WO2023167294A1 - Method for producing hollow microparticles using supercritical liquid - Google Patents

Method for producing hollow microparticles using supercritical liquid Download PDF

Info

Publication number
WO2023167294A1
WO2023167294A1 PCT/JP2023/007886 JP2023007886W WO2023167294A1 WO 2023167294 A1 WO2023167294 A1 WO 2023167294A1 JP 2023007886 W JP2023007886 W JP 2023007886W WO 2023167294 A1 WO2023167294 A1 WO 2023167294A1
Authority
WO
WIPO (PCT)
Prior art keywords
microparticles
organic solvent
resin
component
phase
Prior art date
Application number
PCT/JP2023/007886
Other languages
French (fr)
Japanese (ja)
Inventor
康智 清水
一石 福田
剛美 川崎
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Publication of WO2023167294A1 publication Critical patent/WO2023167294A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention relates to a method for producing fine hollow particles using a supercritical liquid.
  • Micro hollow particles are used in many fields such as agricultural chemicals, pharmaceuticals, fragrances, liquid crystals, adhesives, electronic material parts, and building materials. Particularly in recent years, fine hollow particles have been studied for the purpose of forming pores in polyurethane (urea) CMP (Chemical Mechanical Polishing) polishing pads used for wafer polishing. Such fine hollow particles are required to have excellent solvent resistance, heat resistance, and preferable particle size control. In particular, in the field of CMP polishing pads, in order to achieve a high polishing rate and flatness at the atomic level, monodisperse fine hollow particles with a relatively large particle diameter of about 20 to 50 ⁇ m are desired. There is Therefore, Patent Document 1 discloses a method for producing fine hollow particles made of melamine resin, which is a thermosetting resin with excellent heat resistance and solvent resistance.
  • melamine resin which is a thermosetting resin with excellent heat resistance and solvent resistance.
  • Patent Document 2 discloses a hollow microballoon for a CMP polishing pad, which is made of at least one resin selected from the group consisting of melamine resin, urea resin, and amide resin, and has an average particle size within a specific range.
  • Patent Document 3 discloses a technique for drying fine particles using a radically polymerizable monomer with supercritical carbon dioxide.
  • JP-A-7-41594 WO2021/201088 Japanese Patent Publication No. 2008-523192
  • Patent Document 1 Although the method of Patent Document 1 is excellent in heat resistance and solvent resistance, there is a problem from the viewpoint of controlling the particle size and its dispersibility.
  • Patent Document 3 discloses a method using supercritical carbon dioxide as a drying method, but the monomers used are only radically polymerizable monomers, and there is no mention of the object using supercritical carbon dioxide other than the above. Moreover, no effect is disclosed.
  • an object of the present invention is to provide a method for producing hollow microparticles easily and with high yield.
  • the present inventors have found that after manufacturing fine particles in which an organic solvent is enclosed inside, the organic solvent inside the fine hollow particles is removed with a supercritical liquid.
  • the present inventors have found that it is possible to produce hollow microparticles at a high yield and that the above problems can be solved, and have completed the present invention.
  • a first method for producing hollow microparticles is provided.
  • This manufacturing method is a method for manufacturing fine hollow particles.
  • the fine hollow particles have a resin film and a hollow portion.
  • the resin film contains at least one resin selected from the group consisting of melamine resins, urea resins, amide resins, and urethane (urea) resins.
  • the hollow portion is surrounded by a resin film.
  • This production method comprises preparing an oil-in-water (O/W) emulsion in which an oil phase containing an organic solvent is a dispersed phase and an aqueous phase is a continuous phase, to obtain microparticles in which the organic solvent is encapsulated.
  • O/W oil-in-water
  • a method of making a curable composition includes mixing hollow microparticles obtained by the production method according to the embodiment with a compound having an iso(thio)cyanate group.
  • a method of making a cured body is provided. This production method includes curing the curable composition obtained by the production method according to the embodiment.
  • a second method for producing hollow microparticles is provided. This manufacturing method is a method for manufacturing fine hollow particles having a resin film containing a melamine-based resin and a hollow portion surrounded by the resin film.
  • This production method comprises preparing an oil phase containing an organic solvent, preparing an aqueous phase containing a surfactant containing a maleic anhydride copolymer, mixing and stirring the oil phase and the aqueous phase, and Preparing an oil-in-water (O/W) emulsion in which the phase is the continuous phase and the oil phase is the dispersed phase; O/W) causing a condensation reaction of the melamine-formaldehyde prepolymer compound on the interface of the emulsion to obtain a microparticle dispersion containing microparticles containing a resin film and an organic solvent enclosed inside the resin film; Separating the microparticles from the microparticle dispersion and removing the organic solvent from the interior of the microparticles using supercritical carbon dioxide.
  • O/W oil-in-water
  • a method for producing fine hollow particles wherein the amount of the aqueous phase is 100 parts by mass or more and 500 parts by mass or less when the oil phase is 100 parts by mass.
  • hollow microparticles are provided.
  • the fine hollow particles have a resin film and a hollow portion.
  • the resin film contains at least one resin selected from the group consisting of melamine resins, urea resins, amide resins, and urethane (urea) resins.
  • the hollow portion is surrounded by a resin film.
  • These hollow microparticles are obtained by preparing an oil-in-water (O/W) emulsion in which the oil phase containing the organic solvent is the dispersed phase and the water phase is the continuous phase, and the microparticles encapsulating the organic solvent inside are obtained. After that, it is obtained by removing the organic solvent from the inside of the microparticles using a supercritical liquid.
  • a resin composition is provided. This resin composition contains the hollow microparticles according to the embodiment and a polyurethane resin.
  • a CMP polishing pad is provided. This CMP polishing pad contains the resin composition according to the embodiment.
  • the fine hollow particles of the present invention can be applied to various uses, for example, in many fields such as agricultural chemicals, medicines, cosmetic materials, liquid crystals, adhesives, electronic material parts, and building materials.
  • the fine hollow particles of the present invention can be applied to fields such as shoe soles, shoe insoles, heat insulating materials, sound insulating materials, and CMP polishing pads.
  • a first method for producing hollow microparticles is provided.
  • This manufacturing method is a method for manufacturing fine hollow particles.
  • the fine hollow particles have a resin film and a hollow portion.
  • the resin film contains at least one resin selected from the group consisting of melamine resins, urea resins, amide resins, and urethane (urea) resins.
  • the hollow portion is surrounded by a resin film.
  • This production method comprises preparing an oil-in-water (O/W) emulsion in which an oil phase containing an organic solvent is a dispersed phase and an aqueous phase is a continuous phase, to obtain microparticles in which the organic solvent is encapsulated. and removing the organic solvent from the interior of the microparticles using the supercritical fluid.
  • O/W oil-in-water
  • hollow microparticles having a resin film having relatively high hardness such as melamine resin, urea resin, amide resin, and urethane (urea) resin
  • a drying step is required to remove the organic solvent from the inside of the resin film. If the resin film has a dense structure and high hardness, it is difficult to remove the organic solvent inside it, and in the drying process using an oven or the like, cracks may occur in the resin film, the particles themselves may be broken, and the film may become powdery. only may remain. In fact, when performing thermal decomposition measurements on fine particles containing an organic solvent, the mass reduction may accelerate above the boiling point of the internal organic solvent.
  • a supercritical liquid is used for this drying step.
  • a supercritical fluid has a high permeability to a resin film and a high diffusion rate in the resin film.
  • the organic solvent inside the resin film is dissolved or dispersed in the permeating supercritical carbon dioxide, thereby improving the permeability to the resin film and being discharged out of the particles. It can be replaced by a supercritical fluid.
  • the supercritical liquid replaced inside the resin film changes to gas in the process of lowering the pressure and temperature to get out of the supercritical state. Therefore, it is considered that the use of a supercritical liquid makes it difficult for the resin film to be destroyed during the drying process, as compared with high-temperature drying using an oven or the like, so that hollow microparticles can be obtained at a high yield.
  • the fine hollow particles of the present invention are composed of a resin film made of at least one resin selected from the group consisting of melamine resin, urea resin, amide resin, and urethane (urea) resin.
  • the average particle size of the fine hollow particles is, for example, 1 to 100 ⁇ m.
  • Micro hollow particles are prepared by preparing an oil-in-water (O/W) emulsion (hereinafter also referred to as "O/W emulsion") in which an oil phase containing an organic solvent is a dispersed phase and a water phase is a continuous phase, After obtaining the microparticles in which the organic solvent is encapsulated, the organic solvent is removed from the inside of the microparticles using a supercritical liquid.
  • the melamine resin is a resin obtained by polycondensation of a polyfunctional amine whose main chain contains melamine and formaldehyde
  • the urea resin is a resin whose main chain is urea (including polyfunctional amine) and formaldehyde.
  • the amide resin is a resin having an amide bond in the main chain
  • the urethane (urea) resin is a resin obtained by polycondensation with an isocyanate group and a hydroxyl group and/or an amino group.
  • a supercritical liquid for example, at least one selected from the group consisting of carbon dioxide, ethane, ethylene, propane, oxygen and nitrogen is used. Carbon dioxide is preferably used as the supercritical liquid.
  • a supercritical liquid is a substance that has a density close to that of a liquid and a viscosity as low as that of a gas when in a supercritical state that exceeds the critical temperature and pressure, and is in an intermediate state between a liquid and a gas.
  • the supercritical temperature and supercritical pressure at which the above-mentioned carbon dioxide, nitrogen, ethane, ethylene, propane, and oxygen are in the supercritical state are carbon dioxide (31.1 degrees, 7.4 MPa), nitrogen (-147 degrees, 3.4 MPa), ethane (32 degrees, 4.9 MPa), ethylene (9.2 degrees, 5.0 MPa), propane (97 degrees, 4.2 MPa), oxygen (-118 degrees, 5.1 MPa ).
  • the present invention by using a supercritical liquid that has excellent solubility close to liquid and excellent diffusivity close to gas, it is highly soluble in resin and has a high diffusion rate in resin. It can be removed by replacing the organic solvent inside the microparticles.
  • the gas in a state in which the microparticles contain the supercritical liquid, the gas can be retained inside the microhollow particles by returning the supercritical state to the gas. It is speculated that it is possible to obtain fine hollow particles at a high rate.
  • the hollow microparticles of the present invention are resin films made of at least one resin selected from the group consisting of melamine resins, urea resins, amide resins, and urethane (urea) resins. Configured. Among them, the preferred resin in the present invention is melamine resin.
  • the preferred average particle size of the fine hollow particles of the present invention is 1 to 100 ⁇ m. Within this range, for example, when blended in a CMP polishing pad, excellent polishing properties can be exhibited. More preferably, the average particle size of the fine hollow particles is 5-80 ⁇ m, most preferably 10-50 ⁇ m.
  • An image analysis method can be used to measure the average particle size of hollow microparticles. Particle size can be easily measured using image analysis methods.
  • the average particle size is the average particle size of primary particles.
  • the average particle size can be measured by image analysis using, for example, a scanning electron microscope (SEM).
  • the bulk density of the hollow microparticles of the present invention is not particularly limited, it is preferably 0.01 to 0.5 g/cm 3 . Within this range, it can be suitably used for heat insulating materials and CMP polishing pads, for example.
  • the ash content of the hollow microparticles of the present invention is not particularly limited, it is preferably 0.5 parts by mass or less per 100 parts by mass of the hollow microparticles in the method described in the examples below. , more preferably 0.3 parts by mass or less, more preferably 0.1 parts by mass or less, and most preferably not measured. Within this range, it is possible to reduce wafer defects when used as a CMP polishing pad.
  • an O/W emulsion in which an oil phase containing an organic solvent is a dispersed phase and an aqueous phase is a continuous phase is prepared, and the organic solvent is contained inside the microparticles. It is a manufacturing method of obtaining encapsulated microparticles and removing the organic solvent from the inside of the microparticles using a supercritical liquid.
  • the method for forming a resin film in the O/W emulsion of the fine hollow particles can be subdivided into the first step: (a) an oil phase containing an organic solvent to which components constituting the resin film are added as necessary (hereinafter referred to as , step of preparing "component (a)"), step 2: step of preparing an aqueous phase (b) containing a surfactant (hereinafter also referred to as “component (b)”), step 3: A step of mixing and stirring the component (a) and the component (b) to prepare an O/W emulsion in which the aqueous phase is a continuous phase and the oil phase is a dispersed phase; A component constituting a resin film is added to the W emulsion, and a condensation reaction is allowed to proceed on the interface of the O/W emulsion to form a resin film to form microparticles, in which an organic solvent is encapsulated.
  • a step of obtaining a fine particle dispersion in which is dispersed a fifth step: separating fine particles having an organic solvent enclosed therein from the fine particle dispersion, a sixth step: from the inside of the fine particles, a supercritical liquid and removing the organic solvent solution to form fine hollow particles.
  • the fine hollow particles are composed of a resin film made of melamine resin, they are manufactured by the following steps.
  • the first step is to prepare (a) an oil phase containing an organic solvent, which will be the dispersed phase in the O/W emulsion.
  • an organic solvent which will be the dispersed phase in the O/W emulsion.
  • substances other than the organic solvent can be contained, but usually the oil phase is composed only of the organic solvent.
  • the second step is a step of preparing (b) an aqueous phase containing a surfactant, which will be the continuous phase in the O/W emulsion, and a step of adjusting the pH as necessary.
  • This step includes dissolving a surfactant, which will be described later, in water and adjusting the pH as necessary. Adjustment of pH, etc. may be prepared using a known method.
  • the amount of surfactant used in the present invention is preferably 0.1 to 10%, more preferably 1 to 10%, relative to the aqueous phase. Within this range, aggregation of droplets of the dispersed phase in the O/W emulsion can be avoided, and fine hollow particles can be easily obtained with high yield.
  • Third step In the third step, the (a) component obtained in the first step and the (b) component obtained in the second step are mixed and stirred, and the (a) component is the dispersed phase and the (b) component is continuous.
  • This is a step of preparing an O/W emulsion as a phase.
  • the method of mixing and stirring the components (a) and (b) to form an O/W emulsion takes into account the particle size of the hollow microparticles to be produced, and mixes and stirs them by a suitable known method. can be adjusted by Furthermore, temperature and pH can be adjusted in the process of preparing the O/W emulsion.
  • O/ A W emulsion method is preferably employed, and among these, a high-speed shearing method is preferred.
  • the rotation speed is preferably 500 to 20,000 rpm, more preferably 1,000 to 10,000 rpm.
  • the dispersing time is preferably 0.1 to 30 minutes, preferably 1 to 10 minutes.
  • the dispersion temperature is preferably 20-80°C.
  • the weight ratio of component (a) to component (b) is preferably 100 to 500 parts by mass of component (b), more preferably 100 parts by mass of component (a). is 150 to 300 parts by mass.
  • a melamine-formaldehyde prepolymer compound is added to the O/W emulsion, and a condensation reaction of the melamine-formaldehyde prepolymer compound occurs on the interface of the O/W emulsion to form a resin film. It is a step of forming fine particles in which an organic solvent is encapsulated in the liquid, and obtaining a fine particle dispersion liquid in which the formed fine particles are dispersed.
  • the amount of the melamine formaldehyde prepolymer compound to be used is not particularly limited, but it should be 20 to 100 parts by mass per 100 parts by mass of component (a) used in the first step in order to form fine particles well. is preferred.
  • melamine formaldehyde prepolymer compound a commercially available melamine formaldehyde prepolymer compound described below may be added as it is, or may be used by dissolving in water or an alkaline aqueous solution, or melamine and formaldehyde may be used according to a conventional method. It is also possible to use a melamine-formaldehyde prepolymer compound produced in an alkaline aqueous solution by the addition reaction of formaldehyde to melamine by heating in an alkaline range.
  • water or an alkaline aqueous solution is preferably used in the range of 0 to 500 parts by mass, more preferably in the range of 20 to 300 parts by mass.
  • the pH of the aqueous phase, which is the continuous phase, should be adjusted after adding the melamine-formaldehyde prepolymer compound.
  • the pH of the aqueous phase, which is the continuous phase is preferably less than 7, more preferably 3.5 to 6.5, most preferably 3.5 to 5.5. is preferred.
  • a preferable reaction temperature is preferably in the range of 40 to 90°C.
  • the reaction time is preferably in the range of 1 to 48 hours.
  • the fifth step is a step of separating microparticles having an organic solvent enclosed therein from the microparticle dispersion.
  • the separation method for separating the microparticles having an organic solvent enclosed therein from the microparticle dispersion is not particularly limited, and may be selected from general separation techniques. Specifically, filtration, centrifugation, and the like are used. .
  • the fine particles after separation are preferably pretreated before being subjected to supercritical fluid treatment.
  • the pretreatment includes hydrophilic organic solvent treatment. That is, it is preferable to bring the separated microparticles into contact with a hydrophilic organic solvent to remove water from the surfaces of the microparticles. As a result, the microparticles after separation and the supercritical liquid tend to become more compatible.
  • Hydrophilic organic solvents include at least one compound selected from the group consisting of ethanol, tert-butyl alcohol, acetone, acetonitrile, DMSO, DMF, and ethylene glycol. At least one compound selected from the group consisting of ethanol and tert-butyl alcohol is preferably used as the hydrophilic organic solvent.
  • the mass M1 of the fine particles, the mass M2 of the hydrophilic organic solvent, and the ratio M1/M2 are, for example, 0.1 or more and 5 or less.
  • the ratio M1/M2 is preferably 0.2 or more and 2 or less.
  • the contact time between the microparticles and the hydrophilic organic solvent is set to, for example, 1 minute or more and 20 minutes or less after ensuring sufficient contact.
  • This contact time is preferably 3 minutes or more and 10 minutes or less.
  • this pretreatment is performed by immersing the microparticles in a hydrophilic organic solvent for a predetermined period of time. After immersion, the microparticles are removed from the hydrophilic organic solvent by, for example, filtration. The removed microparticles may be subjected to a drying treatment such as freeze-drying.
  • the sixth step is a step of using a supercritical liquid to remove the internal oil phase from the microparticles obtained in the fifth step and having the organic solvent encapsulated therein, to obtain hollow microparticles.
  • a known technique can be used for removing the internal organic solvent with a supercritical fluid. For example, in the presence of the fine particles, the supercritical temperature and supercritical pressure of the supercritical liquid are set to the conditions above, and the internal organic It is preferable to replace the solvent with a supercritical liquid. After the substitution, the pressure is reduced and the temperature is returned to room temperature to obtain hollow microparticles.
  • the water can be efficiently removed by flowing a hydrophilic solvent together with the supercritical liquid, making a slurry with the hydrophilic solvent, or pretreating by decantation or filtration. It becomes possible to remove the oil phase.
  • the preferred supercritical liquid in the present invention is supercritical carbon dioxide, and preferred conditions for using supercritical carbon dioxide are 40° C. to 90° C. and 16 MPa to 40 MPa.
  • the pressure of the supercritical liquid is preferably 10 MPa or more and 40 MPa or less. When the pressure is within this range, the supercritical carbon dioxide penetrates more into the hollow fine particles, and the organic solvent contained in the particles is efficiently removed, which tends to increase the yield of fine hollow particles.
  • This pressure is more preferably 12 MPa or more and 30 MPa or less, and further preferably 14 MPa or more and 20 MPa or less.
  • the temperature inside the apparatus using the supercritical liquid is preferably 31.1° C. or higher and 60° C. or lower.
  • the temperature of the supercritical liquid is preferably 1 mL/min or more and 200 mL/min or less. When the flow rate is within this range, the yield of fine hollow particles tends to increase. This flow rate is more preferably 20 mL/min or more and 100 mL/min or less, and still more preferably 30 mL/min or more and 50 mL/min or less.
  • the contact time between the supercritical liquid and the microparticles is preferably 10 minutes or more and 720 minutes or less. When the contact time is within this range, the yield of fine hollow particles tends to increase. This contact time is more preferably 20 minutes or more and 120 minutes or less, and even more preferably 30 minutes or more and 55 minutes or less.
  • the organic solvent used for component (a) is not particularly limited, but an organic solvent having a boiling point of 90°C to 200°C is preferable. Within this range, it is preferable that the emulsion formation can be maintained even at the polymerization temperature, and that the organic solvent can be easily removed from the obtained microparticles.
  • boiling point 100°C to 180°C. Examples of these include the following.
  • hydrocarbon solvents examples include aliphatic hydrocarbons having 7 to 11 carbon atoms, alicyclic hydrocarbons such as cycloheptane and cyclooctane, butyl acetate, dibutyl ether, 1,2-dichloroethane, toluene, xylene, benzaldehyde, Chlorobenzene, dichlorobenzene and the like are used.
  • organic solvents may be used alone or as a mixed solvent of two or more.
  • organic solvents used in the present invention aliphatic hydrocarbons having 8 to 11 carbon atoms, cycloheptane, cyclooctane, toluene, xylene, and chlorobenzene are more preferred, and toluene, xylene, and chlorobenzene are most preferred.
  • the surfactant used for component (b) is not particularly limited, and two or more types may be mixed.
  • the surfactant of the present invention compounds described in International Publication No. WO2021/201088 can be used.
  • those having a carboxyl group as at least one hydrophilic group are preferable, and the carboxyl group may be generated by hydrolysis of a dicarboxylic acid anhydride. good.
  • maleic anhydride copolymers such as styrene-maleic anhydride copolymer, ethylene-maleic anhydride copolymer and isobutylene-maleic anhydride copolymer can be preferably used, and more preferably styrene-maleic anhydride copolymer.
  • Acid copolymers can be preferably used.
  • the maleic anhydride copolymer described above preferably has a weight average molecular weight of about 30,000 to 500,000, most preferably about 100,000 to 500,000. Within this range, a stable emulsion and resin film can be formed.
  • a weight average molecular weight is a standard polystyrene conversion value measured by a gel permeation chromatography (GPC).
  • the melamine-formaldehyde prepolymer compound that can be used in the present invention can be produced from melamine and formaldehyde by a conventional method. For example, it can be produced by adding formaldehyde to melamine by heating in an alkaline region in an alkaline aqueous solution containing melamine and formaldehyde.
  • commercially available melamine formaldehyde prepolymer compounds can be used as appropriate.
  • Beckamin APM Beckamin M-3, Beckamin M-3 (60), Beckamin MA-S, Beckamin J-101, Beckamin J-101LF (manufactured by DIC Corporation), Nikaresin S-176, Nikaresin S-260 ( Nippon Carbide Co., Ltd.), Milben Resin SM-800 (Showa Polymer Co., Ltd.), and the like.
  • the mechanism of the formation of the hollow microparticles is as follows: droplets of (a) an oil phase containing an organic solvent are dispersed in an aqueous phase, and the hydrophilic groups (e.g., carboxyl groups) of the surfactant coordinated on the droplet interface Methylolated melamine contained in the melamine-formaldehyde prepolymer compound forms an acid amide bond, whereby the droplets are surrounded by methylolated melamine, and in this surrounded state, adjacent methylolated melamine undergoes dehydration condensation between methylol groups. It is believed that they react to form a resin film made of melamine-based resin.
  • hydrophilic groups e.g., carboxyl groups
  • the ratio of methylolation of melamine (molar ratio of formaldehyde to melamine) is related to the density of the resin film, and the higher the ratio of methylolation, the higher the crosslink density and the more dense the resin film. Therefore, it is preferable to use a methylolated melamine within the range described below as the methylolated melamine.
  • the molar ratio of melamine and formaldehyde can be adjusted from monomethylolated melamine (melamine/formaldehyde molar ratio: 1/1) to hexamethylolated melamine (molar ratio of melamine/formaldehyde: 1/6).
  • Trimethylolated melamine (1/3 of the same) to pentamethylolated melamine (1/5 of the same) are suitable from both aspects of enveloping properties against droplets and condensation reactivity (crosslinking), especially tetramethylolated melamine (1/5 1/4) is preferred.
  • the hollow microparticles of the present invention are composed of a resin film made of urea resin, amide resin, and urethane (urea) resin
  • an O/W emulsion is prepared to obtain microparticles in which an organic solvent is encapsulated inside the microparticles. It may be produced using a known method for obtaining particles.
  • urea resin it can be produced by the same production method as for the melamine resin described above, and is produced in the same manner by using a urea formaldehyde prepolymer instead of the melamine formaldehyde prepolymer compound in the fourth step of the melamine resin described above. can do
  • the urea-formaldehyde prepolymer compound is a urea-formaldehyde initial condensate of urea and formaldehyde, and can be produced by a conventional method.
  • Urea-formaldehyde precondensates of urea and formaldehyde include, for example, methylol urea.
  • As the urea-formaldehyde prepolymer compound commercially available ones can be used as appropriate. Examples thereof include 8HSP (manufactured by Showa High Polymer Co., Ltd.).
  • the fine hollow particles are composed of a resin film made of an amide resin, they are manufactured by the following steps.
  • the dispersed phase in the O/W emulsion is (a2) an oil phase containing a polyfunctional carboxylic acid compound having at least two carboxyl groups and an organic solvent (hereinafter also referred to as "(a2) component"). is a step of preparing
  • Component (a2) in this step is a step of dissolving a polyfunctional carboxylic acid compound having at least two carboxyl groups in an organic solvent exemplified in component (a) above to form an oil phase, It can be dissolved by a known method to form a homogeneous solution.
  • the preferred amount of the polyfunctional carboxylic acid compound having at least two carboxyl groups is 0.1 to 50 parts by weight, preferably 0.5 to 20 parts by weight, more preferably 1 to 50 parts by weight per 100 parts by weight of the organic solvent. 10 parts by mass.
  • a polyfunctional amine having at least two amino groups used in the fourth step described later, relative to the number of moles (n1) of carboxylic acid groups contained in the polyfunctional carboxylic acid compound having at least two carboxyl groups,
  • the range is preferably 0.5 ⁇ (n1)/(n2) ⁇ 2.
  • a catalyst which will be described later, may be added to the component (a2) for the purpose of promoting the interfacial polymerization reaction.
  • the second step is a step of preparing an aqueous phase (b2) containing a surfactant (hereinafter also referred to as "component (b2)"), which will be the continuous phase in the O/W emulsion.
  • component (b2) a surfactant
  • This step is a step of dissolving a surfactant, which will be described later, in water to form an aqueous phase.
  • the amount of surfactant used in the present invention is preferably 0.01 to 20%, more preferably 0.1 to 10%, relative to the aqueous phase. Within this range, aggregation of droplets of the dispersed phase in the O/W emulsion is avoided, and fine particles having a uniform average particle size are easily obtained.
  • a catalyst which will be described later, may be added to the component (b2) for the purpose of promoting the interfacial polymerization reaction.
  • Third step In the third step, the (a2) component obtained in the first step and the (b2) component obtained in the second step are mixed and stirred, and the (b2) component is a continuous phase and the (a2) component is dispersed. This is a step of preparing an O/W emulsion as a phase.
  • the method of mixing and stirring the components (a2) and (b2) to form an O/W emulsion takes into account the particle size of the microparticles to be produced, and mixes and stirs them by a suitable known method. It can be prepared by
  • O/ A W emulsion method is preferably employed, and among these, a high-speed shearing method is preferred.
  • the rotation speed is preferably 500 to 20,000 rpm, more preferably 1,000 to 10,000 rpm.
  • the dispersing time is preferably 0.1 to 60 minutes, preferably 0.5 to 30 minutes.
  • the dispersion temperature is preferably 10-40°C.
  • the weight ratio of component (a2) to component (b2) is preferably 100 to 1000 parts by mass of component (b2), more preferably 100 parts by mass of component (a2). is preferably 150 to 500 parts by mass. Within this range, a good emulsion can be obtained.
  • a polyfunctional amine compound having at least two amino groups is added to the O/W emulsion, interfacially polymerized on the interface of the O/W emulsion to form a resin film, and fine particles and This is a step of obtaining a fine particle dispersion in which the fine particles are dispersed.
  • the amount of the polyfunctional amine compound having at least two amino groups is as described above.
  • a polyfunctional amine compound having at least two amino groups when adding a polyfunctional amine compound having at least two amino groups to an O/W emulsion, it may be added as it is, or it may be dissolved in water in advance before use.
  • water When dissolved in water in advance, it is preferable to use water in the range of 50 to 10,000 parts by mass when the total amount of the polyfunctional amine compound having at least two amino groups is 100 parts by mass.
  • the polymerization temperature is not particularly limited as long as it does not break the O/W emulsion, and the reaction is preferably carried out in the range of 5 to 70°C.
  • the polymerization time is not particularly limited as long as fine particles can be formed, and is usually selected from the range of 0.5 to 24 hours.
  • the fifth and sixth steps are the same steps as in the case where the fine hollow particles are composed of a resin film made of a melamine-based resin.
  • polyfunctional carboxylic acid compound having at least two carboxyl groups in the component (a2) and the polyfunctional amine having at least two amino groups in the additive phase include International Publication No. WO2021/201088.
  • the polyfunctional carboxylic acid compound having at least two carboxyl groups is preferably an aromatic dicarboxylic acid dichloride, most preferably isophthalic acid dichloride and terephthalic acid dichloride.
  • surfactants that can be used as the component (b2) it is preferable to use a sodium acrylate-acrylate copolymer.
  • the fine hollow particles are composed of a resin film made of urethane resin, they are manufactured by the following steps.
  • the dispersed phase in the O/W emulsion is (a3) an oil phase containing a polyfunctional isocyanate compound having at least two isocyanate groups and an organic solvent (hereinafter also referred to as "(a3) component"). is a step of preparing
  • the (a3) component in this step is a step of dissolving an isocyanate compound having at least two isocyanate groups in an organic solvent exemplified in the above-described component (a) to form an oil phase, which is a known method. It is good to make a uniform solution by dissolving with .
  • the preferred amount of the polyfunctional isocyanate compound having at least two isocyanate groups is 0.1 to 50 parts by weight, preferably 0.5 to 20 parts by weight, more preferably 1 to 10 parts by weight, per 100 parts by weight of the organic solvent. part by mass.
  • the polyol, polyamine, and hydroxyl group and amino group used in the later-described fourth step have both
  • the range is preferably 0.5 ⁇ (n1)/(n2) ⁇ 2.
  • a catalyst which will be described later, may be added to the component (a3) for the purpose of promoting the interfacial polymerization reaction.
  • the second step is a step of preparing an aqueous phase (b3) containing a surfactant and water (hereinafter also referred to as "component (b3)"), which will be the continuous phase in the O/W emulsion.
  • component (b3) a surfactant and water
  • the third step is the same step as in the case where the fine hollow particles are composed of a resin film made of an amide resin.
  • the fourth step at least one selected from polyols, polyamines, and active hydrogen-containing compounds having both a hydroxyl group and an amino group is added to the O/W emulsion, and interfacial polymerization is performed on the interface of the O/W emulsion.
  • This is a step of obtaining a fine particle dispersion liquid in which the fine particles are dispersed by forming a resin film and forming fine particles.
  • the amount of at least one selected from polyols, polyamines, and active hydrogen-containing compounds having both a hydroxyl group and an amino group is 0.001 to 100 parts by mass with respect to 100 parts by mass of the organic solvent used in the first step. parts, preferably 0.01 to 80 parts by mass, more preferably 0.01 to 50 parts by mass.
  • polyols, polyamines, and active hydrogen-containing compounds having both hydroxyl and amino groups are at least partially soluble in water and have a higher affinity for hydrophilic phases than for hydrophobic phases.
  • compounds generally having a solubility of at least 1 g/l in a hydrophilic solvent such as water at room temperature (25° C.), preferably hydrophilic Water-soluble compounds having a solubility of 20 g/l or more in the solvent are mentioned.
  • polyols, polyamines, and active hydrogen-containing compounds having both hydroxyl groups and amino groups are added to the O/W emulsion, they may be added as they are, or they may be dissolved in water in advance before use.
  • the polymerization temperature is not particularly limited as long as it does not break the O/W emulsion, and the reaction is preferably carried out in the range of 5 to 70°C.
  • the polymerization time is not particularly limited as long as fine particles can be formed, and is usually selected from the range of 0.5 to 24 hours.
  • the fifth and sixth steps are the same steps as in the case where the fine hollow particles are composed of a resin film made of a melamine-based resin.
  • polyfunctional isocyanate compound having at least two isocyanate groups in the component (a3) polyols, polyamines, and active hydrogen-containing compounds having both hydroxyl groups and amino groups
  • component (a3) polyols, polyamines, and active hydrogen-containing compounds having both hydroxyl groups and amino groups
  • active hydrogen-containing compounds having both hydroxyl groups and amino groups include International Publication No. WO2021/ 065625 can be used.
  • polyfunctional isocyanate compounds include isophorone diisocyanate, 1,3-bis(isocyanatomethyl)cyclohexane, and (bicyclo[2.2.1]) from the viewpoint of controlling the strength and reactivity of the formed microparticles.
  • alicyclic isocyanate selected from heptane-2,5(2,6)-diyl)bismethylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, xyl
  • Polyfunctional isocyanates are suitable as isocyanates and adducts with trifunctional or higher polyols.
  • polyols, polyamines, and active hydrogen-containing compounds having both a hydroxyl group and an amino group examples include ethylene glycol, diethylene glycol, propylene glycol, neopentyl glycol, 1,2-butanediol, 1,3-butanediol, 2, Bifunctional polyols such as 3-butanediol and 1,4-butanediol; Trifunctional polyols such as glycerin, trimethylolethane and trimethylolpropane; Tetrafunctional polyols such as pentaerythritol, erythritol, diglycerol, diglycerin and ditrimethylolpropane Polyol; pentafunctional polyol such as arabitol; hexafunctional polyol such as dulcitol, sorbitol, mannitol, dipentaerythritol or triglycerol; cyclic dextrin; ethylenediamine
  • surfactant contained in the component (b3) it is preferable to use polyvinyl alcohol or anion-modified polyvinyl alcohol.
  • any appropriate amidation catalyst can be used without any limitation when the fine hollow particles are composed of a resin film made of an amide resin.
  • Specific examples include boron and sodium dihydrogen phosphate.
  • any suitable urethanization catalyst can be used without any limitation when the fine hollow particles are composed of a resin film made of urethane (urea) resin or when synthesizing a urethane prepolymer.
  • Specific examples include triethylenediamine, hexamethylenetetramine, N,N-dimethyloctylamine, N,N,N',N'-tetramethyl-1,6-diaminohexane, 4,4'-trimethylenebis ( 1-methylpiperidine), 1,8-diazabicyclo-(5,4,0)-7-undecene, dimethyltin dichloride, dimethyltin bis(isooctylthioglycolate), dibutyltin dichloride, dibutyltin dilaurate, dibutyltin maleate, Dibutyltin Maleate Polymer, Dibutyltin Diricinolate, Dibutyltin Bis (Dodecyl Mercaptide), Di
  • additives may be added to the aqueous phase for the purpose of further stabilizing the emulsion within a range that does not impair the effects of the present invention.
  • examples of such additives include water-soluble salts such as sodium carbonate, calcium carbonate, potassium carbonate, sodium phosphate, potassium phosphate, calcium phosphate, sodium chloride and potassium chloride. These additives can be used alone or in combination of two or more.
  • the fine hollow particles of the present invention can be applied to various uses, for example, in many fields such as agricultural chemicals, pharmaceuticals, cosmetic materials, liquid crystals, adhesives, electronic material parts, and building materials.
  • the fine hollow particles of the present invention can be suitably used for applications such as shoe soles, shoe insoles, heat insulating materials, sound insulating materials, and CMP polishing pads.
  • CMP polishing pad application known methods can be employed without limitation. By cutting and polishing the surface, a CMP polishing pad having pores on the polishing surface of the resin can be obtained.
  • the resin is not particularly limited, but in the present invention, the polyurethane resin described later is particularly suitable.
  • the hollow microparticles of the present invention have good compatibility with polyurethane resins, when used in a CMP polishing pad, the hollow microparticles are less likely to fall off, making it possible to improve scratch resistance. .
  • the density of the CMP polishing pad of the present invention is preferably 0.40 to 1.10 g/cm 3 , more preferably 0.50 to 1.05 g/cm 3 .
  • a hardened foam obtained by combining the fine hollow particles of the present invention with a known foaming method can also be used as a CMP polishing pad.
  • a known foaming method for example, a foaming agent foaming method in which water is added, in the case of a polyurethane resin, carbon dioxide and an amino group are generated after the reaction between water and an iso(thio)cyanate group. The carbon dioxide serves as a foaming gas, and the amino group further reacts with an iso(thio)cyanate group to form a urea bond and/or a thiourea bond.
  • the CMP polishing pad of the present invention can have any suitable hardness.
  • the hardness in the present invention can be measured according to the Shore method, for example, according to JIS standard (hardness test) K6253.
  • the Shore hardness of the CMP polishing pad is preferably 30A to 80D, more preferably 40A to 70D (where "A” is Shore “A” scale, and “D” is Shore “ D” indicates hardness on the scale). That is, for example, 30A to 80D means that the Shore A hardness is 30 or more and the Shore D hardness is 70 or less.
  • the hardness can be arbitrarily set by changing the blending composition and blending amount as necessary.
  • the CMP polishing pad of the present invention preferably has a compressibility within the following range in order to develop the flatness of the object to be polished.
  • Compression rate can be measured by a method conforming to JIS L 1096.
  • the compressibility is preferably 0.5% to 50%. Within the above range, it is possible to exhibit excellent flatness of the object to be polished.
  • the abrasion resistance of the CMP polishing pad of the present invention is preferably 60 mg or less, more preferably 50 mg or less in the Taber abrasion test. By reducing the amount of Taber wear, it is possible to exhibit excellent wear resistance when used as a CMP polishing pad.
  • the aspect of the CMP polishing pad of the present invention is not particularly limited, and for example, a groove structure may be formed on its surface.
  • the groove structure of the CMP polishing pad preferably has a shape that retains and renews the slurry. , polygonal prisms, cylinders, spiral grooves, eccentric circular grooves, radial grooves, and combinations of these grooves.
  • the method for producing the groove structure of the CMP polishing pad is not particularly limited.
  • a method of pouring the above-described compound into a mold having a predetermined groove structure and curing it, or a method of creating a groove structure using the obtained resin for example, a tool of a predetermined size
  • a method of mechanical cutting using a jig such as, a method of manufacturing by pressing a resin with a press plate having a predetermined surface shape, a method of manufacturing using photolithography, a method of manufacturing using a printing method, carbonic acid
  • Examples include a production method using laser light such as a gas laser.
  • the CMP polishing pad of the present invention may be composed of a plurality of layers.
  • the cured product of the present invention may be used in at least one of the layers.
  • a polishing layer also referred to as a first layer
  • a polishing layer having a polishing surface that contacts an object to be polished during polishing and a surface of the first layer that faces the polishing surface
  • a two-layer structure of the first layer and the base layer also referred to as the second layer
  • the characteristics of the CMP polishing pad can be adjusted by making the second layer and the first layer different in hardness and elastic modulus.
  • the underlayer preferably has a lower hardness than the polishing layer.
  • the polyurethane resin in the CMP polishing pad may be prepared by a known method without particular limitation as long as the medium-sized fine particles are dispersed in the polyurethane resin. and (d) a compound having two or more isocyanate groups and curable active hydrogen groups, such as hydroxyl groups, thiol groups, and amino groups (hereinafter also referred to as "(d) component" ), and a method of uniformly mixing and dispersing the hollow microparticles of the present invention and, if necessary, other ingredients to produce a curable composition, and then curing the curable composition.
  • the method for producing the curable composition is not particularly limited, but a mixture is prepared by mixing the hollow microparticles of the present invention and a compound having an iso(thio)cyanate group, and two active hydrogen groups are added to the mixture. A method of adding a compound having one or more is mentioned. Then, the cured product of the present invention can be obtained by curing the curable composition.
  • the curing method is not particularly limited, and a known method may be adopted.
  • a known method may be adopted.
  • the conditions described in International Publication No. WO2015/068798, International Publication No. WO2016/143910, and WO2018-092826 can be adopted.
  • a one-pot method, a dry method such as a prepolymer method, a wet method using a solvent, or the like can be used.
  • the dry method is preferably employed.
  • the amount of the hollow microparticles of the present invention to be added to the polyurethane resin is 0.1 to 20 parts by mass of the hollow microparticles of the present invention per 100 parts by mass of components (c) and (d) combined. is preferable, 0.2 to 10 parts by mass is more preferable, and 0.5 to 8 parts by mass is even more preferable. By setting the content within this range, it is possible to exhibit excellent polishing properties.
  • polyurethane resin is a generic term for polyurethane resin, polyurea resin, and polyurethane urea resin. Further, the polyurethane resin of the present invention includes polythiourethane resin and polythiourethane resin.
  • ⁇ (c) polyfunctional isocyanate compound a known compound can be used as the component (c), but a compound (d1) having two isocyanate groups and curable active hydrogen groups in one molecule (hereinafter referred to as " (d1) component”) and (c1) a bifunctional iso(thio)cyanate group-containing compound having two iso(thio)cyanate groups in the molecule (hereinafter referred to as “(c1) component” or “bifunctional A urethane prepolymer having iso(thio)cyanate groups at both ends of the molecule obtained by reacting with a compound containing an iso(thio)cyanate group) is suitable.
  • (d1) component a compound having two isocyanate groups and curable active hydrogen groups in one molecule
  • (c1) component a bifunctional iso(thio)cyanate group-containing compound having two iso(thio)cyanate groups in the molecule
  • (c1) component a bifunctional iso(thio)cyanate group-containing compound having two
  • the iso(thio)cyanate group refers to an isocyanate group or an isothiocyanate group. Therefore, having two iso(thio)cyanate groups in the molecule means having two isocyanate groups, having two isothiocyanate groups, or having one isocyanate group and one isothiocyanate group. refers to any of
  • (c) components can be used without any limitation as long as they contain iso(thio)cyanate groups at both ends of the molecule, and may be used alone or in combination of two or more.
  • the component (c) or the component (c1), which is the raw material for the urethane prepolymer includes, for example, the polymerizable monomers described in International Publication No. 2019/198675.
  • At least one (d1) component having a number average molecular weight of 300 to 1500 is used. It is preferred to produce the urethane prepolymer.
  • the (d1) component with a number average molecular weight of 300 to 1,500 can be used in combination of different types and different molecular weights. At that time, the components (d1) may be combined so that the total number average molecular weight of the component (d1) is 300 to 1,500.
  • the component (d1) having a number average molecular weight of 300 to 1,500 and the component (d1) having a number average molecular weight of 90 can also be used in combination with ⁇ 300 (d1) components.
  • the molecular weight of 90 to 300 Component (d1) is preferably 0 to 50 parts by mass, more preferably 5 to 40 parts by mass, and most preferably 5 to 30 parts by mass.
  • component (c) must have isocyanate groups and/or isothiocyanate groups at both ends of the molecule. Therefore, component (c) consists of the total number of moles of isocyanate groups and/or isothiocyanate groups in component (c) (n5), and the total number of moles of hydroxyl groups, thiol groups, and amino groups in component (d) (n6). is preferably manufactured within the range of 1 ⁇ (n5)/(n6) ⁇ 2.3.
  • the number of moles (n5) of the isocyanate groups and/or isothiocyanate groups is, of course, the total number of moles of the isocyanate groups and/or isothiocyanate groups of component (c).
  • the number of moles (n6) of hydroxyl groups, thiol groups and amino groups of two or more types of component (d1) is, of course, the total number of moles of all hydroxyl groups, thiol groups and amino groups.
  • component (d1) those described in the explanation of the component (d) below can be used, and the preferred component (d1) is a polyester polyol, a polyether polyol, a polycarbonate polyol, or the like. Among them, component (d1) consisting of polyoxytetramethylene glycol, polypropylene glycol, polyethylene glycol, diethylene glycol and the like is most preferred.
  • the iso(thio)cyanate equivalent (total amount of isocyanate equivalents and/or isothiocyanate equivalents) of component (c) is determined by quantifying the isocyanate groups and/or isothiocyanate groups possessed by component (c) in accordance with JIS K 7301. can be obtained by The isocyanate group and/or isothiocyanate group can be quantified by the following back titration method. First, the obtained component (c) is dissolved in a dry solvent.
  • di-n-butylamine which is clearly in excess of the amount of isocyanate groups and/or isothiocyanate groups possessed by component (c) and has a known concentration, is added to the dry solvent, and (c ) reacting all isocyanate groups and/or isothiocyanate groups of the component with di-n-butylamine.
  • the unconsumed (did not participate in the reaction) di-n-butylamine is then titrated with acid to determine the amount of di-n-butylamine consumed. Since the consumed di-n-butylamine and the isocyanate groups and/or isothiocyanate groups of component (c) are the same, the iso(thio)cyanate equivalent can be determined.
  • component (c) is a straight-chain urethane prepolymer having isocyanate groups and/or isothiocyanate groups at both ends, the number average molecular weight of component (c) is the iso(thio)cyanate equivalent of 2 be doubled. The molecular weight of this component (c) tends to match the value measured by gel permeation chromatography (GPC).
  • the iso(thio)cyanate equivalent of component (c) is not particularly limited, but the iso(thio)cyanate equivalent in the present invention is preferably 300 to 2000, more preferably 350 to 1500, and 400 ⁇ 1000 is most preferred.
  • the reason for this is considered as follows. That is, when the component (c) having a certain molecular weight reacts with the component (d) to form a cured product, the working sites of the molecules including the side chains increase and the movement of the molecules themselves increases. It is considered that recovery from deformation (elastic recovery; low hysterics) is facilitated.
  • component (c) facilitates the dispersion of the cross-linking points in the cured product, and makes them exist randomly and uniformly, thereby exhibiting stable performance.
  • the resulting curable composition is excellent in handleability, making it easier to control during production and improving moldability.
  • a polishing pad having excellent moldability can be produced.
  • the method for producing the urethane prepolymer used in the present invention is not particularly limited, and the component (c1) and the component (d1) are reacted by a known method to form an isocyanate group and/or an isothiocyanate group at the end of the molecule.
  • the component (c) it can be produced by heating or adding a urethanization catalyst as necessary.
  • Component (d) can be used without limitation as long as it is a compound having at least two groups selected from the group consisting of hydroxyl groups, thiol groups and amino groups in one molecule. Of course, compounds having any two or all of hydroxyl, thiol and amino groups are also selected. In addition, as described above, a compound having two curable active hydrogen groups and an isocyanate group in one molecule corresponds to the component (d1).
  • a compound (da) having two or more amino groups hereinafter also referred to as “(da) component”
  • db a compound having 3 or more hydroxyl groups and/or thiol groups
  • a compound having n or more hydroxyl groups and/or thiol groups means that the total number of hydroxyl groups and thiol groups in the compound is n or more.
  • a compound having no hydroxyl group, a compound having a thiol group but no hydroxyl group, or a compound having both a hydroxyl group and a thiol group may be used.
  • the (db) component is a compound having 5 or more hydroxyl groups and/or thiol groups.
  • the number of moles of hydroxyl groups and/or thiol groups per mass of component (db) is preferably 0.5 mmol/g to 35 mmol/g, more preferably 0.8 mmol/g to 20 mmol/g.
  • the component (da) can be used without limitation as long as it is a compound having two or more primary and/or secondary amino groups in one molecule.
  • the compounds having two or more amino groups are roughly classified into aliphatic amines, alicyclic amines, aromatic amines, and polyrotaxanes having an amino group polymerizable with an isocyanate group.
  • Aliphatic amine; component (da) Bifunctional amines such as ethylenediamine, hexamethylenediamine, nonamethylenediamine, undecanemethylenediamine, dodecamethylenediamine, metaxylenediamine, 1,3-propanediamine, and putrescine (constituting the urethane prepolymer) corresponds to the (d1) component).
  • Polyfunctional amines such as polyamines such as diethylenetriamine.
  • Alicyclic amine (da) component Bifunctional amines such as isophoronediamine and cyclohexyldiamine (corresponding to component (d1) constituting the urethane prepolymer).
  • component Bifunctional amines such as isophoronediamine and cyclohexyldiamine (corresponding to component (d1) constituting the urethane prepolymer).
  • aromatic amine (da) component 4,4'-methylenebis(o-chloroaniline) (MOCA), 2,6-dichloro-p-phenylenediamine, 4,4'-methylenebis(2,3-dichloroaniline), 4,4′-methylenebis(2-ethyl-6-methylaniline), 3,5-bis(methylthio)-2,4-toluenediamine, 3,5-bis(methylthio)-2,6-toluenediamine, 3 ,5-diethyltoluene-2,4-diamine, 3,5-diethyltoluene-2,6-diamine, trimethylene glycol-di-p-aminobenzoate, polytetramethylene glycol-di-p-aminobenzoate, 4, 4'-diamino-3,3',5,5'-tetraethyldiphenylmethane, 4,4'-diamino-3,3'-diisopropyl-5
  • Multifunctional amines such as 1,3,5-benzenetriamine and melamine.
  • polyrotaxane having an amino group used in the present invention is not particularly limited.
  • (da) components used in the present invention preferred are 4,4'-methylenebis(o-chloroaniline) (MOCA), 4,4'-diamino-3,3'-diethyl-5,5' -dimethyldiphenylmethane, 3,5-diethyltoluene-2,4-diamine, 3,5-diethyltoluene-2,6-diamine, 3,5-bis(methylthio)-2,4-toluenediamine, 3,5- bis(methylthio)-2,6-toluenediamine, trimethylene glycol-di-p-aminobenzoate.
  • MOCA 4,4'-methylenebis(o-chloroaniline)
  • MOCA 4,4'-diamino-3,3'-diethyl-5,5' -dimethyldiphenylmethane
  • 3,5-diethyltoluene-2,4-diamine 3,5-diethyltoluene-2,6-d
  • Compounds having a hydroxyl group and/or a thiol group among the component (d) can be broadly classified into aliphatic alcohols, alicyclic alcohols, aromatic alcohols, polyester polyols, polyether polyols, polycaprolactone polyols, and polycarbonates.
  • ((d) compound having two or more hydroxyl groups; component (d)) Aliphatic alcohol; component (d) ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butylene glycol, 1,5-dihydroxypentane, 1,6-dihydroxyhexane, 1,7-dihydroxyheptane, 1,8-dihydroxyoctane , 1,9-dihydroxynonane, 1,10-dihydroxydecane, 1,11-dihydroxyundecane, 1,12-dihydroxydodecane, neopentyl glycol, glyceryl monooleate, monoelaidin, polyethylene glycol, 3-methyl-1, Bifunctional polyols such as 5-dihydroxypentane, dihydroxyneopentyl, 2-ethyl-1,2-dihydroxyhexane, 2-methyl-1,3-dihydroxypropane (corresponding to component (d1) constituting the urethane prepolymer
  • Glycerin trimethylolethane, trimethylolpropane, ditrimethylolpropane, trimethylolpropane tripolyoxyethylene ether (for example, TMP-30, TMP-60, TMP-90, etc. of Nippon Nyukazai Co., Ltd.), butanetriol, 1,2- Methyl glucoside, pentaerythritol, dipentaerythritol, tripentaerythritol, sorbitol, erythritol, threitol, ribitol, arabinitol, xylitol, allitol, mannitol, dolcitol, iditol, glycol, inositol, hexanetriol, triglycerol, diglycerol, triethylene Polyfunctional polyols such as glycol (corresponding to the (db) component).
  • Alicyclic alcohol Component (d) Hydrogenated bisphenol A, cyclobutanediol, cyclopentanediol, cyclohexanediol, cycloheptanediol, cyclooctanediol, cyclohexanedimethanol, hydroxypropylcyclohexanol, tricyclo[5,2,1,0 2,6 ]decane-dimethanol, bicyclo[4,3,0]-nonanediol, dicyclohexanediol, tricyclo[5,3,1,13,9]dodecanediol, bicyclo[4,3,0]nonanediol methanol, tricyclo[5,3,1,1 3,9 ]dodecan-diethanol, hydroxypropyltricyclo[5,3,1,1 3,9 ]dodecanol, spiro[3,4]octanediol, but
  • Polyfunctional polyols such as tris(2-hydroxyethyl) isocyanurate, cyclohexanetriol, sucrose, maltitol and lactitol (corresponding to the above (db) component).
  • Aromatic alcohol component (d) dihydroxynaphthalene, dihydroxybenzene, bisphenol A, bisphenol F, xylylene glycol, tetrabromobisphenol A, bis(4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)ethane , 1,2-bis(4-hydroxyphenyl)ethane, bis(4-hydroxyphenyl)phenylmethane, bis(4-hydroxyphenyl)diphenylmethane, bis(4-hydroxyphenyl)-1-naphthylmethane, 1,1- Bis(4-hydroxyphenyl)-1-phenylethane, 2-(4-hydroxyphenyl)-2-(3-hydroxyphenyl)propane, 2,2-bis(4-hydroxyphenyl)butane, 1,1-bis (4-hydroxyphenyl)butane, 2,2-bis(4-hydroxyphenyl)-3-methylbutane, 2,2-bis(4-hydroxyphenyl)pentane
  • Polyfunctional polyols such as trihydroxynaphthalene, tetrahydroxynaphthalene, benzenetriol, biphenyltetraol, pyrogallol, (hydroxynaphthyl)pyrogallol, and trihydroxyphenanthrene (corresponding to the (db) component).
  • Polyester polyol; component (d) examples include compounds obtained by a condensation reaction between a polyol and a compound having multiple carboxylic acids. Among them, the number average molecular weight is preferably from 400 to 2,000, more preferably from 500 to 1,500, and most preferably from 600 to 1,200. Those having hydroxyl groups only at both ends of the molecule (two in the molecule) correspond to the (d1) component constituting the urethane prepolymer, and those having three or more hydroxyl groups in the molecule are the above (db ) corresponds to the component.
  • the polyols include ethylene glycol, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 3,3′-dimethylolheptane, 1,4-cyclohexanedimethanol, neopentyl glycol, 3,3-bis(hydroxymethyl)heptane, diethylene glycol, dipropylene glycol, glycerin, trimethylolpropane and the like, which are Even if it uses individually, it does not matter even if it mixes and uses two or more types.
  • Examples of compounds having a plurality of carboxylic acids include succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, cyclopentanedicarboxylic acid, cyclohexanedicarboxylic acid, orthophthalic acid, isophthalic acid, terephthalic acid, and naphthalenedicarboxylic acid. and the like, and these may be used alone or in combination of two or more.
  • polyester polyols are commercially available as reagents or industrially.
  • Examples of commercially available products include the "Polylite (registered trademark)” series manufactured by DIC Corporation, and the “Nipporan (registered trademark)” manufactured by Nippon Polyurethane Industry Co., Ltd. )” series, the “Maximol (registered trademark)” series manufactured by Kawasaki Chemical Industries, Ltd., and the “Kuraray Polyol (registered trademark)” series manufactured by Kuraray Co., Ltd., and the like.
  • Polyether Polyol; Component (d) Examples include compounds obtained by ring-opening polymerization of alkylene oxide or reaction of a compound having two or more active hydrogen groups in the molecule with alkylene oxide, and modified products thereof.
  • the number average molecular weight is preferably from 400 to 2,000, more preferably from 500 to 1,500, and most preferably from 600 to 1,200.
  • Those having hydroxyl groups only at both ends of the molecule (two in the molecule) correspond to the (d1) component constituting the urethane prepolymer, and those having three or more hydroxyl groups in the molecule are the above (db ) corresponds to the component.
  • examples of the polyether polyols include polymer polyols, urethane-modified polyether polyols, polyether ester copolymer polyols, and the like.
  • examples of the compounds having two or more active hydrogen groups in the molecule include water, ethylene Glycol, propylene glycol, butanediol, glycerin, trimethylolpropane, hexanetriol, triethanolamine, diglycerin, pentaerythritol, trimethylolpropane, hexanetriol, and other polyols such as glycols and glycerin having one or more hydroxyl groups in the molecule compounds, and these may be used alone or in combination of two or more.
  • the alkylene oxides include cyclic ether compounds such as ethylene oxide, propylene oxide, and tetrahydrofuran, and these may be used alone or in combination of two or more.
  • Such polyether polyols are commercially available as reagents or industrially.
  • ADEKA CORPORATION "ADEKA POLYETHER” series and the like can be mentioned.
  • Polycaprolactone Polyol; Component (d) Examples include compounds obtained by ring-opening polymerization of ⁇ -caprolactone. Among them, the number average molecular weight is preferably from 400 to 2,000, more preferably from 500 to 1,500, and most preferably from 600 to 1,200. Those having hydroxyl groups only at both ends of the molecule (two in the molecule) correspond to the (d1) component constituting the urethane prepolymer, and those having three or more hydroxyl groups in the molecule are the above (db ) corresponds to the component.
  • polycaprolactone polyols are commercially available as reagents or industrially.
  • examples of commercially available products include the "PLAXEL (registered trademark)” series manufactured by Daicel Chemical Industries, Ltd.
  • Polycarbonate polyol; component (d) A compound obtained by phosgenation of one or more low-molecular-weight polyols or a compound obtained by transesterification using ethylene carbonate, diethyl carbonate, diphenyl carbonate or the like can be mentioned.
  • the number average molecular weight is preferably from 400 to 2,000, more preferably from 500 to 1,500, and most preferably from 600 to 1,200.
  • Those having hydroxyl groups only at both ends of the molecule (two in the molecule) correspond to the (d1) component constituting the urethane prepolymer, and those having three or more hydroxyl groups in the molecule are the above (cd ) corresponds to the component.
  • the low-molecular-weight polyols include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 2-methyl-1,3-propanediol, 1,2-butanediol, and 1,3-butane.
  • diol 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 3-methyl-1, 5-pentanediol, 2-ethyl-4-butyl-1,3-propanediol, diethylene glycol, dipropylene glycol, neopentyl glycol, cyclohexane-1,4-diol, cyclohexane-1,4-dimethanol, dimer acid diol , ethylene oxide and propylene oxide adducts of bisphenol A, bis( ⁇ -hydroxyethyl)benzene, xylylene glycol, glycerin, trimethylolpropane, pentaerythritol and other low-molecular-weight polyols.
  • Polyacrylic Polyol; Component (d) Examples include polyol compounds obtained by polymerizing (meth)acrylate acid esters and vinyl monomers. Those having hydroxyl groups only at both ends of the molecule (two in the molecule) correspond to the (d1) component constituting the urethane prepolymer, and those having three or more hydroxyl groups in the molecule are the above (db ) corresponds to the component.
  • Castor oil-based polyol component (d)
  • castor oil-based polyols include polyol compounds starting from castor oil, which is a natural oil.
  • those having hydroxyl groups only at both ends of the molecule (two in the molecule) correspond to the (d1) component constituting the urethane prepolymer, and those having three or more hydroxyl groups in the molecule are the above-mentioned (db) corresponds to the component.
  • castor oil polyols are commercially available as reagents or industrially, and examples of commercially available products include the "URIC (registered trademark)” series manufactured by Ito Seiyu Co., Ltd.
  • 2-mercaptoethanol 1-hydroxy-4-mercaptocyclohexane, 2-mercaptohydroquinone, 4-mercaptophenol, 1-hydroxyethylthio-3-mercaptoethylthiobenzene, 4-hydroxy-4'-mercaptodiphenylsulfone, 2- (2-Mercaptoethylthio)ethanol, dihydroxyethyl sulfide mono(3-mercaptopropionate), dimercaptoethane mono(salcylate) (corresponding to component (d1) constituting the urethane prepolymer).
  • any cyclic molecule containing a side chain having 3 or more hydroxyl groups and/or thiol groups at the terminal is particularly restricted.
  • underlying cyclic molecules include cyclodextrin, crown ether, benzocrown, dibenzocrown, dicyclohexanocrown, cyclobis(paraquat-1,4-phenylene), dimethoxypyraarene, calixarene, and phenanthroline.
  • cyclodextrin is preferred.
  • the cyclodextrin has an ⁇ form (ring inner diameter 0.45 to 0.6 nm), a ⁇ form (ring inner diameter 0.6 to 0.8 nm), and a ⁇ form (ring inner diameter 0.8 to 0.95 nm). Mixtures of these can also be used. In the present invention, ⁇ -cyclodextrin and ⁇ -cyclodextrin are particularly preferred.
  • the side chains having at least three hydroxyl groups and/or thiol groups at the ends that are introduced into the cyclic molecule will be described.
  • the method for introducing the side chain is not limited, for example, it can be introduced by utilizing the reactive functional group possessed by the cyclic molecule and modifying this reactive functional group (that is, the side chain can be introduced by modifying the reactive functional group introduced by reacting with the group).
  • Examples of the reactive functional group include hydroxyl group and amino group, among which hydroxyl group is preferred.
  • ⁇ -cyclodextrin has 18 hydroxyl groups as reactive functional groups, and the hydroxyl groups are reacted to introduce side chains. Therefore, up to 18 side chains can be introduced into one ⁇ -cyclodextrin.
  • at least 3 or more side chains having hydroxyl groups and/or thiol groups introduced at their ends must be introduced in order to sufficiently exhibit the functions of the side chains described above. Among them, it is preferable that 5 or more side chains having hydroxyl groups and/or thiol groups introduced at the terminals are introduced, and 7 or more side chains having hydroxyl groups and/or thiol groups introduced at the terminals are introduced. More preferably, 8 or more side chains having hydroxyl groups and/or thiol groups introduced at the terminals are most preferably introduced. Moreover, a side chain having a terminal hydroxyl group is particularly preferred.
  • the side chain is not particularly limited, it is preferably formed by repeating an organic chain having 3 to 20 carbon atoms.
  • the number average molecular weight of such side chains is preferably 300 or more, for example. More particularly, the number average molecular weight of such side chains ranges from 300 to 10,000, preferably from 350 to 5,000, most preferably from 400 to 5,000.
  • the number average molecular weight of this side chain can be adjusted by adjusting the amount used when the side chain is introduced, and can be determined by calculation or by 1 H-NMR measurement.
  • the side chain may be linear or branched.
  • side chains it is possible to appropriately introduce the methods and compounds disclosed in WO 2015/159875, for example, ring-opening polymerization; radical polymerization; cationic polymerization; anionic polymerization; Polymerization, RAFT polymerization, living radical polymerization such as NMP polymerization, and the like can be used.
  • a side chain having an appropriate size can be introduced by reacting an appropriately selected compound with the reactive functional group of the cyclic molecule.
  • ring-opening polymerization is particularly preferable, and it is preferable to introduce side chains derived from cyclic compounds such as cyclic ethers, cyclic lactones, cyclic acetals, and cyclic carbonates.
  • cyclic compounds it is preferable to use cyclic ethers, cyclic lactones, and cyclic carbonates from the viewpoints of high reactivity and ease of molecular weight adjustment.
  • cyclic ethers cyclic lactones, and cyclic carbonates are exemplified below.
  • cyclic ethers ethylene oxide, 1,2-propylene oxide, epichlorohydrin, epibromohydrin, 1,2-butylene oxide, 2,3-butylene oxide, isobutylene oxide, oxetane, 3-methyloxetane, 3,3-dimethyloxetane, Tetrahydrofuran, 2-methyltetrahydrofuran, 3-methyltetrahydrofuran, etc.
  • Cyclic lactones 4-membered ring lactone; ⁇ -propiolactone, ⁇ -methylpropiolactone, L-serine- ⁇ -lactone, etc.
  • ⁇ -caprolactone monomethyl- ⁇ -caprolactone, monoethyl- ⁇ -caprolactone, monohexyl- ⁇ - Caprolactone, dimethyl- ⁇ -caprolactone, di-n-propyl- ⁇ -caprolactone, di-n-hexyl- ⁇ -caprolactone, trimethyl- ⁇ -caprolactone, triethyl- ⁇ -caprolactone, tri-n- ⁇ -caprolactone, ⁇ - Caprolactone, 5-nonyl-oxepan-2-one, 4,4,6-trimethyl-oxepan-2-one, 4,6,6-trimethyl-oxepan-2-one, 5-hydroxymethyl-oxepan-2-one 8-membered ring lactone; ⁇ -enantholactone, etc.
  • lactones lactone, lactide, dilactide, tetramethylglycoside, 1,5-dioxepan-2-one, t-butylcaprolactone, etc.
  • Cyclic carbonate Ethylene carbonate, propylene carbonate, 1,2-butylene glycerol carbonate 1,2-carbonate, 4-(methoxymethyl)-1,3-dioxolan-2-one, (chloromethyl) ethylene carbonate, vinylene carbonate, 4,5- Dimethyl-1,3-dioxol-2-one, 4-chloromethyl-5-methyl-1,3-dioxol-2-one, 4-vinyl-1,3-dioxolan-2-one, 4,5-diphenyl -1,3-dioxolan-2-one, 4,4-dimethyl-5-methylene-1,3-dioxolan-2-one, 1,3-dioxan-2-one, 5-methyl-5-propyl-1 ,3
  • the cyclic compound preferably used is a lactone compound
  • particularly preferred lactone compounds are ⁇ -caprolactone, ⁇ -acetyl- ⁇ -butyrolactone, ⁇ -methyl- ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ - lactone compounds such as butyrolactone, most preferably ⁇ -caprolactone.
  • the reactive functional groups (e.g., hydroxyl groups) of cyclic molecules are poor in reactivity, and it is difficult to directly react large molecules, especially due to steric hindrance.
  • a low-molecular-weight compound such as propylene oxide is once reacted with the reactive functional group of the cyclic molecule to hydroxypropylate it, thereby preliminarily reacting the reactive functional group.
  • a method of introducing functional groups rich in is preferred. After that, a means of introducing a side chain by ring-opening polymerization using the above-described cyclic compound can be adopted. In this case, the hydroxypropylated moieties can also be considered side chains.
  • Polyrotaxane having hydroxyl group and/or thiol group; component (d) It is also called a supramolecule, which is a molecular complex having a structure in which a cyclic molecule cannot come off from an axial molecule due to steric hindrance.
  • the polyrotaxane that can be used as the component (d) of the present invention is a polyrotaxane having a hydroxyl group and/or a thiol group polymerizable with an isocyanate group, and those having three or more hydroxyl groups and/or thiol groups are included in the component (db). Applicable.
  • polyrotaxane having a hydroxyl group and/or a thiol group used in the component (d) of the present invention is not particularly limited, for example, the polyrotaxane described in International Application No. 2018/092826 is exemplified.
  • Preferred among the (db) components used in the present invention are glycerin, trimethylolethane, trimethylolpropane, ditrimethylolpropane, trimethylolpropane tripolyoxyethylene ether (TMP-30 of Nippon Emulsifier Co., Ltd.), and hydroxyl groups 3 or more polyester polyols, polyether polyols with 3 or more hydroxyl groups, castor oil-based polyols with 3 or more hydroxyl groups, side chain-containing cyclic compounds with 3 or more hydroxyl groups, polyrotaxanes with hydroxyl groups and/or thiol groups
  • a side chain-containing cyclic compound having 3 or more hydroxyl groups, a polyrotaxane having 3 or more hydroxyl groups and/or thiol groups is more preferable, and from the viewpoint of handling, a side chain having 3 or more hydroxyl groups and/or thiol groups Containing cyclic compounds are most preferred.
  • the mixing ratio of component (c) and component (d) is not particularly limited.
  • the total number of moles of active hydrogen groups in component (d) is 0.8 when the total number of iso(thio)cyanate groups in component (c) is 1 mol. It is preferable to be ⁇ 2.0 mol. If the iso(thio)cyanate groups are too many or too few, the resulting polyurethane resin tends to be poorly cured or have reduced abrasion resistance.
  • the total number of the active hydrogen groups should be 1 mol when the total number of the iso(thio)cyanate groups is 1 mol.
  • the number of moles is more preferably 0.85 to 1.75 mol, more preferably 0.9 to 1.5 mol.
  • the active hydrogen of the compound having two or more amino groups shall be equal to the number of moles of amino groups.
  • the component (d) preferably contains the component (da), and further contains the component (da) and the component (db). It is more preferable to be
  • the present invention it is preferable to contain the (c) component and the (da) component, and it is more preferable to contain the (c) component, the (da) component and the (db) component.
  • the blending ratio of each component is It is preferable to contain 60 to 95 parts by mass of component (c), 2 to 20 parts by mass of component (da), and 1 to 30 parts by mass of component (db), and 70 to 85 parts by mass of component (c). It is more preferable to contain 2 to 15 parts by mass of component (da) and 3 to 25 parts by mass of component (db).
  • ⁇ Other ingredients As other compounding ingredients used in the present invention, various known compounding agents can be used as long as they do not impair the effects of the present invention. For example, curing catalysts, abrasive grains, surfactants, flame retardants, plasticizers, fillers, antistatic agents, foam stabilizers, solvents, leveling agents, and other additives may be added. These additives may be used alone or in combination of two or more.
  • these reaction catalysts for urethane or urea can be catalysts that can be used when the fine hollow particles are urethane (urea) resins, and may be used alone or in combination of two or more.
  • the amount used may be a so-called catalytic amount, for example, 0.001 to 10 parts by mass, particularly 0.01 to 5 parts by mass, per 100 parts by mass of components (c) and (d). Part range is fine.
  • abrasive grains for example, particles made of a material selected from cerium oxide, silicon oxide, alumina, silicon carbide, zirconia, iron oxide, manganese dioxide, titanium oxide and diamond, or two or more kinds of these materials and the like.
  • Micro hollow particles [Measuring method] (1) Average particle size, yield The obtained micro hollow particles were measured with a field emission scanning electron microscope (manufactured by JEOL, JSM-7800FPrime), and the electron micrograph was measured, and the image analysis software ImageJ (National Institutes) of Health), the particle diameters of at least 50 individual hollow microparticles were measured, and the average particle diameter was calculated as the average value of these. For the yield, the shape of at least 50 hollow microparticles was confirmed, and the percentage of hollow microparticles that were neither dented nor broken was taken as the yield.
  • Ash This is the ratio between the mass of the combustion residue after burning the hollow microparticles at a temperature of 600°C and the mass of the hollow microparticles before combustion.
  • Example 1 Styrene-maleic anhydride copolymer (Scripset 520 (manufactured by Monsanto, weight average molecular weight 350,000)) as a surfactant while heating 55 ml of a 2% aqueous sodium hydroxide solution as an aqueous phase to 70° C.: 3.5 g was dissolved, 35 g of chlorobenzene was added as an oil phase to the aqueous phase, and stirred at 1500 rpm for 10 minutes at 80°C with a homogenizer to prepare an O/W emulsion.
  • Scripset 520 manufactured by Monsanto, weight average molecular weight 350,000
  • melamine 4.54 g, 37% formaldehyde aqueous solution: 11.69 ml, and distilled water: 7.12 g are mixed at 70 ° C., and then pH is adjusted using 10% sodium hydroxide aqueous solution: 5 ml. Then, after preparing an alkaline aqueous solution of melamine formaldehyde prepolymer compound at 70° C. and pH 12, the entire amount was added to and mixed with the O/W emulsion obtained above. After that, a 10% aqueous citric acid solution was added to confirm that the pH was 4 or less, and the mixture was stirred and mixed at 150 rpm and reacted at a liquid temperature of 80° C. for 4 hours to generate microparticles.
  • the microparticles thus obtained were placed in a centrifugal filter and centrifuged at 1000 rpm for 5 minutes five times to remove the aqueous phase and obtain a solid.
  • 50 g of the obtained solid was slurried in 100 g of ethanol, filtered through a filter paper with a mesh size of 1 ⁇ m, and placed in a high-pressure container. Extracted with supercritical carbon dioxide for 45 minutes at min. After that, the pressure was reduced to atmospheric pressure over 15 minutes to obtain fine hollow particles. It was confirmed by TG measurement that chlorobenzene was removed from the obtained hollow microparticles. The average particle size was 23 ⁇ m.
  • the hollow microparticles obtained had a good appearance, a bulk density of 0.1 g/cm 3 and a yield of 90%, and no ash content was measured. Table 1 shows the compounding amounts used and the treatment conditions and results using the supercritical fluid.
  • Example 2 In Example 1, the solid obtained after centrifugation was slurried in 100 g of ethanol, filtered through a filter paper with a mesh size of 1 ⁇ m, and placed in a high-pressure container. The solid was slurried with 100 g of tert-butyl alcohol (TBA), degassed by freeze-drying, and then placed in a high-pressure vessel under the same conditions as in Example 1. It was confirmed by TG measurement that chlorobenzene had been removed from the obtained fine hollow particles, and the average particle size was 23 ⁇ m. The hollow microparticles obtained had a good appearance, a bulk density of 0.1 g/cm 3 and a yield of 90%, and no ash content was measured. Table 1 shows the compounding amounts used and the treatment conditions and results using the supercritical fluid.
  • TSA tert-butyl alcohol
  • Examples 3 to 6 Fine hollow particles were prepared and evaluated in the same manner as in Example 1 or 2, except that the blending amount shown in Table 1 and the conditions of supercritical carbon dioxide were used. Table 1 shows the results. The obtained hollow microparticles all had a bulk density of 0.1 g/cm 3 and a yield of 90%, and no ash content was measured.
  • component DB-1 component DB-1; cyclic compound having 9 hydroxyl groups at the side chain end;
  • component (Method for producing DB-1) 10 g of hydroxypropylated ⁇ -cyclodextrin (CycloChem Co., Ltd.) and 32.0 g of ⁇ -caprolactone were stirred at 130° C. while flowing dry nitrogen to form a uniform solution, and then tin (II) 2-ethylhexanoate was added to 0.04 g. was added and allowed to react for 16 hours to obtain the desired product, DB-1.
  • the physical properties of DB-1 were as follows.
  • Shore D hardness was measured with a durometer manufactured by Kobunshi Keiki Co., Ltd. according to JIS standard (hardness test) K6253. The thickness was measured so as to be 6 mm. Relatively low hardness was measured by Shore A hardness, and relatively high hardness was measured by Shore D hardness.
  • Hysteresis loss A resin punched into a dumbbell No. 8 shape with a thickness of 2 mm is stretched by 20 mm at 10 mm / min with an autograph of AG-SX manufactured by Shimadzu Corporation, and then hysteresis when returning until the stress becomes zero. loss was measured.
  • Polishing rate was measured when polishing was carried out under the following conditions.
  • the polishing rate is an average value for six 2-inch sapphire wafers.
  • CMP polishing pad 300 mm diameter, 1 mm thick pad with concentric grooves formed on the surface
  • Slurry FUJIMI Compol 80 undiluted solution Pressure: 3.0 psi Rotation speed: 45rpm Time: 1 hour
  • Example 7 21 parts by mass of DB-1, which is the component (db) produced above, and 9 parts by mass of 4,4′-methylenebis(o-chloroaniline) (MOCA), which is the component (da), were mixed at 120° C. After making a homogeneous solution, it was fully degassed to prepare a liquid A. Separately, the fine hollow particles of Example 1: 4.5 parts by mass were added to Pre-1: 70 parts by mass of the component (c) produced above heated to 70 ° C., and the mixture was stirred with a rotation and revolution stirrer to obtain a uniform mixture. A solution B was prepared. Liquid A was added to liquid B prepared above and uniformly mixed to obtain a curable composition. The curable composition was injected into a mold, defoamed under a reduced pressure of 5 kPa for 2 minutes, and then cured at 100° C. for 15 hours. After curing, it was removed from the mold to obtain a cured body.
  • MOCA 4,4′-methylenebis
  • the obtained cured product was sliced to prepare a cured product having a thickness of 1 mm, and the following various physical properties were measured.
  • the obtained cured product had a density of 0.95 g/cm 3 , a Shore D hardness of 48D, and a hysteresis loss of 60%.
  • a spiral groove was formed on the surface of the 1 mm thick hardened body obtained by slicing, and a double-sided tape was attached to the back surface to form a polishing pad made of a hardened body with a size of 300 mm ⁇ and a thickness of 1 mm.
  • the polishing rate of the polishing pad made of the cured product obtained above was 3.0 ⁇ m/hr, and the number of scratches was 1. Table 2 shows the results.
  • ⁇ Comparative Example 2> A cured body was produced in the same manner except that 4.5 parts by mass of the hollow microparticles of Comparative Example 1 were used in place of the hollow microparticles of Example 1 used in Example 7, and the density of the resulting cured body was The hardness was 1.09 g/cm 3 , the Shore D hardness was 50D, and the hysteresis loss was 62%.
  • the polishing rate of the polishing pad prepared in the same manner as in Example 1 was 1.5 ⁇ m/hr, and the number of scratches was 2. Table 2 shows the results.
  • Example 3 Instead of the fine hollow particles of Example 1 used in Example 7, 0.8 of commercially available microcapsules 920-40 (manufactured by Nippon Philite Co., Ltd., hollow microballoons made of acrylonitrile resin with inorganic powder sprinkled on the surface) A cured body was produced in the same manner except that parts by mass were used, and the resulting cured body had a density of 0.85 g/cm 3 , a Shore D hardness of 44D, and a hysteresis loss of 69%.
  • the polishing rate of the polishing pad prepared in the same manner as in Example 1 was 1.9 ⁇ m/hr, and the number of scratches was 2. Table 2 shows the results.
  • [6] The manufacturing method according to any one of [1] to [5], wherein the contact time between the supercritical liquid and the microparticles is 10 minutes or more and 720 minutes or less. [7] after contacting the microparticles with a hydrophilic organic solvent, using the supercritical liquid to remove the organic solvent from the inside of the microparticles after the treatment with the hydrophilic organic solvent, [1] to The manufacturing method according to any one of [6]. [8] The production method according to any one of [1] to [7], wherein the hollow microparticles have an average particle size measured by a scanning electron microscope of 1 ⁇ m or more and 100 ⁇ m or less.
  • a method for producing a curable composition comprising mixing hollow microparticles obtained by the production method according to any one of [1] to [8] and a compound having an iso(thio)cyanate group.
  • a method for producing a cured body comprising curing the curable composition obtained by the production method according to [9].
  • a method for producing hollow microparticles having a resin film containing a melamine-based resin and a hollow portion surrounded by the resin film preparing an oil phase comprising an organic solvent; preparing an aqueous phase comprising a surfactant comprising a maleic anhydride copolymer; mixing and stirring the oil phase and the water phase to prepare an oil-in-water (O/W) emulsion in which the water phase is the continuous phase and the oil phase is the dispersed phase;
  • a melamine-formaldehyde prepolymer compound is added to the oil-in-water (O/W) emulsion, and a condensation reaction of the melamine-formaldehyde prepolymer compound occurs on the interface of the oil-in-water (O/W) emulsion to generate the resin film.
  • An oil-in-water (O/W) emulsion in which an oil phase containing an organic solvent is a dispersed phase and an aqueous phase is a continuous phase is prepared, and after obtaining microparticles in which the organic solvent is encapsulated, a supercritical liquid is obtained. obtained by removing the organic solvent from the inside of the microparticles, micro hollow particles.
  • a resin composition comprising the hollow microparticles of [13] and a polyurethane resin.
  • a CMP polishing pad comprising the resin composition according to [14].

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

The present invention is a method for producing hollow microparticles having a resin film containing at least one resin selected from the group consisting of melamine resins, urea resins, amide resins, and urethane (urea) resins and a hollow portion surrounded by the resin film, wherein the method for producing hollow microparticles includes preparing an oil-in-water (O/W) emulsion, in which an oil phase containing an organic solvent is the dispersed phase and an aqueous phase is the continuous phase, to obtain microparticles having the organic solvent included in the interior, and removing the organic solvent from the interior of the microparticles using a supercritical liquid. The present invention can provide a method for producing hollow microparticles easily and at a good yield.

Description

超臨界液体を用いた微小中空粒子の製造方法Manufacturing method of micro hollow particles using supercritical liquid
 本発明は、超臨界液体を用いた微小中空粒子の製造方法に関する。 The present invention relates to a method for producing fine hollow particles using a supercritical liquid.
 微小中空粒子は、農薬、医薬、香料、液晶、接着剤、電子材料部品、建築材料などの多くの分野において使用されている。特に近年、ウエハ研磨に用いられるポリウレタン(ウレア)製CMP(Chemical Mechanical Polishing)研磨パッドに、細孔を設ける目的で、微小中空粒子が検討されている。このような微小中空粒子は、優れた耐溶剤性や、耐熱性、さらに、好ましい粒径の制御が求められている。特に、CMP研磨パッドの分野では、高い研磨レートと原子レベルでの平坦性を実現するために、粒径が比較的大粒径な20~50μm程度で、単分散な微小中空粒子が望まれている。 そこで特許文献1には、耐熱性や耐溶剤性が優れる熱硬化性樹脂のメラミン樹脂からなる微小中空粒子の製造方法が開示されている。 Micro hollow particles are used in many fields such as agricultural chemicals, pharmaceuticals, fragrances, liquid crystals, adhesives, electronic material parts, and building materials. Particularly in recent years, fine hollow particles have been studied for the purpose of forming pores in polyurethane (urea) CMP (Chemical Mechanical Polishing) polishing pads used for wafer polishing. Such fine hollow particles are required to have excellent solvent resistance, heat resistance, and preferable particle size control. In particular, in the field of CMP polishing pads, in order to achieve a high polishing rate and flatness at the atomic level, monodisperse fine hollow particles with a relatively large particle diameter of about 20 to 50 μm are desired. there is Therefore, Patent Document 1 discloses a method for producing fine hollow particles made of melamine resin, which is a thermosetting resin with excellent heat resistance and solvent resistance.
 特許文献2には、メラミン樹脂、尿素樹脂、及びアミド樹脂からなる群から選ばれる少なくとも一つの樹脂からなり、特定範囲の平均粒子径を有するCMP研磨パッド用中空マイクロバルーンが開示されている。 Patent Document 2 discloses a hollow microballoon for a CMP polishing pad, which is made of at least one resin selected from the group consisting of melamine resin, urea resin, and amide resin, and has an average particle size within a specific range.
 また、微小粒子の乾燥方法として、特許文献3には、ラジカル重合性モノマーを用いた微小粒子を超臨界二酸化炭素により乾燥する手法が開示されている。 In addition, as a method for drying fine particles, Patent Document 3 discloses a technique for drying fine particles using a radically polymerizable monomer with supercritical carbon dioxide.
特開平7-41594号公報JP-A-7-41594 国際公開第2021/201088号WO2021/201088 特表2008-523192号公報Japanese Patent Publication No. 2008-523192
 しかしながら、特許文献1の方法では、耐熱性や耐溶剤性が優れるものの、粒径とその分散性の制御という観点からは課題があった。 However, although the method of Patent Document 1 is excellent in heat resistance and solvent resistance, there is a problem from the viewpoint of controlling the particle size and its dispersibility.
 特許文献2の方法では、大粒径の粒子が取得できるが、微小粒子内部の有機溶剤を除去する工程で、多くの微小粒子が乾燥工程で壊れてしまい、低収率で工業的に問題があった。 In the method of Patent Document 2, particles with a large particle size can be obtained, but in the process of removing the organic solvent inside the fine particles, many fine particles are broken in the drying process, resulting in a low yield and an industrial problem. there were.
 特許文献3には乾燥方法として超臨界二酸化炭素を用いるものが開示されているが、使用されているモノマーはラジカル重合性モノマーのみであり、その超臨界二酸化炭素を用いる対象について上記以外に言及されておらず、さらに効果についても何ら開示されていない。 Patent Document 3 discloses a method using supercritical carbon dioxide as a drying method, but the monomers used are only radically polymerizable monomers, and there is no mention of the object using supercritical carbon dioxide other than the above. Moreover, no effect is disclosed.
 したがって、本発明の目的は、微小中空粒子を簡便に収率よく製造する方法の提供にある。 Therefore, an object of the present invention is to provide a method for producing hollow microparticles easily and with high yield.
 本発明者等は、上記課題を解決するために鋭意検討した結果、内部に有機溶剤が封入された微小粒子を製造後、微小中空粒子内部の有機溶剤を超臨界液体で除去することで、簡便に微小中空粒子を収率よく製造することが可能であり、上記課題を解決することを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that after manufacturing fine particles in which an organic solvent is enclosed inside, the organic solvent inside the fine hollow particles is removed with a supercritical liquid. The present inventors have found that it is possible to produce hollow microparticles at a high yield and that the above problems can be solved, and have completed the present invention.
 すなわち、本発明は、以下の実施形態に関する。
 実施形態によると、微小中空粒子の第1の製造方法が提供される。この製造方法は、微小中空粒子を製造する方法である。微小中空粒子は、樹脂膜と中空部とを有する。樹脂膜は、メラミン系樹脂、尿素樹脂、アミド樹脂、及び、ウレタン(ウレア)樹脂からなる群から選ばれる少なくとも一つの樹脂を含む。中空部は、樹脂膜で取り囲まれている。この製造方法は、有機溶媒を含む油相が分散相であり、水相が連続相である水中油(O/W)エマルションを調製して、内部に前記有機溶媒が封入された微小粒子を得ることと、超臨界液体を用いて、微小粒子の内部から有機溶媒を除去することとを含む。
 他の実施形態によると、硬化性組成物の製造方法が提供される。この製造方法は、実施形態に係る製造方法で得られた微小中空粒子と、イソ(チオ)シアネート基を有する化合物とを混合することを含む。
 他の実施形態によると、硬化体の製造方法が提供される。この製造方法は、実施形態に係る製造方法で得られた硬化性組成物を硬化させることを含む。
 他の実施形態によると、微小中空粒子の第2の製造方法が提供される。この製造方法は、メラミン系樹脂を含む樹脂膜と、前記樹脂膜で取り囲まれた中空部とを有する微小中空粒子の製造方法である。この製造方法は、有機溶媒を含む油相を調製すること、無水マレイン酸共重合体を含む界面活性剤を含む水相を調製すること、油相と水相とを混合・撹拌して、水相が連続相であり、油相が分散相である水中油(O/W)エマルションを調製すること、水中油(O/W)エマルション中に、メラミンホルムアルデヒドプレポリマー化合物を添加し、水中油(O/W)エマルションの界面上でメラミンホルムアルデヒドプレポリマー化合物の縮合反応を生じさせて、樹脂膜と樹脂膜の内部に封入された有機溶媒とを含む微小粒子を含む微小粒子分散液を得ること、微小粒子分散液から微小粒子を分離すること、及び、微小粒子の内部から、超臨界二酸化炭素を用い、有機溶媒を取り除くことを含む。油相を100質量部とした際に、水相の量は、100質量部以上500質量部以下である、微小中空粒子の製造方法。
 他の実施形態によると、微小中空粒子が提供される。この微小中空粒子は、樹脂膜と、中空部とを有する。樹脂膜は、メラミン系樹脂、尿素樹脂、アミド樹脂、及び、ウレタン(ウレア)樹脂からなる群から選ばれる少なくとも一つの樹脂を含む。中空部は、樹脂膜で取り囲まれている。この微小中空粒子は、有機溶媒を含む油相が分散相であり、水相が連続相となる水中油(O/W)エマルションを調製して、内部に有機溶媒が封入された微小粒子を取得後、超臨界液体を用い、微小粒子の内部から有機溶媒を除去することにより得られる。
 他の実施形態によると、樹脂組成物が提供される。この樹脂組成物は、実施形態に係る微小中空粒子と、ポリウレタン樹脂とを含む。
 他の実施形態によると、CMP研磨パッドが提供される。このCMP研磨パッドは、実施形態に係る樹脂組成物を含む。
That is, the present invention relates to the following embodiments.
According to embodiments, a first method for producing hollow microparticles is provided. This manufacturing method is a method for manufacturing fine hollow particles. The fine hollow particles have a resin film and a hollow portion. The resin film contains at least one resin selected from the group consisting of melamine resins, urea resins, amide resins, and urethane (urea) resins. The hollow portion is surrounded by a resin film. This production method comprises preparing an oil-in-water (O/W) emulsion in which an oil phase containing an organic solvent is a dispersed phase and an aqueous phase is a continuous phase, to obtain microparticles in which the organic solvent is encapsulated. and removing the organic solvent from the interior of the microparticles using the supercritical fluid.
According to another embodiment, a method of making a curable composition is provided. This production method includes mixing hollow microparticles obtained by the production method according to the embodiment with a compound having an iso(thio)cyanate group.
According to another embodiment, a method of making a cured body is provided. This production method includes curing the curable composition obtained by the production method according to the embodiment.
According to another embodiment, a second method for producing hollow microparticles is provided. This manufacturing method is a method for manufacturing fine hollow particles having a resin film containing a melamine-based resin and a hollow portion surrounded by the resin film. This production method comprises preparing an oil phase containing an organic solvent, preparing an aqueous phase containing a surfactant containing a maleic anhydride copolymer, mixing and stirring the oil phase and the aqueous phase, and Preparing an oil-in-water (O/W) emulsion in which the phase is the continuous phase and the oil phase is the dispersed phase; O/W) causing a condensation reaction of the melamine-formaldehyde prepolymer compound on the interface of the emulsion to obtain a microparticle dispersion containing microparticles containing a resin film and an organic solvent enclosed inside the resin film; Separating the microparticles from the microparticle dispersion and removing the organic solvent from the interior of the microparticles using supercritical carbon dioxide. A method for producing fine hollow particles, wherein the amount of the aqueous phase is 100 parts by mass or more and 500 parts by mass or less when the oil phase is 100 parts by mass.
According to another embodiment, hollow microparticles are provided. The fine hollow particles have a resin film and a hollow portion. The resin film contains at least one resin selected from the group consisting of melamine resins, urea resins, amide resins, and urethane (urea) resins. The hollow portion is surrounded by a resin film. These hollow microparticles are obtained by preparing an oil-in-water (O/W) emulsion in which the oil phase containing the organic solvent is the dispersed phase and the water phase is the continuous phase, and the microparticles encapsulating the organic solvent inside are obtained. After that, it is obtained by removing the organic solvent from the inside of the microparticles using a supercritical liquid.
According to another embodiment, a resin composition is provided. This resin composition contains the hollow microparticles according to the embodiment and a polyurethane resin.
According to another embodiment, a CMP polishing pad is provided. This CMP polishing pad contains the resin composition according to the embodiment.
 本発明によると、微小中空粒子内部の有機溶剤を超臨界液体で除去することにより、簡便に収率よく微小中空粒子を得る方法が提供される。 According to the present invention, there is provided a method for obtaining hollow microparticles simply and in good yield by removing the organic solvent inside the microhollow particles with a supercritical fluid.
 また、本発明の微小中空粒子は、様々な用途への応用が可能であり、例えば、農薬、医薬、化粧品材料、液晶、接着剤、電子材料部品、建築材料などの多くの分野において応用できる。特に本発明の微小中空粒子は、靴底や靴の中敷きや、断熱材、防音材、CMP研磨パッドといった分野にも適用が可能である。 In addition, the fine hollow particles of the present invention can be applied to various uses, for example, in many fields such as agricultural chemicals, medicines, cosmetic materials, liquid crystals, adhesives, electronic material parts, and building materials. In particular, the fine hollow particles of the present invention can be applied to fields such as shoe soles, shoe insoles, heat insulating materials, sound insulating materials, and CMP polishing pads.
 実施形態によると、微小中空粒子の第1の製造方法が提供される。この製造方法は、微小中空粒子を製造する方法である。微小中空粒子は、樹脂膜と中空部とを有する。樹脂膜は、メラミン系樹脂、尿素樹脂、アミド樹脂、及び、ウレタン(ウレア)樹脂からなる群から選ばれる少なくとも一つの樹脂を含む。中空部は、樹脂膜で取り囲まれている。この製造方法は、有機溶媒を含む油相が分散相であり、水相が連続相である水中油(O/W)エマルションを調製して、内部に前記有機溶媒が封入された微小粒子を得ることと、超臨界液体を用いて、微小粒子の内部から有機溶媒を除去することとを含む。
 この製造方法によると、メラミン系樹脂、尿素樹脂、アミド樹脂、及び、ウレタン(ウレア)樹脂等、比較的高い硬度を有する樹脂膜を備えた微小中空粒子を、高い収率で容易に製造できる。すなわち、微小中空粒子の製造においては、樹脂膜内部から有機溶媒を除去する乾燥工程が必要となる。樹脂膜の構造が緻密、かつ硬度が高いと、その内部の有機溶媒を除去しにくく、オーブン等を用いた乾燥工程において、樹脂膜に割れが生じたり、粒子そのものが破断し、粉末状の膜だけが残ることがある。事実、有機溶媒を内在したままの微粒子の熱分解測定を行うと、内在有機溶媒の沸点以上で質量減少が加速する場合があり、これは微小中空粒子内部の圧力が高くなることで有機溶媒の沸点が上昇しているためと推察される。さらに、その上昇した沸点を超えることで有機溶媒が気化し、最終的に機械的な強度が限界を超えたところで微小中空微粒子が破壊されると考えられる。実施形態に係る製造方法では、この乾燥工程に超臨界液体を用いる。超臨界液体は、樹脂膜への浸透性が高く、かつ、樹脂膜における拡散速度が高い。その結果、樹脂膜内部の有機溶媒は浸透してきた超臨界二酸化炭素に溶解、あるいは分散されることで樹脂膜に対する浸透性が向上し粒子外へ排出され、最終的に短時間で中空微粒子内部は超臨界液体へと置換され得る。そして、この置換処理後、圧力・温度を下げて超臨界状態を脱する過程で樹脂膜内部に置換した超臨界液体は気体へと変化する。そのため、超臨界液体を用いると、オーブン等を用いた高温乾燥と比較して、乾燥工程時に樹脂膜が破壊されにくく、高い収率で微小中空粒子を得られると考えられる。
According to embodiments, a first method for producing hollow microparticles is provided. This manufacturing method is a method for manufacturing fine hollow particles. The fine hollow particles have a resin film and a hollow portion. The resin film contains at least one resin selected from the group consisting of melamine resins, urea resins, amide resins, and urethane (urea) resins. The hollow portion is surrounded by a resin film. This production method comprises preparing an oil-in-water (O/W) emulsion in which an oil phase containing an organic solvent is a dispersed phase and an aqueous phase is a continuous phase, to obtain microparticles in which the organic solvent is encapsulated. and removing the organic solvent from the interior of the microparticles using the supercritical fluid.
According to this production method, hollow microparticles having a resin film having relatively high hardness, such as melamine resin, urea resin, amide resin, and urethane (urea) resin, can be easily produced at a high yield. That is, in the production of hollow microparticles, a drying step is required to remove the organic solvent from the inside of the resin film. If the resin film has a dense structure and high hardness, it is difficult to remove the organic solvent inside it, and in the drying process using an oven or the like, cracks may occur in the resin film, the particles themselves may be broken, and the film may become powdery. only may remain. In fact, when performing thermal decomposition measurements on fine particles containing an organic solvent, the mass reduction may accelerate above the boiling point of the internal organic solvent. It is presumed that this is because the boiling point has risen. Furthermore, it is believed that the organic solvent vaporizes when the boiling point is exceeded, and finally the fine hollow particles are destroyed when the mechanical strength exceeds the limit. In the manufacturing method according to the embodiment, a supercritical liquid is used for this drying step. A supercritical fluid has a high permeability to a resin film and a high diffusion rate in the resin film. As a result, the organic solvent inside the resin film is dissolved or dispersed in the permeating supercritical carbon dioxide, thereby improving the permeability to the resin film and being discharged out of the particles. It can be replaced by a supercritical fluid. After this replacement process, the supercritical liquid replaced inside the resin film changes to gas in the process of lowering the pressure and temperature to get out of the supercritical state. Therefore, it is considered that the use of a supercritical liquid makes it difficult for the resin film to be destroyed during the drying process, as compared with high-temperature drying using an oven or the like, so that hollow microparticles can be obtained at a high yield.
 本発明の微小中空粒子は、メラミン樹脂、尿素樹脂、アミド樹脂、及び、ウレタン(ウレア)樹脂からなる群から選ばれる少なくとも一つの樹脂からなる樹脂膜で構成される。微小中空粒子の平均粒子径は、例えば、1~100μmである。微小中空粒子は、有機溶媒を含む油相が分散相、水相が連続相となる水中油(O/W)エマルション(以下、「O/Wエマルション」ともいう)を調製して、微小粒子内部に有機溶剤が封入された微小粒子を取得後、超臨界液体を用い、前記微小粒子内部から有機溶媒を除去して得られる。 The fine hollow particles of the present invention are composed of a resin film made of at least one resin selected from the group consisting of melamine resin, urea resin, amide resin, and urethane (urea) resin. The average particle size of the fine hollow particles is, for example, 1 to 100 μm. Micro hollow particles are prepared by preparing an oil-in-water (O/W) emulsion (hereinafter also referred to as "O/W emulsion") in which an oil phase containing an organic solvent is a dispersed phase and a water phase is a continuous phase, After obtaining the microparticles in which the organic solvent is encapsulated, the organic solvent is removed from the inside of the microparticles using a supercritical liquid.
 本発明において、該メラミン樹脂とは、主鎖がメラミンを含む多官能アミンとホルムアルデヒドとの重縮合によって樹脂であり、該尿素樹脂とは、主鎖が尿素(さらに多官能アミンも含む)とホルムアルデヒドとの重縮合によって得られる樹脂であり、該アミド樹脂とは、主鎖にアミド結合を有する樹脂であり、該ウレタン(ウレア)樹脂とは、イソシアネート基と水酸基および/またはアミノ基との反応により、主鎖にウレタン結合、ウレア結合、または主鎖にウレタン結合とウレア結合の両方を有する樹脂である。 In the present invention, the melamine resin is a resin obtained by polycondensation of a polyfunctional amine whose main chain contains melamine and formaldehyde, and the urea resin is a resin whose main chain is urea (including polyfunctional amine) and formaldehyde. The amide resin is a resin having an amide bond in the main chain, and the urethane (urea) resin is a resin obtained by polycondensation with an isocyanate group and a hydroxyl group and/or an amino group. , a resin having a urethane bond, a urea bond, or both a urethane bond and a urea bond in the main chain.
 本発明で用いることが出来る超臨界液体としては、例えば二酸化炭素、エタン、エチレン、プロパン、酸素及び窒素からなる群より選択される少なくとも1種を用いる。超臨界液体としては、好ましくは二酸化炭素を用いる。ここで超臨界液体とは、臨界温度および臨界圧力を超えた超臨界状態のときに、液体に近い密度と気体のように低い粘性を備え、液体と気体との中間的な状態となった物質を意味する。上述した二酸化炭素、窒素、エタン、エチレン、プロパン、酸素の超臨界状態となる超臨界温度と超臨界圧力は、二酸化炭素が(31.1度、7.4MPa)、窒素が(―147度、3.4MPa)、エタンが(32度、4.9MPa)、エチレンが(9.2度、5.0MPa)、プロパンが(97度、4.2MPa)、酸素が(-118度、5.1MPa)である。 As the supercritical liquid that can be used in the present invention, for example, at least one selected from the group consisting of carbon dioxide, ethane, ethylene, propane, oxygen and nitrogen is used. Carbon dioxide is preferably used as the supercritical liquid. Here, a supercritical liquid is a substance that has a density close to that of a liquid and a viscosity as low as that of a gas when in a supercritical state that exceeds the critical temperature and pressure, and is in an intermediate state between a liquid and a gas. means The supercritical temperature and supercritical pressure at which the above-mentioned carbon dioxide, nitrogen, ethane, ethylene, propane, and oxygen are in the supercritical state are carbon dioxide (31.1 degrees, 7.4 MPa), nitrogen (-147 degrees, 3.4 MPa), ethane (32 degrees, 4.9 MPa), ethylene (9.2 degrees, 5.0 MPa), propane (97 degrees, 4.2 MPa), oxygen (-118 degrees, 5.1 MPa ).
 一般的にエマルション形成時において数10μmを超える大きいエマルションは安定性が低い為、数10μmの微小粒子を形成後、微小粒子内部に有機溶剤を除去させる工程で微小粒子が割れてしまう、もしくは内部の液体がなくなることで萎んでしまい易くなる為、低収率となってしまう。 In general, large emulsions exceeding several tens of μm during emulsion formation have low stability. The lack of liquid makes it easy to wither, resulting in a low yield.
 本発明において、液体に近い優れた溶解性と気体に近い優れた拡散性を有するため樹脂への溶解性が高く、また樹脂中での拡散速度も大きい超臨界液体を用いることにより、短時間で微小粒子内部の有機溶剤と置換し、除去することが出来る。また、微小粒子内部に超臨界液体を含んだ状態で、超臨界状態から気体へ戻すことで微小中空粒子内部に気体を留めることが出来、結果として数10μmを超える大きいエマルションであっても高収率で微小中空粒子を得ることが可能となると推察している。 In the present invention, by using a supercritical liquid that has excellent solubility close to liquid and excellent diffusivity close to gas, it is highly soluble in resin and has a high diffusion rate in resin. It can be removed by replacing the organic solvent inside the microparticles. In addition, in a state in which the microparticles contain the supercritical liquid, the gas can be retained inside the microhollow particles by returning the supercritical state to the gas. It is speculated that it is possible to obtain fine hollow particles at a high rate.
 本発明の微小中空粒子は、上述したように該微小中空粒子の樹脂としてメラミン樹脂、尿素樹脂、アミド樹脂、及び、ウレタン(ウレア)樹脂からなる群から選ばれる少なくとも一つの樹脂からなる樹脂膜で構成される。中でも、本発明で好ましい樹脂は、メラミン樹脂である。 As described above, the hollow microparticles of the present invention are resin films made of at least one resin selected from the group consisting of melamine resins, urea resins, amide resins, and urethane (urea) resins. Configured. Among them, the preferred resin in the present invention is melamine resin.
 本発明の微小中空粒子の好ましい平均粒子径は、1~100μmである。この範囲にあることで、例えばCMP研磨パッドに配合した場合、優れた研磨特性を発現することができる。さらに好ましくは、前記微小中空粒子の平均粒子径は、5~80μmであり、最も好ましいのは、10~50μmである。 The preferred average particle size of the fine hollow particles of the present invention is 1 to 100 μm. Within this range, for example, when blended in a CMP polishing pad, excellent polishing properties can be exhibited. More preferably, the average particle size of the fine hollow particles is 5-80 μm, most preferably 10-50 μm.
 微小中空粒子の平均粒子径の測定には、画像解析法を用いることができる。画像解析法を用いることで容易に粒子サイズを測定できる。なお、平均粒子径は一次粒子の平均粒子径である。画像解析法による平均粒子径の測定は、例えば走査型電子顕微鏡(SEM)などを用いて行うことができる。 An image analysis method can be used to measure the average particle size of hollow microparticles. Particle size can be easily measured using image analysis methods. The average particle size is the average particle size of primary particles. The average particle size can be measured by image analysis using, for example, a scanning electron microscope (SEM).
 本発明の微小中空粒子の嵩密度は、特に制限されるものではないが、0.01~0.5g/cmであることが好ましい。この範囲にあることで、例えば断熱材用途やCMP研磨パッド用途に好適に使用することができる。 Although the bulk density of the hollow microparticles of the present invention is not particularly limited, it is preferably 0.01 to 0.5 g/cm 3 . Within this range, it can be suitably used for heat insulating materials and CMP polishing pads, for example.
 本発明の微小中空粒子の灰分は、特に制限されるものではないが、後述する実施例に記載した方法において、該微小中空粒子を100質量部あたり、0.5質量部以下であることが好ましく、0.3質量部以下であることがさらに好ましく、0.1質量部以下であることがより好ましく、測定されないことが最も好ましい。この範囲にあることで、CMP用研磨パッドに用いた際に、ウエハのディフェクトを低減することが可能となる。 Although the ash content of the hollow microparticles of the present invention is not particularly limited, it is preferably 0.5 parts by mass or less per 100 parts by mass of the hollow microparticles in the method described in the examples below. , more preferably 0.3 parts by mass or less, more preferably 0.1 parts by mass or less, and most preferably not measured. Within this range, it is possible to reduce wafer defects when used as a CMP polishing pad.
 本発明の微小中空粒子の製造方法は、微小粒子を得る工程では有機溶媒を含む油相が分散相、水相が連続相となるO/Wエマルションを調製して、微小粒子内部に有機溶剤が封入された微小粒子を取得し、前記微小粒子を、超臨界液体を用い、前記微小粒子内部から有機溶媒を除去する製造方法である。 In the method for producing hollow microparticles of the present invention, in the step of obtaining microparticles, an O/W emulsion in which an oil phase containing an organic solvent is a dispersed phase and an aqueous phase is a continuous phase is prepared, and the organic solvent is contained inside the microparticles. It is a manufacturing method of obtaining encapsulated microparticles and removing the organic solvent from the inside of the microparticles using a supercritical liquid.
 前記微小中空粒子のO/Wエマルションでの樹脂膜を形成させる方法を細分化すると、第1工程:(a)必要に応じて樹脂膜を構成する成分を添加した有機溶媒を含む油相(以下、「(a)成分」ともいう)を調製する工程、第2工程:(b)界面活性剤を含む水相(以下、「(b)成分」ともいう)を調製する工程、第3工程:前記(a)成分と前記(b)成分とを混合・撹拌して、前記水相が連続相、前記油相が分散相としてなるO/Wエマルションを調製する工程、第4工程:前記O/Wエマルション中に、樹脂膜を構成する成分を添加し、前記O/Wエマルションの界面上で縮合反応を進行させて、樹脂膜を形成させ微小粒子とし、内部に有機溶媒が封入された微小粒子が分散した微小粒子分散液を得る工程、第5工程:前記微小粒子分散液から内部に有機溶媒が封入された微小粒子を分離する工程、第6工程:前記微小粒子の内部から、超臨界液体を用い、有機溶媒溶液を取り除くことにより微小中空粒子とする工程、に分別される。 The method for forming a resin film in the O/W emulsion of the fine hollow particles can be subdivided into the first step: (a) an oil phase containing an organic solvent to which components constituting the resin film are added as necessary (hereinafter referred to as , step of preparing "component (a)"), step 2: step of preparing an aqueous phase (b) containing a surfactant (hereinafter also referred to as "component (b)"), step 3: A step of mixing and stirring the component (a) and the component (b) to prepare an O/W emulsion in which the aqueous phase is a continuous phase and the oil phase is a dispersed phase; A component constituting a resin film is added to the W emulsion, and a condensation reaction is allowed to proceed on the interface of the O/W emulsion to form a resin film to form microparticles, in which an organic solvent is encapsulated. A step of obtaining a fine particle dispersion in which is dispersed, a fifth step: separating fine particles having an organic solvent enclosed therein from the fine particle dispersion, a sixth step: from the inside of the fine particles, a supercritical liquid and removing the organic solvent solution to form fine hollow particles.
 前記微小中空粒子がメラミン樹脂からなる樹脂膜で構成される場合は、以下の工程で製造される。 When the fine hollow particles are composed of a resin film made of melamine resin, they are manufactured by the following steps.
 第1工程:
 第1工程は、O/Wエマルションにおいて分散相となる、(a)有機溶媒を含む油相を調製する工程である。この工程において、有機溶媒以外の物質を含むことも可能であるが、通常は有機溶媒のみで油相を構成する。
First step:
The first step is to prepare (a) an oil phase containing an organic solvent, which will be the dispersed phase in the O/W emulsion. In this step, substances other than the organic solvent can be contained, but usually the oil phase is composed only of the organic solvent.
 第2工程:
 第2工程は、O/Wエマルションにおいて連続相となる、(b)界面活性剤を含む水相を調製する工程であり、必要に応じてpHを調整する工程である。
Second step:
The second step is a step of preparing (b) an aqueous phase containing a surfactant, which will be the continuous phase in the O/W emulsion, and a step of adjusting the pH as necessary.
 この工程は、水中に、後述する界面活性剤を溶解させ、必要に応じてpHを調整する工程が含まれる。pHの調整等は公知の方法を用いて調合すればよい。 This step includes dissolving a surfactant, which will be described later, in water and adjusting the pH as necessary. Adjustment of pH, etc. may be prepared using a known method.
 本発明において界面活性剤の使用量は、水相に対して0.1~10%の濃度であることが好ましく、さらに好ましくは1~10%である。この範囲であれば、O/Wエマルション中の分散相の液滴の凝集が回避され、且つ、収率よく微小中空粒子が得られ易い。 The amount of surfactant used in the present invention is preferably 0.1 to 10%, more preferably 1 to 10%, relative to the aqueous phase. Within this range, aggregation of droplets of the dispersed phase in the O/W emulsion can be avoided, and fine hollow particles can be easily obtained with high yield.
  第3工程:
 第3工程は、第1工程で得られた(a)成分と第2工程で得られた(b)成分とを混合・撹拌して、(a)成分が分散相、(b)成分が連続相としてなるO/Wエマルションを調製する工程である。
Third step:
In the third step, the (a) component obtained in the first step and the (b) component obtained in the second step are mixed and stirred, and the (a) component is the dispersed phase and the (b) component is continuous. This is a step of preparing an O/W emulsion as a phase.
 本発明において、(a)成分と(b)成分とを混合、攪拌してO/Wエマルションとする方法は、製造したい微小中空粒子の粒径を勘案して、適宜公知の方法により混合・撹拌させることにより調整することができる。さらに、O/Wエマルションを調製する工程において、温度やpHを調整することもできる。 In the present invention, the method of mixing and stirring the components (a) and (b) to form an O/W emulsion takes into account the particle size of the hollow microparticles to be produced, and mixes and stirs them by a suitable known method. can be adjusted by Furthermore, temperature and pH can be adjusted in the process of preparing the O/W emulsion.
 中でも、(a)成分と(b)成分とを混合させた後、撹拌として高速せん断式、摩擦式、高圧ジェット式、超音波式等の公知の分散機を用いて分散する方法によって、O/Wエマルション化する方法が好適に採用され、これらのなかでも高速せん断式が好ましい。高速せん断式分散機を使用した場合、回転数は、好ましくは500~20,000rpm、さらに好ましくは1,000~10,000rpmである。分散時間は、好ましくは0.1~30分であり、好ましくは、1~10分である。分散温度は、好ましくは20~80℃が好ましい。 Among them, after mixing the component (a) and the component (b), O/ A W emulsion method is preferably employed, and among these, a high-speed shearing method is preferred. When using a high-speed shearing disperser, the rotation speed is preferably 500 to 20,000 rpm, more preferably 1,000 to 10,000 rpm. The dispersing time is preferably 0.1 to 30 minutes, preferably 1 to 10 minutes. The dispersion temperature is preferably 20-80°C.
 また、本発明において(a)成分と(b)成分の重量比は、(a)成分を100質量部とした際に、(b)成分が100~500質量部であることが好ましく、さらに好ましくは、150~300質量部である。 Further, in the present invention, the weight ratio of component (a) to component (b) is preferably 100 to 500 parts by mass of component (b), more preferably 100 parts by mass of component (a). is 150 to 300 parts by mass.
 第4工程:
 第4工程は、前記O/Wエマルション中にメラミンホルムアルデヒドプレポリマー化合物を加えて、O/Wエマルションの界面上でメラミンホルムアルデヒドプレポリマー化合物の縮合反応を生じさせて樹脂膜を形成することにより、内部に有機溶媒が封入された微小粒子とし、形成した微小粒子が分散した微小粒子分散液を得る工程である。
Fourth step:
In the fourth step, a melamine-formaldehyde prepolymer compound is added to the O/W emulsion, and a condensation reaction of the melamine-formaldehyde prepolymer compound occurs on the interface of the O/W emulsion to form a resin film. It is a step of forming fine particles in which an organic solvent is encapsulated in the liquid, and obtaining a fine particle dispersion liquid in which the formed fine particles are dispersed.
 用いるメラミンホルムアルデヒドプレポリマー化合物の使用量は、特に制限されないが、良好に微小粒子を形成させるためには、第1工程で用いた(a)成分100質量部あたり、20~100質量部であることが好ましい。 The amount of the melamine formaldehyde prepolymer compound to be used is not particularly limited, but it should be 20 to 100 parts by mass per 100 parts by mass of component (a) used in the first step in order to form fine particles well. is preferred.
 メラミンホルムアルデヒドプレポリマー化合物としては、後述する市販されているメラミンホルムアルデヒドプレポリマー化合物をそのまま加えてもよいが、水またはアルカリ性水溶液に溶解させて使用してもよく、または、常法に従って、メラミン及びホルムアルデヒドを含有するアルカリ性水溶液中で、アルカリ性域での加温によってメラミンにホルムアルデヒドが付加反応し、アルカリ性水溶液中に生成したメラミンホルムアルデヒドプレポリマー化合物を用いることも出来る。 As the melamine formaldehyde prepolymer compound, a commercially available melamine formaldehyde prepolymer compound described below may be added as it is, or may be used by dissolving in water or an alkaline aqueous solution, or melamine and formaldehyde may be used according to a conventional method. It is also possible to use a melamine-formaldehyde prepolymer compound produced in an alkaline aqueous solution by the addition reaction of formaldehyde to melamine by heating in an alkaline range.
 メラミンホルムアルデヒドプレポリマー化合物を100質量部とした際、水やアルカリ性水溶液が0~500質量部の範囲で用いるのが好適であり、20~300質量部の範囲で用いるのがより好適である。 When the melamine formaldehyde prepolymer compound is 100 parts by mass, water or an alkaline aqueous solution is preferably used in the range of 0 to 500 parts by mass, more preferably in the range of 20 to 300 parts by mass.
 連続相である水相のpHは、メラミンホルムアルデヒドプレポリマー化合物を添加した後に、調整すればよい。連続相である水相のpHは、7未満であることが好ましく、さらに好ましくは、pHは3.5~6.5、最も好ましいのはpHが3.5~5.5に調整されることが好ましい。好ましい反応温度は、40~90℃の範囲で反応を実施するのが好ましい。反応時間は1~48時間の範囲で実施されるのが好ましい。 The pH of the aqueous phase, which is the continuous phase, should be adjusted after adding the melamine-formaldehyde prepolymer compound. The pH of the aqueous phase, which is the continuous phase, is preferably less than 7, more preferably 3.5 to 6.5, most preferably 3.5 to 5.5. is preferred. A preferable reaction temperature is preferably in the range of 40 to 90°C. The reaction time is preferably in the range of 1 to 48 hours.
 第5工程:
 第5工程は、前記の微小粒子分散液から内部に有機溶媒が封入された微小粒子を分離する工程である。微小粒子分散液から内部に有機溶媒が封入された微小粒子を分離する分離方法は、特に制限なく一般的な分離手法から選択すればよく、具体的には、濾別や遠心分離等が用いられる。
 分離後の微小粒子は、超臨界液体処理に供される前に、前処理が施されることが好ましい。前処理としては、親水性有機溶媒処理が挙げられる。すなわち、分離後の微小粒子と、親水性有機溶媒とを接触させて、微小粒子の表面から水を除去することが好ましい。これにより、分離後の微小粒子と超臨界液体とがなじみ易くなる傾向にある。
 親水性有機溶媒としては、エタノール、tert-ブチルアルコール、アセトン、アセトニトリル、DMSO、DMF、及びエチレングリコールからなる群より選択される少なくとも1種の化合物が挙げられる。親水性有機溶媒としては、エタノール及びtert-ブチルアルコールからなる群より選択される少なくとも1種の化合物を用いることが好ましい。
 微小粒子の質量M1と親水性有機溶媒の質量M2と比M1/M2は、例えば、0.1以上5以下とする。この比M1/M2は、0.2以上2以下とすることが好ましい。
 微小粒子と親水性有機溶媒との接触時間は十分な接触を担保したうえで、例えば、1分以上20分以下とする。この接触時間は、3分以上10分以下とすることが好ましい。
 この前処理は、具体的には、微小粒子を親水性有機溶媒中に所定時間浸漬させることにより行われる。浸漬後の微小粒子は、例えば、濾過等により親水性有機溶媒中から取り出される。取り出した微小粒子を、凍結乾燥等の乾燥処理に供してもよい。
Fifth step:
The fifth step is a step of separating microparticles having an organic solvent enclosed therein from the microparticle dispersion. The separation method for separating the microparticles having an organic solvent enclosed therein from the microparticle dispersion is not particularly limited, and may be selected from general separation techniques. Specifically, filtration, centrifugation, and the like are used. .
The fine particles after separation are preferably pretreated before being subjected to supercritical fluid treatment. The pretreatment includes hydrophilic organic solvent treatment. That is, it is preferable to bring the separated microparticles into contact with a hydrophilic organic solvent to remove water from the surfaces of the microparticles. As a result, the microparticles after separation and the supercritical liquid tend to become more compatible.
Hydrophilic organic solvents include at least one compound selected from the group consisting of ethanol, tert-butyl alcohol, acetone, acetonitrile, DMSO, DMF, and ethylene glycol. At least one compound selected from the group consisting of ethanol and tert-butyl alcohol is preferably used as the hydrophilic organic solvent.
The mass M1 of the fine particles, the mass M2 of the hydrophilic organic solvent, and the ratio M1/M2 are, for example, 0.1 or more and 5 or less. The ratio M1/M2 is preferably 0.2 or more and 2 or less.
The contact time between the microparticles and the hydrophilic organic solvent is set to, for example, 1 minute or more and 20 minutes or less after ensuring sufficient contact. This contact time is preferably 3 minutes or more and 10 minutes or less.
Specifically, this pretreatment is performed by immersing the microparticles in a hydrophilic organic solvent for a predetermined period of time. After immersion, the microparticles are removed from the hydrophilic organic solvent by, for example, filtration. The removed microparticles may be subjected to a drying treatment such as freeze-drying.
 第6工程:
 第6工程は、第5工程で得られた前記の内部に有機溶媒が封入された微小粒子から、超臨界液体を用い、内部の油相を取り除き、微小中空粒子とする工程である。超臨界液体で内部の有機溶媒を取り除く手法は公知のものが使用できる。例えば、前記微小粒子存在下で、超臨界液体の超臨界温度と超臨界圧力以上の条件にし、流速1mL/min~200mL/minで10min~720minの範囲で超臨界液体を流すことにより内部の有機溶媒を超臨界液体に置換することが好ましい。置換後は、減圧し、室温に戻すことで微小中空粒子を得ることが出来る。微小粒子が水分を多量に含んでいる場合、親水性溶媒を超臨界液体と共に流す、または、親水性溶媒でスラリー状にする、または、デカンテーションやろ過で前処理することにより、効率よく水分と油相を除去することが可能となる。
Sixth step:
The sixth step is a step of using a supercritical liquid to remove the internal oil phase from the microparticles obtained in the fifth step and having the organic solvent encapsulated therein, to obtain hollow microparticles. A known technique can be used for removing the internal organic solvent with a supercritical fluid. For example, in the presence of the fine particles, the supercritical temperature and supercritical pressure of the supercritical liquid are set to the conditions above, and the internal organic It is preferable to replace the solvent with a supercritical liquid. After the substitution, the pressure is reduced and the temperature is returned to room temperature to obtain hollow microparticles. If the microparticles contain a large amount of water, the water can be efficiently removed by flowing a hydrophilic solvent together with the supercritical liquid, making a slurry with the hydrophilic solvent, or pretreating by decantation or filtration. It becomes possible to remove the oil phase.
 本発明で好ましい超臨界液体は超臨界二酸化炭素であることが好ましく、超臨界二酸化炭素を用いる際の好ましい条件としては、40℃~90℃、16MPa~40MPaであることが好ましい。
 超臨界液体による乾燥処理において、超臨界液体の圧力は、10MPa以上40MPa以下であることが好ましい。圧力がこの範囲内にあると、超臨界二酸化炭素がより中空微粒子中に浸透し、効率的に粒子内在有機溶媒が除かれることで微小中空粒子の収率が高まる傾向にある。この圧力は、12MPa以上30MPa以下であることがより好ましく、14MPa以上20MPa以下であることが更に好ましい。
 超臨界液体を用いる装置内部の温度は、31.1℃以上60℃以下であることが好ましい。温度がこの範囲内にあると、微小中空粒子の収率が高まる傾向にある。この温度は、35℃以上50℃以下であることがより好ましい。 超臨界液体の流速は、1mL/分以上200mL/分以下であることが好ましい。流速がこの範囲内にあると、微小中空粒子の収率が高まる傾向にある。この流速は、20mL/分以上100mL/分以下であることがより好ましく、30mL/分以上50mL/分以下であることが更に好ましい。
 超臨界液体と微小粒子との接触時間は、10分以上720分以下であることが好ましい。接触時間がこの範囲内にあると、微小中空粒子の収率が高まる傾向にある。この接触時間は、20分以上120分以下であることがより好ましく、30分以上55分以下であることが更に好ましい。
The preferred supercritical liquid in the present invention is supercritical carbon dioxide, and preferred conditions for using supercritical carbon dioxide are 40° C. to 90° C. and 16 MPa to 40 MPa.
In the drying process using the supercritical liquid, the pressure of the supercritical liquid is preferably 10 MPa or more and 40 MPa or less. When the pressure is within this range, the supercritical carbon dioxide penetrates more into the hollow fine particles, and the organic solvent contained in the particles is efficiently removed, which tends to increase the yield of fine hollow particles. This pressure is more preferably 12 MPa or more and 30 MPa or less, and further preferably 14 MPa or more and 20 MPa or less.
The temperature inside the apparatus using the supercritical liquid is preferably 31.1° C. or higher and 60° C. or lower. When the temperature is within this range, the yield of fine hollow particles tends to increase. This temperature is more preferably 35° C. or higher and 50° C. or lower. The flow rate of the supercritical liquid is preferably 1 mL/min or more and 200 mL/min or less. When the flow rate is within this range, the yield of fine hollow particles tends to increase. This flow rate is more preferably 20 mL/min or more and 100 mL/min or less, and still more preferably 30 mL/min or more and 50 mL/min or less.
The contact time between the supercritical liquid and the microparticles is preferably 10 minutes or more and 720 minutes or less. When the contact time is within this range, the yield of fine hollow particles tends to increase. This contact time is more preferably 20 minutes or more and 120 minutes or less, and even more preferably 30 minutes or more and 55 minutes or less.
 以下に各成分について説明する。 Each component is explained below.
 本発明において、本発明において、(a)成分に用いられる有機溶媒は、特に制限されないが、沸点が90℃~200℃の有機溶媒が好ましい。この範囲にあることで、重合する温度でもエマルションの形成を維持出来、且つ得られた微小粒子から該有機溶媒が除去し易いものが好ましい。 In the present invention, the organic solvent used for component (a) is not particularly limited, but an organic solvent having a boiling point of 90°C to 200°C is preferable. Within this range, it is preferable that the emulsion formation can be maintained even at the polymerization temperature, and that the organic solvent can be easily removed from the obtained microparticles.
 より好ましくは沸点が100℃~180℃のものである。これらを例示すると、以下のものが挙げられる。 More preferably, it has a boiling point of 100°C to 180°C. Examples of these include the following.
 炭化水素系溶媒としては、炭素数が7~11の脂肪族炭化水素、シクロヘプタン、シクロオクタン等の脂環式炭化水素、酢酸ブチル、ジブチルエーテル、1,2-ジクロロエタン、トルエン、キシレン、ベンズアルデヒド、クロロベンゼン、ジクロロベンゼン等が用いられる。 Examples of hydrocarbon solvents include aliphatic hydrocarbons having 7 to 11 carbon atoms, alicyclic hydrocarbons such as cycloheptane and cyclooctane, butyl acetate, dibutyl ether, 1,2-dichloroethane, toluene, xylene, benzaldehyde, Chlorobenzene, dichlorobenzene and the like are used.
 これらの有機溶媒は単独で用いてもよく、また、二種以上の混合溶媒としてもよい。 These organic solvents may be used alone or as a mixed solvent of two or more.
 本発明で用いられる有機溶媒は、中でも、炭素数が8~11の脂肪族炭化水素、シクロヘプタン、シクロオクタン、トルエン、キシレン、クロロベンゼンがさらに好ましく、特に、トルエン、キシレン、クロロベンゼンがもっとも好ましい。 Among the organic solvents used in the present invention, aliphatic hydrocarbons having 8 to 11 carbon atoms, cycloheptane, cyclooctane, toluene, xylene, and chlorobenzene are more preferred, and toluene, xylene, and chlorobenzene are most preferred.
 本発明において、(b)成分に用いられる界面活性剤は特に制約されず、2種類以上を混合してもよい。本発明の界面活性剤の具体例としては、国際公開第WO2021/201088号に記載の化合物が使用できる。その中でも、微小中空粒子がメラミン樹脂からなる(b)成分の場合、少なくとも1種類の親水基としてカルボキシル基を有するものが好適であり、該カルボキシル基がジカルボン酸無水物の加水分解で生じるものでもよい。その中でもスチレン-無水マレイン酸共重合体、エチレン-無水マレイン酸共重合体、イソブチレン-無水マレイン酸共重合体等の無水マレイン酸共重合体が好適に使用でき、より好ましくは、スチレン-無水マレイン酸共重合体が好適に使用できる。なお、上述した無水マレイン酸共重合体の重量平均分子量は30,000~500,000程度のものが好適に使用され、最も好ましくは、100,000~500,000程度のものが好ましい。この範囲であれば、安定したエマルション、及び、樹脂膜を形成することが出来る。なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によって測定される標準ポリスチレン換算値である。 In the present invention, the surfactant used for component (b) is not particularly limited, and two or more types may be mixed. As specific examples of the surfactant of the present invention, compounds described in International Publication No. WO2021/201088 can be used. Among them, in the case of the component (b) in which the hollow microparticles are made of a melamine resin, those having a carboxyl group as at least one hydrophilic group are preferable, and the carboxyl group may be generated by hydrolysis of a dicarboxylic acid anhydride. good. Among them, maleic anhydride copolymers such as styrene-maleic anhydride copolymer, ethylene-maleic anhydride copolymer and isobutylene-maleic anhydride copolymer can be preferably used, and more preferably styrene-maleic anhydride copolymer. Acid copolymers can be preferably used. The maleic anhydride copolymer described above preferably has a weight average molecular weight of about 30,000 to 500,000, most preferably about 100,000 to 500,000. Within this range, a stable emulsion and resin film can be formed. In addition, a weight average molecular weight is a standard polystyrene conversion value measured by a gel permeation chromatography (GPC).
 本発明において使用できるメラミンホルムアルデヒドプレポリマー化合物は、メラミンとホルムアルデヒドから常法に従って製造することができる。例えば、メラミン及びホルムアルデヒドを含有するアルカリ性水溶液中で、アルカリ性域での加温によってメラミンにホルムアルデヒドが付加反応することで製造できる。また、メラミンホルムアルデヒドプレポリマー化合物は、市販されているものも適宜使用できる。たとえば、ベッカミンAPM、ベッカミンM-3、ベッカミンM-3(60)、ベッカミンMA-S、ベッカミンJ-101、ベッカミンJ-1 01LF(DIC株式会社製)、ニカレジンS-176、ニカレジンS-260(日本カーバイト株式会社製)、ミルベンレジンSM-800(昭和高分子株式会社製)等が挙げられる。 The melamine-formaldehyde prepolymer compound that can be used in the present invention can be produced from melamine and formaldehyde by a conventional method. For example, it can be produced by adding formaldehyde to melamine by heating in an alkaline region in an alkaline aqueous solution containing melamine and formaldehyde. In addition, commercially available melamine formaldehyde prepolymer compounds can be used as appropriate. For example, Beckamin APM, Beckamin M-3, Beckamin M-3 (60), Beckamin MA-S, Beckamin J-101, Beckamin J-101LF (manufactured by DIC Corporation), Nikaresin S-176, Nikaresin S-260 ( Nippon Carbide Co., Ltd.), Milben Resin SM-800 (Showa Polymer Co., Ltd.), and the like.
 前記微小中空粒子形成のメカニズムは、水相中に(a)有機溶媒を含む油相の液滴が分散し、その液滴界面上に配位した界面活性剤の親水基(例えばカルボキシル基)にメラミンホルムアルデヒドプレポリマー化合物に含まれるメチロール化メラミンが酸アミド結合することにより、該液滴の周囲をメチロール化メラミンが包囲し、この包囲状態で隣接するメチロール化メラミン同士がメチロール基間での脱水縮合反応し、メラミン系樹脂からなる樹脂膜を形成するものと考えられる。また、メラミンのメチロール化割合(メラミンに対するホルムアルデヒドのモル比)は樹脂膜の緻密さに関連し、メチロール化割合が高い程、架橋密度が上がって緻密になる。従って、メチロール化メラミンとして、以下に記載した範囲のメチロール化メラミンを用いることが好ましい。 The mechanism of the formation of the hollow microparticles is as follows: droplets of (a) an oil phase containing an organic solvent are dispersed in an aqueous phase, and the hydrophilic groups (e.g., carboxyl groups) of the surfactant coordinated on the droplet interface Methylolated melamine contained in the melamine-formaldehyde prepolymer compound forms an acid amide bond, whereby the droplets are surrounded by methylolated melamine, and in this surrounded state, adjacent methylolated melamine undergoes dehydration condensation between methylol groups. It is believed that they react to form a resin film made of melamine-based resin. The ratio of methylolation of melamine (molar ratio of formaldehyde to melamine) is related to the density of the resin film, and the higher the ratio of methylolation, the higher the crosslink density and the more dense the resin film. Therefore, it is preferable to use a methylolated melamine within the range described below as the methylolated melamine.
 メラミンとホルムアルデヒドのモル比は、モノメチロール化メラミン(メラミン/ホルムアルデヒドのモル比:1/1)からヘキサメチロール化メラミン(同1/6)まで調製可能であるが、O/Wエマルションにおける油相の液滴に対する包囲性と縮合反応性(架橋性)の両面から、トリメチロール化メラミン(同1/3)からペンタメチロール化メラミン(同1/5)が好適であり、特にテトラメチロール化メラミン(同1/4)が好ましい。 The molar ratio of melamine and formaldehyde can be adjusted from monomethylolated melamine (melamine/formaldehyde molar ratio: 1/1) to hexamethylolated melamine (molar ratio of melamine/formaldehyde: 1/6). Trimethylolated melamine (1/3 of the same) to pentamethylolated melamine (1/5 of the same) are suitable from both aspects of enveloping properties against droplets and condensation reactivity (crosslinking), especially tetramethylolated melamine (1/5 1/4) is preferred.
 本発明の微小中空粒子が尿素樹脂、アミド樹脂、及び、ウレタン(ウレア)樹脂からなる樹脂膜で構成される場合もO/Wエマルションを調製して、微小粒子内部に有機溶剤が封入された微小粒子を取得する公知のものを用いて製造すればよい。 When the hollow microparticles of the present invention are composed of a resin film made of urea resin, amide resin, and urethane (urea) resin, an O/W emulsion is prepared to obtain microparticles in which an organic solvent is encapsulated inside the microparticles. It may be produced using a known method for obtaining particles.
 尿素樹脂の場合は、前述したメラミン系樹脂と同様の製造方法で製造でき、前述したメラミン系樹脂の第4工程のメラミンホルムアルデヒドプレポリマー化合物の代わりに尿素ホルムアルデヒドプレポリマーを用いることで同様に製造することが出来る。 In the case of urea resin, it can be produced by the same production method as for the melamine resin described above, and is produced in the same manner by using a urea formaldehyde prepolymer instead of the melamine formaldehyde prepolymer compound in the fourth step of the melamine resin described above. can do
 前記尿素ホルムアルデヒドプレポリマー化合物は尿素とホルムアルデヒドの尿素-ホルムアルデヒド初期縮合物であり、常法に従って製造することができる。尿素とホルムアルデヒドの尿素-ホルムアルデヒド初期縮合物としては、例えばメチロール尿素などが挙げられる。また、尿素ホルムアルデヒドプレポリマー化合物としては、市販されているものも適宜使用できる。たとえば、8HSP(昭和高分子株式会社製)等が挙げられる。 The urea-formaldehyde prepolymer compound is a urea-formaldehyde initial condensate of urea and formaldehyde, and can be produced by a conventional method. Urea-formaldehyde precondensates of urea and formaldehyde include, for example, methylol urea. As the urea-formaldehyde prepolymer compound, commercially available ones can be used as appropriate. Examples thereof include 8HSP (manufactured by Showa High Polymer Co., Ltd.).
 前記微小中空粒子がアミド樹脂からなる樹脂膜で構成される場合は、以下の工程で製造される。 When the fine hollow particles are composed of a resin film made of an amide resin, they are manufactured by the following steps.
第1工程:
 第1工程は、O/Wエマルションにおいて分散相となる(a2)少なくとも2個のカルボキシル基を有する多官能カルボン酸化合物と有機溶媒とを含む油相(以下、「(a2)成分」ともいう)を調製する工程である。
First step:
In the first step, the dispersed phase in the O/W emulsion is (a2) an oil phase containing a polyfunctional carboxylic acid compound having at least two carboxyl groups and an organic solvent (hereinafter also referred to as "(a2) component"). is a step of preparing
 この工程の(a2)成分は、は、前述した(a)成分で例示した有機溶媒中に、少なくとも2個のカルボキシル基を有する多官能カルボン酸化合物を溶解させて油相とする工程であり、公知の方法で溶解させて均一な溶液とすれはよい。好ましい少なくとも2個のカルボキシル基を有する多官能カルボン酸化合物の使用量は、有機溶媒100質量部に対して0.1~50質量部、好ましくは0.5~20質量部、さらに好ましくは1~10質量部である。さらに、少なくとも2個のカルボキシル基を有する多官能カルボン酸化合物が含有しているカルボン酸基のモル数(n1)に対し、後述する第4工程で用いる少なくとも2個のアミノ基を有する多官能アミン化合物の合計のアミノ基含有化合物のモル数が(n2)の場合、0.5≦(n1)/(n2)≦2の範囲とすることが好ましい。 Component (a2) in this step is a step of dissolving a polyfunctional carboxylic acid compound having at least two carboxyl groups in an organic solvent exemplified in component (a) above to form an oil phase, It can be dissolved by a known method to form a homogeneous solution. The preferred amount of the polyfunctional carboxylic acid compound having at least two carboxyl groups is 0.1 to 50 parts by weight, preferably 0.5 to 20 parts by weight, more preferably 1 to 50 parts by weight per 100 parts by weight of the organic solvent. 10 parts by mass. Furthermore, a polyfunctional amine having at least two amino groups used in the fourth step described later, relative to the number of moles (n1) of carboxylic acid groups contained in the polyfunctional carboxylic acid compound having at least two carboxyl groups, When the total number of moles of amino group-containing compounds in the compounds is (n2), the range is preferably 0.5≦(n1)/(n2)≦2.
 また、(a2)成分には、界面重合の反応を促進させる目的のため、後述する触媒を添加してもよい。 In addition, a catalyst, which will be described later, may be added to the component (a2) for the purpose of promoting the interfacial polymerization reaction.
第2工程:
 第2工程は、O/Wエマルションにおいて連続相となる、(b2)界面活性剤を含む水相(以下、「(b2)成分」ともいう)を調製する工程である。
Second step:
The second step is a step of preparing an aqueous phase (b2) containing a surfactant (hereinafter also referred to as "component (b2)"), which will be the continuous phase in the O/W emulsion.
 この工程は、水中に、後述する界面活性剤を溶解させて水相とする工程であり、公知の方法で溶解させて均一な溶液とすれはよい。 This step is a step of dissolving a surfactant, which will be described later, in water to form an aqueous phase.
 本発明において界面活性剤の使用量は、水相に対して0.01~20%の濃度であることが好ましく、さらに好ましくは0.1~10%である。この範囲であれば、O/Wエマルション中の分散相の液滴の凝集が回避され、平均粒子径が揃った微小粒子が得られ易い。 The amount of surfactant used in the present invention is preferably 0.01 to 20%, more preferably 0.1 to 10%, relative to the aqueous phase. Within this range, aggregation of droplets of the dispersed phase in the O/W emulsion is avoided, and fine particles having a uniform average particle size are easily obtained.
 また、(b2)成分には、界面重合の反応を促進させる目的のため、後述する触媒を添加してもよい。 In addition, a catalyst, which will be described later, may be added to the component (b2) for the purpose of promoting the interfacial polymerization reaction.
第3工程:
 第3工程は、第1工程で得られた(a2)成分と第2工程で得られた(b2)成分とを混合・撹拌して、(b2)成分が連続相、(a2)成分が分散相としてなるO/Wエマルションを調製する工程である。
Third step:
In the third step, the (a2) component obtained in the first step and the (b2) component obtained in the second step are mixed and stirred, and the (b2) component is a continuous phase and the (a2) component is dispersed. This is a step of preparing an O/W emulsion as a phase.
 本発明において、(a2)成分と(b2)成分とを混合、攪拌してO/Wエマルションとする方法は、製造したい微小粒子の粒径を勘案して、適宜公知の方法により混合・撹拌させることにより調製することができる。 In the present invention, the method of mixing and stirring the components (a2) and (b2) to form an O/W emulsion takes into account the particle size of the microparticles to be produced, and mixes and stirs them by a suitable known method. It can be prepared by
 中でも、(a2)成分と(b2)成分とを混合させた後、撹拌として高速せん断式、摩擦式、高圧ジェット式、超音波式等の公知の分散機を用いて分散する方法によって、O/Wエマルション化する方法が好適に採用され、これらのなかでも高速せん断式が好ましい。高速せん断式分散機を使用した場合、回転数は、好ましくは500~20,000rpm、さらに好ましくは1,000~10,000rpmである。分散時間は、好ましくは0.1~60分であり、好ましくは、0.5~30分である。分散温度は、好ましくは10~40℃である。 Among them, after mixing the component (a2) and the component (b2), O/ A W emulsion method is preferably employed, and among these, a high-speed shearing method is preferred. When using a high-speed shearing disperser, the rotation speed is preferably 500 to 20,000 rpm, more preferably 1,000 to 10,000 rpm. The dispersing time is preferably 0.1 to 60 minutes, preferably 0.5 to 30 minutes. The dispersion temperature is preferably 10-40°C.
 また、本発明において(a2)成分と(b2)成分の重量比は、(a2)成分を100質量部とした際に、(b2)成分が100~1000質量部であることが好ましく、さらに好ましくは、150~500質量部であることが好ましい。この範囲であれば、良好なエマルションが得られる。 In the present invention, the weight ratio of component (a2) to component (b2) is preferably 100 to 1000 parts by mass of component (b2), more preferably 100 parts by mass of component (a2). is preferably 150 to 500 parts by mass. Within this range, a good emulsion can be obtained.
第4工程:
 第4工程は、前記O/Wエマルション中に、少なくとも2個のアミノ基を有する多官能アミン化合物を加えて、O/Wエマルションの界面上で界面重合させて樹脂膜を形成させ、微小粒子とすることにより、該微小粒子が分散した微小粒子分散液を得る工程である。該少なくとも2個のアミノ基を有する多官能アミン化合物の使用量は、前記したとおりである。
Fourth step:
In the fourth step, a polyfunctional amine compound having at least two amino groups is added to the O/W emulsion, interfacially polymerized on the interface of the O/W emulsion to form a resin film, and fine particles and This is a step of obtaining a fine particle dispersion in which the fine particles are dispersed. The amount of the polyfunctional amine compound having at least two amino groups is as described above.
 また、少なくとも2個のアミノ基を有する多官能アミン化合物をO/Wエマルション中に加える場合は、そのまま加えてもよく、予め水に溶解させて使用してもよい。 Also, when adding a polyfunctional amine compound having at least two amino groups to an O/W emulsion, it may be added as it is, or it may be dissolved in water in advance before use.
 予め水に溶解させる場合、少なくとも2個のアミノ基を有する多官能アミン化合物の合計量を100質量部とした際、水が50~10,000質量部の範囲で用いるのが好適である。 When dissolved in water in advance, it is preferable to use water in the range of 50 to 10,000 parts by mass when the total amount of the polyfunctional amine compound having at least two amino groups is 100 parts by mass.
 重合温度は、O/Wエマルションが壊れない温度であれば特に制限なく、好ましくは、5~70℃の範囲で反応を実施するのが好ましい。重合時間も微小粒子が形成できれば特に制限なく、通常は0.5~24時間の範囲から選択される。 The polymerization temperature is not particularly limited as long as it does not break the O/W emulsion, and the reaction is preferably carried out in the range of 5 to 70°C. The polymerization time is not particularly limited as long as fine particles can be formed, and is usually selected from the range of 0.5 to 24 hours.
第5工程、第6工程
 第5工程、第6工程は、前記微小中空粒子がメラミン系樹脂からなる樹脂膜で構成される場合と同様な工程である。
Fifth and Sixth Steps The fifth and sixth steps are the same steps as in the case where the fine hollow particles are composed of a resin film made of a melamine-based resin.
 ここで、(a2)成分中の少なくとも2個のカルボキシル基を有する多官能カルボン酸化合物と添加相の少なくとも2個のアミノ基を有する多官能アミンの具体例としては、国際公開第WO2021/201088号に記載の化合物が使用できる。その中でも、少なくとも2個のカルボキシル基を有する多官能カルボン酸化合物としては芳香族ジカルボン酸ジクロル化物が好適であり、最も好ましくはイソフタル酸ジクロライド、及びテレフタル酸ジクロライドである。
また、(b2)成分に使用できる界面活性剤の中でも、アクリル酸ナトリウム-アクリル酸エステル共重合体を用いるのが好適である。
Specific examples of the polyfunctional carboxylic acid compound having at least two carboxyl groups in the component (a2) and the polyfunctional amine having at least two amino groups in the additive phase include International Publication No. WO2021/201088. can be used. Among them, the polyfunctional carboxylic acid compound having at least two carboxyl groups is preferably an aromatic dicarboxylic acid dichloride, most preferably isophthalic acid dichloride and terephthalic acid dichloride.
Among surfactants that can be used as the component (b2), it is preferable to use a sodium acrylate-acrylate copolymer.
 前記微小中空粒子がウレタン樹脂からなる樹脂膜で構成される場合は、以下の工程で製造される。 When the fine hollow particles are composed of a resin film made of urethane resin, they are manufactured by the following steps.
第1工程:
 第1工程は、O/Wエマルションにおいて分散相となる(a3)少なくとも2個のイソシアネート基を有する多官能イソシアネート化合物と有機溶媒とを含む油相(以下、「(a3)成分」をもいう)を調製する工程である。
First step:
In the first step, the dispersed phase in the O/W emulsion is (a3) an oil phase containing a polyfunctional isocyanate compound having at least two isocyanate groups and an organic solvent (hereinafter also referred to as "(a3) component"). is a step of preparing
 この工程の(a3)成分は、は、前述した(a)成分で例示した有機溶媒中に、少なくとも2個のイソシアネート基を有するイソシアネート化合物を溶解させて油相とする工程であり、公知の方法で溶解させて均一な溶液とすれはよい。好ましい少なくとも2個のイソシアネート基を有する多官能イソシアネート化合物の使用量は、有機溶媒100質量部に対して0.1~50質量部、好ましくは0.5~20質量部、さらに好ましくは1~10質量部である。さらに、少なくとも2個のイソシアネート基を有する多官能イソシアネート化合物が含有しているイソシアネート基のモル数(n1)に対し、後述する第4工程で用いるポリオール、ポリアミン、及び、水酸基とアミノ基を両方有する活性水素含有化合物が含有する合計の活性水素基のモル数が(n2)の場合、0.5≦(n1)/(n2)≦2の範囲とすることが好ましい。 The (a3) component in this step is a step of dissolving an isocyanate compound having at least two isocyanate groups in an organic solvent exemplified in the above-described component (a) to form an oil phase, which is a known method. It is good to make a uniform solution by dissolving with . The preferred amount of the polyfunctional isocyanate compound having at least two isocyanate groups is 0.1 to 50 parts by weight, preferably 0.5 to 20 parts by weight, more preferably 1 to 10 parts by weight, per 100 parts by weight of the organic solvent. part by mass. Furthermore, with respect to the number of moles (n1) of isocyanate groups contained in the polyfunctional isocyanate compound having at least two isocyanate groups, the polyol, polyamine, and hydroxyl group and amino group used in the later-described fourth step have both When the total number of moles of active hydrogen groups contained in the active hydrogen-containing compound is (n2), the range is preferably 0.5≦(n1)/(n2)≦2.
  また、(a3)成分には、界面重合の反応を促進させる目的のため、後述する触媒を添加してもよい。 In addition, a catalyst, which will be described later, may be added to the component (a3) for the purpose of promoting the interfacial polymerization reaction.
第2工程:
 第2工程は、O/Wエマルションにおいて連続相となる、(b3)界面活性剤と水とを含む水相(以下、「(b3)成分」ともいう)を調製する工程である。調製方法としては、前述した(b2)成分と同様に調製することが可能である。
Second step:
The second step is a step of preparing an aqueous phase (b3) containing a surfactant and water (hereinafter also referred to as "component (b3)"), which will be the continuous phase in the O/W emulsion. As a preparation method, it can be prepared in the same manner as the component (b2) described above.
第3工程
 第3工程は、前記微小中空粒子がアミド樹脂からなる樹脂膜で構成される場合と同様な工程である。
Third Step The third step is the same step as in the case where the fine hollow particles are composed of a resin film made of an amide resin.
第4工程:
 第4工程は、前記O/Wエマルション中に、ポリオール、ポリアミン、及び、水酸基とアミノ基を両方有する活性水素含有化合物から選ばれる少なくとも1種を加えて、O/Wエマルションの界面上で界面重合させて樹脂膜を形成させ、微小粒子とすることにより、該微小粒子が分散した微小粒子分散液を得る工程である。該少なくともポリオール、ポリアミン、及び、水酸基とアミノ基を両方有する活性水素含有化合物から選ばれる少なくとも1種の使用量は、第一工程で使用した有機溶媒100質量部に対して0.001~100質量部、好ましくは0.01~80質量部、さらに好ましくは0.01~50質量部である。
Fourth step:
In the fourth step, at least one selected from polyols, polyamines, and active hydrogen-containing compounds having both a hydroxyl group and an amino group is added to the O/W emulsion, and interfacial polymerization is performed on the interface of the O/W emulsion. This is a step of obtaining a fine particle dispersion liquid in which the fine particles are dispersed by forming a resin film and forming fine particles. The amount of at least one selected from polyols, polyamines, and active hydrogen-containing compounds having both a hydroxyl group and an amino group is 0.001 to 100 parts by mass with respect to 100 parts by mass of the organic solvent used in the first step. parts, preferably 0.01 to 80 parts by mass, more preferably 0.01 to 50 parts by mass.
 また、ポリオール、ポリアミン、及び、水酸基とアミノ基を両方有する活性水素含有化合物については、少なくとも部分的に水中で溶解性があり、疎水性相よりも親水性相で高い親和性を有している化合物であり、一般には、室温(25℃)で、水のような親水性溶剤中での溶解性が、少なくとも1g/lの溶解性を有するものを選択することができ、好ましくは、親水性溶剤中で20g/l以上の溶解性を有する水溶性化合物が挙げられる。 Also, polyols, polyamines, and active hydrogen-containing compounds having both hydroxyl and amino groups are at least partially soluble in water and have a higher affinity for hydrophilic phases than for hydrophobic phases. compounds, generally having a solubility of at least 1 g/l in a hydrophilic solvent such as water at room temperature (25° C.), preferably hydrophilic Water-soluble compounds having a solubility of 20 g/l or more in the solvent are mentioned.
 ポリオール、ポリアミン、及び、水酸基とアミノ基を両方有する活性水素含有化合物をO/Wエマルション中に加える場合は、そのまま加えてもよく、予め水に溶解させて使用してもよい。 When polyols, polyamines, and active hydrogen-containing compounds having both hydroxyl groups and amino groups are added to the O/W emulsion, they may be added as they are, or they may be dissolved in water in advance before use.
 予め水に溶解させる場合、ポリオール、ポリアミン、及び、水酸基とアミノ基を両方有する活性水素含有化合物の合計量を100質量部とした際、水が50~10,000質量部の範囲で用いるのが好適である。 When dissolved in water in advance, when the total amount of polyol, polyamine, and active hydrogen-containing compound having both a hydroxyl group and an amino group is 100 parts by mass, it is preferable to use water in the range of 50 to 10,000 parts by mass. preferred.
 重合温度は、O/Wエマルションが壊れない温度であれば特に制限なく、好ましくは、5~70℃の範囲で反応を実施するのが好ましい。重合時間も微小粒子が形成できれば特に制限なく、通常は0.5~24時間の範囲から選択される。 The polymerization temperature is not particularly limited as long as it does not break the O/W emulsion, and the reaction is preferably carried out in the range of 5 to 70°C. The polymerization time is not particularly limited as long as fine particles can be formed, and is usually selected from the range of 0.5 to 24 hours.
第5工程、第6工程
 第5工程、第6工程は、前記微小中空粒子がメラミン系樹脂からなる樹脂膜で構成される場合と同様な工程である。
Fifth and Sixth Steps The fifth and sixth steps are the same steps as in the case where the fine hollow particles are composed of a resin film made of a melamine-based resin.
 ここで、(a3)成分中の少なくとも2個のイソシアネート基を有する多官能イソシアネート化合物とポリオール、ポリアミン、及び、水酸基とアミノ基を両方有する活性水素含有化合物の具体例としては、国際公開第WO2021/065625号に記載の化合物が使用できる。 Here, specific examples of the polyfunctional isocyanate compound having at least two isocyanate groups in the component (a3), polyols, polyamines, and active hydrogen-containing compounds having both hydroxyl groups and amino groups include International Publication No. WO2021/ 065625 can be used.
 その中でも、多官能イソシアネート化合物としては、形成される微小粒子の強度や、反応性の制御の観点から、イソホロンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、(ビシクロ[2.2.1]ヘプタン-2,5(2,6)-ジイル)ビスメチレンジイソシアネートから選択される脂環族イソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4'-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート(o-、m-,p-)から選択される芳香族イソシアネート、ヘキサメチレンジイソシアネートやトリレンジイソシアネートなどのジイソシアネート類を主原料としたビュレット構造、ウレトジオン構造、あるいはイソシアヌレート構造を有する多官能イソシアネート、3官能以上のポリオールとのアダクト体として多官能イソシアネートが好適である。 Among them, polyfunctional isocyanate compounds include isophorone diisocyanate, 1,3-bis(isocyanatomethyl)cyclohexane, and (bicyclo[2.2.1]) from the viewpoint of controlling the strength and reactivity of the formed microparticles. alicyclic isocyanate selected from heptane-2,5(2,6)-diyl)bismethylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, xyl A polyfunctional compound having a biret structure, a uretdione structure, or an isocyanurate structure mainly made from aromatic isocyanates selected from diisocyanates (o-, m-, p-), diisocyanates such as hexamethylene diisocyanate and tolylene diisocyanate. Polyfunctional isocyanates are suitable as isocyanates and adducts with trifunctional or higher polyols.
 また、ポリオール、ポリアミン、及び、水酸基とアミノ基を両方有する活性水素含有化合物としては、エチレングリコール、ジエチレングリコール、プロピレングリコール、ネオペンチルグリコール、1,2-ブタンジオール、1,3-ブタンジオール、2,3-ブタンジオール、1,4-ブタンジオール等の2官能ポリオール;グリセリン、トリメチロールエタン、トリメチロールプロパン等の3官能ポリオール;ペンタエリトリトール、エリスリトール、ジグリセロール、ジグリセリン、ジトリメチロールプロパン等の4官能ポリオール;アラビトール等の5官能ポリオール;ズルシトール、ソルビトール、マンニトール、ジペンタエリスリトール又はトリグリセロール等の6官能ポリオール;環状デキストリン;エチレンジアミン、プロピレンジアミン、1,4-ジアミノブタン、ヘキサメチレンジアミン、ジプロピレントリアミン、トリス(2-アミノエチル)アミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン等の水溶性ポリアミンが好適である。 Examples of polyols, polyamines, and active hydrogen-containing compounds having both a hydroxyl group and an amino group include ethylene glycol, diethylene glycol, propylene glycol, neopentyl glycol, 1,2-butanediol, 1,3-butanediol, 2, Bifunctional polyols such as 3-butanediol and 1,4-butanediol; Trifunctional polyols such as glycerin, trimethylolethane and trimethylolpropane; Tetrafunctional polyols such as pentaerythritol, erythritol, diglycerol, diglycerin and ditrimethylolpropane Polyol; pentafunctional polyol such as arabitol; hexafunctional polyol such as dulcitol, sorbitol, mannitol, dipentaerythritol or triglycerol; cyclic dextrin; ethylenediamine, propylenediamine, 1,4-diaminobutane, hexamethylenediamine, dipropylenetriamine, Water-soluble polyamines such as tris(2-aminoethyl)amine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine are preferred.
 また、(b3)成分に含まれる界面活性剤としては、ポリビニルアルコール、またはアニオン変性ポリビニルアルコールを用いるのが好適である。 Also, as the surfactant contained in the component (b3), it is preferable to use polyvinyl alcohol or anion-modified polyvinyl alcohol.
 本発明で、微小中空粒子がアミド樹脂からなる樹脂膜で構成される場合に用いられるアミド化触媒は、任意の適切なものが何ら制限なく使用できる。具体的に例示すると、ホウ素やリン酸二水素ナトリウム等が挙げられる。 In the present invention, any appropriate amidation catalyst can be used without any limitation when the fine hollow particles are composed of a resin film made of an amide resin. Specific examples include boron and sodium dihydrogen phosphate.
 また、微小中空粒子がウレタン(ウレア)樹脂からなる樹脂膜で構成される場合や、ウレタンプレポリマーを合成する場合に用いられるウレタン化触媒は、任意の適切なものが何ら制限なく使用できる。具体的に例示すると、トリエチレンジアミン、ヘキサメチレンテトラミン、N,N-ジメチルオクチルアミン、N,N,N′,N′-テトラメチル-1,6-ジアミノヘキサン、4,4′-トリメチレンビス(1-メチルピペリジン)、1,8-ジアザビシクロ-(5,4,0)-7-ウンデセン、ジメチルスズジクロライド、ジメチルスズビス(イソオクチルチオグリコレート)、ジブチルスズジクロライド、ジブチルチンジラウレート、ジブチルスズマレエート、ジブチルスズマレエートポリマー、ジブチルスズジリシノレート、ジブチルスズビス(ドデシルメルカプチド)、ジブチルスズビス(イソオクチルチオグリコレート)、ジオクチルスズジクロライド、ジオクチルスズマレエート、ジオクチルスズマレエートポリマー、ジオクチルスズビス(ブチルマレエート)、ジオクチルスズジラウレート、ジオクチルスズジリシノレート、ジオクチルスズジオレエート、ジオクチルスズジ(6-ヒドロキシ)カプロエート、ジオクチルスズビス(イソオクチルチオグリコレート)、ジドデシルスズジリシノレート、各種金属塩、たとえば、オレイン酸銅、アセチルアセトン酸銅、アセチルアセトン酸鉄、ナフテン酸鉄、乳酸鉄、クエン酸鉄、グルコン酸鉄、オクタン酸カリウム、チタン酸2-エチルヘキシル等が挙げられる。 In addition, any suitable urethanization catalyst can be used without any limitation when the fine hollow particles are composed of a resin film made of urethane (urea) resin or when synthesizing a urethane prepolymer. Specific examples include triethylenediamine, hexamethylenetetramine, N,N-dimethyloctylamine, N,N,N',N'-tetramethyl-1,6-diaminohexane, 4,4'-trimethylenebis ( 1-methylpiperidine), 1,8-diazabicyclo-(5,4,0)-7-undecene, dimethyltin dichloride, dimethyltin bis(isooctylthioglycolate), dibutyltin dichloride, dibutyltin dilaurate, dibutyltin maleate, Dibutyltin Maleate Polymer, Dibutyltin Diricinolate, Dibutyltin Bis (Dodecyl Mercaptide), Dibutyltin Bis (isooctylthioglycolate), Dioctyltin Dichloride, Dioctyltin Maleate, Dioctyltin Maleate Polymer, Dioctyltin Bis(butyl maleate) ), dioctyltin dilaurate, dioctyltin diricinolate, dioctyltin dioleate, dioctyltin di(6-hydroxy)caproate, dioctyltin bis(isooctylthioglycolate), didodecyltin diricinolate, various metal salts, Examples thereof include copper oleate, copper acetylacetonate, iron acetylacetonate, iron naphthenate, iron lactate, iron citrate, iron gluconate, potassium octanoate, and 2-ethylhexyl titanate.
 また、本発明において、エマルションをより安定化させる目的で、本発明の効果を損なわない範囲で、水相に添加剤を加えてもよい。このような添加剤としては、炭酸ナトリウム、炭酸カルシウム、炭酸カリウム、リン酸ナトリウム、リン酸カリウム、リン酸カルシウム、塩化ナトリウム、塩化カリウム等の水溶性の塩が挙げられる。これらの添加剤は、単独で、あるいは、2種以上を組み合わせて用いることもできる。 In addition, in the present invention, additives may be added to the aqueous phase for the purpose of further stabilizing the emulsion within a range that does not impair the effects of the present invention. Examples of such additives include water-soluble salts such as sodium carbonate, calcium carbonate, potassium carbonate, sodium phosphate, potassium phosphate, calcium phosphate, sodium chloride and potassium chloride. These additives can be used alone or in combination of two or more.
 本発明の微小中空粒子は、様々な用途への応用が可能であり、例えば、農薬、医薬、化粧品材料、液晶、接着剤、電子材料部品、建築材料などの多くの分野において応用できる。特に本発明の微小中空粒子は、靴底や靴の中敷きや、断熱材、防音材、CMP研磨パッドといった用途に好適に使用することができる。 The fine hollow particles of the present invention can be applied to various uses, for example, in many fields such as agricultural chemicals, pharmaceuticals, cosmetic materials, liquid crystals, adhesives, electronic material parts, and building materials. In particular, the fine hollow particles of the present invention can be suitably used for applications such as shoe soles, shoe insoles, heat insulating materials, sound insulating materials, and CMP polishing pads.
 前記したCMP研磨パッド用途に用いる方法としては、公知の方法が制限なく採用することができ、例えば、発泡剤として本発明の微小中空粒子と、マトリックスとなる樹脂とを含有した樹脂組成物を、切断、表面研磨をすることで、該樹脂の研磨表面に細孔を有するCMP研磨パッドとすることができる。 As the method used for the above-mentioned CMP polishing pad application, known methods can be employed without limitation. By cutting and polishing the surface, a CMP polishing pad having pores on the polishing surface of the resin can be obtained.
 前記樹脂としては、特に制限されないが、本発明においては、中でも後述するポリウレタン樹脂が好適である。特に、本発明の微小中空粒子は、ポリウレタン樹脂との相溶性が良好であるため、CMP研磨パッドに用いた場合、微小中空粒子が脱落しにくくなり、耐スクラッチ性能を向上させることが可能となる。 The resin is not particularly limited, but in the present invention, the polyurethane resin described later is particularly suitable. In particular, since the hollow microparticles of the present invention have good compatibility with polyurethane resins, when used in a CMP polishing pad, the hollow microparticles are less likely to fall off, making it possible to improve scratch resistance. .
 また、本発明のCMP研磨パッドの密度は、0.40~1.10g/cmであることが好ましく、0.50~1.05g/cmであることがより好ましい。また、本発明の微小中空粒子と公知の発泡方法とを組み合わせて発泡した硬化体をCMP研磨パッドとして用いることもできる。公知の発泡方法としては、たとえば水を添加する発泡剤発泡法では、ポリウレタン樹脂であれば、水とイソ(チオ)シアネート基とが反応した後、二酸化炭素とアミノ基が生成する。前記二酸化炭素が発泡ガスとなり、前記アミノ基はさらにイソ(チオ)シアネート基と反応しウレア結合および/またはチオウレア結合を形成する。 Also, the density of the CMP polishing pad of the present invention is preferably 0.40 to 1.10 g/cm 3 , more preferably 0.50 to 1.05 g/cm 3 . Further, a hardened foam obtained by combining the fine hollow particles of the present invention with a known foaming method can also be used as a CMP polishing pad. As a known foaming method, for example, a foaming agent foaming method in which water is added, in the case of a polyurethane resin, carbon dioxide and an amino group are generated after the reaction between water and an iso(thio)cyanate group. The carbon dioxide serves as a foaming gas, and the amino group further reacts with an iso(thio)cyanate group to form a urea bond and/or a thiourea bond.
 本発明のCMP研磨パッドは、任意の好適な硬度を有することができる。本発明における硬度は、ショアー(Shore)法に従って測定することができ、たとえば、JIS規格(硬さ試験)K6253に従って測定することができる。本発明において、CMP研磨パットのショアー硬度は、30A~80Dであることが好ましく、40A~70Dであることがさらに好ましい(なお、「A」はショアー「A」スケールを、「D」はショアー「D」スケールでの硬度を示している)。すなわち、例えば、30A~80Dとは、ショアーA硬度が30以上であり、かつショアーD硬度が70以下であることを意味する。 The CMP polishing pad of the present invention can have any suitable hardness. The hardness in the present invention can be measured according to the Shore method, for example, according to JIS standard (hardness test) K6253. In the present invention, the Shore hardness of the CMP polishing pad is preferably 30A to 80D, more preferably 40A to 70D (where "A" is Shore "A" scale, and "D" is Shore " D" indicates hardness on the scale). That is, for example, 30A to 80D means that the Shore A hardness is 30 or more and the Shore D hardness is 70 or less.
 前記硬度は、必要に応じて配合組成、及び配合量を変えることにより、任意の硬度とすることができる。 The hardness can be arbitrarily set by changing the blending composition and blending amount as necessary.
 さらに、本発明のCMP研磨パッドは、以下の範囲の圧縮率であることが被研磨物の平坦性を発現させる上で好ましい。圧縮率は、JIS L 1096に準拠した方法により測定することが可能である。前記圧縮率は、0.5%~50%であることが好ましい。上記範囲内であることで、優れた被研磨物の平坦性を発現させることが可能となる。 Furthermore, the CMP polishing pad of the present invention preferably has a compressibility within the following range in order to develop the flatness of the object to be polished. Compression rate can be measured by a method conforming to JIS L 1096. The compressibility is preferably 0.5% to 50%. Within the above range, it is possible to exhibit excellent flatness of the object to be polished.
 本発明のCMP研磨パッドの耐摩耗性は、テーバー摩耗試験において60mg以下であることが好ましく、50mg以下であることがさらに好ましい。テーバー摩耗量が少なくなることにより、CMP研磨パッドとして使用した場合に、優れた耐摩耗性を発現することが可能となる。 The abrasion resistance of the CMP polishing pad of the present invention is preferably 60 mg or less, more preferably 50 mg or less in the Taber abrasion test. By reducing the amount of Taber wear, it is possible to exhibit excellent wear resistance when used as a CMP polishing pad.
 本発明のCMP研磨パッドの様態は、特に制限されるものではなく、たとえば、その表面に溝構造を形成してもよい。該CMP研磨パッドの溝構造としては、スラリーを保持・更新する形状とすることが好ましく、具体的には、X(ストライプ)溝、XY格子溝、同心円状溝、貫通孔、貫通していない穴、多角柱、円柱、螺旋状溝、偏心円状溝、放射状溝、およびこれらの溝を組み合わせたものが挙げられる。 The aspect of the CMP polishing pad of the present invention is not particularly limited, and for example, a groove structure may be formed on its surface. The groove structure of the CMP polishing pad preferably has a shape that retains and renews the slurry. , polygonal prisms, cylinders, spiral grooves, eccentric circular grooves, radial grooves, and combinations of these grooves.
 また、上記CMP研磨パッドの溝構造の作製方法は、特に限定されるものではない。たとえば、所定の溝構造を有した金型に前記した化合物等を流しこみ、硬化させることにより作製する方法、あるいは、得られた樹脂を用いて溝構造を作成する方法、たとえば、所定サイズのバイトのような治具を用い機械切削する方法、所定の表面形状を有したプレス板で樹脂をプレスして作製する方法、フォトリソグラフィを用いて作製する方法、印刷手法を用いて作製する方法、炭酸ガスレーザー等レーザー光による作製方法などが挙げられる。 Also, the method for producing the groove structure of the CMP polishing pad is not particularly limited. For example, a method of pouring the above-described compound into a mold having a predetermined groove structure and curing it, or a method of creating a groove structure using the obtained resin, for example, a tool of a predetermined size A method of mechanical cutting using a jig such as, a method of manufacturing by pressing a resin with a press plate having a predetermined surface shape, a method of manufacturing using photolithography, a method of manufacturing using a printing method, carbonic acid Examples include a production method using laser light such as a gas laser.
 また、本発明のCMP研磨パッドは、複数の層で構成してもよい。この場合、少なくともいずれかの層で本発明の硬化体を用いればよい。たとえば、CMP研磨パットを2層で構成する場合、研磨を行う際に被研磨物と接触する研磨面を有する研磨層(第1層ともいう)と、前記第1層の研磨面に相対する面で前記第1層と接する下地層(第2層ともいう)との2層構成となる。この場合、第2層と第1層とを違う硬度や弾性率とすることで、CMP研磨パッドの特性を調整することが可能となる。この場合、下地層は研磨層よりも硬度が小さいことが好ましい。本発明においては、本発明の硬化体を研磨層として用いるのが好適であり、さらに、下地層にも本発明の硬化体を用いてもよい。 Also, the CMP polishing pad of the present invention may be composed of a plurality of layers. In this case, the cured product of the present invention may be used in at least one of the layers. For example, when a CMP polishing pad is composed of two layers, a polishing layer (also referred to as a first layer) having a polishing surface that contacts an object to be polished during polishing and a surface of the first layer that faces the polishing surface Thus, a two-layer structure of the first layer and the base layer (also referred to as the second layer) in contact with the first layer is obtained. In this case, the characteristics of the CMP polishing pad can be adjusted by making the second layer and the first layer different in hardness and elastic modulus. In this case, the underlayer preferably has a lower hardness than the polishing layer. In the present invention, it is preferable to use the cured product of the present invention as a polishing layer, and the cured product of the present invention may also be used as a base layer.
 以下、前述したCMP研磨パッドに用いるポリウレタン樹脂について詳述する。 The polyurethane resin used for the CMP polishing pad described above will be described in detail below.
 前記CMP研磨パッドにポリウレタン樹脂は、ポリウレタン樹脂中に前記微小中級粒子が分散されていれば、特に制限なく公知の方法により作製すればよく、たとえば、(c)多官能イソシアネート化合物(以下、「(c)成分」ともいう。)と、(d)イソシアネート基と硬化可能な活性水素基、たとえば、水酸基、チオール基、および、アミノ基を2個以上有する化合物(以下、「(d)成分」ともいう)、および本発明の微小中空粒子と、必要に応じてその他の配合成分を均一混合・分散させて硬化性組成物を製造した後に、該硬化性組成物を硬化させる方法が挙げられる。
 硬化性組成物の製造方法は、特に限定されないないが、本発明の微小中空粒子と、イソ(チオ)シアネート基を有する化合物とを混合した混合物を調製し、さらに該混合物に活性水素基を2個以上有する化合物を加える方法が挙げられる。そして、該硬化性組成物を硬化することで、本発明の硬化体を得ることができる。
The polyurethane resin in the CMP polishing pad may be prepared by a known method without particular limitation as long as the medium-sized fine particles are dispersed in the polyurethane resin. and (d) a compound having two or more isocyanate groups and curable active hydrogen groups, such as hydroxyl groups, thiol groups, and amino groups (hereinafter also referred to as "(d) component" ), and a method of uniformly mixing and dispersing the hollow microparticles of the present invention and, if necessary, other ingredients to produce a curable composition, and then curing the curable composition.
The method for producing the curable composition is not particularly limited, but a mixture is prepared by mixing the hollow microparticles of the present invention and a compound having an iso(thio)cyanate group, and two active hydrogen groups are added to the mixture. A method of adding a compound having one or more is mentioned. Then, the cured product of the present invention can be obtained by curing the curable composition.
 硬化方法も特に制限なく公知の方法を採用すればよく、たとえば、国際公開第WO2015/068798号、国際公開第WO2016/143910、WO2018-092826に記載の条件を採用できる。具体的には、ワンポット法、プレポリマー法等の乾式法、および、溶剤を用いた湿式法等を用いることができる。その中でも、乾式法が好適に採用される。 The curing method is not particularly limited, and a known method may be adopted. For example, the conditions described in International Publication No. WO2015/068798, International Publication No. WO2016/143910, and WO2018-092826 can be adopted. Specifically, a one-pot method, a dry method such as a prepolymer method, a wet method using a solvent, or the like can be used. Among them, the dry method is preferably employed.
 前記した本発明の微小中空粒子のポリウレタン樹脂への配合量は、(c)成分および(d)成分の合計100質量部あたり、本発明の微小中空粒子を0.1~20質量部とすることが好ましく、0.2~10質量部とすることがより好ましく、0.5~8質量部とすることがさらに好ましい。この範囲にすることにより、優れた研磨特性を発現することが可能である。 The amount of the hollow microparticles of the present invention to be added to the polyurethane resin is 0.1 to 20 parts by mass of the hollow microparticles of the present invention per 100 parts by mass of components (c) and (d) combined. is preferable, 0.2 to 10 parts by mass is more preferable, and 0.5 to 8 parts by mass is even more preferable. By setting the content within this range, it is possible to exhibit excellent polishing properties.
 なお、本発明において、ポリウレタン樹脂とは、ポリウレタン樹脂、ポリウレア樹脂、ポリウレタンウレア樹脂を総称したものである。さらに本発明のポリウレタン樹脂中には、ポリチオウレタン樹脂やポリチオウレタン樹脂も含まれる。 In the present invention, polyurethane resin is a generic term for polyurethane resin, polyurea resin, and polyurethane urea resin. Further, the polyurethane resin of the present invention includes polythiourethane resin and polythiourethane resin.
 以下、各成分について個々に詳細を説明する。 Below, each component will be explained in detail.
 <(c)多官能イソシアネート化合物>
 本発明において、(c)成分は、公知の化合物を用いることができるが、後述する(d1)一分子中にイソシアネート基と硬化可能な活性水素基を2個有している化合物(以下、「(d1)成分」ともいう)と、(c1)分子内に2つのイソ(チオ)シアネート基を有する2官能イソ(チオ)シアネート基含有化合物(以下、「(c1)成分」、または「2官能イソ(チオ)シアネート基含有化合物」ともいう)と、を反応させて得られる、分子の両末端にイソ(チオ)シアネート基を有するウレタンプレポリマーが好適である。なお、本発明においてイソ(チオ)シアネート基とは、イソシアネート基、又はイソチオシアネート基を指す。そのため、分子内に2つのイソ(チオ)シアネート基を有するとは、2つのイソシアネート基を有する場合、2つのイソチオシアネート基を有する場合、又は1つのイソシアネート基と1つのイソチオシアネート基とを有する場合のいずれも指す。
<(c) polyfunctional isocyanate compound>
In the present invention, a known compound can be used as the component (c), but a compound (d1) having two isocyanate groups and curable active hydrogen groups in one molecule (hereinafter referred to as " (d1) component”) and (c1) a bifunctional iso(thio)cyanate group-containing compound having two iso(thio)cyanate groups in the molecule (hereinafter referred to as “(c1) component” or “bifunctional A urethane prepolymer having iso(thio)cyanate groups at both ends of the molecule obtained by reacting with a compound containing an iso(thio)cyanate group) is suitable. In the present invention, the iso(thio)cyanate group refers to an isocyanate group or an isothiocyanate group. Therefore, having two iso(thio)cyanate groups in the molecule means having two isocyanate groups, having two isothiocyanate groups, or having one isocyanate group and one isothiocyanate group. refers to any of
 これらの(c)成分は、分子の両末端にイソ(チオ)シアネート基を含んでいれば、公知のものが、何ら制限なく使用でき、単独または2種以上を併用してもよい。 These (c) components can be used without any limitation as long as they contain iso(thio)cyanate groups at both ends of the molecule, and may be used alone or in combination of two or more.
 本発明において、(c)成分、または前記ウレタンプレポリマーの原料となる(c1)成分としては、たとえば、国際公開第2019/198675号に記載されている重合性モノマーがあげられる。 In the present invention, the component (c) or the component (c1), which is the raw material for the urethane prepolymer, includes, for example, the polymerizable monomers described in International Publication No. 2019/198675.
 その中でも、具体的には、1,5-ナフタレンジイソシアネート、キシレンジイソシアネート(o-,m-,p-)、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、フェニレンジイソシアネート(o-,m-,p-)、2,2’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、イソホロンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、ジシクロヘキシルメタン-4,4’-ジイソシアネート、(ビシクロ[2.2.1]ヘプタン-2,5(2,6)-ジイル)ビスメチレンジイソシアネートを使用することが好ましく、中でも芳香族イソシアネートがより好ましく、2,4-トリレンジイソシアネート、または、2,6-トリレンジイソシアネートからなるウレタンプレポリマーが最も好ましい。 Among them, specifically, 1,5-naphthalene diisocyanate, xylene diisocyanate (o-, m-, p-), 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, phenylene diisocyanate (o-, m-, p-), 2,2′-diphenylmethane diisocyanate, 2,4′-diphenylmethane diisocyanate, 4,4′-diphenylmethane diisocyanate, isophorone diisocyanate, 1,3-bis(isocyanatomethyl)cyclohexane, dicyclohexylmethane-4, It is preferable to use 4′-diisocyanate, (bicyclo[2.2.1]heptane-2,5(2,6)-diyl)bismethylene diisocyanate, more preferably aromatic isocyanate, 2,4-tri Urethane prepolymers composed of diisocyanate or 2,6-tolylene diisocyanate are most preferred.
 また、本発明の硬化性組成物を硬化して得られる硬化体が、特に優れた特性を発揮するためには、少なくとも1種類の数平均分子量が300~1500の(d1)成分を使用して前記ウレタンプレポリマーを製造することが好ましい。 Further, in order for the cured product obtained by curing the curable composition of the present invention to exhibit particularly excellent properties, at least one (d1) component having a number average molecular weight of 300 to 1500 is used. It is preferred to produce the urethane prepolymer.
 前記数平均分子量が300~1,500の(d1)成分は、種類の異なるもの、分子量の異なるものを組み合わせて使用することもできる。その際、(d1)成分全体の数平均分子量が300~1,500となるように組み合わせればよい。 The (d1) component with a number average molecular weight of 300 to 1,500 can be used in combination of different types and different molecular weights. At that time, the components (d1) may be combined so that the total number average molecular weight of the component (d1) is 300 to 1,500.
 また、得られる硬化体の硬度や強度等を調整するために、前記ウレタンプレポリマーを製造する際に、該数平均分子量が300~1,500の(d1)成分と、該数平均分子量が90~300の(d1)成分とを組み合わせて使用することもできる。この場合、使用する(d1)成分、および(c1)成分の種類、およびそれらの使用量にもよるが、分子量300~1500の(d1)成分を100質量部とした時、分子量90~300の(d1)成分を0~50質量部とすることが好ましく、5~40質量部がより好ましく、5~30質量部が最も好ましい。 In addition, in order to adjust the hardness and strength of the obtained cured product, when producing the urethane prepolymer, the component (d1) having a number average molecular weight of 300 to 1,500 and the component (d1) having a number average molecular weight of 90 It can also be used in combination with ˜300 (d1) components. In this case, depending on the type of component (d1) and component (c1) used, and the amounts thereof used, when the component (d1) with a molecular weight of 300 to 1500 is 100 parts by mass, the molecular weight of 90 to 300 Component (d1) is preferably 0 to 50 parts by mass, more preferably 5 to 40 parts by mass, and most preferably 5 to 30 parts by mass.
 また、(c)成分は、分子の両末端がイソシアネート基および/またはイソチオシアネート基とならなければならない。そのため、(c)成分は、(c)成分におけるイソシアネート基および/またはイソチオシアネート基の合計モル数(n5)と、(d)成分の水酸基、チオール基、およびアミノ基の合計モル数(n6)とが、1<(n5)/(n6)≦2.3となる範囲で製造することが好ましい。2種類以上の(c)成分を用いる場合、該イソシアネート基および/またはイソチオシアネート基のモル数(n5)は、もちろん(c)成分のイソシアネート基および/またはイソチオシアネート基の合計モル数とする。また、2種類以上の(d1)成分の水酸基、チオール基、およびアミノ基のモル数(n6)は、もちろん全ての水酸基、チオール基、およびアミノ基の合計モル数とする。 In addition, component (c) must have isocyanate groups and/or isothiocyanate groups at both ends of the molecule. Therefore, component (c) consists of the total number of moles of isocyanate groups and/or isothiocyanate groups in component (c) (n5), and the total number of moles of hydroxyl groups, thiol groups, and amino groups in component (d) (n6). is preferably manufactured within the range of 1<(n5)/(n6)≦2.3. When two or more types of component (c) are used, the number of moles (n5) of the isocyanate groups and/or isothiocyanate groups is, of course, the total number of moles of the isocyanate groups and/or isothiocyanate groups of component (c). The number of moles (n6) of hydroxyl groups, thiol groups and amino groups of two or more types of component (d1) is, of course, the total number of moles of all hydroxyl groups, thiol groups and amino groups.
 (d1)成分については後述の(d)成分の説明で記載しているものが使用できるが、好ましい(d1)成分としては、ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオール等の(d1)成分が好ましく、その中でもポリオキシテトラメチレングリコール、ポリプロピレングリコール、ポリエチレングリコール、ジエチレングリコール等からなる(d1)成分が最も好ましい。 As the component (d1), those described in the explanation of the component (d) below can be used, and the preferred component (d1) is a polyester polyol, a polyether polyol, a polycarbonate polyol, or the like. Among them, component (d1) consisting of polyoxytetramethylene glycol, polypropylene glycol, polyethylene glycol, diethylene glycol and the like is most preferred.
 前記(c)成分のイソ(チオ)シアネート当量(イソシアネート当量および/またはイソチオシアネート当量の総量)は、(c)成分が有するイソシアネート基および/またはイソチオシアネート基をJIS K 7301に準拠して定量することにより、求めることができる。該イソシアネート基および/またはイソチオシアネート基は、以下の逆滴定法によって定量できる。先ず、得られた(c)成分を乾燥溶媒に溶解させる。次に、(c)成分が有するイソシアネート基および/またはイソチオシアネート基の量よりも、明らかに過剰量であって、かつ濃度が既知のジ-n-ブチルアミンを、該乾燥溶媒に加え、(c)成分の全イソシアネート基および/またはイソチオシアネート基と、ジ-n-ブチルアミンとを反応させる。次いで、消費されなかった(反応に関与しなかった)ジ-n-ブチルアミンを酸で滴定して、消費されたジ-n-ブチルアミンの量を求める。この消費されたジ-n-ブチルアミンと、(c)成分が有するイソシアネート基および/またはイソチオシアネート基とは、同量であることからイソ(チオ)シアネート当量を求めることができる。また、(c)成分は、両末端がイソシアネート基および/またはイソチオシアネート基の直鎖状のウレタンプレポリマーであることから、(c)成分の数平均分子量は、イソ(チオ)シアネート当量の2倍となる。この(c)成分の分子量は、ゲルパーミネーションクロマトグラフィー(GPC)で測定した値と一致し易い。 The iso(thio)cyanate equivalent (total amount of isocyanate equivalents and/or isothiocyanate equivalents) of component (c) is determined by quantifying the isocyanate groups and/or isothiocyanate groups possessed by component (c) in accordance with JIS K 7301. can be obtained by The isocyanate group and/or isothiocyanate group can be quantified by the following back titration method. First, the obtained component (c) is dissolved in a dry solvent. Next, di-n-butylamine, which is clearly in excess of the amount of isocyanate groups and/or isothiocyanate groups possessed by component (c) and has a known concentration, is added to the dry solvent, and (c ) reacting all isocyanate groups and/or isothiocyanate groups of the component with di-n-butylamine. The unconsumed (did not participate in the reaction) di-n-butylamine is then titrated with acid to determine the amount of di-n-butylamine consumed. Since the consumed di-n-butylamine and the isocyanate groups and/or isothiocyanate groups of component (c) are the same, the iso(thio)cyanate equivalent can be determined. In addition, since component (c) is a straight-chain urethane prepolymer having isocyanate groups and/or isothiocyanate groups at both ends, the number average molecular weight of component (c) is the iso(thio)cyanate equivalent of 2 be doubled. The molecular weight of this component (c) tends to match the value measured by gel permeation chromatography (GPC).
 前記(c)成分のイソ(チオ)シアネート当量は、特に制限されるものではないが、本発明において好ましいイソ(チオ)シアネート当量は300~2000であり、より好ましくは350~1500が好ましく、400~1000が最も好ましい。この理由は、以下のように考えられる。すなわち、ある程度の分子量を有する(c)成分が(d)成分と反応させて硬化体としたとき、側鎖を含めた分子の稼働部位が大きくなって分子自体の動きが大きくなり、その結果、変形に対しても回復(弾性回復;低ヒステリック)し易くなると考えられる。さらには、(c)成分が使用されることにより、前記硬化体における架橋点が分散し易くなってランダムに且つ均一に存在するようになり、安定した性能が発揮されるものと考えられる。そして、上述した範囲にある(c)成分は、得られる硬化性組成物のハンドリング性が優れており、製造時の制御がし易くなって、成型性を向上することが可能である。たとえば、本発明の硬化性組成物を硬化させた硬化体を研磨用パッドとして用いる際には、成型性が優れた研磨用パッドを製造できるようになる。 The iso(thio)cyanate equivalent of component (c) is not particularly limited, but the iso(thio)cyanate equivalent in the present invention is preferably 300 to 2000, more preferably 350 to 1500, and 400 ~1000 is most preferred. The reason for this is considered as follows. That is, when the component (c) having a certain molecular weight reacts with the component (d) to form a cured product, the working sites of the molecules including the side chains increase and the movement of the molecules themselves increases. It is considered that recovery from deformation (elastic recovery; low hysterics) is facilitated. Furthermore, it is believed that the use of component (c) facilitates the dispersion of the cross-linking points in the cured product, and makes them exist randomly and uniformly, thereby exhibiting stable performance. When the component (c) is in the range described above, the resulting curable composition is excellent in handleability, making it easier to control during production and improving moldability. For example, when a cured body obtained by curing the curable composition of the present invention is used as a polishing pad, a polishing pad having excellent moldability can be produced.
 本発明に用いる、前記ウレタンプレポリマーの製造方法は、特に制限なく、公知の方法で、(c1)成分と(d1)成分とを反応させて、分子の末端にイソシアネート基および/またはイソチオシアネート基を有する前記ウレタンプレポリマーを製造すればよい。 The method for producing the urethane prepolymer used in the present invention is not particularly limited, and the component (c1) and the component (d1) are reacted by a known method to form an isocyanate group and/or an isothiocyanate group at the end of the molecule. The urethane prepolymer having
 また、(c)成分の製造のために、必要に応じて加熱やウレタン化触媒を添加することで製造することが可能である。 In addition, for the production of the component (c), it can be produced by heating or adding a urethanization catalyst as necessary.
 <(d)イソシアネート基と硬化可能な活性水素基を2個以上有する化合物>
 (d)成分は、水酸基、チオール基及びアミノ基からなる群から選択される基を少なくとも1分子中に2個以上有している化合物であれば制限なく使用できる。もちろん、水酸基、チオール基及びアミノ基のうち、どれか二つの基または全ての基を有している化合物も選択される。なお、上述したように、一分子中にイソシアネート基と硬化可能な活性水素基を2個有している化合物は(d1)成分に該当する。
<(d) Compound Having Two or More Isocyanate Groups and Curable Active Hydrogen Groups>
Component (d) can be used without limitation as long as it is a compound having at least two groups selected from the group consisting of hydroxyl groups, thiol groups and amino groups in one molecule. Of course, compounds having any two or all of hydroxyl, thiol and amino groups are also selected. In addition, as described above, a compound having two curable active hydrogen groups and an isocyanate group in one molecule corresponds to the component (d1).
 中でも、(d)成分としては、前記ウレタンプレポリマーを合成するために用いる(d1)成分とは別に、(da)アミノ基を2個以上有する化合物(以下、「(da)成分」ともいう)が含まれていることが好適であり、さらに(db)水酸基および/またはチオール基を3個以上有する化合物(以下、「(db)成分」ともいう)が含まれていることがより好適である。なお、本発明において、水酸基および/またはチオール基をn個以上有する化合物とは、その化合物における水酸基とチオール基の合計がn個以上であることを意味し、水酸基を有しチオール基を有さない化合物でもよいし、チオール基を有し水酸基を有さない化合物でもよいし、水酸基とチオール基の両方を有する化合物であってもよい。 Among them, as the component (d), in addition to the component (d1) used for synthesizing the urethane prepolymer, a compound (da) having two or more amino groups (hereinafter also referred to as "(da) component"). and more preferably (db) a compound having 3 or more hydroxyl groups and/or thiol groups (hereinafter also referred to as "(db) component") . In the present invention, a compound having n or more hydroxyl groups and/or thiol groups means that the total number of hydroxyl groups and thiol groups in the compound is n or more. A compound having no hydroxyl group, a compound having a thiol group but no hydroxyl group, or a compound having both a hydroxyl group and a thiol group may be used.
 中でも、前記(db)成分としては、水酸基および/またはチオール基を5個以上有する化合物であることが特に好ましい。また、(db)成分の質量あたりの水酸基および/またはチオール基のモル数は0.5mmol/g~35mmol/gが好ましく、0.8mmol/g~20mmol/gがより好ましい。 Above all, it is particularly preferable that the (db) component is a compound having 5 or more hydroxyl groups and/or thiol groups. The number of moles of hydroxyl groups and/or thiol groups per mass of component (db) is preferably 0.5 mmol/g to 35 mmol/g, more preferably 0.8 mmol/g to 20 mmol/g.
 ((da)アミノ基を2個以上有する化合物;(da)成分)
 前記(da)成分は、一分子中に1級および/または2級のアミノ基を2個以上有している化合物であれば制限なく使用できる。前記アミノ基を2個以上有する化合物を大きく分類すれば、脂肪族アミン、脂環族アミン、芳香族アミン、およびイソシアネート基と重合可能なアミノ基を有するポリロタキサンに分類される。
((da) compound having two or more amino groups; component (da))
The component (da) can be used without limitation as long as it is a compound having two or more primary and/or secondary amino groups in one molecule. The compounds having two or more amino groups are roughly classified into aliphatic amines, alicyclic amines, aromatic amines, and polyrotaxanes having an amino group polymerizable with an isocyanate group.
 脂肪族アミン;(da)成分
 エチレンジアミン、ヘキサメチレンジアミン、ノナメチレンジアミン、ウンデカンメチレンジアミン、ドデカメチレンジアミン、メタキシレンジアミン、1,3-プロパンジアミン、プトレシン等の2官能アミン(前記ウレタンプレポリマーを構成する(d1)成分に該当する)。
Aliphatic amine; component (da) Bifunctional amines such as ethylenediamine, hexamethylenediamine, nonamethylenediamine, undecanemethylenediamine, dodecamethylenediamine, metaxylenediamine, 1,3-propanediamine, and putrescine (constituting the urethane prepolymer) corresponds to the (d1) component).
  ジエチレントリアミン等のポリアミン等の多官能アミン。 Polyfunctional amines such as polyamines such as diethylenetriamine.
  脂環族アミン;(da)成分
 イソホロンジアミン、シクロヘキシルジアミン等の2官能アミン(前記ウレタンプレポリマーを構成する(d1)成分に該当する)。
Alicyclic amine; (da) component Bifunctional amines such as isophoronediamine and cyclohexyldiamine (corresponding to component (d1) constituting the urethane prepolymer).
 芳香族アミン;(da)成分
 4,4’-メチレンビス(o-クロロアニリン)(MOCA)、2,6-ジクロロ-p-フェニレンジアミン、4,4’-メチレンビス(2,3-ジクロロアニリン)、4,4’-メチレンビス(2-エチル-6-メチルアニリン)、3,5-ビス(メチルチオ)-2,4-トルエンジアミン、3,5-ビス(メチルチオ)-2,6-トルエンジアミン、3,5-ジエチルトルエン-2,4-ジアミン、3,5-ジエチルトルエン-2,6-ジアミン、トリメチレングリコール-ジ-p-アミノベンゾエート、ポリテトラメチレングリコール-ジ-p-アミノベンゾエート、4,4’-ジアミノ-3,3’,5,5’-テトラエチルジフェニルメタン、4,4’-ジアミノ-3,3’-ジイソプロピル-5,5’-ジメチルジフェニルメタン、4,4’-ジアミノ-3,3’,5,5’-テトライソプロピルジフェニルメタン、1,2-ビス(2-アミノフェニルチオ)エタン、4,4’-ジアミノ-3,3’-ジエチル-5,5’-ジメチルジフェニルメタン、N,N’-ジ-sec-ブチル-4,4’-ジアミノジフェニルメタン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、m-キシリレンジアミン、N,N’-ジ-sec-ブチル-p-フェニレンジアミン、m-フェニレンジアミン、p-キシリレンジアミン、p-フェニレンジアミン、3,3’-メチレンビス(メチル-6-アミノベンゾエート)、2,4-ジアミノ-4-クロロ安息香酸-2-メチルプロピル、2,4-ジアミノ-4-クロロ安息香酸-イソプロピル、2,4-ジアミノ-4-クロロフェニル酢酸-イソプロピル、テレフタル酸-ジ-(2-アミノフェニル)チオエチル、ジフェニルメタンジアミン、トリレンジアミン、ピペラジン等の2官能アミン(前記ウレタンプレポリマーを構成する(d1)成分に該当する)。
aromatic amine; (da) component 4,4'-methylenebis(o-chloroaniline) (MOCA), 2,6-dichloro-p-phenylenediamine, 4,4'-methylenebis(2,3-dichloroaniline), 4,4′-methylenebis(2-ethyl-6-methylaniline), 3,5-bis(methylthio)-2,4-toluenediamine, 3,5-bis(methylthio)-2,6-toluenediamine, 3 ,5-diethyltoluene-2,4-diamine, 3,5-diethyltoluene-2,6-diamine, trimethylene glycol-di-p-aminobenzoate, polytetramethylene glycol-di-p-aminobenzoate, 4, 4'-diamino-3,3',5,5'-tetraethyldiphenylmethane, 4,4'-diamino-3,3'-diisopropyl-5,5'-dimethyldiphenylmethane, 4,4'-diamino-3,3 ',5,5'-tetraisopropyldiphenylmethane, 1,2-bis(2-aminophenylthio)ethane, 4,4'-diamino-3,3'-diethyl-5,5'-dimethyldiphenylmethane, N,N '-di-sec-butyl-4,4'-diaminodiphenylmethane, 3,3'-diethyl-4,4'-diaminodiphenylmethane, m-xylylenediamine, N,N'-di-sec-butyl-p- Phenylenediamine, m-phenylenediamine, p-xylylenediamine, p-phenylenediamine, 3,3′-methylenebis(methyl-6-aminobenzoate), 2,4-diamino-4-chlorobenzoate-2-methylpropyl , 2,4-diamino-4-chlorobenzoic acid-isopropyl, 2,4-diamino-4-chlorophenylacetic acid-isopropyl, terephthalic acid-di-(2-aminophenyl)thioethyl, diphenylmethanediamine, tolylenediamine, piperazine, etc. (corresponding to the (d1) component constituting the urethane prepolymer).
 1,3,5-ベンゼントリアミン、メラミン等の多官能アミン。  Multifunctional amines such as 1,3,5-benzenetriamine and melamine.
 アミノ基を有するポリロタキサン;(da)成分
 本発明で用いられるアミノ基を有するポリロタキサンは特に限定されないが、たとえば国際出願第2018/092826号公報に記載のポリロタキサンが例示される。
Polyrotaxane Having Amino Group; Component (da) The polyrotaxane having an amino group used in the present invention is not particularly limited.
 本発明で用いられる(da)成分の中で好ましいのは、4,4’-メチレンビス(o-クロロアニリン)(MOCA)、4,4’-ジアミノ-3,3’-ジエチル-5,5’-ジメチルジフェニルメタン、3,5-ジエチルトルエン-2,4-ジアミン、3,5-ジエチルトルエン-2,6-ジアミン、3,5-ビス(メチルチオ)-2,4-トルエンジアミン、3,5-ビス(メチルチオ)-2,6-トルエンジアミン、トリメチレングリコール-ジ-p-アミノベンゾエートが挙げられる。 Among the (da) components used in the present invention, preferred are 4,4'-methylenebis(o-chloroaniline) (MOCA), 4,4'-diamino-3,3'-diethyl-5,5' -dimethyldiphenylmethane, 3,5-diethyltoluene-2,4-diamine, 3,5-diethyltoluene-2,6-diamine, 3,5-bis(methylthio)-2,4-toluenediamine, 3,5- bis(methylthio)-2,6-toluenediamine, trimethylene glycol-di-p-aminobenzoate.
 前記(d)成分の中で水酸基及び/又はチオール基を有する化合物としては、大きく分類すれば、脂肪族アルコール、脂環族アルコール、芳香族アルコール、ポリエステルポリオール、ポリエーテルポリオール、ポリカプロラクトンポリオール、ポリカーボネートポリオール、ポリアクリルポリオール、ヒマシ油系ポリオール、チオール基を2個以上有する化合物、水酸基及びチオール基型重合性基含有モノマー、水酸基及び/またはチオール基を3個以上有する側鎖含有環状化合物、及び、水酸基及び/またはチオール基を有するポリロタキサンに分類される。具体例としては、以下のものが挙げられる。 Compounds having a hydroxyl group and/or a thiol group among the component (d) can be broadly classified into aliphatic alcohols, alicyclic alcohols, aromatic alcohols, polyester polyols, polyether polyols, polycaprolactone polyols, and polycarbonates. Polyols, polyacrylic polyols, castor oil-based polyols, compounds having two or more thiol groups, hydroxyl group- and thiol-type polymerizable group-containing monomers, side chain-containing cyclic compounds having three or more hydroxyl groups and/or thiol groups, and It is classified as a polyrotaxane having hydroxyl groups and/or thiol groups. Specific examples include the following.
((d)水酸基を2個以上有する化合物;(d)成分)
 脂肪族アルコール;(d)成分
 エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ブチレングリコール、1,5-ジヒドロキシペンタン、1,6-ジヒドロキシヘキサン、1,7-ジヒドロキシヘプタン、1,8-ジヒドロキシオクタン、1,9-ジヒドロキシノナン、1,10-ジヒドロキシデカン、1,11-ジヒドロキシウンデカン、1,12-ジヒドロキシドデカン、ネオペンチルグリコール、モノオレイン酸グリセリル、モノエライジン、ポリエチレングリコール、3-メチル-1,5-ジヒドロキシペンタン、ジヒドロキシネオペンチル、2-エチル-1,2-ジヒドロキシヘキサン、2-メチル-1,3-ジヒドロキシプロパン等の2官能ポリオール(前記ウレタンプレポリマーを構成する(d1)成分に該当する)。
((d) compound having two or more hydroxyl groups; component (d))
Aliphatic alcohol; component (d) ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butylene glycol, 1,5-dihydroxypentane, 1,6-dihydroxyhexane, 1,7-dihydroxyheptane, 1,8-dihydroxyoctane , 1,9-dihydroxynonane, 1,10-dihydroxydecane, 1,11-dihydroxyundecane, 1,12-dihydroxydodecane, neopentyl glycol, glyceryl monooleate, monoelaidin, polyethylene glycol, 3-methyl-1, Bifunctional polyols such as 5-dihydroxypentane, dihydroxyneopentyl, 2-ethyl-1,2-dihydroxyhexane, 2-methyl-1,3-dihydroxypropane (corresponding to component (d1) constituting the urethane prepolymer ).
 グリセリン、トリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、トリメチロールプロパントリポリオキシエチレンエーテル(たとえば、日本乳化剤株式会社のTMP-30、TMP-60、TMP-90等)、ブタントリオール、1,2-メチルグルコサイド、ペンタエリトリトール、ジペンタエリトリトール、トリペンタエリトリトール、ソルビトール、エリスリトール、スレイトール、リビトール、アラビニトール、キシリトール、アリトール、マンニトール、ドルシトール、イディトール、グリコール、イノシトール、ヘキサントリオール、トリグリセロール、ジグリセロール、トリエチレングリコール等の多官能ポリオール(前記(db)成分に該当する)。 Glycerin, trimethylolethane, trimethylolpropane, ditrimethylolpropane, trimethylolpropane tripolyoxyethylene ether (for example, TMP-30, TMP-60, TMP-90, etc. of Nippon Nyukazai Co., Ltd.), butanetriol, 1,2- Methyl glucoside, pentaerythritol, dipentaerythritol, tripentaerythritol, sorbitol, erythritol, threitol, ribitol, arabinitol, xylitol, allitol, mannitol, dolcitol, iditol, glycol, inositol, hexanetriol, triglycerol, diglycerol, triethylene Polyfunctional polyols such as glycol (corresponding to the (db) component).
 脂環族アルコール;(d)成分
 水添ビスフェノールA、シクロブタンジオール、シクロペンタンジオール、シクロヘキサンジオール、シクロヘプタンジオール、シクロオクタンジオール、シクロヘキサンジメタノール、ヒドロキシプロピルシクロヘキサノール、トリシクロ〔5,2,1,02,6〕デカン-ジメタノール、ビシクロ〔4,3,0〕-ノナンジオール、ジシクロヘキサンジオール、トリシクロ〔5,3,1,13,9〕ドデカンジオール、ビシクロ〔4,3,0〕ノナンジメタノール、トリシクロ〔5,3,1,13,9〕ドデカン-ジエタノール、ヒドロキシプロピルトリシクロ〔5,3,1,13,9〕ドデカノール、スピロ〔3,4〕オクタンジオール、ブチルシクロヘキサンジオール、1,1’-ビシクロヘキシリデンジオール、1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,2-シクロヘキサンジメタノール、及びo-ジヒドロキシキシリレン等の2官能ポリオール(前記ウレタンプレポリマーを構成する(d1)成分に該当する)。
Alicyclic alcohol; Component (d) Hydrogenated bisphenol A, cyclobutanediol, cyclopentanediol, cyclohexanediol, cycloheptanediol, cyclooctanediol, cyclohexanedimethanol, hydroxypropylcyclohexanol, tricyclo[5,2,1,0 2,6 ]decane-dimethanol, bicyclo[4,3,0]-nonanediol, dicyclohexanediol, tricyclo[5,3,1,13,9]dodecanediol, bicyclo[4,3,0]nonanediol methanol, tricyclo[5,3,1,1 3,9 ]dodecan-diethanol, hydroxypropyltricyclo[5,3,1,1 3,9 ]dodecanol, spiro[3,4]octanediol, butylcyclohexanediol, Bifunctional polyols such as 1,1′-bicyclohexylidene diol, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,2-cyclohexanedimethanol, and o-dihydroxyxylylene (the urethane prepolymer It corresponds to the (d1) component that constitutes the polymer).
 トリス(2-ヒドロキシエチル)イソシアヌレート、シクロヘキサントリオール、スクロース、マルチトール、ラクチトール等の多官能ポリオール(前記(db)成分に該当する)。 Polyfunctional polyols such as tris(2-hydroxyethyl) isocyanurate, cyclohexanetriol, sucrose, maltitol and lactitol (corresponding to the above (db) component).
 芳香族アルコール;(d)成分
 ジヒドロキシナフタレン、ジヒドロキシベンゼン、ビスフェノールA、ビスフェノールF、キシリレングリコール、テトラブロムビスフェノールA、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,2-ビス(4-ヒドロキシフェニル)エタン、ビス(4-ヒドロキシフェニル)フェニルメタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、ビス(4-ヒドロキシフェニル)-1-ナフチルメタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2-(4-ヒドロキシフェニル)-2-(3-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、1,1-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)-3-メチルブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、3,3-ビス(4-ヒドロキシフェニル)ペンタン、2,2-ビス(4-ヒドロキシフェニル)ヘキサン、2,2-ビス(4-ヒドロキシフェニル)オクタン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、2,2-ビス(4-ヒドロキシフェニル)ヘプタン、4,4-ビス(4-ヒドロキシフェニル)ヘプタン、2,2-ビス(4-ヒドロキシフェニル)トリデカン、2,2-ビス(4-ヒドロキシフェニル)オクタン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-エチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-n-プロピル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-イソプロピル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-sec-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-tert-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-アリル-4'-ヒドロキシフェニル)プロパン、2,2-ビス(3-メトキシ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(2,3,5,6-テトラメチル-4-ヒドロキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)シアノメタン、1-シアノ-3,3-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロヘプタン、1,1-ビス(3-メチル-4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(3,5-ジメチル-4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(3,5-ジクロロ-4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(3-メチル-4-ヒドロキシフェニル)-4-メチルシクロヘキサン、1,1-ビス (4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシフェニル)ノルボルナン、2,2-ビス(4-ヒドロキシフェニル)アダマンタン、4,4'- ジヒドロキシジフェニルエーテル、4,4'- ジヒドロキシ-3,3'-ジメチルジフェニルエーテル、エチレングリコールビス(4-ヒドロキシフェニル)エーテル、4,4'- ジヒドロキシジフェニルスルフィド、3,3'-ジメチル-4,4'-ジヒドロキシジフェニルスルフィド、3,3'-ジシクロヘキシル-4,4'-ジヒドロキシジフェニルスルフィド、3,3'-ジフェニル-4,4'-ジヒドロキシジフェニルスルフィド、4,4'-ジヒドロキシジフェニルスルホキシド、3,3'-ジメチル-4,4'-ジヒドロキシジフェニルスルホキシド、4,4'-ジヒドロキシジフェニルスルホン、4,4'-ジヒドロキシ-3,3'-ジメチルジフェニルスルホン、ビス(4-ヒドロキシフェニル)ケトン、ビス(4-ヒドロキシ-3-メチルフェニル)ケトン、7,7'-ジヒドロキシ-3,3',4,4'-テトラヒドロ-4,4,4',4'-テトラメチル-2,2'-スピロビ(2H-1-ベンゾピラン)、トランス-2,3-ビス(4-ヒドロキシフェニル)-2-ブテン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、3,3-ビス(4-ヒドロキシフェニル)-2-ブタノン、1,6-ビス(4-ヒドロキシフェニル)-1,6-ヘキサンジオン、4,4'-ジヒドロキシビフェニル、m-ジヒドロキシキシリレン、p-ジヒドロキシキシリレン、1,4-ビス(2-ヒドロキシエチル)ベンゼン、1,4-ビス(3-ヒドロキシプロピル)ベンゼン、1,4-ビス(4-ヒドロキシブチル)ベンゼン、1,4-ビス(5-ヒドロキシペンチル)ベンゼン、1,4-ビス(6-ヒドロキシヘキシル)ベンゼン、2,2-ビス〔4-(2’’-ヒドロキシエチルオキシ)フェニル〕プロパン、及びハイドロキノン、レゾールシン等の2官能ポリオール(前記ウレタンプレポリマーを構成する(d1)成分に該当する)。
Aromatic alcohol; component (d) dihydroxynaphthalene, dihydroxybenzene, bisphenol A, bisphenol F, xylylene glycol, tetrabromobisphenol A, bis(4-hydroxyphenyl)methane, 1,1-bis(4-hydroxyphenyl)ethane , 1,2-bis(4-hydroxyphenyl)ethane, bis(4-hydroxyphenyl)phenylmethane, bis(4-hydroxyphenyl)diphenylmethane, bis(4-hydroxyphenyl)-1-naphthylmethane, 1,1- Bis(4-hydroxyphenyl)-1-phenylethane, 2-(4-hydroxyphenyl)-2-(3-hydroxyphenyl)propane, 2,2-bis(4-hydroxyphenyl)butane, 1,1-bis (4-hydroxyphenyl)butane, 2,2-bis(4-hydroxyphenyl)-3-methylbutane, 2,2-bis(4-hydroxyphenyl)pentane, 3,3-bis(4-hydroxyphenyl)pentane, 2,2-bis(4-hydroxyphenyl)hexane, 2,2-bis(4-hydroxyphenyl)octane, 2,2-bis(4-hydroxyphenyl)-4-methylpentane, 2,2-bis(4 -hydroxyphenyl)heptane, 4,4-bis(4-hydroxyphenyl)heptane, 2,2-bis(4-hydroxyphenyl)tridecane, 2,2-bis(4-hydroxyphenyl)octane, 2,2-bis (3-methyl-4-hydroxyphenyl)propane, 2,2-bis(3-ethyl-4-hydroxyphenyl)propane, 2,2-bis(3-n-propyl-4-hydroxyphenyl)propane, 2, 2-bis(3-isopropyl-4-hydroxyphenyl)propane, 2,2-bis(3-sec-butyl-4-hydroxyphenyl)propane, 2,2-bis(3-tert-butyl-4-hydroxyphenyl) ) propane, 2,2-bis(3-cyclohexyl-4-hydroxyphenyl)propane, 2,2-bis(3-allyl-4′-hydroxyphenyl)propane, 2,2-bis(3-methoxy-4- hydroxyphenyl)propane, 2,2-bis(3,5-dimethyl-4-hydroxyphenyl)propane, 2,2-bis(2,3,5,6-tetramethyl-4-hydroxyphenyl)propane, bis( 4-hydroxyphenyl)cyanomethane, 1-cyano-3,3-bis(4-hydroxyphenyl)butane, 2,2-bis(4-hydroxyphenyl)hexafluoropropane, 1,1-bis(4-hydroxyphenyl) Cyclopentane, 1,1-bis(4-hydroxyphenyl)cyclohexane, 1,1-bis(4-hydroxyphenyl)cycloheptane, 1,1-bis(3-methyl-4-hydroxyphenyl)cyclohexane, 1,1 -bis(3,5-dimethyl-4-hydroxyphenyl)cyclohexane, 1,1-bis(3,5-dichloro-4-hydroxyphenyl)cyclohexane, 1,1-bis(3-methyl-4-hydroxyphenyl) -4-methylcyclohexane, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 2,2-bis(4-hydroxyphenyl)norbornane, 2,2-bis(4-hydroxyphenyl ) adamantane, 4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxy-3,3′-dimethyldiphenyl ether, ethylene glycol bis(4-hydroxyphenyl) ether, 4,4′-dihydroxydiphenyl sulfide, 3,3′ -dimethyl-4,4'-dihydroxydiphenyl sulfide, 3,3'-dicyclohexyl-4,4'-dihydroxydiphenyl sulfide, 3,3'-diphenyl-4,4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxy Diphenyl sulfoxide, 3,3'-dimethyl-4,4'-dihydroxydiphenyl sulfoxide, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfone, bis(4-hydroxyphenyl ) ketone, bis(4-hydroxy-3-methylphenyl)ketone, 7,7′-dihydroxy-3,3′,4,4′-tetrahydro-4,4,4′,4′-tetramethyl-2, 2′-spirobi(2H-1-benzopyran), trans-2,3-bis(4-hydroxyphenyl)-2-butene, 9,9-bis(4-hydroxyphenyl)fluorene, 3,3-bis(4 -hydroxyphenyl)-2-butanone, 1,6-bis(4-hydroxyphenyl)-1,6-hexanedione, 4,4'-dihydroxybiphenyl, m-dihydroxyxylylene, p-dihydroxyxylylene, 1, 4-bis(2-hydroxyethyl)benzene, 1,4-bis(3-hydroxypropyl)benzene, 1,4-bis(4-hydroxybutyl)benzene, 1,4-bis(5-hydroxypentyl)benzene, 1,4-bis(6-hydroxyhexyl)benzene, 2,2-bis[4-(2″-hydroxyethyloxy)phenyl]propane, and bifunctional polyols such as hydroquinone and resorcinol (constituting the urethane prepolymer) corresponds to the (d1) component).
 トリヒドロキシナフタレン、テトラヒドロキシナフタレン、ベンゼントリオール、ビフェニルテトラオール、ピロガロール、(ヒドロキシナフチル)ピロガロール、トリヒドロキシフェナントレン等の多官能ポリオール(前記(db)成分に該当する)。 Polyfunctional polyols such as trihydroxynaphthalene, tetrahydroxynaphthalene, benzenetriol, biphenyltetraol, pyrogallol, (hydroxynaphthyl)pyrogallol, and trihydroxyphenanthrene (corresponding to the (db) component).
 ポリエステルポリオール;(d)成分
 ポリオールと複数のカルボン酸を有する化合物との縮合反応により得られる化合物が挙げられる。中でも、数平均分子量が400~2000であることが好ましく、500~1500より好ましく、600~1200が最も好ましい。なお、分子の両末端にのみ(分子内に2つの)水酸基を有するものは、前記ウレタンプレポリマーを構成する(d1)成分に該当し、分子中に水酸基を3個以上有するものは前記(db)成分に該当する。
Polyester polyol; component (d) Examples include compounds obtained by a condensation reaction between a polyol and a compound having multiple carboxylic acids. Among them, the number average molecular weight is preferably from 400 to 2,000, more preferably from 500 to 1,500, and most preferably from 600 to 1,200. Those having hydroxyl groups only at both ends of the molecule (two in the molecule) correspond to the (d1) component constituting the urethane prepolymer, and those having three or more hydroxyl groups in the molecule are the above (db ) corresponds to the component.
 ここで、前記ポリオールとしては、エチレングリコール、1,2-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、3,3’-ジメチロールヘプタン、1,4-シクロヘキサンジメタノール、ネオペンチルグリコール、3,3-ビス(ヒドロキシメチル)ヘプタン、ジエチレングリコール、ジプロピレングリコール、グリセリン、トリメチロールプロパンなどが挙げられ、これらは単独で使用しても、2種類以上を混合して使用しても構わない。また、前記複数のカルボン酸を有する化合物としては、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、シクロペンタンジカルボン酸、シクロヘキサンジカルボン酸、オルトフタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸などが挙げられ、これらは単独で使用しても、2種類以上を混合して使用しても構わない。 Here, the polyols include ethylene glycol, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 3,3′-dimethylolheptane, 1,4-cyclohexanedimethanol, neopentyl glycol, 3,3-bis(hydroxymethyl)heptane, diethylene glycol, dipropylene glycol, glycerin, trimethylolpropane and the like, which are Even if it uses individually, it does not matter even if it mixes and uses two or more types. Examples of compounds having a plurality of carboxylic acids include succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, cyclopentanedicarboxylic acid, cyclohexanedicarboxylic acid, orthophthalic acid, isophthalic acid, terephthalic acid, and naphthalenedicarboxylic acid. and the like, and these may be used alone or in combination of two or more.
 これらポリエステルポリオールは、試薬としてまたは工業的に入手可能であり、市販されているものを例示すれば、DIC株式会社製「ポリライト(登録商標)」シリーズ、日本ポリウレタン工業株式会社製「ニッポラン(登録商標)」シリーズ、川崎化成工業株式会社製「マキシモール(登録商標)」シリーズ、株式会社クラレ製「クラレポリオール(登録商標)」シリーズなどを挙げることができる。 These polyester polyols are commercially available as reagents or industrially. Examples of commercially available products include the "Polylite (registered trademark)" series manufactured by DIC Corporation, and the "Nipporan (registered trademark)" manufactured by Nippon Polyurethane Industry Co., Ltd. )” series, the “Maximol (registered trademark)” series manufactured by Kawasaki Chemical Industries, Ltd., and the “Kuraray Polyol (registered trademark)” series manufactured by Kuraray Co., Ltd., and the like.
 ポリエーテルポリオール;(d)成分
 アルキレンオキシドの開環重合、または、分子中に活性水素基を2個以上有する化合物とアルキレンオキサイドとの反応により得られる化合物およびその変性体が挙げられる。中でも、数平均分子量が400~2000であることが好ましく、500~1500より好ましく、600~1200が最も好ましい。なお、分子の両末端にのみ(分子内に2つの)水酸基を有するものは、前記ウレタンプレポリマーを構成する(d1)成分に該当し、分子中に水酸基を3個以上有するものは前記(db)成分に該当する。
Polyether Polyol; Component (d) Examples include compounds obtained by ring-opening polymerization of alkylene oxide or reaction of a compound having two or more active hydrogen groups in the molecule with alkylene oxide, and modified products thereof. Among them, the number average molecular weight is preferably from 400 to 2,000, more preferably from 500 to 1,500, and most preferably from 600 to 1,200. Those having hydroxyl groups only at both ends of the molecule (two in the molecule) correspond to the (d1) component constituting the urethane prepolymer, and those having three or more hydroxyl groups in the molecule are the above (db ) corresponds to the component.
 ここで、前記ポリエーテルポリオールとしては、ポリマーポリオール、ウレタン変性ポリエーテルポリオール、ポリエーテルエステルコポリマーポリオール等を挙げることができ、上記分子中に活性水素基を2個以上有する化合物としては、水、エチレングリコール、プロピレングリコール、ブタンジオール、グリセリン、トリメチロールプロパン、ヘキサントリオール、トリエタノールアミン、ジグリセリン、ペンタエリスリトール、トリメチロールプロパン、ヘキサントリオールなどの分子中に水酸基を1個以上有するグリコール、グリセリン等のポリオール化合物が挙げられ、これらは単独で使用しても、2種類以上を混合して使用してもよい。 Here, examples of the polyether polyols include polymer polyols, urethane-modified polyether polyols, polyether ester copolymer polyols, and the like. Examples of the compounds having two or more active hydrogen groups in the molecule include water, ethylene Glycol, propylene glycol, butanediol, glycerin, trimethylolpropane, hexanetriol, triethanolamine, diglycerin, pentaerythritol, trimethylolpropane, hexanetriol, and other polyols such as glycols and glycerin having one or more hydroxyl groups in the molecule compounds, and these may be used alone or in combination of two or more.
 また、前記アルキレンオキサイドとしては、エチレンオキサイド、プロピレンオキサイド、テトラヒドロフラン等の環状エーテル化合物が挙げられ、これらは単独で使用しても2種類以上を混合して使用しても構わない。 The alkylene oxides include cyclic ether compounds such as ethylene oxide, propylene oxide, and tetrahydrofuran, and these may be used alone or in combination of two or more.
 このようなポリエーテルポリオールは、試薬としてまたは工業的に入手可能であり、市販されているものを例示すれば、旭硝子株式会社製「エクセノール(登録商標)」シリーズ、「エマルスター(登録商標)」、株式会社ADEKA製「アデカポリエーテル」シリーズなどを挙げることができる。 Such polyether polyols are commercially available as reagents or industrially. ADEKA CORPORATION "ADEKA POLYETHER" series and the like can be mentioned.
 ポリカプロラクトンポリオール;(d)成分
 ε-カプロラクトンの開環重合により得られる化合物が挙げられる。中でも、数平均分子量が400~2000であることが好ましく、500~1500より好ましく、600~1200が最も好ましい。なお、分子の両末端にのみ(分子内に2つの)水酸基を有するものは、前記ウレタンプレポリマーを構成する(d1)成分に該当し、分子中に水酸基を3個以上有するものは前記(db)成分に該当する。
Polycaprolactone Polyol; Component (d) Examples include compounds obtained by ring-opening polymerization of ε-caprolactone. Among them, the number average molecular weight is preferably from 400 to 2,000, more preferably from 500 to 1,500, and most preferably from 600 to 1,200. Those having hydroxyl groups only at both ends of the molecule (two in the molecule) correspond to the (d1) component constituting the urethane prepolymer, and those having three or more hydroxyl groups in the molecule are the above (db ) corresponds to the component.
 これらポリカプロラクトンポリオールは、試薬としてまたは工業的に入手可能であり、市販されているものを例示すれば、ダイセル化学工業株式会社製「プラクセル(登録商標)」シリーズなどを挙げることができる。 These polycaprolactone polyols are commercially available as reagents or industrially. Examples of commercially available products include the "PLAXEL (registered trademark)" series manufactured by Daicel Chemical Industries, Ltd.
 ポリカーボネートポリオール;(d)成分
 低分子ポリオールの1種類以上をホスゲン化して得られる化合物あるいはエチレンカーボネート、ジエチルカーボネート、ジフェニルカーボネート等を用いてエステル交換して得られる化合物が挙げられる。中でも、数平均分子量が400~2000であることが好ましく、500~1500より好ましく、600~1200が最も好ましい。なお、分子の両末端にのみ(分子内に2つの)水酸基を有するものは、前記ウレタンプレポリマーを構成する(d1)成分に該当し、分子中に水酸基を3個以上有するものは前記(cd)成分に該当する。
Polycarbonate polyol; component (d) A compound obtained by phosgenation of one or more low-molecular-weight polyols or a compound obtained by transesterification using ethylene carbonate, diethyl carbonate, diphenyl carbonate or the like can be mentioned. Among them, the number average molecular weight is preferably from 400 to 2,000, more preferably from 500 to 1,500, and most preferably from 600 to 1,200. Those having hydroxyl groups only at both ends of the molecule (two in the molecule) correspond to the (d1) component constituting the urethane prepolymer, and those having three or more hydroxyl groups in the molecule are the above (cd ) corresponds to the component.
 ここで、前記低分子ポリオールとしては、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、3-メチル-1,5-ペンタンジオール、2-エチル-4-ブチル-1,3-プロパンジオール、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、シクロヘキサン-1,4-ジオール、シクロヘキサン-1,4-ジメタノール、ダイマー酸ジオール、ビスフェノールA のエチレンオキサイドやプロピレンオキサイド付加物、ビス(β-ヒドロキシエチル)ベンゼン、キシリレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール等の低分子ポリオール類が挙げられる。 Here, the low-molecular-weight polyols include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 2-methyl-1,3-propanediol, 1,2-butanediol, and 1,3-butane. diol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 3-methyl-1, 5-pentanediol, 2-ethyl-4-butyl-1,3-propanediol, diethylene glycol, dipropylene glycol, neopentyl glycol, cyclohexane-1,4-diol, cyclohexane-1,4-dimethanol, dimer acid diol , ethylene oxide and propylene oxide adducts of bisphenol A, bis(β-hydroxyethyl)benzene, xylylene glycol, glycerin, trimethylolpropane, pentaerythritol and other low-molecular-weight polyols.
 ポリアクリルポリオール;(d)成分
 (メタ)アクリレート酸エステルやビニルモノマーを重合させて得られるポリオール化合物が挙げられる。なお、分子の両末端にのみ(分子内に2つの)水酸基を有するものは、前記ウレタンプレポリマーを構成する(d1)成分に該当し、分子中に水酸基を3個以上有するものは前記(db)成分に該当する。
Polyacrylic Polyol; Component (d) Examples include polyol compounds obtained by polymerizing (meth)acrylate acid esters and vinyl monomers. Those having hydroxyl groups only at both ends of the molecule (two in the molecule) correspond to the (d1) component constituting the urethane prepolymer, and those having three or more hydroxyl groups in the molecule are the above (db ) corresponds to the component.
 ヒマシ油系ポリオール;(d)成分
 ヒマシ油系ポリオールとしては、天然油脂であるひまし油を出発原料としているポリオール化合物が挙げられる。なお、なお、分子の両末端にのみ(分子内に2つの)水酸基を有するものは、前記ウレタンプレポリマーを構成する(d1)成分に該当し、分子中に水酸基を3個以上有するものは前記(db)成分に該当する。
Castor oil-based polyol; component (d) Examples of castor oil-based polyols include polyol compounds starting from castor oil, which is a natural oil. In addition, those having hydroxyl groups only at both ends of the molecule (two in the molecule) correspond to the (d1) component constituting the urethane prepolymer, and those having three or more hydroxyl groups in the molecule are the above-mentioned (db) corresponds to the component.
 これらヒマシ油ポリオールは、試薬としてまたは工業的に入手可能であり、市販されているものを例示すれば、伊藤製油株式会社製「URIC(登録商標)」シリーズなどを挙げることができる。 These castor oil polyols are commercially available as reagents or industrially, and examples of commercially available products include the "URIC (registered trademark)" series manufactured by Ito Seiyu Co., Ltd.
 ((d)チオール基を2個以上有する化合物)
 前記(d)成分の中でチオール基を2個以上有する化合物の好適な具体例としては、国際公開第WO2015/068798号パンフレットに記載されているものを用いることができる。その中でも、特に好適なものを例示すれば以下のものが挙げられる。
((d) compound having two or more thiol groups)
Preferred specific examples of the compound having two or more thiol groups among the component (d) include those described in International Publication No. WO2015/068798 pamphlet. Among them, the following are particularly preferred examples.
 テトラエチレングリコールビス(3-メルカプトプロピオネート)、1,4-ブタンジオールビス(3-メルカプトプロピオネート)、1,6-ヘキサンジオールビス(3-メルカプトプロピオネート)、1,4-ビス(メルカプトプロピルチオメチル)ベンゼン(前記ウレタンプレポリマーを構成する(d1)成分に該当する)。 Tetraethylene glycol bis(3-mercaptopropionate), 1,4-butanediol bis(3-mercaptopropionate), 1,6-hexanediol bis(3-mercaptopropionate), 1,4-bis (mercaptopropylthiomethyl)benzene (corresponding to component (d1) constituting the urethane prepolymer);
 トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、1,2-ビス[(2-メルカプトエチル)チオ]-3-メルカプトプロパン、2,2-ビス(メルカプトメチル)-1,4-ブタンジチオール、2,5-ビス(メルカプトメチル)-1,4-ジチアン、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、1,1,1,1-テトラキス(メルカプトメチル)メタン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、1,1,2,2-テトラキス(メルカプトメチルチオ)エタン、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、トリス-{(3-メルカプトプロピオニルオキシ)エチル}-イソシアヌレ-ト等のチオール(前記(db)成分に該当する)。 Trimethylolpropane tris (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), dipentaerythritol hexakis (3-mercaptopropionate), 1,2-bis [(2-mercaptoethyl ) Thio]-3-mercaptopropane, 2,2-bis(mercaptomethyl)-1,4-butanedithiol, 2,5-bis(mercaptomethyl)-1,4-dithiane, 4-mercaptomethyl-1,8 -dimercapto-3,6-dithiaoctane, 1,1,1,1-tetrakis(mercaptomethyl)methane, 1,1,3,3-tetrakis(mercaptomethylthio)propane, 1,1,2,2-tetrakis(mercapto Thiols such as methylthio)ethane, 4,6-bis(mercaptomethylthio)-1,3-dithiane, tris-{(3-mercaptopropionyloxy)ethyl}-isocyanurate (corresponding to the above component (db)).
 ((d)水酸基およびチオール基重合性基含有モノマー)
 前記(d)成分の中で水酸基とチオール基の両方を化合物としては、以下のものが挙げられる。
((d) hydroxyl group and thiol group polymerizable group-containing monomer)
Examples of compounds containing both a hydroxyl group and a thiol group in the component (d) include the following.
 2-メルカプトエタノール、1-ヒドロキシ-4-メルカプトシクロヘキサン、2-メルカプトハイドロキノン、4-メルカプトフェノール、1-ヒドロキシエチルチオ-3-メルカプトエチルチオベンゼン、4-ヒドロキシ-4’-メルカプトジフェニルスルホン、2-(2-メルカプトエチルチオ)エタノール、ジヒドロキシエチルスルフィドモノ(3-メルカプトプロピオネート)、ジメルカプトエタンモノ(サルチレート)(前記ウレタンプレポリマーを構成する(d1)成分に該当する)。 2-mercaptoethanol, 1-hydroxy-4-mercaptocyclohexane, 2-mercaptohydroquinone, 4-mercaptophenol, 1-hydroxyethylthio-3-mercaptoethylthiobenzene, 4-hydroxy-4'-mercaptodiphenylsulfone, 2- (2-Mercaptoethylthio)ethanol, dihydroxyethyl sulfide mono(3-mercaptopropionate), dimercaptoethane mono(salcylate) (corresponding to component (d1) constituting the urethane prepolymer).
 3-メルカプト-1,2-プロパンジオール、グルセリンジ(メルカプトアセテート)、2,4-ジメルカプトフェノール、1,3-ジメルカプト-2-プロパノール、2,3-ジメルカプト-1-プロパノール、1,2-ジメルカプト-1,3-ブタンジオール、ペンタエリスリトールトリス(3-メルカプトプロピオネート)、ペンタエリスリトールモノ(3-メルカプトプロピオネート)、ペンタエリスリトールビス(3-メルカプトプロピオネート)、ペンタエリスリトールトリス(チオグリコレート)、ペンタエリスリトールペンタキス(3-メルカプトプロピオネート)、ヒドロキシメチル-トリス(メルカプトエチルチオメチル)メタン、ヒドロキシエチルチオメチルートリス(メルカプトエチルチオ)メタン等の多官能OH/SH型重合性基含有モノマー(前記(db)成分に該当する)。 3-mercapto-1,2-propanediol, glycerindi (mercaptoacetate), 2,4-dimercaptophenol, 1,3-dimercapto-2-propanol, 2,3-dimercapto-1-propanol, 1,2-dimercapto -1,3-butanediol, pentaerythritol tris (3-mercaptopropionate), pentaerythritol mono (3-mercaptopropionate), pentaerythritol bis (3-mercaptopropionate), pentaerythritol tris (thioglyco rate), pentaerythritol pentakis(3-mercaptopropionate), hydroxymethyl-tris(mercaptoethylthiomethyl)methane, hydroxyethylthiomethyltris(mercaptoethylthio)methane, etc. group-containing monomer (corresponding to the (db) component);
 水酸基及び/またはチオール基を3個以上有する側鎖含有環状分子;(db)成分
 本発明において、末端に水酸基及び/またはチオール基を3個以上有する側鎖を含有する環状分子であれば特に制限されない。たとえば、基となる環状分子としては、シクロデキストリン、クラウンエーテル、ベンゾクラウン、ジベンゾクラウン、ジシクロヘキサノクラウン、シクロビス(パラクアット-1,4-フェニレン)、ジメトキシピラーアレーン、カリックスアレーン、及びフェナントロリンを挙げることができ、中でもシクロデキストリンが好ましい。
Side chain-containing cyclic molecule having 3 or more hydroxyl groups and/or thiol groups; component (db) In the present invention, any cyclic molecule containing a side chain having 3 or more hydroxyl groups and/or thiol groups at the terminal is particularly restricted. not. For example, underlying cyclic molecules include cyclodextrin, crown ether, benzocrown, dibenzocrown, dicyclohexanocrown, cyclobis(paraquat-1,4-phenylene), dimethoxypyraarene, calixarene, and phenanthroline. Among them, cyclodextrin is preferred.
 該シクロデキストリンには、α体(環内径0.45~0.6nm)、β体(環内径0.6~0.8nm)、γ体(環内径0.8~0.95nm)がある。また、これらの混合物を使用することもできる。本発明では、特にα-シクロデキストリン、及びβ-シクロデキストリンが好ましい。 The cyclodextrin has an α form (ring inner diameter 0.45 to 0.6 nm), a β form (ring inner diameter 0.6 to 0.8 nm), and a γ form (ring inner diameter 0.8 to 0.95 nm). Mixtures of these can also be used. In the present invention, α-cyclodextrin and β-cyclodextrin are particularly preferred.
 次に環状分子に少なくとも3個以上導入される末端に水酸基及び/またはチオール基を有する側鎖について説明する。前記側鎖の導入方法は限定されないが、たとえば環状分子が有する反応性官能基を利用し、この反応性官能基を修飾することによって導入することができる(すなわち、側鎖は、該反応性官能基に反応させて導入される)。 Next, the side chains having at least three hydroxyl groups and/or thiol groups at the ends that are introduced into the cyclic molecule will be described. Although the method for introducing the side chain is not limited, for example, it can be introduced by utilizing the reactive functional group possessed by the cyclic molecule and modifying this reactive functional group (that is, the side chain can be introduced by modifying the reactive functional group introduced by reacting with the group).
 該反応性官能基としては、たとえば、水酸基、アミノ基などが挙げられ、中でも水酸基が好ましい。たとえば、α-シクロデキストリンは、反応性官能基として18個の水酸基を有しており、この水酸基に反応させて側鎖が導入される。そのため、1つのα-シクロデキストリンに対しては最大で18個の側鎖を導入できることとなる。本発明においては、前述した側鎖の機能を十分に発揮させるためには、少なくとも、該末端に水酸基及び/またはチオール基が導入された側鎖は3個以上導入されている必要がある。中でも、該末端に水酸基及び/またはチオール基が導入された側鎖が5個以上導入されていることが好ましく、該末端に水酸基及び/またはチオール基が導入された側鎖が7個以上導入されていることがより好ましく、該末端に水酸基及び/またはチオール基が導入された側鎖が8個以上導入されていることがもっとも好ましい。また、特に好ましいのは、末端が水酸基である側鎖である。 Examples of the reactive functional group include hydroxyl group and amino group, among which hydroxyl group is preferred. For example, α-cyclodextrin has 18 hydroxyl groups as reactive functional groups, and the hydroxyl groups are reacted to introduce side chains. Therefore, up to 18 side chains can be introduced into one α-cyclodextrin. In the present invention, at least 3 or more side chains having hydroxyl groups and/or thiol groups introduced at their ends must be introduced in order to sufficiently exhibit the functions of the side chains described above. Among them, it is preferable that 5 or more side chains having hydroxyl groups and/or thiol groups introduced at the terminals are introduced, and 7 or more side chains having hydroxyl groups and/or thiol groups introduced at the terminals are introduced. More preferably, 8 or more side chains having hydroxyl groups and/or thiol groups introduced at the terminals are most preferably introduced. Moreover, a side chain having a terminal hydroxyl group is particularly preferred.
 上記側鎖としては、特に制限されるものではないが、炭素数が3~20の範囲にある有機鎖の繰り返しにより形成されていることが好適である。このような側鎖の数平均分子量は、たとえば300以上であることが好ましい。より詳細には、このような側鎖の数平均分子量は、300~10,000、好ましくは350~5,000、最も好ましくは、400~5,000の範囲である。この側鎖の数平均分子量は、側鎖の導入時に使用する量により調整ができ、計算により求めることができ、H-NMRの測定からも求めることができる。 Although the side chain is not particularly limited, it is preferably formed by repeating an organic chain having 3 to 20 carbon atoms. The number average molecular weight of such side chains is preferably 300 or more, for example. More particularly, the number average molecular weight of such side chains ranges from 300 to 10,000, preferably from 350 to 5,000, most preferably from 400 to 5,000. The number average molecular weight of this side chain can be adjusted by adjusting the amount used when the side chain is introduced, and can be determined by calculation or by 1 H-NMR measurement.
 前記側鎖の数平均分子量の下限を上記のとおりにすることにより、優れた力学特性が発現し、本発明のCMP研磨パッドに用いる際、研磨レートが向上する傾向にある。 By setting the lower limit of the number average molecular weight of the side chain as above, excellent mechanical properties are exhibited, and when used in the CMP polishing pad of the present invention, the polishing rate tends to be improved.
 本発明において、前記側鎖は、直鎖状であってもよいし、分枝状であってもよい。側鎖の導入については、国際公開第2015/159875号に開示されている手法や化合物を適宜導入することが可能であり、たとえば、開環重合;ラジカル重合;カチオン重合;アニオン重合;原子移動ラジカル重合、RAFT重合、NMP重合などのリビングラジカル重合などが利用できる。上記手法により、適宜選択された化合物を前記環状分子が有する反応性官能基に反応させることによって適宜の大きさの側鎖を導入することができる。 In the present invention, the side chain may be linear or branched. For the introduction of side chains, it is possible to appropriately introduce the methods and compounds disclosed in WO 2015/159875, for example, ring-opening polymerization; radical polymerization; cationic polymerization; anionic polymerization; Polymerization, RAFT polymerization, living radical polymerization such as NMP polymerization, and the like can be used. By the above method, a side chain having an appropriate size can be introduced by reacting an appropriately selected compound with the reactive functional group of the cyclic molecule.
 その中でも特に好ましいのは開環重合であり、環状エーテル、環状ラクトン、環状アセタール、環状カーボネート等の環状化合物に由来する側鎖を導入することが好適である。 Among them, ring-opening polymerization is particularly preferable, and it is preferable to introduce side chains derived from cyclic compounds such as cyclic ethers, cyclic lactones, cyclic acetals, and cyclic carbonates.
 該環状化合物の中でも、反応性が高く、さらには分子量の調製が容易であるという観点から、環状エーテル、環状ラクトン、および環状カーボネートを用いることが好ましい。 Among the cyclic compounds, it is preferable to use cyclic ethers, cyclic lactones, and cyclic carbonates from the viewpoints of high reactivity and ease of molecular weight adjustment.
 以下、好適に用いられる環状エーテル、環状ラクトン、および環状カーボネートを例示する。 Preferred cyclic ethers, cyclic lactones, and cyclic carbonates are exemplified below.
 環状エーテル;
 エチレンオキシド、1,2-プロピレンオキシド、エピクロロヒドリン、エピブロモヒドリン、1,2-ブチレンオキシド、2,3-ブチレンオキシド、イソブチレンオキシド、オキセタン、3-メチルオキセタン、3,3-ジメチルオキセタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、3-メチルテトラヒドロフラン等
 環状ラクトン;
 4員環ラクトン;β-プロピオラクトン、β-メチルプロピオラクトン、L-セリン-β-ラクトン等
 5員環ラクトン;γ-ブチロラクトン、γ-ヘキサノラクトン、γ-ヘプタノラクトン、γ-オクタノラクトン、γ-デカノラクトン、γ-ドデカノラクトン、α-ヘキシル-γ-ブチロラクトン、α-ヘプチル-γ-ブチロラクトン、α-ヒドロキシ-γ-ブチロラクトン、γ-メチル-γ-デカノラクトン、α-メチレン-γ-ブチロラクトン、α,α-ジメチル-γ-ブチロラクトン、D-エリスロノラクトン、α-メチル-γ-ブチロラクトン、γ-ノナノラクトン、DL-パントラクトン、γ-フェニル-γ-ブチロラクトン、γ-ウンデカノラクトン、γ-バレロラクトン、2,2-ペンタメチレン-1,3-ジオキソラン-4-オン、α-ブロモ-γ-ブチロラクトン、γ-クロトノラクトン、α-メチレン-γ-ブチロラクトン、α-メタクリロイルオキシ-γ-ブチロラクトン、β-メタクリロイルオキシ-γ-ブチロラクトン等
 6員環ラクトン;δ-バレロラクトン、δ-ヘキサノラクトン、δ-オクタノラクトン、δ-ノナノラクトン、δ-デカノラクトン、δ-ウンデカノラクトン、δ-ドデカノラクトン、δ-トリデカノラクトン、δ-テトラデカノラクトン、DL-メバロノラクトン、4-ヒドロキシ-1-シクロヘキサンカルボン酸δ-ラクトン、モノメチル-δ-バレロラクトン、モノエチル-δ-バレロラクトン、モノヘキシル-δ-バレロラクトン、1,4-ジオキサン-2-オン、1,5-ジオキセパン-2-オン等
 7員環ラクトン;ε-カプロラクトン、モノメチル-ε-カプロラクトン、モノエチル-ε-カプロラクトン、モノヘキシル-ε-カプロラクトン、ジメチル-ε-カプロラクトン、ジ-n-プロピル-ε-カプロラクトン、ジ-n-ヘキシル-ε-カプロラクトン、トリメチル-ε-カプロラクトン、トリエチル-ε-カプロラクトン、トリ-n-ε-カプロラクトン、ε-カプロラクトン、5-ノニル-オキセパン-2-オン、4,4,6-トリメチル-オキセパン-2-オン、4,6,6-トリメチル-オキセパン-2-オン、5-ヒドロキシメチル-オキセパン-2-オン等
 8員環ラクトン;ζ-エナントラクトン等
 その他のラクトン;ラクトン、ラクチド、ジラクチド、テトラメチルグリコシド、1,5-ジオキセパン-2-オン、t-ブチルカプロラクトン等
 環状カーボネート;
 エチレンカーボネート、炭酸プロピレン、炭酸1,2-ブチレングリセロール1,2-カルボナート、4-(メトキシメチル)-1,3-ジオキソラン-2-オン、(クロロメチル)エチレンカーボネート、炭酸ビニレン、4,5-ジメチル-1,3-ジオキソール-2-オン、4-クロロメチル-5-メチル-1,3-ジオキソール-2-オン、4-ビニル-1,3-ジオキソラン-2-オン、4,5-ジフェニル-1,3-ジオキソラン-2-オン、4,4-ジメチル-5-メチレン-1,3-ジオキソラン-2-オン、1,3-ジオキサン-2-オン、5-メチル-5-プロピル-1,3-ジオキソラン-2-オン、5,5-ジエチル-1,3-ジオキソラン-2-オン
 上記の環状化合物は、単独で使用することも、2種以上を併用して使用することもできる。
cyclic ethers;
ethylene oxide, 1,2-propylene oxide, epichlorohydrin, epibromohydrin, 1,2-butylene oxide, 2,3-butylene oxide, isobutylene oxide, oxetane, 3-methyloxetane, 3,3-dimethyloxetane, Tetrahydrofuran, 2-methyltetrahydrofuran, 3-methyltetrahydrofuran, etc. Cyclic lactones;
4-membered ring lactone; β-propiolactone, β-methylpropiolactone, L-serine-β-lactone, etc. 5-membered ring lactone; γ-butyrolactone, γ-hexanolactone, γ-heptanolactone, γ-octa Nolactone, γ-decanolactone, γ-dodecanolactone, α-hexyl-γ-butyrolactone, α-heptyl-γ-butyrolactone, α-hydroxy-γ-butyrolactone, γ-methyl-γ-decanolactone, α-methylene-γ -butyrolactone, α,α-dimethyl-γ-butyrolactone, D-erythronolactone, α-methyl-γ-butyrolactone, γ-nonanolactone, DL-pantolactone, γ-phenyl-γ-butyrolactone, γ-undecanolactone, γ-valerolactone, 2,2-pentamethylene-1,3-dioxolane-4-one, α-bromo-γ-butyrolactone, γ-crotonolactone, α-methylene-γ-butyrolactone, α-methacryloyloxy-γ -Butyrolactone, β-methacryloyloxy-γ-butyrolactone, etc. Six-membered ring lactones; Dodecanolactone, δ-tridecanolactone, δ-tetradecanolactone, DL-mevalonolactone, 4-hydroxy-1-cyclohexanecarboxylic acid δ-lactone, monomethyl-δ-valerolactone, monoethyl-δ-valerolactone, monohexyl- δ-valerolactone, 1,4-dioxan-2-one, 1,5-dioxepan-2-one, etc. 7-membered ring lactone; ε-caprolactone, monomethyl-ε-caprolactone, monoethyl-ε-caprolactone, monohexyl-ε- Caprolactone, dimethyl-ε-caprolactone, di-n-propyl-ε-caprolactone, di-n-hexyl-ε-caprolactone, trimethyl-ε-caprolactone, triethyl-ε-caprolactone, tri-n-ε-caprolactone, ε- Caprolactone, 5-nonyl-oxepan-2-one, 4,4,6-trimethyl-oxepan-2-one, 4,6,6-trimethyl-oxepan-2-one, 5-hydroxymethyl-oxepan-2-one 8-membered ring lactone; ζ-enantholactone, etc. Other lactones; lactone, lactide, dilactide, tetramethylglycoside, 1,5-dioxepan-2-one, t-butylcaprolactone, etc. Cyclic carbonate;
Ethylene carbonate, propylene carbonate, 1,2-butylene glycerol carbonate 1,2-carbonate, 4-(methoxymethyl)-1,3-dioxolan-2-one, (chloromethyl) ethylene carbonate, vinylene carbonate, 4,5- Dimethyl-1,3-dioxol-2-one, 4-chloromethyl-5-methyl-1,3-dioxol-2-one, 4-vinyl-1,3-dioxolan-2-one, 4,5-diphenyl -1,3-dioxolan-2-one, 4,4-dimethyl-5-methylene-1,3-dioxolan-2-one, 1,3-dioxan-2-one, 5-methyl-5-propyl-1 ,3-dioxolan-2-one, 5,5-diethyl-1,3-dioxolan-2-one The above cyclic compounds may be used alone or in combination of two or more.
 本発明において、好適に使用される環状化合物は、ラクトン化合物であり、特に好適なラクトン化合物はε-カプロラクトン、α-アセチル-γ-ブチロラクトン、α-メチル-γ-ブチロラクトン、γ-バレロラクトン、γ-ブチロラクトン等のラクトン化合物であり、さらにもっとも好ましいのはε-カプロラクトンである。 In the present invention, the cyclic compound preferably used is a lactone compound, and particularly preferred lactone compounds are ε-caprolactone, α-acetyl-γ-butyrolactone, α-methyl-γ-butyrolactone, γ-valerolactone, γ - lactone compounds such as butyrolactone, most preferably ε-caprolactone.
 また、開環重合により環状化合物を反応させて側鎖を導入する場合、環状分子の反応性官能基(たとえば水酸基)が反応性に乏しく、特に立体障害などにより大きな分子を直接反応させることが困難な場合がある。このような場合には、たとえば、前記したカプロラクトンなどを反応させるために、一旦、プロピレンオキシドなどの低分子化合物を環状分子の反応性官能基と反応させてヒドロキシプロピル化を行ない、事前に反応性に富んだ官能基を導入する方法が好適である。その後、前記した環状化合物を用いた開環重合により、側鎖を導入するという手段を採用することができる。この場合、ヒドロキシプロピル化した部分も側鎖と見なすことができる。 In addition, when side chains are introduced by reacting cyclic compounds by ring-opening polymerization, the reactive functional groups (e.g., hydroxyl groups) of cyclic molecules are poor in reactivity, and it is difficult to directly react large molecules, especially due to steric hindrance. There are cases. In such a case, for example, in order to react caprolactone or the like described above, a low-molecular-weight compound such as propylene oxide is once reacted with the reactive functional group of the cyclic molecule to hydroxypropylate it, thereby preliminarily reacting the reactive functional group. A method of introducing functional groups rich in is preferred. After that, a means of introducing a side chain by ring-opening polymerization using the above-described cyclic compound can be adopted. In this case, the hydroxypropylated moieties can also be considered side chains.
 水酸基及び/またはチオール基を有するポリロタキサン;(d)成分
 ポリロタキサンとは、複数の環状分子の環内を鎖状の軸分子が貫通しており、かつ、軸分子の両端に嵩高い基が結合していて立体障害により環状分子が軸分子から抜けなくなった構造を有している分子の複合体であり、超分子(Supramolecule)とも呼ばれている。本発明の(d)成分で使用できるポリロタキサンは、イソシアネート基と重合可能な水酸基及び/またはチオール基を有するポリロタキサンであり、水酸基及び/またはチオール基が3個以上有するものは前記(db)成分に該当する。本発明の(d)成分で用いられる水酸基及び/またはチオール基を有するポリロタキサンは特に限定されないが、たとえば国際出願第2018/092826号公報に記載のポリロタキサンが例示される。
Polyrotaxane having hydroxyl group and/or thiol group; component (d) It is also called a supramolecule, which is a molecular complex having a structure in which a cyclic molecule cannot come off from an axial molecule due to steric hindrance. The polyrotaxane that can be used as the component (d) of the present invention is a polyrotaxane having a hydroxyl group and/or a thiol group polymerizable with an isocyanate group, and those having three or more hydroxyl groups and/or thiol groups are included in the component (db). Applicable. Although the polyrotaxane having a hydroxyl group and/or a thiol group used in the component (d) of the present invention is not particularly limited, for example, the polyrotaxane described in International Application No. 2018/092826 is exemplified.
 本発明で用いられる(db)成分の中で好ましいのは、グリセリン、トリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、トリメチロールプロパントリポリオキシエチレンエーテル(日本乳化剤株式会社のTMP-30)、水酸基が3個以上のポリエステルポリオール、水酸基が3個以上のポリエーテルポリオール、水酸基が3個以上のヒマシ油系ポリオール、水酸基を3個以上有する側鎖含有環状化合物、水酸基及び/またはチオール基を有するポリロタキサンが挙げられ、水酸基を3個以上有する側鎖含有環状化合物、水酸基及び/またはチオール基を3個以上有するポリロタキサンがより好ましく、ハンドリング性の観点から、水酸基及び/またはチオール基を3個以上有する側鎖含有環状化合物が最も好ましい。 Preferred among the (db) components used in the present invention are glycerin, trimethylolethane, trimethylolpropane, ditrimethylolpropane, trimethylolpropane tripolyoxyethylene ether (TMP-30 of Nippon Emulsifier Co., Ltd.), and hydroxyl groups 3 or more polyester polyols, polyether polyols with 3 or more hydroxyl groups, castor oil-based polyols with 3 or more hydroxyl groups, side chain-containing cyclic compounds with 3 or more hydroxyl groups, polyrotaxanes with hydroxyl groups and/or thiol groups For example, a side chain-containing cyclic compound having 3 or more hydroxyl groups, a polyrotaxane having 3 or more hydroxyl groups and/or thiol groups is more preferable, and from the viewpoint of handling, a side chain having 3 or more hydroxyl groups and/or thiol groups Containing cyclic compounds are most preferred.
 <(c)成分と(d)成分の配合割合>
 本発明において、(c)成分と(d)成分の配合割合は、特に制限されるものではない。中でも、優れた効果を発揮するためには、前記(c)成分のイソ(チオ)シアネート基の合計を1モルとしたとき、前記(d)成分の活性水素基の合計モル数が0.8~2.0モルとなることが好ましい。前記イソ(チオ)シアネート基が多過ぎたり、少な過ぎたりすると、得られるポリウレタン樹脂において、硬化不良を生じ易くなったり、耐摩耗性が低下する傾向にある。より一層、硬化状態がよく、均一な状態で、しかも耐摩耗性に優れたポリウレタン樹脂を得るためには、前記イソ(チオ)シアネート基の合計を1モルとしたとき、前記活性水素基の合計モル数が0.85~1.75モルとなることがより好ましく、0.9~1.5モルとなることがさらに好ましい。なお、(d)成分の活性水素基の全モル数を算出する際に、(ca)アミノ基を2個以上有する化合物を使用した場合には、該アミノ基を2個以上有する化合物の活性水素のモル数は、アミノ基のモル数と等しいものとする。
<Mixing ratio of component (c) and component (d)>
In the present invention, the mixing ratio of component (c) and component (d) is not particularly limited. Above all, in order to exhibit an excellent effect, the total number of moles of active hydrogen groups in component (d) is 0.8 when the total number of iso(thio)cyanate groups in component (c) is 1 mol. It is preferable to be ˜2.0 mol. If the iso(thio)cyanate groups are too many or too few, the resulting polyurethane resin tends to be poorly cured or have reduced abrasion resistance. In order to obtain a polyurethane resin having a better cured state, a uniform state, and excellent wear resistance, the total number of the active hydrogen groups should be 1 mol when the total number of the iso(thio)cyanate groups is 1 mol. The number of moles is more preferably 0.85 to 1.75 mol, more preferably 0.9 to 1.5 mol. When calculating the total number of moles of active hydrogen groups in the component (d), if a compound (ca) having two or more amino groups is used, the active hydrogen of the compound having two or more amino groups shall be equal to the number of moles of amino groups.
 また、本発明において、優れた研磨特性を発現させるため、前記したとおり、(d)成分は、(da)成分を含んでいることが好ましく、さらに、(da)成分及び(db)成分を含んでいることがより好ましい。 In the present invention, in order to develop excellent polishing properties, as described above, the component (d) preferably contains the component (da), and further contains the component (da) and the component (db). It is more preferable to be
 すなわち、本発明において、(c)成分及び(da)成分を含むことが好ましく、(c)成分、(da)成分、及び(db)成分を含むことがより好ましい。 That is, in the present invention, it is preferable to contain the (c) component and the (da) component, and it is more preferable to contain the (c) component, the (da) component and the (db) component.
 たとえば、(c)成分、(da)成分、及び(db)成分を含む場合のそれぞれの配合割合は、(c)成分、(da)成分、及び、(db)成分の合計100質量部あたり、(c)成分が60~95質量部、(da)成分が2~20質量部、(db)成分が1~30質量部で含有することが好ましく、(c)成分が70~85質量部、(da)成分が2~15質量部、(db)成分が3~25質量部で含有することがより好ましい。 For example, when the component (c), the component (da), and the component (db) are included, the blending ratio of each component is It is preferable to contain 60 to 95 parts by mass of component (c), 2 to 20 parts by mass of component (da), and 1 to 30 parts by mass of component (db), and 70 to 85 parts by mass of component (c). It is more preferable to contain 2 to 15 parts by mass of component (da) and 3 to 25 parts by mass of component (db).
 <その他の配合成分>
 本発明で用いられるその他の配合成分としては、本発明の効果を損なわない範囲で、公知の各種配合剤を用いることができる。たとえば、硬化触媒、砥粒、界面活性剤、難燃剤、可塑剤、充填剤、帯電防止剤、整泡剤、溶剤、レベリング剤、その他の添加剤を加えてもよい。これらの添加剤は単独で用いても2種以上を併用してもよい。
<Other ingredients>
As other compounding ingredients used in the present invention, various known compounding agents can be used as long as they do not impair the effects of the present invention. For example, curing catalysts, abrasive grains, surfactants, flame retardants, plasticizers, fillers, antistatic agents, foam stabilizers, solvents, leveling agents, and other additives may be added. These additives may be used alone or in combination of two or more.
 前記硬化触媒としては、 これらウレタンあるいはウレア用反応触媒は、前記した微小中空粒子がウレタン(ウレア)樹脂の場合に用いることが出来る触媒を用いることが出来、1種単独でも、2種以上を併用することもできるが、その使用量は、所謂触媒量でよく、たとえば、(c)成分と(d)成分の合計100質量部当たり、0.001~10質量部、特に0.01~5質量部の範囲でよい。 As the curing catalyst, these reaction catalysts for urethane or urea can be catalysts that can be used when the fine hollow particles are urethane (urea) resins, and may be used alone or in combination of two or more. However, the amount used may be a so-called catalytic amount, for example, 0.001 to 10 parts by mass, particularly 0.01 to 5 parts by mass, per 100 parts by mass of components (c) and (d). Part range is fine.
 また、前記砥粒としては、たとえば、酸化セリウム、酸化珪素、アルミナ、炭化珪素、ジルコニア、酸化鉄、二酸化マンガン、酸化チタン及びダイヤモンドから選択される材料からなる粒子、またはこれら材料からなる二種以上の粒子等が挙げられる。 As the abrasive grains, for example, particles made of a material selected from cerium oxide, silicon oxide, alumina, silicon carbide, zirconia, iron oxide, manganese dioxide, titanium oxide and diamond, or two or more kinds of these materials and the like.
 次に、実施例及び比較例を用いて本発明を詳細に説明するが、本発明は本実施例に限定されるものではない。以下の実施例及び比較例において用いた各成分及び評価方法は、以下のとおりである。 Next, the present invention will be described in detail using examples and comparative examples, but the present invention is not limited to these examples. Components and evaluation methods used in the following examples and comparative examples are as follows.
(微小中空粒子)
[測定方法]
(1)平均粒子径、収率
 得られた微小中空粒子を電界放射型走査電子顕微鏡(日本電子製、JSM-7800FPrime)にて、その電子顕微鏡写真図を測定し、画像解析ソフトImageJ(National Institutes of Health)を用い、少なくとも50個以上の個々の微小中空粒子の粒子径を測定し、これらの平均値として平均粒子径を算出した。収率は少なくとも50個の微小中空粒子の形状を確認し、凹みなく、破れていることもない微小中空粒子の割合を収率とした。
(Micro hollow particles)
[Measuring method]
(1) Average particle size, yield The obtained micro hollow particles were measured with a field emission scanning electron microscope (manufactured by JEOL, JSM-7800FPrime), and the electron micrograph was measured, and the image analysis software ImageJ (National Institutes) of Health), the particle diameters of at least 50 individual hollow microparticles were measured, and the average particle diameter was calculated as the average value of these. For the yield, the shape of at least 50 hollow microparticles was confirmed, and the percentage of hollow microparticles that were neither dented nor broken was taken as the yield.
(2)灰分
 微小中空粒子を600℃の温度で燃焼した燃焼残さの質量と、燃焼前の微小中空粒子の質量との割合である。
(2) Ash This is the ratio between the mass of the combustion residue after burning the hollow microparticles at a temperature of 600°C and the mass of the hollow microparticles before combustion.
<実施例1>
 水相として、2%水酸化ナトリウム水溶液:55mlを70℃に加熱しつつ界面活性剤としてスチレン-無水マレイン酸共重合体(Scripset520(Monsanto社製、重量平均分子量350,000)):3.5gを溶解したのち、上記水相中に油相としてクロロベンゼン:35gを添加し、80℃でホモジナイザーによって1500rpmで10分撹拌することにより、O/Wエマルションを調製した。また、メラミン:4.54g、及び37%ホルムアルデヒド水溶液:11.69ml、および蒸留水:7.12gを70℃で混合し、その後、10%水酸化ナトリウム水溶液:5mlを用いてpH調整を行うことにより、メラミンにホルムアルデヒドを付加反応させて、次いで、70℃、pH12のメラミンホルムアルデヒドプレポリマー化合物のアルカリ性水溶液を調製した後、上記で得られたO/Wエマルションに、全量添加して混合した。その後、10%クエン酸水溶液を加えてpHが4以下になったことを確認し、150rpmで撹拌混合しつつ、液温80℃で4時間反応させて微小粒子を生成させた。そして、得られた微小粒子を遠心濾過器にかけ、1000rpmで5分間の遠心分離を5回行って水相を除去し、固体を得た。得られた固体50gをエタノール:100g中でスラリーとし、目粗さが1μmのろ紙で漉したものを高圧容器へ入れた後、16MPaにした液化二酸化炭素を装置内部で40℃にし、流速40mL/minで45分間超臨界二酸化炭素を用いて抽出した。その後、15分かけて大気圧まで減圧することで微小中空粒子を得た。得られた微小中空粒子は、TG測定によりクロロベンゼンが除去されたのを確認した。平均粒子径は23μmであった。得られた微小中空粒子の外観は良好であり、得られた微小中空粒子の嵩密度は0.1g/cmであり、収率は90%であり、灰分は測定されなかった。表1に用いた配合量や超臨界液体を用いた処理条件と結果を示した。
<Example 1>
Styrene-maleic anhydride copolymer (Scripset 520 (manufactured by Monsanto, weight average molecular weight 350,000)) as a surfactant while heating 55 ml of a 2% aqueous sodium hydroxide solution as an aqueous phase to 70° C.: 3.5 g was dissolved, 35 g of chlorobenzene was added as an oil phase to the aqueous phase, and stirred at 1500 rpm for 10 minutes at 80°C with a homogenizer to prepare an O/W emulsion. Also, melamine: 4.54 g, 37% formaldehyde aqueous solution: 11.69 ml, and distilled water: 7.12 g are mixed at 70 ° C., and then pH is adjusted using 10% sodium hydroxide aqueous solution: 5 ml. Then, after preparing an alkaline aqueous solution of melamine formaldehyde prepolymer compound at 70° C. and pH 12, the entire amount was added to and mixed with the O/W emulsion obtained above. After that, a 10% aqueous citric acid solution was added to confirm that the pH was 4 or less, and the mixture was stirred and mixed at 150 rpm and reacted at a liquid temperature of 80° C. for 4 hours to generate microparticles. The microparticles thus obtained were placed in a centrifugal filter and centrifuged at 1000 rpm for 5 minutes five times to remove the aqueous phase and obtain a solid. 50 g of the obtained solid was slurried in 100 g of ethanol, filtered through a filter paper with a mesh size of 1 μm, and placed in a high-pressure container. Extracted with supercritical carbon dioxide for 45 minutes at min. After that, the pressure was reduced to atmospheric pressure over 15 minutes to obtain fine hollow particles. It was confirmed by TG measurement that chlorobenzene was removed from the obtained hollow microparticles. The average particle size was 23 µm. The hollow microparticles obtained had a good appearance, a bulk density of 0.1 g/cm 3 and a yield of 90%, and no ash content was measured. Table 1 shows the compounding amounts used and the treatment conditions and results using the supercritical fluid.
<実施例2>
 実施例1において、遠心分離後の得られた固体をエタノール:100g中でスラリーとし、目粗さが1μmのろ紙で漉したものを高圧容器へ入れる作業の代わりに、遠心分離後の得られた固体をtert-ブチルアルコール(TBA):100gでスラリーとし、凍結乾燥脱気を実施した後に、高圧容器へ入れる作業に変更した以外は実施例1と同様の条件で実施した。得られた微小中空粒子は、TG測定によりクロロベンゼンが除去されたのを確認し、平均粒子径は23μmであった。得られた微小中空粒子の外観は良好であり、得られた微小中空粒子の嵩密度は0.1g/cmであり、収率は90%であり、灰分は測定されなかった。表1に用いた配合量や超臨界液体を用いた処理条件と結果を示した。
<Example 2>
In Example 1, the solid obtained after centrifugation was slurried in 100 g of ethanol, filtered through a filter paper with a mesh size of 1 μm, and placed in a high-pressure container. The solid was slurried with 100 g of tert-butyl alcohol (TBA), degassed by freeze-drying, and then placed in a high-pressure vessel under the same conditions as in Example 1. It was confirmed by TG measurement that chlorobenzene had been removed from the obtained fine hollow particles, and the average particle size was 23 μm. The hollow microparticles obtained had a good appearance, a bulk density of 0.1 g/cm 3 and a yield of 90%, and no ash content was measured. Table 1 shows the compounding amounts used and the treatment conditions and results using the supercritical fluid.
<実施例3~6>
 表1に示した配合量と、超臨界二酸化炭素の条件を用いた以外は、実施例1または実施例2と同様な方法で微小中空粒子を作製し、評価を行なった。結果を表1に示した。得られた微小中空粒子は、いずれも嵩密度が0.1g/cmであり、収率が90%であり、灰分は測定されなかった。
<Examples 3 to 6>
Fine hollow particles were prepared and evaluated in the same manner as in Example 1 or 2, except that the blending amount shown in Table 1 and the conditions of supercritical carbon dioxide were used. Table 1 shows the results. The obtained hollow microparticles all had a bulk density of 0.1 g/cm 3 and a yield of 90%, and no ash content was measured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<比較例1>
 表1に示す配合量を用い、遠心分離により固体を得るところまでは実施例1と同様の方法で作製し、得られた固体を140℃のオーブンにて48時間乾燥することで微小中空粒子を得た。得られた微小中空粒子は、TG測定によりクロロベンゼンが除去されたのを確認した。平均粒子径は19.5μmであった。得られた微小中空粒子の外観は壊れているものが多く、得られた微小中空粒子の嵩密度は0.15g/cm、収率は30%であり、灰分は測定されなかった。結果を表1に示した。
<Comparative Example 1>
Using the compounding amounts shown in Table 1, preparation was performed in the same manner as in Example 1 up to the point of obtaining a solid by centrifugation, and the resulting solid was dried in an oven at 140°C for 48 hours to obtain fine hollow particles. Obtained. It was confirmed by TG measurement that chlorobenzene was removed from the obtained hollow microparticles. The average particle size was 19.5 µm. Many of the obtained hollow microparticles were broken in appearance, the bulk density of the obtained hollow microparticles was 0.15 g/cm 3 , the yield was 30%, and the ash content was not measured. Table 1 shows the results.
(CMP研磨パッド)
(c)成分
・Pre-1:イソ(チオ)シアネート当量が460の両末端にイソ(チオ)シアネート基を有するウレタンプレポリマー
(Pre-1の製造方法)
 窒素導入管、温度計、攪拌機を備えたフラスコに窒素雰囲気下中、2,4-トリレンジイソシアネート:1000gとポリプロピレングリコール(数平均分子量;500):1100gを80℃で4時間反応させた後、ジエチレングリコール:120gを添加し、80℃で5時間反応させ、イソ(チオ)シアネート当量が460の末端イソシアネートウレタンプレポリマー(Pre-1)を得た。
(CMP polishing pad)
(c) Component Pre-1: A urethane prepolymer having an iso(thio)cyanate equivalent of 460 and iso(thio)cyanate groups at both ends (method for producing Pre-1)
In a flask equipped with a nitrogen inlet tube, a thermometer and a stirrer, 1000 g of 2,4-tolylene diisocyanate and 1100 g of polypropylene glycol (number average molecular weight: 500) were reacted at 80° C. for 4 hours in a nitrogen atmosphere. Diethylene glycol: 120 g was added and reacted at 80° C. for 5 hours to obtain a terminal isocyanate urethane prepolymer (Pre-1) having an iso(thio)cyanate equivalent of 460.
(d)成分
・DB-1;側鎖末端に水酸基を9個有する環状化合物;(db)成分
 (DB-1の製造方法)
 ヒドロキシプロピル化β-シクロデキストリン(株式会社シクロケム)10gとε-カプロラクトン32.0gを乾燥窒素をフローしながら130度で攪拌し均一溶液にした後、2-エチルヘキサン酸錫(II)0.04gを加え16時間反応させ目的物であるDB-1を取得した。DB-1の物性は以下の通りであった。
重量平均分子量Mw(GPC):4800
分散度(GPC):1.05
側鎖の修飾度:0.43(%で表示すると43%となる)
側鎖末端の重合性基:水酸基
環状分子に導入されている側鎖の数:9個
側鎖の分子量:平均で約550
粘度:3,800mPa・s
(d) component DB-1; cyclic compound having 9 hydroxyl groups at the side chain end; (db) component (Method for producing DB-1)
10 g of hydroxypropylated β-cyclodextrin (CycloChem Co., Ltd.) and 32.0 g of ε-caprolactone were stirred at 130° C. while flowing dry nitrogen to form a uniform solution, and then tin (II) 2-ethylhexanoate was added to 0.04 g. was added and allowed to react for 16 hours to obtain the desired product, DB-1. The physical properties of DB-1 were as follows.
Weight average molecular weight Mw (GPC): 4800
Dispersion degree (GPC): 1.05
Modification degree of side chain: 0.43 (43% when displayed in %)
Side chain terminal polymerizable group: hydroxyl Number of side chains introduced into cyclic molecule: 9 Molecular weight of side chain: about 550 on average
Viscosity: 3,800mPa s
[測定方法]
(3)樹脂密度:
 東洋精機製の(DSG-1)にて密度(g/cm)を測定した。
[Measuring method]
(3) Resin density:
The density (g/cm 3 ) was measured with (DSG-1) manufactured by Toyo Seiki.
(4)ショアーD硬度:
 JIS規格(硬さ試験)K6253に従って、高分子計器製のデュロメーターによりショアーD硬度を測定した。厚みは6mmになるように重ねて測定した。硬度が比較的低いものはショアーA硬度、比較的高いものはショアーD硬度で測定した。
(4) Shore D hardness:
Shore D hardness was measured with a durometer manufactured by Kobunshi Keiki Co., Ltd. according to JIS standard (hardness test) K6253. The thickness was measured so as to be 6 mm. Relatively low hardness was measured by Shore A hardness, and relatively high hardness was measured by Shore D hardness.
(5)ヒステリシスロス:厚み2mmのダンベル8号形状に打ち抜いた樹脂を島津社製AG-SXのオートグラフにて10mm/minで20mm伸長させ、その後、応力がゼロになるまで戻した際のヒステリシスロスを測定した。 (5) Hysteresis loss: A resin punched into a dumbbell No. 8 shape with a thickness of 2 mm is stretched by 20 mm at 10 mm / min with an autograph of AG-SX manufactured by Shimadzu Corporation, and then hysteresis when returning until the stress becomes zero. loss was measured.
(6)研磨レート:
 下記条件にて、研磨を実施した際の研磨レートを測定した。研磨レートは2インチサファイアウエハ6枚での平均値である。
(6) Polishing rate:
The polishing rate was measured when polishing was carried out under the following conditions. The polishing rate is an average value for six 2-inch sapphire wafers.
 CMP研磨パッド:表面に同心円状の溝を形成した、大きさ300mmφ、厚さ1mmのパッド
 スラリー:FUJIMI コンポール 80原液
 圧力:3.0psi
 回転数:45rpm
 時間:1時間
CMP polishing pad: 300 mm diameter, 1 mm thick pad with concentric grooves formed on the surface Slurry: FUJIMI Compol 80 undiluted solution Pressure: 3.0 psi
Rotation speed: 45rpm
Time: 1 hour
(7)スクラッチ:上記(6)で記載した条件で研磨した際のウェハのスクラッチの有無を確認した。評価は以下の基準で実施した。
1:6枚ともレーザー顕微鏡でスクラッチがないもの
2:1枚のみレーザー顕微鏡で薄いスクラッチが確認できるもの
3:1枚のみにレーザー顕微鏡ではっきりとスクラッチが確認できるもの
4:2枚以上レーザー顕微鏡でスクラッチが確認できるもの
(7) Scratches: The presence or absence of scratches on the wafers when polished under the conditions described in (6) above was checked. Evaluation was performed according to the following criteria.
1: No scratches on all 6 sheets with a laser microscope 2: Thin scratches can be confirmed with a laser microscope on only 1 sheet 3: Clear scratches can be confirmed with a laser microscope on only 1 sheet 4: 2 or more sheets with a laser microscope Scratches can be confirmed
<実施例7>
 上記で製造した(db)成分であるDB-1:21質量部と(da)成分の4,4’-メチレンビス(o-クロロアニリン)(MOCA):9質量部とを120℃で混合して均一溶液にした後、十分に脱気し、A液を調製した。別途、70℃に加温した上記で製造した(c)成分のPre-1:70質量部に実施例1の微小中空粒子:4.5質量部を加え、自転公転攪拌機で攪拌して均一な溶液のB液を調製した。前記で調合したB液に、A液を加え、均一混合し、硬化性組成物とした。前記硬化性組成物を金型へ注入し、5kPaの減圧下で2分間脱泡した後、100℃で15時間硬化させた。硬化終了後、鋳型から取り外し、硬化体を得た。
<Example 7>
21 parts by mass of DB-1, which is the component (db) produced above, and 9 parts by mass of 4,4′-methylenebis(o-chloroaniline) (MOCA), which is the component (da), were mixed at 120° C. After making a homogeneous solution, it was fully degassed to prepare a liquid A. Separately, the fine hollow particles of Example 1: 4.5 parts by mass were added to Pre-1: 70 parts by mass of the component (c) produced above heated to 70 ° C., and the mixture was stirred with a rotation and revolution stirrer to obtain a uniform mixture. A solution B was prepared. Liquid A was added to liquid B prepared above and uniformly mixed to obtain a curable composition. The curable composition was injected into a mold, defoamed under a reduced pressure of 5 kPa for 2 minutes, and then cured at 100° C. for 15 hours. After curing, it was removed from the mold to obtain a cured body.
 次に、得られた硬化体をスライスして、厚さ1mmの硬化体を作成し、下記の各種物性を測定した。得られた硬化体の密度は0.95g/cm、ショアーD硬度は48D、ヒステリシスロスは60%であった。 Next, the obtained cured product was sliced to prepare a cured product having a thickness of 1 mm, and the following various physical properties were measured. The obtained cured product had a density of 0.95 g/cm 3 , a Shore D hardness of 48D, and a hysteresis loss of 60%.
 また、スライスで得られた厚さ1mmの硬化体表面にスパイラル状の溝を形成し、裏面に両面テープを張り付けることで、大きさ300mmφ、厚さ1mmの硬化体からなる研磨パッドとした。 In addition, a spiral groove was formed on the surface of the 1 mm thick hardened body obtained by slicing, and a double-sided tape was attached to the back surface to form a polishing pad made of a hardened body with a size of 300 mmφ and a thickness of 1 mm.
 上記で得られた硬化体からなる研磨パッドの研磨レートは3.0μm/hr、スクラッチは1であった。結果を表2に示す。 The polishing rate of the polishing pad made of the cured product obtained above was 3.0 μm/hr, and the number of scratches was 1. Table 2 shows the results.
<比較例2>
 実施例7で使用した実施例1の微小中空粒子の代わりに、比較例1の微小中空粒子を4.5質量部用いた以外は同様に硬化体を製造し、得られた硬化体の密度は1.09g/cm、ショアーD硬度は50D、ヒステリシスロスは62%であった。
<Comparative Example 2>
A cured body was produced in the same manner except that 4.5 parts by mass of the hollow microparticles of Comparative Example 1 were used in place of the hollow microparticles of Example 1 used in Example 7, and the density of the resulting cured body was The hardness was 1.09 g/cm 3 , the Shore D hardness was 50D, and the hysteresis loss was 62%.
 実施例1と同様に作成した研磨パッドの研磨レートは1.5μm/hr、スクラッチは2であった。結果を表2に示す。 The polishing rate of the polishing pad prepared in the same manner as in Example 1 was 1.5 μm/hr, and the number of scratches was 2. Table 2 shows the results.
<比較例3>
 実施例7で使用した実施例1の微小中空粒子の代わりに、市販のマイクロカプセル920-40(日本フィライト社製、表面に無機粉体をまぶしたアクリロニトリル樹脂からなる中空マイクロバルーン)を0.8質量部用いた以外は同様に硬化体を製造し、得られた硬化体の密度は0.85g/cm、ショアーD硬度は44D、ヒステリシスロスは69%であった。
<Comparative Example 3>
Instead of the fine hollow particles of Example 1 used in Example 7, 0.8 of commercially available microcapsules 920-40 (manufactured by Nippon Philite Co., Ltd., hollow microballoons made of acrylonitrile resin with inorganic powder sprinkled on the surface) A cured body was produced in the same manner except that parts by mass were used, and the resulting cured body had a density of 0.85 g/cm 3 , a Shore D hardness of 44D, and a hysteresis loss of 69%.
 実施例1と同様に作成した研磨パッドの研磨レートは1.9μm/hr、スクラッチは2であった。結果を表2に示す。 The polishing rate of the polishing pad prepared in the same manner as in Example 1 was 1.9 μm/hr, and the number of scratches was 2. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以下に、本発明の好ましい態様を付記する。
[1]
 メラミン系樹脂、尿素樹脂、アミド樹脂、及び、ウレタン(ウレア)樹脂からなる群から選ばれる少なくとも一つの樹脂を含む樹脂膜と、前記樹脂膜で取り囲まれた中空部とを有する微小中空粒子を製造する方法であって、
 有機溶媒を含む油相が分散相であり、水相が連続相である水中油(O/W)エマルションを調製して、内部に前記有機溶媒が封入された微小粒子を得ることと、
 超臨界液体を用いて、前記微小粒子の内部から前記有機溶媒を除去することとを含む、
微小中空粒子の製造方法。
[2]
 前記超臨界液体は、超臨界二酸化炭素である、[1]に記載の製造方法。
[3]
 前記超臨界液体の圧力は、10MPa以上40MPa以下である、[1]又は[2]に記載の製造方法。
[4]
 前記超臨界液体を用いる装置内部の温度は、31.1℃以上60℃以下である、[1]乃至[3]の何れかに記載の製造方法。
[5]
 前記超臨界液体の流速は、1mL/分以上200mL/分以下である、[1]乃至[4]の何れかに記載の製造方法。
[6]
 前記超臨界液体と前記微小粒子との接触時間は、10分以上720分以下である、[1]乃至[5]の何れかに記載の製造方法。
[7]
 前記微小粒子を親水性有機溶媒と接触させた後、前記超臨界液体を用いて、前記親水性有機溶媒処理後の前記微小粒子の内部から前記有機溶媒を除去することを含む、[1]乃至[6]の何れかに記載の製造方法。
[8]
 前記微小中空粒子の走査型電子顕微鏡による平均粒子径は、1μm以上100μm以下である、[1]乃至[7]の何れかに記載の製造方法。
[9]
 [1]乃至[8]の何れかに記載の製造方法で得られた微小中空粒子と、イソ(チオ)シアネート基を有する化合物とを混合することを含む、硬化性組成物の製造方法。
[10]
 [9]に記載の製造方法で得られた硬化性組成物を硬化させることを含む、硬化体の製造方法。
[11]
 メラミン系樹脂を含む樹脂膜と、前記樹脂膜で取り囲まれた中空部とを有する微小中空粒子の製造方法であって、
 有機溶媒を含む油相を調製すること、
 無水マレイン酸共重合体を含む界面活性剤を含む水相を調製すること、
 前記油相と前記水相とを混合・撹拌して、前記水相が連続相であり、前記油相が分散相である水中油(O/W)エマルションを調製すること、
 前記水中油(O/W)エマルション中に、メラミンホルムアルデヒドプレポリマー化合物を添加し、前記水中油(O/W)エマルションの界面上でメラミンホルムアルデヒドプレポリマー化合物の縮合反応を生じさせて、前記樹脂膜と、前記樹脂膜の内部に封入された有機溶媒とを含む微小粒子を含む微小粒子分散液を得ること、
 前記微小粒子分散液から前記微小粒子を分離すること、及び、
 前記微小粒子の内部から、超臨界二酸化炭素を用い、前記有機溶媒を取り除くことを含み、
 前記油相を100質量部とした際に、前記水相の量は、100質量部以上500質量部以下である、微小中空粒子の製造方法。
[12]
 前記有機溶媒の沸点は、100℃以上180℃以下である、[11]に記載の製造方法。
[13]
 メラミン系樹脂、尿素樹脂、アミド樹脂、及び、ウレタン(ウレア)樹脂からなる群から選ばれる少なくとも一つの樹脂を含む樹脂膜と、前記樹脂膜で取り囲まれた中空部とを有し、
 有機溶媒を含む油相が分散相であり、水相が連続相となる水中油(O/W)エマルションを調製して、内部に前記有機溶媒が封入された微小粒子を取得後、超臨界液体を用い、前記微小粒子の内部から前記有機溶媒を除去して得られる、
微小中空粒子。
[14]
 [13]に記載の微小中空粒子と、ポリウレタン樹脂とを含む樹脂組成物。
[15]
 [14]に記載の樹脂組成物を含む、CMP研磨パッド。

 
Preferred embodiments of the present invention are added below.
[1]
Manufacture of fine hollow particles having a resin film containing at least one resin selected from the group consisting of melamine resin, urea resin, amide resin, and urethane (urea) resin, and a hollow portion surrounded by the resin film a method for
preparing an oil-in-water (O/W) emulsion in which an oil phase containing an organic solvent is a dispersed phase and an aqueous phase is a continuous phase to obtain microparticles in which the organic solvent is encapsulated;
removing the organic solvent from the interior of the microparticles using a supercritical fluid;
A method for producing hollow microparticles.
[2]
The manufacturing method according to [1], wherein the supercritical liquid is supercritical carbon dioxide.
[3]
The production method according to [1] or [2], wherein the pressure of the supercritical liquid is 10 MPa or more and 40 MPa or less.
[4]
The manufacturing method according to any one of [1] to [3], wherein the temperature inside the device using the supercritical liquid is 31.1°C or higher and 60°C or lower.
[5]
The manufacturing method according to any one of [1] to [4], wherein the flow rate of the supercritical liquid is 1 mL/min or more and 200 mL/min or less.
[6]
The manufacturing method according to any one of [1] to [5], wherein the contact time between the supercritical liquid and the microparticles is 10 minutes or more and 720 minutes or less.
[7]
after contacting the microparticles with a hydrophilic organic solvent, using the supercritical liquid to remove the organic solvent from the inside of the microparticles after the treatment with the hydrophilic organic solvent, [1] to The manufacturing method according to any one of [6].
[8]
The production method according to any one of [1] to [7], wherein the hollow microparticles have an average particle size measured by a scanning electron microscope of 1 μm or more and 100 μm or less.
[9]
A method for producing a curable composition, comprising mixing hollow microparticles obtained by the production method according to any one of [1] to [8] and a compound having an iso(thio)cyanate group.
[10]
A method for producing a cured body, comprising curing the curable composition obtained by the production method according to [9].
[11]
A method for producing hollow microparticles having a resin film containing a melamine-based resin and a hollow portion surrounded by the resin film,
preparing an oil phase comprising an organic solvent;
preparing an aqueous phase comprising a surfactant comprising a maleic anhydride copolymer;
mixing and stirring the oil phase and the water phase to prepare an oil-in-water (O/W) emulsion in which the water phase is the continuous phase and the oil phase is the dispersed phase;
A melamine-formaldehyde prepolymer compound is added to the oil-in-water (O/W) emulsion, and a condensation reaction of the melamine-formaldehyde prepolymer compound occurs on the interface of the oil-in-water (O/W) emulsion to generate the resin film. and obtaining a fine particle dispersion containing fine particles containing an organic solvent enclosed inside the resin film,
separating the microparticles from the microparticle dispersion; and
removing the organic solvent from the interior of the microparticles using supercritical carbon dioxide;
The method for producing hollow microparticles, wherein the amount of the aqueous phase is 100 parts by mass or more and 500 parts by mass or less when the oil phase is 100 parts by mass.
[12]
The manufacturing method according to [11], wherein the organic solvent has a boiling point of 100°C or higher and 180°C or lower.
[13]
a resin film containing at least one resin selected from the group consisting of melamine resins, urea resins, amide resins, and urethane (urea) resins; and a hollow portion surrounded by the resin film,
An oil-in-water (O/W) emulsion in which an oil phase containing an organic solvent is a dispersed phase and an aqueous phase is a continuous phase is prepared, and after obtaining microparticles in which the organic solvent is encapsulated, a supercritical liquid is obtained. obtained by removing the organic solvent from the inside of the microparticles,
micro hollow particles.
[14]
A resin composition comprising the hollow microparticles of [13] and a polyurethane resin.
[15]
A CMP polishing pad comprising the resin composition according to [14].

Claims (15)

  1.  メラミン系樹脂、尿素樹脂、アミド樹脂、及び、ウレタン(ウレア)樹脂からなる群から選ばれる少なくとも一つの樹脂を含む樹脂膜と、前記樹脂膜で取り囲まれた中空部とを有する微小中空粒子を製造する方法であって、
     有機溶媒を含む油相が分散相であり、水相が連続相である水中油(O/W)エマルションを調製して、内部に前記有機溶媒が封入された微小粒子を得ることと、
     超臨界液体を用いて、前記微小粒子の内部から前記有機溶媒を除去することとを含む、
    微小中空粒子の製造方法。
    Manufacture of fine hollow particles having a resin film containing at least one resin selected from the group consisting of melamine resin, urea resin, amide resin, and urethane (urea) resin, and a hollow portion surrounded by the resin film a method for
    preparing an oil-in-water (O/W) emulsion in which an oil phase containing an organic solvent is a dispersed phase and an aqueous phase is a continuous phase to obtain microparticles in which the organic solvent is encapsulated;
    removing the organic solvent from the interior of the microparticles using a supercritical fluid;
    A method for producing hollow microparticles.
  2.  前記超臨界液体は、超臨界二酸化炭素である、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the supercritical liquid is supercritical carbon dioxide.
  3.  前記超臨界液体の圧力は、10MPa以上40MPa以下である、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the pressure of the supercritical liquid is 10 MPa or more and 40 MPa or less.
  4.  前記超臨界液体を用いる装置内部の温度は、31.1℃以上60℃以下である、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the temperature inside the device using the supercritical liquid is 31.1°C or higher and 60°C or lower.
  5.  前記超臨界液体の流速は、1mL/分以上200mL/分以下である、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the supercritical fluid has a flow rate of 1 mL/min or more and 200 mL/min or less.
  6.  前記超臨界液体と前記微小粒子との接触時間は、10分以上720分以下である、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the contact time between the supercritical liquid and the microparticles is 10 minutes or more and 720 minutes or less.
  7.  前記微小粒子を親水性有機溶媒と接触させた後、前記超臨界液体を用いて、前記親水性有機溶媒処理後の前記微小粒子の内部から前記有機溶媒を除去することを含む、請求項1に記載の製造方法。 2. The method according to claim 1, comprising removing the organic solvent from inside the microparticles after the treatment with the hydrophilic organic solvent using the supercritical liquid after contacting the microparticles with the hydrophilic organic solvent. Method of manufacture as described.
  8.  前記微小中空粒子の走査型電子顕微鏡による平均粒子径は、1μm以上100μm以下である、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the average particle diameter of the fine hollow particles measured by a scanning electron microscope is 1 µm or more and 100 µm or less.
  9.  請求項1に記載の製造方法で得られた微小中空粒子と、イソ(チオ)シアネート基を有する化合物とを混合することを含む、硬化性組成物の製造方法。 A method for producing a curable composition, comprising mixing the hollow microparticles obtained by the production method according to claim 1 and a compound having an iso(thio)cyanate group.
  10.  請求項9に記載の製造方法で得られた硬化性組成物を硬化させることを含む、硬化体の製造方法。 A method for producing a cured body, comprising curing the curable composition obtained by the production method according to claim 9.
  11.  メラミン系樹脂を含む樹脂膜と、前記樹脂膜で取り囲まれた中空部とを有する微小中空粒子の製造方法であって、
     有機溶媒を含む油相を調製すること、
     無水マレイン酸共重合体を含む界面活性剤を含む水相を調製すること、
     前記油相と前記水相とを混合・撹拌して、前記水相が連続相であり、前記油相が分散相である水中油(O/W)エマルションを調製すること、
     前記水中油(O/W)エマルション中に、メラミンホルムアルデヒドプレポリマー化合物を添加し、前記水中油(O/W)エマルションの界面上でメラミンホルムアルデヒドプレポリマー化合物の縮合反応を生じさせて、前記樹脂膜と、前記樹脂膜の内部に封入された有機溶媒とを含む微小粒子を含む微小粒子分散液を得ること、
     前記微小粒子分散液から前記微小粒子を分離すること、及び、
     前記微小粒子の内部から、超臨界二酸化炭素を用い、前記有機溶媒を取り除くことを含み、
     前記油相を100質量部とした際に、前記水相の量は、100質量部以上500質量部以下である、微小中空粒子の製造方法。
    A method for producing hollow microparticles having a resin film containing a melamine-based resin and a hollow portion surrounded by the resin film,
    preparing an oil phase comprising an organic solvent;
    preparing an aqueous phase comprising a surfactant comprising a maleic anhydride copolymer;
    mixing and stirring the oil phase and the water phase to prepare an oil-in-water (O/W) emulsion in which the water phase is the continuous phase and the oil phase is the dispersed phase;
    A melamine-formaldehyde prepolymer compound is added to the oil-in-water (O/W) emulsion, and a condensation reaction of the melamine-formaldehyde prepolymer compound occurs on the interface of the oil-in-water (O/W) emulsion to generate the resin film. and obtaining a fine particle dispersion containing fine particles containing an organic solvent enclosed inside the resin film,
    separating the microparticles from the microparticle dispersion; and
    removing the organic solvent from the interior of the microparticles using supercritical carbon dioxide;
    The method for producing hollow microparticles, wherein the amount of the aqueous phase is 100 parts by mass or more and 500 parts by mass or less when the oil phase is 100 parts by mass.
  12.  前記有機溶媒の沸点は、100℃以上180℃以下である、請求項11に記載の製造方法。 The production method according to claim 11, wherein the organic solvent has a boiling point of 100°C or higher and 180°C or lower.
  13.  メラミン系樹脂、尿素樹脂、アミド樹脂、及び、ウレタン(ウレア)樹脂からなる群から選ばれる少なくとも一つの樹脂を含む樹脂膜と、前記樹脂膜で取り囲まれた中空部とを有し、
     有機溶媒を含む油相が分散相であり、水相が連続相となる水中油(O/W)エマルションを調製して、内部に前記有機溶媒が封入された微小粒子を取得後、超臨界液体を用い、前記微小粒子の内部から前記有機溶媒を除去して得られる、
    微小中空粒子。
    a resin film containing at least one resin selected from the group consisting of melamine resins, urea resins, amide resins, and urethane (urea) resins; and a hollow portion surrounded by the resin film,
    An oil-in-water (O/W) emulsion in which an oil phase containing an organic solvent is a dispersed phase and an aqueous phase is a continuous phase is prepared, and after obtaining microparticles in which the organic solvent is encapsulated, a supercritical liquid is obtained. obtained by removing the organic solvent from the inside of the microparticles,
    micro hollow particles.
  14.  請求項13に記載の微小中空粒子と、ポリウレタン樹脂とを含む樹脂組成物。 A resin composition comprising the hollow microparticles according to claim 13 and a polyurethane resin.
  15.  請求項14に記載の樹脂組成物を含む、CMP研磨パッド。
     
     

     
    A CMP polishing pad comprising the resin composition according to claim 14 .



PCT/JP2023/007886 2022-03-04 2023-03-02 Method for producing hollow microparticles using supercritical liquid WO2023167294A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022033212 2022-03-04
JP2022-033212 2022-03-04

Publications (1)

Publication Number Publication Date
WO2023167294A1 true WO2023167294A1 (en) 2023-09-07

Family

ID=87883751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007886 WO2023167294A1 (en) 2022-03-04 2023-03-02 Method for producing hollow microparticles using supercritical liquid

Country Status (2)

Country Link
TW (1) TW202348306A (en)
WO (1) WO2023167294A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001504452A (en) * 1996-09-25 2001-04-03 メーヌラブ Process for the preparation of microcapsules coated with an active substance with a polymer and in particular novel microcapsules obtained by this process
JP2004261769A (en) * 2003-03-04 2004-09-24 Toyo Ink Mfg Co Ltd Production method of microcapsule, microcapsule and image display medium
JP2008523192A (en) * 2004-12-10 2008-07-03 コミツサリア タ レネルジー アトミーク Method and apparatus for producing polymer foam beads or balloons
CN105967168A (en) * 2016-05-17 2016-09-28 东南大学 Preparation method of polyacrylonitrile (PAN)-base low-density carbon pellets
WO2021201088A1 (en) * 2020-03-31 2021-10-07 株式会社トクヤマ Hollow microballoons for cmp polishing pad

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001504452A (en) * 1996-09-25 2001-04-03 メーヌラブ Process for the preparation of microcapsules coated with an active substance with a polymer and in particular novel microcapsules obtained by this process
JP2004261769A (en) * 2003-03-04 2004-09-24 Toyo Ink Mfg Co Ltd Production method of microcapsule, microcapsule and image display medium
JP2008523192A (en) * 2004-12-10 2008-07-03 コミツサリア タ レネルジー アトミーク Method and apparatus for producing polymer foam beads or balloons
CN105967168A (en) * 2016-05-17 2016-09-28 东南大学 Preparation method of polyacrylonitrile (PAN)-base low-density carbon pellets
WO2021201088A1 (en) * 2020-03-31 2021-10-07 株式会社トクヤマ Hollow microballoons for cmp polishing pad

Also Published As

Publication number Publication date
TW202348306A (en) 2023-12-16

Similar Documents

Publication Publication Date Title
JP7130556B2 (en) Urethane resin using polyrotaxane and polishing pad
US11912813B2 (en) Urethane resin using polyrotaxane, and pad for polishing
WO2021201088A1 (en) Hollow microballoons for cmp polishing pad
WO2023167294A1 (en) Method for producing hollow microparticles using supercritical liquid
TW202030218A (en) Curable composition containing ionic-group-containing rotaxane monomer, and polishing pad obtained from said curable composition
WO2022138769A1 (en) Ring molecule having active-hydrogen-group-containing side chain, and curable composition including said ring molecule
WO2022163781A1 (en) Novel fine hollow particles comprising melamine-based resin
WO2022030531A1 (en) Curable composition and cured article thereof
WO2021241708A1 (en) Laminated polishing pad
WO2022163766A1 (en) Curable composition containing cyclic multifunctional monomer
CN116745333A (en) Novel minute hollow particles formed of melamine resin
WO2022163756A1 (en) Hollow microballoon
WO2022163765A1 (en) Novel curable composition containing cyclic monomer
WO2021241709A1 (en) Polyfunctional quaternary ammonium salt of sulfonic acid having active-hydrogen groups

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763551

Country of ref document: EP

Kind code of ref document: A1