WO2023167175A1 - Hole transport layer material for perovskite solar cell - Google Patents

Hole transport layer material for perovskite solar cell Download PDF

Info

Publication number
WO2023167175A1
WO2023167175A1 PCT/JP2023/007266 JP2023007266W WO2023167175A1 WO 2023167175 A1 WO2023167175 A1 WO 2023167175A1 JP 2023007266 W JP2023007266 W JP 2023007266W WO 2023167175 A1 WO2023167175 A1 WO 2023167175A1
Authority
WO
WIPO (PCT)
Prior art keywords
perovskite solar
solar cell
transport layer
hole transport
layer material
Prior art date
Application number
PCT/JP2023/007266
Other languages
French (fr)
Japanese (ja)
Inventor
晃平 山本
拓郎 村上
郵司 吉田
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Publication of WO2023167175A1 publication Critical patent/WO2023167175A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/40Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • H10K30/86Layers having high hole mobility, e.g. hole-transporting layers or electron-blocking layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • This application relates to hole transport layer materials for perovskite solar cells.
  • Non-Patent Document 1 describes Spiro-OMeTAD (2,2′,7,7′-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene) with LiTFSI (lithium bis(trifluoromethane) ) sulfonimide) doped hole transport layers are described.
  • LiTFSI lithium bis(trifluoromethane)
  • perovskite solar cells with hole transport layers containing LiTFSI have poor thermal stability. There is a need for additives to the hole transport layer that contribute to the thermal stability of perovskite solar cells.
  • the present application has been made in view of such circumstances, and an object thereof is to provide a hole transport layer material that contributes to the thermal stability of perovskite solar cells.
  • the hole transport layer material of the perovskite solar cell of the present application contains a hole transport substance and an additive represented by the following general formula (1).
  • R 1 , R 2 and R 3 are independently alkyl groups having 1 to 2 carbon atoms, and R 4 is an ether group having 2 to 5 carbon atoms.
  • the perovskite solar cell of the present application has a transparent electrode layer, an electron transport layer, a perovskite crystal layer, a hole transport layer composed of the hole transport layer material of the present application, and an electrode layer.
  • the hole transport layer material of the perovskite solar cell of the present application contains the additive represented by the above general formula (1). Therefore, the perovskite solar cell using the hole transport layer material of the present application has excellent thermal stability.
  • FIG. 1 is a schematic cross-sectional view of a perovskite solar cell according to an embodiment
  • FIG. 1 is a schematic cross-sectional view of a perovskite solar cell of an example
  • FIG. 4 is a graph showing the thermal stability of perovskite solar cells of Examples.
  • FIG. 1 schematically shows a cross section of a perovskite solar cell 10 according to an embodiment of the present application.
  • Perovskite solar cell 10 includes substrate 12 , transparent electrode layer 14 , electron transport layer 16 , perovskite crystal layer 18 , hole transport layer 20 and electrode layer 22 .
  • the perovskite solar cell 10 includes (a) a diffusion prevention film provided on the light incident side of the substrate 12, and (b) an interface provided at the interface between the electron transport layer 16 and the perovskite crystal layer 18. (c) an interface modification film or auxiliary layer provided at the interface between the perovskite crystal layer 18 and the hole transport layer 20; or (d) protecting the perovskite solar cell 10 from moisture in the atmosphere. An encapsulant or moisture getter material may be provided. Also, the perovskite solar cell may be an inverted structure solar cell in which the electron transport layer 16 and the hole transport layer 20 of the perovskite solar cell 10 are interchanged.
  • the substrate 12 is a glass substrate
  • the transparent electrode layer 14 is an FTO (fluorine-doped tin oxide) layer
  • the electron transport layer 16 is a tin oxide (SnO 2 ) layer composed of nanoparticles.
  • the perovskite crystal layer 18 is Cs 0.05 (FA 0.89 MA 0.11 ) 0.95 Pb (I 0.89 Br 0.11 ) three layers (FA is formamidinium, MA is methylamine (same below)).
  • the electrode layer 22 is a gold layer.
  • the perovskite crystal layer 18 may be CH3NH3PbI3 , CH( NH2 ) 2PbI3 , and the like.
  • Hole transport layer 20 is composed of a hole transport layer material.
  • the hole-transporting layer material comprises Spiro-OMeTAD, which is a hole-transporting substance, and an additive represented by the following general formula (1).
  • R 1 , R 2 and R 3 are independently alkyl groups having 1 to 2 carbon atoms, and R 4 is an ether group having 2 to 5 carbon atoms. Since R 1 , R 2 , and R 3 are alkyl groups having 1 to 2 carbon atoms, and R 4 is an ether group having 2 to 5 carbon atoms and the number of carbon atoms is small, the lipophilicity of the additive substance is enhanced.
  • the hole-transporting layer material may contain substances other than the hole-transporting substance and the additive substance, such as a solvent that dissolves the hole-transporting substance and the additive substance. Moreover, it is preferable that the hole transport layer material does not substantially contain Li. This is to prevent Li from diffusing in the perovskite solar cell 10 and lowering the thermal stability of the perovskite solar cell 10 .
  • the fact that the hole transport layer material does not substantially contain Li means that the mass content of Li in the hole transport layer material is 2% or less.
  • the mass content of Li in the hole transport layer material is preferably 1% or less, more preferably 0.01% or less.
  • the mass content of Li in the hole transport layer material can be measured by mass spectrometry.
  • R 1 , R 2 and R 3 are straight chain alkyl groups and R 4 is a straight chain ether group.
  • R 1 and R 2 are methyl groups
  • R 3 is an ethyl group
  • R 4 is a methoxyethyl group.
  • the perovskite solar cell 10 is manufactured, for example, as follows. A spin coating method, a sputtering method, a vacuum deposition method, a spray film forming method, a die coating method, a gravure printing method, a screen printing method, or the like is used to form a transparent electrode layer 14 on a substrate 12, and an electron transport method on the transparent electrode layer 14. A layer 16, a perovskite crystal layer 18 on the electron transport layer 16, a hole transport layer 20 on the perovskite crystal layer 18, and an electrode layer 22 on the hole transport layer 20 are formed.
  • the substrate was placed on the lower electrode so that the tin oxide layer faced the upper electrode in the processing chamber of a plasma processing apparatus (Diener, FEMTO (high-frequency power source frequency 40 kHz, maximum power 100 W)).
  • a plasma processing apparatus Diener, FEMTO (high-frequency power source frequency 40 kHz, maximum power 100 W)
  • the pressure inside the processing vessel was reduced to 20 Pa or less by evacuation.
  • oxygen gas was introduced into the processing chamber, the pressure in the processing chamber was maintained at 100 Pa, and high frequency power of 100 W was supplied between the upper electrode and the lower electrode to perform plasma cleaning for 30 seconds. went.
  • this substrate was heated at 150°C for 1 hour. Then, oxygen gas is introduced into the processing container, the pressure in the processing container is maintained at 100 Pa, and high frequency power of 100 W is supplied between the upper electrode and the lower electrode to convert the oxygen gas into plasma to generate oxygen plasma. , the tin oxide layer was surface-treated for 30 seconds using oxygen ions in an oxygen plasma.
  • the substrate is , a transparent electrode layer, an electron transport layer, and a perovskite crystal layer.
  • this hole transport layer precursor was spin coated at 3000 rpm for 30 seconds. Then, it was dried at 65° C. for 10 minutes to form a hole transport layer. A gold layer having a thickness of 50 nm was deposited on the surface of this hole transport layer using a vacuum deposition machine to obtain a perovskite solar cell member.
  • This perovskite solar cell member corresponds to the perovskite solar cell described in the above embodiment.
  • a perovskite solar cell is a combination of a perovskite solar cell member and a housing member described below.
  • a housing member was added to this perovskite solar cell member to make a perovskite solar cell. That is, calcium oxide 52 is supported in the center of the surface of a glass plate 50, and an ultraviolet curable adhesive 54 containing glass spheres with a diameter of 10 ⁇ m is applied to the periphery as a spacer with a thickness of 0.05 mm and a width of 0.2 mm. A stop member was obtained. Then, in a nitrogen atmosphere, this sealing member was superimposed on the perovskite solar cell member obtained above, and the adhesive 54 was cured by irradiating with ultraviolet rays to produce the perovskite solar cell of Example 1.
  • FIG. 2 schematically shows a cross section of this perovskite solar cell.
  • Comparative example 1 61 mg of Spiro-OMeTAD and 10 mg of LiTFSI (Sigma-Aldrich) were dissolved in 0.7 mL of chlorobenzene, and 22 ⁇ L of 4-tert-butylpyridine was added to obtain a hole transport layer precursor solution.
  • a perovskite solar cell of Comparative Example 1 was obtained in the same manner as in Example 1 except for this.
  • the short-circuit current density, open-circuit voltage, fill factor, and photoelectric conversion efficiency of the perovskite solar cells of Comparative Examples 2 to 4 are similar to those of the perovskite solar cell of Example 1. It was smaller than the photoelectric conversion efficiency. That is, simply adding a substance containing a bis(trifluoromethanesulfonyl)imide anion to the hole-transporting layer is not sufficient. Good initial characteristics of the perovskite solar cell were obtained by adding the additive represented by the general formula (1) to the hole transport layer.
  • the photoelectric conversion efficiency was measured in a dark place at 85° C. in the same manner as the method for determining the photoelectric conversion efficiency in the initial characteristics described above. A change over time was measured. The results are shown in FIG. As shown in FIG. 3, in the perovskite solar cell of Example 1, the photoelectric conversion efficiency was 72.5% of the initial value even after 960 hours. In contrast, in the perovskite solar cell of Comparative Example 1, the photoelectric conversion efficiency decreased to the initial value of 51.6% after 960 hours.
  • the photoelectric conversion efficiency decreased to the initial value of 16.4% after 456 hours.

Abstract

Provided is a hole transport layer material that contributes to the thermal stability of a perovskite solar cell. This hole transport layer material for a perovskite solar cell has a hole transport substance and an added substance represented by formula (1). R1, R2, and R3 are independently alkyl groups having at least 1 and at most 2 carbon atoms, and R4 is an ether group having at least 2 and at most 5 carbon atoms.

Description

ペロブスカイト太陽電池の正孔輸送層材料Hole transport layer materials for perovskite solar cells
 本願は、ペロブスカイト太陽電池の正孔輸送層材料に関する。 This application relates to hole transport layer materials for perovskite solar cells.
 近年、光電変換層がペロブスカイト結晶層であるペロブスカイト太陽電池が注目されている。ペロブスカイト太陽電池の光電変換効率を向上させるため、正孔輸送層に添加剤が用いられている。非特許文献1には、Spiro-OMeTAD(2,2′,7,7′-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene)にLiTFSI(lithium bis(trifluoromethane)sulfonimide)を添加した正孔輸送層が記載されている。しかしながら、LiTFSIを含有する正孔輸送層を備えるペロブスカイト太陽電池は、熱安定性が劣る。ペロブスカイト太陽電池の熱安定性に寄与する正孔輸送層への添加剤が求められている。 In recent years, perovskite solar cells, in which the photoelectric conversion layer is a perovskite crystal layer, have attracted attention. Additives are used in the hole transport layer to improve the photoelectric conversion efficiency of perovskite solar cells. Non-Patent Document 1 describes Spiro-OMeTAD (2,2′,7,7′-Tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene) with LiTFSI (lithium bis(trifluoromethane) ) sulfonimide) doped hole transport layers are described. However, perovskite solar cells with hole transport layers containing LiTFSI have poor thermal stability. There is a need for additives to the hole transport layer that contribute to the thermal stability of perovskite solar cells.
 本願は、このような事情に鑑みてなされたものであり、ペロブスカイト太陽電池の熱安定性に寄与する正孔輸送層材料を提供することを課題とする。 The present application has been made in view of such circumstances, and an object thereof is to provide a hole transport layer material that contributes to the thermal stability of perovskite solar cells.
 本願のペロブスカイト太陽電池の正孔輸送層材料は、正孔輸送物質と、下記一般式(1)で表される添加物質を有する。なお、下記一般式(1)で、R、R、およびRは独立して炭素数1以上2以下のアルキル基であり、Rは炭素数2以上5以下のエーテル基である。 The hole transport layer material of the perovskite solar cell of the present application contains a hole transport substance and an additive represented by the following general formula (1). In general formula (1) below, R 1 , R 2 and R 3 are independently alkyl groups having 1 to 2 carbon atoms, and R 4 is an ether group having 2 to 5 carbon atoms.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 本願のペロブスカイト太陽電池は、透明電極層と、電子輸送層と、ペロブスカイト結晶層と、本願の正孔輸送層材料から構成される正孔輸送層と、電極層と、を有する。 The perovskite solar cell of the present application has a transparent electrode layer, an electron transport layer, a perovskite crystal layer, a hole transport layer composed of the hole transport layer material of the present application, and an electrode layer.
 本願のペロブスカイト太陽電池の正孔輸送層材料は、上記一般式(1)で表される添加物質を含有している。このため、本願の正孔輸送層材料を用いたペロブスカイト太陽電池は、熱安定性に優れている。 The hole transport layer material of the perovskite solar cell of the present application contains the additive represented by the above general formula (1). Therefore, the perovskite solar cell using the hole transport layer material of the present application has excellent thermal stability.
実施形態のペロブスカイト太陽電池の断面模式図。1 is a schematic cross-sectional view of a perovskite solar cell according to an embodiment; FIG. 実施例のペロブスカイト太陽電池の断面模式図。1 is a schematic cross-sectional view of a perovskite solar cell of an example; FIG. 実施例のペロブスカイト太陽電池の熱安定性を示すグラフ。4 is a graph showing the thermal stability of perovskite solar cells of Examples.
 以下、図面を参照しながら、本願の正孔輸送層材料およびペロブスカイト太陽電池について、実施形態と実施例に基づいて説明する。なお、本願の正孔輸送層材料は、本願のペロブスカイト太陽電池の構成部材である正孔輸送層の材料として説明する。図1は、本願の実施形態のペロブスカイト太陽電池10の断面を模式的に示している。ペロブスカイト太陽電池10は、基板12と、透明電極層14と、電子輸送層16と、ペロブスカイト結晶層18と、正孔輸送層20と、電極層22と、を備えている。 The hole transport layer material and the perovskite solar cell of the present application will be described below based on embodiments and examples with reference to the drawings. The hole transport layer material of the present application will be described as the material of the hole transport layer which is a constituent member of the perovskite solar cell of the present application. FIG. 1 schematically shows a cross section of a perovskite solar cell 10 according to an embodiment of the present application. Perovskite solar cell 10 includes substrate 12 , transparent electrode layer 14 , electron transport layer 16 , perovskite crystal layer 18 , hole transport layer 20 and electrode layer 22 .
 ペロブスカイト太陽電池10は、これらの構成部材以外に、(a)基板12の光入射側に設けられた拡散防止膜、(b)電子輸送層16とペロブスカイト結晶層18との界面に設けられた界面修飾膜もしくは補助層、(c)ペロブスカイト結晶層18と正孔輸送層20との界面に設けられた界面修飾膜もしくは補助層、または、(d)ペロブスカイト太陽電池10を大気中の水分から保護する封止材もしくは水分ゲッター材を、備えていてもよい。また、ペロブスカイト太陽電池は、ペロブスカイト太陽電池10での電子輸送層16と正孔輸送層20とが入れ替わった逆型構造太陽電池であってもよい。 In addition to these constituent members, the perovskite solar cell 10 includes (a) a diffusion prevention film provided on the light incident side of the substrate 12, and (b) an interface provided at the interface between the electron transport layer 16 and the perovskite crystal layer 18. (c) an interface modification film or auxiliary layer provided at the interface between the perovskite crystal layer 18 and the hole transport layer 20; or (d) protecting the perovskite solar cell 10 from moisture in the atmosphere. An encapsulant or moisture getter material may be provided. Also, the perovskite solar cell may be an inverted structure solar cell in which the electron transport layer 16 and the hole transport layer 20 of the perovskite solar cell 10 are interchanged.
 本実施形態では、基板12がガラス基板であり、透明電極層14がFTO(Fluorine-doped tin oxide)層であり、電子輸送層16がナノ粒子から構成される酸化スズ(SnO)層であり、ペロブスカイト結晶層18がCs0.05(FA0.89MA0.110.95Pb(I0.89Br0.11層(FAはformamidinium、MAはMethylamine(以下同じ))であり、電極層22が金層である。ペロブスカイト結晶層18は、CHNHPbIおよびCH(NHPbIなどであってもよい。 In this embodiment, the substrate 12 is a glass substrate, the transparent electrode layer 14 is an FTO (fluorine-doped tin oxide) layer, and the electron transport layer 16 is a tin oxide (SnO 2 ) layer composed of nanoparticles. , the perovskite crystal layer 18 is Cs 0.05 (FA 0.89 MA 0.11 ) 0.95 Pb (I 0.89 Br 0.11 ) three layers (FA is formamidinium, MA is methylamine (same below)). and the electrode layer 22 is a gold layer. The perovskite crystal layer 18 may be CH3NH3PbI3 , CH( NH2 ) 2PbI3 , and the like.
 正孔輸送層20は正孔輸送層材料から構成されている。正孔輸送層材料は、正孔輸送物質であるSpiro-OMeTADと、下記一般式(1)で表される添加物質を備えている。下記一般式(1)で、R、R、およびRは独立して炭素数1以上2以下のアルキル基で、Rは炭素数2以上5以下のエーテル基である。R、R、およびRが炭素数1以上2以下のアルキル基で、Rが炭素数2以上5以下のエーテル基で炭素数が少ないため、添加物質の親油性が強くなることに伴う正孔輸送層内での正孔輸送物質と添加物質の相分離が抑えられる。また、このようにR、R、R、およびRの炭素数が少ないため、添加物質の電気的抵抗の増大に伴うペロブスカイト太陽電池の電気的特性の悪化が抑えられる。 Hole transport layer 20 is composed of a hole transport layer material. The hole-transporting layer material comprises Spiro-OMeTAD, which is a hole-transporting substance, and an additive represented by the following general formula (1). In the general formula (1) below, R 1 , R 2 and R 3 are independently alkyl groups having 1 to 2 carbon atoms, and R 4 is an ether group having 2 to 5 carbon atoms. Since R 1 , R 2 , and R 3 are alkyl groups having 1 to 2 carbon atoms, and R 4 is an ether group having 2 to 5 carbon atoms and the number of carbon atoms is small, the lipophilicity of the additive substance is enhanced. The accompanying phase separation of the hole-transporting substance and the additive substance in the hole-transporting layer is suppressed. In addition, since the number of carbon atoms in R 1 , R 2 , R 3 , and R 4 is small, deterioration of the electrical characteristics of the perovskite solar cell due to an increase in electrical resistance of the additive can be suppressed.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 正孔輸送層材料は、正孔輸送物質と添加物質を溶かす溶媒など、正孔輸送物質および添加物質以外の物質を含有していてもよい。また、正孔輸送層材料は、実質的にLiを含有しないことが好ましい。ペロブスカイト太陽電池10内でLiが拡散して、ペロブスカイト太陽電池10の熱安定性が低下するのを抑えるためである。正孔輸送層材料が実質的にLiを含有しないとは、正孔輸送層材料中のLiの質量含有量が2%以下であることをいう。正孔輸送層材料中のLiの質量含有量は、1%以下であることが好ましく、0.01%以下であることがより好ましい。さらに、正孔輸送層材料中のLiは、不可避的に含まれる場合を除き、含まれないことが最も好ましい。なお、正孔輸送層材料中のLiの質量含有量は、質量分析によって測定できる。 The hole-transporting layer material may contain substances other than the hole-transporting substance and the additive substance, such as a solvent that dissolves the hole-transporting substance and the additive substance. Moreover, it is preferable that the hole transport layer material does not substantially contain Li. This is to prevent Li from diffusing in the perovskite solar cell 10 and lowering the thermal stability of the perovskite solar cell 10 . The fact that the hole transport layer material does not substantially contain Li means that the mass content of Li in the hole transport layer material is 2% or less. The mass content of Li in the hole transport layer material is preferably 1% or less, more preferably 0.01% or less. Furthermore, it is most preferable not to include Li in the hole transport layer material unless it is unavoidably included. The mass content of Li in the hole transport layer material can be measured by mass spectrometry.
 R、R、およびRは直鎖アルキル基で、Rは直鎖エーテル基であることが好ましい。これらの中でも、RおよびRはメチル基で、Rはエチル基で、Rはメトキシエチル基であることがさらに好ましい。ペロブスカイト太陽電池10は、例えば以下のようにして製造する。スピンコーティング法、スパッタリング法、真空蒸着法、スプレー製膜法、ダイコート法、グラビア印刷法、またはスクリーン印刷法などを用いて、基板12上に透明電極層14を、透明電極層14上に電子輸送層16を、電子輸送層16上にペロブスカイト結晶層18を、ペロブスカイト結晶層18上に正孔輸送層20を、正孔輸送層20上に電極層22をそれぞれ形成する。 Preferably, R 1 , R 2 and R 3 are straight chain alkyl groups and R 4 is a straight chain ether group. Among these, it is more preferable that R 1 and R 2 are methyl groups, R 3 is an ethyl group, and R 4 is a methoxyethyl group. The perovskite solar cell 10 is manufactured, for example, as follows. A spin coating method, a sputtering method, a vacuum deposition method, a spray film forming method, a die coating method, a gravure printing method, a screen printing method, or the like is used to form a transparent electrode layer 14 on a substrate 12, and an electron transport method on the transparent electrode layer 14. A layer 16, a perovskite crystal layer 18 on the electron transport layer 16, a hole transport layer 20 on the perovskite crystal layer 18, and an electrode layer 22 on the hole transport layer 20 are formed.
〔ペロブスカイト太陽電池の作製〕
(実施例1)
 FTO付きガラス(日本板硝子株式会社、NSG TEC 10)のFTO面に、酸化スズ(IV)15質量%水分散液(Alfa Aesar社)を滴下およびスピンコーティングし、150℃で1時間乾燥させて、ガラス基板、透明電極層であるFTO層、および電子輸送層である酸化スズ層がこの順序で積層されている基体を得た。そして、下記の手順で、この基体の酸化スズ表面を酸素プラズマ中の酸素イオンで処理した。
[Fabrication of perovskite solar cell]
(Example 1)
On the FTO surface of glass with FTO (Nippon Sheet Glass Co., Ltd., NSG TEC 10), tin (IV) oxide 15% by mass aqueous dispersion (Alfa Aesar) was dropped and spin-coated, dried at 150 ° C. for 1 hour, A substrate was obtained in which a glass substrate, an FTO layer as a transparent electrode layer, and a tin oxide layer as an electron transport layer were laminated in this order. Then, the tin oxide surface of this substrate was treated with oxygen ions in oxygen plasma in the following procedure.
 まず、プラズマ処理装置(diener社、FEMTO(高周波電源の周波数40kHz、最大電力100W))の処理容器内で、酸化スズ層が上部電極と対向するように、下部電極上に基体を設置した。つぎに、大気中の水分および窒素を除去するため、真空排気により処理容器内の圧力を20Pa以下にした。そして、プラズマ発生のため、酸素ガスを処理容器内に導入し、処理容器内の圧力を100Paに保ち、上部電極と下部電極との間に100Wの高周波電力を供給して、30秒間プラズマクリーニングを行った。 First, the substrate was placed on the lower electrode so that the tin oxide layer faced the upper electrode in the processing chamber of a plasma processing apparatus (Diener, FEMTO (high-frequency power source frequency 40 kHz, maximum power 100 W)). Next, in order to remove moisture and nitrogen in the atmosphere, the pressure inside the processing vessel was reduced to 20 Pa or less by evacuation. Then, in order to generate plasma, oxygen gas was introduced into the processing chamber, the pressure in the processing chamber was maintained at 100 Pa, and high frequency power of 100 W was supplied between the upper electrode and the lower electrode to perform plasma cleaning for 30 seconds. went.
 つぎに、基体に含まれている溶媒を除去するため、この基体を150℃で1時間加熱した。そして、酸素ガスを処理容器内に導入し、処理容器内の圧力を100Paに保ち、上部電極と下部電極との間に100Wの高周波電力を供給し、酸素ガスをプラズマ化して酸素プラズマを生成させ、酸素プラズマ中の酸素イオンを用いて、酸化スズ層の表面処理を30秒間行った。 Next, in order to remove the solvent contained in the substrate, this substrate was heated at 150°C for 1 hour. Then, oxygen gas is introduced into the processing container, the pressure in the processing container is maintained at 100 Pa, and high frequency power of 100 W is supplied between the upper electrode and the lower electrode to convert the oxygen gas into plasma to generate oxygen plasma. , the tin oxide layer was surface-treated for 30 seconds using oxygen ions in an oxygen plasma.
 つぎに、DMF:560μLとDMSO:140μLの混合液に、FAI:123mg、PbI:382mg、MABr:14mg、PbBr:36mg、およびCsIのDMSO溶液(1.5M)29μLをそれぞれ溶解して、Cs0.05(FA0.89MA0.110.95Pb(I0.89Br0.11の前駆体溶液を調製した。そして、上記で表面処理した酸化スズ層上に、この前駆体溶液を1000rpmで10秒間スピンコートした後、少量のクロロベンゼンを6000rpmで20秒間、さらにスピンコートして、均一なペロブスカイト前駆体薄膜を得た。 Next, in a mixed solution of DMF: 560 μL and DMSO: 140 μL, FAI: 123 mg, PbI 2 : 382 mg, MABr: 14 mg, PbBr 2 : 36 mg, and 29 μL of CsI DMSO solution (1.5 M) were dissolved, A precursor solution of Cs0.05(FA0.89MA0.11)0.95Pb ( I0.89Br0.11 ) 3 was prepared. Then, this precursor solution was spin-coated on the surface-treated tin oxide layer at 1000 rpm for 10 seconds, and then a small amount of chlorobenzene was further spin-coated at 6000 rpm for 20 seconds to obtain a uniform perovskite precursor thin film. Ta.
 つぎに、ホットプレートにより100℃で1時間加熱して、Cs0.05(FA0.89MA0.110.95Pb(I0.89Br0.11層を形成し、基板、透明電極層、電子輸送層、およびペロブスカイト結晶層を備える積層体を得た。そして、クロロベンゼン0.35mLにSpiro-OMeTAD:31mgと下記化学式(2)で表されるN-エチル-N-(2-メトキシエチル)-N,N-ジメチルアンモニウム=ビス(トリフルオロメタンスルホニル)イミド(富士フイルム和光純薬株式会社)2μLを溶かし、4-tert-ブチルピリジン11μLを添加して、正孔輸送層材料である正孔輸送層前駆体溶液を得た。 Next, it is heated at 100° C. for 1 hour by a hot plate to form Cs 0.05 (FA 0.89 MA 0.11 ) 0.95 Pb(I 0.89 Br 0.11 ) 3 layers, and the substrate is , a transparent electrode layer, an electron transport layer, and a perovskite crystal layer. Then, Spiro-OMeTAD: 31 mg in 0.35 mL of chlorobenzene and N-ethyl-N-(2-methoxyethyl)-N,N-dimethylammonium=bis(trifluoromethanesulfonyl)imide represented by the following chemical formula (2) Fuji Film Wako Pure Chemical Co., Ltd.) was dissolved, and 11 μL of 4-tert-butylpyridine was added to obtain a hole transport layer precursor solution as a hole transport layer material.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 つぎに、上記で得た積層体のCs0.05(FA0.89MA0.110.95Pb(I0.89Br0.11層の表面に、この正孔輸送層前駆体溶液を3000rpmで30秒間スピンコートした。そして、65℃で10分間乾燥させて、正孔輸送層を形成した。この正孔輸送層の表面に、真空蒸着機を用いて厚さ50nmの金層を蒸着し、ペロブスカイト太陽電池部材を得た。なお、このペロブスカイト太陽電池部材は、上記実施形態で記載したペロブスカイト太陽電池に相当する。実施例では、ペロブスカイト太陽電池部材と下記の筐体部材を併せたものがペロブスカイト太陽電池である。 Next, on the surface of the Cs 0.05 (FA 0.89 MA 0.11 ) 0.95 Pb(I 0.89 Br 0.11 ) three layers of the laminate obtained above, this hole transport layer precursor The body solution was spin coated at 3000 rpm for 30 seconds. Then, it was dried at 65° C. for 10 minutes to form a hole transport layer. A gold layer having a thickness of 50 nm was deposited on the surface of this hole transport layer using a vacuum deposition machine to obtain a perovskite solar cell member. This perovskite solar cell member corresponds to the perovskite solar cell described in the above embodiment. In the examples, a perovskite solar cell is a combination of a perovskite solar cell member and a housing member described below.
 つぎに、このペロブスカイト太陽電池部材に筐体部材を加えて、ペロブスカイト太陽電池とした。すなわち、ガラス板50の表面の中央に酸化カルシウム52を担持し、周辺に直径10μmのガラス球を含む紫外線硬化型接着剤54を厚み0.05mm、幅0.2mmでスペーサーとして塗布して、封止部材を得た。そして、窒素雰囲気で、上記で得たペロブスカイト太陽電池部材にこの封止部材を重ね、紫外線を照射して接着剤54を硬化させ、実施例1のペロブスカイト太陽電池を作製した。図2は、このペロブスカイト太陽電池の断面を模式的に示している。 Next, a housing member was added to this perovskite solar cell member to make a perovskite solar cell. That is, calcium oxide 52 is supported in the center of the surface of a glass plate 50, and an ultraviolet curable adhesive 54 containing glass spheres with a diameter of 10 μm is applied to the periphery as a spacer with a thickness of 0.05 mm and a width of 0.2 mm. A stop member was obtained. Then, in a nitrogen atmosphere, this sealing member was superimposed on the perovskite solar cell member obtained above, and the adhesive 54 was cured by irradiating with ultraviolet rays to produce the perovskite solar cell of Example 1. FIG. 2 schematically shows a cross section of this perovskite solar cell.
(比較例1)
 クロロベンゼン0.7mLにSpiro-OMeTAD61mgとLiTFSI(シグマアルドリッチ社)10mgを溶かし、4-tert-ブチルピリジン22μLを添加して、正孔輸送層前駆体溶液を得た。これ以外は実施例1と同様にして、比較例1のペロブスカイト太陽電池を得た。
(Comparative example 1)
61 mg of Spiro-OMeTAD and 10 mg of LiTFSI (Sigma-Aldrich) were dissolved in 0.7 mL of chlorobenzene, and 22 μL of 4-tert-butylpyridine was added to obtain a hole transport layer precursor solution. A perovskite solar cell of Comparative Example 1 was obtained in the same manner as in Example 1 except for this.
(比較例2)
 実施例1のN-エチル-N-(2-メトキシエチル)-N,N-ジメチルアンモニウム=ビス(トリフルオロメタンスルホニル)イミド2μLに代えて、下記化学式(3)で表される1-ブチル-1-メチルピロリジニウム=ビス(トリフルオロメチルスルホニル)イミド(富士フイルム和光純薬株式会社)1μLを用いた点を除き、実施例1と同様にして比較例2のペロブスカイト太陽電池を得た。
(Comparative example 2)
Instead of 2 μL of N-ethyl-N-(2-methoxyethyl)-N,N-dimethylammonium=bis(trifluoromethanesulfonyl)imide in Example 1, 1-butyl-1 represented by the following chemical formula (3) A perovskite solar cell of Comparative Example 2 was obtained in the same manner as in Example 1, except that 1 μL of -methylpyrrolidinium=bis(trifluoromethylsulfonyl)imide (Fuji Film Wako Pure Chemical Industries, Ltd.) was used.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(比較例3)
 実施例1のN-エチル-N-(2-メトキシエチル)-N,N-ジメチルアンモニウム=ビス(トリフルオロメタンスルホニル)イミド2μLに代えて、下記化学式(4)で表されるトリブチルメチルアンモニウム=ビス(トリフルオロメタンスルホニル)イミド(富士フイルム和光純薬株式会社)3μLを用いた点を除き、実施例1と同様にして比較例3のペロブスカイト太陽電池を得た。
(Comparative Example 3)
In place of 2 μL of N-ethyl-N-(2-methoxyethyl)-N,N-dimethylammonium=bis(trifluoromethanesulfonyl)imide in Example 1, tributylmethylammonium=bis represented by the following chemical formula (4) A perovskite solar cell of Comparative Example 3 was obtained in the same manner as in Example 1, except that 3 μL of (trifluoromethanesulfonyl)imide (Fuji Film Wako Pure Chemical Industries, Ltd.) was used.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(比較例4)
 実施例1のN-エチル-N-(2-メトキシエチル)-N,N-ジメチルアンモニウム=ビス(トリフルオロメタンスルホニル)イミド2μLに代えて、下記化学式(5)で表される1-アリル-3-メチルイミダゾリウム=ビス(トリフルオロメタンスルホニル)イミド(富士フイルム和光純薬株式会社)5μLを用いた点を除き、実施例1と同様にして比較例4のペロブスカイト太陽電池を得た。
(Comparative Example 4)
Instead of 2 μL of N-ethyl-N-(2-methoxyethyl)-N,N-dimethylammonium=bis(trifluoromethanesulfonyl)imide in Example 1, 1-allyl-3 represented by the following chemical formula (5) A perovskite solar cell of Comparative Example 4 was obtained in the same manner as in Example 1, except that 5 μL of -methylimidazolium=bis(trifluoromethanesulfonyl)imide (Fuji Film Wako Pure Chemical Industries, Ltd.) was used.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
〔ペロブスカイト太陽電池の評価〕
(初期特性)
 ソーラーシミュレータ(分光計器株式会社製、OTENTO-SUN)を用いて、実施例1と比較例1から比較例4までのペロブスカイト太陽電池にAM1.5の擬似太陽光(強度1000W/m)を照射した。ソースメータ(ケースレーインスツルメンツ社(Keithley Instruments, Inc)製、Keithley 2400)により電流-電圧の関係をプロットした曲線から、短絡電流密度、開放電圧、曲線因子、および光電変換効率を求めた。その結果を表1に示す。
[Evaluation of Perovskite Solar Cell]
(initial characteristics)
Using a solar simulator (OTENTO-SUN, manufactured by Spectroscopic Instruments Co., Ltd.), the perovskite solar cells of Example 1 and Comparative Examples 1 to 4 were irradiated with AM 1.5 simulated sunlight (intensity 1000 W/m 2 ). did. Short-circuit current density, open-circuit voltage, fill factor, and photoelectric conversion efficiency were determined from curves plotting current-voltage relationships with a source meter (Keithley Instruments, Inc., Keithley 2400). Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表1に示すように、実施例1のペロブスカイト太陽電池の短絡電流密度、開放電圧、曲線因子、および光電変換効率は、比較例1のペロブスカイト太陽電池の短絡電流密度、開放電圧、曲線因子、および光電変換効率と同等であった。すなわち、添加物質N-エチル-N-(2-メトキシエチル)-N,N-ジメチルアンモニウム=ビス(トリフルオロメタンスルホニル)イミド(上記化学式(2))を含む正孔輸送層を備えるペロブスカイト太陽電池は、添加物質LiTFSIを含む正孔輸送層を備えるペロブスカイト太陽電池と同等の初期特性を発揮した。 As shown in Table 1, the short-circuit current density, open-circuit voltage, fill factor, and photoelectric conversion efficiency of the perovskite solar cell of Example 1 are compared with those of the perovskite solar cell of Comparative Example 1. It was equivalent to the photoelectric conversion efficiency. That is, a perovskite solar cell comprising a hole-transporting layer containing an additive substance N-ethyl-N-(2-methoxyethyl)-N,N-dimethylammonium=bis(trifluoromethanesulfonyl)imide (chemical formula (2) above) is , exhibited initial characteristics comparable to perovskite solar cells with a hole-transporting layer containing an additive LiTFSI.
 また、比較例2から比較例4までのペロブスカイト太陽電池の短絡電流密度、開放電圧、曲線因子、および光電変換効率は、実施例1のペロブスカイト太陽電池の短絡電流密度、開放電圧、曲線因子、および光電変換効率と比べて小さかった。すなわち、単に、ビス(トリフルオロメタンスルホニル)イミドアニオンを含有する物質を正孔輸送層へ添加するだけでは、不十分である。上記一般式(1)で表される添加物質を正孔輸送層に添加することによって、ペロブスカイト太陽電池の良好な初期特性が得られた。 Further, the short-circuit current density, open-circuit voltage, fill factor, and photoelectric conversion efficiency of the perovskite solar cells of Comparative Examples 2 to 4 are similar to those of the perovskite solar cell of Example 1. It was smaller than the photoelectric conversion efficiency. That is, simply adding a substance containing a bis(trifluoromethanesulfonyl)imide anion to the hole-transporting layer is not sufficient. Good initial characteristics of the perovskite solar cell were obtained by adding the additive represented by the general formula (1) to the hole transport layer.
(熱安定性)
 実施例1、比較例1、および比較例2のペロブスカイト太陽電池を用いて、上記の初期特性での光電変換効率を求めた方法と同様にして、85℃の暗所下での光電変換効率の経時変化を測定した。その結果を図3に示す。図3に示すように、実施例1のペロブスカイト太陽電池では、960時間後でも光電変換効率が初期値の72.5%あった。これに対して、比較例1のペロブスカイト太陽電池では、960時間後で光電変換効率が初期値の51.6%まで下がった。
(Thermal stability)
Using the perovskite solar cells of Example 1, Comparative Example 1, and Comparative Example 2, the photoelectric conversion efficiency was measured in a dark place at 85° C. in the same manner as the method for determining the photoelectric conversion efficiency in the initial characteristics described above. A change over time was measured. The results are shown in FIG. As shown in FIG. 3, in the perovskite solar cell of Example 1, the photoelectric conversion efficiency was 72.5% of the initial value even after 960 hours. In contrast, in the perovskite solar cell of Comparative Example 1, the photoelectric conversion efficiency decreased to the initial value of 51.6% after 960 hours.
 すなわち、添加物質としてN-エチル-N-(2-メトキシエチル)-N,N-ジメチルアンモニウム=ビス(トリフルオロメタンスルホニル)イミド(上記化学式(2))を含む正孔輸送層を備えるペロブスカイト太陽電池は、添加物質としてLiTFSIを含む正孔輸送層を備えるペロブスカイト太陽電池よりも、熱安定性に優れていた。なお、比較例2のペロブスカイト太陽電池では、456時間後で光電変換効率が初期値の16.4%まで低下した。 That is, a perovskite solar cell having a hole transport layer containing N-ethyl-N-(2-methoxyethyl)-N,N-dimethylammonium=bis(trifluoromethanesulfonyl)imide (the above chemical formula (2)) as an additive substance had better thermal stability than perovskite solar cells with hole-transporting layers containing LiTFSI as an additive. In the perovskite solar cell of Comparative Example 2, the photoelectric conversion efficiency decreased to the initial value of 16.4% after 456 hours.
10 ペロブスカイト太陽電池
12 基板
14 透明電極層
16 電子輸送層
18 ペロブスカイト結晶層
20 正孔輸送層
22 電極層
REFERENCE SIGNS LIST 10 perovskite solar cell 12 substrate 14 transparent electrode layer 16 electron transport layer 18 perovskite crystal layer 20 hole transport layer 22 electrode layer

Claims (4)

  1.  正孔輸送物質と、下記式(1)で表される添加物質とを有するペロブスカイト太陽電池の正孔輸送層材料。
    Figure JPOXMLDOC01-appb-C000001
     R、R、およびRは独立して炭素数1以上2以下のアルキル基であり、Rは炭素数2以上5以下のエーテル基である。
    A hole-transporting layer material for a perovskite solar cell, comprising a hole-transporting substance and an additive represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    R 1 , R 2 and R 3 are independently alkyl groups having 1 to 2 carbon atoms, and R 4 is an ether group having 2 to 5 carbon atoms.
  2.  請求項1において、
     前記R、前記R、および前記Rが直鎖アルキル基で、前記Rが直鎖エーテル基である、ペロブスカイト太陽電池の正孔輸送層材料。
    In claim 1,
    A hole transport layer material for a perovskite solar cell, wherein R 1 , R 2 and R 3 are linear alkyl groups, and R 4 is a linear ether group.
  3.  請求項2において、
     前記Rおよび前記Rがメチル基で、前記Rがエチル基で、前記Rがメトキシエチル基である、ペロブスカイト太陽電池の正孔輸送層材料。
    In claim 2,
    A hole transport layer material for a perovskite solar cell, wherein said R 1 and said R 2 are methyl groups, said R 3 is an ethyl group and said R 4 is a methoxyethyl group.
  4.  透明電極層と、電子輸送層と、ペロブスカイト結晶層と、請求項1から3のいずれかの正孔輸送層材料から構成される正孔輸送層と、電極層とを有するペロブスカイト太陽電池。 A perovskite solar cell comprising a transparent electrode layer, an electron transport layer, a perovskite crystal layer, a hole transport layer composed of the hole transport layer material according to any one of claims 1 to 3, and an electrode layer.
PCT/JP2023/007266 2022-03-03 2023-02-28 Hole transport layer material for perovskite solar cell WO2023167175A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022032524 2022-03-03
JP2022-032524 2022-03-03

Publications (1)

Publication Number Publication Date
WO2023167175A1 true WO2023167175A1 (en) 2023-09-07

Family

ID=87883842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007266 WO2023167175A1 (en) 2022-03-03 2023-02-28 Hole transport layer material for perovskite solar cell

Country Status (1)

Country Link
WO (1) WO2023167175A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241378A (en) * 2003-01-15 2004-08-26 Nippon Shokubai Co Ltd Dye sensitized solar cell
JP2006131615A (en) * 2004-11-03 2006-05-25 Toyota Motor Corp Ordinary temperature molten salt and method for producing the same
CN101619115A (en) * 2009-07-30 2010-01-06 苏州大学 High-temperature proton-exchange polymer film and preparation method thereof
JP2019134159A (en) * 2018-02-01 2019-08-08 パナソニック株式会社 Solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241378A (en) * 2003-01-15 2004-08-26 Nippon Shokubai Co Ltd Dye sensitized solar cell
JP2006131615A (en) * 2004-11-03 2006-05-25 Toyota Motor Corp Ordinary temperature molten salt and method for producing the same
CN101619115A (en) * 2009-07-30 2010-01-06 苏州大学 High-temperature proton-exchange polymer film and preparation method thereof
JP2019134159A (en) * 2018-02-01 2019-08-08 パナソニック株式会社 Solar cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOKUDA HIROYUKI, SEUNGJO BAEK, MASAYOKI WATANABE: "Room-Temperature Ionic Liquid-Organic Solvent Mixtures: Conductivity and Ionic Association", ELECTROCHEMISTRY, vol. 73, no. 8, 1 January 2005 (2005-01-01), pages 620 - 622, XP093088836 *

Similar Documents

Publication Publication Date Title
He et al. 40.1% record low‐light solar‐cell efficiency by holistic trap‐passivation using micrometer‐thick perovskite film
Pisoni et al. Flexible NIR-transparent perovskite solar cells for all-thin-film tandem photovoltaic devices
Wang et al. Ion exchange/insertion reactions for fabrication of efficient methylammonium tin iodide perovskite solar cells
Wang et al. Fully-ambient-processed mesoscopic semitransparent perovskite solar cells by islands-structure-MAPbI3-xClx-NiO composite and Al2O3/NiO interface engineering
Wang et al. Organic cation‐dependent degradation mechanism of organotin halide perovskites
Tian et al. Composition engineering of all‐inorganic perovskite film for efficient and operationally stable solar cells
Cannavale et al. Perovskite photovoltachromic cells for building integration
Ito et al. Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells
Zhang et al. Fluorinated Interfaces for Efficient and Stable Low‐Temperature Carbon‐Based CsPbI2Br Perovskite Solar Cells
Wang et al. An iodine-free electrolyte based on ionic liquid polymers for all-solid-state dye-sensitized solar cells
Arivunithi et al. Efficiency Exceeding 20% in Perovskite Solar Cells with Side‐Chain Liquid Crystalline Polymer–Doped Perovskite Absorbers
Karunakaran et al. Europium (II)‐Doped All‐Inorganic CsPbBr3 Perovskite Solar Cells with Carbon Electrodes
Zhang et al. Multifunctional dopamine-assisted preparation of efficient and stable perovskite solar cells
Han et al. Cesium iodide interface modification for high efficiency, high stability and low hysteresis perovskite solar cells
JP2020513639A (en) Quantum dot light emitting diode, manufacturing method thereof, display panel and display device
CN108807694B (en) Flat perovskite solar cell with ultralow temperature stability and preparation method thereof
Peiris et al. Stacked rGO–TiO2 photoanode via electrophoretic deposition for highly efficient dye-sensitized solar cells
Forgács et al. Efficient wide band gap double cation–double halide perovskite solar cells
Liang et al. Interface modification via Al2O3 with retarded charge recombinations for mesoscopic perovskite solar cells fabricated with spray deposition process in the air
Wang et al. Promising photovoltaic application of multi-walled carbon nanotubes in perovskites solar cells for retarding recombination
Baranwal et al. Fabrication of fully non-vacuum processed perovskite solar cells using an inorganic CuSCN hole-transporting material and carbon-back contact
Wang et al. Enhancing the thermal stability of the carbon-based perovskite solar cells by using a Cs x FA 1− x PbBr x I 3− x light absorber
Raifuku et al. Segregation-free bromine-doped perovskite solar cells for IoT applications
Feng et al. A synergistic co-passivation strategy for high-performance perovskite solar cells with large open circuit voltage
JP2019165073A (en) Solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763432

Country of ref document: EP

Kind code of ref document: A1