WO2023166732A1 - Injection molding system - Google Patents

Injection molding system Download PDF

Info

Publication number
WO2023166732A1
WO2023166732A1 PCT/JP2022/009511 JP2022009511W WO2023166732A1 WO 2023166732 A1 WO2023166732 A1 WO 2023166732A1 JP 2022009511 W JP2022009511 W JP 2022009511W WO 2023166732 A1 WO2023166732 A1 WO 2023166732A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
robot
barrel
molding system
molding
Prior art date
Application number
PCT/JP2022/009511
Other languages
French (fr)
Japanese (ja)
Inventor
拓人 山脇
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2022/009511 priority Critical patent/WO2023166732A1/en
Publication of WO2023166732A1 publication Critical patent/WO2023166732A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations

Definitions

  • the present invention relates to an injection molding system.
  • thermoplastic resins for example, general-purpose plastics
  • thermosetting resins for example, liquid silicone resins
  • injection molding is performed in the same manner as for general thermoplastic resins.
  • thermosetting resin it has been proposed to use an injection device for thermoplastic resin as it is or to change some parts (see Patent Documents 1 and 2).
  • the injection amount of the molding material is about several grams, and an injection pressure of 20 MPa or less may be sufficient.
  • the injection device is disassembled and cleaned each time the colorant is changed, or the injection device is used differently for each colorant. In such applications, it is desirable that the injection device be small and lightweight, and that connection work (wiring work, software update man-hours, etc.) between the injection device and the external device can be simplified.
  • An object of the present invention is to provide an injection molding system that is compact, lightweight, and capable of simplifying the connection work between the injection device and the external device.
  • the present invention comprises at least one injection device that injects a molding material from an injection port provided in a barrel, and an injection drive device that supplies driving force to each part in a plurality of steps during a molding cycle, and the injection
  • the apparatus includes a driven member that is driven in the barrel to inject the molding material in the barrel from the injection port, and the injection drive device is driven in a step during the molding cycle to operate other than the driven member. and supplying the driving force to the driven member in the injection process of the molding cycle to inject the molding material from the injection port.
  • an injection molding system that is compact, lightweight, and capable of simplifying the connection work between the injection device and the external device.
  • FIG. 4A and 4B are diagrams for explaining an injection process performed in the injection molding system 1;
  • FIG. FIG. 2 is a diagram for explaining a holding pressure process performed in the injection molding system 1;
  • 4 is a diagram explaining a weighing process performed in the injection molding system 1;
  • FIG. 4 is a diagram explaining a weighing process performed in the injection molding system 1;
  • FIG. It is a figure explaining the structure of 1 A of injection molding systems in 2nd Embodiment.
  • FIG. 1 is a diagram illustrating the configuration of an injection molding system 1 according to the first embodiment.
  • an injection molding system 1 includes an injection device 2 , a mold 3 , an injection control device (external device) 4 , a robot (injection driving device) 5 and a robot control device 6 .
  • the injection device 2 is a device that supplies a fixed amount of molding material to a mold 3 (described later).
  • the injection device 2 includes a barrel holding portion 10 (barrel 11), a nozzle 12, a molding material inlet 13, a channel valve 14, a plunger (driven member) 15, a pushing member 16, a material channel 17, and a material supply portion 18.
  • the injection device 2 is installed on the base, illustration of the base and the mold clamping device is omitted in FIG.
  • the barrel holding part 10 is a housing with a barrel 11 inside.
  • the barrel 11 is a space filled with molding material.
  • a plunger 15 is inserted inside the barrel 11 .
  • the barrel holder 10 has a nozzle (ejection port) 12 at the lower (X2 side) end.
  • the nozzle 12 is a portion through which the molding material filled in the barrel 11 is injected, and communicates with the barrel 11 .
  • the tip of the nozzle 12 is in contact with the mold 3 .
  • the barrel holding part 10 has a molding material inlet (hereinafter also referred to as "inlet") 13 near the nozzle 12 .
  • the inlet 13 is an opening for allowing molding material to flow into the barrel 11 .
  • the inflow port 13 communicates with the barrel 11 via a flow path valve 14 .
  • One end of a material flow path 17 is connected to the inlet 13 .
  • the material flow path 17 is a flow path that communicates between the barrel 11 and the material supply section 18 .
  • the other end of material flow path 17 is connected to material supply section 18 .
  • the flow path valve 14 is an electric valve provided inside the barrel 11, and is composed of, for example, an electric three-way valve.
  • the channel valve 14 When the channel valve 14 is opened, the material channel 17 and the barrel 11 are communicated with each other, so that the molding material can be supplied from the material channel 17 to the barrel 11 through the inlet 13 .
  • the flow path valve 14 On the other hand, when the flow path valve 14 is closed, communication between the material flow path 17 and the barrel 11 is interrupted, and the molding material can be injected from the nozzle 12 .
  • the passage valve 14 may have any configuration as long as it can switch communication/non-communication between the material passage 17 and the barrel 11 .
  • the barrel 11 may be configured without the passage valve 14 .
  • the plunger 15 is a member provided inside the barrel 11 so as to be able to advance/retreat along the axial direction (X direction).
  • advancing means that the plunger 15 moves downward (X2 direction).
  • Retreat means that the plunger 15 moves upward (X1 direction).
  • a portion of plunger 15 is inserted into barrel 11 .
  • the pushing member 16 is a member that transmits the driving force supplied by the robot 5 to the plunger 15 .
  • the pushing member 16 may or may not be connected to the plunger 15 .
  • a configuration in which the pushing member 16 is connected to the plunger 15 will be described.
  • the pushing member 16 constitutes a driven member together with the plunger 15 .
  • the material supply unit 18 is a device that supplies molding material to the barrel 11 .
  • the molding material is liquid silicone resin (thermosetting resin).
  • a molding material is supplied to the barrel 11 from the material supply unit 18 through the material flow path 17 and the inlet 13 .
  • the material supply unit 18 generates supply pressure using hydraulic pressure, a servomotor, or the like, and supplies the molding material toward the barrel 11 .
  • the supply and stoppage of the molding material is controlled by an injection control device 4 (described later).
  • the material supply unit 18 itself may include a control device, or the material supply unit 18 may be configured such that its operation is controlled based on an input signal from another control device.
  • the mold 3 is a metal housing that can be opened and closed. In FIG. 1 and the like, the mold 3 is shown in a simplified manner. A cavity formed inside the mold 3 is filled with a molding material injected from the injection device 2 .
  • the mold 3 has a mold clamping device (not shown) that opens and closes.
  • the mold clamping device is a device that presses and heats the molding material filled in the cavity of the mold 3 to manufacture a molded product.
  • the robot 5 (described later) performs the work of removing the molded product from the mold 3 in the open state in the molded product removing process.
  • the injection control device 4 is electrically connected to the passage valve 14 and the material supply section 18 via wiring, and is a device that controls the operations of these sections.
  • the injection control device 4 is composed of, for example, a microprocessor unit including a CPU (Central Processing Unit), a memory, and the like.
  • the injection control device 4 controls the operation of each piece of hardware based on an application program that controls the operation of the injection device 2, and controls the operation of each part in each step included in the molding cycle.
  • the robot 5 is a device that supplies driving force to each part in multiple steps of the molding cycle.
  • a molding cycle generally refers to one continuous process of a weighing process, an injection process, and a holding pressure process.
  • a mold closing process, a mold opening process, a molded product taking-out process, a mold closing process, and the like are widely included. Therefore, the robot 5 of the present embodiment is used not only in the weighing process, the injection process, and the holding pressure process, but also, for example, in the process of taking out the molded product, the robot 5 is driven to suck the molded product by vacuum suction and separate it from the mold. supply power.
  • a work arm 25 (described later) of the robot 5 is appropriately equipped with devices suitable for work in each process.
  • These devices may be configured to be replaced with respect to the working arm 25 for each process, or may be configured to be switched for each process while attached to the working arm 25 .
  • Each step of the molding cycle described above is an example, and is not necessarily limited to the example of the embodiment. For example, depending on molding conditions, the pressure holding process may not be included.
  • the robot 5 is an articulated robot.
  • the robot 5 includes a robot base 21, a swing body 22, a first arm 23, a second arm 24, a working arm 25, and shafts 26-28.
  • the robot base 21 is fixed to an installation surface (not shown) of the robot 5 .
  • the swing body 22 is provided on the robot base 21 so as to be swingable around a vertical axis parallel to the X direction.
  • the first arm 23 is rotatably connected to the robot base 21 at the shaft portion 26 .
  • the second arm 24 is rotatably connected to the tip of the first arm 23 at the shaft portion 27 .
  • the working arm 25 is a part that contacts an object (for example, the plunger 15 or the pushing member 16) to supply a driving force and holds the object (for example, the power section 31).
  • the working arm 25 is rotatably connected to the tip of the second arm 24 at the shaft portion 28 .
  • the working arm 25 can rotate about three axes on the shaft portion 28 .
  • various devices for example, a motor
  • the working arm 25 also has a pressure sensor 29 .
  • the pressure sensor 29 is a device that indirectly measures the pressure of the molding material in the weighing process (described later).
  • the pressure sensor 29 is electrically connected with the robot controller 6 .
  • the robot control device 6 is electrically connected to the robot 5 via wiring, and is a device that controls the operation of each part that constitutes the robot 5 . Specifically, the robot control device 6 controls the operation of a servomotor (not shown) built in each part of the robot 5 to rotate each part about the rotation axis.
  • the robot control device 6 is composed of, for example, a microprocessor unit including a CPU (Central Processing Unit), memory, and the like.
  • the robot control device 6 controls the operation of each piece of hardware based on an application program that controls the operation of the robot 5, and performs operations in a plurality of steps included in the molding cycle.
  • the injection driving device is not limited to the robot 5 (articulated robot).
  • FIG. 2A is a diagram illustrating an injection process performed in the injection molding system 1.
  • FIG. 2B is a diagram illustrating a holding pressure process performed in the injection molding system 1.
  • FIG. Prior to starting the injection process the barrel 11 is filled with molding material. The molding material is filled into the barrel 11 in a metering process (described later) prior to the injection process.
  • the injection control device 4 closes the flow passage valve 14 . As a result, the material flow path 17 and the barrel 11 are disconnected, and the barrel 11 and the nozzle 12 are connected.
  • the robot control device 6 positions the working arm 25 of the robot 5 above the injection device 2, and then controls the robot 5 so that the working arm 25 descends downward (X2 direction).
  • the pushing member 16 advances together with the plunger 15, and the molding material filled in the barrel 11 is injected from the nozzle 12 toward the mold 3.
  • pressure control is performed by the driving force (pressure) applied from the working arm 25 of the robot 5 moving the pushing member 16 forward to the pushing completion position.
  • the filling of the molding material is completed by performing this pressure control over a predetermined time.
  • FIG. 2C and 2D are diagrams illustrating the weighing process performed in the injection molding system 1.
  • the robot controller 6 raises the working arm 25 of the robot upward (X1 direction), as shown in FIG. 2C.
  • the plunger 15 can be retracted together with the pushing member 16 .
  • the injection control device 4 opens the channel valve 14 to allow communication between the material channel 17 and the barrel 11 .
  • the molding material is supplied from the material supply unit 18 to the barrel 11 through the inlet 13, and weighing of the molding material is started.
  • the plunger 15 and the pushing member 16 are retracted by the material pressure of the molding material, as shown in FIG. 2D. After that, the pushing member 16 comes into contact with the distal end portion 25 a of the working arm 25 . Since the molding material is supplied to the barrel 11 even after the pushing member 16 abuts against the tip 25 a of the working arm 25 , the material pressure of the molding material acts on the pressure sensor 29 provided on the working arm 25 . do. When the pressure of the molding material measured by the pressure sensor 29 of the work arm 25 (robot 5) reaches a specified value, the robot control device 6 notifies the injection control device 4 of this.
  • the injection control device 4 closes the passage valve 14 and stops the supply of the molding material from the material supply section 18 to the barrel 11 . This completes the metering of the molding material into the barrel 11 .
  • the material pressure of the molding material may be measured by a pressure sensor (not shown) provided inside the barrel 11, or indirectly measured based on the position of the plunger 15 detected by a position sensor (not shown). may The pressure sensor 29 measurements can also be used for other control applications.
  • the configuration in which the robot 5 and the injection device 2 are provided with pressure sensors can also be applied to other embodiments.
  • the injection device 2 does not require a dedicated and fixed driving device for injecting the molding material, so the number of parts can be reduced. Therefore, the injection device 2 can be made compact and lightweight. In addition, the initial cost and operating cost of the injection device 2 can be reduced, and maintainability such as disassembly and cleaning can be improved. In addition, since it becomes easier to secure an installation space due to the miniaturization, it becomes easier to install a plurality of injection devices 2 when using different injection devices for each colorant. Furthermore, according to the injection molding system 1 of the embodiment, since the robot control device 6 can set the operation of the weighing process, the injection process, etc., the connection work ( wiring work, man-hours for software update, etc.) can be simplified.
  • the working arm 25 of the robot 5 since the working arm 25 of the robot 5 directly applies pressure to the pushing member 16, the driving force generated by the robot 5 is supplied to the pushing member 16 more efficiently. can.
  • the robot 5 since the robot 5 is configured by an articulated robot, it is possible to move and supply driving force to each process more quickly and smoothly.
  • the working arm 25 of the robot 5 is equipped with a pressure sensor 29 . Therefore, the cost can be reduced compared to the case where a sensor for measuring the material pressure is provided for each injection device. Especially when installing a plurality of injection devices, more cost reduction is possible.
  • FIG. 3 is a diagram illustrating the configuration of an injection molding system 1A according to the second embodiment.
  • members and the like that are the same as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and overlapping descriptions are omitted.
  • illustration of the control system (the injection control device 4, etc.) shown in FIG. 1 is omitted.
  • the power unit 31 is a device that contacts the plunger 15 and the pushing member 16 and supplies driving force downward (X2 direction).
  • the power unit 31 is composed of, for example, a motor and a mechanism that converts the rotary motion of the motor into linear motion.
  • the working arm 25 of the robot 5 holds the power section 31 and is controlled so as to be maintained in the vertical direction (X direction) of the power section 31 .
  • the driving force supplied by the power section 31 can advance the pushing member 16 together with the plunger 15 .
  • the power unit 31 may be configured by an air cylinder, a gas cylinder, a hydraulic cylinder, or the like.
  • FIG. 4A is a diagram illustrating a first configuration of an injection molding system 1B according to the third embodiment.
  • FIG. 4B is a diagram illustrating a second configuration of the injection molding system 1B according to the third embodiment.
  • illustration of the ejection mechanism 32 (described later) is simplified.
  • members and the like that are the same as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and overlapping descriptions are omitted.
  • the injection device 2 includes an injection mechanism section 32.
  • the injection mechanism section 32 is a structure that transmits the driving force supplied by the working arm 25 of the robot 5 to the plunger 15 and the pushing member 16 .
  • the injection mechanism 32 is configured by a mechanism, such as a ball screw, that converts rotary motion of the screw shaft 32a into linear motion.
  • the screw shaft 32a of the injection mechanism 32 is engaged with a ball nut 32b fixed to the upper portion of the injection device 2.
  • the configuration of the injection mechanism section 32 is not limited to the example shown in FIG. 4A, and may be any configuration as long as it can function in the same manner.
  • the driving force (rotational movement) supplied by the working arm 25 causes the screw shaft 32a to rotate.
  • the rotation of the screw shaft 32a is converted into linear motion by engagement with the ball nut 32b, and the pressing portion 32c is pushed downward (X2 direction).
  • the pushing member 16 can be advanced together with the plunger 15 by pushing the pressing portion 32c downward.
  • the injection molding system 1B (second configuration) shown in FIG. 4B includes the same injection mechanism 32 as the first configuration in the injection device 2 .
  • the robot 5 also includes a power section (power source) 33 at the tip 25 a of the working arm 25 .
  • the power unit 33 is configured by, for example, a motor.
  • a rotating shaft (not shown) of the power section 33 is connected to the screw shaft 32 a of the injection mechanism section 32 .
  • the driving force (rotational force) supplied by the power section 33 causes the screw shaft 32a to rotate.
  • the rotation of the screw shaft 32a is converted into linear motion by engagement with the ball nut 32b, and the pressing portion 32c is pushed downward (X2 direction).
  • the pushing member 16 can be advanced together with the plunger 15 by pushing the pressing portion 32c downward.
  • the pressing portion 32c retreats to a predetermined position.
  • the measurement completion position of the plunger 15 can be changed according to the molding conditions.
  • a configuration including a connecting mechanism portion 34 as in a fourth embodiment to be described later.
  • FIG. 5 is a diagram illustrating the configuration of an injection molding system 1C according to the fourth embodiment.
  • 4th Embodiment demonstrates the injection molding system 1 (refer FIG. 1) of 1st Embodiment as an example.
  • members and the like equivalent to those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and overlapping descriptions are omitted.
  • the injection molding system 1C of the fourth embodiment includes a connecting mechanism section 34 between the working arm 25 of the robot 5 and the pushing member 16.
  • the connecting mechanism part 34 is a structure for connecting the working arm 25 that supplies the driving force and the pushing member 16 .
  • the driving force of the working arm 25 is transmitted to the pushing member 16 via the connecting mechanism section 34 .
  • the connection mechanism part 34 is configured by, for example, a coupling mechanism.
  • the coupling mechanism may be separable or non-separable.
  • the structure provided with the connection mechanism part 34 is applicable also to other embodiment.
  • FIG. 6 is a diagram illustrating the configuration of an injection molding system 1D according to the fifth embodiment.
  • the configuration of the injection molding system 1A (see FIG. 3) of the second embodiment will be described as an example.
  • members and the like that are the same as those of the second embodiment are denoted by the same reference numerals as those of the second embodiment, and overlapping descriptions are omitted.
  • the injection molding system 1D of the fifth embodiment includes a fixing mechanism 35 in the injection device 2.
  • the fixing mechanism part 35 is a structure that fixes the injection device 2 and the part to which the robot 5 supplies driving force (in this example, the power part 31).
  • the driving force generated by the power unit 31 held by the robot 5 exceeds the force that the robot 5 can withstand, the force that the robot 5 cannot withstand is applied as a repulsive force. Therefore, position control of the robot 5 may become difficult.
  • the injection molding system 1 ⁇ /b>D of the fifth embodiment the injection device 2 and the power section 31 are fixed to each other by the fixing mechanism section 35 .
  • the fixing mechanism unit 35 can receive the force that the robot 5 cannot withstand. Therefore, in the injection molding system 1D of the fifth embodiment, the influence on the position control of the robot 5 can be reduced.
  • the configuration in which the injection device 2 is provided with the fixing mechanism section 35 can also be applied to other embodiments.
  • the configuration of the fixing mechanism portion 35 is not limited to the example shown in FIG.
  • FIG. 7 is a diagram illustrating the configuration of an injection molding system 1E according to the sixth embodiment.
  • the injection device 2 and the robot 5 (see FIG. 1) of the first embodiment will be described as examples.
  • the illustration of the injection device is simplified.
  • members and the like equivalent to those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and overlapping descriptions are omitted.
  • the injection molding system 1E of the sixth embodiment has a plurality of injection devices 2A to 2C for one robot 5.
  • the robot 5 is configured to be movable in the direction of arrow A along guide rails (not shown).
  • the injection devices 2A to 2C are arranged along this guide rail.
  • one robot 5 is set in a predetermined order (for example, the injection devices 2A, 2B, By moving in 2C), the injection process of each injection device and other processes (for example, molding product ejection process) can be executed in order.
  • the number of injection devices may be two, or four or more.
  • the configuration in which one robot 5 is sequentially moved with respect to a plurality of injection devices can also be applied to other embodiments.
  • FIG. 1 1st Embodiment
  • FIG. 1 members and the like equivalent to those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and overlapping descriptions are omitted.
  • the working arm 25 of the robot 5 reaches a preset pressing speed (hereinafter also referred to as "set speed") at the start of the injection process. is accelerated.
  • set speed a preset pressing speed
  • FIG. 8B when the acceleration of the working arm 25 is completed and the moving speed of the working arm 25 reaches the set speed, the plunger 15 and the pushing member 16 are pushed downward (X2 direction).
  • the plunger 15 and the pushing member 16 can be advanced at a predetermined speed from the start of injection.
  • FIG. 8B shows a state in which the plunger 15 and the pushing member 16 are advanced downward (X2 direction) by the working arm 25 whose movement speed has reached the set speed.
  • FIG. 9 is a diagram illustrating the configuration of an injection molding system 1G according to the eighth embodiment.
  • members and the like equivalent to those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and overlapping descriptions are omitted.
  • the injection molding system 1G of the eighth embodiment includes a screw assembly 36 in the injection device 2 instead of the plunger 15 and the pushing member 16 (see FIG. 1).
  • the robot 5 also has a power unit 33 at the tip 25 a of the working arm 25 .
  • the screw assembly 36 includes a mechanism portion 36a, a screw 36b, and a screw head 36c.
  • the mechanism portion 36 a is connected to a rotating shaft (not shown) of the power portion 33 .
  • a connecting mechanism portion 34 may be provided instead of the mechanism portion 36a.
  • operation patterns 1 to 3 In the embodiment in which the injection device 2 is provided with the screw assembly 36, several operation patterns are conceivable for injection of the molding material. Examples of these operation patterns will be described as operation patterns 1 to 3 below.
  • the inlet 13 for the molding material is provided on the base side (X1 side) of the screw 36b.
  • the rotation of the power section 33 is converted into rotational motion of the screw 36b, and the molding material is injected toward the mold 3 by rotating the screw 36b.
  • a configuration without a component such as a speed reducer may be employed, or a configuration may be employed in which the power section 33 and the screw 36b are only connected.
  • the configuration of the eighth embodiment can also be applied to other embodiments.
  • the screw assembly 36 of the eighth embodiment instead of the plunger 15 and the pushing member 16, the screw assembly 36 of the eighth embodiment may be provided.
  • a configuration in which a connecting mechanism section 34 (see FIG. 5) is provided between the working arm 25 (power section 33) of the robot 5 and the screw assembly 36 may be employed.
  • the molding material may be a form in which molten thermoplastic resin is supplied from the material supply section 18 to the barrel 11 (for example, a form corresponding to a pre-plunger type injection molding machine).
  • the molten thermoplastic resin may be supplied from the material supply unit 18 to the barrel 11 by the driving force supplied by the robot 5 .
  • the robot 5 may supply a driving force to the material supply section 18 to measure pellet-shaped thermoplastic resin.
  • the molding material inlet 13 is provided on the base side (X1 side) of the screw 36b, and while the molding material is supplied to the barrel 11 by the material supply unit 18, the power unit 33 rotates.
  • the material supply unit 18 may be configured by a member (for example, a hopper) that does not have a mechanical unit.
  • a configuration in which the passage valve 14 is not provided in the barrel 11 may be adopted.
  • a pressure sensor (not shown) may be provided in the working arm 25 or the barrel 11, and the metering operation of the screw assembly 36 may be controlled based on the measured value of the pressure sensor. Further, in this configuration, the molding material can be injected toward the mold 3 by lowering the working arm 25 .
  • a sensor that detects an increase in motor torque for example, a sensor that detects an increase in hydraulic pressure, a strain sensor, or the like may be provided.
  • the robot 5 performs speed control (injection speed control), position control (injection position control), stroke control, pressure control ( At least one of injection pressure control and holding pressure control) may be controlled.
  • the robot 5 may perform the above control based on the measured value of the pressure sensor 29 (see FIG. 1) provided on the working arm 25 of the robot 5 .
  • the injection driving device supplies driving force to a portion other than the plunger 15 (driven member) in a process during the molding cycle, and supplies driving force to the plunger 15 in an injection process during the molding cycle to operate the nozzle 12.
  • Any device can be used as long as it injects the molding material from.
  • the injection drive device for example, a molded product take-out device for taking out the molded product from the mold 3 may be used in the molded product take-out process.
  • the injection control device 4 (injection device 2) may control the operation of the injection drive device, or the control device of the injection drive device may control part or all of the operation of the injection device 2.
  • the working arm 25 of the robot 5 may be provided with a robot hand.
  • the power section 31 can be supported by the robot hand.
  • the configuration in which the molding material is injected from the injection device 2 in the vertical direction (X direction) has been described, but a configuration in which the molding material is injected from the injection device 2 in the horizontal direction is also possible.
  • 1, 1A to 1G injection molding system
  • 2, 2A to 2C injection device
  • 3 mold
  • 4 injection control device
  • 5 robot
  • 6 robot control device
  • 11 barrel
  • 12 nozzle
  • 15 plunger
  • 16 pushing member
  • 25 working arm
  • 31, 33 power section
  • 32 injection mechanism section
  • 34 connection mechanism section
  • 35 fixing mechanism section
  • 36 screw assembly

Abstract

Provided is an injection molding system that is small, lightweight, and capable of simplifying work for linking an injection device and an external device. The injection molding system 1 comprises: at least one injection device 2 that injects a molding material from an injection port 12 provided to a barrel 11; and an injection drive device 5 that provides driving force to each site during a plurality of steps in a molding cycle. The injection device 2 comprises a driven member 15 that injects the molding material inside the barrel from the injection port 12 as a result of being driven inside the barrel 11. The injection drive device 5 provides the driving force to a site other than the driven member during the step in the molding cycle, and provides the driving force to the driven member 15 and injects the molding material from the injection port 12 during the injection step in the molding cycle.

Description

射出成形システムinjection molding system
 本発明は、射出成形システムに関する。 The present invention relates to an injection molding system.
 従来、射出成形のための成形材料として、熱可塑性樹脂(例えば、汎用プラスチック)が多く用いられている。近年では、射出成形に適した熱硬化性樹脂(例えば、液状のシリコーン樹脂)が開発され、一般的な熱可塑性樹脂と同様の手法で射出成形が行われている。熱硬化性樹脂を用いた射出成形においては、熱可塑性樹脂用の射出装置をそのまま利用したり、一部の部品を変更したりすることが提案されている(特許文献1、2参照)。 Conventionally, thermoplastic resins (for example, general-purpose plastics) are often used as molding materials for injection molding. In recent years, thermosetting resins (for example, liquid silicone resins) suitable for injection molding have been developed, and injection molding is performed in the same manner as for general thermoplastic resins. In injection molding using thermosetting resin, it has been proposed to use an injection device for thermoplastic resin as it is or to change some parts (see Patent Documents 1 and 2).
WO2021/157503A1WO2021/157503A1 特開2015-85667号公報JP 2015-85667 A
 熱硬化性樹脂を用いた射出成形では、用途によっては、成形材料の射出量が数グラム程度であり、射出圧も20MPa以下で十分なこともある。また、熱硬化性樹脂を用いて多色成形を行う場合、着色料を変える度に射出装置の分解や清掃を実施したり、着色料ごとに射出装置を使い分けたりすることが行われている。このような用途において、射出装置は、小型、軽量であり、射出装置と外部装置との間の連結作業(配線作業やソフトウェア更新の工数等)を簡素化できることが望ましい。 In injection molding using thermosetting resin, depending on the application, the injection amount of the molding material is about several grams, and an injection pressure of 20 MPa or less may be sufficient. Further, when multicolor molding is performed using a thermosetting resin, the injection device is disassembled and cleaned each time the colorant is changed, or the injection device is used differently for each colorant. In such applications, it is desirable that the injection device be small and lightweight, and that connection work (wiring work, software update man-hours, etc.) between the injection device and the external device can be simplified.
 本発明の目的は、小型、軽量で且つ射出装置と外部装置との間の連結作業を簡素化できる射出成形システムを提供することにある。 An object of the present invention is to provide an injection molding system that is compact, lightweight, and capable of simplifying the connection work between the injection device and the external device.
 本発明は、バレルに設けられた射出口から成形材料を射出する少なくとも1つの射出装置と、成形サイクル中の複数の工程において、各部位に駆動力を供給する射出駆動装置とを備え、前記射出装置は、前記バレル内で駆動されることにより、前記バレル内の成形材料を前記射出口から射出する被駆動部材を備え、前記射出駆動装置は、成形サイクル中の工程において、前記被駆動部材以外の部位に駆動力を供給すると共に、成形サイクル中の射出工程において、前記被駆動部材に駆動力を供給して、前記射出口から成形材料を射出させるものである、射出成形システムに関する。 The present invention comprises at least one injection device that injects a molding material from an injection port provided in a barrel, and an injection drive device that supplies driving force to each part in a plurality of steps during a molding cycle, and the injection The apparatus includes a driven member that is driven in the barrel to inject the molding material in the barrel from the injection port, and the injection drive device is driven in a step during the molding cycle to operate other than the driven member. and supplying the driving force to the driven member in the injection process of the molding cycle to inject the molding material from the injection port.
 本発明によれば、小型、軽量で且つ射出装置と外部装置との間の連結作業を簡素化できる射出成形システムを提供することができる。 According to the present invention, it is possible to provide an injection molding system that is compact, lightweight, and capable of simplifying the connection work between the injection device and the external device.
第1実施形態における射出成形システム1の構成を説明する図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure explaining the structure of the injection molding system 1 in 1st Embodiment. 射出成形システム1において実行される射出工程を説明する図である。4A and 4B are diagrams for explaining an injection process performed in the injection molding system 1; FIG. 射出成形システム1において実行される保圧工程を説明する図である。FIG. 2 is a diagram for explaining a holding pressure process performed in the injection molding system 1; 射出成形システム1において実行される計量工程を説明する図である。4 is a diagram explaining a weighing process performed in the injection molding system 1; FIG. 射出成形システム1において実行される計量工程を説明する図である。4 is a diagram explaining a weighing process performed in the injection molding system 1; FIG. 第2実施形態における射出成形システム1Aの構成を説明する図である。It is a figure explaining the structure of 1 A of injection molding systems in 2nd Embodiment. 第3実施形態における射出成形システム1Bの第1の構成を説明する図である。It is a figure explaining the 1st composition of injection molding system 1B in a 3rd embodiment. 第3実施形態における射出成形システム1Bの第2の構成を説明する図である。It is a figure explaining the 2nd composition of injection molding system 1B in a 3rd embodiment. 第4実施形態における射出成形システム1Cの構成を説明する図である。It is a figure explaining the structure of 1 C of injection molding systems in 4th Embodiment. 第5実施形態における射出成形システム1Dの構成を説明する図である。It is a figure explaining the structure of injection molding system 1D in 5th Embodiment. 第6実施形態における射出成形システム1Eの構成を説明する図である。It is a figure explaining the structure of the injection molding system 1E in 6th Embodiment. 第7実施形態における射出成形システム1Fの構成を説明する図である。It is a figure explaining the structure of the injection molding system 1F in 7th Embodiment. 第7実施形態における射出成形システム1Fの構成を説明する図である。It is a figure explaining the structure of the injection molding system 1F in 7th Embodiment. 第8実施形態における射出成形システム1Gの構成を説明する図である。It is a figure explaining the structure of the injection molding system 1G in 8th Embodiment.
 以下、本発明に係る射出成形システムの実施形態について説明する。本明細書に添付した図面は、いずれも模式図であり、理解しやすさ等を考慮して、各部の形状、縮尺、縦横の寸法比等を、実物から変更又は誇張している。また、本明細書に添付した図面では、図1に示す射出装置2の上下(垂直)方向をX方向とする。そして、X方向において、上方向をX1方向、下方向をX2方向とする。なお、本明細書においては、「~方向」を適宜に「~側」ともいう。 An embodiment of an injection molding system according to the present invention will be described below. The drawings attached to this specification are all schematic diagrams, and the shapes, scales, length-to-width dimensional ratios, etc. of each part are changed or exaggerated from the actual ones in consideration of ease of understanding. In addition, in the drawings attached to this specification, the vertical (vertical) direction of the injection device 2 shown in FIG. 1 is defined as the X direction. In the X direction, the upward direction is defined as the X1 direction, and the downward direction is defined as the X2 direction. In this specification, "direction" is also referred to as "side" as appropriate.
(第1実施形態)
 図1は、第1実施形態における射出成形システム1の構成を説明する図である。図1に示すように、射出成形システム1は、射出装置2、金型3、射出制御装置(外部装置)4、ロボット(射出駆動装置)5、ロボット制御装置6を備える。
 射出装置2は、金型3(後述)に対して、一定量の成形材料を供給する装置である。射出装置2は、バレル保持部10(バレル11)、ノズル12、成形材料流入口13、流路バルブ14、プランジャ(被駆動部材)15、押し込み部材16、材料流路17、材料供給部18を備える。なお、射出装置2は、基台上に設置されているが、図1では、基台及び型締め装置の図示を省略する。
(First embodiment)
FIG. 1 is a diagram illustrating the configuration of an injection molding system 1 according to the first embodiment. As shown in FIG. 1 , an injection molding system 1 includes an injection device 2 , a mold 3 , an injection control device (external device) 4 , a robot (injection driving device) 5 and a robot control device 6 .
The injection device 2 is a device that supplies a fixed amount of molding material to a mold 3 (described later). The injection device 2 includes a barrel holding portion 10 (barrel 11), a nozzle 12, a molding material inlet 13, a channel valve 14, a plunger (driven member) 15, a pushing member 16, a material channel 17, and a material supply portion 18. Prepare. Although the injection device 2 is installed on the base, illustration of the base and the mold clamping device is omitted in FIG.
 バレル保持部10は、内部にバレル11を備える筐体である。バレル11は、成形材料が充填される空間である。バレル11の内部には、プランジャ15が挿入されている。バレル保持部10は、下側(X2側)の端部にノズル(射出口)12を備える。ノズル12は、バレル11内に充填された成形材料が射出される部分であり、バレル11と連通している。ノズル12の先端は、金型3に当接している。 The barrel holding part 10 is a housing with a barrel 11 inside. The barrel 11 is a space filled with molding material. A plunger 15 is inserted inside the barrel 11 . The barrel holder 10 has a nozzle (ejection port) 12 at the lower (X2 side) end. The nozzle 12 is a portion through which the molding material filled in the barrel 11 is injected, and communicates with the barrel 11 . The tip of the nozzle 12 is in contact with the mold 3 .
 バレル保持部10は、ノズル12の近傍に成形材料流入口(以下、「流入口」ともいう)13を備える。流入口13は、バレル11に成形材料を流入させるための開口である。流入口13は、流路バルブ14を介してバレル11と連通している。流入口13には、材料流路17の一方の端部が接続されている。材料流路17は、バレル11と材料供給部18との間を連通する流路である。材料流路17の他方の端部は、材料供給部18と接続されている。 The barrel holding part 10 has a molding material inlet (hereinafter also referred to as "inlet") 13 near the nozzle 12 . The inlet 13 is an opening for allowing molding material to flow into the barrel 11 . The inflow port 13 communicates with the barrel 11 via a flow path valve 14 . One end of a material flow path 17 is connected to the inlet 13 . The material flow path 17 is a flow path that communicates between the barrel 11 and the material supply section 18 . The other end of material flow path 17 is connected to material supply section 18 .
 流路バルブ14は、バレル11内に設けられる電動バルブであり、例えば、電動の三方弁により構成される。流路バルブ14を開栓すると、材料流路17とバレル11との間が連通するため、材料流路17から流入口13を介してバレル11に成形材料を供給できる。一方、流路バルブ14を閉栓すると、材料流路17とバレル11との間が非連通となり、ノズル12から成形材料を射出できる。なお、流路バルブ14は、材料流路17とバレル11との間の連通/非連通を切り替えることができれば、どのような構成でもよい。また、バレル11に流路バルブ14を設けない構成としてもよい。 The flow path valve 14 is an electric valve provided inside the barrel 11, and is composed of, for example, an electric three-way valve. When the channel valve 14 is opened, the material channel 17 and the barrel 11 are communicated with each other, so that the molding material can be supplied from the material channel 17 to the barrel 11 through the inlet 13 . On the other hand, when the flow path valve 14 is closed, communication between the material flow path 17 and the barrel 11 is interrupted, and the molding material can be injected from the nozzle 12 . The passage valve 14 may have any configuration as long as it can switch communication/non-communication between the material passage 17 and the barrel 11 . Alternatively, the barrel 11 may be configured without the passage valve 14 .
 プランジャ15は、バレル11の内部において、軸方向(X方向)に沿って前進/後退可能に設けられた部材である。ここで、「前進」とは、プランジャ15が下方向(X2方向)に移動することをいう。また、「後退」とは、プランジャ15が上方向(X1方向)に移動することをいう。プランジャ15の一部は、バレル11に挿入されている。バレル11内に成形材料が充填された状態において、プランジャ15が前進するように駆動されると、バレル11内に充填された成形材料がノズル12から射出される。 The plunger 15 is a member provided inside the barrel 11 so as to be able to advance/retreat along the axial direction (X direction). Here, "advancing" means that the plunger 15 moves downward (X2 direction). "Retreat" means that the plunger 15 moves upward (X1 direction). A portion of plunger 15 is inserted into barrel 11 . When the plunger 15 is driven to move forward while the barrel 11 is filled with the molding material, the molding material filled in the barrel 11 is injected from the nozzle 12 .
 押し込み部材16は、ロボット5が供給する駆動力をプランジャ15に伝達する部材である。押し込み部材16は、プランジャ15と連結されていてもよいし、連結されていなくてもよい。本実施形態では、押し込み部材16がプランジャ15と連結されている形態について説明する。押し込み部材16がプランジャ15と連結されている形態において、押し込み部材16は、プランジャ15と共に被駆動部材を構成する。 The pushing member 16 is a member that transmits the driving force supplied by the robot 5 to the plunger 15 . The pushing member 16 may or may not be connected to the plunger 15 . In this embodiment, a configuration in which the pushing member 16 is connected to the plunger 15 will be described. In the form in which the pushing member 16 is connected to the plunger 15 , the pushing member 16 constitutes a driven member together with the plunger 15 .
 材料供給部18は、バレル11に成形材料を供給する装置である。本実施形態において、成形材料は、液状のシリコーン樹脂(熱硬化性樹脂)である。成形材料は、材料供給部18から材料流路17、流入口13を経てバレル11に供給される。材料供給部18は、油圧、サーボモータ等により供給圧を発生させて、バレル11に向けて成形材料を供給する。材料供給部18において、成形材料の供給や供給停止は、射出制御装置4(後述)により制御される。なお、材料供給部18自体が制御装置を備えていてもよいし、材料供給部18は、他の制御装置からの入力信号に基づいて動作が制御される構成としてもよい。 The material supply unit 18 is a device that supplies molding material to the barrel 11 . In this embodiment, the molding material is liquid silicone resin (thermosetting resin). A molding material is supplied to the barrel 11 from the material supply unit 18 through the material flow path 17 and the inlet 13 . The material supply unit 18 generates supply pressure using hydraulic pressure, a servomotor, or the like, and supplies the molding material toward the barrel 11 . In the material supply section 18, the supply and stoppage of the molding material is controlled by an injection control device 4 (described later). Note that the material supply unit 18 itself may include a control device, or the material supply unit 18 may be configured such that its operation is controlled based on an input signal from another control device.
 金型3は、開閉可能に構成された金属製の筐体である。図1等においては、金型3を簡略化して示している。金型3の内部に形成されるキャビティ内に、射出装置2から射出された成形材料が充填される。金型3は、開閉を行う型締め装置(不図示)を備える。型締め装置は、金型3のキャビティに充填された成形材料を加圧、加熱することにより、成形品を製造する装置である。なお、ロボット5(後述)は、成形品取り出し工程において、開状態の金型3から成形品を取り出す作業を実行する。 The mold 3 is a metal housing that can be opened and closed. In FIG. 1 and the like, the mold 3 is shown in a simplified manner. A cavity formed inside the mold 3 is filled with a molding material injected from the injection device 2 . The mold 3 has a mold clamping device (not shown) that opens and closes. The mold clamping device is a device that presses and heats the molding material filled in the cavity of the mold 3 to manufacture a molded product. In addition, the robot 5 (described later) performs the work of removing the molded product from the mold 3 in the open state in the molded product removing process.
 射出制御装置4は、流路バルブ14、材料供給部18と配線を介して電気的に接続されており、これら各部の動作を制御する装置である。射出制御装置4は、例えば、CPU(中央処理装置)、メモリ等を含むマイクロプロセッサユニットにより構成される。射出制御装置4は、射出装置2の動作を制御するアプリケーションプログラムに基づいて、各ハードウェアの動作を制御して、成形サイクルに含まれる各工程において、上記各部の動作を制御する。 The injection control device 4 is electrically connected to the passage valve 14 and the material supply section 18 via wiring, and is a device that controls the operations of these sections. The injection control device 4 is composed of, for example, a microprocessor unit including a CPU (Central Processing Unit), a memory, and the like. The injection control device 4 controls the operation of each piece of hardware based on an application program that controls the operation of the injection device 2, and controls the operation of each part in each step included in the molding cycle.
 ロボット5は、成形サイクルの複数の工程において、各部位に駆動力を供給する装置である。成形サイクルは、一般的には計量工程、射出工程、保圧工程の連続した1工程を指すが、本実施形態の成形サイクルには、上述した計量工程、射出工程、保圧工程の他、金型の型閉じ工程、型開き工程、成形品の取り出し工程、金型の型閉じ工程等が、広く含まれる。そのため、本実施形態のロボット5は、計量工程、射出工程、保圧工程だけでなく、例えば、成形品の取り出し工程においては、真空吸引により成形品を吸着して金型から分離するための駆動力を供給する。なお、ロボット5の作業アーム25(後述)には、各工程の作業に適した機器が適宜に装着される。これらの機器は、作業アーム25に対して、工程ごとに付け替えられる構成でもよいし、作業アーム25に装着された状態で工程ごとに切り替えられる構成でもよい。なお、上記成型サイクルの各工程は、一例であり、必ずしも実施形態の例に限定されない。例えば、成形条件によっては、保圧工程を含まないこともある。 The robot 5 is a device that supplies driving force to each part in multiple steps of the molding cycle. A molding cycle generally refers to one continuous process of a weighing process, an injection process, and a holding pressure process. A mold closing process, a mold opening process, a molded product taking-out process, a mold closing process, and the like are widely included. Therefore, the robot 5 of the present embodiment is used not only in the weighing process, the injection process, and the holding pressure process, but also, for example, in the process of taking out the molded product, the robot 5 is driven to suck the molded product by vacuum suction and separate it from the mold. supply power. A work arm 25 (described later) of the robot 5 is appropriately equipped with devices suitable for work in each process. These devices may be configured to be replaced with respect to the working arm 25 for each process, or may be configured to be switched for each process while attached to the working arm 25 . Each step of the molding cycle described above is an example, and is not necessarily limited to the example of the embodiment. For example, depending on molding conditions, the pressure holding process may not be included.
 本実施形態において、ロボット5は、多関節ロボットである。ロボット5は、ロボットベース21、旋回胴22、第1アーム23、第2アーム24、作業アーム25、軸部26~28を備える。ロボットベース21は、ロボット5の設置面(不図示)に固定されている。旋回胴22は、ロボットベース21上において、X方向と平行な垂直軸回りに旋回可能に設けられている。第1アーム23は、軸部26においてロボットベース21に回動可能に連結されている。第2アーム24は、軸部27において第1アーム23の先端に回動可能に連結されている。 In this embodiment, the robot 5 is an articulated robot. The robot 5 includes a robot base 21, a swing body 22, a first arm 23, a second arm 24, a working arm 25, and shafts 26-28. The robot base 21 is fixed to an installation surface (not shown) of the robot 5 . The swing body 22 is provided on the robot base 21 so as to be swingable around a vertical axis parallel to the X direction. The first arm 23 is rotatably connected to the robot base 21 at the shaft portion 26 . The second arm 24 is rotatably connected to the tip of the first arm 23 at the shaft portion 27 .
 作業アーム25は、対象物(例えば、プランジャ15や押し込み部材16)に当接して駆動力を供給したり、対象物(例えば、動力部31)を保持したりする部分である。作業アーム25は、軸部28において第2アーム24の先端に回動可能に連結されている。作業アーム25は、軸部28において3軸回りに回動することができる。後述するように、作業アーム25の先端部25aには、作業内容に応じて各種の機器(例えば、モータ)が装着される。また、作業アーム25は、圧力センサ29を備える。圧力センサ29は、計量工程(後述)において、成形材料の圧力を間接的に測定する機器である。圧力センサ29は、ロボット制御装置6と電気的に接続されている。 The working arm 25 is a part that contacts an object (for example, the plunger 15 or the pushing member 16) to supply a driving force and holds the object (for example, the power section 31). The working arm 25 is rotatably connected to the tip of the second arm 24 at the shaft portion 28 . The working arm 25 can rotate about three axes on the shaft portion 28 . As will be described later, various devices (for example, a motor) are attached to the distal end portion 25a of the working arm 25 according to the content of the work. The working arm 25 also has a pressure sensor 29 . The pressure sensor 29 is a device that indirectly measures the pressure of the molding material in the weighing process (described later). The pressure sensor 29 is electrically connected with the robot controller 6 .
 ロボット制御装置6は、ロボット5と配線を介して電気的に接続されており、ロボット5を構成する各部の動作を制御する装置である。具体的には、ロボット制御装置6は、ロボット5の各部に内蔵されたサーボモータ(不図示)の動作を制御して、上記各部を回動軸回りに回動させる。ロボット制御装置6は、例えば、CPU(中央処理装置)、メモリ等を含むマイクロプロセッサユニットにより構成される。ロボット制御装置6は、ロボット5の動作を制御するアプリケーションプログラムに基づいて、各ハードウェアの動作を制御して、成形サイクルに含まれる複数の工程において作業を実行する。なお、後述するように、射出駆動装置は、ロボット5(多関節ロボット)に限定されない。 The robot control device 6 is electrically connected to the robot 5 via wiring, and is a device that controls the operation of each part that constitutes the robot 5 . Specifically, the robot control device 6 controls the operation of a servomotor (not shown) built in each part of the robot 5 to rotate each part about the rotation axis. The robot control device 6 is composed of, for example, a microprocessor unit including a CPU (Central Processing Unit), memory, and the like. The robot control device 6 controls the operation of each piece of hardware based on an application program that controls the operation of the robot 5, and performs operations in a plurality of steps included in the molding cycle. As will be described later, the injection driving device is not limited to the robot 5 (articulated robot).
 次に、第1実施形態の射出成形システム1において実行される射出工程及び保圧工程について、図2A~図2Dを参照して説明する。なお、実際の成形サイクルにおいては、上述したように、計量工程、射出工程、保圧工程、成形品取り出し工程の順に作業が行われるが、ここでは、先に射出工程と保圧工程について説明する。 Next, the injection process and the holding pressure process performed in the injection molding system 1 of the first embodiment will be described with reference to FIGS. 2A to 2D. In the actual molding cycle, as described above, operations are performed in the order of the weighing process, the injection process, the holding pressure process, and the molding process, but here, the injection process and the holding pressure process will be explained first. .
 図2Aは、射出成形システム1において実行される射出工程を説明する図である。図2Bは、射出成形システム1において実行される保圧工程を説明する図である。
 射出工程を開始するに先立って、バレル11内には成形材料が充填されている。成形材料は、射出工程の前の計量工程(後述)においてバレル11に充填される。射出工程において、射出制御装置4は、流路バルブ14を閉栓する。これにより、材料流路17とバレル11との間が非連通となり、バレル11とノズル12との間が連通する。
FIG. 2A is a diagram illustrating an injection process performed in the injection molding system 1. FIG. FIG. 2B is a diagram illustrating a holding pressure process performed in the injection molding system 1. FIG.
Prior to starting the injection process, the barrel 11 is filled with molding material. The molding material is filled into the barrel 11 in a metering process (described later) prior to the injection process. In the injection process, the injection control device 4 closes the flow passage valve 14 . As a result, the material flow path 17 and the barrel 11 are disconnected, and the barrel 11 and the nozzle 12 are connected.
 次に、ロボット制御装置6は、ロボット5の作業アーム25を射出装置2の上に位置させ、続いて作業アーム25が下方向(X2方向)に降下するようにロボット5を制御する。これにより、図2Aに示すように、押し込み部材16は、プランジャ15と共に前進して、バレル11内に充填された成形材料がノズル12から金型3に向けて射出される。続く保圧工程では、図2Bに示すように、ロボット5の作業アーム25から加わる駆動力(圧力)により、押し込み部材16が押し込み完了位置まで前進することで圧力制御が行われる。保圧工程では、この圧力制御が所定時間に亘って実行されることにより、成形材料の充填が完了する。 Next, the robot control device 6 positions the working arm 25 of the robot 5 above the injection device 2, and then controls the robot 5 so that the working arm 25 descends downward (X2 direction). 2A, the pushing member 16 advances together with the plunger 15, and the molding material filled in the barrel 11 is injected from the nozzle 12 toward the mold 3. As shown in FIG. In the subsequent pressure holding process, as shown in FIG. 2B, pressure control is performed by the driving force (pressure) applied from the working arm 25 of the robot 5 moving the pushing member 16 forward to the pushing completion position. In the pressure holding process, the filling of the molding material is completed by performing this pressure control over a predetermined time.
 図2C及び図2Dは、射出成形システム1において実行される計量工程を説明する図である。
 ロボット制御装置6は、成形材料の充填が完了した後、図2Cに示すように、ロボットの作業アーム25を上方向(X1方向)に上昇させる。作業アーム25が上昇することにより、プランジャ15は、押し込み部材16と共に後退可能となる。次に、射出制御装置4は、流路バルブ14を開栓して、材料流路17とバレル11との間を連通させる。これにより、材料供給部18から流入口13を介してバレル11に成形材料が供給され、成形材料の計量が開始される。
2C and 2D are diagrams illustrating the weighing process performed in the injection molding system 1. FIG.
After completing the filling of the molding material, the robot controller 6 raises the working arm 25 of the robot upward (X1 direction), as shown in FIG. 2C. As the working arm 25 rises, the plunger 15 can be retracted together with the pushing member 16 . Next, the injection control device 4 opens the channel valve 14 to allow communication between the material channel 17 and the barrel 11 . As a result, the molding material is supplied from the material supply unit 18 to the barrel 11 through the inlet 13, and weighing of the molding material is started.
 バレル11に成形材料が供給されると、図2Dに示すように、プランジャ15及び押し込み部材16は、成形材料の材料圧により後退する。この後、押し込み部材16は、作業アーム25の先端部25aに当接する。押し込み部材16が作業アーム25の先端部25aに当接した後も、バレル11には成形材料が供給されるため、作業アーム25に設けられた圧力センサ29には、成形材料の材料圧が作用する。ロボット制御装置6は、成形材料の材料圧により、作業アーム25(ロボット5)の圧力センサ29で測定された圧力が規定値に達すると、これを射出制御装置4に送信する。射出制御装置4は、流路バルブ14を閉栓すると共に、材料供給部18からバレル11への成形材料の供給を停止させる。これにより、バレル11への成形材料の計量が完了する。なお、成形材料の材料圧は、バレル11内に設けた圧力センサ(不図示)により測定してもよいし、位置センサ(不図示)で検出したプランジャ15の位置に基づいて間接的に測定してもよい。また、圧力センサ29の測定値は、他の制御用途に用いることもできる。第1実施形態の射出成形システム1において、ロボット5や射出装置2に圧力センサを設ける構成は、他の実施形態にも適用できる。 When the molding material is supplied to the barrel 11, the plunger 15 and the pushing member 16 are retracted by the material pressure of the molding material, as shown in FIG. 2D. After that, the pushing member 16 comes into contact with the distal end portion 25 a of the working arm 25 . Since the molding material is supplied to the barrel 11 even after the pushing member 16 abuts against the tip 25 a of the working arm 25 , the material pressure of the molding material acts on the pressure sensor 29 provided on the working arm 25 . do. When the pressure of the molding material measured by the pressure sensor 29 of the work arm 25 (robot 5) reaches a specified value, the robot control device 6 notifies the injection control device 4 of this. The injection control device 4 closes the passage valve 14 and stops the supply of the molding material from the material supply section 18 to the barrel 11 . This completes the metering of the molding material into the barrel 11 . The material pressure of the molding material may be measured by a pressure sensor (not shown) provided inside the barrel 11, or indirectly measured based on the position of the plunger 15 detected by a position sensor (not shown). may The pressure sensor 29 measurements can also be used for other control applications. In the injection molding system 1 of the first embodiment, the configuration in which the robot 5 and the injection device 2 are provided with pressure sensors can also be applied to other embodiments.
 第1実施形態の射出成形システム1によれば、射出装置2において、成形材料を射出するための専用且つ固定化された駆動装置が不要となるため、部品点数を削減できる。そのため、射出装置2を小型、軽量に構成できる。また、射出装置2の初期費用や運転時のコストを低減できると共に、分解・清掃等のメンテナンス性も向上する。また、小型化により設置スペースの確保が容易となるため、着色料ごとに射出装置を使い分ける場合に、複数の射出装置2を設置することが容易となる。更に、実施形態の射出成形システム1によれば、ロボット制御装置6により計量工程、射出工程等の動作設定ができるため、射出装置2と射出制御装置(外部装置)4との間の連結作業(配線作業やソフトウェア更新の工数等)を簡素化できる。 According to the injection molding system 1 of the first embodiment, the injection device 2 does not require a dedicated and fixed driving device for injecting the molding material, so the number of parts can be reduced. Therefore, the injection device 2 can be made compact and lightweight. In addition, the initial cost and operating cost of the injection device 2 can be reduced, and maintainability such as disassembly and cleaning can be improved. In addition, since it becomes easier to secure an installation space due to the miniaturization, it becomes easier to install a plurality of injection devices 2 when using different injection devices for each colorant. Furthermore, according to the injection molding system 1 of the embodiment, since the robot control device 6 can set the operation of the weighing process, the injection process, etc., the connection work ( wiring work, man-hours for software update, etc.) can be simplified.
 第1実施形態の射出成形システム1において、ロボット5の作業アーム25は、押し込み部材16に対して直接的に圧力を加えるため、ロボット5で発生した駆動力を、より効率良く押し込み部材16に供給できる。
 第1実施形態の射出成形システム1において、ロボット5は、多関節ロボットにより構成されるため、各工程への移動及び駆動力の供給を、より速やかに且つ円滑に行うことができる。
 第1実施形態の射出成形システム1において、ロボット5の作業アーム25は、圧力センサ29を備える。そのため、射出装置ごとに材料圧を測定するセンサを設ける場合に比べて、コストを削減できる。特に、複数の射出装置を設置する場合において、より多くのコストの削減が可能となる。
In the injection molding system 1 of the first embodiment, since the working arm 25 of the robot 5 directly applies pressure to the pushing member 16, the driving force generated by the robot 5 is supplied to the pushing member 16 more efficiently. can.
In the injection molding system 1 of the first embodiment, since the robot 5 is configured by an articulated robot, it is possible to move and supply driving force to each process more quickly and smoothly.
In the injection molding system 1 of the first embodiment, the working arm 25 of the robot 5 is equipped with a pressure sensor 29 . Therefore, the cost can be reduced compared to the case where a sensor for measuring the material pressure is provided for each injection device. Especially when installing a plurality of injection devices, more cost reduction is possible.
(第2実施形態)
 図3は、第2実施形態における射出成形システム1Aの構成を説明する図である。
 第2実施形態の説明及び図面において、第1実施形態と同等の部材等には、第1実施形態と同一の符号を付し、重複する説明を省略する。なお、図3及び後述する各実施形態の図においては、図1に示す制御系(射出制御装置4等)の図示を省略する。
(Second embodiment)
FIG. 3 is a diagram illustrating the configuration of an injection molding system 1A according to the second embodiment.
In the description and drawings of the second embodiment, members and the like that are the same as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and overlapping descriptions are omitted. In addition, in FIG. 3 and drawings of each embodiment described later, illustration of the control system (the injection control device 4, etc.) shown in FIG. 1 is omitted.
 図3に示す射出成形システム1Aのロボット5は、作業アーム25の先端部25aに動力部(動力源)31を備える。動力部31は、プランジャ15及び押し込み部材16に当接して、下方向(X2方向)に駆動力を供給する装置である。動力部31は、例えば、モータ及びモータの回転運動を直線運動に変換する機構により構成される。第2実施形態において、ロボット5の作業アーム25は、動力部31を保持すると共に、動力部31の垂直方向(X方向)の位置に保たれるように制御される。第2実施形態の射出成形システム1Aにおいては、動力部31が供給する駆動力により、押し込み部材16をプランジャ15と共に前進させることができる。なお、動力部31は、エアシリンダ、ガスシリンダ、油圧シリンダ等により構成してもよい。 The robot 5 of the injection molding system 1A shown in FIG. The power unit 31 is a device that contacts the plunger 15 and the pushing member 16 and supplies driving force downward (X2 direction). The power unit 31 is composed of, for example, a motor and a mechanism that converts the rotary motion of the motor into linear motion. In the second embodiment, the working arm 25 of the robot 5 holds the power section 31 and is controlled so as to be maintained in the vertical direction (X direction) of the power section 31 . In the injection molding system 1</b>A of the second embodiment, the driving force supplied by the power section 31 can advance the pushing member 16 together with the plunger 15 . Note that the power unit 31 may be configured by an air cylinder, a gas cylinder, a hydraulic cylinder, or the like.
(第3実施形態)
 図4Aは、第3実施形態における射出成形システム1Bの第1の構成を説明する図である。図4Bは、第3実施形態における射出成形システム1Bの第2の構成を説明する図である。図4A及び図4Bでは、射出機構部32(後述)の図示を簡略化している。
 第2実施形態の説明及び図面において、第1実施形態と同等の部材等には、第1実施形態と同一の符号を付し、重複する説明を省略する。
(Third Embodiment)
FIG. 4A is a diagram illustrating a first configuration of an injection molding system 1B according to the third embodiment. FIG. 4B is a diagram illustrating a second configuration of the injection molding system 1B according to the third embodiment. In FIGS. 4A and 4B, illustration of the ejection mechanism 32 (described later) is simplified.
In the description and drawings of the second embodiment, members and the like that are the same as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and overlapping descriptions are omitted.
 図4Aに示す射出成形システム1B(第1の構成)において、射出装置2は、射出機構部32を備える。射出機構部32は、ロボット5の作業アーム25が供給する駆動力を、プランジャ15及び押し込み部材16に伝達する構造体である。射出機構部32は、例えば、ボールねじのように、ねじ軸32aの回転運動を直線運動に変換する機構により構成される。図4A(及び図4B)において、射出機構部32のねじ軸32aは、射出装置2の上部に固定されたボール付きナット32bと係合している。なお、射出機構部32の構成は、図4Aの例に限らず、同等に機能し得るものであれば、どのような構成としてもよい。 In the injection molding system 1B (first configuration) shown in FIG. 4A, the injection device 2 includes an injection mechanism section 32. The injection mechanism section 32 is a structure that transmits the driving force supplied by the working arm 25 of the robot 5 to the plunger 15 and the pushing member 16 . The injection mechanism 32 is configured by a mechanism, such as a ball screw, that converts rotary motion of the screw shaft 32a into linear motion. 4A (and FIG. 4B), the screw shaft 32a of the injection mechanism 32 is engaged with a ball nut 32b fixed to the upper portion of the injection device 2. As shown in FIG. Note that the configuration of the injection mechanism section 32 is not limited to the example shown in FIG. 4A, and may be any configuration as long as it can function in the same manner.
 図4Aに示すように、作業アーム25の先端部25aが軸部28を中心として旋回運動すると、作業アーム25が供給する駆動力(回転運動)によりねじ軸32aが回転する。ねじ軸32aの回転は、ボール付きナット32bとの係合により直線運動に変換され、押圧部32cが下方向(X2方向)に押し込まれる。押圧部32cが下方向に押し込まれることにより、押し込み部材16をプランジャ15と共に前進させることができる。 As shown in FIG. 4A, when the distal end portion 25a of the working arm 25 turns about the shaft portion 28, the driving force (rotational movement) supplied by the working arm 25 causes the screw shaft 32a to rotate. The rotation of the screw shaft 32a is converted into linear motion by engagement with the ball nut 32b, and the pressing portion 32c is pushed downward (X2 direction). The pushing member 16 can be advanced together with the plunger 15 by pushing the pressing portion 32c downward.
 図4Bに示す射出成形システム1B(第2の構成)は、射出装置2に第1の構成と同じ射出機構部32を備える。また、ロボット5は、作業アーム25の先端部25aに動力部(動力源)33を備える。動力部33は、例えば、モータにより構成される。動力部33の回転軸(不図示)は、射出機構部32のねじ軸32aと連結されている。図4Bに示すように、作業アーム25に設けられた動力部33の回転軸が回転すると、動力部33が供給する駆動力(回転力)により、ねじ軸32aが回転する。ねじ軸32aの回転は、ボール付きナット32bとの係合により直線運動に変換され、押圧部32cが下方向(X2方向)に押し込まれる。押圧部32cが下方向に押し込まれることにより、押し込み部材16をプランジャ15と共に前進させることができる。 The injection molding system 1B (second configuration) shown in FIG. 4B includes the same injection mechanism 32 as the first configuration in the injection device 2 . The robot 5 also includes a power section (power source) 33 at the tip 25 a of the working arm 25 . The power unit 33 is configured by, for example, a motor. A rotating shaft (not shown) of the power section 33 is connected to the screw shaft 32 a of the injection mechanism section 32 . As shown in FIG. 4B, when the rotation shaft of the power section 33 provided in the working arm 25 rotates, the driving force (rotational force) supplied by the power section 33 causes the screw shaft 32a to rotate. The rotation of the screw shaft 32a is converted into linear motion by engagement with the ball nut 32b, and the pressing portion 32c is pushed downward (X2 direction). The pushing member 16 can be advanced together with the plunger 15 by pushing the pressing portion 32c downward.
 なお、第3実施形態の射出成形システム1B(第1の構成及び第2の構成)において、成形材料を金型3に射出した後、押圧部32cは、所定の位置まで後退する。押圧部32cを後退させる位置を適宜に設定することにより、成形条件に応じて、プランジャ15の計量完了位置を変更することができる。後述する第4実施形態のように、連結機構部34を備える構成とした場合も同様である。 Note that in the injection molding system 1B (first configuration and second configuration) of the third embodiment, after the molding material is injected into the mold 3, the pressing portion 32c retreats to a predetermined position. By appropriately setting the position at which the pressing portion 32c is retracted, the measurement completion position of the plunger 15 can be changed according to the molding conditions. The same applies to a configuration including a connecting mechanism portion 34 as in a fourth embodiment to be described later.
(第4実施形態)
 図5は、第4実施形態における射出成形システム1Cの構成を説明する図である。第4実施形態では、第1実施形態の射出成形システム1(図1参照)を例として説明する。
 第4実施形態の説明及び図面において、第1実施形態と同等の部材等には、第1実施形態と同一の符号を付し、重複する説明を省略する。
(Fourth embodiment)
FIG. 5 is a diagram illustrating the configuration of an injection molding system 1C according to the fourth embodiment. 4th Embodiment demonstrates the injection molding system 1 (refer FIG. 1) of 1st Embodiment as an example.
In the description and drawings of the fourth embodiment, members and the like equivalent to those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and overlapping descriptions are omitted.
 図5に示すように、第4実施形態の射出成形システム1Cは、ロボット5の作業アーム25と押し込み部材16との間に連結機構部34を備える。連結機構部34は、駆動力を供給する作業アーム25と押し込み部材16とを連結するための構造体である。第4実施形態の射出成形システム1Cにおいて、作業アーム25の駆動力は、連結機構部34を介して押し込み部材16に伝達される。連結機構部34は、例えば、カップリング機構により構成される。カップリング機構は、分離可能でもよいし、分離できない構成でもよい。なお、第4実施形態の射出成形システム1Cにおいて、連結機構部34を備える構成は、他の実施形態にも適用できる。 As shown in FIG. 5, the injection molding system 1C of the fourth embodiment includes a connecting mechanism section 34 between the working arm 25 of the robot 5 and the pushing member 16. As shown in FIG. The connecting mechanism part 34 is a structure for connecting the working arm 25 that supplies the driving force and the pushing member 16 . In the injection molding system 1</b>C of the fourth embodiment, the driving force of the working arm 25 is transmitted to the pushing member 16 via the connecting mechanism section 34 . The connection mechanism part 34 is configured by, for example, a coupling mechanism. The coupling mechanism may be separable or non-separable. In addition, in 1 C of injection molding systems of 4th Embodiment, the structure provided with the connection mechanism part 34 is applicable also to other embodiment.
(第5実施形態)
 図6は、第5実施形態における射出成形システム1Dの構成を説明する図である。第5実施形態では、第2実施形態の射出成形システム1A(図3参照)の構成を例として説明する。
 第5実施形態の説明及び図面において、第2実施形態と同等の部材等には、第2実施形態と同一の符号を付し、重複する説明を省略する。
(Fifth embodiment)
FIG. 6 is a diagram illustrating the configuration of an injection molding system 1D according to the fifth embodiment. In the fifth embodiment, the configuration of the injection molding system 1A (see FIG. 3) of the second embodiment will be described as an example.
In the description and drawings of the fifth embodiment, members and the like that are the same as those of the second embodiment are denoted by the same reference numerals as those of the second embodiment, and overlapping descriptions are omitted.
 図6に示すように、第5実施形態の射出成形システム1Dは、射出装置2に固定機構部35を備える。固定機構部35は、射出装置2とロボット5が駆動力を供給する部分(本例では、動力部31)とを固定する構造体である。ロボット5の保持する動力部31が発生する駆動力が、ロボット5の耐えられる力を超える場合、ロボット5には、耐えられない分の力が反発力として加わる。そのため、ロボット5の位置制御が難しくなることがある。これに対して、第5実施形態の射出成形システム1Dでは、射出装置2と動力部31とが固定機構部35により互いに固定されている。そのため、動力部31の発生する駆動力がロボット5の耐えられる力を超えても、耐えられない分の力を固定機構部35で受け止めることができる。したがって、第5実施形態の射出成形システム1Dにおいては、ロボット5の位置制御に与える影響を低減できる。なお、第5実施形態の射出成形システム1Dにおいて、射出装置2に固定機構部35を備える構成は、他の実施形態にも適用できる。また、第5実施形態において、固定機構部35の構成は、図6の例に限定されず、同等に機能し得るものであれば、どのような構成としてもよい。 As shown in FIG. 6, the injection molding system 1D of the fifth embodiment includes a fixing mechanism 35 in the injection device 2. As shown in FIG. The fixing mechanism part 35 is a structure that fixes the injection device 2 and the part to which the robot 5 supplies driving force (in this example, the power part 31). When the driving force generated by the power unit 31 held by the robot 5 exceeds the force that the robot 5 can withstand, the force that the robot 5 cannot withstand is applied as a repulsive force. Therefore, position control of the robot 5 may become difficult. On the other hand, in the injection molding system 1</b>D of the fifth embodiment, the injection device 2 and the power section 31 are fixed to each other by the fixing mechanism section 35 . Therefore, even if the driving force generated by the power unit 31 exceeds the force that the robot 5 can withstand, the fixing mechanism unit 35 can receive the force that the robot 5 cannot withstand. Therefore, in the injection molding system 1D of the fifth embodiment, the influence on the position control of the robot 5 can be reduced. In addition, in the injection molding system 1D of the fifth embodiment, the configuration in which the injection device 2 is provided with the fixing mechanism section 35 can also be applied to other embodiments. Moreover, in the fifth embodiment, the configuration of the fixing mechanism portion 35 is not limited to the example shown in FIG.
(第6実施形態)
 図7は、第6実施形態における射出成形システム1Eの構成を説明する図である。第6実施形態では、第1実施形態の射出装置2及びロボット5(図1参照)を例として説明する。なお、図7では、射出装置の図示を簡略化している。
 第6実施形態の説明及び図面において、第1実施形態と同等の部材等には、第1実施形態と同一の符号を付し、重複する説明を省略する。
(Sixth embodiment)
FIG. 7 is a diagram illustrating the configuration of an injection molding system 1E according to the sixth embodiment. In the sixth embodiment, the injection device 2 and the robot 5 (see FIG. 1) of the first embodiment will be described as examples. In addition, in FIG. 7, the illustration of the injection device is simplified.
In the description and drawings of the sixth embodiment, members and the like equivalent to those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and overlapping descriptions are omitted.
 第6実施形態の射出成形システム1Eは、1台のロボット5に対して、複数の射出装置2A~2Cを備えている。第6実施形態の射出成形システム1Eにおいて、ロボット5は、ガイドレール(不図示)に沿って矢印Aの方向に移動可能に構成されている。また、射出装置2A~2Cは、このガイドレールに沿って配置されている。図7に示すように、第6実施形態の射出成形システム1Eによれば、複数の射出装置2A~2Cに対して、1台のロボット5を予め設定した順番(例えば、射出装置2A、2B、2C)で移動させることにより、各射出装置の射出工程や他の工程(例えば、成形品取り出し工程)を順番に実行させることができる。なお、第6実施形態の射出成形システム1Eにおいて、射出装置の数は2台でもよいし、4台以上でもよい。また、第6実施形態の射出成形システム1Eにおいて、複数の射出装置に対して1台のロボット5を順番に移動させる構成は、他の実施形態にも適用できる。 The injection molding system 1E of the sixth embodiment has a plurality of injection devices 2A to 2C for one robot 5. In the injection molding system 1E of the sixth embodiment, the robot 5 is configured to be movable in the direction of arrow A along guide rails (not shown). Also, the injection devices 2A to 2C are arranged along this guide rail. As shown in FIG. 7, according to the injection molding system 1E of the sixth embodiment, one robot 5 is set in a predetermined order (for example, the injection devices 2A, 2B, By moving in 2C), the injection process of each injection device and other processes (for example, molding product ejection process) can be executed in order. In addition, in the injection molding system 1E of the sixth embodiment, the number of injection devices may be two, or four or more. Moreover, in the injection molding system 1E of the sixth embodiment, the configuration in which one robot 5 is sequentially moved with respect to a plurality of injection devices can also be applied to other embodiments.
(第7実施形態)
 図8A及び図8Bは、第7実施形態における射出成形システム1Fの構成を説明する図である。第7実施形態では、第1実施形態の射出成形システム1(図1)の構成を例として説明する。
 第7実施形態の説明及び図面において、第1実施形態と同等の部材等には、第1実施形態と同一の符号を付し、重複する説明を省略する。
(Seventh embodiment)
8A and 8B are diagrams illustrating the configuration of an injection molding system 1F according to the seventh embodiment. 7th Embodiment demonstrates the structure of the injection molding system 1 (FIG. 1) of 1st Embodiment as an example.
In the description and drawings of the seventh embodiment, members and the like equivalent to those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and overlapping descriptions are omitted.
 図8Aに示すように、第7実施形態の射出成形システム1Fにおいて、ロボット5の作業アーム25は、射出工程の開始時に、予め設定された押し込み速度(以下、「設定速度」ともいう)となるよう加速される。そして、図8Bに示すように、作業アーム25の加速が完了し、作業アーム25の移動速度が設定速度に達した時点で、プランジャ15及び押し込み部材16の下方向(X2方向)への押し込みが開始する。これにより、第7実施形態の射出成形システム1Fにおいては、プランジャ15及び押し込み部材16を、射出開始時から所定速度で前進させることができる。図8Bは、移動速度が設定速度に達した作業アーム25により、プランジャ15及び押し込み部材16が下方向(X2方向)に前進した状態を示している。 As shown in FIG. 8A, in the injection molding system 1F of the seventh embodiment, the working arm 25 of the robot 5 reaches a preset pressing speed (hereinafter also referred to as "set speed") at the start of the injection process. is accelerated. Then, as shown in FIG. 8B, when the acceleration of the working arm 25 is completed and the moving speed of the working arm 25 reaches the set speed, the plunger 15 and the pushing member 16 are pushed downward (X2 direction). Start. Thereby, in the injection molding system 1F of the seventh embodiment, the plunger 15 and the pushing member 16 can be advanced at a predetermined speed from the start of injection. FIG. 8B shows a state in which the plunger 15 and the pushing member 16 are advanced downward (X2 direction) by the working arm 25 whose movement speed has reached the set speed.
(第8実施形態)
 図9は、第8実施形態における射出成形システム1Gの構成を説明する図である。
 第8実施形態の説明及び図面において、第1実施形態と同等の部材等には、第1実施形態と同一の符号を付し、重複する説明を省略する。
(Eighth embodiment)
FIG. 9 is a diagram illustrating the configuration of an injection molding system 1G according to the eighth embodiment.
In the description and drawings of the eighth embodiment, members and the like equivalent to those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and overlapping descriptions are omitted.
 図9に示すように、第8実施形態の射出成形システム1Gは、プランジャ15及び押し込み部材16(図1参照)の代わりに、射出装置2にスクリュアセンブリ36を備える。また、ロボット5は、作業アーム25の先端部25aに動力部33を備える。スクリュアセンブリ36は、機構部36a、スクリュ36b、スクリュヘッド36cを備える。機構部36aは、動力部33の回転軸(不図示)と連結されている。なお、機構部36aの代わりに連結機構部34(図5参照)を設けてもよい。 As shown in FIG. 9, the injection molding system 1G of the eighth embodiment includes a screw assembly 36 in the injection device 2 instead of the plunger 15 and the pushing member 16 (see FIG. 1). The robot 5 also has a power unit 33 at the tip 25 a of the working arm 25 . The screw assembly 36 includes a mechanism portion 36a, a screw 36b, and a screw head 36c. The mechanism portion 36 a is connected to a rotating shaft (not shown) of the power portion 33 . Note that a connecting mechanism portion 34 (see FIG. 5) may be provided instead of the mechanism portion 36a.
 射出装置2にスクリュアセンブリ36を備える実施形態において、成形材料の射出には、幾つかの動作パターンが考えられる。以下、これら動作パターンの例を動作パターン1~3として説明する。 In the embodiment in which the injection device 2 is provided with the screw assembly 36, several operation patterns are conceivable for injection of the molding material. Examples of these operation patterns will be described as operation patterns 1 to 3 below.
(動作パターン1)
 スクリュアセンブリ36において、動力部33の回転をスクリュ36bの直線運動に変換し、スクリュ36bを前進させることにより成形材料を金型3に向けて射出する。
(Operating pattern 1)
In the screw assembly 36, the rotation of the power section 33 is converted into linear motion of the screw 36b, and the molding material is injected toward the mold 3 by advancing the screw 36b.
(動作パターン2)
 成形材料の流入口13をスクリュ36bの根本側(X1側)に設けた構成とする。スクリュアセンブリ36において、動力部33の回転をスクリュ36bの回転運動に変換し、スクリュ36bを回転させることにより成形材料を金型3に向けて射出する。なお、動力部33の回転をスクリュ36bの回転運動に変換する構成において、減速機等の部品を設けない構成としてもよく、動力部33とスクリュ36bとを連結するだけの構成としてもよい。
(Operating pattern 2)
The inlet 13 for the molding material is provided on the base side (X1 side) of the screw 36b. In the screw assembly 36, the rotation of the power section 33 is converted into rotational motion of the screw 36b, and the molding material is injected toward the mold 3 by rotating the screw 36b. In addition, in the configuration for converting the rotation of the power section 33 into the rotational motion of the screw 36b, a configuration without a component such as a speed reducer may be employed, or a configuration may be employed in which the power section 33 and the screw 36b are only connected.
(動作パターン3)
 作業アーム25が下方向(X2方向)に降下するようにロボット5を制御し、スクリュ36bを前進させることにより成形材料を金型3に向けて射出する。この場合、動力部33の回転は成形材料の射出には使用しない。
(Operating pattern 3)
The robot 5 is controlled so that the working arm 25 descends downward (X2 direction), and the molding material is injected toward the mold 3 by advancing the screw 36b. In this case, the rotation of the power section 33 is not used for injection of molding material.
 第8実施形態の構成は、他の実施形態にも適用できる。例えば、第3実施形態の射出成形システム1B(図4A、図4B参照)において、プランジャ15及び押し込み部材16の代わりに、第8実施形態のスクリュアセンブリ36を備えた構成としてもよい。その場合、ロボット5の作業アーム25(動力部33)とスクリュアセンブリ36との間に、連結機構部34(図5参照)を設けた構成としてもよい。 The configuration of the eighth embodiment can also be applied to other embodiments. For example, in the injection molding system 1B of the third embodiment (see FIGS. 4A and 4B), instead of the plunger 15 and the pushing member 16, the screw assembly 36 of the eighth embodiment may be provided. In that case, a configuration in which a connecting mechanism section 34 (see FIG. 5) is provided between the working arm 25 (power section 33) of the robot 5 and the screw assembly 36 may be employed.
 以上、本発明に係る射出成形システムの実施形態(第1~第8実施形態)について説明したが、本発明は、前述した実施形態に限定されるものではなく、後述する変形形態のように種々の変形や変更が可能であって、それらも本発明の技術的範囲内に含まれる。また、実施形態に記載した効果は、本発明から生じる最も好適な効果を列挙したに過ぎず、実施形態に記載したものに限定されない。なお、上述の実施形態及び後述する変形形態は、適宜に組み合わせて用いることもできるが、詳細な説明は省略する。 Although the embodiments (first to eighth embodiments) of the injection molding system according to the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications such as those described below are possible. can be modified and changed, and they are also included in the technical scope of the present invention. Moreover, the effects described in the embodiments are merely enumerations of the most suitable effects produced by the present invention, and are not limited to those described in the embodiments. Although the above-described embodiment and modified embodiments described later can be used in combination as appropriate, detailed description thereof will be omitted.
(変形形態)
 第1~第7実施形態において、成形材料として、材料供給部18からバレル11に溶融した熱可塑性樹脂を供給する形態としてもよい(例えば、プリ・プランジャー式射出成形機に相当する形態)。本形態において、ロボット5が供給する駆動力により、材料供給部18からバレル11に溶融した熱可塑性樹脂を供給してもよい。また、プリ・プランジャー式射出成形機に相当する形態の場合、ロボット5が材料供給部18に駆動力を供給することにより、ペレット状の熱可塑性樹脂の計量を行うようにしてもよい。
(deformed form)
In the first to seventh embodiments, the molding material may be a form in which molten thermoplastic resin is supplied from the material supply section 18 to the barrel 11 (for example, a form corresponding to a pre-plunger type injection molding machine). In this embodiment, the molten thermoplastic resin may be supplied from the material supply unit 18 to the barrel 11 by the driving force supplied by the robot 5 . Further, in the case of a form corresponding to a pre-plunger type injection molding machine, the robot 5 may supply a driving force to the material supply section 18 to measure pellet-shaped thermoplastic resin.
 第8実施形態に示すスクリュアセンブリ36において、成形材料としてペレット状の熱可塑性樹脂を用いる場合、その成形材料の計量を行えるように構成することもできる。例えば、図9に示す射出装置2において、成形材料の流入口13をスクリュ36bの根本側(X1側)に設け、材料供給部18により成形材料をバレル11に供給しながら、動力部33の回転軸を回転させつつ、作業アーム25を動力部33やスクリュアセンブリ36と共に上昇させることにより、ペレット状の成形材料を計量することができる。なお、本構成において、材料供給部18は、機構部のない部材(例えば、ホッパ)で構成してもよい。また、バレル11内に流路バルブ14を設けない構成としてもよい。上記構成において、作業アーム25やバレル11内に圧力センサ(不図示)を設け、その圧力センサの測定値に基づいて、スクリュアセンブリ36の計量動作を制御してもよい。また、本構成において、作業アーム25の降下により成形材料を金型3に向けて射出することができる。 In the screw assembly 36 shown in the eighth embodiment, when a pellet-shaped thermoplastic resin is used as the molding material, it can be configured so that the molding material can be weighed. For example, in the injection device 2 shown in FIG. 9, the molding material inlet 13 is provided on the base side (X1 side) of the screw 36b, and while the molding material is supplied to the barrel 11 by the material supply unit 18, the power unit 33 rotates. By raising the working arm 25 together with the power unit 33 and the screw assembly 36 while rotating the shaft, the molding material in the form of pellets can be weighed. In addition, in this configuration, the material supply unit 18 may be configured by a member (for example, a hopper) that does not have a mechanical unit. Also, a configuration in which the passage valve 14 is not provided in the barrel 11 may be adopted. In the above configuration, a pressure sensor (not shown) may be provided in the working arm 25 or the barrel 11, and the metering operation of the screw assembly 36 may be controlled based on the measured value of the pressure sensor. Further, in this configuration, the molding material can be injected toward the mold 3 by lowering the working arm 25 .
 実施形態において、ロボット5が射出装置2から受ける負荷を検出する手段として、例えば、モータトルクの上昇分を検出するセンサ、油圧の上昇分を検出センサ、歪センサ等を備えた構成としてもよい。本構成において、ロボット5がセンサの測定値と予め設定された規定値とに基づいて、プランジャ15の速度制御(射出の速度制御)、位置制御(射出の位置制御)、ストローク制御、圧力制御(射出の圧力制御・保圧制御)のうち、少なくとも1つを制御するようにしてもよい。ロボット5の作業アーム25に設けた圧力センサ29(図1参照)の測定値に基づいて、ロボット5が上記制御を行うようにしてもよい。 In the embodiment, as a means for detecting the load that the robot 5 receives from the injection device 2, for example, a sensor that detects an increase in motor torque, a sensor that detects an increase in hydraulic pressure, a strain sensor, or the like may be provided. In this configuration, the robot 5 performs speed control (injection speed control), position control (injection position control), stroke control, pressure control ( At least one of injection pressure control and holding pressure control) may be controlled. The robot 5 may perform the above control based on the measured value of the pressure sensor 29 (see FIG. 1) provided on the working arm 25 of the robot 5 .
 実施形態では、ロボット(射出駆動装置)5を多関節ロボットとした例について説明したが、これに限定されない。射出駆動装置は、成形サイクル中の工程において、プランジャ15(被駆動部材)以外の部位に駆動力を供給すると共に、成形サイクル中の射出工程において、プランジャ15に駆動力を供給して、ノズル12から成形材料を射出させるものであればよい。射出駆動装置として、例えば、成形品取り出し工程において、金型3から成形品を取り出す成形品取り出し装置を援用してもよい。また、射出制御装置4(射出装置2)により射出駆動装置の動作を制御してもよいし、射出駆動装置の制御装置により、射出装置2の一部の動作又はすべての動作を制御するようにしてもよい。 In the embodiment, an example in which the robot (injection drive device) 5 is an articulated robot has been described, but it is not limited to this. The injection driving device supplies driving force to a portion other than the plunger 15 (driven member) in a process during the molding cycle, and supplies driving force to the plunger 15 in an injection process during the molding cycle to operate the nozzle 12. Any device can be used as long as it injects the molding material from. As the injection drive device, for example, a molded product take-out device for taking out the molded product from the mold 3 may be used in the molded product take-out process. Further, the injection control device 4 (injection device 2) may control the operation of the injection drive device, or the control device of the injection drive device may control part or all of the operation of the injection device 2. may
 実施形態において、ロボット5の作業アーム25にロボットハンドを備える構成としてもよい。本構成によれば、例えば、第2実施形態の射出成形システム1A(図3参照)において、動力部31をロボットハンドで支持させることもできる。
 実施形態では、射出装置2から成形材料を垂直方向(X方向)に射出する構成について説明したが、射出装置2から成形材料を水平方向に射出する構成としてもよい。
In the embodiment, the working arm 25 of the robot 5 may be provided with a robot hand. According to this configuration, for example, in the injection molding system 1A (see FIG. 3) of the second embodiment, the power section 31 can be supported by the robot hand.
In the embodiment, the configuration in which the molding material is injected from the injection device 2 in the vertical direction (X direction) has been described, but a configuration in which the molding material is injected from the injection device 2 in the horizontal direction is also possible.
 1,1A~1G:射出成形システム、2,2A~2C:射出装置、3:金型、4:射出制御装置、5:ロボット、6:ロボット制御装置、11:バレル、12:ノズル(射出口)、15:プランジャ(被駆動部材)、16:押し込み部材、25:作業アーム、31,33:動力部、32:射出機構部、34:連結機構部、35:固定機構部、36:スクリュアセンブリ

 
1, 1A to 1G: injection molding system, 2, 2A to 2C: injection device, 3: mold, 4: injection control device, 5: robot, 6: robot control device, 11: barrel, 12: nozzle (injection port ), 15: plunger (driven member), 16: pushing member, 25: working arm, 31, 33: power section, 32: injection mechanism section, 34: connection mechanism section, 35: fixing mechanism section, 36: screw assembly

Claims (6)

  1.  バレルに設けられた射出口から成形材料を射出する少なくとも1つの射出装置と、
     成形サイクル中の複数の工程において、各部位に駆動力を供給する射出駆動装置と、を備え、
     前記射出装置は、
     前記バレル内で駆動されることにより、前記バレル内の成形材料を前記射出口から射出する被駆動部材を備え、
     前記射出駆動装置は、
     成形サイクル中の工程において、前記被駆動部材以外の部位に駆動力を供給すると共に、成形サイクル中の射出工程において、前記被駆動部材に駆動力を供給して、前記射出口から成形材料を射出させるものである、射出成形システム。
    at least one injection device for injecting molding material from an injection port provided in the barrel;
    an injection drive device that supplies driving force to each part in a plurality of steps during the molding cycle,
    The injection device is
    a driven member that is driven in the barrel to inject the molding material in the barrel from the injection port;
    The injection drive device
    In a step during the molding cycle, a driving force is supplied to a portion other than the driven member, and in an injection step during the molding cycle, the driving force is supplied to the driven member to inject the molding material from the injection port. injection molding system.
  2.  前記射出駆動装置は、前記射出装置の前記被駆動部材に駆動力を供給する部分に、前記被駆動部材を駆動するための動力源を備える請求項1に記載の射出成形システム。 The injection molding system according to claim 1, wherein the injection driving device includes a power source for driving the driven member at a portion of the injection device that supplies driving force to the driven member.
  3.  前記射出装置は、前記射出駆動装置が供給する駆動力を前記被駆動部材に伝達する射出機構部を備える請求項1又は2に記載の射出成形システム。 The injection molding system according to claim 1 or 2, wherein the injection device comprises an injection mechanism section for transmitting the driving force supplied by the injection drive device to the driven member.
  4.  前記射出装置は、前記射出駆動装置が駆動力を供給する部分と前記被駆動部材とを連結するための連結機構部を備える請求項1~3までのいずれかに記載の射出成形システム。 The injection molding system according to any one of claims 1 to 3, wherein the injection device comprises a connection mechanism portion for connecting a portion to which the injection driving device supplies driving force and the driven member.
  5.  前記射出装置と前記射出駆動装置が駆動力を供給する部分とを固定する固定機構部を備える請求項1~4までのいずれかに記載の射出成形システム。 The injection molding system according to any one of claims 1 to 4, further comprising a fixing mechanism portion for fixing the injection device and a portion to which the injection driving device supplies driving force.
  6. 前記射出駆動装置は、多関節ロボットである請求項1~5までのいずれかに記載の射出成形システム。 The injection molding system according to any one of claims 1 to 5, wherein the injection drive device is an articulated robot.
PCT/JP2022/009511 2022-03-04 2022-03-04 Injection molding system WO2023166732A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/009511 WO2023166732A1 (en) 2022-03-04 2022-03-04 Injection molding system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/009511 WO2023166732A1 (en) 2022-03-04 2022-03-04 Injection molding system

Publications (1)

Publication Number Publication Date
WO2023166732A1 true WO2023166732A1 (en) 2023-09-07

Family

ID=87883481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009511 WO2023166732A1 (en) 2022-03-04 2022-03-04 Injection molding system

Country Status (1)

Country Link
WO (1) WO2023166732A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001277283A (en) * 2000-03-30 2001-10-09 Netsukoo Kk Injection molding machine
JP2018051824A (en) * 2016-09-27 2018-04-05 ファナック株式会社 Injection molding machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001277283A (en) * 2000-03-30 2001-10-09 Netsukoo Kk Injection molding machine
JP2018051824A (en) * 2016-09-27 2018-04-05 ファナック株式会社 Injection molding machine

Similar Documents

Publication Publication Date Title
EP3000577B1 (en) Injection molding machine for bimaterial molding and methods of controlling the same
US5911924A (en) Process for injection molding machine with electric drives
JP4477546B2 (en) Molding condition setting method
JP5401079B2 (en) Injection molding machine
US8229591B2 (en) Method for sequence programming of an injection molding cycle of an injection molding machine
CN105415627A (en) Abnormality detecting device of power transmitting means, molding apparatus, and abnormality detecting method of power transmitting means
US9682508B2 (en) Molding machine and driving method thereof
WO2023166732A1 (en) Injection molding system
JP4708195B2 (en) Vertical injection molding machine
US9138926B2 (en) Apparatus and method for injection molding
JP6183708B2 (en) Clamping device
JP3749783B2 (en) Injection molding machine
JP4533345B2 (en) Method of ejecting molded product of injection molding machine
TW200418628A (en) Forming machine and its control method
JP2000167875A (en) Nozzle touch off method for injection molding machine and mechanism using this method
JP7455639B2 (en) Injection molding machine
JP4964313B2 (en) Molding condition setting method and mold clamping device
WO2022210773A1 (en) Injection molding machine and controller
KR20170001019A (en) Injection molding machine
JP6644442B2 (en) Injection equipment
CN114801028A (en) Injection molding machine
JPH1119995A (en) Injection molding machine
JPH0435144Y2 (en)
CN110315705A (en) Liftout attachment
CN113459387A (en) Injection molding machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929876

Country of ref document: EP

Kind code of ref document: A1