WO2023165609A1 - 抗冲击多切削刃金刚石复合片和钻地工具 - Google Patents

抗冲击多切削刃金刚石复合片和钻地工具 Download PDF

Info

Publication number
WO2023165609A1
WO2023165609A1 PCT/CN2023/079610 CN2023079610W WO2023165609A1 WO 2023165609 A1 WO2023165609 A1 WO 2023165609A1 CN 2023079610 W CN2023079610 W CN 2023079610W WO 2023165609 A1 WO2023165609 A1 WO 2023165609A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting edge
impact
edge
composite layer
cutting
Prior art date
Application number
PCT/CN2023/079610
Other languages
English (en)
French (fr)
Inventor
涂关富
杨霞
徐昉
Original Assignee
中石化江钻石油机械有限公司
中石化石油机械股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中石化江钻石油机械有限公司, 中石化石油机械股份有限公司 filed Critical 中石化江钻石油机械有限公司
Publication of WO2023165609A1 publication Critical patent/WO2023165609A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts

Definitions

  • the disclosure relates to an impact-resistant multi-cutting edge diamond composite sheet, which is used as a cutting element of a diamond drill bit, and belongs to the technical field of petroleum drilling tools.
  • Diamond drill bits have been widely used in oil and gas drilling projects.
  • Diamond drill bits are mainly composed of drill body and cutting elements.
  • Diamond drill bits are divided into three categories according to cutting elements: PDC (polycrystalline diamond) drills, TSP (thermally stable polycrystalline diamond) drills and natural diamond drills.
  • PDC bits are mainly used for drilling in soft to medium-hard formations. After continuous technological progress, the scope of application of PDC bits is getting wider and wider, and they have better economic value.
  • TSP bits are mainly used for drilling in medium-hard to extremely hard formations. At present, deep well operations in oil and gas drilling projects are gradually increasing, and the formations encountered are becoming more and more complex.
  • the diamond composite sheet is composed of a cylindrical cemented carbide matrix and a diamond composite layer.
  • the edge of the diamond composite layer is chamfered to form the cutting edge of the composite sheet.
  • different areas drill different formations.
  • the aggressiveness of the composite sheet is different from the impact resistance.
  • the normal cutting surface of the diamond composite sheet often wears normally, and the tooth chipping failure on the side is more serious, which leads to the overall failure of the drill bit compact sheet.
  • the present disclosure provides an impact-resistant multi-cutting-edge diamond composite sheet, including a columnar cemented carbide substrate and a diamond composite layer, and the diamond composite layer is arranged on the top of the cemented carbide substrate, wherein the diamond composite layer
  • the circumferential edge of the top is provided with at least two sections of different chamfers to form different cutting edges.
  • the different cutting edges include at least one section of main cutting edge, and a section of anti-impact cutting edge is provided on both sides of the main cutting edge.
  • the main cutting edge The cutting performance is stronger than that of the impact-resistant cutting edge, and a concave diversion chamber is set on the top surface of the diamond composite layer to guide the water flow to the main cutting edge to cool it when drilling the formation.
  • the concave diversion cavity includes a diversion groove that tapers from inside to outside along the radial direction of the diamond composite layer, and the outer end of the diversion groove is adjacent to or intersects with the main cutting edge.
  • the impact-resistant multi-cutting edge diamond compact includes multi-segment main cutting edges and multi-segment The impact cutting edge, the main cutting edge and the impact-resistant cutting edge are arranged alternately, and a plurality of drainage grooves are respectively arranged between the multi-section main cutting edge and the center of the top surface of the diamond composite layer (101), and the inner ends of the plurality of drainage grooves converge In the center of the top face of the diamond composite layer.
  • the impact-resistant multi-cutting-edge diamond compact includes two concave flow guiding cavities arranged at intervals.
  • the impact-resistant multi-cutting edge diamond compact includes two spaced apart main cutting edges, and two spaced apart concave flow guide cavities are between the two spaced apart main cutting edges extend.
  • only one section of main cutting edge and one section of impact-resistant cutting edge are provided on the top peripheral edge of the diamond composite layer.
  • the entire peripheral edge of the top end of the diamond composite layer is provided with 2-4 different chamfers, thereby forming 2-4 different cutting edges.
  • the chamfer includes at least the following types: single bevel chamfer, double bevel chamfer or curved chamfer.
  • different two-stage chamfers satisfy one of the following conditions:
  • the angle between the chamfered slope and the radial plane of the diamond composite layer is between 20° and 70°, and the top of the diamond composite layer is perpendicular to the axis of the cylindrical cemented carbide substrate .
  • the axial height of the chamfer is 0.2-3 mm, or the radial width of the chamfer is 0.2-5 mm.
  • the main cutting edge is a single bevel chamfer with a radial width of less than 0.4 mm and an included angle of 45°, or a single bevel chamfer with a radial width greater than 0.4 mm and an included angle of less than 30°, or a radial For double-bevel chamfers with a width greater than 0.4mm and an inclination angle of the inner bevel less than 30°, the central angle corresponding to each main cutting edge is 50-70°.
  • the double-bevel chamfer includes an inner bevel and an outer bevel, and the angle between the outer bevel and the radial plane of the diamond composite layer is larger than the angle between the inner bevel and the radial plane of the diamond composite layer. horn.
  • the impact-resistant cutting edge is a single-slope chamfer with a radial width of 0.5-2 mm and an included angle greater than or equal to 45°, or an arc chamfer with a curvature radius of 0.5-2 mm.
  • the present disclosure also provides an earth-boring tool, including an impact-resistant multi-cutting-edge diamond composite sheet.
  • the same diamond composite sheet can meet the drilling requirements of different formations, and it can be reasonably arranged on the diamond bit to make the diamond bit adapt to complex formations. drilling needs.
  • a guide cavity is provided in the end face of the diamond composite layer, which helps to guide the water flow to the main cutting edge for cooling when the composite sheet is cut.
  • the guide cavity is concave, which will increase the heat dissipation area, and then Improve the drilling rate and prolong the service life of the composite sheet.
  • FIG. 1 to 3 are respectively a perspective view, a top view, and an A-A rotation sectional view of Embodiment 1 of the present disclosure
  • Embodiment 4 to 6 are respectively a perspective view, a top view, and an A-A rotation sectional view of Embodiment 2 of the present disclosure
  • Fig. 10 is a perspective view of Embodiment 4 of the present disclosure.
  • Fig. 11 is a perspective view of Embodiment 5 of the present disclosure.
  • Fig. 12 is a perspective view of Embodiment 6 of the present disclosure.
  • the impact-resistant multi-cutting-edge diamond composite sheet includes a columnar cemented carbide substrate 102 and a diamond composite layer 101, the diamond composite layer is arranged on the top of the cemented carbide substrate, and the diamond composite layer is The polycrystalline diamond composite layer, the diamond composite layer and the cemented carbide substrate are connected into one body through ultra-high temperature and high pressure sintering, the top surface 108 of the diamond composite layer is a plane, and four sections of chamfering 103, 104, 105, 106, where the two chamfers 103 and 105 are the same, which is a 45-degree single-slope chamfer with an axial height of 0.3mm.
  • each chamfer occupy 60°, forming the main cutting edge. When drilling into the formation, it eats deep into the formation and is more aggressive.
  • the other two sections of chamfers 104 and 106 are the same, and are 45-degree single-slope chamfers with an axial height of 1mm.
  • the drainage grooves of the composite layer radially shrink from the inside to the outside, and the two drainage grooves of the guidance cavity lead to the two main cutting edges.
  • the chamfers are arranged in the circumferential direction and connected in sequence, and the transitions between the chamfers are smooth, and the radial cross section of the diamond composite sheet is circular.
  • the diversion cavity is set in the end face of the diamond composite layer, so that the water flow is guided to the main cutting edge to cool it when the composite sheet is drilling the formation.
  • the diversion cavity is concave, which will increase the heat dissipation area and improve the drilling efficiency. Feed speed, prolong the service life of the composite sheet.
  • Embodiment 2 differs from Embodiment 1 in that the two-stage chamfers 203 and 205 are the same, and are single-slope chamfers with an axial height of 0.8 mm and an included angle ⁇ of 22.5°.
  • the central angle corresponding to each chamfer occupies 60°, forming
  • the other two chamfers 204 and 206 are the same, and are single-slope chamfers with an axial height of 1mm and an included angle ⁇ of 45 degrees.
  • Each chamfer corresponds to a central angle of 120°, forming an impact-resistant cutting edge.
  • Other structures including the structure of the guide cavity 207 are the same as those in the first embodiment.
  • Embodiment 3 is shown in Figures 7 to 9, and its difference from Embodiment 2 is that the two-stage chamfers 303 and 305 are the same, and the axial height of the inner bevel chamfer is 0.8mm, and the included angle ⁇ is 20°, The axial height of the outer bevel chamfer is 0.2mm, and the included angle ⁇ is 45 degrees. The central angle of each chamfer is 60°, forming the main cutting edge.
  • Other structures including the structure of the other two chamfers 304 and 306 and the structure of the guide chamber 307 are the same as those in the second embodiment.
  • Embodiment 4 differs from Embodiment 3 in that only a section of the main cutting edge double-bevel chamfer 403 is formed, and the axial height of the inner bevel chamfer is 0.8mm, and the included angle ⁇ is 20° ,
  • the axial height of the outer bevel chamfer is 0.2mm, the double bevel chamfer with an included angle ⁇ of 45 degrees, the central angle corresponding to the chamfer is 60°, forming a main cutting edge, and the remaining peripheral edges are all axial heights
  • a single bevel chamfer 404 with an included angle of 1 mm and 45 degrees forms an impact-resistant cutting edge.
  • Other structures are the same as in the third embodiment.
  • Embodiment 5 differs from Embodiment 3 in that it has the same three-stage chamfer 503, 505, and 507, and the axial height of the inner bevel chamfer is 0.8mm, and the included angle ⁇ is 20° , The axial height of the outer bevel chamfer is 0.2mm and the angle ⁇ is 45 degrees.
  • the central angle of each chamfer is 60°, forming 3 sections of main cutting edge.
  • Three single-slope chamfers 504, 506 and 508 with the same structure are arranged between the chamfers, which are single-slope chamfers with an axial height of 1mm and an included angle of 45 degrees.
  • the central angles corresponding to each chamfer occupy 60° , forming an impact-resistant cutting edge.
  • the three drainage grooves of the diversion cavity respectively lead to the three main cutting edges.
  • Other structures are the same as in the third embodiment.
  • Embodiment 6 differs from Embodiment 3 in that two diversion cavities 607, 608 arranged at intervals (for example, arranged in parallel) are arranged on both sides of the middle of the end face of the diamond composite layer. Consisting of drainage grooves that reduce in size from the inside to the outside, the drainage grooves of the guide chamber lead to the main cutting edge.
  • Other structures include two double-bevel chamfers 603, 605, and two single-bevel chamfers 604, 606. The structure is the same as that of the third embodiment.
  • multiple chamfers may be different in the peripheral direction of the top edge, and the multiple chamfers in the above embodiments may be all different or partly different.
  • Different two-segment chamfers meet one of the following conditions: different types; and the same type but different structural parameters.
  • the present disclosure also provides an earth-boring tool, such as a drill bit for drilling oil wells, comprising the above-mentioned shock-resistant multi-cutting-edge diamond compact.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

本公开提供一种抗冲击多切削刃金刚石复合片,包括柱形硬质合金基体(102)和金刚石复合层(101),所述的金刚石复合层设置在硬质合金基体的顶端,其中所述金刚石复合层(101)的顶端周向边缘设置有至少两段不同的倒角(103,104),以形成不同的切削刃,所述不同的切削刃包括至少一段主切削刃(103),在所述主切削刃(103)的两侧各设置一段抗冲击切削刃(104;106),所述主切削刃(103)在切削性能上强于所述抗冲击切削刃(104;106),在所述金刚石复合层(101)的顶端面上设置有凹形导流腔(107),用于在钻探地层时将水流引导到主切削刃(103)以对其进行冷却。本公开的同一复合片边缘具有较高切削效率的主切削刃的和位于其两侧的抗冲击切削刃,使复合片在砾石地层具有较好的切削性能和侧面抗冲击能力,延长复合片的使用寿命。

Description

抗冲击多切削刃金刚石复合片和钻地工具
相关申请的交叉引用
本公开要求享有于2022年03月03日提交的名称为“一种抗冲击多切削刃金刚石复合片”的中国专利申请202210201147.1的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本公开涉及一种抗冲击多切削刃金刚石复合片,用作金刚石钻头的切削元件,属于石油钻探工具技术领域。
背景技术
从十九世纪80年代开始,金刚石钻头被广泛地用于石油天然气钻井工程。金刚石钻头主要由钻头体和切削元件构成,金刚石钻头根据切削元件分成三类:PDC(聚晶金刚石)钻头、TSP(热稳定聚晶金刚石)钻头及天然金刚石钻头。PDC钻头主要用于软至中硬地层钻进,经过不断的技术进步,PDC钻头的适用范围越来越广,具有较好的经济价值。TSP钻头主要用于中硬至极硬地层钻进。目前,石油天然气钻井工程中深井作业逐步增多,钻遇的地层也越来越复杂。
金刚石复合片由柱形硬质合金基体和金刚石复合层构成,金刚石复合层端面边缘倒角形成复合片的切削刃,金刚石钻头在钻进过程中,不同的区域钻遇的地层不一样,所需要复合片的攻击性与抗冲击能力不一样,在一些砾石地层钻进过程中,常会出现金刚石复合片法线切削面正常磨损、而其侧面崩齿失效较为严重,进而导致钻头复合片整体失效。从这些现象可以看出,金刚石复合片切削面与侧面所需要的抗冲击能力不一样,而现有的复合片切削刃倒角都是单一的周向倒角结构,难以适应复杂地层的钻进需求。
发明内容
为了改善上述的技术问题,本公开提供一种抗冲击多切削刃金刚石复合片,包括柱形硬质合金基体和金刚石复合层,金刚石复合层设置在硬质合金基体的顶端,其中金刚石复合层的顶端周向边缘设置有至少两段不同的倒角,以形成不同的切削刃,不同的切削刃包括至少一段主切削刃,在主切削刃的两侧各设置一段抗冲击切削刃,主切削刃在切削性能上强于抗冲击切削刃,在金刚石复合层的顶端面上设置有凹形导流腔,便在钻探地层时将水流引导至主切削刃以对其进行冷却。
在本公开的一些实施例中,凹形导流腔包括沿着金刚石复合层的径向从内向外尺寸渐缩的引流槽,引流槽的外端邻近于主切削刃或者与主切削刃相交。
在本公开的一些实施例中,抗冲击多切削刃金刚石复合片包括多段主切削刃和多段抗 冲击切削刃,主切削刃和抗冲击切削刃交替布置,在多段主切削刃与金刚石复合层(101)顶端面的中央之间分别相应地设置多个引流槽,多个引流槽的内端汇聚在金刚石复合层顶端面的中央。
在本公开的一些实施例中,抗冲击多切削刃金刚石复合片包括间隔开设置的两条凹形导流腔。
在本公开的一些实施例中,抗冲击多切削刃金刚石复合片包括两个间隔设置的主切削刃,两条间隔开布置的凹形导流腔在两个间隔开设置的主切削刃之间延伸。
在本公开的一些实施例中,在金刚石复合层的顶端周向边缘上只设有一段主切削刃和一段抗冲击切削刃。
在本公开的一些实施例中,金刚石复合层的顶端整个周向边缘设有2~4段不同的倒角,由此形成2~4段不同的切削刃。
在本公开的一些实施例中,倒角至少包括以下类型:单斜面倒角、双斜面倒角或曲面倒角。
在本公开的一些实施例中,不同的两段倒角满足以下条件之一:
类型不同;以及
类型相同但结构参数不同。
在本公开的一些实施例中,倒角的斜面与金刚石复合层的径向平面之间的夹角在20~70°之间,金刚石复合层的顶端与柱形硬质合金基体的轴线相垂直。
在本公开的一些实施例中,倒角的轴向高度为0.2~3mm,或者倒角的径向宽度为0.2~5mm。
在本公开的一些实施例中,主切削刃为径向宽度小于0.4mm夹角45°的单斜面倒角,或径向宽度大于0.4mm夹角小于30°的单斜面倒角,或径向宽度大于0.4mm内斜面的倾角小于30°的双斜面倒角,每个主切削刃对应的圆心角为50~70°。
在本公开的一些实施例中,双斜面倒角包括内斜面和外斜面,外斜面与金刚石复合层的径向平面之间的夹角大于内斜面与金刚石复合层的径向平面之间的夹角。
在本公开的一些实施例中,抗冲击切削刃为径向宽度0.5~2mm夹角大等于45°的单斜面倒角,或曲率半径在0.5~2mm之间的圆弧倒角。
本公开还提供一种钻地工具,包括抗冲击多切削刃金刚石复合片。
本公开至少提供以下有益技术效果之一:
通过在金刚石复合层端面边缘设置不同的倒角,形成金刚石复合片端面周向的多切削刃,实现同一复合片不同边缘具有不同的攻击能力及抗冲击能力,主切削刃具有较高的切 削效率,其两侧具有较强的侧向抗冲击能力,使复合片在砾石地层具有较好的切削性能和侧面抗冲击能力,延长复合片的使用寿命。
由于金刚石复合层端面边缘倒角形成复合片的多种不同性能的切削刃,使得同一金刚石复合片能应对不同地层钻进需求,将其合理的布设于金刚石钻头上,可使金刚石钻头适应复杂地层的钻进需求。
在金刚石复合层端面中设置有导流腔,有助于在复合片切削时将水流引导到主切削刃处对其进行冷却,另外导流腔是凹形的,这样会增大散热面积,进而提高钻进速率,延长复合片使用寿命。
附图说明
图1至图3分别是本公开实施例一的立体图、俯视图和A-A旋转剖视图;
图4至图6分别是本公开实施例二的立体图、俯视图和A-A旋转剖视图;
图7至图9分别是本公开实施例三的立体图、俯视图和A-A旋转剖视图;
图10是本公开实施例四的立体图;
图11是本公开实施例五的立体图;以及
图12是本公开实施例六的立体图。
具体实施方式
下面将结合实施例进一步阐明本公开的内容。
实施例一如图1至图3所示,抗冲击多切削刃金刚石复合片包括柱形硬质合金基体102和金刚石复合层101,金刚石复合层设置在硬质合金基体的顶端,金刚石复合层为聚晶金刚石复合层,金刚石复合层和硬质合金基体通过超高温高压烧结相联成一体,金刚石复合层的顶端面108为平面,金刚石复合层端面边缘设置4段倒角103、104、105、106,其中2段倒角103、105相同,为轴向高度为0.3mm的45度的单斜面倒角,每段倒角对应的圆心角各占60°,形成主切削刃,主切削刃在钻探地层时吃入地层深,攻击性更强。另2段倒角104、106相同,为轴向高度为1mm的45度单斜面倒角,每段倒角对应的圆心角各占120°,形成抗冲击切削刃,导流腔包括沿着金刚石复合层的径向由内向外尺寸渐缩的引流槽,导流腔的2个引流槽通向两个主切削刃。本实施例的各倒角沿周向布设且依次相连,各倒角之间平滑过渡,金刚石复合片径向截面为圆形。在金刚石复合层端面中设置导流腔,使得在复合片钻探地层时将水流引导到主切削刃处对其进行冷却,另外导流腔是凹形的,这样会增大散热面积,进而提高钻进速率,延长复合片使用寿命。
实施例二如图4至图6所示,其与实施例一的不同之处在于2段倒角203、205相同,为轴向高度为0.8mm夹角α为22.5°的单斜面倒角,每段倒角对应的圆心角各占60°,形成 主切削刃,另2段倒角204、206相同,为轴向高度为1mm夹角β为45度的单斜面倒角,每段倒角对应的圆心角各占120°,形成抗冲击切削刃。其它结构包括导流腔207的结构与实施例一相同。
实施例三如图7至图9所示,其与实施例二的不同之处在于2段倒角303、305相同,为内斜面倒角的轴向高度为0.8mm夹角θ为20°、外斜面倒角的轴向高度为0.2mm夹角δ为45度的双斜面倒角,每段倒角对应的圆心角各占60°,形成主切削刃。其它结构包括另2段倒角304、306的结构和导流腔307结构等与实施例二相同。
实施例四如图10所示,其与实施例三的不同之处在于只形成一段主切削刃的双斜面倒角403,为内斜面倒角的轴向高度为0.8mm夹角θ为20°、外斜面倒角的轴向高度为0.2mm夹角δ为45度的双斜面倒角,倒角对应的圆心角为60°,形成1个主切削刃,其余周向边缘均为轴向高度为1mm夹角为45度的单斜面倒角404,形成抗冲击切削刃。其它结构与实施例三相同。
实施例五如图11所示,其与实施例三的不同之处在于有相同的3段倒角503、505和507,为内斜面倒角的轴向高度为0.8mm夹角θ为20°、外斜面倒角的轴向高度为0.2mm夹角δ为45度的双斜面倒角,每段倒角对应的圆心角各占60°,形成3段主切削刃,在这3段双斜面倒角之间分别设置3个结构相同的单斜面倒角504、506和508,为轴向高度为1mm夹角为45度的单斜面倒角,每段倒角对应的圆心角各占60°,形成抗冲击切削刃。导流腔的3个引流槽分别通向3个主切削刃。其它结构与实施例三相同。
实施例六如图12所示,其与实施例三的不同之处在于在金刚石复合层端面中间两侧设置有2个间隔开布置(例如平行布置)的导流腔607、608,导流腔包括从内向外尺寸减缩的引流槽,导流腔的引流槽通向主切削刃。其它结构包括2个双斜面倒角603、605,2个单斜面倒角604、606结构与实施例三相同。
在本公开的一些实施例中,在顶端边缘周向上多段倒角可以是不同的,上述实施例中的多个倒角可以都不同或者部分不同。不同的两段倒角满足以下条件之一:类型不同;以及类型相同但结构参数不同。
本公开还提供一种钻地工具,例如钻探油井的钻头,包括上述的抗冲击多切削刃金刚石复合片。
最后应当说明的是:以上实施例仅用以说明本公开的技术方案而非对其限制;尽管参照较佳实施例对本公开进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本公开的具体实施方式进行修改或者对部分技术特征进行等同替换,其均应涵盖在本公开请求保护的技术方案范围当中。

Claims (15)

  1. 一种抗冲击多切削刃金刚石复合片,包括柱形硬质合金基体(102)和金刚石复合层(101),所述的金刚石复合层设置在硬质合金基体的顶端,其中所述金刚石复合层(101)的顶端周向边缘设置有至少两段不同的倒角(103,104),以形成不同的切削刃,所述不同的切削刃包括至少一段主切削刃(103),在所述主切削刃(103)的两侧各设置一段抗冲击切削刃(104;106),所述主切削刃(103)在切削性能上强于所述抗冲击切削刃(104;106),在所述金刚石复合层(101)的顶端面上设置有凹形导流腔(107),以便在钻探地层时将水流引导至所述主切削刃(103)对其进行冷却。
  2. 如权利要求1所述的抗冲击多切削刃金刚石复合片,其中所述凹形导流腔(107)包括沿着所述金刚石复合层的径向从内向外尺寸渐缩的引流槽,所述引流槽的外端邻近于所述主切削刃(103)或者与所述主切削刃(203)相交。
  3. 如权利要求2所述的抗冲击多切削刃金刚石复合片,其中包括多段主切削刃(503,504,507)和多段抗冲击切削刃(504,506,508),所述主切削刃和所述抗冲击切削刃交替布置,在多段主切削刃(503,504,507)与所述金刚石复合层(101)顶端面的中央之间分别相应地设置多个引流槽(509),所述多个引流槽(509)的内端汇聚在所述金刚石复合层(101)顶端面的中央。
  4. 如权利要求2所述的抗冲击多切削刃金刚石复合片,包括间隔开设置的两条所述凹形导流腔(107)。
  5. 如权利要求4所述的抗冲击多切削刃金刚石复合片,包括两个间隔设置的主切削刃(603,605),所述两条间隔开布置的所述凹形导流腔(107)在两个间隔开设置的主切削刃(603,605)之间延伸。
  6. 如权利要求2所述的抗冲击多切削刃金刚石复合片,其中在所述金刚石复合层(101)的顶端周向边缘上只设有一段主切削刃(403)和一段抗冲击切削刃(404)。
  7. 如权利要求1-6中任一项所述的抗冲击多切削刃金刚石复合片,其中所述金刚石复合层(101)的顶端整个周向边缘设有2~4段不同的倒角,由此形成2~4段不同的切削刃。
  8. 如权利要求1-7中任一项所述的抗冲击多切削刃金刚石复合片,其中所述倒角至少包括以下类型:单斜面倒角、双斜面倒角或曲面倒角。
  9. 如权利要求1-8中任一项所述的多切削刃金刚石复合片,其中不同的两段倒角满足以下条件之一:
    类型不同;以及
    类型相同但结构参数不同。
  10. 如权利要求1-9中任一项所述的抗冲击多切削刃金刚石复合片,其中所述倒角的斜面与所述金刚石复合层(101)的径向平面之间的夹角在20~70°之间,所述金刚石复合层(101)的顶端与所述柱形硬质合金基体(102)的轴线相垂直。
  11. 如权利要求1-10中任一项所述的抗冲击多切削刃金刚石复合片,其中所述倒角的轴向高度为0.2~3mm,或者所述倒角的径向宽度为0.2~5mm。
  12. 如权利要求1-11中任一项所述的抗冲击多切削刃金刚石复合片,其中所述的主切削刃为径向宽度小于0.4mm夹角45°的单斜面倒角,或径向宽度大于0.4mm夹角小于30°的单斜面倒角,或径向宽度大于0.4mm内斜面的倾角小于30°的双斜面倒角,所述的每个主切削刃对应的圆心角为50~70°。
  13. 如权利要求12所述的抗冲击多切削刃金刚石复合片,其中所述双斜面倒角包括内斜面和外斜面,所述外斜面与所述金刚石复合层(101)的径向平面之间的夹角大于所述内斜面与所述金刚石复合层(101)的径向平面之间的夹角。
  14. 如权利要求1-13中任一项所述的抗冲击多切削刃金刚石复合片,其中所述抗冲击切削刃为径向宽度0.5~2mm夹角大等于45°的单斜面倒角,或曲率半径在0.5~2mm之间的圆弧倒角。
  15. 一种钻地工具,包括权利要求1-14中任一项所述的抗冲击多切削刃金刚石复合片。
PCT/CN2023/079610 2022-03-03 2023-03-03 抗冲击多切削刃金刚石复合片和钻地工具 WO2023165609A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210201147.1A CN114562211A (zh) 2022-03-03 2022-03-03 一种抗冲击多切削刃金刚石复合片
CN202210201147.1 2022-03-03

Publications (1)

Publication Number Publication Date
WO2023165609A1 true WO2023165609A1 (zh) 2023-09-07

Family

ID=81717146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079610 WO2023165609A1 (zh) 2022-03-03 2023-03-03 抗冲击多切削刃金刚石复合片和钻地工具

Country Status (2)

Country Link
CN (1) CN114562211A (zh)
WO (1) WO2023165609A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114562211A (zh) * 2022-03-03 2022-05-31 中石化江钻石油机械有限公司 一种抗冲击多切削刃金刚石复合片

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012101993A1 (de) * 2012-03-09 2013-09-12 Franken GmbH + Co KG Fabrik für Präzisionswerkzeuge Fräswerkzeug
CN108661565A (zh) * 2018-07-13 2018-10-16 中石化江钻石油机械有限公司 一种多脊金刚石复合片
CN209293690U (zh) * 2018-09-13 2019-08-23 中石化江钻石油机械有限公司 金刚石复合片和pdc钻头
US20190376346A1 (en) * 2018-06-11 2019-12-12 Varel International Ind., L.L.C. Spirally and/or radially serrated superhard cutter
CN110770410A (zh) * 2017-05-02 2020-02-07 通用电气(Ge)贝克休斯有限责任公司 被配置为减少冲击损坏的切削元件以及相关工具和方法
CN211692325U (zh) * 2020-02-25 2020-10-16 广东钜鑫新材料科技股份有限公司 异型齿金刚石复合片和钻头
CN111889774A (zh) * 2020-08-11 2020-11-06 株洲钻石切削刀具股份有限公司 一种切削刀片及切削刀具
CN112324345A (zh) * 2020-11-10 2021-02-05 河南四方达超硬材料股份有限公司 一种具有辅助切削刃的金刚石复合片及钻头
CN213330910U (zh) * 2020-10-15 2021-06-01 广东钜鑫新材料科技股份有限公司 塑性地层用金刚石复合片和钻头
CN213478228U (zh) * 2020-11-04 2021-06-18 河南四方达超硬材料股份有限公司 带箭头齿的金刚石复合片及钻头
CN113924181A (zh) * 2019-07-11 2022-01-11 森拉天时奥地利有限公司 用于铣削的双面切削刀片
CN114562211A (zh) * 2022-03-03 2022-05-31 中石化江钻石油机械有限公司 一种抗冲击多切削刃金刚石复合片

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012101993A1 (de) * 2012-03-09 2013-09-12 Franken GmbH + Co KG Fabrik für Präzisionswerkzeuge Fräswerkzeug
CN110770410A (zh) * 2017-05-02 2020-02-07 通用电气(Ge)贝克休斯有限责任公司 被配置为减少冲击损坏的切削元件以及相关工具和方法
US20190376346A1 (en) * 2018-06-11 2019-12-12 Varel International Ind., L.L.C. Spirally and/or radially serrated superhard cutter
CN108661565A (zh) * 2018-07-13 2018-10-16 中石化江钻石油机械有限公司 一种多脊金刚石复合片
CN209293690U (zh) * 2018-09-13 2019-08-23 中石化江钻石油机械有限公司 金刚石复合片和pdc钻头
CN113924181A (zh) * 2019-07-11 2022-01-11 森拉天时奥地利有限公司 用于铣削的双面切削刀片
CN211692325U (zh) * 2020-02-25 2020-10-16 广东钜鑫新材料科技股份有限公司 异型齿金刚石复合片和钻头
CN111889774A (zh) * 2020-08-11 2020-11-06 株洲钻石切削刀具股份有限公司 一种切削刀片及切削刀具
CN213330910U (zh) * 2020-10-15 2021-06-01 广东钜鑫新材料科技股份有限公司 塑性地层用金刚石复合片和钻头
CN213478228U (zh) * 2020-11-04 2021-06-18 河南四方达超硬材料股份有限公司 带箭头齿的金刚石复合片及钻头
CN112324345A (zh) * 2020-11-10 2021-02-05 河南四方达超硬材料股份有限公司 一种具有辅助切削刃的金刚石复合片及钻头
CN114562211A (zh) * 2022-03-03 2022-05-31 中石化江钻石油机械有限公司 一种抗冲击多切削刃金刚石复合片

Also Published As

Publication number Publication date
CN114562211A (zh) 2022-05-31

Similar Documents

Publication Publication Date Title
EP3638870B1 (en) Superabrasive cutters for earth boring bits with multiple raised cutting surfaces
US11725459B2 (en) Multiple ridge diamond compact for drill bit and drill bit
US5816346A (en) Rotary drill bits and methods of designing such drill bits
US10563463B2 (en) Earth boring tool with improved arrangements of cutter side rakes
US6629476B2 (en) Bi-center bit adapted to drill casing shoe
WO2012006966A1 (zh) 一种复合式钻头
WO2023165609A1 (zh) 抗冲击多切削刃金刚石复合片和钻地工具
RU2768877C2 (ru) Стабилизирующееся буровое долото с неподвижным вооружением
MX2012014405A (es) Elementos de corte superabrasivos con geometria de borde de corte que tiene durabilidad y eficiencia de corte mejoradas y barrenas de perforacion de esta manera equipadas.
US20220003046A1 (en) Cutting Elements with Ridged and Inclined Cutting Face
US20130153305A1 (en) Drag Drill Bit With Hybrid Cutter Layout Having Enhanced Stability
RU2629267C2 (ru) Вооружение бурового долота с фиксированными резцами и другие скважинные буровые инструменты
CN106089090A (zh) 一种金刚石复合片
EP0171915B1 (en) Improvements in or relating to rotary drill bits
WO2023165592A1 (zh) 多切削刃金刚石复合片和钻地工具
CN109306851B (zh) 一种旋转切削模块以及具有这种模块的金刚石钻头
RU2377385C2 (ru) Калибратор ствола скважины
CN109681125A (zh) 一种内凹凸脊形金刚石复合片
US9284786B2 (en) Drill bits having depth of cut control features and methods of making and using the same
US20140262536A1 (en) Downhole cutting tools having hybrid cutting structures
CN216841452U (zh) 一种多切削刃金刚石复合片
US9284785B2 (en) Drill bits having depth of cut control features and methods of making and using the same
EP3363988B1 (en) Impregnated drill bit including a planar blade profile along drill bit face
CN111894470B (zh) Pdc钻头、确定其排屑槽的螺旋角度的方法及钻井方法
WO2014028152A1 (en) Downhole cutting tools having hybrid cutting structures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763007

Country of ref document: EP

Kind code of ref document: A1