transport. Moreover, production of glass, tinplate or aluminium, even when the raw materials used for the purpose are recycled, necessitates quite a high expenditure of energy. In the case of jars, an aggravating factor is elevated expenditure on transport. The jars are usually prefabricated in a glass factory and then have to be transported to the facility where the foodstuff is dispensed with utilisation of considerable transport volumes. Furthermore, jars and cans can be opened only with considerable expenditure of force or with the aid of tools and hence in a rather laborious manner. In the case of cans, there is a high risk of injury emanating from sharp edges that arise on opening. In the case of jars, it is a repeated occurrence that broken glass gets into the foodstuff in the course of filling or opening of the filled jars, which can lead in the worst case to internal injuries on consumption of the foodstuff. In addition, both cans and jars have to be labelled for identification and promotion of the foodstuff contents. The jars and cans cannot be printed directly with information and promotional messages. In addition to the actual printing, a substrate is thus needed for the purpose, a paper or suitable film, as is a securing means, an adhesive or sealant.
Other packaging systems are known from the prior art, in order to store foodstuffs over a long period with minimum impairment. These are containers made of planar or sheet-like composites, which are often also referred to as laminates. Such laminates are often composed of a thermo-plastic layer, a carrier layer often made of cardboard or paper, which gives the container dimen-sional stability, an adhesion promoter layer, a barrier layer and another plastic layer. Since the carrier layer gives the container made from the laminate dimensional stability, these containers, in contrast to film bags and pouches, are to be seen as a further development of the aforemen-tioned jars and cans.
Depending on the container geometry and construction, certain regions of the laminates tend to suffer from the formation of small defects, such as cracks and fractures, but also unsealed pock-ets or microchannels upon production of the prior art containers. Such defects deteriorate the tightness of the container. In addition, germs can be deposited in such defects. Both effects may  result in the foodstuff in the container decaying more easily. This means that the shelf life of the container is shortened.
In general, it is an object of the present invention to at least partly overcome a disadvantage arising from the prior art.
A further object of the invention is to provide a dimensionally stable foodstuff container made of laminate which is characterised by an improved shelf life.
Furthermore, it is an object of the invention to provide a dimensionally stable foodstuff container made of laminate, which can be produced in large quantities with as few production interruptions as possible in a filling machine.
A further object of the invention is to provide a dimensionally stable foodstuff container made of laminate which, in particular through good stacking behaviour, allows the most efficient uti-lisation of transport volumes when supplying such foodstuff containers.
According to another object of the invention, the above-described advantageous foodstuff con-tainer is particularly suitable for stationary household use, in particular due to its relatively large capacity. According to another object of the invention, the advantageous foodstuff container described above is particularly suitable for mobile use, especially due to its good grip stiffness.
In accordance with a further object of the invention, one of the advantageous foodstuff contain-ers described above is additionally characterised by good standing stability of the individual container.
A contribution to at least partly fulfilling at least one, preferably more than one, of the above-mentioned objects is made by any of the embodiments of the invention.
A 1 st embodiment of the invention is a blank of a planar composite, wherein the blank
- is designed to produce a closed container,
- comprises a plurality of grooves arranged and configured such that by folding the blank along the grooves of the plurality of grooves and joining portions of the blank, a first part of a container wall surrounding a container interior of the closed container is obtainable, and
- comprises a first transverse margin and a further transverse margin, which is, along a longitudinal direction of the closed container, opposite to the first transverse margin;
wherein the further transverse margin is arranged and configured to obtain a first part of a head portion of the closed container by folding the further transverse margin along grooves of the plurality of grooves and joining portions of the further transverse margin; wherein an edge of the further transverse margin surrounds a further part of the head portion; wherein a bending stiffness of the blank for bending in a first composite direction is greater than for bending in a further composite direction perpendicular to the first composite direction; wherein, along at least 50 %, preferably at least 60 %, more preferably at least 70 %, more preferably at least 80 %, more preferably at least 90 %, still more preferably at least 95 %, most preferably 100 %, of its length, the edge runs in an angular range of ± 30°, preferably ± 25°, more preferably ± 20°, more preferably ± 15°, more preferably ± 10°, more preferably ± 5°, still more preferably ± 3°, most preferably 0°, about the first composite direction.
The edge of the further transverse margin concerned here is preferably a cut edge of the blank. The cut edge is to be distinguished from an edge formed by a fold. Preferably, the first part of the head portion has an opening which is surrounded by the edge. Preferably, the edge forms a perimeter of the opening. In the closed container, the opening is preferably closed by the further part of the head portion. Preferably, the blank is designed to produce the closed container of the invention according to any one of its embodiments.
In a preferred embodiment of the blank the planar composite comprises a carrier layer. This preferred embodiment is a 2 nd embodiment of the invention, that preferably depends on the 1 st embodiment of the invention.
In a further preferred embodiment of the blank the planar composite additionally comprises an inner polymer layer superimposing the carrier layer on its inner side. This preferred embodiment is a 3 rd embodiment of the invention, that preferably depends on the 2 nd embodiment of the invention.
In a further preferred embodiment of the blank the planar composite additionally comprises a barrier layer superimposing the carrier layer and disposed between the carrier layer and the inner polymer layer. This preferred embodiment is a 4 th embodiment of the invention, that preferably depends on the 3 rd embodiment of the invention.
In a further preferred embodiment of the blank the planar composite additionally comprises an intermediate polymer layer superimposing the carrier layer and disposed between the carrier layer and the barrier layer. This preferred embodiment is a 5 th embodiment of the invention, that preferably depends on the 4 th embodiment of the invention.
In a further preferred embodiment of the blank the planar composite additionally comprises an outer polymer layer superimposing the carrier layer on its outer side. This preferred embodiment is a 6 th embodiment of the invention, that preferably depends on any one of the 2 nd to 5 th embod-iments of the invention.
In a preferred embodiment, the outer polymer layer is adjacent to the carrier layer. The outer polymer layer preferably comprises at least 50 %by weight, preferably at least 60 %by weight, more preferably at least 70 %by weight, even more preferably at least 80 %by weight, most preferably at least 90 %by weight, in each case based on the weight of the outer polymer layer, of a polyolefin, preferably a polyethylene or a polypropylene or both.
In a further preferred embodiment of the blank the outer polymer layer comprises at least 50 %by weight, preferably at least 60 %by weight, more preferably at least 70 %by weight, even more preferably at least 80 %by weight, most preferably at least 90 %by weight, each based on  the weight of the outer polymer layer, of an LDPE. This preferred embodiment is a 7 th embodi-ment of the invention, that preferably depends on the 6 th embodiment of the invention.
In a further preferred embodiment of the blank the planar composite additionally comprises a colour application, preferably a decoration, superimposing the carrier layer on its outer side. This preferred embodiment is a 8 th embodiment of the invention, that preferably depends on any one of the 2 nd to 7 th embodiments of the invention.
Preferably, the colour application is adjacent to the carrier layer. Alternatively or additionally preferred, the colour application is adjacent to the outer polymer layer. A preferred colour ap-plication is a printed colour application, preferably a printed decoration. Preferably, the colour application comprises at least one colourant, more preferably at least 2, more preferably at least 3, more preferably at least 4, still more preferably at least 5, most preferably at least 6, colourants. The aforementioned colourants preferably each have different colours. Preferably, the colour application comprises at least one colourant in a proportion of at least 4 %by weight, more preferably at least 6 %by weight, more preferably at least 8 %by weight, in each case based on the weight of the colour application.
In a further preferred embodiment of the blank the colour application superimposes the outer polymer layer on a side of the outer polymer layer remote from the carrier layer. This preferred embodiment is a 9 th embodiment of the invention, that preferably depends on the 8 th embodiment of the invention.
Preferably, the colour application is not superimposed by any layer of the same ply of the planar composite on its side facing away from the outer polymer layer. Alternatively or additionally preferred, the colour application is printed on the outer polymer layer.
In a further preferred embodiment of the blank the colour application is arranged between the carrier layer and the outer polymer layer. This preferred embodiment is a 10 th embodiment of  the invention, that preferably depends on the 8 th embodiment of the invention. Preferably, the colour application is printed on the carrier layer.
In a further preferred embodiment of the blank one selected from the group consisting of the inner polymer layer, the intermediate polymer layer and the outer polymer layer, or a combina-tion of at least two thereof, comprises, preferably consists of, a polyolefin, preferably a polyeth-ylene or a polypropylene or a mixture of both. This preferred embodiment is an 11 th embodiment of the invention, that preferably depends on any one of the 3 rd to 10 th embodiments of the inven-tion.
Preferably, one selected from the group consisting of the inner polymer layer, the intermediate polymer layer and the outer polymer layer, or a combination of at least two thereof, comprises the polyolefin, preferably the polyethylene or the polypropylene or a mixture thereof, in a pro-portion of at least 50 %by weight, preferably at least 60 %by weight, more preferably at least 70 %by weight, even more preferably at least 80 %by weight, most preferably at least 90 %by weight, each based on the weight of the respective layer.
In a further preferred embodiment of the blank the carrier layer comprises, preferably consists of, one selected from the group consisting of cardboard, paperboard, and paper, or a combination of at least two thereof. This preferred embodiment is a 12 th embodiment of the invention, that preferably depends on any one of the 2 nd to 11 th embodiments of the invention.
The terms "cardboard" , "paperboard" and "paper" are used herein according to the definitions in the standard DIN 6735: 2010. Additionally, paperboard is preferably a material that has a combination of properties of paperboard and paper. Further, cardboard preferably has a basis weight in a range of 150 to 600 g/m 2.
In a further preferred embodiment of the blank the barrier layer comprises, preferably consists of, one selected from the group consisting of a plastic, a metal, and a metal oxide, or a  combination of at least two thereof. This preferred embodiment is a 13 th embodiment of the invention, that preferably depends on any one of the 4 th to 12 th embodiments of the invention.
In a further preferred embodiment of the blank the container interior has a capacity in a range from 100 to 2000 ml, preferably from 100 to 1500 ml, more preferably from 100 to 1200 ml, more preferably from 100 to 1000 ml, more preferably from 100 to 900 ml, more preferably from 100 to 800 ml, more preferably from 100 to 700 ml, more preferably from 100 to 600 ml, more preferably from 100 to 500 ml, more preferably from 100 to 480 ml, more preferably from 100 to 460 ml, more preferably from 100 to 440 ml, more preferably from 100 to 420 ml, more preferably from 100 to 400 ml, more preferably from 100 to 380 ml, more preferably from 100 to 360 ml, more preferably from 110 to 360 ml, more preferably from 120 to 360 ml, more preferably from 130 to 360 ml, more preferably from 140 to 360 ml, more preferably from 150 to 360 ml, more preferably from 160 to 360 ml, still more preferably from 170 to 360 ml. This preferred embodiment is a 14 th embodiment of the invention, that preferably depends on any one of the preceding embodiments of the invention.
Further preferably, the container interior has a capacity in a range from 150 to 2000 ml, more preferably from 200 to 2000 ml, more preferably from 250 to 2000 ml, more preferably from 300 to 2000 ml, more preferably from 350 to 2000 ml, more preferably from 400 to 2000 ml, more preferably from 420 to 2000 ml, more preferably from 440 to 2000 ml, more preferably from 460 to 2000 ml, more preferably from 480 to 2000 ml, more preferably from 480 to 1800 ml, more preferably from 480 to 1600 ml, more preferably from 480 to 1400 ml, more preferably from 480 to 1200 ml, most preferably from 480 to 1150 ml, more preferably from 480 to 1100 ml, still more preferably from 490 to 1100 ml.
In a further preferred embodiment of the blank the carrier layer comprises a plurality of fibres; wherein the plurality of fibres has an orientation in the first composite direction. This preferred embodiment is a 15 th embodiment of the invention, that preferably depends on any one of the 2 nd to 14 th embodiments of the invention.
Alternatively or additionally preferred, a length of at least 55 %of the fibres of the plurality of fibres is oriented in an angular range of ± 30°, preferably ± 25°, more preferably ± 20°, more preferably ± 15°, more preferably ± 10°, more preferably ± 5°, still more preferably ± 3°, most preferably 0°, around the first composite direction.
In a further preferred embodiment of the blank the bending stiffness of the blank, with respect to a direction of bending of the blank, has a maximum for bending in the first composite direction. This preferred embodiment is a 16 th embodiment of the invention, that preferably depends on any one of the preceding embodiments of the invention.
In a further preferred embodiment of the blank the blank has a first bending stiffness for bending in the first composite direction and a further bending stiffness for bending in the further compo-site direction; wherein a ratio of the further bending stiffness to the first bending stiffness is in a range of 1: 10 to 1: 1.5 preferably from 1: 9 to 1: 1.5, more preferably from 1: 8 to 1: 1.5, more preferably from 1: 7 to 1: 1.5, more preferably from 1: 6 to 1: 1.5, even more preferably from 1: 5 to 1: 1.5, most preferably from 1: 5 to 1: 2. This preferred embodiment is a 17 th embodiment of the invention, that preferably depends on any one of the preceding embodiments of the invention.
In a further preferred embodiment of the blank the blank has a first bending stiffness for bending in the first composite direction and a further bending stiffness for bending in the further compo-site direction; wherein the first bending stiffness is greater than the further bending stiffness by at least 10 mN, more preferably by at least 20 mN, more preferably by at least 30 mN, more preferably by at least 40 mN, more preferably by at least 50 mN, more preferably by at least 60 mN, more preferably by at least 70 mN, more preferably by at least 80 mN, more preferably by at least 90 mN, still more preferably by at least 100 mN, most preferably by at least 150 mN. This preferred embodiment is a 18 th embodiment of the invention, that preferably depends on any one of the preceding embodiments of the invention.
In a further preferred embodiment of the blank the blank has a first bending stiffness for bending in the first composite direction and a further bending stiffness for bending in the further  composite direction; wherein the first bending stiffness is in a range from 50 to 800 mN, more preferably from 50 to 750 mN. This preferred embodiment is a 19 th embodiment of the invention, that preferably depends on any one of the preceding embodiments of the invention.
Alternatively preferred, the first bending stiffness is in a range of from 60 to 800 mN, more preferably from 70 to 800 mN, more preferably from 80 to 800 mN, more preferably from 90 to 800 mN, more preferably from 100 to 800 mN, most preferably from 100 to 750 mN.
In a further preferred embodiment of the blank the blank has a first bending stiffness for bending in the first composite direction and a further bending stiffness for bending in the further compo-site direction; wherein the further bending stiffness is in a range from 50 to 750 mN, more pref-erably from 100 to 700 mN. This preferred embodiment is a 20 th embodiment of the invention, that preferably depends on any one of the preceding embodiments of the invention.
In a further preferred embodiment of the blank the first transverse margin is arranged and con-figured such that by folding the first transverse margin along grooves of the plurality of grooves and joining portions of the first transverse margin a standing base of the closed container, which in counter direction to the longitudinal direction of the closed container is opposite to the head portion, is obtainable. This preferred embodiment is a 21 st embodiment of the invention, that preferably depends on any one of the preceding embodiments of the invention.
In a further preferred embodiment of the blank the blank comprises a first longitudinal margin and a further longitudinal margin opposite the first longitudinal margin in a circumferential di-rection of the closed container; wherein the first longitudinal margin and the further longitudinal margin are arranged and configured such that a longitudinal seam of the closed container is obtainable by joining the first longitudinal margin to the further longitudinal margin. This pre-ferred embodiment is a 22 nd embodiment of the invention, that preferably depends on any one of the preceding embodiments of the invention. Preferably, the circumferential direction and the longitudinal direction of the closed container are perpendicular to each other.
In a further preferred embodiment of the blank the closed container tapers in the head portion along the longitudinal direction of the closed container, at least in sections. This preferred em-bodiment is a 23 rd embodiment of the invention, that preferably depends on any one of the pre-ceding embodiments of the invention.
In a further preferred embodiment of the blank the head portion comprises at least 3, preferably 3 to 12, more preferably 3 to 10, more preferably 3 to 8, more preferably 3 to 6, still more preferably 3 or 4, most preferably 4, preferably planar, head side surfaces formed from the blank; wherein the head side surfaces are inclined to each other in the longitudinal direction of the closed container such that the closed container tapers at least in sections in the head portion. This preferred embodiment is a 24 th embodiment of the invention, that preferably depends on any one of the preceding embodiments of the invention. Preferably, each of the head side surfaces is substantially trapezoidal. Here, substantially means that deviations that do not fundamentally lead away from the basic geometric shape of the trapezoid are possible. In particular, one base side of the trapezoid can be curved.
In a further preferred embodiment of the blank the head portion comprises at least 3, preferably from 3 to 12, more preferably from 3 to 10, more preferably from 3 to 8, more preferably from 3 to 6, still more preferably 3 or 4, most preferably 4, preferably planar, head side surfaces formed from the blank; wherein the head side surfaces are inclined to each other in the longitu-dinal direction of the closed container; wherein each of the head side surfaces is at an angle in a range from 55 to 70°, preferably from 55 to 69°, more preferably from 55 to 68°, more preferably from 55 to 67°, more preferably from 55 to 66°, more preferably from 55 to 65°, more preferably from 55 to 64°, more preferably from 56 to 63°, more preferably from 57 to 62°, more preferably from 58 to 61°, still more preferably from 58.5 to 60.0°, to the longitudinal direction. This pre-ferred embodiment is a 25 th embodiment of the invention, that preferably depends on any one of the preceding embodiments of the invention.
Alternatively preferred, each of the head side surfaces is at an angle in a range from 56 to 70°, more preferably from 57 to 70°, more preferably from 58 to 70°, more preferably from 59 to 70°,  more preferably from 60 to 70°, more preferably from 61 to 70°, more preferably from 62 to 69°, more preferably from 63 to 68°, more preferably from 64 to 67°, still more preferably from 65.0 to 66.0°, to the longitudinal direction
In a further preferred embodiment of the blank a perimeter of each of the head side surfaces is respectively formed by a plurality of side edges of the head portion; wherein each of the plural-ities of side edges comprises a pair of steep edges opposed to each other in a circumferential direction of the closed container, which is perpendicular to the longitudinal direction of the closed container; wherein each pair of steep edges is formed along a pair of grooves of the plu-rality of grooves. This preferred embodiment is a 26 th embodiment of the invention, that prefer-ably depends on the 24 th or 25 th embodiment of the invention.
In a further preferred embodiment of the blank the grooves of each of the pairs of grooves lie in a plane of planar extension of the blank and, in this plane of planar extension, run at an angle in the range from 40 to 60°, more preferably from 41 to 59°, more preferably from 42 to 58°, more preferably from 43 to 57°, more preferably from 44 to 57°, more preferably from 45 to 57°, more preferably from 46 to 57°, more preferably from 47 to 57°, more preferably from 48 to 57°, more preferably from 49 to 57°, more preferably from 50 to 57°, more preferably from 51 to 57°, more preferably from 52 to 57°, more preferably from 53 to 56°, more preferably from 53.5 to 55.5°, still more preferably from 54.0 to 55.0°, to one another. This preferred embodiment is a 27 th embodiment of the invention, that preferably depends on the 26 th embodiment of the invention.
Alternatively preferred, the grooves of each of the pairs of grooves lie in a plane of planar ex-tension of the blank and run at an angle in the range of from 43 to 56°, more preferably from 43 to 55°, more preferably from 43 to 54°, more preferably from 43 to 53°, more preferably from 43 to 52°, more preferably from 43 to 51°, more preferably from 43 to 50°, more preferably from 43 to 49°, more preferably from 43 to 48°, more preferably from 43 to 47°, more preferably from 44.0 to 46.0°, still more preferably from 44.5 to 45.5°, to one another.
In a further preferred embodiment of the blank at least a portion, preferably each, of the plural-ities of side edges comprises a base edge which is convexly curved towards the first transverse margin with respect to the head side surface whose perimeter is formed by said side edges. This preferred embodiment is a 28 th embodiment of the invention, that preferably depends on the 26 th or 27 th embodiment of the invention. Preferably each of these base edges is arcuate convex, more preferably circular arcuate convex.
In a further preferred embodiment of the blank the head side surfaces together form substantially a lateral surface of a regular truncated pyramid. This preferred embodiment is a 29 th embodiment of the invention, that preferably depends on any one of the 24 th to 28 th embodiments of the in-vention.
Substantially means here that deviations that do not fundamentally lead away from the basic geometric shape of the regular truncated pyramid are possible. In particular, the edges of the base surface of the regular truncated pyramid can be curved. Preferably, the edges of the base surface of the regular truncated pyramid, with respect to the adjacent head side surface, are con-vexly curved, preferably arcuately convex, more preferably circularly convex. Here, the side edges of each of the head side surfaces preferably consist of the pair of steep edges, an edge of a top surface of the regular truncated pyramid and an edge of a base surface of the regular trun-cated pyramid. Alternatively or additionally preferred, the angle at which the grooves of each of the pairs of grooves run relative to each other in the plane of planar extension of the blank is an angle included by the 2 steep edges of each side face of the supplementary pyramid of the regular truncated pyramid at the apex of that supplementary pyramid.
In a further preferred embodiment of the blank the regular truncated pyramid has a base surface in the form of a polygon. This preferred embodiment is a 30 th embodiment of the invention, that preferably depends on the 29 th embodiment of the invention.
A preferred polygon is a regular polygon. Alternatively or additionally preferred, the polygon has 3 to 12, more preferably 3 to 10, more preferably 3 to 8, more preferably 3 to 6, still more  preferably 3 or 4, most preferably 4, corners. A preferred polygon with 4 corners is a rectangle. A preferred rectangle is a square. Preferably, the head portion of the closed container has as many head side faces as the polygon has corners.
In a further preferred embodiment of the blank the grooves of the plurality of grooves at least partially include line-shaped indentations on an outer side of the blank. This preferred embodi-ment is a 31 st embodiment of the invention, that preferably depends on any one of the preceding embodiments of the invention.
A preferred line-shaped indentation is a line-shaped material displacement. Preferably, the grooves of the plurality of grooves are formed as line-shaped depressions on the outer side of the blank. Further preferably, the grooves of the plurality of grooves have bulges on an inner side of the blank.
In a further preferred embodiment of the blank the blank is configured such that the head portion of the closed container is formed by the first part of the head portion and a further part of the head portion; wherein the further part comprises, preferably consists of, an element other than the blank. This preferred embodiment is a 32 nd embodiment of the invention, that preferably depends on any one of the preceding embodiments of the invention.
Preferably, the element other than the blank forms a top surface of the head portion of the closed container. A preferred top surface is the top surface of a regular truncated pyramid. Preferably, the element other than the blank forms a further part of the container wall of the closed container. A preferred element other than the blank is a non-planar component. A preferred non-planar component is a moulded component. A preferred moulded component is an injection moulded component.
In a further preferred embodiment of the blank the element other than the blank comprises
- a base member, and
- a spout arranged on the base member.
This preferred embodiment is a 33 rd embodiment of the invention, that preferably depends on the 32 nd embodiment of the invention.
In a further preferred embodiment of the blank the base member comprises
- a base plate, and
- at least 3, preferably 3 to 12, more preferably 3 to 10, more preferably 3 to 8, more
preferably 3 to 6, still more preferably 3 or 4, most preferably exactly 4, side walls; wherein the spout is arranged on a first side of the base plate; wherein the side walls are arranged on a further side of the base plate opposite to the first side. This preferred embodiment is a 34 th embodiment of the invention, that preferably depends on the 33 rd embodiment of the invention.
Preferably, the first side of the base plate in the closed container faces the container interior and the further side of the base plate in the closed container faces away from the container interior.
In a further preferred embodiment of the blank the side walls of the base member are inclined towards each other in a longitudinal direction of the element other than the blank extending from the base element to the spout; wherein each of the side walls includes an angle in the range from 55 to 70°, preferably from 55 to 69°, preferably from 55 to 68°, more preferably from 55 to 67°, more preferably from 55 to 66°, more preferably from 55 to 65°, more preferably from 55 to 64°, more preferably from 56 to 63°, more preferably from 57 to 62°, more preferably from 58 to 61°, still more preferably from 58.5 to 60.0°, with the longitudinal direction of the element other than the blank. This preferred embodiment is a 35 th embodiment of the invention, that preferably depends on the 34 th embodiment of the invention.
Alternatively preferred, each of the side walls includes an angle in the range from 56 to 70°, more preferably from 57 to 70°, more preferably from 58 to 70°, more preferably from 59 to 70°, more preferably from 60 to 70°, more preferably from 61 to 70°, more preferably from 62 to 69°, more preferably from 63 to 68°, more preferably from 64 to 67°, still more preferably from 65.0 to 66.0°, with the longitudinal direction of the element other than the blank.
Preferably, the longitudinal direction of the element other than the blank is perpendicular to the base plate. Alternatively or additionally preferred, the longitudinal direction is perpendicular to a circumferential direction of the element other than the blank. Alternatively or additionally preferred, the longitudinal direction of the element other than the blank in the closed container runs along a length of the closed container, i.e. along the longitudinal direction of the closed container. Preferably, the element other than the blank consists of the base element and the spout. A preferred element other than the blank is configured as a further part of the container wall of the closed container.
In a further preferred embodiment of the blank the base plate has a base surface in the form of a polygon. This preferred embodiment is a 36 th embodiment of the invention, that preferably de-pends on the 34 th or 35 th embodiment of the invention.
A preferred polygon is a regular polygon. Alternatively or additionally preferred, the polygon has 3 to 12, more preferably 3 to 10, more preferably 3 to 8, more preferably 3 to 6, still more preferably 3 or 4, most preferably exactly 4, corners. A preferred polygon with 4 corners is a rectangle. A preferred rectangle is a square. Preferably the base member has as many side walls as the polygon has corners.
In a further preferred embodiment of the blank each 2 of the side walls, which are next to each other in a circumferential direction of the element other than the blank, adjoin each other forming a side edge of the base member. This preferred embodiment is a 37 th embodiment of the inven-tion, that preferably depends on any one of the 34 th to 36 th embodiments of the invention.
In a further preferred embodiment of the blank the base member and the spout are formed in one piece with each other. This preferred embodiment is a 38 th embodiment of the invention, that preferably depends on any one of the 33 rd to 37 th embodiments of the invention. Preferably, the element other than the blank is formed in one piece.
In a further preferred embodiment of the blank the first part of the container wall is formed from the blank; wherein a further part of the container wall is formed from the element other than the blank; wherein the first part and the further part together form the container wall such that the closed container is closed. This preferred embodiment is a 39 th embodiment of the invention, that preferably depends on any one of the 32 nd to 38 th embodiments of the invention.
In a further preferred embodiment of the blank the further part of the container wall is cup-shaped. This preferred embodiment is a 40 th embodiment of the invention, that preferably de-pends on the 39 th embodiment of the invention.
In a further preferred embodiment of the blank the element other than the blank bounds the container interior in the longitudinal direction of the closed container. This preferred embodi-ment is a 41 st embodiment of the invention, that preferably depends on any one of the 32 nd to 40 th embodiments of the invention. Preferably, the element other than the blank forms a top of the closed container for this purpose.
In a further preferred embodiment of the blank the blank bounds the container interior laterally, or in a direction opposite to the longitudinal direction of the closed container, or both. This preferred embodiment is a 42 nd embodiment of the invention, that preferably depends on any one of the preceding embodiments of the invention.
In a preferred embodiment of the blank, the plurality of grooves includes 4 longitudinal grooves, each longitudinal groove being arranged and configured to obtain a longitudinal edge of the closed container by folding along the respective longitudinal groove, each longitudinal edge of the closed container extending along the longitudinal direction of the closed container from the standing base to the head portion, wherein the closed container has a square cross-section along its longitudinal direction between the standing base and the head portion at least in sections, preferably continuously, wherein the shortest of the 4 longitudinal grooves has a length l, wherein a ratio of the length l to an edge length a of the square cross-section lies in a range from 1.3 to 2.95, preferably from 1.35 to 2.95, more preferably from 1.38 to 2.8, most preferably from  1.39 to 2.8. The length l is the height of the closed container excluding its head portion. Prefer-ably, the 4 longitudinal grooves are of equal length. In principle, however, it is also possible that, for example, 2 longitudinal grooves are shorter than the other two longitudinal grooves. In this case, the length l designates the shorter longitudinal grooves.
In a further preferred embodiment of the blank, the plurality of grooves comprises at least one auxiliary groove, preferably at least 2 auxiliary grooves, more preferably at least 3 auxiliary grooves, most preferably 4 auxiliary grooves; wherein each auxiliary groove is arranged next to a longitudinal groove of the plurality of grooves in the first transverse margin such that a bending radius of a longitudinal fold along this longitudinal groove is increased at least in sections of the longitudinal fold. Preferably, each auxiliary groove curves away from the respective longitudinal groove. Additionally or alternatively preferred, each auxiliary groove is arranged on a side of the respective longitudinal groove which faces away from a centre of the blank, based on a cir-cumferential direction of the closed container which is perpendicular to the longitudinal direc-tion of the closed container.
A 43 rd embodiment of the invention is a process comprising as process steps:
a) providing a planar composite precursor having a bending stiffness which is greater for bending in a first composite direction than for bending in a further composite direction perpendicular to the first composite direction;
b) introducing a plurality of grooves into the planar composite precursor to obtain a planar composite; and
c) separating a blank for making a closed container from the planar composite, wherein the blank comprises
- the grooves of the plurality of grooves, and
- a first transverse margin and a further transverse margin opposite the first transverse margin along a longitudinal direction of the closed container;
wherein the grooves of the plurality of grooves are arranged and configured such that by folding the blank along the grooves of the plurality of grooves and joining portions of the blank, a first part of a container wall surrounding a container interior of the closed container is obtainable;
wherein the further transverse margin is arranged and configured to provide a first part of a head portion of the closed container by folding the further transverse margin along grooves of said plurality of grooves and joining portions of the further transverse margin; wherein an edge of the further transverse margin surrounds a further part of the head portion; wherein along at least 50%, preferably at least 60%, more preferably at least 70%, more preferably at least 80%, more preferably at least 90%, still more preferably at least 95%, most preferably 100%, of its length, the edge runs in an angular range of ± 30°, preferably ± 25°, more preferably ± 20°, more pref-erably ± 15°, more preferably ± 10°, more preferably ± 5°, still more preferably ± 3°, most preferably 0°, about the first composite direction.
The process is preferably a process for producing the blank, more preferably of producing the blank. A preferred blank is configured to produce at least one, preferably exactly one, closed container. A preferred closed container is a closed foodstuff container. Additionally or alterna-tively preferred, the closed container is the closed container of the invention according to any of its embodiments. Additionally or alternatively preferred, the blank is the blank of the invention according to any of its embodiments.
In a preferred embodiment of the process in the process step a) the planar composite precursor comprises a carrier layer. This preferred embodiment is a 44 th embodiment of the invention, that preferably depends on the 43 rd embodiment of the invention. Preferably, the carrier layer is de-signed and arranged according to one of the embodiments of the blank according to the invention.
In a further preferred embodiment of the process the planar composite precursor in the process step a) comprises as layers of a sequence of layers superimposing each other in a direction from an outer side of the planar composite precursor to an inner side of the planar composite precursor:
A. the carrier layer
B. a barrier layer, and
C. an inner polymer layer.
This preferred embodiment is a 45 th embodiment of the invention, that preferably depends on the 44 th embodiment of the invention.
Preferably, the carrier layer, the barrier layer, or the inner polymer layer, or a combination of at least two of these, is configured and arranged according to any one of the embodiments of the blank according to the invention.
In a further preferred embodiment of the process the planar composite precursor in the process step a) additionally comprises an outer polymer layer superimposing the carrier layer on a side facing an outer side of the planar composite precursor. This preferred embodiment is a 46 th em-bodiment of the invention, that preferably depends on the 44 th or 45 th embodiment of the inven-tion. Preferably, the outer polymer layer is configured and arranged according to any one of the embodiments of the blank according to the invention.
In a further preferred embodiment of the process the planar composite precursor in the process step a) additionally comprises an intermediate polymer layer between the carrier layer and the barrier layer. This preferred embodiment is a 47 th embodiment of the invention, that preferably depends on the 45 th or 46 th embodiment of the invention. Preferably, the intermediate polymer layer is configured and arranged according to any one of the embodiments of the blank according to the invention.
In a further preferred embodiment of the process in the process step b) the introducing of the grooves of the plurality of grooves takes place as an introducing of a plurality of line-shaped depressions on a side of the carrier layer, which, in the planar composite, faces an outer side of the planar composite. This preferred embodiment is a 48 th embodiment of the invention, that preferably depends on any one of the 44 th to 47 th embodiments of the invention.
Preferably, the introducing is performed by contacting the planar composite precursor on the side of the carrier layer facing away from the barrier layer in the planar composite and preferably simultaneously on an opposite side of the planar composite precursor with at least one grooving tool. In this case, a, preferably linear, region of the planar composite precursor on the aforemen-tioned opposite side is preferably received in a recess in the grooving tool. In doing so, the region  is preferably pressed into the recess. Thus, the linear depressions are preferably obtained as lin-ear material displacements. A preferred grooving tool has a multi-part structure. Thus, the groov-ing tool preferably comprises a part with a recess and another part which is designed for pressing the planar composite precursor into the recess. Accordingly, these two parts are preferably de-signed to engage with each other.
In a further preferred embodiment of the process the planar composite precursor in the process step a) additionally comprises a colour application superimposing the carrier layer on its side facing an outer side of the planar composite precursor. This preferred embodiment is a 49 th em-bodiment of the invention, that preferably depends on any one of the 44 th to 48 th embodiments of the invention. Preferably, the colour application is configured and arranged according to any one of the embodiments of the blank according to the invention.
In a further preferred embodiment of the process, the plurality of grooves comprises at least one auxiliary groove, preferably at least 2 auxiliary grooves, more preferably at least 3 auxiliary grooves, most preferably 4 auxiliary grooves; wherein each auxiliary groove is arranged next to a longitudinal groove of the plurality of grooves in the first transverse margin such that a bending radius of a longitudinal fold along this longitudinal groove is increased at least in sections of the longitudinal fold. Preferably, each auxiliary groove curves away from the respective longitudinal groove. Additionally or alternatively preferred, each auxiliary groove is arranged on a side of the respective longitudinal groove which faces away from a centre of the blank, based on a cir-cumferential direction of the closed container which is perpendicular to the longitudinal direc-tion of the closed container.
A 50 th embodiment of the invention is a blank of a planar composite obtainable by the process according to any one of the 44 th to 49 th embodiments of the invention. Preferably, the blank is the blank of the invention according to any one of the 1 st to 42 nd embodiments.
A 51 st embodiment of the invention is a container precursor of the closed container, the container precursor comprising the blank according to any one of the 1 st to 42 nd, or 50 th embodiments of the invention.
In a preferred embodiment of the container precursor the blank has at least two folds, preferably at least 3 folds, more preferably at least 4 folds. This preferred embodiment is a 52 nd embodiment of the invention, that preferably depends on the 51 st embodiment of the invention
In a further preferred embodiment of the container precursor the blank comprises a first longi-tudinal margin and a further longitudinal margin opposite the first longitudinal margin in a cir-cumferential direction of the container precursor; wherein the first longitudinal margin is joined to the further longitudinal margin to form a longitudinal seam of the container precursor. This preferred embodiment is a 53 rd embodiment of the invention, that preferably depends on the 51 st or 52 nd embodiment of the invention. Preferably, the circumferential direction and the longitu-dinal direction of the container precursor are perpendicular to each other.
A 54 th embodiment of the invention is a closed container comprising the blank according to any one of the 1 st to 42 nd, or 50 th embodiments of the invention. Preferably, the closed container according to the invention is a closed foodstuff container.
In a further preferred embodiment of the closed container a first part of the container wall is formed by the blank which has been folded along grooves of the plurality of grooves and portions of the blank have been joined to one another. This preferred embodiment is a 55 th embodiment of the invention, that preferably depends on the 54 th embodiment of the invention.
In a preferred embodiment of the closed container the closed container additionally comprises the element other than the blank. This preferred embodiment is a 56 th embodiment of the inven-tion, that preferably depends on the 54 th or 55 th embodiment of the invention. Preferably, the element other than the blank forms a further part of the container wall. Preferably, the first part and the further part together form the container wall such that the closed container is closed.
A 57 th embodiment of the invention is a closed container comprising
- a blank of a planar composite, and
- an element other than the blank;
wherein the blank has a bending stiffness which is greater for bending in a first composite direc-tion than for bending in a further composite direction perpendicular to the first composite direc-tion; wherein the blank
- comprises a first transverse margin and a further transverse margin opposite the first transverse margin along a longitudinal direction of the closed container, and
- forms a first part of a container wall surrounding a container interior of the closed container;
wherein the element other than the blank forms a further part of the container wall; wherein the further transverse margin is joined to the element other than the blank; wherein an edge of the further transverse margin surrounds the element other than the blank; wherein along at least 50 %, preferably at least 60 %, more preferably at least 70 %, more preferably at least 80 %, more preferably at least 90 %, still more preferably at least 95 %, most preferably 100 %, of its length, the edge runs in an angular range of ± 30°, preferably ± 25°, more preferably ± 20°, more preferably ± 15°, more preferably ± 10°, more preferably ± 5°, still more preferably ± 3°, most preferably 0°, about the first composite direction.
Preferably, the first part of the container wall and the further part of the container wall together form the container wall such that the closed container is closed. Preferably, the further transverse margin forms a first part of a head portion of the closed container; wherein the edge of the further transverse margin surrounds a further part of the head portion. The further part of the head por-tion preferably comprises the element other than the blank. Preferably, the further transverse margin, preferably the edge of the further transverse margin, encloses the element other than the blank, preferably along an entire circumference of the element other than the blank. Preferably, the planar composite comprises a carrier layer. Preferably, this carrier layer has the features of the carrier layer according to one of the embodiments of the blank according to the invention. Preferably, the planar composite has the features of the planar composite according to one of the  embodiments of the blank according to the invention. Preferably, the blank has the features of the blank according to one of the embodiments of the blank according to the invention. Prefera-bly, the element other than the blank has the features of the element other than the blank accord-ing to one of the embodiments of the blank according to the invention. Preferably, the closed container has the features of the closed container according to one of the embodiments of the blank according to the invention.
In a preferred embodiment of the closed container the container interior has a capacity in a range of from 100 to 2000 ml, preferably from 100 to 1500 ml, more preferably from 100 to 1200 ml, more preferably from 100 to 1000 ml, more preferably from 100 to 900 ml, more preferably from 100 to 800 ml, more preferably from 100 to 700 ml, more preferably from 100 to 600 ml, more preferably from 100 to 500 ml, more preferably from 100 to 480 ml, more preferably from 100 to 460 ml, more preferably from 100 to 440 ml, more preferably from 100 to 420 ml, more preferably from 100 to 400 ml, more preferably from 100 to 380 ml, more preferably from 100 to 360 ml, more preferably from 110 to 360 ml, more preferably from 120 to 360 ml, more preferably from 130 to 360 ml, more preferably from 140 to 360 ml, more preferably from 150 to 360 ml, more preferably from 160 to 360 ml, still more preferably from 170 to 360 ml. This preferred embodiment is a 58 th embodiment of the invention, that preferably depends on any of the 54 th to 57 th embodiments of the invention.
Further preferably, the container interior has a capacity in a range from 150 to 2000 ml, more preferably from 200 to 2000 ml, more preferably from 250 to 2000 ml, more preferably from 300 to 2000 ml, more preferably from 350 to 2000 ml, more preferably from 400 to 2000 ml, more preferably from 420 to 2000 ml, more preferably from 440 to 2000 ml, more preferably from 460 to 2000 ml, more preferably from 480 to 2000 ml, more preferably from 480 to 1800 ml, more preferably from 480 to 1600 ml, more preferably from 480 to 1400 ml, more preferably from 480 to 1200 ml, most preferably from 480 to 1150 ml, more preferably from 480 to 1100 ml, still more preferably from 490 to 1100 ml.
In a further preferred embodiment of the closed container the container comprises a standing base comprising the first transverse margin and, in the longitudinal direction of the closed con-tainer opposite the standing base, a head portion comprising the further transverse margin. This preferred embodiment is a 59 th embodiment of the invention, that preferably depends on any of the 54 th to 58 th embodiments of the invention. Preferably, the standing base is formed from the blank.
In a further preferred embodiment of the closed container the blank comprises a first longitudinal margin and a further longitudinal margin opposite the first longitudinal margin in a circumfer-ential direction of the closed container; wherein the first longitudinal margin is joined to the further longitudinal margin to form a longitudinal seam of the closed container. This preferred embodiment is a 60 th embodiment of the invention, that preferably depends on any of the 54 th to 59 th embodiments of the invention. Preferably, the circumferential direction and the longitudinal direction of the closed container are perpendicular to each other.
In a further preferred embodiment of the closed container the closed container tapers in the head portion along the longitudinal direction of the closed container at least in sections. This preferred embodiment is a 61 st embodiment of the invention, that preferably depends on the 59 th or 60 th embodiment of the invention.
In a further preferred embodiment of the closed container the head portion comprises at least 3, preferably 3 to 12, more preferably 3 to 10, more preferably 3 to 8, more preferably 3 to 6, even more preferably 3 or 4, most preferably 4, preferably planar, head side surfaces formed from the blank; wherein the head side surfaces are inclined to each other in the longitudinal direction of the closed container such that the closed container tapers at least in sections in the head portion; wherein the head side surfaces which are inclined to each other in the longitudinal direction of the closed container such that the closed container tapers at least in sections in the head portion. This preferred embodiment is a 62 nd embodiment of the invention, that preferably depends on any of the 59 th to 61 st embodiments of the invention.
In a further preferred embodiment of the closed container the head portion comprises at least 3, preferably 3 to 12, more preferably 3 to 10, more preferably 3 to 8, more preferably 3 to 6, even more preferably 3 or 4, most preferably 4, preferably planar, head side surfaces formed from the blank; wherein the head side surfaces are inclined to each other in the longitudinal direction of the closed container; wherein each of the head side surfaces is at an angle in a range from 55 to 70°, preferably from 55 to 69°, more preferably from 55 to 68°, more preferably from 55 to 67°, more preferably from 55 to 66°, more preferably from 55 to 65°, more preferably from 55 to 64°, more preferably from 56 to 63°, more preferably from 57 to 62°, more preferably from 58 to 61°, still more preferably from 58.5 to 60.0°, to the longitudinal direction. This preferred embodiment is a 63 rd embodiment of the invention, that preferably depends on any of the 59 th to 62 nd embod-iments of the invention.
Alternatively preferred, each of the head side surfaces is at an angle in a range from56 to 70°, more preferably from 57 to 70°, more preferably from 58 to 70°, more preferably from 59 to 70°, more preferably from 60 to 70°, more preferably from 61 to 70°, more preferably from 62 to 69°, more preferably from 63 to 68°, more preferably from 64 to 67°, still more preferably from 65.0 to 66.0°, to the longitudinal direction.
In a further preferred embodiment of the closed container a perimeter of each of the head side surfaces is respectively formed by a plurality of side edges of the head portion; wherein each of the pluralities of side edges comprises a pair of steep edges opposed to each other in a circum-ferential direction of the closed container, which is perpendicular to the longitudinal direction of the closed container. This preferred embodiment is a 64 th embodiment of the invention, that preferably depends on the 62 nd or 63 rd embodiment of the invention.
In a further preferred embodiment of the closed container the steep edges of each pair of steep edges of each of the head side surfaces lie in a plane of the respective head side surface and, in this plane of the respective head side surface, run at an angle in the range of from 40 to 60°, more preferably from 41 to 59°, more preferably from 42 to 58°, more preferably from 43 to 57°, more preferably from 44 to 57°, more preferably from 45 to 57°, more preferably from 46 to 57°,  more preferably from 47 to 57°, more preferably from 48 to 57°, more preferably from 49 to 57°, more preferably from 50 to 57°, more preferably from 51 to 57°, more preferably from 52 to 57°, more preferably from 53 to 56°, more preferably from 53.5 to 55.5°, still more preferably from 54.0 to 55.0°, to one other. This preferred embodiment is a 65 th embodiment of the invention, that preferably depends on the 64 th embodiment of the invention.
Alternatively preferably, the steep edges of each pair of steep edges of each of the head side surfaces lie in a plane of the respective head side surface and, in this plane of the respective head side surface, run at an angle in the range of from 43 to 56°, more preferably from 43 to 55°, more preferably from 43 to 54°, more preferably from 43 to 53°, more preferably from 43 to 52°, more preferably from 43 to 51°, more preferably from 43 to 50°, more preferably from 43 to 49°, more preferably from 43 to 48°, more preferably from 43 to 47°, more preferably from 44.0 to 46.0°, still more preferably from 44.5 to 45.5°, to one other.
Preferably, each of the head side surfaces is substantially trapezoidal. Here, substantially means that deviations that do not fundamentally depart from the basic geometric shape of the trapezoid are possible. In particular, one base side of the trapezoid can be curved.
In a further preferred embodiment of the closed container at least a portion, preferably each, of said pluralities of side edges comprises a base edge convexly curved toward the first transverse margin with respect to the head side surface whose perimeter is formed by said side edges. This preferred embodiment is a 66 th embodiment of the invention, that preferably depends on the 64 th or 65 th embodiment of the invention. Preferably, each of these base edges is curved in an arcuate convex manner, more preferably in a circular arcuate convex manner.
In a further preferred embodiment of the closed container the head side surfaces together form substantially a lateral surface of a regular truncated pyramid. This preferred embodiment is a 67 th embodiment of the invention, that preferably depends on any of the 62 nd to 66 th embodi-ments of the invention.
Substantially means here that deviations which do not fundamentally lead away from the basic geometric shape of the regular truncated pyramid are possible. In particular, the edges of the base of the regular truncated pyramid can be curved. Preferably, the edges of the base surface of the regular truncated pyramid, with respect to the adjacent head side surface, are convexly curved, preferably arcuately convex, more preferably circularly convex. Here, the side edges of each of the head side surfaces preferably consist of the pair of steep edges, an edge of a top surface of the regular truncated pyramid and an edge of a base surface of the regular truncated pyramid. Alternatively or additionally preferred, the angle at which the steep edges of each pair of steep edges extend relative to each other in the plane of the respective head side face is an angle included by the 2 steep edges of each side face of the supplementary pyramid of the regular truncated pyramid at the apex of that supplementary pyramid.
In a further preferred embodiment of the closed container the regular truncated pyramid has a base surface in the form of a polygon. This preferred embodiment is a 68 th embodiment of the invention, that preferably depends on the 67 th embodiment of the invention.
A preferred polygon is a regular polygon. Alternatively or additionally preferred, the polygon has 3 to 12, more preferably 3 to 10, more preferably 3 to 8, more preferably 3 to 6, still more preferably 3 or 4, most preferably 4, corners. A preferred polygon with 4 corners is a rectangle. A preferred rectangle is a square. Preferably, the head portion of the closed container has as many head side faces as the polygon has corners.
In a further preferred embodiment of the closed container the head portion of the closed container comprises, preferably consists of, a first part of the head portion and a further part of the head portion; wherein the first part of the head portion is formed by the blank; wherein the further part of the head portion comprises, preferably consisting of, the element other than the blank. This preferred embodiment is a 69 th embodiment of the invention, that preferably depends on any of the 59 th to 68 th embodiments of the invention. Preferably, the element other than the blank forms a top surface of the head portion of the closed container. A preferred top surface is the top surface of a regular truncated pyramid.
In a further preferred embodiment of the closed container the element other than the blank com-prises
- a base member, and
- a spout arranged on the base member.
This preferred embodiment is a 70 th embodiment of the invention, that preferably depends on any of the 55 th to 69 th embodiments of the invention.
In a further preferred embodiment of the closed container the base member comprises
- a base plate, and
- at least 3, preferably 3 to 12, more preferably 3 to 10, more preferably 3 to 8, more preferably 3 to 6, still more preferably 3 or 4, most preferably exactly 4, side walls;
wherein the spout is arranged on a first side of the base plate; wherein the side walls are arranged on a further side of the base plate opposite to the first side. This preferred embodiment is a 71 st embodiment of the invention, that preferably depends on the 70 th embodiment of the invention. Preferably the first side of the base plate faces the container interior and the further side of the base plate faces away from the container interior.
In a further preferred embodiment of the closed container the blank and the element other than the blank are glued or sealed together or both. This preferred embodiment is a 72 nd embodiment of the invention, that preferably depends on any of the 55 th to 71 st embodiments of the invention. Preferably, the further transverse margin of the blank is glued or sealed or both to the element other than the blank.
In a further preferred embodiment of the closed container the blank is joined, preferably directly, to one of the side walls, preferably to each of the side walls, of the element other than the blank. This preferred embodiment is a 73 rd embodiment of the invention, that preferably depends on the 71 st or 72 nd embodiment of the invention.
In a further preferred embodiment of the closed container the element other than the blank, pref-erably the spout, comprises a screw thread. This preferred embodiment is a 74 th embodiment of the invention, that preferably depends on any of the 55 th to 73 rd embodiments of the invention.
In a further preferred embodiment of the closed container the base member and the spout are formed in one piece with each other. This preferred embodiment is a 75 th embodiment of the invention, that preferably depends on any of the 70 th to 74 th embodiments of the invention. Pref-erably, the element other than the blank is formed in one piece.
In a further preferred embodiment of the closed container the closed container further comprises a cap, preferably a screw cap, which is arranged at the element other than the blank such that the cap covers a pouring aperture of the spout. This preferred embodiment is a 76 th embodiment of the invention, that preferably depends on any of the 70 th to 75 th embodiments of the invention
Preferably, the cap is screwed onto the spout. A preferred cap includes a second polymer com-position. Preferably, the cap consists of the second polymer composition. Preferably, the second polymer composition comprises a polyolefin or a polycondensate or both. Preferably the second polymer composition comprises the polyolefin or the polycondensate or both together in a pro-portion in a range of from 70 to 100 %by weight, preferably from 80 to 99 %by weight, more preferably from 90 to 98 %by weight, each based on the second polymer composition. A pre-ferred polyolefin is a polyethylene or a polypropylene or both. A preferred polyethylene is an HDPE. A preferred polycondensate is a polyester or polyamide (PA) or both. A preferred poly-ester is a polyethylene terephthalate (PET) . A preferred second polymer composition addition-ally includes a colourant. The second polymer composition preferably has a melting temperature in a range from 90 to 350 ℃, preferably from 90 to 300 ℃, more preferably from 90 to 280 ℃, more preferably from 90 to 260 ℃, more preferably from 90 to 240 ℃, more preferably from 90 to 220 ℃, more preferably from 100 to 200 ℃, more preferably from 100 to 190 ℃, more preferably from 100 to 180 ℃, more preferably from 100 to 170 ℃, more preferably from 100 to 160 ℃, more preferably from 110 to 150 ℃, more preferably from 120 to 140 ℃, still more preferably from 125 to 140 ℃, most preferably from 128 to 136 ℃.
In a further preferred embodiment of the closed container the closed container further comprises an opening aid; wherein the opening aid is arranged at the spout, preferably in the spout. This preferred embodiment is a 77 th embodiment of the invention, that preferably depends on any one of the 70 th to 76 th embodiments of the invention. Preferably, the opening aid is designed and arranged for opening a pouring aperture of the spout.
Alternatively or additionally preferred, the opening aid is arranged at the cap, preferably in the cap. A preferred opening aid is a cutting aid or a tearing aid or both. Alternatively or additionally preferably, the opening aid is annular. A preferred annular cutting aid is a cutting ring. A pre-ferred annular tear aid is a tear ring.
A preferred opening aid comprises a third polymer composition. Preferably, the opening aid consists of the third polymer composition. Preferably, the third polymer composition comprises a polyolefin or a polycondensate or both. Preferably, the third polymer composition comprises the polyolefin or the polycondensate or both together in a proportion in a range from 50 to 100 %by weight, more preferably from 60 to 100 %by weight, more preferably from 70 to 100 %by weight, even more preferably from 80 to 100 %by weight, most preferably from 90 to 100 %by weight, each based on the third polymer composition. A preferred polyolefin is a polyethylene or a polypropylene or both. A preferred polyethylene is an HDPE. A preferred polycondensate is a polyester or polyamide (PA) or both. A preferred polyester is a polyethylene terephthalate (PET) . A preferred third polymer composition additionally includes a colourant. The third pol-ymer composition preferably has a melting temperature in a range from 90 to 350 ℃, preferably from 90 to 300 ℃, more preferably from 90 to 280 ℃, more preferably from 90 to 260 ℃, more preferably from 90 to 240 ℃, more preferably from 90 to 220 ℃, more preferably from 100 to 200 ℃, more preferably from 100 to 190 ℃, more preferably from 110 to 180 ℃, most prefer-ably from 120 to 170 ℃.
In a further preferred embodiment of the closed container the opening aid is arranged and con-figured to open the pouring aperture by removing the cap from the spout. This preferred  embodiment is a 78 th embodiment of the invention, that preferably depends on the 77 th embodi-ment of the invention
In a further preferred embodiment of the closed container the element other than the blank com-prises, preferably consists of, a first polymer composition. This preferred embodiment is a 79 th embodiment of the invention, that preferably depends on any of the 55 th to 78 th embodiments of the invention
Alternatively or additionally preferred, the base member or the spout or both comprises the first polymer composition. Preferably, the base member or the spout or both consists of the first pol-ymer composition.
In a further preferred embodiment of the closed container the first polymer composition com-prises a polyolefin or a polycondensate or both. This preferred embodiment is an 80 th embodi-ment of the invention, that preferably depends on the 79 th embodiment of the invention.
Preferably, the first polymer composition comprises the polyolefin or the polycondensate or both together in a proportion in a range of from 70 to 100 %by weight, preferably from 80 to 99 %by weight, more preferably from 90 to 98 %by weight, each based on the first polymer compo-sition. A preferred polycondensate is a polyester or polyamide (PA) or both. A preferred poly-ester is a polyethylene terephthalate (PET) .
In a further preferred embodiment of the closed container the polyolefin is a polyethylene or a polypropylene or both. This preferred embodiment is an 81 st embodiment of the invention, that preferably depends on the 80 th embodiment of the invention.
In a further preferred embodiment of the closed container the polyethylene is an HDPE. This preferred embodiment is an 82 nd embodiment of the invention, that preferably depends on the 81 st embodiment of the invention.
In a further preferred embodiment of the closed container the first polymer composition com-prises a colourant. This preferred embodiment is an 83 rd embodiment of the invention, that pref-erably depends on any of the 79 th to 82 nd embodiments of the invention.
Preferably, the first polymer composition comprises the colourant in a proportion in a range from 0.5 to 5 %by weight, preferably from 0.5 to 4 %by weight, more preferably from 0.5 to 3 %by weight, in each case based on the first polymer composition.
In a further preferred embodiment of the closed container the first polymer composition has a melting temperature in a range from 90 to 350 ℃, preferably from 90 to 300 ℃, more preferably from 90 to 280 ℃, more preferably from 90 to 260 ℃, more preferably from 90 to 240 ℃, more preferably from 90 to 220 ℃, more preferably from 100 to 200 ℃, more preferably from 100 to 190 ℃, more preferably from 100 to 180 ℃, more preferably from 100 to 170 ℃, more prefer-ably from 100 to 160 ℃, more preferably from 110 to 150 ℃, more preferably from 120 to 140 ℃, even more preferably from 125 to 140 ℃, most preferably from 128 to 136 ℃. This preferred embodiment is an 84 th embodiment of the invention, that preferably depends on any of the 79 th to 83 rd embodiments of the invention.
In a further preferred embodiment of the closed container the first part of the container wall is cup-shaped. This preferred embodiment is an 85 th embodiment of the invention, that preferably depends on any of the 54 th to 84 th embodiments of the invention.
In a further preferred embodiment of the closed container the element other than the blank bounds the container interior in the longitudinal direction of the closed container. This preferred embodiment is an 86 th embodiment of the invention, that preferably depends on any of the 55 th to 85 th embodiments of the invention. Preferably, the element other than the blank forms a top of the closed container for this purpose.
In a further preferred embodiment of the closed container the blank bounds the container interior laterally, or in a direction opposite to the longitudinal direction of the closed container, or both.  This preferred embodiment is an 87 th embodiment of the invention, that preferably depends on any of the 54 th to 86 th embodiments of the invention.
In a further preferred embodiment of the closed container the container wall is dimensionally stable. This preferred embodiment is an 88 th embodiment of the invention, that preferably de-pends on any of the 54 th to 87 th embodiments of the invention. Additionally or alternatively preferred, the closed container is dimensionally stable. Additionally or alternatively preferred, the closed container is a closed foodstuff container. Additionally or alternatively preferred, the closed container is liquid-tight.
In a further preferred embodiment, the closed container has 4 longitudinal edges, each longitu-dinal edge of the closed container running along the longitudinal direction of the closed container from the standing base to the head portion, wherein the closed container has a square cross-section at least in sections, preferably continuously, along its longitudinal direction between the standing base and the head portion, wherein the shortest of the 4 longitudinal edges has a length l, wherein a ratio of the length l to an edge length a of the square cross-section is in a range from 1.3 to 2.95, preferably from 1.35 to 2.95, more preferably from 1.38 to 2.8, most preferably from 1.39 to 2.8. The length l is the height of the closed container excluding its head portion. Prefer-ably, the 4 longitudinal edges are of equal length. In principle, however, it is also possible that, for example, 2 longitudinal edges are shorter than the other 2 longitudinal edges. In this case, the length l designates the shorter longitudinal edges.
An 89 th embodiment of the invention is a process comprising as process steps:
a. Providing the blank according to any one of the 1 st to 42 nd, or 50 th embodiments of the invention, the blank comprising a first longitudinal margin and a further longitudinal margin;
b. Folding the blank along grooves of the plurality of grooves; and
c. Contacting and joining the first longitudinal margin to the further longitudinal margin to form a longitudinal seam.
Preferably, the process is a process of making a container precursor, preferably of the closed container of the invention according to any one of its embodiments.
A 90 th embodiment of the invention is a container precursor obtainable by the process according the 89 th embodiment of the invention. Preferably, the container precursor is the container pre-cursor of the invention according to any one of the 51 st to 53 rd embodiments.
A 91 st embodiment of the invention is a process comprising as process steps:
A) Providing the container precursor according to any one of claims 51 to 53, or 90;
B) Forming and closing a head portion of the container precursor;
C) Filling the container precursor with a foodstuff; and
D) Forming and closing a standing base of the container precursor by folding the blank along grooves of the plurality of grooves and joining portions of the blank to one another, thereby obtaining a closed container.
The head portion of the container precursor preferably has the features of the head portion of the closed container of the invention according to one of its embodiments. Preferably, the standing base of the container precursor has the features of the standing base of the closed container according to the invention, according to one of its embodiments. Preferably, the process is a process for manufacturing the closed container, preferably of manufacturing the closed container. Preferably, the closed container is the closed container of the invention according to any one of its embodiments.
In a preferred embodiment of the process forming and closing the head portion in the process step B) comprises joining the blank to an element other than the blank. This preferred embodi-ment is a 92 nd embodiment of the invention, that preferably depends on the 91 st embodiment of the invention. The element other than the blank of the container precursor preferably has the features of the element other than the blank of the closed container of the invention according to one of its embodiments.
In a further preferred embodiment of the process the blank and the element other than the blank in the process step B) are pressed to each other in a first pressing step at a first contact pressure and in a further pressing step at a further contact pressure; wherein the first contact pressure is less than the further contact pressure, preferably by at least 100 mbar, more preferably by at least 200 mbar, more preferably by at least 300 mbar, more preferably by at least 400 mbar, more preferably by at least 500 mbar, more preferably by at least 600 mbar, more preferably by at least 700 mbar, more preferably by at least 800 mbar, even more preferably by at least 900 mbar, most preferably by at least 1,000 mbar. This preferred embodiment is a 93 rd embodiment of the invention, that preferably depends on the 92 nd embodiment of the invention.
Preferably, the first pressing step is conducted prior to the further pressing step. Alternatively, the first pressing step is conducted after the further pressing step. Alternatively, the first pressing step is conducted in temporal overlap with the further pressing step or simultaneously to the further pressing step. Additionally or alternatively preferred, the first pressing step includes pressing in one or two first pressing directions and the further pressing step includes pressing in one or two further pressing directions which are different from the first pressing directions. In the case of two first pressing directions, these are preferably opposite to one another. In the case of two further pressing directions, these are preferably opposite to one another. Preferably, each first pressing direction is substantially perpendicular to each further pressing direction. Addi-tionally or alternatively preferred, the first contact pressure is in the range from 800 to 3,000 mbar, preferably from 1,000 to 2, 800 mbar, more preferably from 1, 200 to 2, 600 mbar. Addi-tionally or alternatively preferred, the further contact pressure is in the range from 2,000 to 4,000 mbar, preferably from 2, 200 to 3, 800 mbar, more preferably from 2, 400 to 3, 600 mbar. Addi-tionally or alternatively preferred, in the first pressing step, the blank and the element other than the blank are pressed to each other on a first pair of opposite sides of the element other than the blank. Here, preferably, none of the sides of the first pair of opposite sides of the element other than the blank is pressed to the longitudinal seam of the container precursor in the first pressing step at the first contact pressure. Additionally or alternatively preferred, in the first pressing step, the blank is pressed to 2 side walls of the base member, which are opposite to one another. Additionally or alternatively preferred, in the further pressing step, the blank and the element  other than the blank are pressed to each other on a further pair of opposite sides of the element other than the blank. The sides of the further pair of opposite sides are different from the sides of the first pair of opposite sides. Preferably, in the further pressing step the element other than the blank is pressed to the longitudinal seam of the container precursor at the further contact pressure. Additionally or alternatively preferred, in the further pressing step, the blank is pressed to 2 side walls of the base member, which are opposite to one another.
In a further preferred embodiment of the process the joining in the method step B) is performed as a gluing or a sealing or both. This preferred embodiment is a 94 th embodiment of the invention, that preferably depends on the 92 nd or 93 rd embodiment of the invention.
A preferred sealing is a heat sealing or an ultrasonic sealing or both. A preferred heat sealing involves heating the blank or the element other than the blank or both by contact with a solid or a gas or both.
In a further preferred embodiment of the process part of the blank, or part of the element other than the blank, or both is heated to a temperature in the range from 220 to 420 ℃, preferably from 240 to 400 ℃, more preferably from 260 to 380 ℃, in the process step B) . This preferred embodiment is a 95 th embodiment of the invention, that preferably depends on any of the 92 nd to 94 th embodiments of the invention.
In a further preferred embodiment of the process the sealing is performed with a sealant provided at least in part by the element other than the blank. This preferred embodiment is a 96 th embod-iment of the invention, that preferably depends on the 94 th or 95 th embodiment of the invention. Preferably, in addition to the element other than the blank, the sealant is partially provided by the blank, preferably by the inner polymer layer.
In a further preferred embodiment of the process the element other than the blank is partially melted for the joining in the method step B) . This preferred embodiment is a 97 th embodiment of the invention, that preferably depends on any one of the 92 nd to 96 th embodiments of the invention.
A 98 th embodiment of the invention is a closed container obtainable by the process according to any one of the 91 st to 97 th embodiments of the invention. Preferably, the closed container is the closed container of the invention according to any one of its embodiments.
A 99 th embodiment of the invention is use of the blank according to any one of the 1 st to 42 nd, or 50 th embodiments of the invention, or of the container precursor according to any one of the 51 st to 53 rd, or 90 th embodiments of the invention, in each case for producing a closed container.
In a further preferred embodiment of the use the closed container is one selected from the group, consisting of a foodstuff container, a dimensionally stable container, and a liquid-tight container, or a combination at least two thereof. This preferred embodiment is a 100 th embodiment of the invention, that preferably depends on the 99 th embodiment of the invention.
Features described as preferred in one category of the invention, for example according to the blank, are analogously preferred in an embodiment of the other categories according to the in-vention, such as the closed container, the processes, and the use. Furthermore, the features de-scribed below are preferred in connection with each category of the invention.
Planar composites
The blank of the invention has been cut to size from a planar composite. Accordingly, the below definitions and preferences for the planar composite hold also for the blank of the invention. This holds beyond this “Planar composites” -section.
All laminates, in particular sheet-like laminates, which are conceivable within the context of the invention and which appear to the person skilled in the art to be suitable in the context of the invention for the production of dimensionally stable foodstuff containers are to be considered as planar composites, from which a blank according to the invention may be obtained. Planar com-posites for the manufacture of foodstuff containers are also referred to as laminates. Such planar composites have a sequence of layers superimposing each other in a planar manner. The planar composites are often composed of a thermoplastic polymer layer, referred to herein as the outer polymer layer, a carrier layer, often made of cardboard or paper, which gives the container its dimensional stability, an optional thermoplastic polymer layer, referred to herein as the interme-diate polymer layer and/or an optional adhesion promoter layer, a barrier layer and a further thermoplastic polymer layer, referred to herein as the inner polymer layer.
The term "planar composite" , preferably, refers to a semi-endless roll material. The blank ac-cording to the invention has, preferably, been obtained by cutting such a semi-endless roll ma-terial to size. The blank is preferably designed to produce a single closed container. The planar composite, and also the blank, can be a flat or three-dimensional object. The latter is, in particular the case, if the planar composite has been rolled up or the blank has been folded. In any case, the planar composite and the blank are each sheet-like. Therefore, the planar composite may also be referred to as sheet-like composite.
The layers of the planar composite form a layer sequence. Accordingly, the layers are joined to each other over their entire surfaces. Two layers are joined together when their adhesion to each other exceeds Van der Waals forces of attraction. Preferably, layers joined with one another are one selected from the group consisting of joined with one another by coating, laminated together, sealed together, glued together, and pressed together, or a combination of at least two thereof. Layers joined with one another by coating are preferably joined with one another by melt coating or by vapour deposition. A preferred melt coating is a melt extrusion coating.
Unless otherwise specified, in a layer sequence the layers may follow each other indirectly, i.e. with one or at least two intermediate layers, or directly, i.e. without an intermediate layer. This  is particularly the case in the formulation in which one layer superimposes another layer. A formulation in which a layer sequence includes enumerated layers means that at least the speci-fied layers are present in the specified order. This formulation does not necessarily mean that these layers immediately follow each other. A formulation in which two layers are adjacent to each other means that these two layers follow each other immediately and thus without an inter-mediate layer. However, this formulation does not say anything about whether the two layers are joined or not. Rather, these two layers may be in contact with each other. Preferably, however, these two layers are joined with one another, preferably in a planar manner.
Outer side
The outer side of the planar composite or blank is a surface of the planar composite or blank which is intended to be in contact with the environment of the container in a container to be made with the planar composite or blank. This is not precluded by the fact that in individual areas of the container, the outer surfaces of different areas of the composite or blank are folded on top of each other or joined to each other, for example sealed to each other.
Inner side
The inner side of the planar composite or blank is a surface of the planar composite or blank which is intended to be in contact with the contents of the container, preferably a foodstuff, in a container to be made with the planar composite or blank.
Grooves
In the context of the invention, a groove, is a linear material modification intended to facilitate folding of the planar composite or blank along the groove. In particular, the groove is intended to allow a fold to be produced as precisely as possible along the groove. Accordingly, a closed container can be formed from a planar composite or blank having a corresponding groove pattern consisting of grooves by folding along the grooves. This groove pattern is also referred to herein as the first plurality of grooves. The planar composite may include further pluralities of grooves, each of which is arranged and configured to form a respective further container. Preferably, the first plurality of grooves and each further plurality of grooves are identical.
Along the groove, the planar composite preferably has a depression, preferably in the form of a material displacement, on one side, preferably its outer side. On the opposite side, preferably the inner side, the planar composite preferably has a bulge along the groove.
In addition to the aforementioned folding, the production of the closed container includes the joining of areas of the planar composite or blank that have been contacted by way of the folding. Grooving tools are used to introduce the grooves into the planar composite or blank, a process known as grooving. A grooving tool in the context of the invention may be any tool suitable for grooving a planar composite, a blank or a carrier layer. For grooving, the grooving tool prefera-bly includes a linear elevation which has a shape of the linear depression. By contacting the planar composite, blank or carrier layer with the linear elevation, the linear depression can be introduced into the planar composite, blank or carrier layer. Thus, the grooving tool can also be referred to as a pressing tool. As a counterpart to the aforementioned positive tool, the grooving tool may also include a negative tool. The negative tool includes a linear recess, which may also be referred to as groove-shaped. The linear recess preferably has, in a direction of its linear extension, the shape of the linear elevation of the positive tool and is further configured to at least partially receive material of the planar composite, blank or carrier layer displaced by the positive tool during grooving.
Polymer layers
In the following, the term "polymer layer" refers in particular to the inner polymer layer, the intermediate polymer layer and the outer polymer layer. The polymer layers are each based on a polymer or a polymer blend, i.e., the polymer layers comprise a majority of the polymer or polymer blend. A preferred polymer is a thermoplastic polymer, more preferably a polyolefin. The polymer layers are preferably incorporated or applied into the planar composite material in an extrusion process, preferably by melt extrusion coating. In addition to the polymer or poly-mer blend, each polymer layer may comprise further components. The further constituents of the polymer layers are preferably constituents which do not adversely affect the behaviour of  the polymer melt when applied as a layer. The further constituents may be, for example, inor-ganic compounds, such as metal salts, or further plastics, such as further thermoplastics.
In general, suitable polymers for the polymer layers are in particular those which are easy to process due to good extrusion behaviour. Among these, polymers obtained by chain polymeri-sation are suitable, in particular polyolefins, whereby cyclic olefin co-polymers (COC) , poly-cyclic olefin co-polymers (POC) , in particular polyethylene and polypropylene, are particu-larly preferred and polyethylene is especially preferred. Among the polyethylenes, HDPE (high density polyethylene) , MDPE (medium density polyethylene) , LDPE (low density poly-ethylene) , LLDPE (linear low density polyethylene) and VLDPE (very low density polyeth-ylene) as well as blends of at least two of them are preferred. Suitable polymers, preferably, have a melt flow rate (MFR) in a range from 1 to 25 g/10 min, preferably in a range from 2 to 20 g/10 min and particularly preferably in a range from 2, 5 to 15 g/10 min. Additionally or al-ternatively preferred, suitable polymer layers have a density in a range of 0.890 g/cm 3 to 0.980 g/cm 3, preferably in a range of 0.895 g/cm 3 to 0.975 g/cm 3, and more preferably in a range of 0.900 g/cm 3 to 0.970 g/cm 3. The polymer layers preferably have at least one melting tempera-ture in a range from 80 to 155 ℃, preferably in a range from 90 to 145 ℃, and more prefera-bly in a range from 95 to 135 ℃.
Inner polymer layer
The inner polymer layer is based on at least one thermoplastic polymer, wherein the inner poly-mer layer may comprise a particulate inorganic solid. However, it is preferred that the inner polymer layer comprises at least 70 %by weight, preferably at least 80 %by weight and partic-ularly preferably at least 95 %by weight, in each case based on the total weight of the inner polymer layer, of one or more thermoplastic polymers. Preferably, the polymer or polymer blend of the inner polymer layer has a density (according to ISO 1183-1: 2004) in a range from 0.900 to 0.980 g/cm 3, more preferably in a range from 0.900 to 0.960 g/cm 3 and most preferably in a range from 0.900 to 0.940 g/cm 3. Preferably, the polymer is a polyolefin. Preferably, the inner polymer layer comprises a polyethylene or a polypropylene or both. Here, a particularly pre-ferred polyethylene is an LDPE.
Preferably, the inner polymer layer comprises the polyethylene or the polypropylene or both together in a proportion of at least 30 %by weight, more preferably at least 40 %by weight, most preferably at least 50 %by weight, each based on the total weight of the inner polymer layer. Additionally or alternatively, the inner polymer layer preferably comprises an HDPE, preferably in an amount of at least 5 %by weight, more preferably at least 10 %by weight, more preferably at least 15 %by weight, most preferably at least 20 %by weight, each based on the total weight of the inner polymer layer. In addition or alternatively to one or more of the afore-mentioned polymers, the inner polymer layer preferably comprises a polymer produced by means of a metallocene catalyst, preferably an mPE. Preferably, the inner polymer layer com-prises the mPE in a proportion of at least 3 %by weight, more preferably at least 5 %by weight, in each case based on the total weight of the inner polymer layer. Here, the inner polymer layer may comprise 2 or more, preferably 2 or 3, of the aforementioned polymers in a polymer blend, for example at least a proportion of the LDPE and the mPE, or at least a proportion of the LDPE and the HDPE. Further preferably, the inner polymer layer may comprise 2 or more, preferably 3, sublayers superimposing each other, which preferably form the inner polymer layer. These sub-layers are preferably layers obtained by co-extrusion.
In a preferred embodiment, the inner polymer layer comprises, in the direction from the outer side of the planar composite to the inner side of the planar composite, a first sublayer comprising an LDPE in an amount of at least 50 %by weight, preferably at least 60 %by weight, more preferably at least 70 %by weight, even more preferably at least 80 %by weight, most preferably at least 90 %by weight, each based on the weight of the first sub-layer; and a further sub-layer comprising a blend, wherein the blend comprises an LDPE in a proportion of at least 30 %by weight, preferably at least 40 %by weight, more preferably at least 50 %by weight, more pref-erably at least 60 %by weight, most preferably at least 65 %by weight, and an mPE in a pro-portion of at least 10 %by weight, preferably at least 15 %by weight, more preferably at least 20 %by weight, most preferably at least 25 %by weight, in each case based on the weight of the blend. In this case, the further sublayer preferably comprises the blend in a proportion of at least 50 %by weight, preferably at least 60 %by weight, more preferably at least 70 %by weight,  even more preferably at least 80 %by weight, most preferably at least 90 %by weight, in each case based on the weight of the further sublayer. Particularly preferably, the further sub-layer consists of the blend.
In a further preferred embodiment, the inner polymer layer comprises, in the direction from the outer side of the planar composite to the inner side of the planar composite, a first sub-layer comprising an HDPE in an amount of at least 30 %by weight, preferably at least 40 %by weight, more preferably at least 50 %by weight, more preferably at least 60 %by weight, most prefer-ably at least 70 %by weight, and an LDPE in an amount of at least 10 %by weight, preferably at least 15 %by weight, more preferably at least 20%by weight, in each case based on the weight of the first sub-layer; a second sub-layer comprising an LDPE in an amount of at least 50 %by weight, preferably at least 60 %by weight, more preferably at least 70 %by weight, still more preferably at least 80 %by weight, most preferably at least 90 %by weight, in each case based on the weight of the second sub-layer;
and a third sub-layer comprising a blend, wherein the blend comprises an LDPE in an amount of at least 30 %by weight, preferably at least 40 %by weight, more preferably at least 50 %by weight, even more preferably at least 60%, most preferably at least 65%by weight, and an mPE in a proportion of at least 10 %, preferably at least 15 %, more preferably at least 20 %, most preferably at least 25 %, by weight, each based on the weight of the blend. Here, the third sub-layer preferably comprises the blend in a proportion of at least 50 %by weight, preferably at least 60 %by weight, more preferably at least 70 %by weight, even more preferably at least 80 %by weight, most preferably at least 90 %by weight, in each case based on the weight of the third sub-layer. Particularly preferably, the third sub-layer consists of the blend.
Outer polymer layer
The outer polymer layer preferably comprises a polyethylene or a polypropylene or both. Pre-ferred polyethylenes are LDPE and HDPE as well as mixtures thereof. A preferred outer polymer layer comprises at least 50 %by weight, preferably at least 60 %by weight, more preferably at least 70 %by weight, even more preferably at least 80 %by weight, most preferably at least 90 %by weight, in each case based on the weight of the outer polymer layer, of one or more LDPE.
Intermediate polymer layer
The intermediate polymer layer preferably comprises at least one polyethylene or at least one polypropylene or both. Here, particularly preferred polyethylenes are LDPE. Preferably, the in-termediate polymer layer comprises the at least one polyethylene or the at least one polypropyl-ene or both together in a proportion of at least 20 %by weight, more preferably at least 30 %by weight, more preferably at least 40 %by weight, more preferably at least 50 %by weight, more preferably at least 60 %by weight, more preferably at least 70 %by weight, more preferably at least 80 %by weight, most preferably at least 90 %by weight, in each case based on the total weight of the intermediate polymer layer. Additionally or alternatively, the intermediate polymer layer preferably includes an HDPE, preferably in a proportion of at least 10 %by weight, more preferably at least 20 %by weight, more preferably at least 30 %by weight, more preferably at least 40 %by weight, more preferably at least 50 %by weight, more preferably at least 60 %by weight, more preferably at least 70 %by weight, more preferably at least 80 %by weight, most preferably at least 90 %by weight, each based on the total weight of the intermediate polymer layer. Here, the intermediate polymer layer preferably comprises the aforementioned polymers in a polymer blend.
Barrier layer
The barrier layer can be any material which seems suitable to the skilled person for this purpose, which has a sufficient barrier effect, especially against oxygen. For this purpose, the barrier layer preferably has an oxygen permeation rate of less than 50 cm 3/ (m 2  . day  . atm) , preferably less than 40 cm 3/ (m 2  . day  . atm) , more preferably less than 30 cm 3/ (m 2  . day  . atm) , more preferably less than 20 cm 3/ (m 2  . day  . atm) , more preferably less than 10 cm 3/ (m 2  . day  . atm) , even more preferably less than 3 cm 3 (m 2  . day  . atm) , most preferably not more than 1 cm 3 (m 2  . day  . atm) . The barrier layer preferably additionally exhibits a barrier effect against water vapour. Accord-ingly, the barrier layer is preferably an oxygen barrier layer and further preferably additionally a water vapour barrier layer. In addition, the barrier layer preferably has a barrier effect against visible light, i.e. it is additionally a light barrier layer.
The barrier layer is preferably selected from
a. a plastic layer;
b. a metal layer;
c. an oxide layer; or
d. a combination of at least two from a. to c.
If the barrier layer according to alternative a. is a plastic layer, this preferably comprises at least 70 %by weight, particularly preferably at least 80 %by weight and most preferably at least 95 %by weight of at least one plastic which is known to the person skilled in the art for this purpose, in particular because of aroma or gas barrier properties suitable for packaging containers. Plas-tics, in particular thermoplastics, which can be considered here are N-or O-bearing plastics both by themselves and in mixtures of two or more. According to the invention, it may prove advan-tageous if the plastic layer has a melting temperature in a range of more than 155 to 300 ℃, preferably in a range of 160 to 280 ℃ and particularly preferably in a range of 170 to 270 ℃.
Further preferably, the plastic layer has a basis weight in a range from 2 to 120 g/m 2, preferably in a range from 3 to 60 g/m 2, particularly preferably in a range from 4 to 40 g/m 2 and more preferably from 6 to 30 g/m 2. Further preferably, the plastic layer is obtainable from melts, for example by extrusion, in particular layer extrusion. Furthermore, preferably, the plastic layer can also be introduced into the planar composite by lamination. In this case, it is preferred that a film is incorporated into the planar composite. According to another embodiment, plastic lay-ers can also be selected which are obtainable by deposition from a solution or dispersion of plastics.
Suitable polymers are preferably those having a weight average molecular weight, determined by gel permeation chromatography (GPC) using light scattering, in a range of 3·10 3 to 1·10 7 g/mol, preferably in a range of 5·10 3 to 1·10  6g/mol and particularly preferably in a range of 6·10 3 to 1·10 5 g/mol. Suitable polymers are in particular polyamide (PA) or polyethylene vinyl  alcohol (EVOH) or a mixture thereof. Among the polyamides, all PAs which appear to the per-son skilled in the art to be suitable for use according to the invention can be considered.
All EVOHs that appear suitable to the person skilled in the art for use according to the invention can be considered as EVOH. Examples of these are commercially available under the trade names EVAL TM of EVAL Europe NV, Belgium in a variety of different versions, for example the grades EVAL TM F104B or EVAL TM LR171B. Preferred EVOH have at least one, two, mul-tiple or all of the following properties:
- an ethylene content in a range from 20 to 60 mol-%, preferably from 25 to 45 mol-%;
- a density in a range from 1.0 to 1.4 g/cm 3, preferably from 1.1 to 1.3 g/cm 3;
- a melting point in a range of more than 155 ℃ and up to 235 ℃, preferably from 165 to 225 ℃;
- an MFR value (210 ℃/2.16kg when T S  (EVOH) <210 ℃; 230 ℃/2.16kg when 210 ℃<T S  (EVOH) <230 ℃) in a range from 1 to 25 g/10min, preferably from 2 to 20 g/10min;
- an oxygen permeation rate in a range of 0.05 to 3.2 cm 3·20μm/ (m 2·day·atm) , preferably in a range of 0.1 to 1 cm 3·20μm/ (m 2·day·atm) .
Preferably, at least one polymer layer, more preferably the inner polymer layer, or preferably all polymer layers have a melting temperature below the melting temperature of the barrier layer. This is particularly true if the barrier layer is formed of a plastic. In this case, the melting tem-perature of the at least one polymer layer, in particular the inner polymer layer, and the melting temperature of the barrier layer preferably differ by at least 1 K, particularly preferably by at least 10 K, even more preferably by at least 50 K, and furthermore preferably by at least 100 K. The temperature difference should preferably only be selected so high that it does not result in a melting of the barrier layer, in particular not in a melting of the plastic layer, during folding.
According to alternative b., the barrier layer is a metal layer. In principle, all layers with metals known to the skilled person and capable of creating a high light and oxygen impermeability are suitable as a metal layer. According to a preferred embodiment, the metal layer can be present  as a foil or as a deposited layer, e.g. after physical vapour deposition. Preferably, the metal layer is an uninterrupted layer. According to a further preferred embodiment, the metal layer has a thickness in a range from 3 to 20 μm, preferably in a range from 3.5 to 12 μm and particularly preferably in a range from 4 to 10 μm.
Preferred metals are aluminium, iron or copper. A steel layer, e.g., in the form of a foil, may be preferred as the iron layer. Further preferably, the metal layer is a layer with aluminium, prefer-ably an aluminium layer, further preferably an aluminium foil. The aluminium layer can suitably consist of an aluminium alloy, for example AlFeMn, AlFe1.5Mn, AlFeSi or AlFeSiMn. The purity is often 97.5 %and higher, preferably 98.5 %and higher, based on the entire aluminium layer. In a particular embodiment, the metal layer consists of an aluminium foil. Suitable alu-minium foils have a ductility of more than 1 %, preferably more than 1.3 %and particularly preferably more than 1.5 %, and/or a tensile strength of more than 30 N/mm 2, preferably more than 40 N/mm  2and particularly preferably more than 50 N/mm 2. Suitable aluminium foils show a drop size in the pipette test of more than 3 mm, preferably more than 4 mm and particularly preferably more than 5 mm. Suitable alloys for creating aluminium layers or foils are commer-cially available under the designations EN AW 1200, EN AW 8079 or EN AW 8111 from Hydro Aluminium Deutschland GmbH or Amcor Flexibles Singen GmbH. In the case of a metal layer as a barrier layer, an adhesion promoter layer can be provided on one or both sides of the metal layer, preferably adjacent to the metal layer on its respective side.
Furthermore, an oxide layer can be selected as the barrier layer according to alternative c. All oxide layers that are familiar to the person skilled in the art and appear suitable for achieving a barrier effect against light, vapour and/or gas can be considered as oxide layers. A preferred oxide layer is a semi-metal oxide layer or a metal oxide layer or both. A preferred semi-metal oxide layer is a layer based on one or more silicon oxide compounds (SiOx layer) . Preferred metal oxide layers are layers based on the previously mentioned metals aluminium, iron or cop-per, as well as such metal oxide layers based on titanium oxide compounds, whereby an alumin-ium oxide layer (AlOx layer) is particularly preferred. According to a preferred embodiment, the oxide layer may be present as a deposited layer. A deposited oxide layer is exemplarily  produced by vapour deposition of the oxide layer on a barrier substrate. A preferred process for this is physical vapour deposition (PVD) or chemical vapour deposition (CVD) , preferably plasma-assisted. The oxide layer is preferably an uninterrupted layer.
The barrier substrate can consist of any material which appears to the skilled person to be suita-ble for use as a barrier substrate according to the invention. In this case, the barrier substrate is preferably suitable for being coated with an oxide layer. Preferably, a layer surface is sufficiently smooth for this purpose. Further preferably, the barrier substrate has a thickness in a range from 2 to 30 μm, preferably from 2 to 28 μm, more preferably from 2 to 26 μm, more preferably from 3 to 24 μm, more preferably from 4 to 22 μm, most preferably from 5 to 20 μm. Furthermore, the barrier substrate preferably exhibits a barrier effect against oxygen or water vapour or both. Preferably, a barrier effect of the barrier substrate against permeation of oxygen is greater than a barrier effect of the oxide layer against permeation of oxygen. Preferably, the barrier substrate has an oxygen permeation rate in a range from 0.1 to 50 cm 3/ (m 2  . d  . bar) , preferably from 0.2 to 40 cm 3/ (m 2  . d  . bar) , more preferably from 0.3 to 30 cm 3/ (m 2  . d  . bar) . A preferred barrier substrate includes, more preferably consists of, cellulose or a polymer or both. A preferred pol-ymer here is an oriented polymer. Preferably, the oriented polymer is mono-axially oriented or bi-axially oriented. A preferred polymer is a thermoplastic polymer. Preferably, the barrier sub-strate consists of the polymer. Preferably, the barrier substrate comprises a polymer selected from the group consisting of a polycondensate, a polyethylene, a polypropylene, a polyvinyl alcohol, or a combination of at least two of them in a proportion of at least 50 %by weight, preferably at least 60 %by weight, more preferably at least 70 %by weight, more preferably at least 80 %by weight, most preferably at least 90 %by weight, each based on the weight of the barrier substrate. More preferably, the barrier substrate consists of the aforementioned polymer. A preferred polypropylene is oriented, in particular monoaxially oriented (oPP) or biaxially ori-ented (BoPP) . A preferred polycondensate is a polyester or polyamide (PA) or both. A preferred polyester is one selected from the group consisting of a polyethylene terephthalate (PET) , a pol-ylactide (PLA) , and a vinyl polymer, or a combination of at least two thereof. A preferred vinyl polymer is a vinyl alcohol copolymer or a polyvinyl alcohol or both. A preferred polyvinyl  alcohol is a vinyl alcohol copolymer. A preferred vinyl alcohol copolymer is an ethylene-vinyl alcohol copolymer.
Carrier layer
The carrier layer can be any material suitable to the skilled person for this purpose, which has sufficient strength and rigidity to give the container sufficient stability that the container sub-stantially retains its shape when filled. In particular, this is a necessary feature of the carrier layer as the invention relates to the technical field of dimensionally stable containers. Such dimen-sionally stable containers are fundamentally to be distinguished from bags and pouches, which are usually made of thin films. In addition to a number of plastics, plant-based fibrous materials, in particular cellulose, preferably sized, bleached and/or unbleached cellulose, are preferred, with paper and cardboard being particularly preferred. Accordingly, a preferred carrier layer includes a plurality of fibres. The basis weight of the carrier layer is preferably in a range of 120 to 450 g/m 2, more preferably in a range of 130 to 400 g/m 2 and most preferably in a range of 150 to 380 g/m 2. A preferred cardboard generally has a single or multi-layer structure and may be coated on one or both sides with one or more top layers. Furthermore, a preferred cardboard has a residual moisture content of less than 20 %by weight, preferably from 2 to 15 %by weight and particularly preferably from 4 to 10 %by weight based on the total weight of the cardboard. A particularly preferred cardboard has a multi-layer structure. Furthermore, the cardboard pref-erably has on the surface facing the environment at least one, but particularly preferably at least two, plies of a cover layer known to the skilled person as a "paper coating" . Furthermore, a preferred cardboard has a Scott-Bond value (according to Tappi 569) in a range from 100 to 360 J/m 2, preferably from 120 to 350 J/m 2 and particularly preferably from 135 to 310 J/m 2. The above ranges make it possible to provide a composite from which a container can be folded with high tightness, easily and to low tolerances.
The carrier layer preferably has a bending stiffness in a first direction in a range from 70 to 700 mN, more preferably from 80 to 650 mN. In the case of a carrier layer comprising a plurality of fibres, the first direction is preferably an orientation direction of the fibres. A carrier layer com-prising a plurality of fibres further preferably has a bending stiffness in a further direction  perpendicular to the first direction in a range from 10 to 350 mN, more preferably from 20 to 300 mN. A preferred planar composite with the carrier layer has a bending stiffness in the first direction in a range of 100 to 700 mN. Further preferably, the aforementioned planar composite has a bending stiffness in the further direction in a range of 50 to 500 mN.
Preferably, the carrier layer comprises at least 2, more preferably at least 3, particularly prefer-ably exactly 3 or 5, sub-layers, each of a fibre-containing material, wherein the sub-layers are superimposed to one another and joined to one another. The fibre-containing materials of the individual sub-layers may differ at least partially from one another or may all be the same. A further particularly preferred carrier layer comprises, as superimposed and interconnected sub-layers of a sub-layer sequence, preferably in a direction from an outer side of the carrier layer to an inner side of the carrier layer, a first sub-layer comprising a fibrous material, a second sub-layer comprising a fibrous material and a third sub-layer comprising a fibrous material. The fibre-containing materials of the first to third sub-layers may be the same or different from each other. Furthermore, in addition to the aforementioned layer sequence, a preferred carrier layer includes at least one cover layer as a further sub-layer. Preferably, the layer sequence of first to third sub-layers is superimposed on an outer side of the carrier layer with at least one cover layer as a further sub-layer. Alternatively or additionally preferred, the layer sequence of first to third sub-layers is superimposed on an inner side of the carrier layer with at least one cover layer as a further sub-layer. Preferably, an average fibre length of the plurality of fibres of the fibrous material of the first sub-layer is less than an average fibre length of the plurality of fibres of the fibrous material of the third sub-layer, preferably by 0.1 to 3 mm, more preferably by 0.5 to 2.5 mm, most preferably by 1 to 2.0 mm.
Cover layer
A preferred cover layer is a "paper coating" . In papermaking, a "paper coating" is a cover layer comprising inorganic solid particles, preferably pigments and additives. The "paper coating" is preferably applied as a liquid phase, preferably as a suspension or dispersion, to a surface of a paper-or cardboard-comprising layer. A preferred dispersion is an aqueous dispersion. A pre-ferred suspension is an aqueous suspension. Another preferred liquid phase includes inorganic  solid particles, preferably pigments; a binder; and additives. A preferred pigment is selected from the group consisting of calcium carbonate, kaolin, talc, silicate, a plastic pigment and tita-nium dioxide. A preferred kaolin is a calcined kaolin. A preferred calcium carbonate is one se-lected from the group consisting of marble, chalk and a precipitated calcium carbonate (PCC) or a combination of at least two thereof. A preferred silicate is a layered silicate. A preferred plastic pigment is spherical, preferably hollow spherical. A preferred binder is one selected from the group consisting of styrene-butadiene, acrylate, acrylonitrile, a starch and a polyvinyl alcohol or a combination of at least two thereof, acrylate being preferred. A preferred starch is one selected from the group consisting of cationically modified, anionically modified, and fragmented or a combination of at least two thereof. A preferred additive is one selected from the group consist-ing of a rheology modifier, a shade dye, an optical brightener, a carrier, a flocculant, a deaerator, and a surface energy modifier, or a combination of at least two thereof. A preferred deaerator is a coating colour deaerator, preferably silicone-based or fatty acid-based or both. A preferred surface energy modifier is a surfactant.
Fibrous material
Here, the terms “fibrous material “and “fibre-containing material “are synonymous and encom-pass any material or layer, which comprises a plurality of fibres, such as preferred carrier layers. Thus, the fibrous material includes a plurality of fibres, and preferably at least one further con-stituent. A preferred further constituent is a sizing agent. A preferred sub-layer of a fibrous ma-terial includes a plurality of fibres and at least one sizing agent.
Fibres
The fibres of a fibre-containing material can be any fibre which appears to the skilled person to be suitable for use in accordance with the invention, in particular any fibre known in the manu-facture of paper, cardboard or paperboard. Fibres are linear, longitudinally extended structures having a ratio of length to diameter or thickness of at least 3: 1. For some fibres, the aforemen-tioned ratio is not greater than 100: 1. For use in this document, long fibres have an average fibre length in a range of 3 to 4 mm and short fibres have an average fibre length in a range of 0.4 to 2 mm.
Preferred fibres are plant fibres. Plant fibre is a collective term for fibres of plant origin, i.e. fibres obtained from plants. Plant fibres occur in plants as conducting bundles in the stem or trunk, the bark (for example as bast) and as seed appendages. A subdivision is made according to DIN 60001-1: 2001-05 Textile fibre materials -Part 1: "Natural fibres and abbreviations" , Beuth Verlag, Berlin 2001, p. 2 into seed fibres, bast fibres and hard fibres or according to DIN EN ISO 6938: 2015-01 "Textiles -Natural fibres -Generic names and definitions" , Beuth Verlag, Berlin 2015, p. 4. into seed fibres, bast fibres, leaf fibres and fruit fibres, which thus makes a subdivision of the hard fibres. In the context of the invention, preferred plant fibres are predom-inantly produced from the wood of trees. A preferred wood in this respect is a coniferous wood, i.e., a wood of a coniferous tree, or a deciduous wood, i.e. a wood of a deciduous tree. In the case of coniferous wood, tracheids are preferred. In the case of deciduous wood, libriforms are preferred.
In the context of the invention, preferred fibres comprise cellulose pulp or a wood pulp, or both, and preferably the fibres consist thereof. A preferred wood pulp is one selected from the group consisting of groundwood pulp, pressure groundwood pulp, and a thermo-mechanical pulp (TMP) , or a combination of at least two thereof. A preferred thermo-mechanical pulp is a che-mithermo-mechanical pulp (CTMP) . In this case, the wood pulp is characterised by a greater proportion of lignin compared to the cellulose pulp, which can be detected by means of red colouring with phloroglucin solution. In the context of the invention, preferred fibres are ob-tained from the wood of a tree selected from the group consisting of spruce, pine, birch, and eucalyptus, or a combination of at least two thereof. The fibres of the plurality of fibres of a preferred fibre-containing material have at least one of the following properties:
A) an average fibre length in a range from 0.2 to 6 mm, preferably from 0.2 to 4.5 mm, more preferably from 0.5 to 4.0 mm, more preferably from 1.0 to 4.0, even more preferably from 2.0 to 4.0, most preferably from 3.0 to 4.0 mm,
B) a coarseness in a range from 50 to 400 μg/m, preferably from 100 to 300 μg/m, more preferably from 120 to 300 μg/m, even more preferably from 120 to 250 μg/m, most preferably from 130 to 200 μg/m,
C) an average wall thickness in a range from 2 to 10 μm, preferably from 3 to 9 μm, more preferably from 4 to 9 μm, more preferably from 5 to 8 μm, even more prefer-ably from 6 to 8 μm, most preferably from 6 to 7 μm,
D) a mean outer diameter in a range from 10 to 50 μm, more preferably from 10 to 45 μm, more preferably from 20 to 45 μm, more preferably from 25 to 45 μm, more preferably from 30 to 45 μm, still more preferably from 30 to 40 μm, most preferably from 32 to 40 μm.
Here, the above property under point A) is particularly preferred.
Polyolefin
A preferred polyolefin is a polyethylene (PE) or a polypropylene (PP) or both. A preferred pol-yethylene is one selected from the group consisting of an LDPE, an LLDPE, and an HDPE, or a combination of at least two thereof. Another preferred polyolefin is an mPolyolefin (polyolefin produced by means of a metallocene catalyst) . Suitable polyethylenes have a melt flow rate (MFI -melt flow index = MFR -melt flow rate) in a range from 1 to 25 g/10 min, preferably in a range from 2 to 20 g/10 min and particularly preferably in a range from 2.5 to 15 g/10 min, and/or a density in a range of 0.910 g/cm 3 to 0.935 g/cm3, preferably in a range of 0.912 g/cm 3 to 0.932 g/cm 3, and more preferably in a range of 0.915 g/cm 3 to 0.930 g/cm 3.
mPolymer
An mPolymer is a polymer produced by means of a metallocene catalyst. A metallocene is an organometallic compound in which a central metal atom is located between two organic ligands, such as cyclopentadienyl ligands. A preferred mPolymer is an mPolyolefin, preferably an mPol-yethylene or an mPolypropylene or both. A preferred mPolyethylene is one selected from the group consisting of an mLDPE, an mLLDPE, and an mHDPE, or a combination of at least two thereof. A preferred mPolyolefin is characterised by at least a first melting temperature and a second melting temperature. Preferably, the mPolyolefin is characterised by a third melting tem-perature in addition to the first and second melting temperatures. A preferred first melting tem-perature is in a range from 84 to 108 ℃, preferably from 89 to 103 ℃, more preferably from 94  to 98 ℃. A preferred second melting temperature is in a range from 100 to 124 ℃, preferably from 105 to 119 ℃, more preferably from 110 to 114 ℃.
Adhesion /adhesion promoter layer
An adhesion promoter layer is a layer of the planar composite that includes at least one adhesion promoter in a sufficient amount such that the adhesion promoter layer improves adhesion be-tween layers adjacent to the adhesion promoter layer. For this purpose, the adhesion promoter layer preferably comprises an adhesion promoter polymer. Accordingly, the adhesion promoter layers are preferably polymeric layers. An adhesion promoter layer may be located between layers of the planar composite which are not directly adjacent to each other, preferably between the barrier layer and the inner polymer layer. Suitable adhesion promoters in an adhesion pro-moter layer are all plastics which, by functionalisation by means of suitable functional groups, are suitable for producing a firm bond by forming ionic bonds or covalent bonds to a surface of a respective adjacent layer. Preferably, these are functionalised polyolefins, in particular acrylic acid copolymers obtained by co-polymerisation of ethylene with acrylic acids such as acrylic acid, methacrylic acid, crotonic acid, acrylates, acrylate derivatives or double bond-bearing car-boxylic acid anhydrides, for example maleic anhydride, or at least two thereof. Among these, polyethylene-maleic anhydride graft polymers (EMAH) , ethylene-acrylic acid copolymers (EAA) or ethylene-methacrylic acid copolymers (EMAA) are preferred, which are marketed for example under the trade names 
Figure PCTCN2022080344-appb-000001
and Nucrel 
Figure PCTCN2022080344-appb-000002
by DuPont or Escor 6000 
Figure PCTCN2022080344-appb-000003
by ExxonMobile Chemicals.
Ethylene-alkyl acrylate copolymers are also preferred as adhesion promoters. The alkyl group preferably selected is a methyl, ethyl, propyl, i-propyl, butyl-, i-butyl or a pentyl group. Further preferably, the adhesion promoter layer may comprise blends of two or more different ethylene alkyl acrylate copolymers. Equally preferably, the ethylene alkyl acrylate copolymer may have two or more different alkyl groups in the acrylate function, e.g., an ethylene alkyl acrylate co-polymer in which both methyl acrylate units and ethyl acrylate units are present in the same copolymer.
According to the invention, it is preferred that the adhesion between the carrier layer, a polymer layer or the barrier layer to the respective next layer is at least 0.5 N/15mm, preferably at least 0.7 N/15mm and particularly preferably at least 0.8 N/15mm. In one embodiment according to the invention, it is preferred that the adhesion between a polymer layer and a carrier layer is at least 0.3 N/15mm, preferably at least 0.5 N/15mm and particularly preferably at least 0.7 N/15mm. Furthermore, it is preferred that the adhesion between the barrier layer and a polymer layer is at least 0.8 N/15mm, preferably at least 1.0 N/15mm and particularly preferably at least 1.4 N/15mm. In the case that the barrier layer indirectly follows a polymer layer via an adhesion promoter layer, it is preferred that the adhesion between the barrier layer and the adhesion pro-moter layer is at least 1.8 N/15mm, preferably at least 2.2 N/15mm and particularly preferably at least 2.8 N/15mm. In an embodiment, the adhesion between the individual layers is so strong that the adhesion test results in a tearing of the carrier layer, in particular, in the case of cardboard as the carrier layer in a so-called cardboard fibre tear.
Container precursor
A container precursor is a preliminary stage of the container that is created during the production of a, preferably closed, container. In this case, the container precursor comprises the blank. The blank can be unfolded or folded. A preferred container precursor is cut to size and designed to produce a single, preferably closed, container. A preferred container precursor which is cut to size and designed to produce a single container is also referred to as a sleeve. Here the sleeve includes the blank folded, preferably along at least 2 longitudinal folds, more preferably along 4 longitudinal folds. These longitudinal folds are preferably, but not necessarily, arranged and configured to form longitudinal edges of a container formed in part from the container precursor. Further, the sleeve includes a longitudinal seam along which a first longitudinal margin of the planar composite is joined to a further longitudinal margin. Here, the sleeve is open in a top region and a bottom region. A preferred container precursor is formed in one piece.
Container
The closed container according to the invention is preferably one selected from the group, con-sisting of a foodstuff container, a dimensionally stable container, and a liquid-tight container, or  a combination at least two thereof. The container wall of the closed container according to the invention is thus preferably dimensionally stable, i.e., substantially retains its shape during fill-ing of the container and handling for transport as well as for storage. Preferably, the closed container according to the invention includes a standing base and a head portion opposite the standing base in the longitudinal direction of the closed container. Preferably, a central portion of the closed container is arranged between the standing base and the head portion. Preferably, the central portion is at least partially, preferably completely, substantially prism-shaped, pref-erably cuboid-shaped. Preferably, the head portion is at least partially substantially in the shape of a regular truncated pyramid. Preferably, the standing base is adjacent to the central portion. Alternatively or additionally preferred, the central portion is adjacent to the head portion. Pref-erably, the container interior of a closed container according to the invention contains a foodstuff. Preferably, the container wall is liquid-tight.
The container wall may consist of different materials. The container wall comprises the blank and preferably also the element other than the blank. A preferred element other than the blank is a non-planar component, preferably a moulded component, preferably made of plastic. The con-tainer wall may comprise one or more further non-planar components, such as one or more fur-ther moulded components, which are preferably made of plastic. Such further moulded compo-nent can be used in particular in the head portion or the standing base. In any case, however, it is preferred that at least 50 %, preferably at least 60 %, more preferably at least 70 %, particularly preferably at least 80 %, and furthermore preferably at least 90 %, of the surface of the container wall facing away from the container interior (outer surface) consists of the blank.
Preferably, the further transverse margin, preferably the edge of the further transverse margin, surrounds the element other than the blank, preferably along an entire circumference of the ele-ment other than the blank. The edge of the further transverse margin concerned here is preferably a cut edge of the blank. The cut edge is to be distinguished from an edge formed by a fold. Preferably, the head portion of the container has an opening surrounded by the edge. Preferably, the edge forms a perimeter of this opening. In the closed container, the opening is preferably  closed by the element other than the blank. Generally, the first composite direction as well as the further composite direction lie in a plane of planar extension of the blank.
Element other than the blank /non-planar component
In principle, any element which appears suitable to the person skilled in the art in the context of the invention can be used as an element other than the blank. A preferred element other than the blank is a non-planar component. The non-planar component is three-dimensional, i.e., not pla-nar or sheet-like. A preferred non-planar component is a moulded component. A preferred moulded component is an injection moulded component. Alternatively or additionally preferred, the element other than the blank is made of plastic. An alternatively or additionally preferred element other than the blank is formed in one piece. Preferably, the element other than the blank forms a top surface of the head portion of the closed container. A preferred top surface is the top surface of a regular truncated pyramid. Preferably, the element other than the blank forms a further part of the container wall of the closed container, while the blank forms a first part of the container wall of the closed container.
Preferably, the element other than the blank includes a base member and a spout arranged on the base member. A spout is a component, the shape of which is intended to facilitate the targeted pouring of liquid. A preferred spout takes the form of a tube. Preferably, the tube includes a screw thread on its outer side. Preferably, the spout has a pouring aperture which is closed by a closure element. A preferred closure element is planar. A preferred planar closure element is a laminate or a foil. A preferred foil is a plastic foil. The base member preferably includes a base plate, and at least 3, preferably 3 to 12, more preferably 3 to 10, more preferably 3 to 8, more preferably 3 to 6, still more preferably 3 or 4, most preferably exactly 4, side walls; the spout being arranged on a first side of the base plate; the side walls being arranged on a further side of the base plate opposite the first side. Preferably, the further side of the base plate in the closed container faces the container interior and the first side of the base plate in the closed container faces away from the container interior. The base plate preferably has a base surface in the form of a polygon. A preferred polygon here is a regular polygon. Alternatively or additionally pre-ferred, the polygon has 3 to 12, more preferably 3 to 10, more preferably 3 to 8, more preferably  3 to 6, still more preferably 3 or 4, most preferably exactly 4, corners. A preferred polygon with 4 corners is a rectangle. A preferred rectangle is a square. Preferably, the base member has as many side walls as the polygon has corners. Preferably, each 2 of the side walls which follow one another in the circumferential direction of the element other than the blank adjoin one an-other, forming a side edge of the base member. Preferably, the base member and the spout are in one piece with one another. Preferably, the element other than the blank is formed in one piece.
Preferably, the blank and the element other than the blank are glued or sealed together or both. Preferably, the further transverse margin of the blank is glued or sealed or both to the element other than the blank. Preferably the blank is joined to one of the side walls, preferably each of the side walls, of the element other than the blank, preferably directly. A preferred element other than the blank, preferably the spout, includes a screw thread. A pouring aperture of the spout is preferably closed. Preferably, an opening aid is arranged in the spout. In this case, the closed container preferably also includes the opening aid. A preferred opening aid is a cutting aid or a tearing aid or both. Alternatively or additionally preferred, the opening aid is annular. A pre-ferred annular cutting aid is a cutting ring. A preferred annular tear aid is a tear ring. A cap, preferably a screw cap, is preferably arranged on the element other than the blank in such a way that the pouring aperture of the spout is covered by the cap. Preferably, the cap is screwed onto the spout. In this case, the closed container preferably also includes the cap.
Joining
Any joining method which appears to the skilled person to be suitable for use according to the invention and by which a sufficiently strong connection can be obtained may be considered in the context of the invention. A preferred joining method is a material-to-material joining method. A material-to-material joint is understood herein to be a joint between joining partners which is produced by attractive forces between materials or within a material. A distinction must be made between this and, in particular, form-fitting and friction-fitting joints that are created by geomet-ric shapes or frictional forces. A preferred material-to-material joining method may be one se-lected from the group consisting of a sealing, a welding, a gluing, and a pressing, or a  combination of at least two of them. In the cases of sealing and welding, the joint is created by means of a liquid and its solidification. In the case of gluing, chemical bonds are formed between the surfaces of the two objects to be joined, which create the joint. It is often advantageous in the case of sealing, welding or gluing to press the surfaces to be joined together. A preferred pressing of two layers is a pressing of a respective first surface of a first of the two layers onto a second surface of the second of the two layers facing the first surface over at least 20 %, prefer-ably at least 30 %, more preferably at least 40 %, more preferably at least 50 %, more preferably at least 60 %, more preferably at least 70 %, still more preferably at least 80 %, still more pref-erably at least 90 %, most preferably at least 95 %, of the first surface. A particularly preferred joining is a sealing or welding. A preferred sealing or welding includes as steps a contacting, a heating and a pressing, wherein the steps are preferably performed in this sequence. Another sequence is also conceivable, in particular the sequence of heating, contacting and pressing.
A preferred heating is a heating of a polymer layer, preferably a thermoplastic layer, more pref-erably a polyethylene layer or a polypropylene layer or both. Another preferred heating is a heating of a polyethylene layer to a temperature in a range from 80 to 140 ℃, more preferably from 90 to 130 ℃, most preferably from 100 to 120 ℃. Another preferred heating is a heating of a polypropylene layer to a temperature in a range from 120 to 200 ℃, more preferably from 130 to 180 ℃, most preferably from 140 to 170 ℃. Another preferred heating is to a sealing temperature of the polymer layer. A further preferred heating is a heating of an element other than the blank, preferably of at least one side wall of a base member, preferably to a temperature above a melting temperature of the first polymer composition. Preferred heating may be by fric-tion, by radiation, by hot gas, by hit solid contact, by mechanical vibration, preferably by ultra-sound, by convection, or by a combination of at least two of these.
Extruding /extruder
In the context of the invention, every extruder known to the skilled person and which appears to him to be suitable for purposes of the invention comes into consideration. An extruder is a device for shaping a mass, preferably a polymer mass, by pressing through a shaping orifice. A pre-ferred extruder is a screw extruder. A melt extrusion coating is an application of a mass by  pressing a melt, forming the mass, through the shaping orifice of an extruder onto a substrate so that a planar layer of the mass superimposing the substrate is obtained. In the case of a polymer composition as a mass, the mass is preferably melted for extrusion coating. During extrusion, the polymers are typically heated to temperatures of 210 to 350 ℃, measured at the molten polymer film below the exit at the extruder die. Extrusion can be carried out by means of com-mercially available extrusion tools known to the person skilled in the art, such as extruders, extruder screws, feedblocks, etc. At the end of the extruder there is preferably an orifice through which the polymer melt is pressed. The orifice can have any shape that allows the polymer melt to be extruded. For example, the orifice may be angular, oval or round. Preferably, the orifice has the shape of a slot of a funnel. After the melt layer has been applied to the substrate by means of the method described above, the melt layer is allowed to cool for the purpose of heat-setting, this cooling preferably being effected by quenching via contact with a surface maintained at a temperature in a range from 5 to 50 ℃, more preferably in a range from 10 to 30 ℃. Subse-quently, at least the flanks are separated from the surface. The separation can be carried out in any way that is familiar to the skilled person and appears suitable in order to separate the flanks quickly, as accurately as possible and cleanly. Preferably, the separation is carried out by means of a knife, laser beam or water jet, or a combination of two or more of these, whereby the use of knives, in particular a pot knife, is particularly preferred.
Laminating
According to the invention, the superimposing the carrier layer with the barrier layer can be carried out by laminating. In this case, the prefabricated carrier and barrier layers are joined with the aid of a suitable laminating agent. A preferred laminating agent comprises, preferably con-sists of, an intermediate polymer composition, from which an intermediate polymer layer is pref-erably obtained.
Foodstuff
All food products known to the skilled person for human consumption and also animal feed may be considered as foodstuffs. Preferred foodstuff is liquid above 5 ℃, for example dairy products, soups, sauces and, preferably non-carbonated, beverages.
Edges
Edges are defined herein as both the linear regions of the container wall of the container accord-ing to the invention, which are formed by a folding of the planar composite and at which in each case two, preferably flat, regions of the planar composite adjoin each other, and edges which delimit the dimensions of the blank. The first-mentioned edges are folding edges. These include the side edges of the head portion of the closed container according to the invention and its longitudinal edges. The second-mentioned edges are cut edges. These include in particular the edge of the further transverse margin. The term "cut edge" herein does not necessarily mean that the planar composite has been cut by a knife. Rather, the blank can also have been punched out of the planar component.
Directions
The longitudinal direction of the closed container runs from the standing base to the head portion. Here, the longitudinal direction runs along a straight line. Preferably, the longitudinal direction of the closed container runs along a height of the closed container. The circumferential direction of the closed container is perpendicular to the longitudinal direction. Since the circumferential direction runs along the circumference of the closed container, it does not follow a straight line. The blank of the invention has directions corresponding to the longitudinal direction and the circumferential direction of the closed container. On the blank, if it is flat, the longitudinal di-rection and the circumferential direction are still perpendicular to each other, but here both di-rections run along straight lines that lie in the plane of planar extension of the blank.
The first composite direction and the further composite direction are perpendicular to each other. Both composite directions lie in the plane of planar extension of the blank. The plane of planar extension of the blank is not necessarily plane in Cartesian coordinates. In particular, if the blank is bent or folded, the plane follows this bend or fold. This is particularly the case for the blank as part of the closed container according to the invention.
The longitudinal direction of the element other than the blank runs along a straight line from the base element to the spout. Preferably, the longitudinal direction of the element other than the blank runs along a height of the element other than the blank. Additionally or alternatively pre-ferred, the longitudinal direction of the element other than the blank runs along a longitudinal axis of the spout. Additionally or alternatively preferred, the longitudinal direction of the ele-ment other than the blank is perpendicular to the base plate. The circumferential direction of the element other than the blank is perpendicular to its longitudinal direction. Since the circumfer-ential direction runs along the circumference of the element other than the blank, it does not follow a straight line. Preferably, in the closed container according to the invention, the longitu-dinal directions of the closed container and of the element other than the blank are identical. Additionally or alternatively preferred, in the closed container according to the invention, the circumferential directions of the closed container and of the element other than the blank are identical.
Process steps
The process steps of the processes according to the invention are carried out in the order of their symbols. In principle, process steps with immediately successive symbols can be carried out one after the other, at the same time or overlapping in time.
Colourant
Both solid and liquid colourants known to the person skilled in the art and suitable for the present invention may be considered. According to DIN 55943: 2001-10, colourant is the collective term for all colouring substances, in particular for dyes and pigments. A preferred colourant is a pig-ment. A preferred pigment is an organic pigment. Pigments of note in the context of the invention are, in particular, those described in DIN 55943: 2001-10 and those described in "Industrial Or-ganic Pigments, Third Edition" . (Willy Herbst, Klaus Hunger 
Figure PCTCN2022080344-appb-000004
2004 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim ISBN: 3-527-30576-9) . A pigment is a colourant that is preferably insoluble in the application medium. A dye is a colourant that is preferably soluble in the application medium.
Measurement methods
The following measurement methods were used within the scope of the invention. Unless oth-erwise stated, the measurements were carried out at an ambient temperature of 23 ℃, an ambient air pressure of 100 kPa (0.986 atm) and a relative humidity of 50 %.
Separating individual layers
If individual layers of a laminate –such as the barrier layer –are to be examined, the layer to be examined is first separated from the laminate as described below. Three sample pieces of the laminate are cut to size. For this purpose, unfolded and ungrooved areas of the laminate are used, unless otherwise specified. Unless otherwise specified, the sample pieces shall be 4 cm × 4 cm. If other dimensions of the layer to be examined are necessary for the examination to be carried out, sufficiently large sample pieces are cut from the laminate. The sample pieces are placed in an acetic acid bath heated to 60 ℃ (30 %acetic acid solution: 30 %by weight CHCOOH 3, remainder to 100 %by weight H 2O) for 30 minutes. This detaches the layers from each other. Here, if necessary, the layers can also be carefully peeled off from each other manually. If the desired layer cannot be detached sufficiently well, alternatively new sample pieces are used and these are treated in an ethanol bath (99 %ethanol) as described above. If there are remnants of the carrier layer (especially in the case of a cardboard layer as carrier layer) on the layer to be examined (for example the outer polymer layer or the intermediate polymer layer) , these are carefully removed with a brush. From each of the three films prepared in this way, a sample of sufficient size for the test to be carried out is cut out (unless otherwise specified, with an area of 4 cm 2) . These samples are then stored at 23 ℃ for 4 hours and thus dried. The three samples can then be examined. Unless otherwise stated, the test result is the arithmetic mean of the results for the three samples.
MFR value
The MFR value is measured according to ISO 1133-1: 2012, method A (mass determination method) , unless otherwise stated at 190 ℃ and 2.16 kg) .
Density
The density is measured according to the ISO 1183-1: 2013 standard.
Scott Bond value
The Scott Bond value is determined in accordance with Tappi 569.
Melting temperature
The melting temperature is determined using the DSC method ISO 11357-1, -3. The device is calibrated according to the manufacturer's instructions using the following measurements:
- Temperature Indium -Onset Temperature,
- Heat of fusion Indium,
- Temperature Zinc -Onset Temperature.
The recorded measurement curve can show multiple local maxima (melting peaks) , i.e., multiple melting temperatures. If a melting temperature above a certain value is required herein, this condition is fulfilled if one of the measured melting temperatures is above this value. Where reference is made herein to a melting temperature of a polymer layer, a polymer composition or a polymer, the highest melting temperature is always meant in the case of multiple measured melting temperatures (melting peaks) , unless otherwise stated.
Viscosity number of PA
The viscosity number of PA is measured in 95 %sulphuric acid according to the standard DIN EN ISO 307 (2013) .
Molecular weight distribution
The molecular weight distribution is measured by gel permeation chromatography using light scattering: ISO 16014-3/-5 (2009-09) .
Residual moisture content of cardboard
The residual moisture content of the cardboard is measured according to the ISO 287: 2009 stand-ard.
Oxygen permeation rate
The oxygen permeation rate is determined according to ASTM D3985-05 (2010) . The layer thickness of the test specimen is 90 μm ± 2μm. The area of the test specimen is 50 cm 2. The measurements are carried out at an ambient temperature of 23 ℃, an ambient air pressure of 100 kPa (0.986 atm) and a relative humidity of 50 %. The tester is an Ox-Tran 2/22 from Mocon, Neuwied, Germany.
Detection of colourants
Detection of organic colourants can be carried out according to the methods described in "In-dustrial Organic Pigments, Third Edition” . (Willy Herbst, Klaus Hunger 
Figure PCTCN2022080344-appb-000005
2004 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim ISBN: 3-527-30576-9) .
Adhesion
To determine the adhesion of two adjacent layers, they are fixed on a 90° peel test device, for example from the company Instron "German rotating wheel fixture" , on a rotating roller that rotates at 40 mm/min during the measurement. The samples were previously cut into 15 mm wide strips. On one side of the sample, the layers are detached from each other and the detached end is clamped in a pulling device that points vertically upwards. A measuring device is attached to the pulling device to determine the pulling force. When the roller is rotated, the force required to separate the layers from each other is measured. This force corresponds to the adhesion of the layers to each other and is given in N/15 mm. The separation of the individual layers can be done mechanically, for example, or by a specific pre-treatment, for example by soaking the sample for 3 min in 60 ℃ warm, 30 %acetic acid.
Bending stiffness
The following devices are used to determine the bending stiffness of a sheet-like material, in particular a planar composite, blank or cardboard:
- bending stiffness tester L&W Bending Tester Code 160, type 977682 from Lorentzen & Wettre, Sweden,
- punching machine for bending stiffness samples.
The material to be tested is climatised for 24 h in a standard climate (23 ℃, 50 %relative hu-midity) . The measurement is also carried out in a standard climate. Specimens with a width of 38.1 mm and a length of 69.85 mm are punched out of the material to be tested. In the case of roll material, the specimens are taken at 5 positions distributed over the width of the web. In any case, for each bending direction of the material to be tested, 2 specimens with their length in the corresponding bending direction of the material are punched out of the material at each speci-men-taking position. Specimens may only be taken from areas of the material to be tested which neither have grooves nor folds.
Per bending direction to be considered, the bending stiffness (in mN) of the outer side and the opposite inner side is determined. For this purpose, the specimen is placed in the bending stiff-ness tester with the side to be measured facing forwards and the measurement is started by press-ing the green button. For each combination of bending direction and material side (outer side or inner side) , the same number of specimens is measured. A 2-point bending test is carried out by the bending stiffness measuring device. In this test, the specimen clamped at one end is deflected at its other end by a measuring edge through a bending angle of 15°. Here, a direction in which the material has the bending stiffness, i.e., the bending direction, is the direction of a straight line connecting the two points at which bending forces are exerted to the specimen in the 2-point bending test. In the case of the bending stiffness tester, this direction is the direction of the short-est straight line from the clamp to the measuring edge. In this direction, the specimen forms a curve during bending. Perpendicular to this direction, a straight fold line would form if the spec-imen were bent far enough for this. The free clamping length of the specimen is 50 mm. Each  specimen may only be used for one measurement. Measurements of the outer side and the inner side on the same specimen are not permitted. The individual measured values are read from the display.
If multiple specimens were measured for each of the combinations of bending direction and material side, the arithmetic mean over the specimens is calculated for each of the combinations individually. The arithmetic mean values are then used as values for each of the combinations of bending direction and material side. The bending stiffness in a specific bending direction is the geometric mean over the values for the combinations of this bending direction/outer side and this bending direction/inner side.
Liquid tightness
Crystal oil 60 from Shell Chemicals with methylene blue is used as the test agent for testing the liquid tightness of a container. In order to determine if a certain container type is liquid-tight, 250 identical containers of this container type are tested. Each of the 250 containers is cut open along its circumference so as to obtain a first open cup-like container part containing the sealed container bottom and a second open cup-like container part containing the sealed container top. The first container part with the container bottom and the second container part with the con-tainer top are each first emptied and then filled with an amount of the test agent sufficient to completely cover the bottom of the respective cup-like container part. Then the container parts are stored for 24 hours. After the storage time, each container part is examined on its outer side with the naked eye to see whether the test agent has produced a blue discolouration there in the event of a leak. If in this test not more than 1 of the 500 container parts of the 250 identical containers shows such a discolouration, these containers are considered to be liquid-tight.
If different container types are to be compared in terms of the liquid tightness of their head portions, for each of these container types 1,000 identical containers are tested. Here, the second open cup-like container parts with the container tops are prepared and filled with an amount of the test agent as described above. Then the second container parts are stored for 24 hours. After the storage time, each second container part is examined on its outer side with the naked eye to  see whether the test agent has produced a blue discolouration there in the event of a leak. For each of the container types to be compared, out of the 1,000 second container parts, the number of second container parts which show blue discolourations is counted. The fewer second con-tainer parts show blue discolourations, the better the respective container type performs in terms of liquid tightness.
Compression stability
For this test, 5 containers are manufactured and filled with water before closing. The test serves to determine the stability of the container against compression along its longitudinal axis and can be used to evaluate the load capacity of filled containers in the static case of storage and in the dynamic case of transport. The test is carried out on the individual containers in accordance with DIN EN ISO12048. The previous storage of the containers is carried out according to DIN EN ISO 2233: 2000. A TIRA test 28025 with force transducer 1000 N (Tira GmbH; Eisfelder Strasse 23/25; 96528 Schalkau, Germany) is used as measuring instrument. The mean value of the maximum breaking load (load value) is determined. This describes the value that leads to the failure of the container. The test setup is shown in Figure 20.
Grip stiffness
In this test, 2 non-elastic plastic balls grip the closed container at opposite pressure points and exert a specified force on the container in the lateral direction. It is determined how far the closed container is compressed laterally by this force (distance in mm) . This simulates the stiffness of the container during manual gripping.
The following tools are used for the test:
- Universal tensile testing machine TIRA test 28025 (Tira GmbH; Eisfelder Strasse 23/25; 96528 Schalkau, Germany) with force transducer: 1000 N
- XY-coordinate table
- non-elastic plastic balls with diameter of 18 mm
The tensile testing machine is equipped with the plastic balls. Containers of the same weight and filling level are always to be compared with the test. The test setup is shown in Figure 21.
For each type of container to be examined, 10 containers are subjected to the test. The grip stiffness in the middle of the closed container, with respect to its total height, is determined. Corresponding pressure points, at which the plastic balls are to grip, are marked on the outside of the container before the measurement. The two pressure points are located on opposite side surfaces of the container, namely laterally in the middle of the respective side surface and in the middle of the total height of the container. After marking the pressure points, the container is aligned on the XY-coordinate table on the tensile testing machine between the two non-elastic plastic balls. The container must not yet touch the fixed plastic ball. The result of the grip stiff-ness test is the distance travelled when the force corresponding to the weight force of the closed container multiplied by 1.5 is reached.
Angle (α) between grooves for steep edges
In order to determine the angle, at which the grooves of a pair of steep edges run in relation to each other in a plane of planar extension of the blank of a planar composite, the blank is fixed flat on a white sheet of paper. For this purpose, the blank can be stapled to the sheet of paper. Then the two grooves for the pair of steep edges are extended in a straight line on the sheet of paper with a pencil so that the extensions intersect. Now, measure the angle between one groove and its extension, on the one hand, and the other groove and its extension, on the other hand, with a geometry set square.
If the preceding angle on a container precursor is to be determined, first the sealing seams of the container precursor, in particular its longitudinal seam, are carefully and slowly loosened man-ually and the blank of the planar composite is unfolded so that it is flat. Then proceed as de-scribed above.
Angle (α) between steep edges
In order to determine the angle α at which the steep edges of a pair of steep edges of a head side surface run to each other on a container, the container is prepared as follows.
The container is opened below its (possibly truncated pyramid-shaped) head portion with a knife by a lateral cut through 3 of the 4 sides of the container and then emptied. Furthermore, the bottom of the container is unfolded. For this purpose, the sealing of the ears on the bottom is first loosened manually. The seam that closes the bottom of the container is not yet released. Next, the container is cut open along its length with scissors. The cut is made on the side of the container opposite its longitudinal seam. The cut begins at the cut edge below the head portion which has been obtained described above. The cut is made in the direction of the bottom of the container. This is illustrated in Figure 18a) . Then the seam closing the bottom is slowly loosened manually from the inside to the outside. This is illustrated in Figure 18b) . The sample thus ob-tained is illustrated in Figure 18c) . Further, as shown in Figure 18d) , the head portion on the side opposite the longitudinal seam is cut with the scissors in the longitudinal direction up to the element other than the planar composite or blank. Then the seam joining the composite to the element is slowly released manually starting from the cut. This is illustrated in Figure 18e) . The part of the composite below the head potion is now cut off. The remaining sample is shown schematically in Figure 18f) .
The sample prepared as described above is now fixed flat on a white sheet of paper. For this purpose, the composite can be stapled to the sheet of paper. Then the two grooves for the pair of steep edges are extended in a straight line on the sheet of paper with a pencil so that the exten-sions intersect. Now the angle at which one groove and its extension, one the one hand, runs to the other groove and its extension, on the other hand, is measured with a geometry set square. Figure 19 shows the measuring arrangement.
Angle (β) of the inclination of the head side surfaces to the height of the container
In order to determine the angle β of inclination of the head side faces of a container (the side faces of the truncated pyramid) , the container is fixed flat with one side on a white sheet of paper.  Then one steep edge of the head side surface, whose angle of inclination is to be determined, and the adjoining longitudinal edge of the container are transferred as straight lines onto the sheet of paper with a pencil. Now measure the angle between the straight lines representing the steep edge and the longitudinal edge on the sheet of paper with a geometry set square. This measuring process is repeated for the other steep edge of the same head side surface. The angle of inclination of this head side surface is then the mean value of the angles determined for the two steep edges.
Angle (γ) of the inclination of the side walls of the base member to its longitudinal direction
The angle γ of inclination of the side walls of the base member of the element other than the blank, in particular the non-planar component, is determined with respect to the longitudinal direction of the element other than the blank, which runs from the base member to the spout. A flat object with a plane surface is positioned on the side wall of the base member in such a way that the plane surface makes the same angle with the longitudinal direction as the side wall. In addition, the lower edge of a geometry set square is placed on the underside of the element other than the blank (the side opposite the spout) in such a way that the angle of the plane surface to the longitudinal direction can be read off the geometry set square as the angle γ.
The invention is described in more detail below by means of examples and drawings, whereby the examples and drawings do not imply any limitation of the invention. Furthermore, the drawings are not to scale unless otherwise indicated.
Laminate structure
In the examples (according to the invention) and comparative examples (not according to the invention) , laminates with the layer structure shown in Table 1 below are used for container production.
Figure PCTCN2022080344-appb-000006
Table 1: Structure of the laminates of the examples and the comparative examples
Laminate production
The laminates for the examples and comparative examples are produced using a melt extrusion coating line from Davis Standard. Here, the extrusion temperature is in a range of approx. 280 to 330 ℃. In the first step, a hole is made in the carrier layer, which is provided as roll mate-rial, for each container to be produced, and then the outer polymer layer is applied to the full surface of the carrier layer by melt extrusion coating. Furthermore, the barrier layer, together with the adhesion promoter layer and the intermediate polymer layer as laminating agents, is applied over the entire surface of the carrier layer previously coated with the outer polymer layer. Subsequently, the inner polymer layer is extrusion coated over the entire surface of the barrier layer. To apply the individual layers by melt extrusion coating, the polymers are melted in an extruder. When applying a polymer in a layer, the resulting melt is transferred via a feed block into a die and extruded onto the carrier layer.
Container production
Groove patterns are introduced into the web-shaped laminate obtained as described above on the outer side. Each groove pattern consists of a plurality of grooves with 4 longitudinal grooves of equal length. Further, the grooved web-shaped laminate is divided into blanks for individual containers, each blank having one of the above holes and one of the groove patterns. By folding along longitudinal grooves of the groove pattern of each blank and sealing overlapping fold surfaces to one another, a sleeve-like container precursor is obtained from the blank (cf. Figures 4 to 6) .
Closed containers are produced from the container precursors obtained as described above. Within the scope of the comparative examples and examples, containers with a cuboid-shaped body and a truncated pyramid-shaped head portion arranged thereon are produced. This con-tainer shape is basically shown in Figure 11. The cuboid-shaped container body has a square cross-section with edge length a. Containers with edge lengths of a = 67.5 mm and a = 47.5 mm are produced. The following filling machines are used for the production of the containers.
Edge length a [mm] Filling machine
67.5 CDA 1012-36, SIG Combibloc, Linnich
47.5 CDA 2012-39, SIG Combibloc, Linnich
Table 2: Filling machines to be used for the comparative examples and examples
To produce the cuboid-shaped containers with a truncated pyramid-shaped head portion, the sleeve-like container precursor is first folded into a cuboid shape. Then the truncated pyramid-shaped head portion is folded and joined to an injection moulded component of the shape shown in Figures 7a) and 7b) by heat sealing with hot air. In this process, the fold protrusions, called ears, are sealed to the side surfaces of the head portion. The resulting container, open at the bottom, is sterilised with hydrogen peroxide. Furthermore, the open container (upside down) is filled with water. The bottom area of the container is closed by folding and ultrasonic sealing, thus obtaining a closed container in the shape of a cuboid with a truncated pyramid-shaped head portion.
Evaluation
In the Examples 1 to 4 and the Comparative Examples 1 to 4, containers with edge lengths a of 47.5 mm and 67.5 mm are studied. For both container sizes, the orientation direction of the carrier layer and the shape of the base edges of the truncated pyramid-shaped head portion are varied. Otherwise, the containers of these examples and comparative examples are identical.
As given in Table 1, the carrier layer is made of cardboard. The latter is a material with an orientation direction. The cardboard fibres are mainly oriented in the machine direction (MD) of the cardboard production. The carrier layer, and thus the laminate containing it, has a greater bending stiffness for bending in the orientation direction of the cardboard fibres than for bending perpendicular to it. More precisely, the bending stiffness of the laminate for bending in the ori-entation direction has a maximum, related to the bending direction. Here, the orientation direc-tion of the carrier layer refers to the direction of predominant orientation of the fibres of the carrier layer being either substantially perpendicular or substantially parallel to the upper edge of the laminate in the container. The upper laminate edge in this case is the edge of the laminate that runs around the moulded component (cf. 216 in Figures 2 to 6 and 11) . In essence, if the fibre orientation is substantially perpendicular to the upper laminate edge, the bending stiffness of the laminate has a minimum for bending in the direction of the upper laminate edge. If the fibre orientation is substantially parallel to the upper laminate edge, the bending stiffness of the laminate has a maximum for bending in the direction of the upper laminate edge, i.e., the bending stiffness of the laminate for bending about the direction of the upper laminate edge is greater than the bending stiffness for bending of the laminate in any other direction.
The results in Table 3 show that an alignment of the fibre direction substantially parallel to the upper laminate edge, i.e., substantially perpendicular to the container height, has a beneficial effect on the shelf life of the containers. In particular, it is found that the seal between the lami-nate and the moulded component is tighter if the fibre direction is aligned substantially parallel to the upper edge of the laminate. This can be demonstrated with the "liquid tightness" test de-scribed above. The reason for this may be less cardboard dust on the sealing surfaces. Such dust  from inside the cardboard can also lead to contamination of the container interior. Both the re-duced tightness of the seal between the laminate and the moulded component and contamination of the container interior with dust have a detrimental effect on the shelf life of the containers. Production tolerances in the orientation of the carrier layer show that the fibre direction does not need to be exactly parallel to the upper laminate edge to achieve the advantageous effect on the shelf life.
Figure PCTCN2022080344-appb-000007
Further, Table 3 compares containers with a truncated pyramid-shaped head portion with straight base edges with containers with a truncated pyramid-shaped head portion, the base edges of which are convexly curved in relation to the respective side face (head side surface) of the head portion (cf. 1105 in Figure 11) . The results in Table 3 demonstrate an advantageous effect of a convex curvature of the base edges of the truncated pyramid-shaped head portion on the shelf life of the containers and the sealing of the ears. If the fold protrusions (cf. 1106 in Figure 11) , often referred to as ears by those skilled in the art, are not fully attached to the head side surfaces of head portion of the container by sealing, this can lead to production errors in the filling ma-chine and thus to interruptions in production. In the production of containers with convexly curved base edges of the truncated pyramid-shaped head portion, less failures in sealing the ears to the head side surfaces occur.
For all of the following further examples, containers with straight base edges of their truncated pyramid-shaped head portions and parallel fibre orientation of the carrier layer with respect to the upper laminate edge are considered.
The influence of the length l of the longitudinal edges of the container formed along the longi-tudinal grooves on basic usage properties of the container is studied while the edge length a remains constant. The length l is determined as the length of the longitudinal grooves in the groove pattern of the respective container. It denotes the height of the container without any truncated pyramid-shaped head portion. The Table 4 below summarises the results for both edge lengths considered: a = 47.5 mm and a = 67.5 mm.
  a [mm] l [mm] l/a Standing stability Capacity Grip stiffness
Example 5 67.5 87, 5 1, 296 ++ - +
Example 6 67.5 94.0 1.393 + + +
Example 7 67.5 189 2.8 + + +
Example 8 67.5 202, 5 3, 0 - ++ +
Example 9 47.5 61, 5 1, 295 ++ -- ++
Example 10 47.5 66 1.389 + 0 ++
Example 11 47.5 133 2.8 + 0 ++
Example 12 47.5 142, 5 3, 0 - + ++
Table 4: On the influence of the height of the container body on the use properties of the con-tainer
It is found that a ratio l/a of less than 1.3 leads to low capacities. A ratio l/a of more than 2.95 always has a detrimental effect on the standing stability of the containers, i.e., the containers tend to fall over easily. Containers with a ratio l/a in the range of 1.35 to 2.95 are always suffi-ciently standing-stable and have sufficient capacities. In this range, i.e., with sufficient standing stability, the larger edge length a allows a larger capacity. On the other hand, the smaller edge length a allows a particularly good grip stiffness with sufficient standing stability. These con-tainers are particularly easy to handle. While containers with a larger edge length a are particu-larly suitable for stationary household use, containers with a smaller edge length a are particu-larly suitable for mobile use.
In the following, the influence of the angle α on the compression stability of containers with sufficient stability as well as on the sealing of the ears is considered. The angle α is the angle that is included by the two steep edges of each side face (head side surface) of the truncated pyramid-shaped head portion in the plane of the respective side face. This angle is measured in the plane of the laminate as described above before the container is made.
Figure PCTCN2022080344-appb-000008
Table 5: On the influence of the angle α on the compression stability and the sealing of the ears  The results summarised in Table 5 show that containers with and angle α in a specific range are more compression-resistant along their length. This makes such containers more suitable for stacking for transport and helps to make the transport of filled containers to retailers more effi-cient. Furthermore, selection of a suitable angle α improves the sealing of the ears and, thus, helps to reduce the number of interruptions of the filling machine in production of the containers.
Further, the influence of the angle β, at which the side surfaces of the truncated pyramid-shaped head portion of the container are inclined to the longitudinal direction (height) of the container (cf. 802 in Figure 8) , on the shelf life of the containers is considered. For this purpose, containers with truncated pyramid-shaped head portions with straight base edges are manufactured accord-ing to Examples 15, 21, 28 and 34, whereby their angle β is varied. The angle γ (cf. 712 in Figure 7a) ) of the moulded component reflects the angle β of the head side surfaces. The angle γ indi-cates the inclination of the side walls of the moulded component to the longitudinal direction of the moulded component (same as the longitudinal direction of the container in the container) .
It is found that angles β and γ in the range from 55 to 70° are beneficial for the shelf life of the containers. Analyses of the containers show that angles β and γ outside the aforementioned range promote the formation of so-called pockets, i.e., unsealed cavities, on the interfaces between the laminate and the moulded component in the head portion. Such cavities reduce the tightness of the head portion. This can be proven with the "liquid tightness" test described above. Further-more, germs can increasingly hold and multiply in such cavities. Both reduced tightness and increased germ growth shorten the shelf life of the containers.
  a, l, l/a, α, base edges β and γ [°] Liquid tightness of the head portion
Example 37 see example 15 54 +
Example 38 see example 15 55 ++
Example 39 see example 15 59 +++
Example 40 see example 15 66 ++++
Example 41 see example 15 70 ++
Example 42 see example 15 71 +
Example 43 see example 21 54 +
Example 44 see example 21 55 ++
Example 45 see example 21 59 +++
Example 46 see example 21 66 ++++
Example 47 see example 21 70 ++
Example 48 see example 21 71 +
Table 6: On the influence of the angles β and γ on the shelf life of containers with edge length a = 67.5 mm
  a, l, l/a, α, base edges β and γ [°] Liquid tightness of the head portion
Example 49 see example 28 54 +
Example 50 see example 28 55 ++
Example 51 see example 28 59 ++++
Example 52 see example 28 66 +++
Example 53 see example 28 70 ++
Example 54 see example 28 71 +
Example 55 see example 34 54 +
Example 56 see example 34 55 ++
Example 57 see example 34 59 ++++
Example 58 see example 34 66 +++
Example 59 see example 34 70 ++
Example 60 see example 34 71 +
Table 7: On the influence of the angles β and γ on the shelf life of containers with edge length a = 47.5 mm
In the above Tables 3 to 7:
"++++" means a more favourable result than "+++" ,
"+++" means a more favourable result than "++" ,
"++" means a more favourable result than "+" ,
"+" means a more favourable result than "0" ,
"0" means a more favourable result than "-" , and
"-" means a more favourable result than "--" .
Unless otherwise stated in the description or the respective figure, the figures schematically and not to scale show:
Figure 1 a schematic representation of a planar composite;
Figure 2 a schematic representation of a blank according to the invention of the planar composite of Figure 1;
Figure 3 a further schematic representation of the blank of Figure 2;
Figure 4 a schematic representation of a container precursor according to the invention;
Figure 5 a further schematic representation of the container precursor of Figure 4;
Figure 6 a further schematic representation of the container precursor of Figure 4;
Figure 7a) a schematic perspective view of an element other than the blank con-tainer element according to the invention;
Figure 7b) a schematic top view of the element of Figure 7a) ;
Figure 8 a schematic sectional view of the element of Figure 7a) ;
Figure 9a) a schematic partial view of a further section through the element of Figure 7a) ;
Figure 9b) an enlarged partial representation of Figure 9a) ;
Figure 10a) a schematic representation of the cap in Figure 7a) with opening aid;
Figure 10b) a schematic representation of the opening aid from Figure 10a) ;
Figure 11 a schematic perspective view of a container according to the inven-tion;
Figure 12a) to 12d) schematic side views of the container according to the invention from Figure 11;
Figure 13a) a schematic top view of the container according to the invention from Figure 11;
Figure 13b) a schematic bottom view of the container according to the invention from Figure 11;
Figure 14 a schematic partial representation of a section through the planar com-posite of Figure 1;
Figure 15 a flow chart of a process according to the invention of manufacturing a blank of a planar composite;
Figure 16 a flow chart of a process of manufacturing a container precursor;
Figure 17 a flow chart of a process according to the invention of manufacturing a closed container;
Figures 18a) to 18f) illustrations of the preparation of a closed container to determine the angle α of a pair of steep edges;
Figure 19 an illustration of the test method for determining the angle α of a pair of steep edges;
Figure 20 a test setup to determine compression stability; and
Figure 21 a test setup to determine the grip stiffness.
Figure 1 shows a schematic top view of a planar composite 100. The planar composite 100 is a web-shaped, semi-endless roll material, of which here only a section can be shown. The planar composite 100 comprises a first plurality of grooves 101 and more than 50 further pluralities of grooves 102.
Figure 2 shows a schematic plan view of a blank 200 according to the invention. This is a blank 200 of the planar composite 100 of Figure 1. The blank 200 is designed to produce the closed container 1100 of Figure 11. For this purpose, the blank 200 includes only the first plurality of grooves 101. These grooves are arranged and configured such that by folding the blank 200 along the grooves of the first plurality of grooves 101 and joining portions of the blank 200, a first part of a container wall 1101 surrounding a container interior of the closed container 1100 is obtainable. The closed container 1100 includes a standing base 1103 and, in a longitudinal direction 201, extending along a length of the closed container 1100, opposite the standing base 1103, a head portion 1102. The first plurality of grooves 101 includes grooves 204 in a first transverse margin 207 to form the standing base 1103 and grooves 203 in a further transverse margin 208 to form the head portion 1102. Furthermore, the first plurality of grooves 101 in-cludes exactly 4 longitudinal grooves 213 for forming 4 longitudinal edges 1107 of the closed container 1100. The latter includes 4 head side surfaces 209 formed from the blank 200. The  head side surfaces 209 are inclined to each other in the longitudinal direction 201 in such a way that the closed container 1100 tapers in the head portion 1102. The 4 head side surfaces 209 together form substantially a lateral surface of the head portion 1102, which is substantially in the shape of a regular truncated pyramid with a square base. The 4 base edges 1105 of the regular truncated pyramid are convexly curved towards the standing base 1103, relative to their respec-tive head side surfaces 209. The first plurality of grooves 101 includes 4 corresponding grooves 212 for forming the 4 base edges 1105. A perimeter of each of the 4 head side surfaces 209 is formed by a respective plurality of side edges of the head portion 1102. Each of these pluralities of side edges includes a pair of steep edges 1104 opposing each other in a circumferential direc-tion 202 of the closed container 1100 perpendicular to the longitudinal direction 201. Each pair of steep edges 1104 is formed along a pair of grooves 210 of the first plurality of grooves 101. The grooves of each of these pairs of grooves 201 extend in a plane of planar extension of the blank 200 at an angle 211 in the range of 40 to 60° with respect to each other. Accordingly, in the closed container 1100, the steep edges of each of the pairs of steep edges 1104 also include the angle 211 in the range of 40 to 60°. This angle 211 is also referred to herein as α. The blank 200 has a first longitudinal margin 205, a further longitudinal margin 206 opposite thereto in the circumferential direction 202, the first transverse margin 207 and the further transverse margin 208 opposite thereto in the longitudinal direction 201. Each of the first longitudinal margin 205, the further longitudinal margin 206, the first transverse margin 207 and the further transverse margin 208 includes a cut edge of the blank 200. A bending stiffness of the blank 200 for bending in a first composite direction 214 is greater than for bending in a further composite direction 215 perpendicular to the first composite direction 214. Therein, the first composite direction 214 as well as the further composite direction 215 lie in the plane of planar extension of the blank 200. The further transverse margin 208 is arranged and configured to provide a first part of the head portion 1102 of the closed container 1100 by folding the further transverse margin 208 along grooves of the first plurality of grooves 101 and joining portions of the further transverse margin 208 with one another. The edge 216 of the further transverse margin 208 surrounds an element 701 other than the blank 200, which forms a further part of the head portion 1102 in the closed container 1100. The edge 216 runs along its entire length parallel to the first composite direction 214 (cf. Fig 11) . The first plurality of grooves 101 further comprises 4 auxiliary grooves 217.  Each of the auxiliary grooves 217 is arranged next to one of the longitudinal grooves 213 in the first transverse margin 207 such that a bending radius of a longitudinal fold along this longitu-dinal groove 213 is increased at least in sections of the longitudinal fold. Further, each of the auxiliary grooves 217 is curved away from the respective longitudinal groove 213. Furthermore, each of the auxiliary grooves 217 is arranged on a side of the respective longitudinal groove 213 which faces away from a centre of the blank 200, based on the circumferential direction 202. Forming the standing base 1103 includes particularly severe folding of the blank 200. The aux-iliary grooves 217 described above allow to reduce mechanical stress to the blank 200 upon forming the standing base 1103. This helps to reduce the risk of leaks at the bottom of the con-tainer 1100 and, thus, contributes to a long shelf life.
Figure 3 shows a schematic perspective view of the blank 200 of Figure 2.
Figure 4 shows a schematic top view of a container precursor 400 according to the invention. This includes the blank 200 of Figure 2. Here, the blank 200 has a first longitudinal fold 402 and a further longitudinal fold 403, both along longitudinal grooves 213. The container precursor 400 is folded flat along these longitudinal folds. The first longitudinal margin 205 and the further longitudinal margin 206 of the blank 200 are sealed together forming a longitudinal seam 401 of the container precursor 400.
Figure 5 shows a further schematic top view of the container precursor 400 of Figure 4. Here, the container precursor 400, which continues to be folded flat, can be seen from the side opposite the longitudinal seam 401.
Figure 6 shows a schematic perspective view of the container precursor 400 of Figure 4.
Figure 7a) shows a schematic perspective view of an element 701 other than the blank 200 and a cap 707. The element 701 other than the blank 200 is a non-planar component. The non-planar component is an injection moulded component. The element 701 other than the blank 200 is designed to form a further part of the container wall 1101 of the closed container 1100 in Figure  11, while the blank 200 of Figure 2 in folded state forms a first part of this container wall 1101, which is an open, cup-shaped container, so that the container 1100 is closed as shown in Figure 11. The further part of the container wall 1101 is encompassed by the head portion 1102 of the closed container 1100. The element 701 other than the blank 200 bounds the container interior in the longitudinal direction 201 of the closed container 1100 and forms a top surface of the truncated pyramid-shaped head portion 1102. The element 701 other than the blank 200 is made of HDPE, comprises a base member 702 and a spout 703 arranged thereon, a pouring aperture 804 (see Figure 8) of which is covered by the cap 707. The latter is screwed onto the spout 703. The cap 707 is also made of HDPE. The base member 702 comprises a base plate 704 and exactly 4 side walls 705. The spout 703 is arranged on a first side of the base plate 704. The side walls 705 are arranged on a further side of the base plate 704 opposite the first side. In each case, 2 of the side walls 705 adjoin one another forming a side edge 706 of the base member 702. The element 701 other than the blank 200 is formed in one piece and is obtainable by injection moulding. Further, the side walls 705 are inclined towards each other in a longitudinal direction 708 of the element 701 other than the blank 200 extending from the base member 702 to the spout 703 so that each of the side walls 705 is inclined at an angle γ 712 in a range of from 55 to 70° to the longitudinal direction 708. In regard of the closed container 1100 of Figure 11, the longitudinal direction 708 of the element 701 other than the blank 200 is the same as the longi-tudinal direction 201 of the closed container 1100. A circumferential direction 709 of the non-planar component 701 is perpendicular to the longitudinal direction 708. A first sealant reservoir 710 is arranged on an outer side of each of the side walls 705, respectively. Each of these first sealant reservoirs 710 is elongated in the circumferential direction 709 of the element 701 other than the blank 200. Further, each of the first sealant reservoirs 710 is formed as 4 lamellae. A further sealant reservoir 711 is arranged on each side edge 706 of the base member 702, respec-tively. Each of the further sealant reservoirs 711 is arranged and formed to stand fin-like on the respective side edge 706. In Figure 11, the element 701 other than the blank 200 has been heat-sealed to the blank 200 with a sealant that has been provided at least in part by the first 710 and further sealant reservoirs 711 of the element 701 other than the blank 200.
Figure 7b) shows a schematic top view of the element 701 other than the blank 200 of Figure 7a) .
Figure 8 shows a schematic sectional view of the element 701 other than the blank 200 of Figure 7a) . Here, it can be seen that an opening aid 801 in the form of a cutting ring 801 is arranged in the spout 703. The cutting ring 801 is made of PP. Furthermore, the element 701 other than the blank 200 here is joined to the blank 200 of Figure 2 which has been folded along grooves of the first plurality of grooves 101. The element 701 other than the blank 200 and the blank 200 together form the container wall 1101 of the closed container 1100 of Figure 11. It can be seen that the head side surfaces 209 of the closed container 1100 are inclined to each other in the longitudinal directions 201 in such a way that they include an angle 802 in a range from 55 to 70° with the longitudinal direction 201. This angle 802 is also referred to herein as β. Further, Figure 8 shows that the spout 703 includes a screw thread 803 for screwing on the cap 707. A pouring aperture 804 of the spout 703 is covered by the cap 707. In addition, the pouring aperture 804 is closed by a closure element 805 which is a plastic foil.
Figure 9a) shows a schematic partial view of a further section through the element 701 other than the blank 200 of Figure 7a) .
Figure 9b) shows an enlarged partial representation of the circled area of Figure 9a) .
Figure 10a) shows a schematic representation of the cap 707 of Figure 7a) with the opening aid 801.
Figure 10b) shows a schematic representation of the opening aid 801 from Figure 10a) .
Figure 11 shows a schematic perspective view of a closed container 1100 according to the in-vention. The closed container 1100 comprises the blank of Figure 2 and the element 701 other than the blank 200 of Figure 7a) . The blank 200 has been folded along grooves of the first plu-rality of grooves 101. A container wall 1101 completely surrounds a container interior. Thus,  the closed container 1100 is a closed and liquid-tight foodstuff container. A first part of the container wall 1101 is formed by the blank 200. A further part of the container wall 1101 is formed by the element 701 other than the blank 200. The blank 200 and the element 701 other than the blank 200 are joined to one another by heat sealing. The closed container 1100 includes a standing base 1103 and, in the longitudinal direction 201, extending along the length of the closed container 1100, opposite the standing base 1103, a head portion 1102. The head portion 1102 includes exactly 4 head side surfaces 209 formed from the blank 200, which are inclined relative to each other in the longitudinal direction 201 such that the closed container 1100 tapers in the head portion 1102 in the longitudinal direction 201. A perimeter of each of the head side surfaces 209 is respectively formed by a plurality of side edges of the head portion 1102. Each of these pluralities of side edges includes a pair of steep edges 1104 opposing each other in a circumferential direction 202 of the closed container 1100, which runs perpendicular to the lon-gitudinal direction 201. The steep edges of each pair of steep edges 1104 of each of the head side surfaces 209 extend in a plane of the respective head side surface 209 at an angle α in the range from 40 to 60° with respect to each other. This angle corresponds to the angle α 211 in Figure 2, and may be determined as shown in Figures 18a) to 18f) and 19. The closed container 1100 has 4 longitudinal edges 1107. Each of the head side surfaces 209 includes an angle β 802 (cf. Figure 8) in the range from 55 to 70° with the longitudinal direction 201. The 4 head side surfaces 209 together form substantially a lateral surface of the head portion 1102, which is substantially in the form of a regular truncated pyramid with a square base. The 4 base edges 1105 of the regular truncated pyramid are convexly curved towards the standing base 1103, relative to their respective head side surfaces 209. Fold protrusions 1106, also referred to as ears 1106, are sealed to the head side surfaces 209 by hot air sealing. Figure 11 shows the first part of the head portion 1102 obtained by folding the further transverse margin 208 of the blank 200 of Figure 2 along grooves 203 of the first plurality of grooves 101 and joining portions of the further transverse margin 208 to one another. In the closed container 1100, the edge 216 of the further transverse margin 208 surrounds the further part of the head portion 1102. This further part of the head portion 1102 is formed by the element 701 other than the blank 200. The edge 216 runs along its entire length parallel to the first composite direction 214.
Figures 12a) to 12d) show schematic side views of the closed container 1100 of the invention from Figure 11 from all 4 sides. Figure 12c) shows the longitudinal seam 401 of the closed container 1100.
Figure 13a) shows a schematic top view of the closed container 1100 according to the invention from Figure 11.
Figure 13b) shows a schematic bottom view of the closed container 1100 of Figure 11 according to the invention.
Figure 14 shows a schematic partial representation of a section through the planar composite 100 of Figure 1. The planar composite 100 comprises, as superimposed layers of a layer se-quence in the direction from an outer side 1401 of the planar composite 100 to an inner side 1402 of the planar composite 100, an outer polymer layer 1403, a carrier layer 1404, an inter-mediate polymer layer 1405, an adhesion promoter layer 1406, a barrier layer 1407 and an inner polymer layer 1408. The blank 200 of Figure 2 shares the aforementioned layer structure with the planar composite 100. The carrier layer 1404 consists of cardboard. A main fibre direction of the cardboard in the closed container 1100 runs approximately parallel to the edge 216 of the further transverse margin 208. Further, the carrier layer 1404 renders the container wall 1101 and, thus, the closed container 1100 dimensionally stable.
Figure 15 shows a flow chart of a process 1500 according to the invention of manufacturing the blank 200 from Figure 2 of the planar composite 100 from Figure 1. The process 1500 comprises a process step a) 1501 of providing a planar composite precursor, which has a bending stiffness that is greater for bending in a first composite direction 214 than for bending in a further com-posite direction 215 perpendicular to the first composite direction 214. In a process step b) 1502, the plurality of grooves 101 is introduced into the planar composite precursor. Thereby, the pla-nar composite 100 is obtained. In a process step c) 1503, the blank 200 for making the closed container 1100 of Figure 11 is cut from the planar composite 100.
Figure 16 shows a flow chart of a process 1600 according to the invention of manufacturing the container precursor 400 of Figure 4. In a process step a. 1601, the blank 200 of Figure 2 is provided. In a process step b. 1602, the blank 200 is folded along its longitudinal grooves 213. In a process step c. 1603, the first longitudinal margin 205 and the further longitudinal margin 206 are contacted with each other and joined together by heat sealing, so that a longitudinal seam 401 is obtained.
Figure 17 shows a flow chart of a process 1700 according to the invention of manufacturing a closed container 1100 of Figure 11. In a process step A) 1701, the container precursor 400 of Figure 4 and the element 701 other than the blank 200 of Figure 7a) are first provided. Then, in a process step B) 1702, the head portion 1102 is formed and closed by folding and joining the container precursor 400 to the element 701 other than the blank 200. In a process step C) 1703, the container precursor 400, which is open at the bottom, is filled upside down with a foodstuff. Further, in a process step D) 1704, the standing base 1103 is formed and closed by folding the blank 200 along grooves of the first plurality of grooves 101 and sealing portions of the blank 200 together to obtain the closed container 1100.
Figures 18a) to 18f) show illustrations of the preparation of a closed container 1100 for deter-mining the angle α 211 of a pair of steep edges 1104.
Figure 19 shows an illustration of the test method for determining the angle α 211of a pair of steep edges 1104.
Figure 20 shows a test setup 2000 with a universal tensile testing machine TIRA test 28025 with force transducer 1000 N as measuring device 2001 for determining the compression stability of the closed container 1100.
Figure 21 shows a test setup 2100 with a universal tensile testing machine TIRA test 28025 with force transducer 1000 N as measuring device 2001 for determining the grip stiffness of the closed container 1100. The tensile testing machine was equipped with 2 non-elastic plastic balls 2101  for this purpose. The closed container 1100 was positioned by means of an XY-coordinate table 2102.
List of reference signs
100          Planar composite
101          Plurality of grooves /first plurality of grooves
102          Further plurality of grooves
200          Blank according to the invention
201          Longitudinal direction of the closed container
202          Circumferential direction of the closed container
203          Grooves for forming a head portion
204          Grooves for forming a standing base
205          First longitudinal margin
206          Further longitudinal margin
207          First transverse margin
208          Further transverse margin
209          Head side surface
210          Pair of grooves for forming a pair of steep edges
211          Angle α of the grooves for the pair of steep edges
212          Groove for forming a base edge
213          Longitudinal groove
214          First composite direction
215          Further composite direction
216          Edge of the further transverse margin
217          Auxiliary groove
400          Container precursor according to the invention
401          Longitudinal seam
402          First longitudinal fold
403          Further longitudinal fold
701          Element other than the blank
702          Base member
703          Spout
704          Base plate
705          Side wall
706          Side edge
707          Cap
708          Longitudinal direction of the element other than the blank
709          Circumferential direction of the element other than the blank
710          First sealant reservoir /lamellae
711          Further sealant reservoir
712          Angle γ between side walls and longitudinal direction
801          Opening aid /cutting ring
802          Angle β between head side surfaces and longitudinal direction
803          Screw thread
804          Pouring aperture
805          Closure element
1100         Closed container according to the invention
1101         Container wall
1102         Head portion
1103         Standing base
1104         Pair of steep edges
1105         Base edge
1106         Fold protrusion /ear
1107         Longitudinal edge
1401         Outer side
1402         Inner side
1403         Outer polymer layer
1404         Carrier layer
1405         Intermediate polymer layer
1406         Adhesion promoter layer
1407         Barrier layer
1408         Inner polymer layer
1500         Process according to the invention of manufacturing a blank of a planar com-
             posite
1501         Process step a)
1502         Process step b)
1503         Process step c)
1600         Process according to the invention of manufacturing a container precursor
1601         Process step a.
1602         Process step b.
1603         Process step c.
1700         Process according to the invention of manufacturing a closed container
1701         Process step A)
1702         Process step B)
1703         Process step C)
1704         Process step D)
1900         Illustration of the test method for determining the angle α of the grooves of a
             pair of steep edges
2000         Test setup for determining the compression stability
2001         Measuring device universal tensile testing machine TIRA test 28025 with force
             transducer 1000 N
2100         Test setup for determining the grip stiffness
2101         Non-elastic plastic balls
2102         XY-coordinate table

Claims (15)

  1. A blank (200) of a planar composite (100) , wherein the blank (200)
    - is designed to produce a closed container (1100) ,
    - comprises a plurality of grooves (101) arranged and configured such that by folding the blank (200) along the grooves of the plurality of grooves (101) and joining por-tions of the blank (200) , a first part of a container wall (1101) surrounding a container interior of the closed container (1100) is obtainable, and
    - comprises a first transverse margin (207) and a further transverse margin (208) , which is, along a longitudinal direction (201) of the closed container (1100) , opposite to the first transverse margin (207) ;
    wherein the further transverse margin (208) is arranged and configured to obtain a first part of a head portion (1102) of the closed container (1100) by folding the further trans-verse margin (208) along grooves of the plurality of grooves (101) and joining portions of the further transverse margin (208) ;
    wherein an edge (216) of the further transverse margin (208) surrounds a further part of the head portion (1102) ;
    wherein a bending stiffness of the blank (200) for bending in a first composite direction (214) is greater than for bending in a further composite direction (215) perpendicular to the first composite direction (214) ;
    characterised in that, along at least 50 %of its length, the edge (216) runs in an angular range of ± 30° about the first composite direction (214) .
  2. The blank (200) according to claim 1, wherein the planar composite (100) comprises a carrier layer (1404) ;
    wherein the carrier layer (1404) comprises a plurality of fibres;
    wherein the plurality of fibres has an orientation in the first composite direction (214) .
  3. The blank (200) according to claim 1 or 2, wherein the blank (200) has a first bending stiffness for bending in the first composite direction (214) and a further bending stiffness for bending in the further composite direction (215) ;
    wherein a ratio of the further bending stiffness to the first bending stiffness is in a range of 1: 10 to 1: 1.5.
  4. The blank (200) according to any one of the preceding claims, wherein the blank (200) has a first bending stiffness for bending in the first composite direction (214) and a fur-ther bending stiffness for bending in the further composite direction (215) ;
    wherein the first bending stiffness is greater than the further bending stiffness by at least 10 mN.
  5. The blank (200) according to any one of the preceding claims, wherein the blank (200) has a first bending stiffness for bending in the first composite direction (214) and a fur-ther bending stiffness for bending in the further composite direction (215) ; wherein the first bending stiffness is in a range from 50 to 800 mN.
  6. The blank (200) according to any one of the preceding claims, wherein the blank (200) has a first bending stiffness for bending in the first composite direction (214) and a fur-ther bending stiffness for bending in the further composite direction (215) ; wherein the further bending stiffness is in a range from 50 to 750 mN.
  7. The blank (200) according to any one of the preceding claims, wherein the blank (200) is configured such that the head portion (1102) of the closed container (1100) is formed by the first part of the head portion (1102) and a further part of the head portion (1102) ; wherein the further part comprises, preferably consists of, an element (701) other than the blank (200) .
  8. The blank (200) according to claim 7, wherein the element (701) other than the blank (200) comprises
    - a base member (702) , and
    - a spout (703) arranged on the base member (702) .
  9. A process (1500) comprising as process steps:
    a) providing a planar composite precursor having a bending stiffness which is greater for bending in a first composite direction (214) than for bending in a fur-ther composite direction (215) perpendicular to the first composite direction (214) ;
    b) introducing a plurality of grooves (101) into the planar composite precursor to obtain a planar composite (100) ; and
    c) separating a blank (200) for making a closed container (1100) from the planar composite (100) ,
    wherein the blank (200) comprises
    - the grooves of the plurality of grooves (101) , and
    - a first transverse margin (207) and a further transverse margin (208) op-posite the first transverse margin (207) along a longitudinal direction (210) of the closed container (1100) ;
    wherein the grooves of the plurality of grooves (101) are arranged and configured such that by folding the blank (200) along the grooves of the plurality of grooves (101) and joining portions of the blank (200) , a first part of a container wall (1101) surrounding a container interior of the closed container (1100) is obtainable;
    wherein the further transverse margin (208) is arranged and configured to provide a first part of a head portion (1102) of the closed container (1100) by folding the further trans-verse margin (208) along grooves of said plurality of grooves (101) and joining portions of the further transverse margin (208) ;
    wherein an edge (216) of the further transverse margin (208) surrounds a further part of the head portion (1102) ;
    characterised in that, along at least 50%of its length, the edge (216) runs in an angular range of ± 30° about the first composite direction (214) .
  10. A container precursor (400) comprising the blank (200) according to any one of claims 1 to 8, or a blank (200) of a planar composite (100) obtainable by the process (1500) according to claim 9;
    wherein the container precursor (400) is a container precursor (400) of the closed con-tainer (1100) .
  11. A closed container (1100) comprising the blank (200) according to any one of claims 1 to 8, or a blank (200) of a planar composite (100) obtainable by the process (1500) ac-cording to claim 9.
  12. A closed container (1100) comprising
    - a blank (200) of a planar composite (100) , and
    - an element (701) other than the blank (200) ;
    wherein the blank (200) has a bending stiffness which is greater for bending in a first composite direction (214) than for bending in a further composite direction (215) per-pendicular to the first composite direction (214) ;
    wherein the blank (200)
    - comprises a first transverse margin (207) and a further transverse margin (208) opposite the first transverse margin (207) along a longitudinal direction (201) of the closed container (1100) , and
    - forms a first part of a container wall (1101) surrounding a container interior of the closed container (1100) ;
    wherein the element (701) other than the blank (200) forms a further part of the container wall (1101) ;
    wherein the further transverse margin (208) is joined to the element (701) other than the blank (200) ;
    wherein an edge (216) of the further transverse margin (208) surrounds the element (701) other than the blank (200) ;
    characterised in that, along at least 50 %of its length, the edge (216) runs in an angular range of ± 30° about the first composite direction (214) .
  13. A process (1600) comprising as process steps:
    a. Providing the blank (200) according to any one of claims 1 to 8, or a blank (200) of a planar composite (100) obtainable by the process (1500) according to claim 9, the blank (200) comprising a first longitudinal margin (207) and a further lon-gitudinal margin (208) ;
    b. Folding the blank (200) along grooves of the plurality of grooves (101) ; and
    c. Contacting and joining the first longitudinal margin (207) to the further longitu-dinal margin (208) to form a longitudinal seam (401) .
  14. A process (1700) comprising as process steps:
    A) Providing the container precursor (400) according to claim 10, or a container pre-cursor (400) obtainable by the process (1600) according to claim 13;
    B) Forming and closing a head portion (1102) of the container precursor (400) ;
    C) Filling the container precursor (400) with a foodstuff; and
    D) Forming and closing a standing base (1103) of the container precursor (400) by folding the blank (200) along grooves of the plurality of grooves (101) and join-ing portions of the blank (200) to one another, thereby obtaining a closed con-tainer (1100) .
  15. A use of the blank (200) according to any one of claims 1 to 8, or a blank (200) of a planar composite (100) obtainable by the process (1500) according to claim 9, or of the container precursor (400) according to claim 10, or a container precursor (400) obtaina-ble by the process (1600) according to claim 13, in each case for producing a closed container (1100) .
PCT/CN2022/080344 2022-03-11 2022-03-11 Blank for dimensionally stable foodstuff container with greater bending stiffness for bending in first composite direction than for bending in further composite direction WO2023168694A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/080344 WO2023168694A1 (en) 2022-03-11 2022-03-11 Blank for dimensionally stable foodstuff container with greater bending stiffness for bending in first composite direction than for bending in further composite direction
TW112107118A TW202406802A (en) 2022-03-11 2023-02-24 Blank for dimensionally stable foodstuff container with greater bending stiffness for bending in first composite direction than for bending in further composite direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/080344 WO2023168694A1 (en) 2022-03-11 2022-03-11 Blank for dimensionally stable foodstuff container with greater bending stiffness for bending in first composite direction than for bending in further composite direction

Publications (1)

Publication Number Publication Date
WO2023168694A1 true WO2023168694A1 (en) 2023-09-14

Family

ID=87936952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080344 WO2023168694A1 (en) 2022-03-11 2022-03-11 Blank for dimensionally stable foodstuff container with greater bending stiffness for bending in first composite direction than for bending in further composite direction

Country Status (2)

Country Link
TW (1) TW202406802A (en)
WO (1) WO2023168694A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5088642A (en) * 1989-12-21 1992-02-18 Pkl Verpackungssysteme Gmbh Container for liquids and bulk materials
CN1671599A (en) * 2002-07-25 2005-09-21 建筑自动机械制造A.C.M.A.股份公司 A container and a method for its manufacture
CN102951331A (en) * 2011-08-17 2013-03-06 王跃军 Folded paper-plastic composite bottle-shaped container
CN103625726A (en) * 2013-11-21 2014-03-12 中山市金德丰包装材料科技有限公司 Paper-plastic bottle body and processing technology thereof
CN107244473A (en) * 2017-05-12 2017-10-13 上海普丽盛包装股份有限公司 A kind of paper substrate hydraulic seal packing container
CN215156671U (en) * 2021-04-08 2021-12-14 佛山市菲玛斯日用品有限公司 Environment-friendly paper bottle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5088642A (en) * 1989-12-21 1992-02-18 Pkl Verpackungssysteme Gmbh Container for liquids and bulk materials
CN1671599A (en) * 2002-07-25 2005-09-21 建筑自动机械制造A.C.M.A.股份公司 A container and a method for its manufacture
CN102951331A (en) * 2011-08-17 2013-03-06 王跃军 Folded paper-plastic composite bottle-shaped container
CN103625726A (en) * 2013-11-21 2014-03-12 中山市金德丰包装材料科技有限公司 Paper-plastic bottle body and processing technology thereof
CN107244473A (en) * 2017-05-12 2017-10-13 上海普丽盛包装股份有限公司 A kind of paper substrate hydraulic seal packing container
CN215156671U (en) * 2021-04-08 2021-12-14 佛山市菲玛斯日用品有限公司 Environment-friendly paper bottle

Also Published As

Publication number Publication date
TW202406802A (en) 2024-02-16

Similar Documents

Publication Publication Date Title
JP7430632B2 (en) Sheet-like composite for producing dimensionally stable food and beverage containers, in particular with a roof area formed by a plurality of groove lines with a partially convex curvature
US10814595B2 (en) Container precursor with shaping coefficient, especially for a single dimensionally stable food or drink product container
US20190389184A1 (en) Sheet-like composite for producing dimensionally stable food product containers with a barrier layer comprising a barrier substrate layer and an inwards-pointing barrier material layer
WO2017202912A1 (en) Container precursor with shaping coefficient, especially for a single dimensionally stable food or drink product container
WO2018073183A1 (en) Container precursor, in particular for producing a dimensionally stable foodstuff container, having a sheetlike composite, a first and a second wall region
CN107954054B (en) Container precursor, in particular for producing dimensionally stable food containers
WO2020201564A1 (en) Sheetlike composite, in particular for the production of dimensionally stable foodstuff containers, having an outer polymer layer which is superimposed on a colour application
WO2023168694A1 (en) Blank for dimensionally stable foodstuff container with greater bending stiffness for bending in first composite direction than for bending in further composite direction
WO2023168695A1 (en) Dimensionally stable foodstuff container with folded planar composite, element other than the folded planar composite, first and second wall regions
WO2023168692A1 (en) Planar composite with grooves for dimensionally stable foodstuff containers with steep edges running at an angle to each other
WO2023168693A1 (en) Container element with inclined side walls for dimensionally stable foodstuff container
US11117689B2 (en) Method of producing a container precursor, especially for a single dimensionally stable foodstuff container, without folding over the container precursor
CN107848280A (en) Especially suitable for the flaky composite material of the container of dimensionally stable, there is the outer thermoplastic&#39;s sealant being applied on part surface, outer thermoplastic&#39;s sealant is especially suitable for sealing longitudinal seam
US20210245472A1 (en) Flat composite for producing dimensionally stable food containers, containing a polymer layer with a polyester and an isotropic modulus of elasticity
US11117341B2 (en) Method of producing a packaging enveloping container precursors, especially each for a single dimensionally stable foodstuff container, with folding over of the container precursor
WO2023217716A1 (en) Sheet-like composite for dimensionally stable food or drink product containers with an inner polymer layer comprising a metallocene polyethylene
WO2018041678A1 (en) Sheetlike composite for production of dimensionally stable food and drink product containers having a barrier layer of which the shinier surface faces inward
EP4275890A1 (en) Sheet-like composite for dimensionally stable food or drink product containers with an inner polymer layer comprising a blend of ldpe and pp
WO2023217717A1 (en) Sheet-like composite for dimensionally stable food or drink product containers with an inner partial sheet-like composite with a modulus of elasticity
WO2024126724A1 (en) Sheet-like composite for dimensionally stable food or drink product containers with a barrier layer with fibres and a ratio of tensile strengths
WO2024126725A1 (en) Container precursor of a dimensionally stable food or drink product container with a barrier layer with fibres and a ratio of tensile strengths
CN118056677A (en) Laminated packaging material, method of manufacturing and packaging container comprising laminated packaging material
CN118056676A (en) Laminated packaging material, method of manufacturing and packaging container comprising laminated packaging material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930332

Country of ref document: EP

Kind code of ref document: A1