WO2023167113A1 - Speaker device and sound system - Google Patents

Speaker device and sound system Download PDF

Info

Publication number
WO2023167113A1
WO2023167113A1 PCT/JP2023/006883 JP2023006883W WO2023167113A1 WO 2023167113 A1 WO2023167113 A1 WO 2023167113A1 JP 2023006883 W JP2023006883 W JP 2023006883W WO 2023167113 A1 WO2023167113 A1 WO 2023167113A1
Authority
WO
WIPO (PCT)
Prior art keywords
driver
voice coil
low
frequency
drive circuits
Prior art date
Application number
PCT/JP2023/006883
Other languages
French (fr)
Japanese (ja)
Inventor
弘 須賀田
Original Assignee
フォスター電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フォスター電機株式会社 filed Critical フォスター電機株式会社
Publication of WO2023167113A1 publication Critical patent/WO2023167113A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/24Structural combinations of separate transducers or of two parts of the same transducer and responsive respectively to two or more frequency ranges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/12Circuits for transducers, loudspeakers or microphones for distributing signals to two or more loudspeakers
    • H04R3/14Cross-over networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/04Construction, mounting, or centering of coil

Definitions

  • the technology of the present disclosure relates to a speaker device and an acoustic system.
  • a coil bobbin coupled to the diaphragm, a voice coil wound around the coil bobbin, a first terminal and a second terminal led out from both ends of the voice coil, and an intermediate terminal led out from the middle of the voice coil. and a bandpass filter connected to the second terminal, a driving current is supplied between the first terminal and the intermediate terminal, and a driving current is supplied between the second terminal and the intermediate terminal.
  • a loudspeaker driven by current supplied through a bandpass filter is known (Japanese Laid-Open Patent Publication No. 9-163486). In this speaker, the reproduced sound pressure level is controlled by a drive current supplied between the second terminal and the intermediate terminal through the bandpass filter.
  • the technology of the present disclosure aims to provide a speaker device and an acoustic system with a simple configuration and high sound quality.
  • a speaker device which includes a drive unit including at least one driver including a diaphragm, an enclosure that houses the driver, and a diaphragm of the at least one driver based on a sound source signal. and a plurality of drive circuits outputting control signals for vibrating, wherein the drive section vibrates the diaphragm according to the outputs of the plurality of drive circuits, and drives some of the plurality of drive circuits.
  • a low-pass filter is provided in the circuit, and the low-pass filter is a signal obtained by synthesizing the control signal output from each of the plurality of drive circuits with the peak frequency of the frequency characteristics of the sound pressure output according to the shape of the enclosure. is set so that the recess frequency in the frequency characteristic of is corresponding.
  • An aspect of the present disclosure is an acoustic system including the speaker device described above, a signal input unit that receives the sound source signal, and an amplifier that outputs the received sound source signal to the speaker device.
  • FIG. 1 is a schematic diagram of an acoustic system according to first, second, and third embodiments of technology of the present disclosure
  • FIG. 1 is a cross-sectional view showing a configuration of a speaker device according to a first embodiment of technology of the present disclosure
  • FIG. 1 is a circuit diagram showing an electrical configuration of a speaker device according to a first embodiment of technology of the present disclosure
  • FIG. 4 is a graph showing frequency characteristics of control signals output from drive circuits and combined signals
  • 1 is a circuit diagram showing an example of a configuration of a speaker device according to a first embodiment of technology of the present disclosure
  • FIG. 1 is a circuit diagram showing an example of a speaker device configured using a first-order low-pass filter;
  • FIG. 4 is a circuit diagram when a voice coil is a pure resistance; 4 is a vector diagram representing voice coil voltages; FIG. 4 is a graph showing frequency characteristics of control signals output from drive circuits and combined signals; FIG. 3 is a circuit diagram showing an equivalent circuit of a speaker device configured using a secondary low-pass filter; 4 is a vector diagram representing voice coil voltages; FIG. 4 is a graph showing frequency characteristics of control signals output from drive circuits and combined signals; 4 is a graph showing the frequency characteristics of the control signal output from each drive circuit and the synthesized signal when ⁇ is varied.
  • FIG. 4 is a circuit diagram when a voice coil is a pure resistance; 4 is a vector diagram representing voice coil voltages; FIG. 4 is a graph showing frequency characteristics of control signals output from drive circuits and combined signals; 4 is a graph showing the frequency characteristics of the control signal output from each drive circuit and the synthesized signal when ⁇ is varied.
  • FIG. 4 is a circuit diagram showing an equivalent circuit of a speaker device configured using a third-order low-pass filter; 4 is a graph showing frequency characteristics of a signal obtained by synthesizing control signals output from each drive circuit when ⁇ is changed.
  • FIG. 4 is a vector diagram showing voice coil voltages when first to fourth order low-pass filters are used;
  • FIG. 4 is a circuit diagram showing an equivalent circuit of a drive circuit including a low-pass filter;
  • FIG. 4 is a circuit diagram showing an equivalent circuit of a drive circuit including a low-pass filter; It is a graph showing the characteristic of each impedance.
  • FIG. 5 is a graph showing frequency characteristics of a signal obtained by synthesizing control signals output from each of the drive circuits when the load is changed; 4 is a graph showing frequency characteristics of voice coil voltage; FIG. 4 is a cross-sectional view showing the configuration of a speaker device according to a second embodiment of the technique of the present disclosure; FIG. 4 is a circuit diagram showing the configuration of a speaker device according to a second embodiment of the technology of the present disclosure; FIG. 4 is a perspective view showing a single voice coil bobbin; FIG. 4 is a cross-sectional view of a two-line voice coil. FIG.
  • 4 is a circuit diagram showing a speaker device configured without using a low-pass filter
  • 4 is a graph showing anechoic room characteristics in a 2 ⁇ space and a bass reflex type enclosure in a speaker device configured without using a low-pass filter.
  • 4 is a graph showing a comparison between the difference between the measured values of the bass reflex enclosure and the 2 ⁇ space and the calculated data.
  • 1 is a circuit diagram showing the configuration of a speaker device according to an example
  • FIG. 5 is a graph showing simulation results of frequency characteristics of a signal obtained by synthesizing control signals output from drive circuits
  • 7 is a graph showing sound pressure measurement results with and without a low-pass filter.
  • FIG. 7 is a graph showing a sound pressure difference with and without a low-pass filter
  • 1 is a circuit diagram showing an example of the configuration of a speaker device according to an embodiment
  • FIG. 5 is a graph showing simulation results of frequency characteristics of a signal obtained by synthesizing control signals output from drive circuits
  • 7 is a graph showing sound pressure measurement results with and without a low-pass filter.
  • 7 is a graph showing a sound pressure difference with and without a low-pass filter; It is a circuit diagram in which one voice coil is short-circuited.
  • FIG. 25 is a graph showing sound pressure measurement results when one voice coil is short-circuited and when it is not (connection of FIG. 24).
  • FIG. 25 is a graph showing sound pressure measurement results when one voice coil is short-circuited and when it is not (connection of FIG. 24).
  • FIG. 4 is a perspective view showing an example of an enclosure;
  • FIG. 1 is a circuit diagram showing the configuration of a 2-way sound system; FIG.
  • FIG. 5 is a graph showing frequency characteristics of a control signal for each driver and a synthesized signal
  • 7 is a graph showing the frequency characteristics of the control signal for each driver and the synthesized signal when considering the diffraction effect of the baffle.
  • 1 is a circuit diagram showing a configuration of a speaker device provided with a compensation circuit
  • FIG. 5 is a graph showing frequency characteristics of a control signal for each driver and a synthesized signal
  • 4 is a graph showing filter characteristics when white noise is used as a signal source
  • 1 is a circuit diagram showing a configuration of a speaker device in an example of use as TW;
  • FIGS. 41A and 41B These include those using a full-range driver that can radiate all bands with a single driver, and multi-way sound systems that divide the input signal into bass, middle, and treble by a dividing network circuit and reproduce them with dedicated drivers.
  • the problem of insufficient bass tends to occur, such as the lower limit frequency that can be reproduced becomes higher and the sound pressure in the bass band becomes insufficient.
  • the subwoofer sound system reproduces frequencies below the lower limit frequency of the main sound system with one sound system, taking advantage of the fact that the listener cannot perceive the direction in the lowest sound range.
  • the effect of the subwoofer is that it is possible to reinforce the area below the lower frequency limit of the main sound system. ) has no effect of correcting for the influence of the diffraction effect.
  • bass drivers and full-range drivers for Hi-Fi audio systems for listening to music are of the electrodynamic type for the driving part and the direct radiation type (cone type, flat plate type, etc.) for the radiating part. be.
  • the baffle has a finite size, and sound waves are diffracted at the edge of the baffle.
  • the radiation space substantially becomes a 4 ⁇ space in the low frequency band (long wavelength band) in which the directivity is weak, so that a sound pressure drop of 6 dB occurs in the high frequency band in which the directivity is strong. That is, the low frequency side is 6 dB lower than the high frequency side.
  • a virtual sound source is produced at the end of the baffle, which causes an undulation in the characteristic on the driver axis.
  • a conductive driver has a sound pressure characteristic proportional to a voltage, and has a flat sound pressure characteristic with an infinite baffle.
  • TW high frequency driver
  • WF low frequency driver
  • network dividing network
  • FIG. 42 is a basic circuit diagram showing a speaker device for a two-way sound system.
  • the HPF is a high pass filter that filters the input signal to the appropriate band signal components for the TW.
  • the LPF is a low-pass filter that converts the input signal into signal components in the appropriate band for WF.
  • ATT is an attenuator, and is a circuit for adjusting the magnitude of the input voltage to TW.
  • the resistors are arranged in an L-shape, and the impedance when viewed from the HPF is close to pure resistance. This makes the characteristics of the HPF less susceptible to the voice coil inductance and motional impedance of the TW.
  • the electrical impedance of the driver is composed of the motional impedance, the DC resistance of the voice coil, and the voice coil inductance of WF.
  • the circuit of FIG. 42 can eliminate the influence of the voice coil inductance of the WF in the LPF band. That is, it can be seen as a pure resistance.
  • FIG. 43 shows an example of the frequency characteristics of the control signal input to each driver and the frequency characteristics of the synthesized signal, assuming that the output characteristics of each driver are flat and have the same efficiency within their respective bands. It is a graph showing.
  • FIG. 43 shows calculated values in a circuit connected so that the TW side is in reverse phase, Ein is the input voltage from the amplifier, and Ewf is the voltage of the signal input to the WF side driver. and Etw is the voltage of the signal input to the driver on the TW side.
  • FIG. 44 shows a graph showing an example of the frequency characteristics of the control signal input to each driver and the frequency characteristics of the combined signal when the influence of the diffraction effect of the baffles is further considered.
  • the inductance L1 of the LPF is tripled compared to the example shown in FIG. 43, so that the output gradually decreases from a lower frequency, and the TW output is 6 dB lower than the WF output at ATT. This shows an example of correcting the diffraction effect of the baffle.
  • TW In the example shown in FIG. 44, correction is possible only by changing the constants of the elements while maintaining the typical dividing network circuit configuration of the two-way acoustic system.
  • TW In order to create a hollow near the crossover frequency of WF and TW, TW must be sufficiently reproducible up to near the frequency at which the sound pressure peaks due to the baffle effect. In the example of FIG. 44, the TW needs to be sufficiently reproducible in a band of 1 kHz or higher.
  • a peak occurs at 700 Hz in sound pressure characteristics due to the baffle effect.
  • a TW capable of sufficiently reproducing 700 Hz or higher (in the case of a two-way sound system) is required for correction by a similar method. In this way, TWs that can be used for those with high low-frequency reproduction capability are limited according to the outer dimensions of the acoustic system.
  • the crossover frequency may have to be increased in order to increase the input resistance performance of the system.
  • the crossover frequency is intentionally set high in order to use a wideband WF or full-range type driver, and those in which TW is not used. In these cases, the band in which the sound pressure difference occurs due to the baffle effect is within the output band of the low-frequency driver or the full-range driver.
  • FIG. 45 there is known a method of providing a compensation circuit for making the frequency characteristics of the signal input to the driver reverse to the baffle effect.
  • FIG. 46 is a graph showing an example of the frequency characteristics of the input signal to each driver in the circuit of FIG. 45 and the frequency characteristics of the combined signal.
  • the resistance in the compensation circuit generates a large amount of heat, which causes changes in characteristics and safety problems.
  • voice signals or music signals have low energy in high frequencies and high energy in middle and low frequencies, when resistors are used in the network, they are mainly used on the high frequency side.
  • the extension of the TW reproduction band to the low frequency side is disadvantageous in terms of reliability.
  • FIG. 47 shows filter characteristics when white noise is used as a signal source.
  • the embodiment of the technology of the present disclosure solves the above problem and provides an inexpensive high-quality sound system.
  • the input signal to the normal driver is corrected to have the opposite characteristics of the above characteristics and is input to the driver. No resistance is used.
  • a driver (WF or full-range type driver) that emits a band that produces a sound pressure difference due to the baffle effect is used as a component to correct the 6 dB sound pressure difference between the low and high frequencies.
  • the drive circuits of two or more systems are electrically driven, and the drive circuits of some systems are provided with low-pass filters and connected in parallel with the drive circuits of the other systems.
  • the low-frequency driver output is made larger than the high-frequency driver output, and the sound pressure difference between the low-frequency side and the high-frequency side due to the finite baffle is corrected.
  • each drive circuit applies force in the same direction to an input signal by any of the following first to third methods. It may be configured to generate
  • a plurality of drive circuits for a plurality of drivers are connected in parallel and used.
  • a plurality of drive circuits are provided for a single driver (diaphragm) and connected in parallel. Specifically, a plurality of sets of magnetic gaps and voice coils are provided in a single driver.
  • multiple lines of voice coil wires are arranged for a single magnetic gap and a single voice coil in a single driver.
  • half of the drive circuits may be provided with low-pass filters, and the other drive circuits may be driven by inputting signals to the drivers without providing low-pass filters. This makes the high frequency side lower than the low frequency side by 6 dB. That is, the driving force becomes 1/2.
  • a low-pass filter is added to the input-side inductance (coil) connected in series with the voice coil and the voice coil. It shall be of a second order or higher consisting of a capacitance (capacitor) connected in parallel with the coil. Also, in the frequency characteristics of the signal input to the driver, a depression is formed near the peak frequency caused by the baffle effect.
  • FIG. 1 shows a schematic diagram of an audio system 10 according to an embodiment of the technology of the present disclosure.
  • the acoustic system 10 includes a sound source input section 12, an amplifier 14, and a speaker device 16.
  • the sound source input unit 12 receives sound source signals.
  • the amplifier 14 outputs the received sound source signal to the speaker device 16 .
  • the speaker device 16 includes, as shown in FIG. 2, a drive section 18 consisting of two drivers 20A and 20B, and an enclosure 22 that houses the drive section 18. As shown in FIG. In this embodiment, the enclosure 22 is a rectangular parallelepiped housing and is a bass reflex type enclosure. Drivers 20A and 20B are full-range drivers.
  • the speaker device 16 includes a drive circuit 30A that outputs a control signal for vibrating a diaphragm (not shown) of the driver 20A based on the sound source signal, and a driver 20B that vibrates the driver 20B based on the sound source signal. It includes a drive circuit 30B that outputs a control signal for vibrating a plate (not shown), and a drive unit 18 that vibrates the diaphragm according to the outputs of the drive circuits 30A and 30B.
  • the drive circuit 30B has a low-pass filter 32 .
  • the drivers 20A, 20B include voice coils VC1, VC2 and magnetic circuits (not shown).
  • the drive circuit 30A outputs a control signal corresponding to the input sound source signal to the voice coil VC1, and causes the diaphragm of the driver 20A to vibrate with the magnetic circuit.
  • the drive circuit 30B outputs a control signal obtained from the input sound source signal through the low-pass filter 32 to the voice coil VC2, and vibrates the diaphragm of the driver 20B by the magnetic circuit.
  • the peak frequency of the frequency characteristics of the sound pressure output according to the shape of the enclosure 22 corresponds to the depression frequency in the frequency characteristics of the signal obtained by synthesizing the control signals output from the drive circuits 30A and 30B. (see arrows in FIG. 4).
  • Ein indicates the voltage of the input signal from the amplifier 14
  • Evc1 indicates the voltage of the control signal input to the voice coil VC1
  • Evc2 indicates the voltage of the control signal input to the voice coil VC2.
  • a dip frequency is a frequency that is a minimum value in the frequency characteristics of a signal.
  • the low-pass filter 32 is of secondary or higher order and consists of an inductance (coil) connected in series with the voice coil VC2 and a capacitance (capacitor) connected in parallel with the voice coil VC2.
  • the low-pass filter 32 has an inductance L connected in series with the voice coil VC2 and a capacitance C connected in parallel with the voice coil VC2.
  • FIG. 6 is a circuit diagram showing a speaker device configured using a first-order low-pass filter.
  • FIG. 7 is a circuit diagram showing an equivalent circuit of the speaker device when the voice coil is pure resistance.
  • Evc1( ⁇ ) is constant at 1 regardless of the frequency, so the vector does not rotate (see the dashed arrow in FIG. 8).
  • the voice coil is a pure resistance for the sake of simplification. Strictly speaking, since the voice coil is not a pure resistance, other influences such as reactance will be described later.
  • FIG. 9 is a graph showing the frequency characteristics of the control signal output by each drive circuit in the circuit of FIG. 7 and the combined signal.
  • FIG. 10 is a circuit diagram showing an equivalent circuit of a speaker device configured using a secondary low-pass filter. Voltages Evc1 and Evc2 of the control signals output to the voice coil are expressed by the following equations.
  • FIG. 11 is a vector diagram showing the voltage of the control signal output to the voice coil in the circuit shown in FIG. 10 above.
  • Evc1( ⁇ )+Evc2( ⁇ ) moves from 2 to 1 on the solid curve as the frequency increases from 0, and the absolute value is 1 at high frequencies. and converges to 1.
  • FIG. 12 is a graph showing the frequency characteristics of the control signal output by each drive circuit in the circuit shown in FIG. 10 and the combined signal.
  • the constant of the second-order Butterworth low-pass filter is However, by changing ⁇ , the shoulder characteristic of the low-pass filter can be changed.
  • the characteristic change due to ⁇ is as follows.
  • FIG. 13 is a graph showing frequency characteristics of a signal obtained by synthesizing the control signals output from the drive circuits when .zeta. is varied in the circuit shown in FIG.
  • FIG. 14 is a circuit diagram showing an equivalent circuit of a speaker device configured using a third-order low-pass filter.
  • FIG. 15 is a graph showing frequency characteristics of a signal obtained by synthesizing the control signals output from the drive circuits when .zeta. is varied in the circuit shown in FIG.
  • FIG. 16 is a vector diagram showing the vector trajectory of the voltage Evc2 of the control signal output to the voice coil when each of the 1st to 4th order low-pass filters is used.
  • the calculation data such as the correction characteristics shown so far are calculated using the driver's electrical impedance as pure resistance.
  • the electrical impedance of an actual driver has a specific impedance characteristic Ze mainly due to the motional impedance Zem and the reactance Zex due to the voice coil inductance.
  • the motional impedance Zem is the effect of the back electromotive force generated by the motion of the voice coil within the magnetic gap, and is expressed by the following formula.
  • the reactance Zex due to the voice coil inductance is expressed by the following equation due to the influence of the magnetic material (magnetic circuit) acting as the voice coil winding and iron core.
  • Zex j ⁇ L
  • L is the inductance of the voice coil
  • A is the force coefficient (magnetic flux density ⁇ effective length of VC2)
  • Mm is the vibration system mass
  • Sm is the stiffness
  • Rm is the mechanical resistance.
  • the equivalent circuit of the drive circuit on the voice coil VC2 side is as follows.
  • FIG. 17 is a diagram showing an electric system equivalent circuit of a drive circuit including a low-pass filter when the impedance of the voice coil is pure resistance.
  • FIG. 18 is a diagram showing an equivalent circuit of a drive circuit including a low-pass filter when considering the motional impedance Zem and the reactance Zex due to the voice coil inductance. (1) in FIG. 18 corresponds to the motional impedance Zem, and (2) in FIG. 18 corresponds to the reactance Zex due to the voice coil inductance.
  • FIG. 19 shows the characteristics of the electrical impedance of the driver in the circuit shown in FIG. 18 above.
  • FIG. 19 is a graph showing respective characteristics of
  • FIG. 20 shows changes in frequency characteristics of a signal obtained by synthesizing control signals to each voice coil due to differences in load.
  • FIG. 20 is a graph when the electrical impedance of the driver is a pure resistance and when the reactance Zex due to the motional impedance Zem and voice coil inductance is considered. This graph is a graph showing frequency characteristics of a signal obtained by synthesizing the control signals output from each of the drive circuits.
  • a circuit that cancels the inductance is provided between the low-pass filter on the voice coil VC2 side and the driver, or a short ring (that cancels the magnetic flux change that occurs with the voice coil current) is installed.
  • the inductance component in the load of the low-pass filter is reduced, so the effect of the reactance Zex due to the voice coil inductance is also reduced.
  • a voice coil with a smaller number of turns such as a full-range driver, has a smaller inductance than WF, and thus has less influence.
  • a sound source input unit 12 receives input of a sound source signal from an audio player or the like.
  • the amplifier 14 outputs the received sound source signal to the speaker device 16 .
  • the drive circuit 30A of the speaker device 16 outputs a control signal to the driver 20A based on the sound source signal to vibrate the diaphragm (not shown) of the driver 20A.
  • the drive circuit 30B of the speaker device 16 uses the low-pass filter 32 based on the sound source signal to output a control signal to the driver 20A to vibrate the diaphragm of the driver 20B.
  • the low-pass filter 32 combines the peak frequency of the frequency characteristics of the sound pressure output according to the shape of the enclosure 22 with the control signal output from each of the drive circuits 30A and 30B, and the depression frequency in the frequency characteristics of the signal. are set accordingly. Therefore, in the frequency characteristics of the signal obtained by synthesizing the input signals to the drivers 20A and 20B, there is a depression near the peak frequency caused by the baffle effect of the enclosure 22. FIG. As a result, the acoustic system 10 achieves a flat sound pressure frequency characteristic.
  • the low-pass filter provided in one of the two drive circuits is adjusted according to the shape of the enclosure.
  • the peak frequency of the frequency characteristics of the output sound pressure is set so that the depression frequency in the frequency characteristics of the signal obtained by synthesizing the control signals output from each of the two drive circuits corresponds.
  • the speaker device since the speaker device does not use resistance and generates little heat, the characteristics during use are stable, and it is also advantageous for designing a highly durable sound system.
  • the second embodiment differs from the first embodiment in that a plurality of drive circuits are provided for a single driver and the plurality of drive circuits are connected in parallel.
  • the acoustic system 210 includes a sound source input section 12, an amplifier 14, and a speaker device 216.
  • the speaker device 216 includes a driving section 218 including a driver 220 and an enclosure 22 that houses the driver 220. As shown in FIG. 21,
  • the speaker device 216 includes a drive circuit 30A, a drive circuit 30B, and a drive section 218 that vibrates the diaphragm according to the outputs of the drive circuits 30A and 30B.
  • the drive circuit 30B has a low-pass filter 32 .
  • Each of drive circuit 30A and drive circuit 30B outputs a control signal for vibrating the diaphragm of single driver 220 based on the sound source signal.
  • the driver 220 includes multiple sets of magnetic circuits and voice coils. Specifically, the driver 220 includes a voice coil VC1 and magnetic circuit set and a voice coil VC2 and magnetic circuit set.
  • the drive circuit 30A vibrates the diaphragm of the single driver 220 by outputting a control signal to the voice coil VC1 based on the sound source signal. Further, the driving circuit 30B vibrates the diaphragm of the single driver 220 by outputting a control signal to the voice coil VC2 based on the sound source signal.
  • the third embodiment differs from the second embodiment in that the driver has a single magnetic circuit, a single voice coil, and multiple lines of voice coil wires.
  • the driver is configured using a single voice coil bobbin with two lines of conductors wound in parallel in the same direction.
  • FIG. 23B shows a cross section of the winding portion, showing how the coil wire of the voice coil VC1 and the coil wire of the voice coil VC2 are wound in parallel around the voice coil bobbin.
  • the drive circuit 30A vibrates the diaphragm of the single driver 220 by outputting a control signal to the voice coil VC1 based on the sound source signal. Further, the driving circuit 30B vibrates the diaphragm of the single driver 220 by outputting a control signal to the voice coil VC2 based on the sound source signal.
  • the voice coil used is a single voice coil bobbin with an inner diameter of ⁇ 25 and two conductor wires wound in parallel in the same direction (DCR6.9+6.9 ⁇ ).
  • the magnetic circuit was a ferrite magnet external magnet type, and a cone diaphragm (curved cone, cloth edge) with an effective vibration diameter ⁇ 80 was used.
  • a bass-reflex type enclosure having external dimensions of W214 ⁇ H384 ⁇ D150 was used.
  • FIG. 25 is a graph showing anechoic room characteristics in a 2 ⁇ space and a bass reflex type enclosure in a speaker device constructed without using a low-pass filter.
  • the 2 ⁇ space is an anechoic chamber that simulates the 2 ⁇ space and has a baffle on one side.
  • FIG. 26 is a graph showing a comparison between the difference between the measured values of the bass reflex enclosure and the 2 ⁇ space and the calculated data.
  • the difference between the measured values corresponds to the diffraction effect of the baffle.
  • FIG. 27 is a circuit diagram showing the configuration of a speaker device 216 according to an embodiment using a secondary low-pass filter.
  • the inductance L of the low-pass filter is 3 mH and the capacitor C is 20 ⁇ F.
  • FIG. 28 is a graph showing a simulation result of frequency characteristics of a signal (composite voltage) obtained by combining the control signals output from each of the drive circuits in the circuit shown in FIG.
  • FIG. 29 is a graph showing the sound pressure measurement results with and without the low-pass filter.
  • FIG. 30 is a graph showing sound pressure differences with and without a low-pass filter. Note that the values in FIG. 30 are calculated from actual measurements.
  • FIG. 31 is a circuit diagram showing the configuration of a speaker device 216 according to an embodiment using a third-order low-pass filter.
  • the inductance L1 of the low-pass filter is 3 mH
  • the capacitor C is 15 ⁇ F
  • the inductance L2 is 0.5 mH.
  • FIG. 32 is a graph showing simulation results of frequency characteristics of a signal (composite voltage) obtained by combining the control signals output from each of the drive circuits in the circuit shown in FIG.
  • FIG. 33 is a graph showing the sound pressure measurement results with and without the low-pass filter.
  • FIG. 34 is a graph showing sound pressure differences with and without a low-pass filter. Note that the values in FIG. 34 are calculated from actual measurements.
  • FIG. 35 is a circuit diagram in which one voice coil is short-circuited.
  • FIG. 36 is a graph showing the results of sound pressure measurement when one voice coil is short-circuited (FIG. 35) and when it is not short-circuited (FIG. 24).
  • FIG. 37 shows a circuit diagram in which the voice coil VC2 side is open.
  • FIG. 38 shows the sound pressure measurement result in the circuit shown in FIG. 35 (when one voice coil is short-circuited) and the sound pressure measurement result in the circuit shown in FIG. 37 (when one voice coil is open). The result of comparing the characteristics with
  • FIG. 31 is a circuit diagram showing an example of the configuration of a speaker device according to an embodiment using a third-order low-pass filter.
  • the sound pressure drop in the high range is less than 6 dB compared to the case without a low-pass filter.
  • This phenomenon has little effect when configured as a WF that handles only low frequencies, but must be taken into consideration in the case of a full-range type driver as in this embodiment.
  • the speaker device is used as a WF (an embodiment in which a sound pressure difference and a peak occur between the low and high frequencies due to the diffraction effect of the baffle in the WF band)
  • WF a sound pressure difference and a peak occur between the low and high frequencies due to the diffraction effect of the baffle in the WF band
  • a desired network circuit may be provided on the voice coil VC1 side for the circuit intended to reverse the baffle diffraction effect (see FIGS. 27 and 31).
  • FIG. 39 is a circuit diagram showing the configuration of the speaker device 316 in the embodiment used as WF.
  • the upper drive circuit 330C outputs a control signal to the driver 320 used as TW.
  • the middle drive circuit 330A outputs a control signal to the voice coil VC1, and the lower drive circuit 330B outputs a control signal to the voice coil VC2.
  • the inductance L1 of the low-pass filter is 2.5 mH
  • the capacitor C1 is 20 ⁇ F
  • the inductance L2 is 0.5 mH
  • the inductance L3 of the dividing network is 0.5 mH
  • the capacitor C3 is 2.6 ⁇ F.
  • the resistor R for impedance correction is set to 7 ⁇
  • the capacitor C2 is set to 6.8 ⁇ F.
  • FIG. 40 is a graph showing simulation results of the frequency characteristics of the control signal output by each of the drive circuits 330A, 330B, and 330C in the circuit shown in FIG. Let Etw be the voltage of the control signal output to the voice coil VC3, and Etotal be the voltage of the combined signal.
  • the sound pressure step and peak to be suppressed are in the bass band (WF band), and the band is limited by a low-pass filter provided in the drive circuit for the driver on the bass band side.
  • WF band bass band
  • SQ mid-range driver
  • a high-pass filter may be provided in the drive circuit of the technique of the present disclosure, and a high-pass filter may be provided to limit the band on the low-frequency side.
  • the high-pass filter in this case may be provided before branching to each VC circuit of the drive circuit of the technology of the present disclosure, as shown in FIG.
  • the low-pass filter provided in some of the plurality of drive circuits is adapted to reduce the peak frequency of the frequency characteristics of the sound pressure output according to the shape of the enclosure to the plurality of is set so that the depression frequency in the frequency characteristic of the signal obtained by synthesizing the control signals output from each of the drive circuits corresponds to the frequency characteristic.
  • a plurality of drive circuits output control signals for vibrating the diaphragm of the at least one driver based on the sound source signal.
  • the low-pass filters provided in some of the plurality of drive circuits are arranged at the peak frequency of the frequency characteristics of the sound pressure output according to the shape of the enclosure.
  • the recess frequencies in the frequency characteristics of the signal obtained by synthesizing the control signals output from each are set so as to correspond to each other.
  • the enclosure according to the technology of the present disclosure has a peak (point of inflection) in the middle band between the low sound pressure range and the high sound pressure range due to the diffraction effect with respect to the driver sound pressure characteristics in the infinite baffle.
  • It can be an enclosure that causes
  • the enclosure can be a rectangular parallelepiped housing.
  • the drive unit includes one driver, and each of the plurality of drive circuits can output a control signal for vibrating the diaphragm of the driver, based on the sound source signal.
  • the drive unit includes a plurality of drivers provided corresponding to the plurality of drive circuits, and each of the plurality of drive circuits vibrates the corresponding driver based on a sound source signal.
  • a control signal for vibrating a plate is output, and the drive unit can vibrate the diaphragm corresponding to each of the plurality of drive circuits according to the output of the drive circuit.
  • the driver according to the technology of the present disclosure can include a voice coil and a magnetic circuit.
  • a sound system includes the speaker device described above, a signal input unit that receives the sound source signal, and an amplifier that outputs the received sound source signal to the speaker device.
  • the signal input unit receives the sound source signal.
  • An amplifier outputs the received sound source signal to the speaker device.
  • a plurality of drive circuits output control signals for vibrating the diaphragm of the at least one driver based on the sound source signal.
  • the low-pass filter provided in a part of the drive circuits among the plurality of drive circuits filters the peak frequency of the frequency characteristics of the sound pressure output according to the shape of the enclosure to each of the plurality of drive circuits. is set so as to correspond to the recess frequency in the frequency characteristic of the signal obtained by synthesizing the control signals output by .
  • the sound pressure difference between the low frequency side and the high frequency side is 6 dB, but it is not limited to this.
  • the sound pressure difference between the low frequency side and the high frequency side is 6 dB.
  • the characteristics of the sound system have other factors that change the frequency characteristics, such as the cone shape of the driver, the configuration of the magnetic circuit, and other parts. It is also possible that the characteristic characteristics can be regarded as optimal.
  • the impedance of the voice coil VC1 and the voice coil VC2 can be arbitrarily adjusted by setting the impedance of the voice coil VC1 and the voice coil VC2 to a value other than 1:1 by making the driving forces of the two systems unequal. It is also possible to use three or more driving circuits and adjust the driving force and the driving coefficient. For example, if the driving forces on the voice coil VC1 side and the voice coil VC2 side are set to 1.3:1 and a low-pass filter is provided on the voice coil VC2 side, the sound pressure difference will be 5 dB. It should be noted that when such a method is used, it should be noted that the size of the recesses is also slightly increased or decreased.
  • a method of using voice coils wound on the same axis and at different positions in the vibration direction may be used other than the embodiments.
  • the current direction and the gap magnetic flux direction should be set so that force is generated in the same direction when the same voltage is applied to each.
  • a ring-shaped high-conductivity conductor may be wound around the pole piece of the speaker device to reduce the alternating magnetic flux generated when current flows through the voice coil. This eliminates the impedance of the voice coil and eliminates the need for impedance correction. That is, the design can be made by ignoring the inductance of the voice coil. In addition, by reducing the alternating magnetic flux, the distortion generated in the current can be reduced, and the sound quality can be improved.

Abstract

This speaker device includes: at least one driver including a diaphragm; an enclosure for accommodating the driver; and a plurality of drive circuits that each output a control signal for causing the diaphragm of the at least one driver to vibrate, on the basis of a sound source signal. Some of the drive circuits among the plurality of drive circuits are provided with a low-pass filter, and this low-pass filter is set so that a concave frequency in a frequency characteristic of a signal obtained by synthesizing the control signals outputted by the plurality of drive circuits corresponds to a peak frequency of a frequency characteristic of sound pressure outputted in accordance with the shape of the enclosure.

Description

スピーカ装置及び音響システムSpeaker device and sound system
 本開示の技術は、スピーカ装置及び音響システムに関する。 The technology of the present disclosure relates to a speaker device and an acoustic system.
 従来より、スピーカと、それを収納するキャビネットと、前記キャビネットの回折効果による周波数音圧特性の低音域と中、高音域との段差を補正する手段とを備えたことを特徴とするスピーカが知られている(特開昭61-41299号公報)。 2. Description of the Related Art Conventionally, there has been known a loudspeaker comprising a loudspeaker, a cabinet for housing the loudspeaker, and a means for compensating for a difference in frequency sound pressure characteristics between the low frequency range and the middle and high frequency ranges due to the diffraction effect of the cabinet. (JP-A-61-41299).
 また、振動板と結合されたコイルボビンと、コイルボビンに巻回されたボイスコイルと、ボイスコイルの両端から導出された第1の端子及び第2の端子と、ボイスコイルの途中から導出された中間端子と、第2の端子に接続されたバンドパスフィルタとを備え、第1の端子と中間端子との間に駆動用電流が供給されるとともに、第2の端子と中間端子との間に駆動用電流がバンドパスフィルタを介して供給されることによって駆動するスピーカが知られている(特開平9-163486号公報)。このスピーカでは、第2の端子と中間端子との間にバンドパスフィルタを介して供給される駆動用電流により、再生音圧レベルが制御される。 A coil bobbin coupled to the diaphragm, a voice coil wound around the coil bobbin, a first terminal and a second terminal led out from both ends of the voice coil, and an intermediate terminal led out from the middle of the voice coil. and a bandpass filter connected to the second terminal, a driving current is supplied between the first terminal and the intermediate terminal, and a driving current is supplied between the second terminal and the intermediate terminal. A loudspeaker driven by current supplied through a bandpass filter is known (Japanese Laid-Open Patent Publication No. 9-163486). In this speaker, the reproduced sound pressure level is controlled by a drive current supplied between the second terminal and the intermediate terminal through the bandpass filter.
 従来技術では、エンクロージャのバッフルの回折効果によるドライバ出力特性の変化に対して補正を施して、低コストで、かつ高音質な音響システムを実現するのに改善の余地がある。 With conventional technology, there is room for improvement in terms of correcting for changes in driver output characteristics due to the diffraction effect of the baffle of the enclosure and realizing a low-cost, high-quality sound system.
 本開示の技術は上記事実を考慮して、簡易な構成で、高音質なスピーカ装置及び音響システムを提供することを目的とする。 In consideration of the above facts, the technology of the present disclosure aims to provide a speaker device and an acoustic system with a simple configuration and high sound quality.
 本開示の一態様は、スピーカ装置であって、振動板を含む少なくとも1つのドライバからなる駆動部と、前記ドライバを収納するエンクロージャと、音源信号に基づいて、前記少なくとも1つのドライバの振動板を振動させる制御信号を出力する複数の駆動回路と、を含み、前記駆動部は、前記複数の駆動回路の出力に応じて前記振動板を振動させ、前記複数の駆動回路のうちの一部の駆動回路に、ローパスフィルタを設け、前記ローパスフィルタは、前記エンクロージャの形状に応じて出力される音圧の周波数特性のピーク周波数に、前記複数の駆動回路の各々が出力する前記制御信号を合成した信号の周波数特性におけるくぼみ周波数が対応するように設定される。 One aspect of the present disclosure is a speaker device, which includes a drive unit including at least one driver including a diaphragm, an enclosure that houses the driver, and a diaphragm of the at least one driver based on a sound source signal. and a plurality of drive circuits outputting control signals for vibrating, wherein the drive section vibrates the diaphragm according to the outputs of the plurality of drive circuits, and drives some of the plurality of drive circuits. A low-pass filter is provided in the circuit, and the low-pass filter is a signal obtained by synthesizing the control signal output from each of the plurality of drive circuits with the peak frequency of the frequency characteristics of the sound pressure output according to the shape of the enclosure. is set so that the recess frequency in the frequency characteristic of is corresponding.
 本開示の一態様は、音響システムであって、上記のスピーカ装置と、前記音源信号を受け付ける信号入力部と、前記受け付けた音源信号を前記スピーカ装置へ出力するアンプと、を含む。 An aspect of the present disclosure is an acoustic system including the speaker device described above, a signal input unit that receives the sound source signal, and an amplifier that outputs the received sound source signal to the speaker device.
 以上説明したように、本開示の技術によれば、簡易な構成で、高音質な音響システムを提供することができる。 As described above, according to the technology of the present disclosure, it is possible to provide an acoustic system with a simple configuration and high sound quality.
本開示の技術の第1、第2、第3の実施の形態に係る音響システムの概略図である。1 is a schematic diagram of an acoustic system according to first, second, and third embodiments of technology of the present disclosure; FIG. 本開示の技術の第1の実施の形態に係るスピーカ装置の構成を示す断面図である。1 is a cross-sectional view showing a configuration of a speaker device according to a first embodiment of technology of the present disclosure; FIG. 本開示の技術の第1の実施の形態に係るスピーカ装置の電気的な構成を示す回路図である。1 is a circuit diagram showing an electrical configuration of a speaker device according to a first embodiment of technology of the present disclosure; FIG. 駆動回路の各々が出力する制御信号、及び合成した信号の周波数特性を示すグラフである。4 is a graph showing frequency characteristics of control signals output from drive circuits and combined signals; 本開示の技術の第1の実施の形態に係るスピーカ装置の構成の一例を示す回路図である。1 is a circuit diagram showing an example of a configuration of a speaker device according to a first embodiment of technology of the present disclosure; FIG. 1次のローパスフィルタを用いて構成したスピーカ装置の例を示す回路図である。1 is a circuit diagram showing an example of a speaker device configured using a first-order low-pass filter; FIG. ボイスコイルを純抵抗とした場合の回路図である。FIG. 4 is a circuit diagram when a voice coil is a pure resistance; ボイスコイル電圧を表すベクトル図である。4 is a vector diagram representing voice coil voltages; FIG. 駆動回路の各々が出力する制御信号、及び合成した信号の周波数特性を示すグラフである。4 is a graph showing frequency characteristics of control signals output from drive circuits and combined signals; 2次のローパスフィルタを用いて構成したスピーカ装置の等価回路を示す回路図である。FIG. 3 is a circuit diagram showing an equivalent circuit of a speaker device configured using a secondary low-pass filter; ボイスコイル電圧を表すベクトル図である。4 is a vector diagram representing voice coil voltages; FIG. 駆動回路の各々が出力する制御信号、及び合成した信号の周波数特性を示すグラフである。4 is a graph showing frequency characteristics of control signals output from drive circuits and combined signals; ζを変化させた場合における、駆動回路の各々が出力する制御信号、及び合成した信号の周波数特性を示すグラフである。4 is a graph showing the frequency characteristics of the control signal output from each drive circuit and the synthesized signal when ζ is varied. 3次のローパスフィルタを用いて構成したスピーカ装置の等価回路を示す回路図である。FIG. 4 is a circuit diagram showing an equivalent circuit of a speaker device configured using a third-order low-pass filter; ζを変化させた場合における、駆動回路の各々が出力する制御信号を合成した信号の周波数特性を示すグラフである。4 is a graph showing frequency characteristics of a signal obtained by synthesizing control signals output from each drive circuit when ζ is changed. 1次~4次のローパスフィルタを用いた場合におけるボイスコイル電圧を表すベクトル図である。FIG. 4 is a vector diagram showing voice coil voltages when first to fourth order low-pass filters are used; ローパスフィルタを含む駆動回路の等価回路を示す回路図である。FIG. 4 is a circuit diagram showing an equivalent circuit of a drive circuit including a low-pass filter; ローパスフィルタを含む駆動回路の等価回路を示す回路図である。FIG. 4 is a circuit diagram showing an equivalent circuit of a drive circuit including a low-pass filter; 各インピーダンスの特性を表すグラフである。It is a graph showing the characteristic of each impedance. 負荷を変化させた場合における、駆動回路の各々が出力する制御信号を合成した信号の周波数特性を示すグラフである。ボイスコイル電圧の周波数特性を表すグラフである。5 is a graph showing frequency characteristics of a signal obtained by synthesizing control signals output from each of the drive circuits when the load is changed; 4 is a graph showing frequency characteristics of voice coil voltage; 本開示の技術の第2の実施の形態に係るスピーカ装置の構成を示す断面図である。FIG. 4 is a cross-sectional view showing the configuration of a speaker device according to a second embodiment of the technique of the present disclosure; 本開示の技術の第2の実施の形態に係るスピーカ装置の構成を示す回路図である。FIG. 4 is a circuit diagram showing the configuration of a speaker device according to a second embodiment of the technology of the present disclosure; 単一のボイスコイルボビンを示す斜視図である。FIG. 4 is a perspective view showing a single voice coil bobbin; 2系統構成したボイスコイルの断面図である。FIG. 4 is a cross-sectional view of a two-line voice coil. ローパスフィルタを用いずに構成したスピーカ装置を示す回路図である。FIG. 4 is a circuit diagram showing a speaker device configured without using a low-pass filter; ローパスフィルタを用いずに構成したスピーカ装置における2π空間とバスレフ型エンクロージャでの無響室特性を表すグラフである。4 is a graph showing anechoic room characteristics in a 2π space and a bass reflex type enclosure in a speaker device configured without using a low-pass filter. バスレフ型エンクロージャと2π空間との実測値の差と、計算データとの比較を表すグラフである。4 is a graph showing a comparison between the difference between the measured values of the bass reflex enclosure and the 2π space and the calculated data. 実施例に係るスピーカ装置の構成を示す回路図である。1 is a circuit diagram showing the configuration of a speaker device according to an example; FIG. 駆動回路の各々が出力する制御信号を合成した信号の周波数特性のシミュレーション結果を示すグラフである。5 is a graph showing simulation results of frequency characteristics of a signal obtained by synthesizing control signals output from drive circuits; ローパスフィルタの有無それぞれでの音圧実測結果を表すグラフである。7 is a graph showing sound pressure measurement results with and without a low-pass filter. ローパスフィルタの有無による音圧差を表すグラフである。7 is a graph showing a sound pressure difference with and without a low-pass filter; 実施例に係るスピーカ装置の構成の一例を示す回路図である。1 is a circuit diagram showing an example of the configuration of a speaker device according to an embodiment; FIG. 駆動回路の各々が出力する制御信号を合成した信号の周波数特性のシミュレーション結果を示すグラフである。5 is a graph showing simulation results of frequency characteristics of a signal obtained by synthesizing control signals output from drive circuits; ローパスフィルタの有無それぞれでの音圧実測結果を表すグラフである。7 is a graph showing sound pressure measurement results with and without a low-pass filter. ローパスフィルタの有無による音圧差を表すグラフである。7 is a graph showing a sound pressure difference with and without a low-pass filter; 一方のボイスコイルが短絡した状態の回路図である。It is a circuit diagram in which one voice coil is short-circuited. 一方のボイスコイルが短絡した場合としていない場合(図24の接続の場合)それぞれでの音圧実測結果を表すグラフである。FIG. 25 is a graph showing sound pressure measurement results when one voice coil is short-circuited and when it is not (connection of FIG. 24). 一方のボイスコイルが開放した状態の回路図である。FIG. 4 is a circuit diagram of a state in which one voice coil is open; 一方のボイスコイルが開放した場合と短絡した場合それぞれでの音圧実測結果を表すグラフである。7 is a graph showing sound pressure measurement results when one voice coil is open and when one voice coil is short-circuited; WFとして利用する例におけるスピーカ装置の構成を示す回路図である。1 is a circuit diagram showing the configuration of a speaker device in an example of use as a WF; FIG. 各ドライバに対する制御信号、及び合成した信号の周波数特性を示すグラフである。5 is a graph showing frequency characteristics of a control signal for each driver and a synthesized signal; エンクロージャの例を示す斜視図である。4 is a perspective view showing an example of an enclosure; FIG. エンクロージャの例を示す斜視図である。4 is a perspective view showing an example of an enclosure; FIG. 2ウェイ音響システムの構成を示す回路図である。1 is a circuit diagram showing the configuration of a 2-way sound system; FIG. 各ドライバに対する制御信号、及び合成した信号の周波数特性を示すグラフである。5 is a graph showing frequency characteristics of a control signal for each driver and a synthesized signal; バッフルの回折効果の影響を考慮した場合における各ドライバに対する制御信号、及び合成した信号の周波数特性を示すグラフである。7 is a graph showing the frequency characteristics of the control signal for each driver and the synthesized signal when considering the diffraction effect of the baffle. 補償回路を設けたスピーカ装置の構成を示す回路図である。1 is a circuit diagram showing a configuration of a speaker device provided with a compensation circuit; FIG. 各ドライバに対する制御信号、及び合成した信号の周波数特性を示すグラフである。5 is a graph showing frequency characteristics of a control signal for each driver and a synthesized signal; ホワイトノイズを信号源とした場合のフィルタ特性を表すグラフである。4 is a graph showing filter characteristics when white noise is used as a signal source; TWとして利用する例におけるスピーカ装置の構成を示す回路図である。1 is a circuit diagram showing a configuration of a speaker device in an example of use as TW; FIG.
 以下、図面を参照して本開示の技術の実施の形態を詳細に説明する。 Hereinafter, embodiments of the technology of the present disclosure will be described in detail with reference to the drawings.
<本開示の技術の実施の形態の概要>
 高音質再生を重視した音響システムには、広帯域であって、歪みが低く、かつ、平坦な音圧周波数特性が要求される。
<Summary of embodiment of technology of the present disclosure>
Acoustic systems emphasizing high-quality sound reproduction require broadband, low-distortion, and flat sound pressure frequency characteristics.
 一般のユーザ向けの音響システムでは、エンクロージャについてはスペースファクタを重視し、小型の音響システムやトールボー型(低音再生を有利にすべく容積を増やすために全高方向に拡張されたもの)など、直方体状のものが主流である(図41A、図41B参照)。これらには、一つのドライバで全帯域放射可能なフルレンジ型ドライバを使用したものや、入力信号をディバイディングネットワーク回路で低音、中音、高音等に分け、各専用ドライバで再生するマルチウェイ音響システムがある。 In sound systems for general users, the space factor is emphasized in the enclosure, and a rectangular parallelepiped shape such as a small sound system or a tallbow type (which is expanded in all directions to increase the volume to make bass reproduction advantageous) is used. is the mainstream (see FIGS. 41A and 41B). These include those using a full-range driver that can radiate all bands with a single driver, and multi-way sound systems that divide the input signal into bass, middle, and treble by a dividing network circuit and reproduce them with dedicated drivers. There is
 エンクロージャの容積やドライバ口径が小さくなると、再生可能な下限周波数が高くなったり、低音帯域の音圧が不十分になるなど、低音不足の問題が生じやすい。このため、音響システムの再生下限周波数より下の帯域を再生するためのサブウーファー音響システムを追加することが提案されている。ここで、サブウーファー音響システムは、最低音域では、リスナーが方向感知することができないことを利用して、メイン音響システムの下限周波数以下を一つの音響システムで再生するものである。 When the volume of the enclosure and the diameter of the driver become smaller, the problem of insufficient bass tends to occur, such as the lower limit frequency that can be reproduced becomes higher and the sound pressure in the bass band becomes insufficient. For this reason, it has been proposed to add a subwoofer sound system for reproducing the band below the reproduction lower limit frequency of the sound system. Here, the subwoofer sound system reproduces frequencies below the lower limit frequency of the main sound system with one sound system, taking advantage of the fact that the listener cannot perceive the direction in the lowest sound range.
 サブウーファーの効果は、メイン音響システムの下限周波数付近以下を補強することが可能なことであるが、小型の音響システムなどが低音不足となることの他の大きな要因である、バッフル(ドライバ取り付け部)の回折効果の影響に対して、補正する効果はない。 The effect of the subwoofer is that it is possible to reinforce the area below the lower frequency limit of the main sound system. ) has no effect of correcting for the influence of the diffraction effect.
 また、マルチウェイ音響システムであれば、各ユニット間の音圧差等の特性コントロールが可能であるが、各ユニットの再生可能帯域が限られているので、バッフルの回折効果による音圧差の周波数範囲やピーク周波数に合わせた特性を作れない場合がある。例えば、バッフルの回折効果による音圧段差の部分が低音ドライバの再生帯域内にある場合などには、補正することができない。 Also, in a multi-way sound system, it is possible to control characteristics such as sound pressure differences between each unit, but since the reproducible band of each unit is limited, the frequency range of the sound pressure difference due to the diffraction effect of the baffle, It may not be possible to create characteristics that match the peak frequency. For example, when the sound pressure difference portion due to the diffraction effect of the baffle is within the reproduction band of the bass driver, it cannot be corrected.
 ここで、バッフルの回折効果について説明する。音楽鑑賞用などのHi-Fi音響システムの低音用ドライバやフルレンジ型ドライバでは、駆動部は動電型であり、放射部は直接放射型(コーン型、平板型等)であることが一般的である。 Here, the diffraction effect of the baffle will be explained. Generally, bass drivers and full-range drivers for Hi-Fi audio systems for listening to music are of the electrodynamic type for the driving part and the direct radiation type (cone type, flat plate type, etc.) for the radiating part. be.
 この型のドライバを、振動板前後の放射音を分離するための無限大バッフルに取り付けた場合(2π空間に放射)の特性は、質量制御帯域(最低共振周波数よりも高い周波数帯域)のドライバ軸上のリスニングポイントでの音圧が入力電圧に比例するので、理論上その帯域内で概ね平坦な特性である。 When this type of driver is attached to an infinite baffle to separate the radiated sound before and after the diaphragm (radiating into 2π space), the characteristics of the driver axis in the mass control band (frequency band higher than the lowest resonance frequency) Since the sound pressure at the upper listening point is proportional to the input voltage, theoretically the characteristics are generally flat within that band.
 しかし、無限大バッフルを構成することは現実的ではない為、ドライバの後方放射音を取り囲む直方体状のエンクロージャを使用するのが一般的である。 However, since it is not realistic to construct an infinite baffle, it is common to use a rectangular parallelepiped enclosure that surrounds the sound radiated from the rear of the driver.
 バッフルは有限の大きさとなり、バッフルの端で音波の回折が生じる。これにより、指向性が弱くなる低音帯域(波長が長い帯域)において放射空間が実質4π空間となることから、指向性の強い高音帯域に対して6dBの音圧低下が生じる。すわなち、低域側が高域側よりも6dB低くなる。また、バッフル端に仮想音源が生じることにより、ドライバ軸上の特性にうねりが生じる。 The baffle has a finite size, and sound waves are diffracted at the edge of the baffle. As a result, the radiation space substantially becomes a 4π space in the low frequency band (long wavelength band) in which the directivity is weak, so that a sound pressure drop of 6 dB occurs in the high frequency band in which the directivity is strong. That is, the low frequency side is 6 dB lower than the high frequency side. Also, a virtual sound source is produced at the end of the baffle, which causes an undulation in the characteristic on the driver axis.
 このように、例えば一般的な直方体状のエンクロージャのバッフル板に導電型ドライバを取り付けた場合の音圧特性の顕著な特徴として、2つの特徴がある。第一に、高音側帯域が低音側帯域より6dB高くなる、という特徴がある。また、第二に、中間帯域で高域側の音圧に対して1~3dB程度のピークが生じる、という特徴がある。 In this way, for example, when a conductive driver is attached to the baffle plate of a general rectangular parallelepiped enclosure, there are two prominent characteristics of the sound pressure characteristics. First, there is a characteristic that the high frequency band is higher than the low frequency band by 6 dB. Secondly, there is a feature that a peak of about 1 to 3 dB is generated with respect to the sound pressure on the high frequency side in the middle band.
 少なくともこの二つの特徴を補正することは、音響システムの低音不足改善、すわなち、平坦な音圧周波数特性を実現するためには効果的である。なお、導電型ドライバは、電圧に比例した音圧特性であって、無限大バッフルで平坦な音圧特性を有する。 Correcting at least these two characteristics is effective in improving the lack of bass in the acoustic system, that is, in achieving flat sound pressure frequency characteristics. A conductive driver has a sound pressure characteristic proportional to a voltage, and has a flat sound pressure characteristic with an infinite baffle.
 これらを補償する対策の一例として、高音用ドライバ(トゥイータ:以下「TW」とも称する。)と低音用ドライバ(ウーファー:以下「WF」とも称する。)を用いて構成される2ウェイ音響システムの場合、クロスオーバーネットワーク(ディバイディングネットワーク/以下「ネットワーク」とも称する。)の各定数を調整することで、低域側と高域側の音圧差とピークとを補正する方法がある。 As an example of countermeasures for compensating for these, in the case of a two-way acoustic system configured using a high frequency driver (tweeter: hereinafter also referred to as "TW") and a low frequency driver (woofer: hereinafter also referred to as "WF") , and a crossover network (dividing network, hereinafter also referred to as "network").
 図42は2ウェイ音響システムのスピーカ装置を示す基本的な回路図である。HPFは、ハイパスフィルタであり、入力信号をTW用の適切な帯域の信号成分にする。LPFは、ローパスフィルタであり、入力信号をWF用に適切な帯域の信号成分にする。ATTは、アッテネータであり、TWへの入力電圧の大きさを調整するための回路である。上記図42の例では、L型に抵抗が配置され、HPFから見た場合のインピーダンスが純抵抗に近くなる。これにより、HPFの特性がTWのボイスコイルインダクタンスやモーショナルインピーダンスの影響を受けにくくなる。 FIG. 42 is a basic circuit diagram showing a speaker device for a two-way sound system. The HPF is a high pass filter that filters the input signal to the appropriate band signal components for the TW. The LPF is a low-pass filter that converts the input signal into signal components in the appropriate band for WF. ATT is an attenuator, and is a circuit for adjusting the magnitude of the input voltage to TW. In the example of FIG. 42, the resistors are arranged in an L-shape, and the impedance when viewed from the HPF is close to pure resistance. This makes the characteristics of the HPF less susceptible to the voice coil inductance and motional impedance of the TW.
 インピーダンス(Imp.)補正は、ドライバの電気インピーダンスはモーショナルインピーダンスとボイスコイルの直流抵抗とWFのボイスコイルインダクタンスで構成される。上記図42の回路によりLPF帯域でWFのボイスコイルインダクタンスの影響を無くすことができる。すなわち、見かけ上、純抵抗とすることができる。 In the impedance (Imp.) correction, the electrical impedance of the driver is composed of the motional impedance, the DC resistance of the voice coil, and the voice coil inductance of WF. The circuit of FIG. 42 can eliminate the influence of the voice coil inductance of the WF in the LPF band. That is, it can be seen as a pure resistance.
 図43は、各ドライバ出力特性がそれぞれの帯域内で平坦で同能率であることを前提とした場合の、各ドライバへ入力される制御信号の周波数特性と合成した信号の周波数特性との一例を示すグラフである。図43では、TW側が逆相となるように接続した回路における、計算値を示しており、Einは、アンプからの入力電圧であり、Ewfは、WF側のドライバへ入力される信号の電圧であり、Etwは、TW側のドライバへ入力される信号の電圧である。 FIG. 43 shows an example of the frequency characteristics of the control signal input to each driver and the frequency characteristics of the synthesized signal, assuming that the output characteristics of each driver are flat and have the same efficiency within their respective bands. It is a graph showing. FIG. 43 shows calculated values in a circuit connected so that the TW side is in reverse phase, Ein is the input voltage from the amplifier, and Ewf is the voltage of the signal input to the WF side driver. and Etw is the voltage of the signal input to the driver on the TW side.
 また、バッフルの回折効果の影響をさらに考慮した場合の、各ドライバへ入力される制御信号の周波数特性と合成した信号の周波数特性との一例を示すグラフを図44に示す。上記図44では、上記図43に示した例に対して、LPFのインダクタンスL1を3倍として、より低い周波数からなだらかに出力低下するようにし、ATTでTW出力をWF出力より6dB低くなるようにすることでバッフルの回折効果を補正する例を示している。 Also, FIG. 44 shows a graph showing an example of the frequency characteristics of the control signal input to each driver and the frequency characteristics of the combined signal when the influence of the diffraction effect of the baffles is further considered. In FIG. 44, the inductance L1 of the LPF is tripled compared to the example shown in FIG. 43, so that the output gradually decreases from a lower frequency, and the TW output is 6 dB lower than the WF output at ATT. This shows an example of correcting the diffraction effect of the baffle.
 上記図44が示す例では、2ウェイ音響システムの典型的なディバイディングネットワーク回路構成のまま、素子の定数変更のみで補正が可能である。しかし、WFとTWのクロスオーバー周波数付近でくぼみを作る為に、TWは、バッフル効果により音圧にピークが生じる周波数付近まで十分再生可能である必要がある。上記図44の例では、TWが1kHz以上の帯域で十分再生可能である必要がある。 In the example shown in FIG. 44, correction is possible only by changing the constants of the elements while maintaining the typical dividing network circuit configuration of the two-way acoustic system. However, in order to create a hollow near the crossover frequency of WF and TW, TW must be sufficiently reproducible up to near the frequency at which the sound pressure peaks due to the baffle effect. In the example of FIG. 44, the TW needs to be sufficiently reproducible in a band of 1 kHz or higher.
 また、バッフルが300×450mm程度の直方体のエンクロージャに、有効径が145mmの振動板を取り付けた場合、例えば、バッフル効果の影響で、音圧特性の700Hzにピークが生じる。同様の方法で補正するためには700Hz以上が十分再生可能なTW(2ウェイ音響システムの場合)が必要となる。このように、音響システムの外寸に応じて低域再生能力が高いものに使用可能なTWが限定されることとなる。 Also, when a diaphragm with an effective diameter of 145 mm is attached to a cuboid enclosure with a baffle of about 300 x 450 mm, for example, a peak occurs at 700 Hz in sound pressure characteristics due to the baffle effect. A TW capable of sufficiently reproducing 700 Hz or higher (in the case of a two-way sound system) is required for correction by a similar method. In this way, TWs that can be used for those with high low-frequency reproduction capability are limited according to the outer dimensions of the acoustic system.
 また、他の例として、TWの再生可能下限周波数が高い場合やTWの耐入力が低い場合では、システムとしての耐入力性能を高くするためクロスオーバー周波数を高くせざるを得ない場合がある。また、広帯域のWFやフルレンジ型ドライバを利用するためにあえてクロスオーバー周波数を高く設定するものやTWを用いないものも有る。これらの場合では、バッフル効果により音圧差の生じる帯域が、低域側のドライバ又はフルレンジ型ドライバの出力帯域内となる。 As another example, if the TW has a high reproducible lower limit frequency or the TW has a low input resistance, the crossover frequency may have to be increased in order to increase the input resistance performance of the system. In addition, there are also those in which the crossover frequency is intentionally set high in order to use a wideband WF or full-range type driver, and those in which TW is not used. In these cases, the band in which the sound pressure difference occurs due to the baffle effect is within the output band of the low-frequency driver or the full-range driver.
 例えば、図45に示すように、ドライバへ入力される信号の周波数特性をバッフル効果の逆特性とするための補償回路を設ける方法が知られている。図46は、上記図45の回路における各ドライバへの入力信号の周波数特性と合成した信号の周波数特性の一例を示すグラフである。 For example, as shown in FIG. 45, there is known a method of providing a compensation circuit for making the frequency characteristics of the signal input to the driver reverse to the baffle effect. FIG. 46 is a graph showing an example of the frequency characteristics of the input signal to each driver in the circuit of FIG. 45 and the frequency characteristics of the combined signal.
 上記図42の例で示した方法では、バッフルが大きい場合、TWの再生帯域が低域側に広くなり、TWのボイスコイルが発熱や振幅過大により破損しやすい、という問題がある。また、結果的にシステムの耐入力が低くなる、という問題がある。また、TWの低域再生限界が十分低い必要があり、TWの選択肢が減少する、という問題がある。  In the method shown in the example of Fig. 42, when the baffle is large, the reproduction band of the TW widens to the low frequency side, and there is a problem that the voice coil of the TW is likely to be damaged due to heat generation and excessive amplitude. In addition, there is a problem that the input resistance of the system is lowered as a result. In addition, there is a problem that the low-frequency reproduction limit of TW must be sufficiently low, and options for TW are reduced.
 上記図45の例で示した方法では、補償回路内の抵抗からの発熱が大きいことから、それによる特性の変化や安全上の問題がある。また、音声信号又は音楽信号は、高域ではエネルギーが低く中低域ではエネルギーが大きい為、ネットワークに抵抗を使用する場合は主に高域側で使用される。また、TWの再生帯域の低域側の拡張は信頼性上不利である、という問題がある。なお、国際規格で規定されているスピーカの耐入力テスト用の信号の特性が規定されている(図47参照)。図47は、ホワイトノイズを信号源とした場合の、フィルタ特性を示している。 In the method shown in the example of FIG. 45, the resistance in the compensation circuit generates a large amount of heat, which causes changes in characteristics and safety problems. In addition, since voice signals or music signals have low energy in high frequencies and high energy in middle and low frequencies, when resistors are used in the network, they are mainly used on the high frequency side. Further, there is a problem that the extension of the TW reproduction band to the low frequency side is disadvantageous in terms of reliability. It should be noted that the characteristics of the signal for the input resistance test of the speaker stipulated in the international standards are stipulated (see FIG. 47). FIG. 47 shows filter characteristics when white noise is used as a signal source.
 本開示の技術の実施の形態では、上記問題を解決し、安価に高音質な音響システムを提供する。 The embodiment of the technology of the present disclosure solves the above problem and provides an inexpensive high-quality sound system.
 ここで、直方体などのエンクロージャのバッフルの回折効果の主な特徴として、低域と高域との間で6dBの音圧差となることと、音圧段差より高域側に音圧上昇部(約2dBのピーク)があることとが挙げられる。 Here, as the main features of the diffraction effect of the baffle of the enclosure such as a rectangular parallelepiped, there is a sound pressure difference of 6 dB between the low range and the high range, and the sound pressure rise part (approximately 2 dB peak).
 通常のドライバへの入力信号に対して、上記特徴の逆特性となる補正を行ってドライバに入力する構成とする。その際、抵抗は用いない。 The input signal to the normal driver is corrected to have the opposite characteristics of the above characteristics and is input to the driver. No resistance is used.
 具体的には、低域と高域との間で6dBの音圧差となることを補正する為の構成要素として、バッフル効果により音圧差を生じる帯域を放射するドライバ(WFまたはフルレンジ型ドライバ)を、電気的に2以上の系統の駆動回路で駆動し、一部の系統の駆動回路に、ローパスフィルタを設け、他の系統の駆動回路と並列に接続する。 Specifically, a driver (WF or full-range type driver) that emits a band that produces a sound pressure difference due to the baffle effect is used as a component to correct the 6 dB sound pressure difference between the low and high frequencies. , the drive circuits of two or more systems are electrically driven, and the drive circuits of some systems are provided with low-pass filters and connected in parallel with the drive circuits of the other systems.
 これにより、高域よりも低域のドライバ出力を大きくし、有限バッフルによる低域側と高域側との音圧差を補正する。 As a result, the low-frequency driver output is made larger than the high-frequency driver output, and the sound pressure difference between the low-frequency side and the high-frequency side due to the finite baffle is corrected.
 電気的に2以上の系統の駆動回路で駆動する構成としては、下記の第1の方法~第3の方法の何れかの方法で、入力信号に対してそれぞれの駆動回路が同一方向に力を発生させる構成とすればよい。 As a configuration in which two or more drive circuits are electrically driven, each drive circuit applies force in the same direction to an input signal by any of the following first to third methods. It may be configured to generate
 第1の方法では、複数のドライバに対する複数の駆動回路を並列接続して使用する。 In the first method, a plurality of drive circuits for a plurality of drivers are connected in parallel and used.
 第2の方法では、単一のドライバ(振動板)に対して複数の駆動回路を設け、それぞれを並列接続する。具体的には、単一のドライバにおいて、磁気ギャップとボイスコイルとを複数組設ける。 In the second method, a plurality of drive circuits are provided for a single driver (diaphragm) and connected in parallel. Specifically, a plurality of sets of magnetic gaps and voice coils are provided in a single driver.
 第3の方法では、単一のドライバにおける単一の磁気ギャップ及び単一のボイスコイルに対して、複数系統のボイスコイル線を配置する。 In the third method, multiple lines of voice coil wires are arranged for a single magnetic gap and a single voice coil in a single driver.
 なお、同性能の偶数系統の駆動回路を用いる場合、半数の駆動回路にローパスフィルタを設け、他の駆動回路にローパスフィルタを設けずに信号をドライバに入力して駆動すればよい。これにより、高域側が低域側よりも6dB低くなる。すわなち、駆動力が1/2になる。 When using even-numbered drive circuits with the same performance, half of the drive circuits may be provided with low-pass filters, and the other drive circuits may be driven by inputting signals to the drivers without providing low-pass filters. This makes the high frequency side lower than the low frequency side by 6 dB. That is, the driving force becomes 1/2.
 音圧段差より高域側に音圧上昇部(約2dBのピーク)があることを補正する構成要素として、ローパスフィルタを、ボイスコイルに直列に接続された入力側のインダクタンス(コイル)と、ボイスコイルに並列に接続されたキャパシタンス(コンデンサ)で構成された2次以上のものとする。また、ドライバへ入力される信号の周波数特性において、バッフル効果によって生じるピーク周波数付近にくぼみができるようにする。 As a component for correcting the fact that there is a sound pressure rise portion (approximately 2 dB peak) on the high-frequency side of the sound pressure step, a low-pass filter is added to the input-side inductance (coil) connected in series with the voice coil and the voice coil. It shall be of a second order or higher consisting of a capacitance (capacitor) connected in parallel with the coil. Also, in the frequency characteristics of the signal input to the driver, a depression is formed near the peak frequency caused by the baffle effect.
[第1の実施の形態]
<本開示の技術の第1の実施の形態の音響システムの構成>
 図1は、本開示の技術の実施の形態に係る音響システム10の概略図を示している。
[First embodiment]
<Configuration of Acoustic System According to First Embodiment of Technology of the Present Disclosure>
FIG. 1 shows a schematic diagram of an audio system 10 according to an embodiment of the technology of the present disclosure.
 図1に示すように、音響システム10は、音源入力部12と、アンプ14と、スピーカ装置16とを備えている。 As shown in FIG. 1, the acoustic system 10 includes a sound source input section 12, an amplifier 14, and a speaker device 16.
 音源入力部12は、音源信号を受け付ける。 The sound source input unit 12 receives sound source signals.
 アンプ14は、受け付けた音源信号をスピーカ装置16へ出力する。 The amplifier 14 outputs the received sound source signal to the speaker device 16 .
 スピーカ装置16は、図2に示すように、2つのドライバ20A、20Bからなる駆動部18と、駆動部18を収納するエンクロージャ22とを備えている。本実施の形態では、エンクロージャ22は、直方体状の筐体であり、バスレフ型のエンクロージャである。ドライバ20A、20Bは、フルレンジ型ドライバである。 The speaker device 16 includes, as shown in FIG. 2, a drive section 18 consisting of two drivers 20A and 20B, and an enclosure 22 that houses the drive section 18. As shown in FIG. In this embodiment, the enclosure 22 is a rectangular parallelepiped housing and is a bass reflex type enclosure. Drivers 20A and 20B are full-range drivers.
 また、図3に示すように、スピーカ装置16は、音源信号に基づいてドライバ20Aの振動板(図示省略)を振動させる制御信号を出力する駆動回路30Aと、音源信号に基づいてドライバ20Bの振動板(図示省略)を振動させる制御信号を出力する駆動回路30Bと、駆動回路30A、30Bの出力に応じて振動板を振動させる駆動部18とを備えている。駆動回路30Bは、ローパスフィルタ32を備えている。 As shown in FIG. 3, the speaker device 16 includes a drive circuit 30A that outputs a control signal for vibrating a diaphragm (not shown) of the driver 20A based on the sound source signal, and a driver 20B that vibrates the driver 20B based on the sound source signal. It includes a drive circuit 30B that outputs a control signal for vibrating a plate (not shown), and a drive unit 18 that vibrates the diaphragm according to the outputs of the drive circuits 30A and 30B. The drive circuit 30B has a low-pass filter 32 .
 ドライバ20A、20Bは、ボイスコイルVC1、VC2及び磁気回路(図示省略)を含む。 The drivers 20A, 20B include voice coils VC1, VC2 and magnetic circuits (not shown).
 駆動回路30Aは、入力された音源信号に応じた制御信号をボイスコイルVC1に出力し、磁気回路によりドライバ20Aの振動板を振動させる。 The drive circuit 30A outputs a control signal corresponding to the input sound source signal to the voice coil VC1, and causes the diaphragm of the driver 20A to vibrate with the magnetic circuit.
 駆動回路30Bは、入力された音源信号からローパスフィルタ32を介して得られた制御信号をボイスコイルVC2に出力し、磁気回路によりドライバ20Bの振動板を振動させる。 The drive circuit 30B outputs a control signal obtained from the input sound source signal through the low-pass filter 32 to the voice coil VC2, and vibrates the diaphragm of the driver 20B by the magnetic circuit.
 ローパスフィルタ32は、エンクロージャ22の形状に応じて出力される音圧の周波数特性のピーク周波数に、駆動回路30A、30Bの各々が出力する制御信号を合成した信号の周波数特性におけるくぼみ周波数が対応するように設定される(図4の矢印参照)。図4では、Einは、アンプ14からの入力信号の電圧を示し、Evc1は、ボイスコイルVC1へ入力される制御信号の電圧を示し、Evc2は、ボイスコイルVC2へ入力される制御信号の電圧を示している。くぼみ周波数とは、信号の周波数特性において極小値となる周波数である。 In the low-pass filter 32, the peak frequency of the frequency characteristics of the sound pressure output according to the shape of the enclosure 22 corresponds to the depression frequency in the frequency characteristics of the signal obtained by synthesizing the control signals output from the drive circuits 30A and 30B. (see arrows in FIG. 4). In FIG. 4, Ein indicates the voltage of the input signal from the amplifier 14, Evc1 indicates the voltage of the control signal input to the voice coil VC1, and Evc2 indicates the voltage of the control signal input to the voice coil VC2. showing. A dip frequency is a frequency that is a minimum value in the frequency characteristics of a signal.
 ローパスフィルタ32を、ボイスコイルVC2に直列に接続されたインダクタンス(コイル)と、ボイスコイルVC2に並列に接続されたキャパシタンス(コンデンサ)で構成された2次以上のものとする。 The low-pass filter 32 is of secondary or higher order and consists of an inductance (coil) connected in series with the voice coil VC2 and a capacitance (capacitor) connected in parallel with the voice coil VC2.
 例えば、図5に示すように、ローパスフィルタ32は、ボイスコイルVC2に直列に接続されたインダクタンスLと、ボイスコイルVC2に並列に接続されたキャパシタンスCとを備えている。 For example, as shown in FIG. 5, the low-pass filter 32 has an inductance L connected in series with the voice coil VC2 and a capacitance C connected in parallel with the voice coil VC2.
<ローパスフィルタの次数に関する説明>
 ここで、ローパスフィルタ32を2次以上とする理由について説明する。
<Description on the order of the low-pass filter>
Here, the reason why the low-pass filter 32 is of second order or higher will be described.
 まず、ローパスフィルタが一次の場合、すわなち、コイルのみでローパスフィルタを構成する場合について説明する(図6)。図6は、1次のローパスフィルタを用いて構成したスピーカ装置を示す回路図である。 First, the case where the low-pass filter is primary, that is, the case where the low-pass filter is composed only of coils will be described (Fig. 6). FIG. 6 is a circuit diagram showing a speaker device configured using a first-order low-pass filter.
 入力信号の電圧Ein=1とし、各ボイスコイルの電気インピーダンスをそれぞれ抵抗Rvc1、Rvc2とし、ボイスコイルへ出力される制御信号の電圧をEvc1、Evc2とした場合(図7参照)、以下の式で表される。なお、図7は、ボイスコイルを純抵抗とした場合のスピーカ装置の等価回路を示す回路図である。 When the voltage of the input signal is Ein=1, the electrical impedance of each voice coil is Rvc1 and Rvc2, respectively, and the voltage of the control signal output to the voice coil is Evc1 and Evc2 (see FIG. 7), the following formula expressed. FIG. 7 is a circuit diagram showing an equivalent circuit of the speaker device when the voice coil is pure resistance.
 それぞれのボイスコイルへの制御信号の電圧を図8に示すベクトル図で表すと、Evc1(ω)は周波数に関わらず1で一定なので、ベクトルは回転しない(図8の破線矢印参照)。 When the voltage of the control signal to each voice coil is represented by the vector diagram shown in FIG. 8, Evc1(ω) is constant at 1 regardless of the frequency, so the vector does not rotate (see the dashed arrow in FIG. 8).
 なお、上記図7では、簡略化の為、ボイスコイルを純抵抗としている。厳密には、ボイスコイルは純抵抗ではないため、他のリアクタンス等の影響については後述する。 In addition, in FIG. 7 above, the voice coil is a pure resistance for the sake of simplification. Strictly speaking, since the voice coil is not a pure resistance, other influences such as reactance will be described later.
 Evc2(ω)は、ω(=2πf)が0から大きくなるに従い、破線曲線上を1から0へ向かって移動する。従ってEvc2(ω)の実部が負になることがない(位相角は0~-90°の範囲)。 Evc2(ω) moves from 1 to 0 on the dashed curve as ω(=2πf) increases from 0. Therefore, the real part of Evc2(ω) never becomes negative (the phase angle ranges from 0 to -90°).
 Evc1(ω)+Evc2(ω)(図8の実践矢印先端部参照)は、ωが0から大きくなるにしたがって実線曲線上を実部である2から1に向けて移動する。そのため合成ベクトルの長さ(|Evc1(ω)+Evc2(ω)|)は常に1以上でありEinの値を下回ることはなく、周波数特性上にくぼみを形成することができない(図9の実線参照)。図9は、上記図7の回路における駆動回路の各々が出力する制御信号、及び合成した信号の周波数特性を示すグラフである。 Evc1(ω)+Evc2(ω) (see the tip of the practical arrow in FIG. 8) moves from 2, which is the real part, toward 1 on the solid curve as ω increases from 0. Therefore, the length of the combined vector (|Evc1(ω)+Evc2(ω)|) is always greater than or equal to 1 and never falls below the value of Ein. ). FIG. 9 is a graph showing the frequency characteristics of the control signal output by each drive circuit in the circuit of FIG. 7 and the combined signal.
 合成ベクトルの長さ(|Evc1(ω)+Evc2(ω)|)が1よりも小さくなる(くぼみができる)条件として、少なくともEvc2(ω)の実部が負になる必要がある。言い換えるとEvc2(ω)の位相角が、-90~+90度の内の一部分に存在する必要がある。 As a condition for the length of the combined vector (|Evc1(ω)+Evc2(ω)|) to be less than 1 (a hollow is formed), at least the real part of Evc2(ω) must be negative. In other words, the phase angle of Evc2(ω) should be in a part of -90 to +90 degrees.
 次に、図10に示すように、2次のローパスフィルタを用いる場合、すなわち、コイルとコンデンサをそれぞれ1つ用いてローパスフィルタを構成する場合について説明する。図10は、2次のローパスフィルタを用いて構成したスピーカ装置の等価回路を示す回路図である。ボイスコイルに出力される制御信号の電圧Evc1、Evc2は、以下の式で表される。 Next, as shown in FIG. 10, the case of using a secondary low-pass filter, that is, the case of configuring a low-pass filter using one coil and one capacitor, will be described. FIG. 10 is a circuit diagram showing an equivalent circuit of a speaker device configured using a secondary low-pass filter. Voltages Evc1 and Evc2 of the control signals output to the voice coil are expressed by the following equations.
 Evc2(ω)の実部は、分母が常に正であるので、(1-ωCL)<0の場合に負になることが判る。つまり

 
以上になる周波数で負になる(図11の破線曲線が第3象限を通る場合を参照)。図11は、上記図10に示す回路におけるボイスコイルへ出力される制御信号の電圧を表すベクトル図である。
It can be seen that the real part of Evc2(ω) is negative if (1−ω 2 CL)<0, since the denominator is always positive. In other words


(See the case where the dashed curve in FIG. 11 passes through the third quadrant). FIG. 11 is a vector diagram showing the voltage of the control signal output to the voice coil in the circuit shown in FIG. 10 above.
 Evc1(ω)+Evc2(ω)(上記図11の実線矢印先端部を参照)は周波数が0から大きくなるにしたがって実線曲線上を2から1に向かって移動し、周波数が高い部分で絶対値1の円内になり1に収束する。 Evc1(ω)+Evc2(ω) (see the tip of the solid arrow in FIG. 11 above) moves from 2 to 1 on the solid curve as the frequency increases from 0, and the absolute value is 1 at high frequencies. and converges to 1.
 このことから、Evc2(ω)の実部が負になる周波数(位相が-90°~-180°の間)の内の特定部分で、合成した信号の電圧の周波数特性上にくぼみを形成可能であることが判る(図12)。図12は、上記図10に示す回路における駆動回路の各々が出力する制御信号、及び合成した信号の周波数特性を示すグラフである。 From this, it is possible to form a depression on the frequency characteristic of the voltage of the synthesized signal at a specific portion of the frequency (phase between -90° and -180°) where the real part of Evc2(ω) becomes negative. (FIG. 12). FIG. 12 is a graph showing the frequency characteristics of the control signal output by each drive circuit in the circuit shown in FIG. 10 and the combined signal.
 また、2次のバターワース型のローパスフィルタの定数は

 
であるが、ζを変化させることでローパスフィルタの肩特性を変化させることができる。
Also, the constant of the second-order Butterworth low-pass filter is


However, by changing ζ, the shoulder characteristic of the low-pass filter can be changed.
 ζによる特性変化は、具体的には以下のようになる。 Specifically, the characteristic change due to ζ is as follows.
 バッフル回折効果による音圧の変化の内、低域側から高域側に向けて音圧が低下する帯域は、概して2octより幅広く、2次の場合はバターワース型等の一般的なローパスフィルタの特性よりも肩特性はなだらかなにするとよい。ただし、これに伴いくぼみも浅くなる(図13参照)。図13は、上記図10に示す回路においてζを変化させた場合における、駆動回路の各々が出力する制御信号を合成した信号の周波数特性を示すグラフである。 Among the changes in sound pressure due to the baffle diffraction effect, the band in which the sound pressure decreases from the low frequency side to the high frequency side is generally wider than 2 oct. It is better to make the shoulder characteristic smoother than the other. However, along with this, the depression also becomes shallow (see FIG. 13). FIG. 13 is a graph showing frequency characteristics of a signal obtained by synthesizing the control signals output from the drive circuits when .zeta. is varied in the circuit shown in FIG.
 このように、2次のローパスフィルタにおいてf、ζを調整し、補正特性をバッフル回折効果の逆特性に近づけるべく調整することができる。 In this way, it is possible to adjust f and ζ in the second-order low-pass filter so that the correction characteristic approaches the inverse characteristic of the baffle diffraction effect.
 次に、図14に示すように、3次のローパスフィルタを用いる場合について説明する。図14は、3次のローパスフィルタを用いて構成したスピーカ装置の等価回路を示す回路図である。 Next, as shown in FIG. 14, the case of using a third-order low-pass filter will be described. FIG. 14 is a circuit diagram showing an equivalent circuit of a speaker device configured using a third-order low-pass filter.
 バターワース型の各定数は以下の式で表される。 Each Butterworth constant is represented by the following formula.
 各ζを調整することで、バッフル回折効果の逆特性に近づけることができる(図15参照)。音圧低下帯域の帯域幅、くぼみ帯域のレベル等が調整可能である。図15は、上記図14に示す回路においてζを変化させた場合における、駆動回路の各々が出力する制御信号を合成した信号の周波数特性を示すグラフである。 By adjusting each ζ, it is possible to approximate the inverse characteristics of the baffle diffraction effect (see FIG. 15). The bandwidth of the sound pressure drop band, the level of the hollow band, etc. can be adjusted. FIG. 15 is a graph showing frequency characteristics of a signal obtained by synthesizing the control signals output from the drive circuits when .zeta. is varied in the circuit shown in FIG.
 次に、4次以上のローパスフィルタを用いる場合について説明する。 Next, the case of using a fourth-order or higher low-pass filter will be described.
 次数が大きくなるに従いEvc2の位相回転角は大きくなるので、2次、3次の場合と同様に、4次以上の場合もEvc2の実部が負になる部分(位相が-90~+90度)が存在する。従ってくぼみの形成が可能である。図16は、1次~4次のローパスフィルタの各々を用いた場合のボイスコイルへ出力される制御信号の電圧Evc2のベクトル軌跡を示すベクトル図である。 Since the phase rotation angle of Evc2 increases as the order increases, the real part of Evc2 becomes negative in the case of 4th and higher orders, as in the case of 2nd and 3rd orders (phase is -90 to +90 degrees). exists. Thus, the formation of depressions is possible. FIG. 16 is a vector diagram showing the vector trajectory of the voltage Evc2 of the control signal output to the voice coil when each of the 1st to 4th order low-pass filters is used.
<ドライバの電気インピーダンスの影響に関する説明>
 次に、ローパスフィルタの負荷としてのドライバの電気インピーダンスの影響について説明する。
<Description on the influence of the electrical impedance of the driver>
Next, the influence of the electrical impedance of the driver as the load of the low-pass filter will be explained.
 ここまで示した補正特性等の計算データは、ドライバの電気インピーダンスを純抵抗として計算したものである。実際のドライバの電気インピーダンスは、主にモーショナルインピーダンスZemとボイスコイルインダクタンスによるリアクタンスZexを要因として、特定のインピーダンス特性Zeをもつ。 The calculation data such as the correction characteristics shown so far are calculated using the driver's electrical impedance as pure resistance. The electrical impedance of an actual driver has a specific impedance characteristic Ze mainly due to the motional impedance Zem and the reactance Zex due to the voice coil inductance.
 これらの要因により純抵抗に対してリアクタンス分が大きくなる帯域が、ローパスフィルタにより6dBの段差を生じさせる帯域と近い場合、ボイスコイルへ入力される制御信号の周波数特性が、純抵抗の場合の特性と比較して変化する。 Due to these factors, if the band where the reactance component is large with respect to pure resistance is close to the band where the low-pass filter produces a 6 dB step difference, the frequency characteristics of the control signal input to the voice coil will differ from those of pure resistance. change compared to
 モーショナルインピーダンスZemは、磁気ギャップ内でボイスコイルが運動することにより発生する逆起電力の影響で、以下の式で表される。 The motional impedance Zem is the effect of the back electromotive force generated by the motion of the voice coil within the magnetic gap, and is expressed by the following formula.
 ボイスコイルインダクタンスによるリアクタンスZexは、ボイスコイルの巻線及び鉄心として作用する磁性体(磁気回路)による影響で、以下の式で表される。
 Zex=jωL
The reactance Zex due to the voice coil inductance is expressed by the following equation due to the influence of the magnetic material (magnetic circuit) acting as the voice coil winding and iron core.
Zex = jωL
 ただし、Lは、ボイスコイルのインダクタンスであり、Aは、力係数(磁束密度×VC2の有効長)であり、Mmは、振動系質量であり、Smは、スティフネスであり、Rmは、機械抵抗である。 where L is the inductance of the voice coil, A is the force coefficient (magnetic flux density × effective length of VC2), Mm is the vibration system mass, Sm is the stiffness, and Rm is the mechanical resistance. is.
 以下、一般的なダイナミックスピーカの電気インピーダンスと、それによる端子電圧への影響を、上記図3のボイスコイルVC2の特性として説明する。 The electrical impedance of a general dynamic speaker and its effect on the terminal voltage will be described below as the characteristics of the voice coil VC2 in FIG.
 ボイスコイルVC2側の駆動回路の等価回路は以下の通りである。 The equivalent circuit of the drive circuit on the voice coil VC2 side is as follows.
 ボイスコイルのインピーダンスを純抵抗とした場合、ボイスコイルのインピーダンスZeは以下の式で表される(図17)。
 Ze=Rvc2
When the impedance of the voice coil is pure resistance, the impedance Ze of the voice coil is expressed by the following equation (FIG. 17).
Ze=Rvc2
 図17は、ボイスコイルのインピーダンスを純抵抗とした場合における、ローパスフィルタを含む駆動回路の電気系等価回路を示す図である。 FIG. 17 is a diagram showing an electric system equivalent circuit of a drive circuit including a low-pass filter when the impedance of the voice coil is pure resistance.
 また、モーショナルインピーダンスZemとボイスコイルインダクタンスによるリアクタンスZexを考慮した場合における、ドライバの電気インピーダンスZeは、以下の式で表される(図18)。 In addition, the electrical impedance Ze of the driver when considering the reactance Zex due to the motional impedance Zem and the voice coil inductance is expressed by the following formula (Fig. 18).
Ze=Rvc2+Zex+Zem Ze=Rvc2+Zex+Zem
 図18は、モーショナルインピーダンスZemとボイスコイルインダクタンスによるリアクタンスZexを考慮した場合における、ローパスフィルタを含む駆動回路の等価回路を示す図である。図18の(1)は、モーショナルインピーダンスZemに相当し、図18の(2)は、ボイスコイルインダクタンスによるリアクタンスZexに相当する。 FIG. 18 is a diagram showing an equivalent circuit of a drive circuit including a low-pass filter when considering the motional impedance Zem and the reactance Zex due to the voice coil inductance. (1) in FIG. 18 corresponds to the motional impedance Zem, and (2) in FIG. 18 corresponds to the reactance Zex due to the voice coil inductance.
 また、上記図18に示す回路におけるドライバの電気インピーダンスの特性を、図19に示す。図19は、|Zex|、|Zem|、|Ze|、純抵抗Rvc2の各々の特性を表すグラフである。 FIG. 19 shows the characteristics of the electrical impedance of the driver in the circuit shown in FIG. 18 above. FIG. 19 is a graph showing respective characteristics of |Zex|, |Zem|, |Ze|, and pure resistance Rvc2.
 また、負荷の違いによる、各ボイスコイルへの制御信号を合成した信号の周波数特性の変化を、図20に示す。図20は、ドライバの電気インピーダンスを純抵抗とした場合、及びモーショナルインピーダンスZemとボイスコイルインダクタンスによるリアクタンスZexを考慮した場合におけるグラフである。このグラフは、駆動回路の各々が出力する制御信号を合成した信号の周波数特性を示すグラフである。 Also, FIG. 20 shows changes in frequency characteristics of a signal obtained by synthesizing control signals to each voice coil due to differences in load. FIG. 20 is a graph when the electrical impedance of the driver is a pure resistance and when the reactance Zex due to the motional impedance Zem and voice coil inductance is considered. This graph is a graph showing frequency characteristics of a signal obtained by synthesizing the control signals output from each of the drive circuits.
 200Hz付近にモーショナルインピーダンスによる影響(図20の(1)参照)、1.5kHz付近にボイスコイルインダクタンスの影響(図20の(2))が示されている。 The influence of motional impedance (see (1) in FIG. 20) is shown near 200 Hz, and the influence of voice coil inductance ((2) in FIG. 20) is shown near 1.5 kHz.
 これらの影響に対しては、そのドライバの仕様に応じ計算したシミュレーションや実測による確認を行い、ローパスフィルタの定数を調整することで所望の特性に近づけることは可能である。 For these effects, it is possible to approach the desired characteristics by conducting simulations calculated according to the specifications of the driver and confirming them through actual measurements, and adjusting the constants of the low-pass filter.
 なお、ボイスコイルVC2側のローパスフィルタとドライバの間にインダクタンスをキャンセルする回路(前述のインピーダンス補償回路)を設けた場合やショートリング等(ボイスコイル電流に伴い発生する磁束変化をキャンセルするもの)を用いた場合は、ローパスフィルタの負荷におけるインダクタンス成分が少なくなるため、上記ボイスコイルインダクタンスによるリアクタンスZexの影響も少なくなる。また、一般的にフルレンジ型ドライバなど、ボイスコイルの巻数が少ない方が、WFよりもインダクタンスは小さい為、影響は少ない。 In addition, if a circuit that cancels the inductance (impedance compensation circuit described above) is provided between the low-pass filter on the voice coil VC2 side and the driver, or a short ring (that cancels the magnetic flux change that occurs with the voice coil current) is installed. When used, the inductance component in the load of the low-pass filter is reduced, so the effect of the reactance Zex due to the voice coil inductance is also reduced. Also, in general, a voice coil with a smaller number of turns, such as a full-range driver, has a smaller inductance than WF, and thus has less influence.
<本開示の技術の実施の形態の音響システムの動作>
 音源入力部12が、オーディオプレーヤ等から音源信号の入力を受け付ける。
<Operation of Acoustic System According to Embodiment of Technology of the Present Disclosure>
A sound source input unit 12 receives input of a sound source signal from an audio player or the like.
 そして、アンプ14は、受け付けた音源信号をスピーカ装置16へ出力する。 Then, the amplifier 14 outputs the received sound source signal to the speaker device 16 .
 そして、スピーカ装置16の駆動回路30Aは、音源信号に基づいて制御信号をドライバ20Aへ出力し、ドライバ20Aの振動板(図示省略)を振動させる。 Then, the drive circuit 30A of the speaker device 16 outputs a control signal to the driver 20A based on the sound source signal to vibrate the diaphragm (not shown) of the driver 20A.
 また、スピーカ装置16の駆動回路30Bは、音源信号に基づいてローパスフィルタ32を用いて制御信号をドライバ20Aへ出力し、ドライバ20Bの振動板を振動させる。 Further, the drive circuit 30B of the speaker device 16 uses the low-pass filter 32 based on the sound source signal to output a control signal to the driver 20A to vibrate the diaphragm of the driver 20B.
 ここで、ローパスフィルタ32は、エンクロージャ22の形状に応じて出力される音圧の周波数特性のピーク周波数に、駆動回路30A、30Bの各々が出力する制御信号を合成した信号の周波数特性におけるくぼみ周波数が対応するように設定されている。従って、ドライバ20A、20Bへの入力信号を合成した信号の周波数特性において、エンクロージャ22のバッフル効果によって生じるピークの周波数付近にくぼみができる。これにより、音響システム10で、平坦な音圧周波数特性が実現される。 Here, the low-pass filter 32 combines the peak frequency of the frequency characteristics of the sound pressure output according to the shape of the enclosure 22 with the control signal output from each of the drive circuits 30A and 30B, and the depression frequency in the frequency characteristics of the signal. are set accordingly. Therefore, in the frequency characteristics of the signal obtained by synthesizing the input signals to the drivers 20A and 20B, there is a depression near the peak frequency caused by the baffle effect of the enclosure 22. FIG. As a result, the acoustic system 10 achieves a flat sound pressure frequency characteristic.
 以上説明したように、本開示の技術の第1の実施の形態に係る音響システムによれば、2つの駆動回路のうちの一方の駆動回路に設けられたローパスフィルタは、エンクロージャの形状に応じて出力される音圧の周波数特性のピーク周波数に、2つの駆動回路の各々が出力する制御信号を合成した信号の周波数特性におけるくぼみ周波数が対応するように設定される。これにより、簡易な構成で、高音質なスピーカ装置を提供することができる。 As described above, according to the acoustic system according to the first embodiment of the technology of the present disclosure, the low-pass filter provided in one of the two drive circuits is adjusted according to the shape of the enclosure. The peak frequency of the frequency characteristics of the output sound pressure is set so that the depression frequency in the frequency characteristics of the signal obtained by synthesizing the control signals output from each of the two drive circuits corresponds. As a result, it is possible to provide a high-quality speaker device with a simple configuration.
 また、エンクロージャのバッフルの回折効果によるドライバ出力特性の変化に対し、ドライバ入力に逆特性となる補正を施すことにより、単純な回路構成で実現し低コストで高音質な音響システムを提供することができる。 In addition, it is possible to provide a low-cost, high-quality sound system with a simple circuit configuration by correcting the driver input so as to reverse the characteristics of the driver output due to the diffraction effect of the baffle of the enclosure. can.
 また、スピーカ装置は抵抗を用いておらず発熱が少ない為、使用時の特性が安定するとともに、耐久性の高い音響システムの設計にも有利となる。 In addition, since the speaker device does not use resistance and generates little heat, the characteristics during use are stable, and it is also advantageous for designing a highly durable sound system.
 また、各駆動回路の出力バランスと素子定数の調整により、長方形状のバッフルの回折効果の特性に合わせた補正に加えドライバ特性の補正も可能である。 In addition, by adjusting the output balance and element constants of each drive circuit, it is possible to correct the driver characteristics in addition to the correction according to the characteristics of the diffraction effect of the rectangular baffle.
[第2の実施の形態]
 次に、第2の実施の形態に係る音響システムについて説明する。なお、第1の実施の形態と同様の構成となる部分については、同一符号を付して説明を省略する。
[Second embodiment]
Next, an acoustic system according to the second embodiment will be described. Parts having the same configuration as in the first embodiment are denoted by the same reference numerals, and descriptions thereof are omitted.
 第2の実施の形態では、単一のドライバに対して複数の駆動回路を設け、複数の駆動回路を並列接続する点が、第1の実施の形態と異なっている。 The second embodiment differs from the first embodiment in that a plurality of drive circuits are provided for a single driver and the plurality of drive circuits are connected in parallel.
 上記図1に示すように、音響システム210は、音源入力部12と、アンプ14と、スピーカ装置216とを備えている。 As shown in FIG. 1, the acoustic system 210 includes a sound source input section 12, an amplifier 14, and a speaker device 216.
 スピーカ装置216は、図21に示すように、ドライバ220からなる駆動部218と、ドライバ220を収納するエンクロージャ22とを備えている。 The speaker device 216, as shown in FIG. 21, includes a driving section 218 including a driver 220 and an enclosure 22 that houses the driver 220. As shown in FIG.
 また、図22に示すように、スピーカ装置216は、駆動回路30Aと、駆動回路30Bと、駆動回路30A、30Bの出力に応じて振動板を振動させる駆動部218とを備えている。駆動回路30Bは、ローパスフィルタ32を備えている。 Further, as shown in FIG. 22, the speaker device 216 includes a drive circuit 30A, a drive circuit 30B, and a drive section 218 that vibrates the diaphragm according to the outputs of the drive circuits 30A and 30B. The drive circuit 30B has a low-pass filter 32 .
 駆動回路30A及び駆動回路30Bの各々は、音源信号に基づいて単一のドライバ220の振動板を振動させる制御信号を出力する。 Each of drive circuit 30A and drive circuit 30B outputs a control signal for vibrating the diaphragm of single driver 220 based on the sound source signal.
 ドライバ220は、磁気回路とボイスコイルとを複数組含む。具体的には、ドライバ220は、ボイスコイルVC1及び磁気回路の組と、ボイスコイルVC2及び磁気回路の組と、を含む。 The driver 220 includes multiple sets of magnetic circuits and voice coils. Specifically, the driver 220 includes a voice coil VC1 and magnetic circuit set and a voice coil VC2 and magnetic circuit set.
 駆動回路30Aは、音源信号に基づいて制御信号をボイスコイルVC1へ出力することにより、単一のドライバ220の振動板を振動させる。また、駆動回路30Bは、音源信号に基づいて制御信号をボイスコイルVC2へ出力することにより、単一のドライバ220の振動板を振動させる。 The drive circuit 30A vibrates the diaphragm of the single driver 220 by outputting a control signal to the voice coil VC1 based on the sound source signal. Further, the driving circuit 30B vibrates the diaphragm of the single driver 220 by outputting a control signal to the voice coil VC2 based on the sound source signal.
 なお、第2の実施の形態に係る音響システムの他の構成及び作用については第1の実施の形態と同様であるため、説明を省略する。 The rest of the configuration and operation of the acoustic system according to the second embodiment are the same as those of the first embodiment, so descriptions thereof will be omitted.
 第2の実施の形態に係る音響システムでは、単一ドライバの場合であっても単純な回路でバッフルの回折効果による影響を補正できる。 In the acoustic system according to the second embodiment, even in the case of a single driver, it is possible to correct the influence of the diffraction effect of the baffle with a simple circuit.
[第3の実施の形態]
 次に、第3の実施の形態に係る音響システムについて説明する。なお、第1、第2の実施の形態と同様の構成となる部分については、同一符号を付して説明を省略する。
[Third Embodiment]
Next, an acoustic system according to the third embodiment will be described. Parts having the same configuration as those in the first and second embodiments are denoted by the same reference numerals, and descriptions thereof are omitted.
 第3の実施の形態では、ドライバが、単一の磁気回路、単一のボイスコイルに、複数系統のボイスコイル線を配置して構成されている点が、第2の実施の形態と異なっている。 The third embodiment differs from the second embodiment in that the driver has a single magnetic circuit, a single voice coil, and multiple lines of voice coil wires. there is
 具体的には、ドライバが、図23A、図23Bに示すように、単一のボイスコイルボビンに2系統の導線を同方向に並列に巻いたものを用いて構成されている。図23Bは、巻き線部の断面を示しており、ボイスコイルVC1のコイル線と、ボイスコイルVC2のコイル線とがボイスコイルボビンに並列に巻かれている様子を示している。 Specifically, as shown in FIGS. 23A and 23B, the driver is configured using a single voice coil bobbin with two lines of conductors wound in parallel in the same direction. FIG. 23B shows a cross section of the winding portion, showing how the coil wire of the voice coil VC1 and the coil wire of the voice coil VC2 are wound in parallel around the voice coil bobbin.
 駆動回路30Aは、音源信号に基づいて制御信号をボイスコイルVC1へ出力することにより、単一のドライバ220の振動板を振動させる。また、駆動回路30Bは、音源信号に基づいて制御信号をボイスコイルVC2へ出力することにより、単一のドライバ220の振動板を振動させる。 The drive circuit 30A vibrates the diaphragm of the single driver 220 by outputting a control signal to the voice coil VC1 based on the sound source signal. Further, the driving circuit 30B vibrates the diaphragm of the single driver 220 by outputting a control signal to the voice coil VC2 based on the sound source signal.
 なお、第3の実施の形態に係る音響システムの他の構成及び作用については第2の実施の形態と同様であるため、説明を省略する。 The rest of the configuration and operation of the acoustic system according to the third embodiment are the same as those of the second embodiment, so descriptions thereof will be omitted.
[実施例]
 上記第3の実施の形態で説明した音響システムの実施例について説明する。本実施例では、ボイスコイルとして、内径Φ25の単一ボイスコイルボビンに2系統の導線を同方向に並列に巻いたもの(DCR6.9+6.9Ω)を用いた。磁気回路はフェライトマグネット外磁型であり、有効振動径Φ80のコーン振動板(カーブドコーン、布エッジ)を用いた。また、外寸がW214×H384×D150であるバスレフ型エンクロージャを用いた。
[Example]
An example of the acoustic system described in the third embodiment will be described. In this embodiment, the voice coil used is a single voice coil bobbin with an inner diameter of Φ25 and two conductor wires wound in parallel in the same direction (DCR6.9+6.9Ω). The magnetic circuit was a ferrite magnet external magnet type, and a cone diaphragm (curved cone, cloth edge) with an effective vibration diameter Φ80 was used. A bass-reflex type enclosure having external dimensions of W214×H384×D150 was used.
 また、比較例として、図24に示すローパスフィルタを用いずに構成したスピーカ装置を用いた。図25は、ローパスフィルタを用いずに構成したスピーカ装置における2π空間とバスレフ型エンクロージャでの無響室特性を表すグラフである。2π空間は、2π空間を模した一面がバッフルとなっている無響室である。また、図26は、バスレフ型エンクロージャと2π空間との実測値の差と、計算データとの比較を表すグラフである。ここで、実測値の差は、バッフルの回折効果に相当している。 Also, as a comparative example, a speaker device configured without using the low-pass filter shown in FIG. 24 was used. FIG. 25 is a graph showing anechoic room characteristics in a 2π space and a bass reflex type enclosure in a speaker device constructed without using a low-pass filter. The 2π space is an anechoic chamber that simulates the 2π space and has a baffle on one side. Also, FIG. 26 is a graph showing a comparison between the difference between the measured values of the bass reflex enclosure and the 2π space and the calculated data. Here, the difference between the measured values corresponds to the diffraction effect of the baffle.
 200Hz以下ではバスレフ型エンクロージャの特性の特徴が出ているが、バッフルの回折の影響について300Hz以上では概ねシミュレーションで得られた計算データと一致している。 Below 200Hz, the characteristics of the bass reflex type enclosure appear, but above 300Hz, the effect of baffle diffraction generally agrees with the calculated data obtained by simulation.
 また、図27は、2次のローパスフィルタを用いた実施例に係るスピーカ装置216の構成を示す回路図である。ここで、ローパスフィルタのインダクタンスLを3mHとし、キャパシタCを20μFとする。 Also, FIG. 27 is a circuit diagram showing the configuration of a speaker device 216 according to an embodiment using a secondary low-pass filter. Here, it is assumed that the inductance L of the low-pass filter is 3 mH and the capacitor C is 20 μF.
 図28は、上記図27に示す回路における駆動回路の各々が出力する制御信号を合成した信号(合成電圧)の周波数特性のシミュレーション結果を示すグラフである。 FIG. 28 is a graph showing a simulation result of frequency characteristics of a signal (composite voltage) obtained by combining the control signals output from each of the drive circuits in the circuit shown in FIG.
 図29は、ローパスフィルタの有無それぞれでの音圧実測結果を表すグラフである。図30は、ローパスフィルタの有無による音圧差を表すグラフである。なお、図30の値は、実測値を計算したものである。 FIG. 29 is a graph showing the sound pressure measurement results with and without the low-pass filter. FIG. 30 is a graph showing sound pressure differences with and without a low-pass filter. Note that the values in FIG. 30 are calculated from actual measurements.
 また、図31は、3次のローパスフィルタを用いた実施例に係るスピーカ装置216の構成を示す回路図である。ここで、ローパスフィルタのインダクタンスL1を3mHとし、キャパシタCを15μFとし、インダクタンスL2を0.5mHとする。 Also, FIG. 31 is a circuit diagram showing the configuration of a speaker device 216 according to an embodiment using a third-order low-pass filter. Here, it is assumed that the inductance L1 of the low-pass filter is 3 mH, the capacitor C is 15 μF, and the inductance L2 is 0.5 mH.
 図32は、上記図31に示す回路における駆動回路の各々が出力する制御信号を合成した信号(合成電圧)の周波数特性のシミュレーション結果を示すグラフである。 FIG. 32 is a graph showing simulation results of frequency characteristics of a signal (composite voltage) obtained by combining the control signals output from each of the drive circuits in the circuit shown in FIG.
 図33は、ローパスフィルタの有無それぞれでの音圧実測結果を表すグラフである。図34は、ローパスフィルタの有無による音圧差を表すグラフである。なお、図34の値は、実測値を計算したものである。 FIG. 33 is a graph showing the sound pressure measurement results with and without the low-pass filter. FIG. 34 is a graph showing sound pressure differences with and without a low-pass filter. Note that the values in FIG. 34 are calculated from actual measurements.
 次に、ボイスコイルの電磁結合の影響について説明する。この実施例では、2系統のボイスコイルが同軸振動方向の同一部に位置している。従って、電流によって発生する磁束を共有する結合関係にあり、それぞれのボイスコイルに他方のボイスコイルの電流変化に応じて起電力が生じる。これによって他方のボイスコイルに生じる電流は、それぞれのボイスコイルへの入力電圧に対して逆方向の電流となり、時間に対して磁束変化が大きい高い周波数ほど大きくなる。これらの電流は、それぞれの入力により発生する駆動力を減少させる作用があるが、特に高い周波数ほど顕著になる。なお、前述のショートリングを設ける場合はこの現象の影響は小さくなる。 Next, we will explain the influence of electromagnetic coupling on the voice coil. In this embodiment, two voice coils are positioned at the same portion in the coaxial vibration direction. Therefore, the two voice coils are in a coupling relationship that shares the magnetic flux generated by the current, and an electromotive force is generated in each voice coil according to the current change in the other voice coil. As a result, the current generated in the other voice coil becomes a current in the opposite direction to the input voltage to each voice coil, and the higher the frequency, the greater the change in magnetic flux with respect to time, the greater the current. These currents have the effect of reducing the driving force generated by each input, which is more pronounced at higher frequencies. Note that the effect of this phenomenon is reduced when the aforementioned short ring is provided.
 また、ローパスフィルタなしの場合(上記図24)は、それぞれのボイスコイル系統の回路は、他方のボイスコイルが短絡した状態(図35)と同様(通常、アンプの出力インピーダンスはボイスコイルインピーダンスより十分低い)と考えられ、ローパスフィルタを用いない場合の両端子入力時の特性は、この場合の特性(図36の実線参照)を2つ合成(+6dB)した特性(図36の破線参照)と言える。図35は、一方のボイスコイルが短絡した状態の回路図である。図36は、一方のボイスコイルが短絡した場合(図35)と短絡していない場合(図24)それぞれでの音圧実測結果を表すグラフである。 In addition, when there is no low-pass filter (Fig. 24 above), the circuit of each voice coil system is the same as when the other voice coil is short-circuited (Fig. 35) (normally, the output impedance of the amplifier is sufficiently higher than the voice coil impedance). It can be said that the characteristic when both terminals are input when no low-pass filter is used is the characteristic (+6 dB) obtained by combining two characteristics (see the solid line in FIG. 36) in this case (see the broken line in FIG. 36). . FIG. 35 is a circuit diagram in which one voice coil is short-circuited. FIG. 36 is a graph showing the results of sound pressure measurement when one voice coil is short-circuited (FIG. 35) and when it is not short-circuited (FIG. 24).
 また、ボイスコイルVC2側を開放した状態の回路図を図37に示す。図38は、上記図35に示す回路(一方のボイスコイルが短絡した場合)での音圧実測結果と、上記図37に示す回路(一方のボイスコイルが開放した場合)での音圧実測結果との特性を比較した結果を示す。 Also, FIG. 37 shows a circuit diagram in which the voice coil VC2 side is open. FIG. 38 shows the sound pressure measurement result in the circuit shown in FIG. 35 (when one voice coil is short-circuited) and the sound pressure measurement result in the circuit shown in FIG. 37 (when one voice coil is open). The result of comparing the characteristics with
 上記図38により、ボイスコイルVC2側を短絡することで、結合により生じた電流により高域が低下していることが分かる。また、低域で電磁結合の影響はほとんど無いにも関わらず音圧が低下しているのは、ボイスコイルVC2のコイル線が磁気ギャップ内で振幅することで生じる逆起電力による制動力が発生する為である。 From FIG. 38, it can be seen that short-circuiting the voice coil VC2 side reduces the high frequencies due to the current generated by the coupling. In addition, the reason why the sound pressure is reduced in the low range despite the fact that there is almost no effect of electromagnetic coupling is that the coil wire of the voice coil VC2 oscillates in the magnetic gap, and a braking force is generated by the back electromotive force. It is for
 3次のローパスフィルタを用いたスピーカ装置(図31)の場合は、ローパスフィルタのインダクタンスL2がボイスコイルVC2に直列に接続されている為に、ボイスコイルVC1側の電流によってボイスコイルVC2に逆起電力が生じるも、高い周波数では電流が流れにくい。従って、高域におけるボイスコイルVC1側の入力信号による出力特性は、ボイスコイルVC2側が開放されている状態に近い特性となる。図31は、3次のローパスフィルタを用いた実施例に係るスピーカ装置の構成の一例を示す回路図である。 In the case of a speaker device using a third-order low-pass filter (FIG. 31), since the inductance L2 of the low-pass filter is connected in series with the voice coil VC2, the current in the voice coil VC1 side causes back electromotive force in the voice coil VC2. Electric power is generated, but current is difficult to flow at high frequencies. Therefore, the output characteristics of the input signal on the voice coil VC1 side in the high frequency range are close to the state in which the voice coil VC2 side is open. FIG. 31 is a circuit diagram showing an example of the configuration of a speaker device according to an embodiment using a third-order low-pass filter.
 これにより、ローパスフィルタなしの場合に対して高域での音圧低下が6dB未満となる。この現象は低域のみを扱うWFとして構成する場合、影響は少ないが、この実施例の様にフルレンジ型ドライバの場合は留意する必要がある。 As a result, the sound pressure drop in the high range is less than 6 dB compared to the case without a low-pass filter. This phenomenon has little effect when configured as a WF that handles only low frequencies, but must be taken into consideration in the case of a full-range type driver as in this embodiment.
 次に、スピーカ装置をWFとして利用する実施例(WF帯域内にバッフルの回折効果による低域と高域の音圧差とピークが生じる場合の実施例)について説明する。WFとして利用する場合、WFの出力の内TWの帯域となる周波数の出力を制限する必要がある。ディバイディングネットワークを用いる場合は、バッフルの回折効果の逆特性を意図した回路(図27、図31参照)に対して、ボイスコイルVC1側に所望のネットワーク回路を設ければよい。 Next, an embodiment in which the speaker device is used as a WF (an embodiment in which a sound pressure difference and a peak occur between the low and high frequencies due to the diffraction effect of the baffle in the WF band) will be described. When it is used as a WF, it is necessary to limit the frequency output of the TW band in the WF output. When a dividing network is used, a desired network circuit may be provided on the voice coil VC1 side for the circuit intended to reverse the baffle diffraction effect (see FIGS. 27 and 31).
 図39は、WFとして利用する実施例におけるスピーカ装置316の構成を示す回路図である。上段の駆動回路330Cは、TWとして利用するドライバ320に対して制御信号を出力する。中段の駆動回路330Aは、制御信号をボイスコイルVC1へ出力し、下段の駆動回路330Bは、制御信号をボイスコイルVC2へ出力する。 FIG. 39 is a circuit diagram showing the configuration of the speaker device 316 in the embodiment used as WF. The upper drive circuit 330C outputs a control signal to the driver 320 used as TW. The middle drive circuit 330A outputs a control signal to the voice coil VC1, and the lower drive circuit 330B outputs a control signal to the voice coil VC2.
 ここで、ローパスフィルタのインダクタンスL1を2.5mHとし、キャパシタC1を20μFとし、インダクタンスL2を0.5mHとする。また、ディバイディングネットワークのインダクタンスL3を0.5mHとし、キャパシタC3を2.6μFとする。また、インピーダンス補正の抵抗Rを7Ωとし、キャパシタC2を6.8μFとする。 Here, the inductance L1 of the low-pass filter is 2.5 mH, the capacitor C1 is 20 μF, and the inductance L2 is 0.5 mH. Also, the inductance L3 of the dividing network is 0.5 mH, and the capacitor C3 is 2.6 μF. Also, the resistor R for impedance correction is set to 7Ω, and the capacitor C2 is set to 6.8 μF.
 図40は、上記図39に示す回路における駆動回路330A、330B、330Cの各々が出力する制御信号と、各制御信号を合成した信号(合成電圧)の周波数特性のシミュレーション結果を示すグラフである。ボイスコイルVC3へ出力する制御信号の電圧をEtwとし、合成した信号の電圧をEtotalとする。 FIG. 40 is a graph showing simulation results of the frequency characteristics of the control signal output by each of the drive circuits 330A, 330B, and 330C in the circuit shown in FIG. Let Etw be the voltage of the control signal output to the voice coil VC3, and Etotal be the voltage of the combined signal.
 この例のように、TWを使用した2ウェイ音響システムにおいてWF用としても実施可能である。この例では、抑えたい音圧段差とピークが低音帯域(WFの帯域)にあり、低音帯域側のドライバに対する駆動回路に設けたローパスフィルタで帯域制限する場合について説明したが、これに限定されるものではない。抑えたい音圧段差とピークが高音用ドライバの帯域(TWの帯域)にある場合や3ウェイなどの中音用ドライバ(SQ)の帯域にある場合などでは、高音帯域又は中音帯域側ドライバに本開示の技術の駆動回路に設け、かつ低域側の帯域制限のためにハイパスフィルタを設けて調整すればよい。ただし、この場合のハイパスフィルタは、図48に示すように、本開示の技術の駆動回路の各VCの回路に分岐する手前に設ければよい。 As in this example, it can also be implemented for WF in a 2-way sound system using TW. In this example, the sound pressure step and peak to be suppressed are in the bass band (WF band), and the band is limited by a low-pass filter provided in the drive circuit for the driver on the bass band side. not a thing If the sound pressure steps and peaks you want to suppress are in the treble driver band (TW band) or in the mid-range driver (SQ) band such as 3-way, use the treble or mid-range driver. A high-pass filter may be provided in the drive circuit of the technique of the present disclosure, and a high-pass filter may be provided to limit the band on the low-frequency side. However, the high-pass filter in this case may be provided before branching to each VC circuit of the drive circuit of the technology of the present disclosure, as shown in FIG.
 本開示の技術によれば、複数の駆動回路のうちの一部の駆動回路に設けられたローパスフィルタは、前記エンクロージャの形状に応じて出力される音圧の周波数特性のピーク周波数に、前記複数の駆動回路の各々が出力する前記制御信号を合成した信号の周波数特性におけるくぼみ周波数が対応するように設定される。そして、複数の駆動回路が、音源信号に基づいて、前記少なくとも1つのドライバの振動板を振動させる制御信号を出力する。 According to the technology of the present disclosure, the low-pass filter provided in some of the plurality of drive circuits is adapted to reduce the peak frequency of the frequency characteristics of the sound pressure output according to the shape of the enclosure to the plurality of is set so that the depression frequency in the frequency characteristic of the signal obtained by synthesizing the control signals output from each of the drive circuits corresponds to the frequency characteristic. A plurality of drive circuits output control signals for vibrating the diaphragm of the at least one driver based on the sound source signal.
 このように、複数の駆動回路のうちの一部の駆動回路に設けられたローパスフィルタは、前記エンクロージャの形状に応じて出力される音圧の周波数特性のピーク周波数に、前記複数の駆動回路の各々が出力する前記制御信号を合成した信号の周波数特性におけるくぼみ周波数が対応するように設定される。これにより、簡易な構成で、高音質なスピーカ装置を提供することができる。 In this way, the low-pass filters provided in some of the plurality of drive circuits are arranged at the peak frequency of the frequency characteristics of the sound pressure output according to the shape of the enclosure. The recess frequencies in the frequency characteristics of the signal obtained by synthesizing the control signals output from each are set so as to correspond to each other. As a result, it is possible to provide a high-quality speaker device with a simple configuration.
 本開示の技術に係る前記エンクロージャを、無限大バッフルにおけるドライバ音圧特性に対して、回折効果により、音圧の低い低域と音圧の高い高域の中間帯域においてピーク(変曲点)を生じさせるエンクロージャとすることができる。例えば、エンクロージャを、直方体状の筐体とすることができる。 The enclosure according to the technology of the present disclosure has a peak (point of inflection) in the middle band between the low sound pressure range and the high sound pressure range due to the diffraction effect with respect to the driver sound pressure characteristics in the infinite baffle. It can be an enclosure that causes For example, the enclosure can be a rectangular parallelepiped housing.
 本開示の技術に係る前記駆動部は、1つのドライバからなり、前記複数の駆動回路の各々は、音源信号に基づいて、前記ドライバの振動板を振動させる制御信号を各々出力することができる。 The drive unit according to the technology of the present disclosure includes one driver, and each of the plurality of drive circuits can output a control signal for vibrating the diaphragm of the driver, based on the sound source signal.
 本開示の技術に係る前記駆動部は、前記複数の駆動回路に対応して設けられた複数のドライバからなり、前記複数の駆動回路の各々は、音源信号に基づいて、対応する前記ドライバの振動板を振動させる制御信号を出力し、前記駆動部は、前記複数の駆動回路の各々に対応する振動板を、前記駆動回路の出力に応じて振動させることができる。 The drive unit according to the technology of the present disclosure includes a plurality of drivers provided corresponding to the plurality of drive circuits, and each of the plurality of drive circuits vibrates the corresponding driver based on a sound source signal. A control signal for vibrating a plate is output, and the drive unit can vibrate the diaphragm corresponding to each of the plurality of drive circuits according to the output of the drive circuit.
 本開示の技術に係る前記ドライバは、ボイスコイル及び磁気回路を含むことができる。 The driver according to the technology of the present disclosure can include a voice coil and a magnetic circuit.
 本開示の技術に係る音響システムは、上記のスピーカ装置と、前記音源信号を受け付ける信号入力部と、前記受け付けた音源信号を前記スピーカ装置へ出力するアンプと、を含んで構成されている。 A sound system according to the technology of the present disclosure includes the speaker device described above, a signal input unit that receives the sound source signal, and an amplifier that outputs the received sound source signal to the speaker device.
 本開示の技術によれば、信号入力部が、前記音源信号を受け付ける。そして、アンプが、前記受け付けた音源信号を前記スピーカ装置へ出力する。そして、スピーカ装置において、複数の駆動回路が、音源信号に基づいて、前記少なくとも1つのドライバの振動板を振動させる制御信号を出力する。ここで、複数の駆動回路のうちの一部の駆動回路に設けられたローパスフィルタは、前記エンクロージャの形状に応じて出力される音圧の周波数特性のピーク周波数に、前記複数の駆動回路の各々が出力する前記制御信号を合成した信号の周波数特性におけるくぼみ周波数が対応するように設定されている。これにより、簡易な構成で、高音質な音響システムを提供することができる。 According to the technology of the present disclosure, the signal input unit receives the sound source signal. An amplifier outputs the received sound source signal to the speaker device. In the speaker device, a plurality of drive circuits output control signals for vibrating the diaphragm of the at least one driver based on the sound source signal. Here, the low-pass filter provided in a part of the drive circuits among the plurality of drive circuits filters the peak frequency of the frequency characteristics of the sound pressure output according to the shape of the enclosure to each of the plurality of drive circuits. is set so as to correspond to the recess frequency in the frequency characteristic of the signal obtained by synthesizing the control signals output by . As a result, it is possible to provide an acoustic system with a simple configuration and high sound quality.
 なお、本発明は、上述した実施形態に限定されるものではなく、この発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。 It should be noted that the present invention is not limited to the above-described embodiments, and various modifications and applications are possible without departing from the gist of the present invention.
 例えば、上記の実施の形態では、低域側と高域側の音圧差は6dBである場合を例に説明したが、これに限定されるものではない。バッフルの回折の効果のみを考慮した場合、低域側と高域側の音圧差は6dBである。これは、放射空間が2πとみなせる十分高い周波数と、4πとみなせる十分低い周波数の音圧差である。しかし、音響システムの特性は、ドライバのコーン形状、磁気回路の構成、その他部品等により周波数特性が変化する他の要因を有する為、駆動回路の出力特性を6dBに対してやや増減した方が最終的な特性が最適と見なせる場合も有り得る。 For example, in the above embodiment, the sound pressure difference between the low frequency side and the high frequency side is 6 dB, but it is not limited to this. When considering only the diffraction effect of the baffle, the sound pressure difference between the low frequency side and the high frequency side is 6 dB. This is the sound pressure difference between a sufficiently high frequency that the radiation space can be regarded as 2π and a sufficiently low frequency that it can be regarded as 4π. However, the characteristics of the sound system have other factors that change the frequency characteristics, such as the cone shape of the driver, the configuration of the magnetic circuit, and other parts. It is also possible that the characteristic characteristics can be regarded as optimal.
 このような場合はボイスコイルVC1とボイスコイルVC2のインピーダンスを1:1以外に設定するなど、2系統の駆動力を不均等にすることで任意に調整可能である。また、3以上の駆動回路とし、各駆動力と駆動係数により調整することも可能である。例えば、ボイスコイルVC1側とボイスコイルVC2側の駆動力を1.3:1に設定し、ボイスコイルVC2側にローパスフィルタを設ければ、音圧差は5dBとなる。なお、この様な方法をとる場合、くぼみの大きさもやや増減することに留意する必要がある。 In such a case, the impedance of the voice coil VC1 and the voice coil VC2 can be arbitrarily adjusted by setting the impedance of the voice coil VC1 and the voice coil VC2 to a value other than 1:1 by making the driving forces of the two systems unequal. It is also possible to use three or more driving circuits and adjust the driving force and the driving coefficient. For example, if the driving forces on the voice coil VC1 side and the voice coil VC2 side are set to 1.3:1 and a low-pass filter is provided on the voice coil VC2 side, the sound pressure difference will be 5 dB. It should be noted that when such a method is used, it should be noted that the size of the recesses is also slightly increased or decreased.
 また、単一のボイスコイルボビンに2系統以上のコイルを構成する場合、実施例以外に、同軸かつ振動方向の別の位置に巻いたボイスコイルを用いる方法でも良い。それぞれに同一電圧をかけた場合に同方向に力を発生する様に電流方向とギャップ磁束方向を設定すれば良い。 In addition, when configuring two or more coils on a single voice coil bobbin, a method of using voice coils wound on the same axis and at different positions in the vibration direction may be used other than the embodiments. The current direction and the gap magnetic flux direction should be set so that force is generated in the same direction when the same voltage is applied to each.
 また、スピーカ装置のポールピースに、ボイスコイルに電流を流した場合に発生する交流磁束を減少させるためのリング状の高導電率の導電体(銅リング等)を巻くようにしてもよい。これにより、ボイスコイルのインピーダンスがなくなり、インピーダンス補正が不要となる。すわなち、ボイスコイルのインダクタンスを無視して設計が可能となる。また、この交流磁束が減ることで電流に生じるひずみも減らすことができ高音質化できる。 In addition, a ring-shaped high-conductivity conductor (copper ring, etc.) may be wound around the pole piece of the speaker device to reduce the alternating magnetic flux generated when current flows through the voice coil. This eliminates the impedance of the voice coil and eliminates the need for impedance correction. That is, the design can be made by ignoring the inductance of the voice coil. In addition, by reducing the alternating magnetic flux, the distortion generated in the current can be reduced, and the sound quality can be improved.
 また、単一のボイスコイルボビンに2系統以上のボイスコイルを巻く際に、同軸かつ振動方向の別の位置に巻いたボイスコイルを用いる場合には、2系統の巻線部とし同一の電圧をかけた場合にそれぞれ発生する交流磁束が相反する方向となる様にする。このことで、各系統の相互の影響を少なくすることできる。これにより、ボイスコイルのインダクタンスを無視して設計が可能となる。また、この交流磁束が減ることで電流に生じるひずみも減らすことができ高音質化できる。 When winding two or more voice coils on a single voice coil bobbin, if the voice coils are wound on the same axis and at different positions in the vibration direction, the same voltage is applied to the two windings. The directions of the AC magnetic fluxes generated in each case are opposite to each other. This makes it possible to reduce the mutual influence of each system. As a result, the design can be made by ignoring the inductance of the voice coil. In addition, by reducing the alternating magnetic flux, the distortion generated in the current can be reduced, and the sound quality can be improved.
 日本出願2022-032793の開示はその全体が参照により本明細書に取り込まれる。 The disclosure of Japanese application 2022-032793 is incorporated herein by reference in its entirety.
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記載された場合と同程度に、本明細書中に参照により取り込まれる。 All publications, patent applications and technical standards mentioned herein are to the same extent as if each individual publication, patent application and technical standard were specifically and individually indicated to be incorporated by reference. incorporated herein by reference.

Claims (5)

  1.  振動板を含む少なくとも1つのドライバからなる駆動部と、
     前記ドライバを収納するエンクロージャと、
     音源信号に基づいて、前記少なくとも1つのドライバの振動板を振動させる制御信号を出力する複数の駆動回路と、を含み、
     前記駆動部は、前記複数の駆動回路の出力に応じて前記振動板を振動させ、
     前記複数の駆動回路のうちの一部の駆動回路に、ローパスフィルタを設け、
     前記ローパスフィルタは、前記エンクロージャの形状に応じて出力される音圧の周波数特性のピーク周波数に、前記複数の駆動回路の各々が出力する前記制御信号を合成した信号の周波数特性におけるくぼみ周波数が対応するように設定される
     スピーカ装置。
    a drive unit comprising at least one driver including a diaphragm;
    an enclosure that houses the driver;
    a plurality of drive circuits that output control signals for vibrating the diaphragm of the at least one driver based on the sound source signal;
    The drive unit vibrates the diaphragm according to outputs of the plurality of drive circuits,
    A low-pass filter is provided in some of the plurality of drive circuits,
    In the low-pass filter, the peak frequency of the frequency characteristics of the sound pressure output according to the shape of the enclosure corresponds to the recess frequency in the frequency characteristics of the signal obtained by synthesizing the control signals output from each of the plurality of drive circuits. A speaker device configured to
  2.  前記駆動部は、1つのドライバからなり、
     前記複数の駆動回路の各々は、音源信号に基づいて、前記ドライバの振動板を振動させる制御信号を各々出力し、
     前記駆動部は、前記複数の駆動回路の出力に応じて単一の振動板を振動させる請求項1記載のスピーカ装置。
    the driving unit is composed of one driver,
    each of the plurality of drive circuits outputs a control signal for vibrating the diaphragm of the driver based on the sound source signal;
    2. The speaker device according to claim 1, wherein said drive section vibrates a single diaphragm according to outputs of said plurality of drive circuits.
  3.  前記駆動部は、前記複数の駆動回路に対応して設けられた複数のドライバからなり、
     前記複数の駆動回路の各々は、音源信号に基づいて、対応する前記ドライバの振動板を振動させる制御信号を出力し、
     前記駆動部は、前記複数の駆動回路の各々に対応する振動板を、前記駆動回路の出力に応じて振動させる請求項1記載のスピーカ装置。
    The drive unit comprises a plurality of drivers provided corresponding to the plurality of drive circuits,
    each of the plurality of drive circuits outputs a control signal for vibrating the diaphragm of the corresponding driver based on the sound source signal;
    2. The speaker device according to claim 1, wherein the drive section vibrates the diaphragm corresponding to each of the plurality of drive circuits according to the output of the drive circuit.
  4.  前記ドライバは、ボイスコイル及び磁気回路を含む請求項1~請求項3の何れか1項記載のスピーカ装置。 The speaker device according to any one of claims 1 to 3, wherein the driver includes a voice coil and a magnetic circuit.
  5.  請求項1~請求項4の何れか1項記載のスピーカ装置と、
     前記音源信号を受け付ける信号入力部と、
     前記受け付けた音源信号を前記スピーカ装置へ出力するアンプと、
     を含む音響システム。
    a speaker device according to any one of claims 1 to 4;
    a signal input unit that receives the sound source signal;
    an amplifier that outputs the received sound source signal to the speaker device;
    sound system including.
PCT/JP2023/006883 2022-03-03 2023-02-24 Speaker device and sound system WO2023167113A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022032793A JP2023128448A (en) 2022-03-03 2022-03-03 Speaker device and acoustic system
JP2022-032793 2022-03-03

Publications (1)

Publication Number Publication Date
WO2023167113A1 true WO2023167113A1 (en) 2023-09-07

Family

ID=87883669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006883 WO2023167113A1 (en) 2022-03-03 2023-02-24 Speaker device and sound system

Country Status (2)

Country Link
JP (1) JP2023128448A (en)
WO (1) WO2023167113A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56114495A (en) * 1980-02-12 1981-09-09 Matsushita Electric Ind Co Ltd Speaker system
JPS574695A (en) * 1980-06-10 1982-01-11 Matsushita Electric Ind Co Ltd Speaker system
US6263079B1 (en) * 1998-03-19 2001-07-17 Telefonaktiebolaget Lm Ericsson (Publ) Telephone with means for enhancing the low-frequency response

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56114495A (en) * 1980-02-12 1981-09-09 Matsushita Electric Ind Co Ltd Speaker system
JPS574695A (en) * 1980-06-10 1982-01-11 Matsushita Electric Ind Co Ltd Speaker system
US6263079B1 (en) * 1998-03-19 2001-07-17 Telefonaktiebolaget Lm Ericsson (Publ) Telephone with means for enhancing the low-frequency response

Also Published As

Publication number Publication date
JP2023128448A (en) 2023-09-14

Similar Documents

Publication Publication Date Title
US4771466A (en) Multidriver loudspeaker apparatus with improved crossover filter circuits
JP4243021B2 (en) Crossover network without capacitors for electroacoustic speakers
WO2004064084A2 (en) Self-damped inductor
JP2005537746A (en) Dynamic microspeaker with dual suspension
US5781642A (en) Speaker system
Self The Design of Active Crossovers
US5937072A (en) Audio crossover circuit
EP0824786A1 (en) Audio crossover circuit
CN1914950B (en) First-order loudspeaker crossover network
WO2023167113A1 (en) Speaker device and sound system
EP3637796B1 (en) Thin speaker with a voice coil having a damper function
US6775385B1 (en) Loudspeaker frequency distribution and adjusting circuit
JP2004266329A (en) Speaker system
US7085389B1 (en) Infinite slope loudspeaker crossover filter
US7088827B1 (en) Reconfigurable speaker system
US10469954B1 (en) Thin speaker with a voice coil having a damper function
US6771781B2 (en) Variable damping circuit for a loudspeaker
US8917898B2 (en) Acoustic loudspeaker
Jortikka Electronics Design in a Passive Speaker System
Colloms The amplifier/loudspeaker interface
US7443990B2 (en) Voltage biased capacitor circuit for a loudspeaker
JP2005110192A (en) Electric conductor for speaker control
Colloms 6 The amplifier/loudspeaker
JPH0145194Y2 (en)
Kelly 16 Loudspeaker Enclosures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763372

Country of ref document: EP

Kind code of ref document: A1