WO2023167208A1 - Data transmission system and method - Google Patents

Data transmission system and method Download PDF

Info

Publication number
WO2023167208A1
WO2023167208A1 PCT/JP2023/007441 JP2023007441W WO2023167208A1 WO 2023167208 A1 WO2023167208 A1 WO 2023167208A1 JP 2023007441 W JP2023007441 W JP 2023007441W WO 2023167208 A1 WO2023167208 A1 WO 2023167208A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
server
air conditioning
conditioning system
data transmission
Prior art date
Application number
PCT/JP2023/007441
Other languages
French (fr)
Japanese (ja)
Inventor
立成 劉
開欣 林
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202220452219.5U external-priority patent/CN217957102U/en
Priority claimed from CN202210201649.4A external-priority patent/CN116743787A/en
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2023167208A1 publication Critical patent/WO2023167208A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply

Definitions

  • the present disclosure relates to the field of air conditioners, and more particularly to data transmission systems and methods.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-116972.
  • one power meter is installed for each multi-type air conditioning system, and each power meter measures the power consumption of the indoor and outdoor units in each multi-type air conditioning system. and the internal server in the system collects and processes the collected power consumption of the indoor and outdoor units, the internal server further collects the operation data of the air conditioner, and Receives and forwards commands from users.
  • the inventor has found that the internal server of the system collects and processes various data such as operation data, power amount data, and command data, thereby increasing the processing load of the internal server, We found that it affects the stability and responsiveness of the internal server.
  • the internal server of the system acquires data on the power consumption of the air conditioner from outside the system, and in this way, since the internal server of the system communicates directly with equipment outside the system, the safety of data in the air conditioning system and privacy cannot be ensured, and there is a risk of data leakage.
  • embodiments of the present disclosure provide data transmission systems and methods.
  • the performance of the system is ensured, the efficiency with which the user acquires energy consumption data is improved, and data such as the power consumption of the air conditioning system is obtained by communicating with an external device using a separate second server.
  • data such as the power consumption of the air conditioning system is obtained by communicating with an external device using a separate second server.
  • a first aspect of an embodiment of the present disclosure provides a data transmission system including an air conditioning system, a first server, and a second server.
  • a first server obtains first data of the air conditioning system from the air conditioning system.
  • a second server acquires first data of the air conditioning system from the first server, acquires power amount data of the air conditioning system from outside the data transmission system,
  • the energy consumption data of the air conditioning system is specified based on the data of No. 1 and the power amount data of the air conditioning system, and the energy consumption data is transmitted to the user side.
  • a first server obtains first data of said air conditioning system from an air conditioning system; a second server obtains first data of said air conditioning system from said first server; Acquiring data of the power consumption of the air conditioning system from the outside of the data transmission system while obtaining the data of No. 1; determining energy consumption data of the air conditioning system based on the data; and transmitting the energy consumption data from the second server to a user side.
  • the second server acquires the power amount data of the air conditioning system from a third server outside the data transmission system.
  • the air conditioning system includes at least one set of outdoor units and at least one indoor unit connected to each set of outdoor units, the air conditioning system comprising at least one smart Connected to power meter.
  • the smart power meter includes a communication module, the smart power meter communicates with the third server via the communication module, the communication module comprises NB-IoT module, GPRS module, 4G module, 5G module and at least one of Wi-Fi module.
  • the smart power meter includes at least two types of smart power meters provided by different providers, and the third server is configured to connect the at least two types of smart power meters and At least two third servers in communication with each other.
  • the power amount data of the air conditioning system is the power amount data acquired by the third server from the smart power meter.
  • the first data of the air conditioning system includes operating data of the air conditioning system, or the first data of the air conditioning system is operating data of the air conditioning system.
  • Environmental data of the air conditioning system includes operating data of the air conditioning system.
  • the energy consumption data includes power amount data for an outdoor unit of the air conditioning system.
  • the first server further acquires second data of the air conditioning system including equipment layout information of the air conditioning system.
  • the energy consumption data includes the allocated power amount of each indoor unit connected to a set of outdoor units.
  • the second server acquires the second data of the air conditioning system from the first server, and the first data of the air conditioning system, the data of the power amount of the air conditioning system, and the second data of the air conditioning system. Based on the data of , the amount of power allocated to each of the indoor units is calculated.
  • the data transmission system further includes a service side, and the first server acquires the second data from the service side.
  • the equipment arrangement information includes capacity information of the outdoor unit and the indoor unit of the air conditioning system, connection relationship information between the outdoor unit and the indoor unit, and including at least one type of aircraft location information.
  • the data transmission system further includes a fourth server.
  • the fourth server obtains the first data of the air conditioning system from the first server and/or obtains the energy consumption data from the second server, wherein the fourth server is and further transmitting said first data and/or said energy consumption data to a server of a building management system.
  • the data transmission system further includes a first database and a second database.
  • the first database belongs to the first server and stores the first data acquired by the first server.
  • the second database belongs to the second server and stores the power amount data and the identified energy consumption data acquired by the second server.
  • the second server responds to a command from the user side to obtain energy consumption data, stored in the second database, wherein the user Feeding back the data of the energy consumption required to the user side.
  • the first server and/or the second server are cloud servers or local servers.
  • One of the beneficial effects of the embodiments of the present disclosure is that by installing a second server inside the data transmission system for collecting and processing data such as power consumption of the air conditioning system, The processing load of the existing first server in the system can be reduced, and the stability and responsiveness of the existing first server in the system can be improved.
  • Characteristic information described and shown in one embodiment may be used in the same or similar manner in one or more other embodiments, combined with characteristic information in other embodiments, or combined with characteristic information in other embodiments. Information can be substituted.
  • FIG. 1 is a structural diagram of a data transmission system according to Example 1 of the present disclosure
  • FIG. 1 is a schematic diagram of data flow in a data transmission system according to Example 1 of the present disclosure
  • FIG. 4 is another schematic diagram of data flow in the data transmission system according to the first embodiment of the present disclosure
  • FIG. 4 is a further schematic configuration diagram of the data transmission system according to the first embodiment of the present disclosure
  • 3 is another structural diagram of the data transmission system according to the first embodiment of the present disclosure
  • FIG. 6 is a flowchart of a data transmission method according to Embodiment 2 of the present disclosure
  • FIG. 5 is an interactive diagram of a data transmission method according to Embodiment 2 of the present disclosure
  • FIG. 1 is a schematic configuration diagram of a data transmission system according to Example 1 of the present disclosure.
  • the data transmission system 10 includes an air conditioning system 100, a first server 101, and a second server .
  • the first server 101 acquires first data of the air conditioning system 100 from the air conditioning system 100 .
  • the second server 102 acquires the first data of the air conditioning system 100 from the first server 101, acquires the power amount data of the air conditioning system 100 from outside the data transmission system 10, 1 and the power consumption data of the air conditioning system 100 , the energy consumption data of the air conditioning system 100 is identified and the energy consumption data is transmitted to the user side 300 .
  • the second server 102 acquires power consumption data for the air conditioning system 100 from the third server 200 outside the data transmission system 10 .
  • the second server 102 may obtain power amount data of the air conditioning system 100 from other devices external to the data transmission system 10, and the present disclosure limits this. do not.
  • the second server 102 for collecting and processing data such as the power consumption of the air conditioning system 100 inside the data transmission system 10
  • the existing first server 101 in the data transmission system improve the stability and responsiveness of existing first servers in the system. This ensures system performance.
  • the existing first server in the system Direct communication between 101 and an external device such as an external server can be prevented, data safety and privacy can be ensured in the air conditioning system 100, data leakage can be prevented, and system expandability can be ensured.
  • debugging and testing need only be done for the connection and communication between the second server and the external server. During the test, it does not affect the function of sending and receiving operation data and commands of the air conditioner by the first server, and it does not affect the normal use of the air conditioning system while expanding other equipment.
  • the second server 102 which is installed separately, processes power consumption data and obtains energy consumption data, so that the function of the second server 102 becomes independent from the first server 101, and the function of the second server 102 becomes It is relatively centralized, which can improve the speed and efficiency with which the user side 300 obtains energy consumption data, further enhancing the user experience.
  • the data transmission system 10 may include at least one air conditioning system 100, and the air conditioning system 100 may be various types of air conditioning systems.
  • the air conditioning system 100 may be a commercial air conditioning system or a domestic air conditioning system.
  • the air conditioning system 100 may include at least one set of outdoor units and at least one indoor unit connected to each set of outdoor units.
  • the air conditioning system 100 may include one set or a plurality of sets of outdoor units, each set of outdoor units may include at least one outdoor unit, and for one set of outdoor units, the set of outdoor units may be , is connected to at least one indoor unit.
  • a set of outdoor units and at least one indoor unit connected to the set of outdoor units constitute one refrigerant system, and at least one set of outdoor units and at least one connected to the plurality of sets of outdoor units, respectively
  • One indoor unit constitutes a plurality of refrigerant systems
  • the air conditioning system 100 may include one refrigerant system or a plurality of refrigerant systems.
  • outdoor units and indoor units which are air conditioners, may be air conditioners of various models, types, forms, and capacities.
  • the air conditioner may be a single (one outdoor unit is connected to one indoor unit) or multi (one outdoor unit is connected to a plurality of indoor units) air conditioners or multi-multi It may be an air conditioner (in which a plurality of outdoor units are connected to a plurality of indoor units) or a central air conditioning system.
  • the indoor unit may be in the form of four-circle fan, double-sided fan, fan, ground fan, or baseboard fan. It may be in the form of forward blowing with a fan or forward blowing with twin fans.
  • the air conditioning system 100 can be connected to at least one smart power meter that obtains power energy information for the air conditioning system 100 .
  • smart power meter 400 can be connected to a power line that supplies power to air conditioning system 100 .
  • the smart power meter may be connected to the power bus of a set of outdoor units, or the smart power meter 400 may be connected to the power bus of multiple sets of outdoor units via current transformers. good.
  • the air conditioning system 100 has a set of outdoor units and at least one indoor unit connected to the set of outdoor units
  • the set of outdoor units acquires data on the amount of power of the set of outdoor units. connected to one smart power meter that
  • each of the sets of outdoor units among the plurality of sets of outdoor units is connected to one unit.
  • One smart power meter corresponding to each of a plurality of smart power meters that acquires data on the electric energy of a set of outdoor units, or the plurality of outdoor units are connected to a total of the plurality of sets of outdoor units It is only connected to one smart electricity meter that acquires energy data.
  • the smart power meter 400 may include a communication module, and the smart power meter communicates with the third server 200 outside the data transmission system 10 via the communication module. As a result, the third server 200 acquires the power amount data of the air conditioning system 100 from the smart power meter.
  • the communication module of the smart power meter 400 includes at least one of an NB-IoT module, a GPRS module, a 4G module, a 5G module and a Wi-Fi module.
  • the smart power meter 400 transmits the acquired power amount information of the air conditioning system 100 to the third server 200 outside the data transmission system 10 by wireless communication using the communication module.
  • the communication module in the smart power meter directly communicates with the third server 200 by radio, thereby reducing the work of laying communication lines when installing the power meter and reducing the cost.
  • the communication module of the smart power meter 400 uses a Narrow Band Internet of Things (NB-IoT) module and communicates with the third server 200 using the NB-IoT network.
  • NB-IoT Narrow Band Internet of Things
  • This communication system has features such as wide coverage and low power consumption.
  • the communication module of smart power meter 400 uses a general packet radio service (GPRS) module and communicates with third server 200 using a GPRS network.
  • GPRS general packet radio service
  • This communication method applies to intermittent, sudden, frequent and small data transmission, and also applies to occasional large data transmission.
  • the communication module of the smart power meter uses the 4th generation mobile communication technology (4G) module or the 5th generation mobile communication technology (5G) module and communicate with the third server 200 using a corresponding cellular network.
  • the communication method has characteristics such as high transmission speed.
  • the communication module of the smart power meter uses a Wi-Fi module and uses a wireless network to communicate with the third server 200, wherein the communication method has a high transmission speed and is easy to use for connection. It has characteristics.
  • the smart power meter 400 can integrate various communication modules and switch between different communication methods, thereby adapting to different application scenarios.
  • data with a large amount of data or a high requirement for transmission speed is transmitted using the Wi-Fi module
  • data with a small amount of data or a low requirement for transmission speed is transmitted using the NB-IoT module is transmitted using
  • the smart electricity meter 400 may include at least two types of smart electricity meters provided by different providers, and accordingly the third server 200 may configure the at least two types of smart electricity meters. at least two third servers each communicable with the smart electricity meters.
  • each service provider can install a third server that can communicate with the smart power meters provided by it. This allows the data transmission system 10 to support various smart power meters 400, improving the expandability and compatibility of the system.
  • the smart power meters 400 used in different areas may be different, and the second server 102 in the data transmission system 10 receives power for the air conditioning system from a plurality of third servers 200 distributed in different areas. As the amount of data is received, the data can be processed at the second server 102 .
  • the first server 101 does not need to connect with a plurality of third servers and only connects with the second server 102 . Further, when the data transmission system 10 extends and uses smart power meters provided by different service providers, the data transmission system 10 debugs only the connection and communication between the second server 102 and the third server 200. and testing, during the debugging and testing period, the first server 101 does not affect the function of sending and receiving operation data and commands of the air conditioner, compatibility and safety of the data transmission system, and problem narrowing down further improved the convenience of
  • data transmission system 10 includes first server 101 and second server 102 .
  • the first server 101 is an existing server of the system and may be referred to as an internal server.
  • the first server 101 acquires the first data of the air conditioning system from the air conditioning system 100, and the first server 101 receives commands from the user side 300 and transmits the commands to the air conditioning system 100. can be done.
  • the second server 102 is used to collect and process power consumption data for the air conditioning system 100 from an external third server 200 .
  • the security and privacy of data in the first server 101 can be ensured, and data leakage can be prevented.
  • the first server 101 and the second server 102 when a problem occurs in the data transmission system 10, the cause of the problem can be quickly narrowed down. can.
  • the second server 102 is inspected first, and in this way, it is easy to quickly identify the cause of the problem.
  • the air conditioning system 100 first data may include air conditioning system 100 operating data, or the air conditioning system first data may be air conditioning system 100 operating data. , and environmental data of the air conditioning system 100 .
  • the air conditioning system 100 may further include at least one sensor that detects operating data, environmental data, etc. of the outdoor unit and/or the indoor unit.
  • a temperature sensor and/or a humidity sensor that detect the temperature and/or humidity of the space where the outdoor unit and/or the indoor unit are located.
  • the at least one sensor may be integrated into the air conditioner or independent of the air conditioner.
  • the operating data of the air conditioning system may include parameters related to various operations of the indoor units and/or the outdoor units.
  • the operating data of an air conditioning system includes evaporating temperature, condensing temperature, fan speed, operating time, number of indoor units in operation, refrigerant temperature, refrigerant pressure, number of times of start and stop, temperature near outdoor unit, expansion valve opening and compression at least one of the machine frequencies.
  • the environmental data of the air conditioning system may include at least one of temperature, humidity, and air quality data of the space in which the outdoor unit and/or the indoor unit are located, and the air quality data may be PM2.5 concentration, for example. including.
  • the operating data of the air conditioning system and the environmental data of the air conditioning system can be comprehensively considered when specifying the energy consumption data, and the accuracy of the calculation of the energy consumption data can be improved.
  • the first server 101 can also obtain second data of the air conditioning system 100 .
  • the second data of the air conditioning system 100 includes equipment arrangement information of the air conditioning system 100 .
  • the equipment arrangement information includes at least one of capacity information of each outdoor unit and each indoor unit of the air conditioning system 100, connection relation information between the outdoor unit and the indoor unit, and location information of the outdoor unit and the indoor unit.
  • the accuracy of the calculation of the energy consumption data can be further improved.
  • the data transmission system 10 may further include a service side 103, the first server 101 transmitting data from the service side 103 to the second server. Get the data of
  • the service side 103 provides capacity information, such as horsepower information, of each outdoor unit and each indoor unit in the air conditioning system 100, and, for example, the room in which each indoor unit is installed.
  • capacity information such as horsepower information
  • the service side 103 provides capacity information, such as horsepower information, of each outdoor unit and each indoor unit in the air conditioning system 100, and, for example, the room in which each indoor unit is installed.
  • Location information for each outdoor unit and each indoor unit such as orientation information and/or geographic location information for each outdoor unit and each indoor unit is recorded.
  • the service side 103 stores the above information, and the first server 101 can acquire the above information from the service side 103 as necessary.
  • the second server 102 acquires the second data of the air conditioning system 100 from the first server 101 and , the energy consumption data of the air conditioning system 100 and the second data of the air conditioning system 100 are calculated.
  • the energy consumption data identified by the second server 102 may include power consumption data for the outdoor units of the air conditioning system 100 .
  • the second server The energy consumption data identified by 102 may be data on the total power consumption of a plurality of sets of outdoor units.
  • the air conditioning system 100 includes multiple refrigerant systems, includes multiple sets of outdoor units, and each of the multiple refrigerant systems (multiple sets of outdoor units) is connected to one smart power meter, the second server 102
  • the energy consumption data identified by may be data on the amount of electric power for each set of outdoor units.
  • the air conditioning system 100 includes a refrigerant system, includes a set of outdoor units, and the set of outdoor units is connected to a smart power meter, the energy consumption determined by the second server 102 may be data on the amount of electric power of the outdoor unit of the set.
  • the second server 102 may process power consumption data to form energy consumption data when the user side 300 initiates a request.
  • the second server 102 may also autonomously process the energy consumption data according to a fixed time period or rule to form energy consumption data, and the obtained energy consumption data is 2 server 102 .
  • the user side 300 when the user side 300 needs to obtain the energy consumption data of the air conditioning system, it can directly obtain it from the second server 102, further shortening the time for the user side 300 to obtain the energy consumption data. do. Further improved the speed and efficiency with which users obtain energy consumption data, further enhancing the user experience.
  • the first data includes the operating time and/or indoor temperature of the air conditioning system 100
  • the second data includes capacity data of the outdoor unit.
  • the power energy data of each set of outdoor units can be calculated based on the power energy data. Or, based on the total capacity of all outdoor units, the capacity of each set of outdoor units, the operating time of each set of outdoor units, and the power consumption data on the smart power meter, the power consumption data of each set of outdoor units can also be calculated. In this way, the non-operating time after the indoor temperature of the outdoor unit reaches the set value is taken into account when starting, and the calculation result is made more accurate.
  • the power energy data on the smart power meter is the power data of the set of outdoor units.
  • the energy consumption data of the air conditioning system is specified based on all of the first data of the air conditioning system, the second data of the air conditioning system, and the data of the power consumption of the air conditioning system. In this case, the energy consumption data of the air conditioning system can be calculated more accurately.
  • the energy consumption data may further include the allocated power amount of each indoor unit connected to the set of outdoor units.
  • the second server 102 acquires the second data of the air conditioning system 100 from the first server 101, the first data of the air conditioning system 100, the power amount data of the air conditioning system 100, and the power consumption data of the air conditioning system 100. Based on the second data, the allocated power amount for each indoor unit is calculated.
  • the amount of electric power allocated to each indoor unit is calculated. Called).
  • the first calculation method can be further corrected based on the environmental data of the air conditioning system.
  • the allocated power amount is optimized based on environmental data such as room temperature and set temperature. For example, when an air conditioner performs cooling, the initial temperature of the room where the indoor unit A is located is high and the set temperature is low, but the initial temperature of the room where the indoor unit B is located is low and the set temperature is high. , with respect to indoor unit B, indoor unit A should have a higher allocated power amount.
  • the power allocation for indoor unit A and indoor unit B can be corrected according to the rule above (method called two).
  • the allocated power amount can be further corrected based on both the environmental data of the air conditioning system and the second data.
  • the location information of the air conditioning system such as information such as geographical location and direction of the room where the indoor unit is located, and the environmental information of the outdoor where the air conditioning system is located, such as weather information and sunshine conditions.
  • an indoor unit C installed in a room with long sunshine hours should have a higher allocated power amount than an indoor unit D installed in a room with short sunshine hours.
  • the allocated power amount of the indoor unit C and the indoor unit D can be corrected according to the above rule.
  • the allocated power amount is specified and corrected based on all of the first data of the air conditioning system, the second data of the air conditioning system, and the data of the power amount of the air conditioning system.
  • the energy consumption data of each device in the air conditioning system can be calculated more accurately and precisely.
  • the first server 101 and/or the second server 102 may be cloud servers or local servers.
  • the first server 101 and/or the second server 102 may be servers installed on the cloud side, or may be servers installed locally in the data transmission system 10 .
  • FIG. 2 is a schematic diagram of data flow in the data transmission system according to the first embodiment of the present disclosure. Hereinafter, the data transmission process will be specifically described based on the data transmission system 10 shown in FIG.
  • the air conditioning system 100 has two sets of outdoor units and a plurality of indoor units connected to the two sets of outdoor units as an example.
  • a set of outdoor units and a plurality of indoor units connected to the set of outdoor units constitute a first refrigerant system 1001, and are connected to the other set of outdoor units and the other set of outdoor units.
  • a plurality of indoor units constitute a second refrigerant system 1002 .
  • the smart power meter 400 is connected to a common power bus of a set of outdoor units of the first refrigerant system 1001 and a set of outdoor units of the second refrigerant system 1002, and the smart power meter 400 is connected to the air conditioning system. and the total power consumption data of the first refrigerant system 1001 and the second refrigerant system 1002 of the air conditioning system 100 are transmitted to the third server 200 outside the data transmission system 10 .
  • the air conditioning system 100 transmits the first data of the air conditioning system 100 to the first server 101 , and the service side 103 transmits the second data of the air conditioning system 100 to the first server 101 .
  • the first server 101 transmits the first data of the air conditioning system 100 and/or the second data of the air conditioning system 100 to the second server 102, and the external third server 200 transmits the air conditioning system 100 power amount data to the second server 102 .
  • the power amount data of the air conditioning system 100 is the power amount data output by the smart power meter 400 to the third server 200 .
  • the second server 102 identifies energy consumption data of the air conditioning system 100 based on the first data of the air conditioning system 100 and/or the second data of the air conditioning system and the power consumption data of the air conditioning system 100. do.
  • the specific method for identifying the energy consumption data of the air conditioning system 100 can refer to the above related descriptions and will not be repeated here.
  • the second server 102 transmits the energy consumption data of the specified air conditioning system 100 to the user side 300 .
  • the user side 300 can send commands to the second server 102 .
  • the user side 300 sends an energy consumption data acquisition command to indicate that the energy consumption data of the first refrigerant system 1001 needs to be acquired.
  • the second server 102 stores the energy consumption of the first refrigerant system 1001 identified based on the air conditioning system first data and/or the air conditioning system second data and the air conditioning system power consumption data. There is no need to send the data to the user side 300 and send the remaining energy consumption data. This allows the user's instructions to be fed back more accurately, reduces the processing load on the second server 102, and improves the efficiency of data processing and transmission.
  • the user side 300 can transmit commands for controlling or operating air conditioners to the first server 101 .
  • the first server 101 transmits commands to the air conditioners to perform various operations and controls, for example, controls the switches of the air conditioners and the temperature control.
  • FIG. 3 is another schematic diagram of the data flow of the data transmission system according to the first embodiment of the present disclosure. Hereinafter, the data transmission process will be described based on the data transmission system 10 shown in FIG.
  • the air conditioning system 100 has two sets of outdoor units and a plurality of indoor units connected to the two sets of outdoor units.
  • a set of outdoor units and a plurality of indoor units connected to the set of outdoor units constitute a first refrigerant system 1001, and another set of outdoor units and a plurality of indoor units connected to the other set of outdoor units
  • the indoor unit constitutes a second refrigerant system 1002 .
  • the first smart power meter 400-1 is connected to the power bus of a set of outdoor units of the first refrigerant system 1001
  • the second smart power meter 400-2 is connected to the power bus of the second refrigerant system 1002. It is connected to the power supply bus of a set of outdoor units.
  • First smart power meter 400-1 acquires power amount data 1, which is power amount data of first refrigerant system 1001, and second smart power meter 400-2 acquires power amount data 1 of second refrigerant system 1002. obtains the power amount data 2, which is the power amount data of .
  • first smart power meter 400-1 transmits power amount data 1 to first third server 200-1
  • second smart power meter 400-2 transmits power amount data 2. It is transmitted to the second third server 200-2.
  • the first refrigerant system 1001 and the second refrigerant system 1002 are not related and may be installed separately.
  • the first refrigerant system 1001 and the second refrigerant system 1002 may be refrigerant systems located in different regions.
  • the first smart power meter 400-1 and the second smart power meter 400-2 may be different types or brands of smart power meters provided by different service providers.
  • the data transmission system 10 is compatible and extensible with devices such as smart power meters of different types or brands.
  • the first data of the first refrigerant system 1001 and the first data of the second refrigerant system 1002 are respectively transmitted to the first server 101, and correspondingly, the service side 103 transmits the first data to the first refrigerant system
  • the second data of 1001 and the second data of the second refrigerant system 1002 are respectively transmitted to the first server 101 .
  • the first server 101 stores the first data and/or the second data of the first refrigerant system 1001 and the first data and/or the second data of the second refrigerant system 1002 respectively in a second to the server 102 of
  • the first and third server 200-1 transmits data 1 on the amount of electric power of the first refrigerant system 1001 to the second server 102.
  • the second third server 200 - 2 transmits the power amount data 2 of the second refrigerant system 1002 to the second server 102 .
  • the second server 102 operates the first refrigerant system 1001 based on the first data and/or the second data of the first refrigerant system 1001 and the power amount data 1 of the first refrigerant system 1001. Identify energy consumption data.
  • the second server 102 performs the second refrigerant system based on the first data and/or the second data of the second refrigerant system 1002 and the power amount data 2 of the second refrigerant system 1002. Identify 1002 energy consumption data.
  • the second server 102 integrates the energy consumption data of the first refrigerant system 1001 and the energy consumption data of the second refrigerant system 1002 to obtain the energy consumption data of the entire air conditioning system 100. can also
  • the second server 102 transmits the energy consumption data of the specified air conditioning system 100 to the user side 300 .
  • the first refrigerant system 1001 and the second refrigerant system 1002 are utilized when the first refrigerant system 1001 and the second refrigerant system 1002 are not associated and installed separately. may be different users.
  • a first refrigerant system 1001 corresponds to a first user side and a second refrigerant system 1002 corresponds to a second user side.
  • the user side 300 can send a command to the second server 102, for example, the user side 300 can send an energy consumption data acquisition command to retrieve the energy consumption data of the first refrigerant system 1001. to indicate that the
  • the second server 102 stores the first refrigerant specified based on the first data of the air conditioning system 100 and/or the second data of the air conditioning system 100 and the power amount data 1 of the air conditioning system 100. Although the energy consumption data of the system 1001 is transmitted to the user side 300, the rest of the energy consumption data need not be transmitted.
  • a database can also be constructed to store specific data.
  • FIG. 4 is a further configuration schematic diagram of the data transmission system according to the first embodiment of the present disclosure.
  • the data transmission system 10 further includes a first database 1011 and a second database 1021 in the embodiment of the present disclosure.
  • the first database 1011 belongs to the first server 101 and stores first data acquired by the first server 101 . Also, the first database 1011 can store the second data acquired by the first server 101 .
  • the second database 1021 belongs to the second server 102 and stores the power amount data acquired by the second server 102 and the specified energy consumption data.
  • power amount data and energy consumption data can be stored according to at least one of information such as a user, an air conditioning system, a refrigerant system, and a set of outdoor units.
  • the second server 102 provides the energy consumption data required by the user stored in the second database 1021 in response to a command from the user side 300 to obtain the energy consumption data. feed back to the side 300;
  • a user needs data on energy consumption of one set of outdoor units among a plurality of sets of outdoor units, and sends a command to the second server 102 .
  • the second server 102 extracts the energy consumption data of the set of outdoor units from the second database 1021 and feeds it back to the user side 300 . This enables efficient feedback of data required by the user.
  • the second database can be directly inspected, and the cause of the problem can be quickly identified.
  • the data transmission system 10 can further include a fourth server that communicates with the building management system to realize more applications.
  • FIG. 5 is another structural diagram of the data transmission system according to the first embodiment of the present disclosure. As shown in FIG. 5, in an embodiment of the present disclosure, data transmission system 10 further includes a fourth server 104 as compared to the system shown in FIG.
  • the fourth server 104 obtains first data of the air conditioning system 100 from the first server 101 and/or obtains energy consumption data from the second server 102 .
  • the fourth server 104 further transmits the first data and/or the energy consumption data to the building management system server 500 .
  • the functionality of the fourth server may be integrated into the second server 102, where the second server 102 is used by the building management system to transmit energy consumption data. It is directly connected to server 500 (not shown in FIG. 5).
  • the energy consumption data of the air conditioning system 100 can be transmitted to the building management system, and the building management system monitors and controls the air conditioning system 100 in an integrated manner based on the energy consumption data.
  • a second embodiment of the present disclosure provides a data transmission method corresponding to the data transmission system according to the first embodiment, and the same or corresponding parts in the data transmission system according to the first embodiment are described in the first embodiment. and will not be repeated here.
  • FIG. 6 is a flowchart of a data transmission method according to Embodiment 2 of the present disclosure.
  • the method comprises: step 601 in which the first server obtains first data of the air conditioning system from the air conditioning system; a step 602 in which a second server obtains first data of said air conditioning system from said first server; a step 603 in which the second server acquires data on the power consumption of the air conditioning system from outside the data transmission system; step 604, wherein the second server determines energy consumption data of the air conditioning system based on the air conditioning system first data and the air conditioning system power consumption data; and Step 605, wherein the second server sends the energy consumption data to the user side.
  • FIG. 7 is an interactive diagram of a data transmission method according to Embodiment 2 of the present disclosure.
  • the method comprises: step 701 in which a first server obtains first data of the air conditioning system from the air conditioning system; Step 702, a second server obtaining first data of the air conditioning system from the first server; a step 703 in which the second server obtains the power amount data of the air conditioning system from outside the data transmission system; step 704, wherein the second server determines energy consumption data of the air conditioning system based on the first data of the air conditioning system and the energy consumption data of the air conditioning system; and Step 705, wherein the second server transmits the energy consumption data to the user side.
  • the second server acquires the power amount data of the air conditioning system from a third server outside the data transmission system.
  • the processing load of the existing first server in the data transmission system can be reduced by installing the second server for collecting and processing data such as the power consumption of the air conditioning system inside the data transmission system. and improve the stability and responsiveness of existing first servers in the system.
  • the above methods of the embodiments of the present disclosure may be implemented by hardware or by a combination of hardware and software.
  • the present disclosure relates to a computer readable program which, when executed by a logic component, can cause the logic component to implement the devices or components described above, or cause the logic component to implement the various methods or steps described above.
  • Embodiments of the present disclosure further relate to storage media such as hard disks, magnetic disks, optical disks, DVDs, and flash memories for storing the above programs.

Abstract

The present disclosure provides a data transmission system and a method in which stability and responsiveness are improved. The data transmission system includes an air-conditioning system, a first server, and a second server. The first server acquires the first data of the air-conditioning system from the air-conditioning system. The second server acquires the first data of the air-conditioning system from the first server, acquires electric power quantity data of the air-conditioning system from outside of the data transmission system, identifies energy consumption data of the air-conditioning system on the basis of the first data of the air-conditioning system and the electric power quantity data of the air-conditioning system, and transmits the energy consumption data to a user side.

Description

データ伝送システムおよび方法Data transmission system and method
 本開示は、空気調和機の分野に関し、特にデータ伝送システムおよび方法に関する。 The present disclosure relates to the field of air conditioners, and more particularly to data transmission systems and methods.
 人々の生活レベルの向上およびエネルギーの不足に伴い、空気調和機等の機器の性能およびエネルギー消費に対する要求もますます高くなり、空気調和機の性能パラメータおよびエネルギー消費等のデータを取得することによって、これらのデータを空気調和機等の機器の制御および生産製造等の様々な方面に用いることができる。 With the improvement of people's living standards and the shortage of energy, the requirements for the performance and energy consumption of equipment such as air conditioners are becoming higher and higher. These data can be used in various fields such as control and production of equipment such as air conditioners.
 近年、特許文献1(特開2004-116972号公報)に開示されているような、空気調和機のエネルギー消費等のデータを収集や処理する技術が登場している。 In recent years, a technique for collecting and processing data such as energy consumption of air conditioners has emerged, as disclosed in Patent Document 1 (Japanese Patent Application Laid-Open No. 2004-116972).
 例えば、複数のマルチタイプ空調システムを含むシステムにおいて、各マルチタイプ空調システム毎に一つの電力メータを設置し、各電力メータにより各マルチタイプ空調システムでの室内機および室外機の電力消費量をそれぞれ計量し、かつ、該システムにおける内部サーバは、収集された室内機および室外機の電力消費量を収集や処理し、また、該内部サーバは、さらに、空気調和機の運転データを収集し、およびユーザからの指令を受信して転送する。 For example, in a system that includes multiple multi-type air conditioning systems, one power meter is installed for each multi-type air conditioning system, and each power meter measures the power consumption of the indoor and outdoor units in each multi-type air conditioning system. and the internal server in the system collects and processes the collected power consumption of the indoor and outdoor units, the internal server further collects the operation data of the air conditioner, and Receives and forwards commands from users.
 以上の技術的背景に対する説明は、本開示の技術的解決手段を明確で、完全に説明しやすく、かつ、当業者の理解を容易にするために説明されるものに過ぎないことに注意すべきである。これらの解決手段が本開示の背景技術の部分に説明されただけで上記技術的解決手段は、当業者にとって公知であると考えられない。 It should be noted that the above description of the technical background is merely described to make the technical solutions of the present disclosure clear, complete and easy to explain, and to facilitate the understanding of those skilled in the art. is. It is not considered that the above technical solutions are known to those skilled in the art, just because these solutions are described in the background art part of this disclosure.
 しかしながら、発明者は、従来の技術において、システムの内部サーバが運転データ、電力量のデータおよび指令データ等の様々なデータの収集や処理を行うことによって、該内部サーバの処理負荷を増加させ、該内部サーバの安定性および応答性に影響を与えることを発見した。 However, in the conventional technology, the inventor has found that the internal server of the system collects and processes various data such as operation data, power amount data, and command data, thereby increasing the processing load of the internal server, We found that it affects the stability and responsiveness of the internal server.
 また、システムの内部サーバは、システム外部から空気調和機の電力量のデータを取得し、このように、システムの内部サーバがシステム外部の機器と直接通信するため、該空調システムにおけるデータの安全性およびプライバシーを確保することができず、データ漏洩のリスクが存在する。 In addition, the internal server of the system acquires data on the power consumption of the air conditioner from outside the system, and in this way, since the internal server of the system communicates directly with equipment outside the system, the safety of data in the air conditioning system and privacy cannot be ensured, and there is a risk of data leakage.
 また、システム内の様々な制御指令および様々なデータがいずれも該内部サーバにより収集、処理や転送されるため、システムに問題が発生した場合、システムに問題が発生した原因を迅速に絞り込むことができない。 In addition, since various control commands and various data within the system are all collected, processed, and transferred by the internal server, when a problem occurs in the system, the cause of the problem can be quickly narrowed down. Can not.
 上記問題のうちの少なくとも一つを解決するために、本開示の実施例は、データ伝送システムおよび方法を提供する。 To solve at least one of the above problems, embodiments of the present disclosure provide data transmission systems and methods.
 データ伝送システムの内部に空調システムの電力量等のデータの収集や処理を行うための第2のサーバを設置することによって、データ伝送システム内の既存の第1のサーバの処理負荷を低減し、システム内の既存の第1のサーバの安定性および応答性を向上させることができる。 By installing a second server for collecting and processing data such as the power consumption of the air conditioning system inside the data transmission system, the processing load of the existing first server in the data transmission system is reduced, The stability and responsiveness of existing first servers in the system can be improved.
 これにより、システムの性能を確保するとともに、ユーザ側がエネルギー消費のデータを取得する効率を向上させ、かつ、別の第2のサーバを用いて外部機器と通信して空調システムの電力量等のデータを取得するため、システム内の既存の第1のサーバと外部機器との直接通信を防止し、空調システムにおけるデータの安全性およびプライバシー性を確保し、データ漏洩を防止するとともに、システムの拡張可能性を確保することができる。 As a result, the performance of the system is ensured, the efficiency with which the user acquires energy consumption data is improved, and data such as the power consumption of the air conditioning system is obtained by communicating with an external device using a separate second server. , prevent direct communication between the existing first server in the system and external devices, ensure data safety and privacy in the air conditioning system, prevent data leakage, and expand the system can ensure the integrity of the
 また、システムにおいて異なるサーバを用いてそれぞれの機能を実現することによって、データ伝送システムに問題が発生した場合、問題が発生した原因を迅速に絞り込むことができる。 Also, by using different servers in the system to implement each function, if a problem occurs in the data transmission system, it is possible to quickly narrow down the cause of the problem.
 本開示の実施例の第1の態様により、データ伝送システムであって、空調システムと、第1のサーバと、第2のサーバと、を含むデータ伝送システムを提供する。第1のサーバは、前記空調システムから前記空調システムの第1のデータを取得する。第2のサーバは、前記第1のサーバから前記空調システムの第1のデータを取得し、前記データ伝送システムの外部から前記空調システムの電力量のデータを取得し、かつ、前記空調システムの第1のデータと前記空調システムの電力量のデータとに基づいて、前記空調システムのエネルギー消費のデータを特定するとともに、前記エネルギー消費のデータをユーザ側に送信する。 A first aspect of an embodiment of the present disclosure provides a data transmission system including an air conditioning system, a first server, and a second server. A first server obtains first data of the air conditioning system from the air conditioning system. A second server acquires first data of the air conditioning system from the first server, acquires power amount data of the air conditioning system from outside the data transmission system, The energy consumption data of the air conditioning system is specified based on the data of No. 1 and the power amount data of the air conditioning system, and the energy consumption data is transmitted to the user side.
 本開示の実施例の第2の態様により、第1のサーバが空調システムから前記空調システムの第1のデータを取得することと、第2のサーバが前記第1のサーバから前記空調システムの第1のデータを取得するとともに、データ伝送システムの外部から前記空調システムの電力量のデータを取得することと、前記第2のサーバが前記空調システムの第1のデータと前記空調システムの電力量のデータとに基づいて、前記空調システムのエネルギー消費のデータを特定することと、前記第2のサーバが前記エネルギー消費のデータをユーザ側に送信することと、を含むデータ伝送方法を提供する。 According to a second aspect of an embodiment of the present disclosure, a first server obtains first data of said air conditioning system from an air conditioning system; a second server obtains first data of said air conditioning system from said first server; Acquiring data of the power consumption of the air conditioning system from the outside of the data transmission system while obtaining the data of No. 1; determining energy consumption data of the air conditioning system based on the data; and transmitting the energy consumption data from the second server to a user side.
 本開示の実施例の第3の態様において、前記第2のサーバは、前記データ伝送システムの外部の第3のサーバから前記空調システムの前記電力量のデータを取得する。 In the third aspect of the embodiment of the present disclosure, the second server acquires the power amount data of the air conditioning system from a third server outside the data transmission system.
 本開示の実施例の第4の態様において、前記空調システムは、少なくとも一組の室外機および各組の室外機に接続された少なくとも一つの室内機を含み、前記空調システムは、少なくとも一つのスマート電力メータに接続される。 In a fourth aspect of an embodiment of the present disclosure, the air conditioning system includes at least one set of outdoor units and at least one indoor unit connected to each set of outdoor units, the air conditioning system comprising at least one smart Connected to power meter.
 本開示の実施例の第5の態様において、前記スマート電力メータは、通信モジュールを含み、前記スマート電力メータは、前記通信モジュールにより前記第3のサーバと通信し、前記通信モジュールは、NB-IoTモジュール、GPRSモジュール、4Gモジュール、5GモジュールおよびWi-Fiモジュールのうちの少なくとも一種を含む。 In a fifth aspect of the embodiments of the present disclosure, the smart power meter includes a communication module, the smart power meter communicates with the third server via the communication module, the communication module comprises NB-IoT module, GPRS module, 4G module, 5G module and at least one of Wi-Fi module.
 本開示の実施例の第6の態様において、前記スマート電力メータは、異なるプロバイダによって提供された少なくとも二種類のスマート電力メータを含み、前記第3のサーバは、前記少なくとも二種類のスマート電力メータとそれぞれ通信する少なくとも二つの第3のサーバを含む。 In a sixth aspect of the embodiments of the present disclosure, the smart power meter includes at least two types of smart power meters provided by different providers, and the third server is configured to connect the at least two types of smart power meters and At least two third servers in communication with each other.
 本開示の実施例の第7の態様において、前記空調システムの電力量のデータは、前記第3のサーバが前記スマート電力メータから取得した電力量のデータである。 In the seventh aspect of the embodiment of the present disclosure, the power amount data of the air conditioning system is the power amount data acquired by the third server from the smart power meter.
 本開示の実施例の第8の態様において、前記空調システムの第1のデータは、前記空調システムの運転データを含み、または、前記空調システムの第1のデータは、前記空調システムの運転データと前記空調システムの環境データとを含む。 In an eighth aspect of an embodiment of the present disclosure, the first data of the air conditioning system includes operating data of the air conditioning system, or the first data of the air conditioning system is operating data of the air conditioning system. Environmental data of the air conditioning system.
 本開示の実施例の第9の態様において、前記エネルギー消費のデータは、前記空調システムの室外機の電力量のデータを含む。 In the ninth aspect of the embodiment of the present disclosure, the energy consumption data includes power amount data for an outdoor unit of the air conditioning system.
 本開示の実施例の第10の態様において、前記第1のサーバは、前記空調システムの機器配置情報を含む前記空調システムの第2のデータをさらに取得する。 In the tenth aspect of the embodiment of the present disclosure, the first server further acquires second data of the air conditioning system including equipment layout information of the air conditioning system.
 本開示の実施例の第11の態様において、前記エネルギー消費のデータは、一組の室外機に接続された各室内機の割当電力量を含む。前記第2のサーバは、前記第1のサーバから前記空調システムの第2のデータを取得するとともに、前記空調システムの第1のデータ、前記空調システムの電力量のデータおよび前記空調システムの第2のデータに基づいて、前記各室内機の割当電力量を計算する。 In the eleventh aspect of the embodiment of the present disclosure, the energy consumption data includes the allocated power amount of each indoor unit connected to a set of outdoor units. The second server acquires the second data of the air conditioning system from the first server, and the first data of the air conditioning system, the data of the power amount of the air conditioning system, and the second data of the air conditioning system. Based on the data of , the amount of power allocated to each of the indoor units is calculated.
 本開示の実施例の第12の態様において、前記データ伝送システムは、サービス側をさらに含み、前記第1のサーバは、前記サービス側から前記第2のデータを取得する。 In a twelfth aspect of the embodiments of the present disclosure, the data transmission system further includes a service side, and the first server acquires the second data from the service side.
 本開示の実施例の第13の態様において、前記機器配置情報は、前記空調システムの室外機および室内機の容量情報、前記室外機と前記室内機との接続関係情報および前記室外機と前記室内機の位置情報のうちの少なくとも一種を含む。 In the thirteenth aspect of the embodiment of the present disclosure, the equipment arrangement information includes capacity information of the outdoor unit and the indoor unit of the air conditioning system, connection relationship information between the outdoor unit and the indoor unit, and including at least one type of aircraft location information.
 本開示の実施例の第14の態様において、前記データ伝送システムは、第4のサーバをさらに含む。前記第4のサーバは、前記第1のサーバから前記空調システムの前記第1のデータを取得し、および/または前記第2のサーバから前記エネルギー消費のデータを取得し、前記第4のサーバは、さらに前記第1のデータおよび/または前記エネルギー消費のデータをビル管理システムのサーバに送信する。 In the fourteenth aspect of the embodiments of the present disclosure, the data transmission system further includes a fourth server. The fourth server obtains the first data of the air conditioning system from the first server and/or obtains the energy consumption data from the second server, wherein the fourth server is and further transmitting said first data and/or said energy consumption data to a server of a building management system.
 本開示の実施例の第15の態様において、前記データ伝送システムは、第1のデータベースと第2のデータベースとをさらに含む。前記第1のデータベースは、前記第1のサーバに属し、かつ、前記第1のサーバが取得した前記第1のデータを記憶する。前記第2のデータベースは、前記第2のサーバに属し、かつ前記第2のサーバが取得した前記電力量のデータと特定された前記エネルギー消費のデータとを記憶する。 In the fifteenth aspect of the embodiment of the present disclosure, the data transmission system further includes a first database and a second database. The first database belongs to the first server and stores the first data acquired by the first server. The second database belongs to the second server and stores the power amount data and the identified energy consumption data acquired by the second server.
 本開示の実施例の第16の態様において、前記第2のサーバは、エネルギー消費のデータを取得するための前記ユーザ側からの指令に応じて、前記第2のデータベースに記憶された、ユーザが必要とする前記エネルギー消費のデータを前記ユーザ側にフィードバックする。 In a sixteenth aspect of an embodiment of the present disclosure, the second server responds to a command from the user side to obtain energy consumption data, stored in the second database, wherein the user Feeding back the data of the energy consumption required to the user side.
 本開示の実施例の第17の態様において、前記第1のサーバおよび/または前記第2のサーバは、クラウドサーバまたはローカルサーバである。 In the seventeenth aspect of the embodiments of the present disclosure, the first server and/or the second server are cloud servers or local servers.
 本開示の実施例の有益な効果の一つは、データ伝送システムの内部に空調システムの電力量等のデータの収集や処理を行うための第2のサーバを設置することによって、データ伝送システム内の既存の第1のサーバの処理負荷を低減し、システム内の既存の第1のサーバの安定性および応答性を向上させることができる。 One of the beneficial effects of the embodiments of the present disclosure is that by installing a second server inside the data transmission system for collecting and processing data such as power consumption of the air conditioning system, The processing load of the existing first server in the system can be reduced, and the stability and responsiveness of the existing first server in the system can be improved.
 これにより、システムの性能を確保するとともに、ユーザ側がエネルギー消費のデータを取得する速度と効率を向上させ、かつ、別の第2のサーバを用いて外部機器と通信して空調システムの電力量等のデータを取得するため、システム内の既存の第1のサーバと外部機器との直接通信を防止し、空調システムにおけるデータの安全性およびプライバシー性を確保し、データ漏洩を防止するとともに、システムの拡張可能性を確保することができる。 This ensures the performance of the system, improves the speed and efficiency with which the user acquires energy consumption data, and communicates with external devices using a separate second server to calculate the power consumption of the air conditioning system, etc. data, prevent direct communication between the existing first server in the system and external devices, ensure the safety and privacy of data in the air conditioning system, prevent data leakage, and Scalability can be ensured.
 また、システムにおいて異なるサーバを用いてそれぞれの機能を実現することによって、データ伝送システムに問題が発生した場合、問題が発生した原因を迅速に絞り込むことができるということにある。 In addition, by using different servers in the system to implement each function, if a problem occurs in the data transmission system, it is possible to quickly narrow down the cause of the problem.
 後述の説明と図面を参照して、本開示の特定の実施形態が詳しく開示されており、本開示の原理が採用され得る態様が明示されている。本開示の実施形態は範囲上でこれによって規制されないと理解されるべきである。添付した特許請求の範囲の思想および条項の範囲内で、本開示の実施形態には、多くの変更、修正および同等が含まれている。 Certain embodiments of the present disclosure are disclosed in detail with reference to the following description and drawings to demonstrate the manner in which the principles of the present disclosure may be employed. It should be understood that the embodiments of the present disclosure are not thereby constrained in scope. Within the spirit and terms of the appended claims, the embodiments of the present disclosure contain many variations, modifications and equivalents.
 一つの実施形態に記載および示される特徴情報について、同一または類似の態様で、一つまたは複数の他の実施形態で使用され、他の実施形態における特徴情報と組み合わせ、または他の実施形態における特徴情報を代替することができる。 Characteristic information described and shown in one embodiment may be used in the same or similar manner in one or more other embodiments, combined with characteristic information in other embodiments, or combined with characteristic information in other embodiments. Information can be substituted.
 「含む/含める」という用語は、本文で使用される場合、特徴情報、部材全体、ステップ或いは部材の存在を指すが、一つまたは複数の他の特徴、部材全体、ステップ或いは部材の存在/付加を除外しないことを強調しなければならない。 The term "comprises/includes" as used herein refers to the presence of a feature information, whole member, step or member, but the presence/addition of one or more other features, whole members, steps or members. It must be emphasized not to exclude
 本願では、図面を参照して本開示を多くの方面からよりよく理解することができる。図面における部材は、比例したものではなく、本開示の原理を示すためのものに過ぎない。本開示のある部分を示して記載することを容易にするために、図における対応部分は、拡大または縮小される可能性がある。本開示の1つの図面または1種の実施の形態に記載されている要素および特徴情報を1つ以上の他の図面または実施形態に示されている要素および特徴情報と組合わせることができる。また、図面において、類似した符号は、幾つかの図面における対応する部材を示し、かつ、1種の実施形態以上に使用される対応部材を示すことができる。各図面は以下の通りである。 In this application, the present disclosure can be better understood from many aspects with reference to the drawings. The parts in the drawings are not to scale and are merely to illustrate the principles of the disclosure. Corresponding portions in the figures may be enlarged or reduced to facilitate illustrating and describing certain portions of the disclosure. Elements and feature information shown in one drawing or one embodiment of the disclosure can be combined with elements and feature information shown in one or more other drawings or embodiments. Also, in the drawings, like reference numerals indicate corresponding elements in several drawings and may indicate corresponding elements used in more than one embodiment. Each drawing is as follows.
本開示の実施例1に係るデータ伝送システムの構造図である。1 is a structural diagram of a data transmission system according to Example 1 of the present disclosure; FIG. 本開示の実施例1に係るデータ伝送システムのデータの流れの概略図である。1 is a schematic diagram of data flow in a data transmission system according to Example 1 of the present disclosure; FIG. 本開示の実施例1に係るデータ伝送システムのデータの流れの別の概略図である。FIG. 4 is another schematic diagram of data flow in the data transmission system according to the first embodiment of the present disclosure; 本開示の実施例1に係るデータ伝送システムのさらなる構成概略図である。FIG. 4 is a further schematic configuration diagram of the data transmission system according to the first embodiment of the present disclosure; 本開示の実施例1に係るデータ伝送システムの別の構造図である。3 is another structural diagram of the data transmission system according to the first embodiment of the present disclosure; FIG. 本開示の実施例2に係るデータ伝送方法のフローチャートである。6 is a flowchart of a data transmission method according to Embodiment 2 of the present disclosure; 本開示の実施例2に係るデータ伝送方法のインタラクティブ図である。FIG. 5 is an interactive diagram of a data transmission method according to Embodiment 2 of the present disclosure;
 以下、本開示の好ましい実施形態について、図面を参照しながら説明する。 Preferred embodiments of the present disclosure will be described below with reference to the drawings.
 <実施例1>
 本開示の実施例1は、データ伝送システムを提供する。図1は、本開示の実施例1に係るデータ伝送システムの構成概略図である。図1に示すように、データ伝送システム10は、空調システム100と、第1のサーバ101と、第2のサーバ102と、を含む。第1のサーバ101は、空調システム100から空調システム100の第1のデータを取得する。
<Example 1>
Embodiment 1 of the present disclosure provides a data transmission system. FIG. 1 is a schematic configuration diagram of a data transmission system according to Example 1 of the present disclosure. As shown in FIG. 1, the data transmission system 10 includes an air conditioning system 100, a first server 101, and a second server . The first server 101 acquires first data of the air conditioning system 100 from the air conditioning system 100 .
 第2のサーバ102は、第1のサーバ101から空調システム100の第1のデータを取得し、データ伝送システム10の外部から空調システム100の電力量のデータを取得するとともに、空調システム100の第1のデータと空調システム100の電力量のデータとに基づいて、空調システム100のエネルギー消費のデータを特定するとともに、エネルギー消費のデータをユーザ側300に送信する。 The second server 102 acquires the first data of the air conditioning system 100 from the first server 101, acquires the power amount data of the air conditioning system 100 from outside the data transmission system 10, 1 and the power consumption data of the air conditioning system 100 , the energy consumption data of the air conditioning system 100 is identified and the energy consumption data is transmitted to the user side 300 .
 例えば、図1に示すように、第2のサーバ102は、データ伝送システム10の外部の第3のサーバ200から空調システム100の電力量のデータを取得する。 For example, as shown in FIG. 1 , the second server 102 acquires power consumption data for the air conditioning system 100 from the third server 200 outside the data transmission system 10 .
 本開示のいくつかの実施例において、第2のサーバ102は、データ伝送システム10の外部の他の機器から空調システム100の電力量のデータを取得してもよく、本開示は、これを制限しない。 In some embodiments of the present disclosure, the second server 102 may obtain power amount data of the air conditioning system 100 from other devices external to the data transmission system 10, and the present disclosure limits this. do not.
 これにより、データ伝送システム10の内部に空調システム100の電力量等のデータの収集や処理を行うための第2のサーバ102を設置することによって、データ伝送システム内の既存の第1のサーバ101の処理負荷を低減し、システム内の既存の第1のサーバの安定性および応答性を向上させることができる。これにより、システムの性能を確保する。 As a result, by installing the second server 102 for collecting and processing data such as the power consumption of the air conditioning system 100 inside the data transmission system 10, the existing first server 101 in the data transmission system , and improve the stability and responsiveness of existing first servers in the system. This ensures system performance.
 かつ、別の第2のサーバ102を用いて外部の第3のサーバ200などの外部機器と通信して空調システム100の電力量等のデータを取得するため、システム内の既存の第1のサーバ101と外部のサーバなどの外部機器との直接通信を防止し、空調システム100におけるデータの安全性およびプライバシー性を確保し、データ漏洩を防止するとともに、システムの拡張可能性を確保することができる。 In addition, in order to acquire data such as the power amount of the air conditioning system 100 by communicating with an external device such as an external third server 200 using another second server 102, the existing first server in the system Direct communication between 101 and an external device such as an external server can be prevented, data safety and privacy can be ensured in the air conditioning system 100, data leakage can be prevented, and system expandability can be ensured. .
 例えば、新たなタイプまたはブランドの電力メータを用いて電力量を計測する場合、第2のサーバと外部のサーバとの間の接続および通信のみに対してデバッグおよびテストを行う必要があり、デバッグおよびテストの期間に第1のサーバによる空気調和機の運転データ、指令送受信の機能に影響を与えず、他の機器を拡張すると同時に空調システムの正常な利用に影響を与えない。 For example, when measuring electricity with a new type or brand of electricity meter, debugging and testing need only be done for the connection and communication between the second server and the external server. During the test, it does not affect the function of sending and receiving operation data and commands of the air conditioner by the first server, and it does not affect the normal use of the air conditioning system while expanding other equipment.
 また、システムにおいて異なるサーバを用いてそれぞれの機能を実現することによって、データ伝送システム10に問題が発生した場合、問題が発生した原因を迅速に絞り込むことができる。 In addition, by realizing each function using different servers in the system, when a problem occurs in the data transmission system 10, the cause of the problem can be quickly narrowed down.
 また、別に設置された第2のサーバ102により電力量のデータを処理するとともにエネルギー消費のデータを取得することによって、第2のサーバ102の機能が第1のサーバ101から独立し、その機能が相対的に集中し、これにより、ユーザ側300がエネルギー消費のデータを取得する速度および効率を向上させ、ユーザ体験をさらに向上させることができる。 In addition, the second server 102, which is installed separately, processes power consumption data and obtains energy consumption data, so that the function of the second server 102 becomes independent from the first server 101, and the function of the second server 102 becomes It is relatively centralized, which can improve the speed and efficiency with which the user side 300 obtains energy consumption data, further enhancing the user experience.
 本開示のいくつかの実施例において、本願に係るデータ伝送システム10は、少なくとも一つの空調システム100を含むことができ、該空調システム100は、様々なタイプの空調システムであってもよい。 In some embodiments of the present disclosure, the data transmission system 10 according to the present application may include at least one air conditioning system 100, and the air conditioning system 100 may be various types of air conditioning systems.
 例えば、空調システム100は、業務空調システムまたは家庭用空調システムであってもよい。 For example, the air conditioning system 100 may be a commercial air conditioning system or a domestic air conditioning system.
 本開示のいくつかの実施例において、空調システム100は、少なくとも一組の室外機および各組の室外機に接続された少なくとも一つの室内機を含むことができる。空調システム100において、一組または複数組の室外機を含むことができ、各組の室外機は、少なくとも一つの室外機を含むことができ、一組の室外機について、該組の室外機は、少なくとも一つの室内機に接続される。 In some embodiments of the present disclosure, the air conditioning system 100 may include at least one set of outdoor units and at least one indoor unit connected to each set of outdoor units. The air conditioning system 100 may include one set or a plurality of sets of outdoor units, each set of outdoor units may include at least one outdoor unit, and for one set of outdoor units, the set of outdoor units may be , is connected to at least one indoor unit.
 例えば、一組の室外機および該一組の室外機に接続された少なくとも一つの室内機は、一つの冷媒システムを構成し、複数組の室外機および複数組の室外機にそれぞれ接続された少なくとも一つの室内機は、複数の冷媒システムを構成し、空調システム100は、一つの冷媒システムまたは複数の冷媒システムを含むことができる。 For example, a set of outdoor units and at least one indoor unit connected to the set of outdoor units constitute one refrigerant system, and at least one set of outdoor units and at least one connected to the plurality of sets of outdoor units, respectively One indoor unit constitutes a plurality of refrigerant systems, and the air conditioning system 100 may include one refrigerant system or a plurality of refrigerant systems.
 本開示のいくつかの実施例において、空調機器とされる室外機および室内機は、様々な型番、様々なタイプ、様々な形態、様々な容量の空調機器であってもよい。 In some embodiments of the present disclosure, outdoor units and indoor units, which are air conditioners, may be air conditioners of various models, types, forms, and capacities.
 例えば、該空調機器は、シングル(一つの室外機が一つの室内機に接続されたもの)またはマルチ(一つの室外機が複数の室内機に接続されたもの)の空気調和機またはマルチ-マルチ(複数の室外機が複数の室内機に接続されたもの)の空気調和機であってもよく、中央空調システムであってもよい。 For example, the air conditioner may be a single (one outdoor unit is connected to one indoor unit) or multi (one outdoor unit is connected to a plurality of indoor units) air conditioners or multi-multi It may be an air conditioner (in which a plurality of outdoor units are connected to a plurality of indoor units) or a central air conditioning system.
 例えば、室内機の形態は、四周送風、両面送風、送風機、地面送風または幅木送風などの形態であってもよく、室外機の形態は、シングルファンによる上送風、ツインファンによる上送風、シングルファンによる前送風またはツインファンによる前送風などの形態であってもよい。 For example, the indoor unit may be in the form of four-circle fan, double-sided fan, fan, ground fan, or baseboard fan. It may be in the form of forward blowing with a fan or forward blowing with twin fans.
 本開示のいくつかの実施例において、空調システム100は、空調システム100の電力量情報を取得する、少なくとも一つのスマート電力メータに接続されることができる。 In some embodiments of the present disclosure, the air conditioning system 100 can be connected to at least one smart power meter that obtains power energy information for the air conditioning system 100 .
 本開示のいくつかの実施例において、スマート電力メータ400は、空調システム100に電力を供給する電源線に接続されることができる。例えば、スマート電力メータは、一組の室外機の電源バスに接続されてもよいし、または、スマート電力メータ400は、変流器を介して複数組の室外機の電源バスに接続されてもよい。 In some embodiments of the present disclosure, smart power meter 400 can be connected to a power line that supplies power to air conditioning system 100 . For example, the smart power meter may be connected to the power bus of a set of outdoor units, or the smart power meter 400 may be connected to the power bus of multiple sets of outdoor units via current transformers. good.
 例えば、空調システム100が一組の室外機および該一組の室外機に接続された少なくとも一つの室内機を有する場合、一組の室外機は、該組の室外機の電力量のデータを取得する一つのスマート電力メータに接続される。 For example, when the air conditioning system 100 has a set of outdoor units and at least one indoor unit connected to the set of outdoor units, the set of outdoor units acquires data on the amount of power of the set of outdoor units. connected to one smart power meter that
 空調システム100が複数組の室外機および該複数組の室外機にそれぞれ接続された複数の室内機を有する場合、複数組の室外機のうちの各組の室外機の各々は、接続された一組の室外機の電力量のデータをそれぞれ取得する複数のスマート電力メータのうちの対応する一つのスマート電力メータに接続されるか、または、複数組の室外機は、複数組の室外機の総電力量のデータを取得する一つのスマート電力メータのみに接続される。 When the air-conditioning system 100 has a plurality of sets of outdoor units and a plurality of indoor units connected to the plurality of sets of outdoor units, each of the sets of outdoor units among the plurality of sets of outdoor units is connected to one unit. One smart power meter corresponding to each of a plurality of smart power meters that acquires data on the electric energy of a set of outdoor units, or the plurality of outdoor units are connected to a total of the plurality of sets of outdoor units It is only connected to one smart electricity meter that acquires energy data.
 本開示のいくつかの実施例において、スマート電力メータ400は、通信モジュールを含むことができ、該スマート電力メータは、該通信モジュールによりデータ伝送システム10の外部の第3のサーバ200と通信する。これにより、第3のサーバ200は、該スマート電力メータから空調システム100の電力量のデータを取得する。 In some embodiments of the present disclosure, the smart power meter 400 may include a communication module, and the smart power meter communicates with the third server 200 outside the data transmission system 10 via the communication module. As a result, the third server 200 acquires the power amount data of the air conditioning system 100 from the smart power meter.
 例えば、スマート電力メータ400の通信モジュールは、NB-IoTモジュール、GPRSモジュール、4Gモジュール、5GモジュールおよびWi-Fiモジュールのうちの少なくとも一種を含む。スマート電力メータ400は、取得された空調システム100の電力量情報を通信モジュールにより無線通信の方式でデータ伝送システム10の外部の第3のサーバ200に送信する。これにより、スマート電力メータにおける通信モジュールにより第3のサーバ200と直接無線通信することによって、電力メータを取り付ける時の通信線の敷設の作業を減少させ、コストを低減することができる。 For example, the communication module of the smart power meter 400 includes at least one of an NB-IoT module, a GPRS module, a 4G module, a 5G module and a Wi-Fi module. The smart power meter 400 transmits the acquired power amount information of the air conditioning system 100 to the third server 200 outside the data transmission system 10 by wireless communication using the communication module. As a result, the communication module in the smart power meter directly communicates with the third server 200 by radio, thereby reducing the work of laying communication lines when installing the power meter and reducing the cost.
 例えば、スマート電力メータ400の通信モジュールは、狭帯域モノのインターネット(Narrow Band Internet of Things、NB-IoT)モジュールを用いるとともに、NB-IoTネットワークを用いて第3のサーバ200と通信する。該通信方式は、カバレッジが広く、消費電力が低いなどの特徴を有する。 For example, the communication module of the smart power meter 400 uses a Narrow Band Internet of Things (NB-IoT) module and communicates with the third server 200 using the NB-IoT network. This communication system has features such as wide coverage and low power consumption.
 または、スマート電力メータ400の通信モジュールは、汎用無線パケットサービス(GPRS、General packet radio service)モジュールを用いるとともに、GPRSネットワークを用いて第3のサーバ200と通信する。該通信方式は、断続的で、突発的で、頻繁で、少量のデータ伝送に適用し、偶発的な大データ量伝送にも適用する。 Alternatively, the communication module of smart power meter 400 uses a general packet radio service (GPRS) module and communicates with third server 200 using a GPRS network. This communication method applies to intermittent, sudden, frequent and small data transmission, and also applies to occasional large data transmission.
 または、スマート電力メータの通信モジュールは、第四世代の移動情報システム(the 4th generation mobile communication technology、4G)モジュールを用いるかまたは第五世代の移動情報システム(the 5th generation mobile communication technology、5G)モジュールを用いるとともに、対応するセルラーネットワークを用いて第3のサーバ200と通信する。該通信方式は、伝送速度が速いなどの特徴を有する。 Alternatively, the communication module of the smart power meter uses the 4th generation mobile communication technology (4G) module or the 5th generation mobile communication technology (5G) module and communicate with the third server 200 using a corresponding cellular network. The communication method has characteristics such as high transmission speed.
 または、スマート電力メータの通信モジュールは、Wi-Fiモジュールを用いるとともに無線ネットワークを用いて第3のサーバ200と通信し、ここに、該通信方式は、伝送速度が速く、接続利用しやすいなどの特徴を有する。 Alternatively, the communication module of the smart power meter uses a Wi-Fi module and uses a wireless network to communicate with the third server 200, wherein the communication method has a high transmission speed and is easy to use for connection. It has characteristics.
 好ましくは、スマート電力メータ400は、様々な通信モジュールを統合することができ、異なる通信方式を切り替えることができ、これにより、異なる応用シーンに適応することができる。 Preferably, the smart power meter 400 can integrate various communication modules and switch between different communication methods, thereby adapting to different application scenarios.
 例えば、データ量が大きいかまたは伝送速度に対する要求が高いデータに対して、Wi-Fiモジュールを用いて伝送し、データ量が小さいかまたは伝送速度に対する要求が低いデータに対して、NB-IoTモジュールを用いて伝送する。 For example, data with a large amount of data or a high requirement for transmission speed is transmitted using the Wi-Fi module, and data with a small amount of data or a low requirement for transmission speed is transmitted using the NB-IoT module is transmitted using
 本開示のいくつかの実施例において、スマート電力メータ400は、異なるプロバイダによって提供された少なくとも二種類のスマート電力メータを含むことができ、それに応じて、第3のサーバ200は、該少なくとも二種類のスマート電力メータとそれぞれ通信可能な少なくとも二つの第3のサーバを含むことができる。 In some embodiments of the present disclosure, the smart electricity meter 400 may include at least two types of smart electricity meters provided by different providers, and accordingly the third server 200 may configure the at least two types of smart electricity meters. at least two third servers each communicable with the smart electricity meters.
 例えば、少なくとも二種類のスマート電力メータは、異なるサービス事業者により提供されると、各サービス事業者は、それが提供したスマート電力メータと通信可能な第3のサーバを設置することができる。これにより、データ伝送システム10は、様々なスマート電力メータ400をサポートすることができ、システムの拡張可能性および互換性を向上させた。 For example, if at least two types of smart power meters are provided by different service providers, each service provider can install a third server that can communicate with the smart power meters provided by it. This allows the data transmission system 10 to support various smart power meters 400, improving the expandability and compatibility of the system.
 かつ、例えば、異なる地域で使用されるスマート電力メータ400が異なる可能性があり、データ伝送システム10における第2のサーバ102は、異なるエリアに分布する複数の第3のサーバ200から空調システムの電力量のデータを受信するとともに、第2のサーバ102においてデータを処理することができる。 In addition, for example, the smart power meters 400 used in different areas may be different, and the second server 102 in the data transmission system 10 receives power for the air conditioning system from a plurality of third servers 200 distributed in different areas. As the amount of data is received, the data can be processed at the second server 102 .
 例えば、統一されたデータ形式を形成することができる一方、第1のサーバ101は、複数の第3のサーバと接続する必要がなく、第2のサーバ102のみと接続する。また、データ伝送システム10は、異なるサービス事業者により提供されるスマート電力メータを拡張して利用する場合、第2のサーバ102と第3のサーバ200との間の接続および通信のみに対してデバッグおよびテストを行う必要があり、該デバッグおよびテスト期間に第1のサーバ101による空気調和機の運転データ、指令送受信の機能に影響を与えず、データ伝送システムの互換性および安全性、および問題絞り込みの利便性をさらに向上させた。 For example, while a unified data format can be formed, the first server 101 does not need to connect with a plurality of third servers and only connects with the second server 102 . Further, when the data transmission system 10 extends and uses smart power meters provided by different service providers, the data transmission system 10 debugs only the connection and communication between the second server 102 and the third server 200. and testing, during the debugging and testing period, the first server 101 does not affect the function of sending and receiving operation data and commands of the air conditioner, compatibility and safety of the data transmission system, and problem narrowing down further improved the convenience of
 本開示のいくつかの実施例において、データ伝送システム10は、第1のサーバ101と第2のサーバ102とを含む。第1のサーバ101は、システムの既存のサーバであり、内部サーバと呼ばれてもよい。第1のサーバ101は、空調システム100から空調システムの第1のデータを取得し、また、第1のサーバ101は、ユーザ側300の指令を受信するとともに該指令を空調システム100に送信することができる。 In some embodiments of the present disclosure, data transmission system 10 includes first server 101 and second server 102 . The first server 101 is an existing server of the system and may be referred to as an internal server. The first server 101 acquires the first data of the air conditioning system from the air conditioning system 100, and the first server 101 receives commands from the user side 300 and transmits the commands to the air conditioning system 100. can be done.
 第2のサーバ102は、外部の第3のサーバ200から空調システム100の電力量のデータを収集して処理するために用いられる。 The second server 102 is used to collect and process power consumption data for the air conditioning system 100 from an external third server 200 .
 このように、別の第2のサーバ102により電力量のデータを収集して処理することによって、第1のサーバ101の負荷を軽減し、データ伝送システム10内の既存の第1のサーバ101の安定性および応答性を向上させる。これによって、データ伝送システム10の性能を確保する。 In this way, by collecting and processing power amount data by another second server 102, the load on the first server 101 is reduced, and the existing first server 101 in the data transmission system 10 is reduced. Improve stability and responsiveness. This ensures the performance of the data transmission system 10 .
 かつ、別の第2のサーバ102を用いて外部の第3のサーバ200と通信することによって空調システム100の電力量のデータを取得するため、第1のサーバ101と外部の第3のサーバ200との直接通信を防止し、第1のサーバ101におけるデータの安全性およびプライバシー性を確保し、データ漏洩を防止することができる。 In addition, in order to acquire the power amount data of the air conditioning system 100 by communicating with the external third server 200 using another second server 102, the first server 101 and the external third server 200 , the security and privacy of data in the first server 101 can be ensured, and data leakage can be prevented.
 また、異なるサーバ、第1のサーバ101と第2のサーバ102を用いてそれぞれの機能を実現することによって、データ伝送システム10に問題が発生した場合、問題が発生した原因を迅速に絞り込むことができる。 Further, by realizing respective functions using different servers, the first server 101 and the second server 102, when a problem occurs in the data transmission system 10, the cause of the problem can be quickly narrowed down. can.
 例えば、電力量のデータに関する処理結果に異常が発生した場合、まず第2のサーバ102を検査し、このように、問題の原因を迅速に特定しやすい。 For example, if an abnormality occurs in the processing results related to the power amount data, the second server 102 is inspected first, and in this way, it is easy to quickly identify the cause of the problem.
 本開示のいくつかの実施例において、空調システム100の第1のデータは、空調システム100の運転データを含むことができ、または、空調システムの第1のデータは、空調システム100の運転データと、空調システム100の環境データと、を含む。 In some examples of the present disclosure, the air conditioning system 100 first data may include air conditioning system 100 operating data, or the air conditioning system first data may be air conditioning system 100 operating data. , and environmental data of the air conditioning system 100 .
 本開示のいくつかの実施例において、空調システム100は、さらに、室外機および/または室内機の運転データ、環境データ等を検出する少なくとも一つのセンサを含むことができる。 In some embodiments of the present disclosure, the air conditioning system 100 may further include at least one sensor that detects operating data, environmental data, etc. of the outdoor unit and/or the indoor unit.
 例えば、室外機および/または室内機が位置する空間の温度および/または湿度を検出する温度センサおよび/または湿度センサである。また、該少なくとも一つのセンサは、空調機器に統合されてもよいし、または空調機器から独立してもよい。 For example, a temperature sensor and/or a humidity sensor that detect the temperature and/or humidity of the space where the outdoor unit and/or the indoor unit are located. Also, the at least one sensor may be integrated into the air conditioner or independent of the air conditioner.
 本開示のいくつかの実施例において、空調システムの運転データは、室内機および/または室外機の様々な運転に関連するパラメータを含むことができる。 In some embodiments of the present disclosure, the operating data of the air conditioning system may include parameters related to various operations of the indoor units and/or the outdoor units.
 例えば、空調システムの運転データは、蒸発温度、凝縮温度、ファン回転数、運転時間、室内機の運転台数、冷媒温度、冷媒圧力、起動停止回数、室外機近傍の温度、膨張弁開度および圧縮機周波数のうちの少なくとも一つを含むことができる。 For example, the operating data of an air conditioning system includes evaporating temperature, condensing temperature, fan speed, operating time, number of indoor units in operation, refrigerant temperature, refrigerant pressure, number of times of start and stop, temperature near outdoor unit, expansion valve opening and compression at least one of the machine frequencies.
 空調システムの環境データは、室外機および/または室内機が位置する空間の温度、湿度、空気質のデータのうちの少なくとも一つを含むことができ、空気質のデータは、例えばPM2.5濃度を含む。 The environmental data of the air conditioning system may include at least one of temperature, humidity, and air quality data of the space in which the outdoor unit and/or the indoor unit are located, and the air quality data may be PM2.5 concentration, for example. including.
 これにより、エネルギー消費のデータを特定する時に空調システムの運転データと空調システムの環境データとを総合的に考慮し、エネルギー消費のデータの計算の正確性を向上させることができる。 As a result, the operating data of the air conditioning system and the environmental data of the air conditioning system can be comprehensively considered when specifying the energy consumption data, and the accuracy of the calculation of the energy consumption data can be improved.
 本開示のいくつかの実施例において、第1のサーバ101は、さらに、空調システム100の第2のデータを取得することができる。 In some embodiments of the present disclosure, the first server 101 can also obtain second data of the air conditioning system 100 .
 例えば、空調システム100の第2のデータは、空調システム100の機器配置情報を含む。例えば、該機器配置情報は、空調システム100の各室外機および各室内機の容量情報、室外機と室内機の接続関係情報および室外機と室内機の位置情報のうちの少なくとも一種を含む。 For example, the second data of the air conditioning system 100 includes equipment arrangement information of the air conditioning system 100 . For example, the equipment arrangement information includes at least one of capacity information of each outdoor unit and each indoor unit of the air conditioning system 100, connection relation information between the outdoor unit and the indoor unit, and location information of the outdoor unit and the indoor unit.
 これにより、空調システム100の第2のデータを取得することによって、エネルギー消費のデータの計算の正確性をさらに向上させることができる。 Accordingly, by acquiring the second data of the air conditioning system 100, the accuracy of the calculation of the energy consumption data can be further improved.
 本開示のいくつかの実施例において、例えば、図1に示すように、データ伝送システム10は、さらに、サービス側103を含むことができ、第1のサーバ101は、該サービス側103から第2のデータを取得する。 In some embodiments of the present disclosure, for example, as shown in FIG. 1, the data transmission system 10 may further include a service side 103, the first server 101 transmitting data from the service side 103 to the second server. Get the data of
 例えば、空調システム100のインストールが完了した後で、サービス側103は、空調システム100における、例えば、馬力情報等の各室外機および各室内機の容量情報と、例えば、各室内機の装着部屋の向き情報および/または各室外機および各室内機の地理的位置情報等の各室外機および各室内機の位置情報とを記録する。 For example, after the installation of the air conditioning system 100 is completed, the service side 103 provides capacity information, such as horsepower information, of each outdoor unit and each indoor unit in the air conditioning system 100, and, for example, the room in which each indoor unit is installed. Location information for each outdoor unit and each indoor unit, such as orientation information and/or geographic location information for each outdoor unit and each indoor unit is recorded.
 サービス側103は、上記情報を記憶するとともに、第1のサーバ101は、必要に応じて該サービス側103から上記情報を取得することができる。 The service side 103 stores the above information, and the first server 101 can acquire the above information from the service side 103 as necessary.
 第1のサーバ101が空調システム100の第2のデータを取得した場合、例えば、第2のサーバ102は、第1のサーバ101から空調システム100の第2のデータを取得するとともに、空調システム100の第1のデータ、空調システム100の電力量のデータおよび空調システムの第2のデータに基づいて、空調システム100のエネルギー消費のデータを計算する。 When the first server 101 acquires the second data of the air conditioning system 100, for example, the second server 102 acquires the second data of the air conditioning system 100 from the first server 101 and , the energy consumption data of the air conditioning system 100 and the second data of the air conditioning system 100 are calculated.
 本開示のいくつかの実施例において、第2のサーバ102により特定されたエネルギー消費のデータは、空調システム100の室外機の電力量のデータを含むことができる。 In some embodiments of the present disclosure, the energy consumption data identified by the second server 102 may include power consumption data for the outdoor units of the air conditioning system 100 .
 例えば、空調システム100が複数の冷媒システムを含み、複数組の室外機を含み、かつ、複数の冷媒システム(複数組の室外機)が同一のスマート電力メータに接続された場合、第2のサーバ102により特定されたエネルギー消費のデータは、複数組の室外機の総電力量のデータであってもよい。 For example, when the air conditioning system 100 includes multiple refrigerant systems, includes multiple sets of outdoor units, and the multiple refrigerant systems (multiple sets of outdoor units) are connected to the same smart power meter, the second server The energy consumption data identified by 102 may be data on the total power consumption of a plurality of sets of outdoor units.
 空調システム100が複数の冷媒システムを含み、複数組の室外機を含み、かつ複数の冷媒システム(複数組の室外機)のそれぞれが一つのスマート電力メータに接続された場合、第2のサーバ102により特定されたエネルギー消費のデータは、各組の室外機のそれぞれの電力量のデータであってもよい。 When the air conditioning system 100 includes multiple refrigerant systems, includes multiple sets of outdoor units, and each of the multiple refrigerant systems (multiple sets of outdoor units) is connected to one smart power meter, the second server 102 The energy consumption data identified by may be data on the amount of electric power for each set of outdoor units.
 また、空調システム100が一つの冷媒システムを含み、一組の室外機を含み、かつ該組の室外機が一つのスマート電力メータに接続された場合、第2のサーバ102により特定されたエネルギー消費のデータは、該組の室外機の電力量のデータであってもよい。 Also, if the air conditioning system 100 includes a refrigerant system, includes a set of outdoor units, and the set of outdoor units is connected to a smart power meter, the energy consumption determined by the second server 102 may be data on the amount of electric power of the outdoor unit of the set.
 本開示のいくつかの実施例において、第2のサーバ102は、ユーザ側300が要求を開始する時に電力量のデータを処理してエネルギー消費のデータを形成してもよい。また、第2のサーバ102は、固定の時間周期またはルールに従って電力量のデータを自発的に処理してエネルギー消費のデータを形成してもよく、かつ、得られたエネルギー消費のデータは、第2のサーバ102に記憶される。 In some embodiments of the present disclosure, the second server 102 may process power consumption data to form energy consumption data when the user side 300 initiates a request. The second server 102 may also autonomously process the energy consumption data according to a fixed time period or rule to form energy consumption data, and the obtained energy consumption data is 2 server 102 .
 これにより、ユーザ側300が空調システムのエネルギー消費のデータを取得する必要がある時に、第2のサーバ102から直接取得することができ、ユーザ側300がエネルギー消費のデータを取得する時間をさらに短縮する。ユーザがエネルギー消費のデータを取得する速度および効率をさらに向上させ、ユーザ体験をさらに向上させた。 Thereby, when the user side 300 needs to obtain the energy consumption data of the air conditioning system, it can directly obtain it from the second server 102, further shortening the time for the user side 300 to obtain the energy consumption data. do. Further improved the speed and efficiency with which users obtain energy consumption data, further enhancing the user experience.
 以下、第1のデータが空調システム100の運転時間および/または室内温度を含み、第2のデータが室外機の容量データを含むものを例として説明する。 Hereinafter, an example will be described in which the first data includes the operating time and/or indoor temperature of the air conditioning system 100, and the second data includes capacity data of the outdoor unit.
 本開示のいくつかの実施例において、複数組の室外機が一つのスマート電力メータに接続された場合、例えば、全ての室外機の総容量、各組の室外機の容量および該スマート電力メータ上の電力量のデータに基づいて各組の室外機の電力量のデータを計算することができる。または、全ての室外機の総容量、各組の室外機の容量、各組の室外機の運転時間および該スマート電力メータ上の電力量のデータに基づいて各組の室外機の電力量のデータを計算することもできる。このように、起動する場合に室外機の室内温度が設定値に達した後の不運転時間を考慮し、計算結果をより正確にする。 In some embodiments of the present disclosure, when multiple sets of outdoor units are connected to one smart power meter, for example, the total capacity of all outdoor units, the capacity of each set of outdoor units and the smart power meter The power energy data of each set of outdoor units can be calculated based on the power energy data. Or, based on the total capacity of all outdoor units, the capacity of each set of outdoor units, the operating time of each set of outdoor units, and the power consumption data on the smart power meter, the power consumption data of each set of outdoor units can also be calculated. In this way, the non-operating time after the indoor temperature of the outdoor unit reaches the set value is taken into account when starting, and the calculation result is made more accurate.
 本開示のいくつかの実施例において、一組の室外機が一つのスマート電力メータに接続された場合、該スマート電力メータ上の電力量のデータは、該組の室外機の電力量のデータである。 In some embodiments of the present disclosure, when a set of outdoor units are connected to one smart power meter, the power energy data on the smart power meter is the power data of the set of outdoor units. be.
 これにより、空調システムの第1のデータ、空調システムの第2のデータ、空調システムの電力量のデータの全てに基づいて空調システムのエネルギー消費のデータを特定する。この場合、空調システムのエネルギー消費のデータをより正確に計算することができる。 Thereby, the energy consumption data of the air conditioning system is specified based on all of the first data of the air conditioning system, the second data of the air conditioning system, and the data of the power consumption of the air conditioning system. In this case, the energy consumption data of the air conditioning system can be calculated more accurately.
 本開示のいくつかの実施例において、エネルギー消費のデータは、さらに、一組の室外機に接続された各室内機の割当電力量を含むことができる。 In some embodiments of the present disclosure, the energy consumption data may further include the allocated power amount of each indoor unit connected to the set of outdoor units.
 例えば、第2のサーバ102は、第1のサーバ101から空調システム100の第2のデータを取得するとともに、空調システム100の第1のデータ、空調システム100の電力量のデータおよび空調システム100の第2のデータに基づいて、各室内機の割当電力量を計算する。 For example, the second server 102 acquires the second data of the air conditioning system 100 from the first server 101, the first data of the air conditioning system 100, the power amount data of the air conditioning system 100, and the power consumption data of the air conditioning system 100. Based on the second data, the allocated power amount for each indoor unit is calculated.
 例えば、一つの冷媒システムに接続された室内機の総容量、各室内機の容量および各室内機の運転時間に基づいて、各室内機に割り当てられる室外機の電力量を計算する(方式一と呼ばれる)。 For example, based on the total capacity of indoor units connected to one refrigerant system, the capacity of each indoor unit, and the operation time of each indoor unit, the amount of electric power allocated to each indoor unit is calculated. Called).
 好ましくは、さらに、空調システムの環境データに基づいて方式一の計算方式を補正することができる。例えば、室内温度、設定温度等の環境データに基づいて、割当電力量を最適化する。例えば、空気調和機が冷房を行う場合、室内機Aが位置する室内の初期温度が高く、かつ、設定温度が低いが、室内機Bが位置する室内の初期温度が低く、かつ設定温度が高く、室内機Bに対して、室内機Aのほうは、より高い割当電力量を有するべきである。  Preferably, the first calculation method can be further corrected based on the environmental data of the air conditioning system. For example, the allocated power amount is optimized based on environmental data such as room temperature and set temperature. For example, when an air conditioner performs cooling, the initial temperature of the room where the indoor unit A is located is high and the set temperature is low, but the initial temperature of the room where the indoor unit B is located is low and the set temperature is high. , with respect to indoor unit B, indoor unit A should have a higher allocated power amount.
 したがって、上記方式一に従って一組の室外機に接続された各室内機の割当電力量を計算する過程において、上記ルールに従って室内機Aと室内機Bの割当電力量を補正することができる(方式二と呼ばれる)。 Therefore, in the process of calculating the power allocation for each indoor unit connected to a set of outdoor units according to method 1, the power allocation for indoor unit A and indoor unit B can be corrected according to the rule above (method called two).
 好ましくは、さらに、空調システムの環境データと第2のデータの両方に基づいて割当電力量を補正することができる。 Preferably, the allocated power amount can be further corrected based on both the environmental data of the air conditioning system and the second data.
 例えば、地理的位置、室内機が位置する部屋の向き等の情報のような空調システムの位置情報と、天気情報、日照状況などのような空調システムが位置する室外の環境情報に基づいて、異なる室内機が位置する部屋の室外負荷を取得し、さらに、室外負荷により室内機の割当電力量を補正する。 For example, based on the location information of the air conditioning system, such as information such as geographical location and direction of the room where the indoor unit is located, and the environmental information of the outdoor where the air conditioning system is located, such as weather information and sunshine conditions, different The outdoor load of the room in which the indoor unit is located is obtained, and the electric energy allocated to the indoor unit is corrected based on the outdoor load.
 例えば、空調機器が冷房する時、日照時間が長い部屋内に装着された室内機Cは、日照時間が短い部屋内の室内機Dに対してより高い割当電力量を有するべきであり、上記方式一で割当電力量を計算する過程において、上記ルールに従って室内機Cおよび室内機Dの割当電力量を補正することができる。 For example, when an air conditioner cools, an indoor unit C installed in a room with long sunshine hours should have a higher allocated power amount than an indoor unit D installed in a room with short sunshine hours. In the process of calculating the allocated power amount, the allocated power amount of the indoor unit C and the indoor unit D can be corrected according to the above rule.
 これにより、空調システムの第1のデータ、空調システムの第2のデータ、空調システムの電力量のデータの全てに基づいて割当電力量を特定しかつ補正する。この場合、空調システムにおける各機器のエネルギー消費のデータをより正確で、精細に計算することができる。 Thereby, the allocated power amount is specified and corrected based on all of the first data of the air conditioning system, the second data of the air conditioning system, and the data of the power amount of the air conditioning system. In this case, the energy consumption data of each device in the air conditioning system can be calculated more accurately and precisely.
 また、割当電力量を計算する時に空調システムの運転データおよび空調システムの環境データを総合的に考慮して、割当電力量の計算の正確性を向上させることもできる。 In addition, it is possible to comprehensively consider the operation data of the air conditioning system and the environmental data of the air conditioning system when calculating the allocated power amount, thereby improving the accuracy of the calculation of the allocated power amount.
 本開示のいくつかの実施例において、第1のサーバ101および/または第2のサーバ102は、クラウドサーバであってもよいし、ローカルサーバであってもよい。 In some embodiments of the present disclosure, the first server 101 and/or the second server 102 may be cloud servers or local servers.
 第1のサーバ101および/または第2のサーバ102は、クラウド側に設置されたサーバであってもよいし、データ伝送システム10にローカルに設置されたサーバであってもよい。 The first server 101 and/or the second server 102 may be servers installed on the cloud side, or may be servers installed locally in the data transmission system 10 .
 図2は、本開示の実施例1に係るデータ伝送システムのデータの流れの概略図である。以下、図2におけるデータ伝送システム10に基づいて、データの伝送過程を具体的に説明する。 FIG. 2 is a schematic diagram of data flow in the data transmission system according to the first embodiment of the present disclosure. Hereinafter, the data transmission process will be specifically described based on the data transmission system 10 shown in FIG.
 空調システム100が二組の室外機と、この二組の室外機に接続された複数の室内機とを有するものを例とする。ここに、一組の室外機および該一組の室外機に接続された複数の室内機は、第1の冷媒システム1001を構成し、他組の室外機および該他組の室外機に接続された複数の室内機は、第2の冷媒システム1002を構成する。 The air conditioning system 100 has two sets of outdoor units and a plurality of indoor units connected to the two sets of outdoor units as an example. Here, a set of outdoor units and a plurality of indoor units connected to the set of outdoor units constitute a first refrigerant system 1001, and are connected to the other set of outdoor units and the other set of outdoor units. A plurality of indoor units constitute a second refrigerant system 1002 .
 スマート電力メータ400は、第1の冷媒システム1001の一組の室外機と第2の冷媒システム1002の一組の室外機の共通の電源バスに接続され、かつ、スマート電力メータ400は、空調システムの電力量のデータ、空調システム100の第1の冷媒システム1001と第2の冷媒システム1002の総電力量のデータをデータ伝送システム10の外部の第3のサーバ200に伝送する。 The smart power meter 400 is connected to a common power bus of a set of outdoor units of the first refrigerant system 1001 and a set of outdoor units of the second refrigerant system 1002, and the smart power meter 400 is connected to the air conditioning system. and the total power consumption data of the first refrigerant system 1001 and the second refrigerant system 1002 of the air conditioning system 100 are transmitted to the third server 200 outside the data transmission system 10 .
 空調システム100は、空調システム100の第1のデータを第1のサーバ101に伝送し、サービス側103は、空調システム100の第2のデータを第1のサーバ101に伝送する。第1のサーバ101は、空調システム100の第1のデータおよび/または空調システム100の第2のデータを第2のサーバ102に伝送し、かつ、外部の第3のサーバ200は、空調システム100の電力量のデータを第2のサーバ102に伝送する。 The air conditioning system 100 transmits the first data of the air conditioning system 100 to the first server 101 , and the service side 103 transmits the second data of the air conditioning system 100 to the first server 101 . The first server 101 transmits the first data of the air conditioning system 100 and/or the second data of the air conditioning system 100 to the second server 102, and the external third server 200 transmits the air conditioning system 100 power amount data to the second server 102 .
 例えば、図2に示すように、空調システム100の電力量のデータは、スマート電力メータ400が第3のサーバ200に出力した電力量のデータである。 For example, as shown in FIG. 2 , the power amount data of the air conditioning system 100 is the power amount data output by the smart power meter 400 to the third server 200 .
 第2のサーバ102は、空調システム100の第1のデータおよび/または空調システムの第2のデータと、空調システム100の電力量のデータとに基づいて、空調システム100のエネルギー消費のデータを特定する。 The second server 102 identifies energy consumption data of the air conditioning system 100 based on the first data of the air conditioning system 100 and/or the second data of the air conditioning system and the power consumption data of the air conditioning system 100. do.
 空調システム100のエネルギー消費のデータを特定する具体的な方法は、以上の関連記載を参照することができ、ここで繰返して説明しない。 The specific method for identifying the energy consumption data of the air conditioning system 100 can refer to the above related descriptions and will not be repeated here.
 第2のサーバ102は、特定された空調システム100のエネルギー消費のデータをユーザ側300に送信する。 The second server 102 transmits the energy consumption data of the specified air conditioning system 100 to the user side 300 .
 好ましくは、ユーザ側300は、指令を第2のサーバ102に送信することができる。例えば、ユーザ側300は、エネルギー消費のデータの取得指令を送信して第1の冷媒システム1001のエネルギー消費のデータを取得する必要があることを指示する。 Preferably, the user side 300 can send commands to the second server 102 . For example, the user side 300 sends an energy consumption data acquisition command to indicate that the energy consumption data of the first refrigerant system 1001 needs to be acquired.
 第2のサーバ102は、空調システムの第1のデータおよび/または空調システムの第2のデータと、空調システムの電力量のデータとに基づいて特定された第1の冷媒システム1001のエネルギー消費のデータをユーザ側300に送信し、残りのエネルギー消費のデータを送信する必要がない。これにより、ユーザ側の指令をより正確にフィードバックし、第2のサーバ102の処理負荷を減少させ、データ処理および伝送の効率を向上させる。 The second server 102 stores the energy consumption of the first refrigerant system 1001 identified based on the air conditioning system first data and/or the air conditioning system second data and the air conditioning system power consumption data. There is no need to send the data to the user side 300 and send the remaining energy consumption data. This allows the user's instructions to be fed back more accurately, reduces the processing load on the second server 102, and improves the efficiency of data processing and transmission.
 好ましくは、ユーザ側300は、空調機器への制御または操作の指令を第1のサーバ101に送信することができる。 Preferably, the user side 300 can transmit commands for controlling or operating air conditioners to the first server 101 .
 第1のサーバ101は、指令を空調機器に送信して様々な操作や制御を行い、例えば、空調機器のスイッチ、および温度調節等を制御する。 The first server 101 transmits commands to the air conditioners to perform various operations and controls, for example, controls the switches of the air conditioners and the temperature control.
 図3は、本開示の実施例1に係るデータ伝送システムのデータの流れの別の概略図である。以下、図3におけるデータ伝送システム10に基づいて、データの伝送過程を説明する。 FIG. 3 is another schematic diagram of the data flow of the data transmission system according to the first embodiment of the present disclosure. Hereinafter, the data transmission process will be described based on the data transmission system 10 shown in FIG.
 同様に、空調システム100が、二組の室外機と、この二組の室外機に接続された複数の室内機とを有するものを例とする。一組の室外機および該一組の室外機に接続された複数の室内機は、第1の冷媒システム1001を構成し、他組の室外機および該他組の室外機に接続された複数の室内機は、第2の冷媒システム1002を構成する。 Similarly, the air conditioning system 100 has two sets of outdoor units and a plurality of indoor units connected to the two sets of outdoor units. A set of outdoor units and a plurality of indoor units connected to the set of outdoor units constitute a first refrigerant system 1001, and another set of outdoor units and a plurality of indoor units connected to the other set of outdoor units The indoor unit constitutes a second refrigerant system 1002 .
 また、第1のスマート電力メータ400-1は、第1の冷媒システム1001の一組の室外機の電源バスに接続され、第2のスマート電力メータ400-2は、第2の冷媒システム1002の一組の室外機の電源バスに接続される。 Also, the first smart power meter 400-1 is connected to the power bus of a set of outdoor units of the first refrigerant system 1001, and the second smart power meter 400-2 is connected to the power bus of the second refrigerant system 1002. It is connected to the power supply bus of a set of outdoor units.
 第1のスマート電力メータ400-1は、第1の冷媒システム1001の電力量のデータである電力量のデータ1を取得し、第2のスマート電力メータ400-2は、第2の冷媒システム1002の電力量のデータである電力量のデータ2を取得する。 First smart power meter 400-1 acquires power amount data 1, which is power amount data of first refrigerant system 1001, and second smart power meter 400-2 acquires power amount data 1 of second refrigerant system 1002. obtains the power amount data 2, which is the power amount data of .
 また、第1のスマート電力メータ400-1は、電力量のデータ1を第1の第3のサーバ200-1に伝送し、第2のスマート電力メータ400-2は、電力量のデータ2を第2の第3のサーバ200-2に伝送する。 In addition, first smart power meter 400-1 transmits power amount data 1 to first third server 200-1, and second smart power meter 400-2 transmits power amount data 2. It is transmitted to the second third server 200-2.
 図3に示す実施形態では、第1の冷媒システム1001と第2の冷媒システム1002は、関連せず、別々に設置されてもよい。例えば、第1の冷媒システム1001と第2の冷媒システム1002は、異なる地域に設置された冷媒システムであってもよい。 In the embodiment shown in FIG. 3, the first refrigerant system 1001 and the second refrigerant system 1002 are not related and may be installed separately. For example, the first refrigerant system 1001 and the second refrigerant system 1002 may be refrigerant systems located in different regions.
 それに対応して、第1のスマート電力メータ400-1と第2のスマート電力メータ400-2は、異なるサービス事業者が提供する異なるタイプまたはブランドのスマート電力メータであってもよい。このように、データ伝送システム10は、異なるタイプまたはブランドのスマート電力メータ等の機器を互換し拡張することができる。 Correspondingly, the first smart power meter 400-1 and the second smart power meter 400-2 may be different types or brands of smart power meters provided by different service providers. In this way, the data transmission system 10 is compatible and extensible with devices such as smart power meters of different types or brands.
 第1の冷媒システム1001の第1のデータと第2の冷媒システム1002の第1のデータは、それぞれ第1のサーバ101に伝送され、それに対応して、サービス側103は、第1の冷媒システム1001の第2のデータと第2の冷媒システム1002の第2のデータをそれぞれ第1のサーバ101に伝送する。 The first data of the first refrigerant system 1001 and the first data of the second refrigerant system 1002 are respectively transmitted to the first server 101, and correspondingly, the service side 103 transmits the first data to the first refrigerant system The second data of 1001 and the second data of the second refrigerant system 1002 are respectively transmitted to the first server 101 .
 第1のサーバ101は、第1の冷媒システム1001の第1のデータおよび/または第2のデータと、第2の冷媒システム1002の第1のデータおよび/または第2のデータとをそれぞれ第2のサーバ102に伝送する。 The first server 101 stores the first data and/or the second data of the first refrigerant system 1001 and the first data and/or the second data of the second refrigerant system 1002 respectively in a second to the server 102 of
 第1の第3のサーバ200-1は、第1の冷媒システム1001の電力量のデータ1を第2のサーバ102に伝送する。第2の第3のサーバ200-2は、第2の冷媒システム1002の電力量のデータ2を第2のサーバ102に伝送する。 The first and third server 200-1 transmits data 1 on the amount of electric power of the first refrigerant system 1001 to the second server 102. The second third server 200 - 2 transmits the power amount data 2 of the second refrigerant system 1002 to the second server 102 .
 第2のサーバ102は、第1の冷媒システム1001の第1のデータおよび/または第2のデータと、第1の冷媒システム1001の電力量のデータ1とに基づいて第1の冷媒システム1001のエネルギー消費のデータを特定する。 The second server 102 operates the first refrigerant system 1001 based on the first data and/or the second data of the first refrigerant system 1001 and the power amount data 1 of the first refrigerant system 1001. Identify energy consumption data.
 また、第2のサーバ102は、第2の冷媒システム1002の第1のデータおよび/または第2のデータと、第2の冷媒システム1002の電力量のデータ2とに基づいて第2の冷媒システム1002のエネルギー消費のデータを特定する。 In addition, the second server 102 performs the second refrigerant system based on the first data and/or the second data of the second refrigerant system 1002 and the power amount data 2 of the second refrigerant system 1002. Identify 1002 energy consumption data.
 また、第2のサーバ102は、第1の冷媒システム1001のエネルギー消費のデータと第2の冷媒システム1002のエネルギー消費のデータとを統合し、空調システム100全体のエネルギー消費のデータを取得することもできる。 Also, the second server 102 integrates the energy consumption data of the first refrigerant system 1001 and the energy consumption data of the second refrigerant system 1002 to obtain the energy consumption data of the entire air conditioning system 100. can also
 エネルギー消費のデータを特定する具体的な方法は、上記実施形態を参照することができ、ここで繰返して説明しない。 The specific method of specifying the energy consumption data can refer to the above embodiments and will not be described repeatedly here.
 第2のサーバ102は、特定された空調システム100のエネルギー消費のデータをユーザ側300に送信する。図3に示す実施形態では、第1の冷媒システム1001と第2の冷媒システム1002が関連せず、別々に設置される場合、第1の冷媒システム1001と第2の冷媒システム1002を利用するのは、異なるユーザであってもよい。 The second server 102 transmits the energy consumption data of the specified air conditioning system 100 to the user side 300 . In the embodiment shown in FIG. 3, the first refrigerant system 1001 and the second refrigerant system 1002 are utilized when the first refrigerant system 1001 and the second refrigerant system 1002 are not associated and installed separately. may be different users.
 異なる冷媒システムは、異なるユーザ側300に対応し、例えば、第1の冷媒システム1001は、第1のユーザ側に対応し、第2の冷媒システム1002は、第2のユーザ側に対応する。 Different refrigerant systems correspond to different user sides 300, for example, a first refrigerant system 1001 corresponds to a first user side and a second refrigerant system 1002 corresponds to a second user side.
 好ましくは、ユーザ側300は、指令を第2のサーバ102に送信することができ、例えば、ユーザ側300は、エネルギー消費のデータ取得指令を送信して第1の冷媒システム1001のエネルギー消費のデータを取得する必要があることを指示する。 Preferably, the user side 300 can send a command to the second server 102, for example, the user side 300 can send an energy consumption data acquisition command to retrieve the energy consumption data of the first refrigerant system 1001. to indicate that the
 さらに、第2のサーバ102は、空調システム100の第1のデータおよび/または空調システム100の第2のデータと、空調システム100の電力量のデータ1とに基づいて特定された第1の冷媒システム1001のエネルギー消費のデータをユーザ側300に送信するが、残りのエネルギー消費のデータを送信する必要がない。 Further, the second server 102 stores the first refrigerant specified based on the first data of the air conditioning system 100 and/or the second data of the air conditioning system 100 and the power amount data 1 of the air conditioning system 100. Although the energy consumption data of the system 1001 is transmitted to the user side 300, the rest of the energy consumption data need not be transmitted.
 これにより、ユーザ側の指令をより正確にフィードバックし、第2のサーバの処理負荷を減少させ、データ処理および伝送の効率を向上させる。残りの指令伝送方式は、上記実施形態と類似し、ここで繰返して説明しない。 This provides more accurate feedback of the user's instructions, reduces the processing load on the second server, and improves the efficiency of data processing and transmission. The rest of the command transmission method is similar to the above embodiment and will not be repeated here.
 本開示のいくつかの実施例において、さらに、データベースを構築して特定のデータを記憶することができる。 In some embodiments of the present disclosure, a database can also be constructed to store specific data.
 図4は、本開示の実施例1に係るデータ伝送システムのさらなる構成概略図。図4に示すように、本開示の実施例において、データ伝送システム10は、さらに第1のデータベース1011と第2のデータベース1021とを含む。 FIG. 4 is a further configuration schematic diagram of the data transmission system according to the first embodiment of the present disclosure. As shown in FIG. 4, the data transmission system 10 further includes a first database 1011 and a second database 1021 in the embodiment of the present disclosure.
 第1のデータベース1011は、第1のサーバ101に属し、かつ第1のサーバ101が取得した第1のデータを記憶する。また、第1のデータベース1011は、第1のサーバ101が取得した第2のデータを記憶することができる。 The first database 1011 belongs to the first server 101 and stores first data acquired by the first server 101 . Also, the first database 1011 can store the second data acquired by the first server 101 .
 第2のデータベース1021は、第2のサーバ102に属し、かつ第2のサーバ102が取得した電力量のデータと、特定されたエネルギー消費のデータとを記憶する。 The second database 1021 belongs to the second server 102 and stores the power amount data acquired by the second server 102 and the specified energy consumption data.
 例えば、ユーザ、空調システム、冷媒システム、室外機の組などの情報のうちの少なくとも一つに応じて電力量のデータとエネルギー消費のデータとを記憶することができる。 For example, power amount data and energy consumption data can be stored according to at least one of information such as a user, an air conditioning system, a refrigerant system, and a set of outdoor units.
 好ましくは、第2のサーバ102は、エネルギー消費のデータを取得するためのユーザ側300からの指令に応じて、第2のデータベース1021に記憶された、ユーザが必要とするエネルギー消費のデータをユーザ側300にフィードバックする。 Preferably, the second server 102 provides the energy consumption data required by the user stored in the second database 1021 in response to a command from the user side 300 to obtain the energy consumption data. feed back to the side 300;
 例えば、ユーザは、複数組の室外機のうちの一組の室外機のエネルギー消費のデータを必要とし、指令を第2のサーバ102に送信する。第2のサーバ102は、第2のデータベース1021から該組の室外機のエネルギー消費のデータを抽出するとともにユーザ側300にフィードバックする。これにより、ユーザが必要とするデータを効率的にフィードバックすることができる。 For example, a user needs data on energy consumption of one set of outdoor units among a plurality of sets of outdoor units, and sends a command to the second server 102 . The second server 102 extracts the energy consumption data of the set of outdoor units from the second database 1021 and feeds it back to the user side 300 . This enables efficient feedback of data required by the user.
 また、電力量のデータに関連する問題が発生した場合、第2のデータベースを直接検査することができ、問題が発生した原因を迅速に特定することができる。 In addition, if a problem related to power consumption data occurs, the second database can be directly inspected, and the cause of the problem can be quickly identified.
 本開示のいくつかの実施例において、より多くの応用を実現するために、データ伝送システム10は、ビル管理システムと通信する第4のサーバをさらに含むことができる。 In some embodiments of the present disclosure, the data transmission system 10 can further include a fourth server that communicates with the building management system to realize more applications.
 図5は、本開示の実施例1に係るデータ伝送システムの別の構造図である。図5に示すように、本開示の実施例において、図1に示すシステムに比べて、データ伝送システム10は、第4のサーバ104をさらに含む。 FIG. 5 is another structural diagram of the data transmission system according to the first embodiment of the present disclosure. As shown in FIG. 5, in an embodiment of the present disclosure, data transmission system 10 further includes a fourth server 104 as compared to the system shown in FIG.
 第4のサーバ104は、第1のサーバ101から空調システム100の第1のデータを取得し、および/または第2のサーバ102からエネルギー消費のデータを取得する。第4のサーバ104は、さらに、該第1のデータおよび/または該エネルギー消費のデータをビル管理システムのサーバ500に送信する。 The fourth server 104 obtains first data of the air conditioning system 100 from the first server 101 and/or obtains energy consumption data from the second server 102 . The fourth server 104 further transmits the first data and/or the energy consumption data to the building management system server 500 .
 本開示のいくつかの実施例において、第4のサーバの機能を第2のサーバ102に統合してもよく、エネルギー消費のデータを伝送するために、第2のサーバ102は、ビル管理システムのサーバ500に直接接続される(図5に図示せず)。 In some embodiments of the present disclosure, the functionality of the fourth server may be integrated into the second server 102, where the second server 102 is used by the building management system to transmit energy consumption data. It is directly connected to server 500 (not shown in FIG. 5).
 これにより、空調システム100のエネルギー消費のデータをビル管理システムに送信することができ、さらに、ビル管理システムは、該エネルギー消費のデータに基づいて、空調システム100を監視および統合制御する。 As a result, the energy consumption data of the air conditioning system 100 can be transmitted to the building management system, and the building management system monitors and controls the air conditioning system 100 in an integrated manner based on the energy consumption data.
 また、外部のビル管理システムと通信する第4のサーバを設置することによって、データの安全性およびシステムの拡張性を確保することができる。 Also, by installing a fourth server that communicates with an external building management system, data safety and system expandability can be ensured.
 <実施例2>
 本開示の実施例2は、実施例1に記載のデータ伝送システムに対応するデータ伝送方法を提供し、実施例1に記載のデータ伝送システムにおける同一または対応する部分について、実施例1における記載を参照し、ここで繰返して説明しない。
<Example 2>
A second embodiment of the present disclosure provides a data transmission method corresponding to the data transmission system according to the first embodiment, and the same or corresponding parts in the data transmission system according to the first embodiment are described in the first embodiment. and will not be repeated here.
 図6は、本開示の実施例2に係るデータ伝送方法のフローチャートである。図6に示すように、該方法は、
 第1のサーバが空調システムから該空調システムの第1のデータを取得するステップ601と、
 第2のサーバが該第1のサーバから該空調システムの第1のデータを取得するステップ602と、
 該第2のサーバがデータ伝送システムの外部から該空調システムの電力量のデータを取得するステップ603と、
 該第2のサーバが該空調システムの第1のデータと該空調システムの電力量のデータとに基づいて、該空調システムのエネルギー消費のデータを特定するステップ604と、
 該第2のサーバが該エネルギー消費のデータをユーザ側に送信するステップ605と、を含む。
FIG. 6 is a flowchart of a data transmission method according to Embodiment 2 of the present disclosure. As shown in FIG. 6, the method comprises:
step 601 in which the first server obtains first data of the air conditioning system from the air conditioning system;
a step 602 in which a second server obtains first data of said air conditioning system from said first server;
a step 603 in which the second server acquires data on the power consumption of the air conditioning system from outside the data transmission system;
step 604, wherein the second server determines energy consumption data of the air conditioning system based on the air conditioning system first data and the air conditioning system power consumption data;
and Step 605, wherein the second server sends the energy consumption data to the user side.
 また、ステップ601、602とステップ603との間の実行順序を制限しない。 Also, the order of execution between steps 601, 602 and 603 is not restricted.
 図7は、本開示の実施例2に係るデータ伝送方法のインタラクティブ図である。図7に示すように、該方法は、
 第1のサーバが空調システムから該空調システムの第1のデータを取得するステップ701と、
 第2のサーバが該第1のサーバから該空調システムの第1のデータを取得するステップ702と、
 該第2のサーバがデータ伝送システムの外部から該空調システムの電力量のデータを取得するステップ703と、
 該第2のサーバが該空調システムの第1のデータと該空調システムの電力量のデータとに基づいて、該空調システムのエネルギー消費のデータを特定するステップ704と、
 該第2のサーバが該エネルギー消費のデータをユーザ側に送信するステップ705と、を含む。
FIG. 7 is an interactive diagram of a data transmission method according to Embodiment 2 of the present disclosure. As shown in FIG. 7, the method comprises:
step 701 in which a first server obtains first data of the air conditioning system from the air conditioning system;
Step 702, a second server obtaining first data of the air conditioning system from the first server;
a step 703 in which the second server obtains the power amount data of the air conditioning system from outside the data transmission system;
step 704, wherein the second server determines energy consumption data of the air conditioning system based on the first data of the air conditioning system and the energy consumption data of the air conditioning system;
and Step 705, wherein the second server transmits the energy consumption data to the user side.
 また、ステップ701、702とステップ703との間の実行順序を制限しない。 Also, the order of execution between steps 701, 702 and 703 is not restricted.
 例えば、ステップ603とステップ703において、該第2のサーバは、データ伝送システムの外部の第3のサーバから該空調システムの電力量のデータを取得する。 For example, in steps 603 and 703, the second server acquires the power amount data of the air conditioning system from a third server outside the data transmission system.
 これにより、データ伝送システムの内部に空調システムの電力量等のデータの収集や処理を行うための第2のサーバを設置することによって、データ伝送システム内の既存の第1のサーバの処理負荷を低減し、システム内の既存の第1のサーバの安定性および応答性を向上させることができる。 As a result, the processing load of the existing first server in the data transmission system can be reduced by installing the second server for collecting and processing data such as the power consumption of the air conditioning system inside the data transmission system. and improve the stability and responsiveness of existing first servers in the system.
 これにより、システムの性能を確保するとともに、ユーザ側がエネルギー消費のデータを取得する速度と効率を向上させ、かつ、別の第2のサーバを用いて外部機器と通信して空調システムの電力量等のデータを取得する。 This ensures the performance of the system, improves the speed and efficiency with which the user acquires energy consumption data, and communicates with external devices using a separate second server to calculate the power consumption of the air conditioning system, etc. Get the data of
 このため、システム内の既存の第1のサーバと外部機器等の外部機器との直接通信を防止し、空調システムにおけるデータの安全性およびプライバシー性を確保し、データ漏洩を防止するとともに、システムの拡張可能性を確保することができる。 For this reason, direct communication between the existing first server in the system and external devices such as external devices is prevented, the safety and privacy of data in the air conditioning system are secured, data leakage is prevented, and the system Scalability can be ensured.
 また、システムにおいて異なるサーバを用いてそれぞれの機能を実現することによって、データ伝送システムに問題が発生した場合、問題が発生した原因を迅速に絞り込むことができる。 Also, by using different servers in the system to implement each function, if a problem occurs in the data transmission system, it is possible to quickly narrow down the cause of the problem.
 本開示の実施例の以上の方法は、ハードウェアにより実現されてもよいし、ハードウェアとソフトウェアの組み合わせにより実現されてもよい。本開示は、論理部材により実行される場合、該論理部材に上記装置または構成部材を実現させ、または該論理部材に上記様々な方法またはステップを実現させることができるコンピュータ読取可能なプログラムに関する。 The above methods of the embodiments of the present disclosure may be implemented by hardware or by a combination of hardware and software. The present disclosure relates to a computer readable program which, when executed by a logic component, can cause the logic component to implement the devices or components described above, or cause the logic component to implement the various methods or steps described above.
 本開示の実施例は、上記のプログラムを記憶するための、例えば、ハードディスク、磁気ディスク、光ディスク、DVD、フラッシュメモリなどの記憶媒体にさらに関する。 Embodiments of the present disclosure further relate to storage media such as hard disks, magnetic disks, optical disks, DVDs, and flash memories for storing the above programs.
 以上、具体的な実施形態を組み合わせて本開示を記載したが、当業者にとって、これらの記載は例示的なものであって、本開示の特許請求する範囲に対する制限ではないということは明らかである。当業者は、本開示の思想と原理に基づいて、本開示に対して各種の変形と修正をすることができ、これらの変形と修正も本開示の範囲内にある。 While the present disclosure has been described in conjunction with specific embodiments, it will be apparent to those skilled in the art that these descriptions are illustrative and not limiting on the scope of the claims of this disclosure. . Persons skilled in the art can make various variations and modifications to this disclosure based on the spirit and principles of this disclosure, and these variations and modifications are within the scope of this disclosure.
 10     データ伝送システム
 101    第1のサーバ
 102    第2のサーバ
 104    第4のサーバ
 200    第3のサーバ
 300    ユーザ側
 400    スマート電力メータ
 400-1  第1のスマート電力メータ
 400-2  第2のスマート電力メータ
 1011   第1のデータベース
 1021   第2のデータベース
 
10 data transmission system 101 first server 102 second server 104 fourth server 200 third server 300 user side 400 smart power meter 400-1 first smart power meter 400-2 second smart power meter 1011 first database 1021 second database
特開2004-116972号公報JP 2004-116972 A

Claims (17)

  1.  データ伝送システムであって、
     空調システム(100)と、
     前記空調システムから前記空調システムの第1のデータを取得する第1のサーバ(101)と、
     前記第1のサーバから前記空調システムの第1のデータを取得し、前記データ伝送システムの外部から前記空調システムの電力量のデータを取得し、かつ、前記空調システムの第1のデータと前記空調システムの電力量のデータとに基づいて、前記空調システムのエネルギー消費のデータを特定するとともに、前記エネルギー消費のデータをユーザ側(300)に送信する第2のサーバ(102)と、を含む
     ことを特徴とするデータ伝送システム(10)。
    A data transmission system,
    an air conditioning system (100);
    a first server (101) for obtaining first data of said air conditioning system from said air conditioning system;
    Acquiring first data of the air conditioning system from the first server, acquiring power amount data of the air conditioning system from outside the data transmission system, and acquiring the first data of the air conditioning system and the air conditioning a second server (102) for determining energy consumption data of the air conditioning system based on system power consumption data and transmitting the energy consumption data to a user side (300). A data transmission system (10) characterized by:
  2.  前記第2のサーバは、前記データ伝送システムの外部の第3のサーバ(200)から前記空調システムの前記電力量のデータを取得する
     ことを特徴とする請求項1に記載のデータ伝送システム(10)。
    The data transmission system (10) according to claim 1, wherein the second server acquires the data of the power amount of the air conditioning system from a third server (200) outside the data transmission system. ).
  3.  前記空調システムは、少なくとも一組の室外機および各組の室外機に接続された少なくとも一つの室内機を含み、
     前記空調システムは、少なくとも一つのスマート電力メータ(400)に接続される
     ことを特徴とする請求項2に記載のデータ伝送システム(10)。
    The air conditioning system includes at least one set of outdoor units and at least one indoor unit connected to each set of outdoor units,
    3. The data transmission system (10) of claim 2, wherein the air conditioning system is connected to at least one smart electricity meter (400).
  4.  前記スマート電力メータは、通信モジュールを含み、前記スマート電力メータは、前記通信モジュールにより前記第3のサーバと通信し、
     前記通信モジュールは、NB-IoTモジュール、GPRSモジュール、4Gモジュール、5GモジュールおよびWi-Fiモジュールのうちの少なくとも一種を含む
     ことを特徴とする請求項3に記載のデータ伝送システム(10)。
    the smart power meter includes a communication module, the smart power meter communicates with the third server via the communication module;
    Data transmission system (10) according to claim 3, characterized in that said communication module comprises at least one of a NB-IoT module, a GPRS module, a 4G module, a 5G module and a Wi-Fi module.
  5.  前記スマート電力メータは、異なるプロバイダによって提供された少なくとも二種類のスマート電力メータを含み、
     前記第3のサーバは、前記少なくとも二種類のスマート電力メータ(400-1、400-2)とそれぞれ通信する少なくとも二つの第3のサーバ(200-1、200-2)を含む
     ことを特徴とする請求項3に記載のデータ伝送システム。
    the smart electricity meter includes at least two types of smart electricity meters provided by different providers;
    The third server comprises at least two third servers (200-1, 200-2) respectively communicating with the at least two types of smart power meters (400-1, 400-2). 4. The data transmission system according to claim 3.
  6.  前記空調システムの電力量のデータは、前記第3のサーバが前記スマート電力メータから取得した電力量のデータである
     ことを特徴とする請求項3に記載のデータ伝送システム(10)。
    4. The data transmission system (10) according to claim 3, wherein the power amount data of the air conditioning system is power amount data obtained by the third server from the smart power meter.
  7.  前記空調システムの第1のデータは、前記空調システムの運転データを含み、または、前記空調システムの第1のデータは、前記空調システムの運転データと前記空調システムの環境データとを含む
     ことを特徴とする請求項1に記載のデータ伝送システム(10)。
    The first data of the air conditioning system includes operating data of the air conditioning system, or the first data of the air conditioning system includes operating data of the air conditioning system and environmental data of the air conditioning system. A data transmission system (10) according to claim 1, wherein:
  8.  前記エネルギー消費のデータは、前記空調システムの室外機の電力量のデータを含む
     ことを特徴とする請求項1に記載のデータ伝送システム(10)。
    The data transmission system (10) according to claim 1, wherein the energy consumption data includes power consumption data of an outdoor unit of the air conditioning system.
  9.  前記第1のサーバは、前記空調システムの機器配置情報を含む前記空調システムの第2のデータをさらに取得する
     ことを特徴とする請求項1に記載のデータ伝送システム(10)。
    The data transmission system (10) according to claim 1, wherein said first server further acquires second data of said air conditioning system including equipment arrangement information of said air conditioning system.
  10.  前記エネルギー消費のデータは、一組の室外機に接続された各室内機の割当電力量を含み、
     前記第2のサーバは、前記第1のサーバから前記空調システムの第2のデータを取得するとともに、前記空調システムの第1のデータ、前記空調システムの電力量のデータおよび前記空調システムの第2のデータに基づいて、前記各室内機の割当電力量を計算する
     ことを特徴とする請求項9に記載のデータ伝送システム(10)。
    The energy consumption data includes the amount of power allocated to each indoor unit connected to a set of outdoor units,
    The second server acquires the second data of the air conditioning system from the first server, and the first data of the air conditioning system, the data of the power amount of the air conditioning system, and the second data of the air conditioning system. 10. The data transmission system (10) according to claim 9, wherein the power allocation for each indoor unit is calculated based on the data of .
  11.  前記データ伝送システムは、サービス側をさらに含み、
     前記第1のサーバは、前記サービス側から前記第2のデータを取得する
     ことを特徴とする請求項9に記載のデータ伝送システム(10)。
    The data transmission system further includes a service side,
    10. The data transmission system (10) of claim 9, wherein said first server obtains said second data from said service side.
  12.  前記機器配置情報は、前記空調システムの室外機および室内機の容量情報、前記室外機と前記室内機との接続関係情報および前記室外機と前記室内機の位置情報のうちの少なくとも一種を含む
     ことを特徴とする請求項9に記載のデータ伝送システム(10)。
    The device layout information includes at least one of capacity information of the outdoor unit and the indoor unit of the air conditioning system, connection relationship information between the outdoor unit and the indoor unit, and location information of the outdoor unit and the indoor unit. A data transmission system (10) according to claim 9, characterized in that:
  13.  前記データ伝送システムは、第4のサーバ(104)をさらに含み、
     前記第4のサーバは、前記第1のサーバから前記空調システムの前記第1のデータを取得し、および/または前記第2のサーバから前記エネルギー消費のデータを取得し、
     前記第4のサーバは、さらに前記第1のデータおよび/または前記エネルギー消費のデータをビル管理システムのサーバに送信する
     ことを特徴とする請求項1に記載のデータ伝送システム(10)。
    The data transmission system further includes a fourth server (104),
    said fourth server obtains said first data of said air conditioning system from said first server and/or obtains said energy consumption data from said second server;
    The data transmission system (10) according to claim 1, wherein said fourth server further transmits said first data and/or said energy consumption data to a server of a building management system.
  14.  前記データ伝送システムは、第1のデータベース(1011)と第2のデータベース(1021)とをさらに含み、
     前記第1のデータベースが前記第1のサーバに属し、かつ、前記第1のサーバが取得した前記第1のデータを記憶し、前記第2のデータベースが前記第2のサーバに属し、かつ前記第2のサーバが取得した前記電力量のデータと特定された前記エネルギー消費のデータとを記憶する
     ことを特徴とする請求項1に記載のデータ伝送システム(10)。
    The data transmission system further includes a first database (1011) and a second database (1021),
    the first database belongs to the first server and stores the first data acquired by the first server; the second database belongs to the second server and stores the first data; 2. The data transmission system (10) according to claim 1, characterized in that 2 servers store the acquired power consumption data and the specified energy consumption data.
  15.  前記第2のサーバは、エネルギー消費のデータを取得するための前記ユーザ側からの指令に応じて、前記第2のデータベースに記憶された、ユーザが必要とする前記エネルギー消費のデータを前記ユーザ側にフィードバックする
     ことを特徴とする請求項14に記載のデータ伝送システム(10)。
    The second server stores the energy consumption data required by the user stored in the second database in response to a command from the user side to obtain the energy consumption data. 15. A data transmission system (10) according to claim 14, characterized in that it feeds back to .
  16.  前記第1のサーバおよび/または前記第2のサーバは、クラウドサーバまたはローカルサーバである
     ことを特徴とする請求項1に記載のデータ伝送システム。
    The data transmission system according to claim 1, wherein said first server and/or said second server is a cloud server or a local server.
  17.  第1のサーバが空調システムから前記空調システムの第1のデータを取得することと、
     第2のサーバが前記第1のサーバから前記空調システムの第1のデータを取得するとともに、データ伝送システムの外部から前記空調システムの電力量のデータを取得することと、
     前記第2のサーバが前記空調システムの第1のデータと前記空調システムの電力量のデータとに基づいて、前記空調システムのエネルギー消費のデータを特定することと、
     前記第2のサーバが前記エネルギー消費のデータをユーザ側に送信することと、を含む
     ことを特徴とするデータ伝送方法。
    a first server obtaining first data of said air conditioning system from an air conditioning system;
    A second server acquires first data of the air conditioning system from the first server and acquires power amount data of the air conditioning system from outside a data transmission system;
    the second server identifying energy consumption data of the air conditioning system based on first data of the air conditioning system and power consumption data of the air conditioning system;
    and transmitting the energy consumption data to a user side by the second server.
PCT/JP2023/007441 2022-03-02 2023-02-28 Data transmission system and method WO2023167208A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202220452219.5U CN217957102U (en) 2022-03-02 2022-03-02 Data transmission system
CN202210201649.4 2022-03-02
CN202220452219.5 2022-03-02
CN202210201649.4A CN116743787A (en) 2022-03-02 2022-03-02 Data transmission system and method

Publications (1)

Publication Number Publication Date
WO2023167208A1 true WO2023167208A1 (en) 2023-09-07

Family

ID=87883836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007441 WO2023167208A1 (en) 2022-03-02 2023-02-28 Data transmission system and method

Country Status (1)

Country Link
WO (1) WO2023167208A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014195227A (en) * 2013-03-29 2014-10-09 Enegate Co Ltd Electric apparatus remote control system
JP2015124901A (en) * 2013-12-25 2015-07-06 ダイキン工業株式会社 Air conditioning system
JP2015170938A (en) * 2014-03-06 2015-09-28 シャープ株式会社 Network system, communication method, server, terminal, and communication program
WO2019013349A1 (en) * 2017-07-14 2019-01-17 ダイキン工業株式会社 Air conditioner, air-conditioning system, communication system, control system, machinery control system, machinery management system, and sound information analysis system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014195227A (en) * 2013-03-29 2014-10-09 Enegate Co Ltd Electric apparatus remote control system
JP2015124901A (en) * 2013-12-25 2015-07-06 ダイキン工業株式会社 Air conditioning system
JP2015170938A (en) * 2014-03-06 2015-09-28 シャープ株式会社 Network system, communication method, server, terminal, and communication program
WO2019013349A1 (en) * 2017-07-14 2019-01-17 ダイキン工業株式会社 Air conditioner, air-conditioning system, communication system, control system, machinery control system, machinery management system, and sound information analysis system

Similar Documents

Publication Publication Date Title
US11637720B2 (en) Smart gateway devices, systems and methods for providing communication between HVAC system networks
US10735976B2 (en) Systems and methods for network design, monitoring and visualization
US10802512B2 (en) HVAC device controller with integrated refrigeration controller interface
KR101658091B1 (en) Remote maintenance server, total maintenance system including the remote maintenance server and method thereof
US7974740B2 (en) Integrated management system and method using setting information back-up for controlling multi-type air conditioners
CN105509266A (en) Intelligent control system of air conditioner
US10006653B2 (en) Air-conditioning system
CN102997381B (en) Air-conditioning control system
US20080185447A1 (en) Integrated management system and method for controlling multi-type air conditioners
US20150295784A1 (en) Remote maintenance server, total maintenance system including the remote maintenance server and method thereof
CA2790756A1 (en) Method and system to monitor and control energy
CN105783207B (en) A kind of air conditioner system control method and air-conditioning system
WO2013040855A1 (en) Cloud computing-based system and method for management and control of facility and equipment of green building
CN101241363A (en) Integrated management system and method using enhanced remote communication protocal for controlling multi-type air conditioners
CN104676822A (en) Method and device for controlling multi-split air-conditioning system
CN106839313A (en) The communication means and device of multi-online air-conditioning system
WO2023167208A1 (en) Data transmission system and method
KR20090058988A (en) Method and appliance for controlling multi-air conditioner using stand-alone type air conditioner controller
CN207963056U (en) Air conditioner monitoring system
WO2013040854A1 (en) Cloud computing-based system and method for management and control of water chiller
US20210207829A1 (en) Air conditioning management system and communication control device
CN105352131A (en) Air conditioner controlling method and device
CN217957102U (en) Data transmission system
CN116743787A (en) Data transmission system and method
CN104483880A (en) Data acquisition method and data acquisition server

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763465

Country of ref document: EP

Kind code of ref document: A1