WO2023165466A1 - 非正交多址检测方法、装置及相关设备 - Google Patents

非正交多址检测方法、装置及相关设备 Download PDF

Info

Publication number
WO2023165466A1
WO2023165466A1 PCT/CN2023/078696 CN2023078696W WO2023165466A1 WO 2023165466 A1 WO2023165466 A1 WO 2023165466A1 CN 2023078696 W CN2023078696 W CN 2023078696W WO 2023165466 A1 WO2023165466 A1 WO 2023165466A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
codebooks
codebook
target
channel quality
Prior art date
Application number
PCT/CN2023/078696
Other languages
English (en)
French (fr)
Inventor
冯震
王森
袁弋非
王启星
刘光毅
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团有限公司 filed Critical 中国移动通信有限公司研究院
Publication of WO2023165466A1 publication Critical patent/WO2023165466A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • H04L1/0048Decoding adapted to other signal detection operation in conjunction with detection of multiuser or interfering signals, e.g. iteration between CDMA or MIMO detector and FEC decoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • H04L25/03248Arrangements for operating in conjunction with other apparatus
    • H04L25/03286Arrangements for operating in conjunction with other apparatus with channel-decoding circuitry

Definitions

  • the present application relates to the technical field of wireless communication, and in particular to a non-orthogonal multiple access detection method, device and related equipment.
  • NOMA Non-Orthogonal Multiple Access
  • NOMA technology In NOMA technology, a sub-channel is no longer assigned to only one user, but shared by multiple users, that is, the data of multiple users is transmitted on a sub-channel. After receiving the data of multiple users, how does the network-side device The detection of transmitted data using NOMA technology has become an urgent problem to be solved.
  • Embodiments of the present application provide a non-orthogonal multiple access detection method, device, and related equipment, which solve the problem of how to detect data transmitted using the NOMA technology.
  • the embodiment of the present application provides a non-orthogonal multiple access detection method law, including:
  • the target codebook includes V sub-codebooks, the sub-codebooks are used to carry data sent by the user, and V is a positive integer;
  • the data carried by the V sub-codebooks are detected according to the target detection sequence.
  • the channel quality indication information includes at least one of a signal-to-interference-noise ratio and an instantaneous rate.
  • determining V sets of channel quality indication information corresponding to the V sub-codebooks includes:
  • V resource usage information pre-acquired signal transmission power, and pre-acquired noise power, determine V SINRs corresponding to the V sub-codebooks, and/or This corresponds to the V instantaneous rates.
  • the sorting the V groups of channel quality indication information to obtain a target detection sequence includes:
  • the V SINRs sort the V groups of channel quality indication information to obtain a first sequence; according to the order of the channel quality indication information in the first sequence, determine the V subgroups Arrangement order of the codebooks: determining the arrangement order of the V sub-codebooks as the target detection order, wherein the arrangement order of the V sub-codebooks is the same as the order of the channel quality indication information in the first sequence ;
  • the V instantaneous rates sort the V groups of channel quality indication information to obtain a second sequence; according to the order of the channel quality indication information in the second sequence, determine the V subgroups Arrangement order of the codebooks: determining the arrangement order of the V sub-codebooks as the target detection order, wherein the arrangement order of the V sub-codebooks is the same as the order of the channel quality indication information in the second sequence .
  • the method further includes:
  • the method further includes:
  • the initial subcodebook sequence number being a subcodebook sequence number of any subcodebook of the V subcodebooks, and the shift step size being less than V;
  • the embodiment of the present application provides a non-orthogonal multiple access detection device, including:
  • the first acquisition module is configured to acquire a target codebook, where the target codebook includes V sub-codebooks, the sub-codebooks are used to carry data sent by the user, and V is a positive integer;
  • a first determining module configured to determine V groups of channel quality indication information corresponding to the V sub-codebooks according to the target codebook, the channel quality indication information including at least one of signal-to-interference-noise ratio and instantaneous rate ;
  • the second determination module is configured to sort the V groups of channel quality indication information to obtain a target detection sequence
  • a detection module configured to detect the data carried by the V sub-codebooks according to the target detection sequence.
  • the channel quality indication information includes at least one of a signal-to-interference-noise ratio and an instantaneous rate
  • the first determining module includes:
  • V resource usage information pre-acquired signal transmission power, and pre-acquired noise power, determine V SINRs corresponding to the V sub-codebooks, and/or This corresponds to the V instantaneous rates.
  • the second determination module includes:
  • the V SINRs sort the V groups of channel quality indication information to obtain a first sequence; according to the order of the channel quality indication information in the first sequence, determine the V subgroups Arrangement order of the codebooks: determining the arrangement order of the V sub-codebooks as the target detection order, wherein the arrangement order of the V sub-codebooks is the same as the order of the channel quality indication information in the first sequence ;
  • the V instantaneous rates sort the V groups of channel quality indication information to obtain a second sequence; according to the order of the channel quality indication information in the second sequence, determine the V subgroups Arrangement order of the codebooks: determining the arrangement order of the V sub-codebooks as the target detection order, wherein the arrangement order of the V sub-codebooks is the same as the order of the channel quality indication information in the second sequence .
  • the device further includes:
  • V sub-codebooks Allocating the V sub-codebooks to the user terminal according to user requirements and the V MCS levels.
  • the device further includes:
  • the initial subcodebook sequence number being a subcodebook sequence number of any subcodebook of the V subcodebooks, and the shift step size being less than V;
  • an embodiment of the present application provides an electronic device, including a processor, a memory, and a computer program stored on the memory and operable on the processor.
  • the computer program is executed by the processor, The steps in the non-orthogonal multiple access detection method described in the first aspect are realized.
  • an embodiment of the present application provides a readable storage medium, on which a program is stored, and when the program is executed by a processor, the non-orthogonal multiple access detection method as described in the first aspect is implemented in the steps.
  • the channel quality indication information of each sub-codebook is different, by determining the V groups of channel quality indication information corresponding to the V sub-codebooks, the The multiple user data transmitted on the sub-channels are distinguished, and then the V groups of channel quality indication information are sorted to obtain the target detection sequence.
  • the received user data that is, the data carried by the V sub-codebooks, can be processed according to the target detection sequence. to test. Therefore, the problem of how to detect the transmitted data using the NOMA technology is solved.
  • FIG. 1 is a structural diagram of a network system applicable to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a non-orthogonal multiple access detection method provided in an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of an uplink polar code-NOMA system provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a transmission competition unit provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a non-orthogonal multiple access detection device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 1 is a structural diagram of a network system applicable to an embodiment of the present application. As shown in FIG. 1 , it includes a terminal 11 and a network side device 12 . Communication can be performed between the terminal 11 and the network side device 12 .
  • the terminal 11 may also be referred to as user equipment (User Equipment, UE) or a user terminal.
  • the terminal may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), a personal digital assistant (Personal Digital Assistant, PDA), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted equipment, etc.
  • the network side device 12 may be a base station, an access point, or other network elements.
  • FIG. 2 is a schematic flowchart of a non-orthogonal multiple access detection method provided by an embodiment of the present application.
  • the non-orthogonal multiple access detection method shown in FIG. 2 may be executed by a network side device.
  • the non-orthogonal multiple access detection method may include the following steps:
  • Step 201 acquire a target codebook, the target codebook includes V sub-codebooks, and the sub-codebooks Used to carry the data sent by the user, V is a positive integer;
  • the above target codebook is a codebook determined according to a Non-Orthogonal Multiple Access (NOMA) system.
  • NOMA Non-Orthogonal Multiple Access
  • the non-orthogonal multiple access technology is mainly based on the superposition transmission of the data sent by the user on the physical resource.
  • the algorithm based on the Serial Interference Cancellation (Successive Interference Cancellation, SIC) or iterative message passing is used to realize multi-user detection.
  • the target codebook can be described in the form of a superposition matrix or a factor graph.
  • a pattern division multiple access (PDMA) system with 3 users and 2 resources, the PDMA system is a kind of NOMA system, and its superposition matrix F is expressed as
  • Each column of the matrix F corresponds to a sub-codebook, which is used to carry the data sent by the user.
  • the three columns of the matrix F respectively correspond to three sub-codebooks, and each sub-codebook can be assigned to a user terminal for use.
  • the numbers in the matrix represent resource occupancy, 1 means that the resource is occupied, 0 means that the resource is not occupied, the subcodebook corresponding to the first column of the matrix F occupies two resources, and the second column of the matrix F occupies the first resource.
  • the third column of matrix F occupies the second resource.
  • the network side device allocates the sub-codebook in the target codebook to the user terminal for use, and the user terminal encodes the data it sends based on the allocated sub-codebook, and the coding scheme may adopt a polar (Polar) code scheme.
  • Polar codes can reach the Shannon limit and have practical linear complexity coding and decoding capabilities, and Polar codes have been identified by the industry as the control channel coding scheme for 5G eMBB scenarios.
  • FIG. 3 is a schematic structural diagram of the uplink Polar polar code-NOMA system provided by the embodiment of the present application.
  • the data block input to the Polar encoder G contains K v bits.
  • every J bits in the codeword form a vector:
  • the mapping function can be expressed as: g v :B J ⁇ X v , where Denotes the codebook of user v and
  • the set ⁇ X v ⁇ is composed of codebooks of all V users, and the base station allocates a different codebook for each user.
  • the NOMA channel can be decomposed into a series of bit-polarized channels under the three-level channel polarization transformation.
  • FIG. 4 is a schematic structural diagram of a transmission competition unit provided by an embodiment of the present application.
  • a contention transmission unit (Contention Transmission Unit, CTU) may also be defined to describe the target codebook.
  • a contention transmission unit (Contention Transmission Unit, CTU) is defined, expressed as a combination ⁇ f, t, C j , P j ⁇ of frequency, time, codebook, and pilot sequence.
  • each time-frequency resource has V different codebooks
  • each codebook corresponds to M pilots
  • there are VM different pilot sequences in total that is, each time-frequency block has VM CTUs.
  • the pilots are located on resources, and there are as many resources as there are pilots.
  • Each column of time-frequency blocks represents a sub-codebook.
  • Step 202 determine V groups of channel quality indication information corresponding to the V sub-codebooks
  • the V groups of channel quality indication information may include information used to describe the transmission performance of the V sub-codebooks, and the transmission performance may be characterized by transmission capacity.
  • the channel quality indication information includes at least one of a signal-to-interference-noise ratio and an instantaneous rate.
  • the channel quality indication information is not limited to the SINR and/or the instantaneous rate.
  • the channel quality indication information corresponding to each sub-codebook is different. Specifically, the channel quality indication information of the sub-codebook is related to the resource usage of the sub-codebook, and the channel quality of the sub-codebook can be determined through the resource usage of the sub-codebook Instructions.
  • the step 202 includes:
  • V pieces of resource usage information of the V sub-codebooks are determined.
  • the resource usage information of the V sub-codebooks can be determined according to the matrix F describing the target codebook.
  • F 1 includes ⁇ 1 ⁇ , ⁇ 2 ⁇ , ⁇ 1, 2 ⁇ , and ⁇ 1 ⁇ means The first row is not 0, ⁇ 2 ⁇ means the second row is not 0, ⁇ 1, 2 ⁇ means the first row and the second row are not 0.
  • V resource usage information pre-acquired signal transmission power, and pre-acquired noise power, determine V SINRs corresponding to the V sub-codebooks, and/or This corresponds to the V instantaneous rates.
  • V SINRs corresponding to the V sub-codebooks can be sequentially determined according to the above matrix F and the following expressions
  • the constant l P/N 0 , P is the signal transmission power of the user terminal, N 0 is the noise power, d f is the number of 1s in the fth row of the matrix F, and f represents the number of rows of the matrix F, f
  • the value range of is a positive integer from 1 to M, where M is a positive integer, and M represents the number of resources in the matrix F.
  • F V represents the set of non-zero rows in the vth column of the matrix F.
  • the instantaneous rate is positively correlated with the signal-to-interference-noise ratio. Specifically, the instantaneous rate is equal to During specific implementation, V signal-to-interference-noise ratios corresponding to the V sub-codebooks, and/or V instantaneous rates corresponding to the V sub-codebooks may be determined.
  • Step 203 sorting the V groups of channel quality indication information to obtain a target detection sequence
  • V groups of channel quality indication information include V SINRs
  • the V SINRs can be arranged in ascending or descending order to obtain the arrangement order of SINRs.
  • the noise ratios are in one-to-one correspondence with the sub-codebooks, so the arrangement order of the sub-codebooks corresponding to the arrangement order can be determined according to the arrangement order of the SINRs.
  • the arrangement order of the sub-codebooks can be determined as the target detection order.
  • the V instantaneous rates can be arranged in ascending or descending order to obtain the order of the instantaneous rates.
  • the instantaneous rates correspond to the sub-codebook one-to-one, so it can be According to the arrangement order of the instantaneous rate, the arrangement order of the sub-codebooks corresponding to the arrangement order is determined.
  • the arrangement order of the sub-codebooks can be determined as the target detection order.
  • V groups of channel quality indication information include V SINRs and V instantaneous rates
  • the V SINRs can be arbitrarily selected in ascending or descending order , or arrange the V instantaneous rates in ascending order or descending order, and the finally determined arrangement order of the sub-codebooks corresponding to the arrangement order is the same in both ways.
  • each sub-codebook is allocated to different Different user terminals are used, that is, the sub-codebooks are in one-to-one correspondence with the user terminals, and the arrangement order of the sub-codebooks can be determined as the target detection order.
  • Step 204 according to the target detection sequence, detect the data carried by the V sub-codebooks.
  • This application adopts NOMA technology to transmit user data.
  • the user terminal transmits, different users on the same sub-channel transmit data based on the above-mentioned target codebook, and the channel quality indication information corresponding to each sub-codebook is different. Therefore, when different sub-codebooks are allocated to different users, the signal-to-interference-noise ratio and instantaneous rate of each user data arriving at the network side device are different.
  • the network-side device only detects the data of one user at a time, and if there are V users, V times of detection are required.
  • the order of detecting the data sent by the V users is the target detection order.
  • the target detection sequence can be determined according to the principle that the greater the SNR is, the earlier the detection is. In this case, the greater the SINR of the sub-codebook allocated to the user terminal, the The data of the device is detected first. After each detection, the user data of this detection is removed, and the user data obtained after removing the user data of this detection is used as the basis for the next detection.
  • the channel quality indication information of each sub-codebook is different, by determining the V groups of channel quality indication information corresponding to the V sub-codebooks, the The multiple user data transmitted on the sub-channels are distinguished, and then the V groups of channel quality indication information are sorted to obtain the target detection sequence.
  • the received user data that is, the data carried by the V sub-codebooks, can be processed according to the target detection sequence. Detection is performed, thereby solving the problem of how to detect data transmitted using the NOMA technology.
  • the network side device receives is the data after the user terminal encodes the data sent by the user terminal based on the assigned sub-codebooks.
  • the data carried by the V sub-codebooks can Detect and recover the pre-encoded data sent by the user.
  • the step 203 includes:
  • the V SINRs sort the V groups of channel quality indication information to obtain a first sequence; according to the order of the channel quality indication information in the first sequence, determine the V subgroups Arrangement order of the codebooks: determining the arrangement order of the V sub-codebooks as the target detection order, wherein the arrangement order of the V sub-codebooks is the same as the order of the channel quality indication information in the first sequence .
  • the sequence of the sub-codebooks may be determined according to the SINRs, and the first sequence may be ascending or descending.
  • the first sequence is determined according to the principle that the arrangement order of the V SINRs is the same as the arrangement order of the V groups of channel quality indication information.
  • the V instantaneous rates sort the V groups of channel quality indication information to obtain a second sequence; according to the order of the channel quality indication information in the second sequence, determine the V subgroups Arrangement order of the codebooks: determining the arrangement order of the V sub-codebooks as the target detection order, wherein the arrangement order of the V sub-codebooks is the same as the order of the channel quality indication information in the second sequence .
  • the sub-codebook arrangement order may be determined according to the instantaneous rates, and the second order may be an ascending order or a descending order.
  • the second sequence is determined according to the principle that the arrangement order of the V instantaneous rates is the same as the arrangement order of the V groups of channel quality indication information.
  • the method further includes:
  • V modulation and coding strategy MCS levels corresponding to the V sub-codebooks The MCS level supported by each sub-codebook is different, and the MCS level of each sub-codebook can be determined according to the resource usage in the target codebook
  • V sub-codebooks Allocating the V sub-codebooks to the user terminal according to user requirements and the V MCS levels.
  • each sub-codebook can be allocated to different users according to the actual needs of the user terminal. For example, user terminal A has higher requirements for MSC level, and user terminal B has lower requirements for MSC level. Then, the sub-codebook with a higher MCS level in the target codebook is allocated to the user terminal A for use, and the sub-codebook with a lower MCS level in the target codebook is allocated to the user terminal B for use. In this way, according to user requirements and V MCS levels, V sub-codebooks are allocated to user terminals, so that resources can be reasonably scheduled, thereby realizing efficient utilization of resources.
  • the resource usage information of each sub-codebook is different. If different sub-codebooks are allocated to different user terminals, the throughput rate of each user terminal will be different, so that the allocation of sub-codebooks to user terminals will be lost. fairness.
  • the embodiment of this application is based on the idea of round-robin schedule (RRS), and provides each user To allocate resources fairly, optionally, after step 201, the method further includes:
  • the initial sub-codebook number is a sub-codebook number of any sub-codebook of the V sub-codebooks, and the shift step is smaller than V.
  • the target codebook represented as a matrix F as an example, the first column of the matrix F represents the first sub-codebook, and its sub-codebook number is 1, and the second column of the matrix F represents the second sub-codebook , and its sub-codebook number is 2...
  • Column V of the matrix F represents the Vth sub-codebook, and its sub-codebook number is V. If there are V user terminals, each of the V user terminals should be assigned an initial sub-codebook number and a shift step size, and the initial sub-codebook number is any positive integer from 1 to V. Since one sub-codebook can only be used by one user terminal at a time, the initial sub-codebook numbers assigned to each user terminal are different.
  • the sub-codebooks allocated to each user terminal are the sub-codebooks corresponding to the initial sub-codebook number; in the Q-th round (Q is a positive integer), the sub-codebooks allocated to each user terminal are The sub-codebook is the sub-codebook corresponding to the target serial number, and the target serial number is equal to the sum of the product value of the shift step size and Q and the initial sub-codebook serial number.
  • the network side device can use the downlink control information (Downlink Control Information, DCI) signaling to add seq_init (initial subcodebook sequence number) and step_cycle (shift step size) fields as User terminal configuration codebook sequence number.
  • DCI Downlink Control Information
  • the seq_init field occupies
  • the step_cycle field occupies For user k, when sending the first code block, follow the codebook sequence number specified by init_seq and the corresponding code rate for Polar encoding, the initial serial number will be set according to the value of step_cycle when sending for the second time Shift to get a new codebook number until the sending is complete.
  • the value of seq_init and the corresponding codebook sequence (Codebook sequence) can be shown in Table 1:
  • the target sub-codebook numbers of the current round of the user terminal are determined, and each The sub-codebook corresponding to the target sub-codebook sequence number is allocated to the user terminal for use. It can be realized that each sub-codebook in the target codebook is assigned to each user terminal in turn, so that the user terminal can share the whole set of codebooks.
  • the initial sub-codebook number and shift step size if two rounds of sub-codebook allocation can be achieved within the preset period of time, then according to the initial sub-codebook number and shift step size, if user terminal A is assigned the number in the first round is a sub-codebook of 1, user terminal B is allocated to a sub-codebook with a sequence number of 2 in the first round, then in the second round, user terminal A may be allocated to a sub-codebook with a sequence number of 2, and user terminal B may be allocated to the sub-codebook with the sequence number 1, so that within the preset time period, the sum of the throughput rates allocated to user terminal A twice is the same as the sum of the throughput rates allocated to user terminal B twice , so that the throughput rate of each user terminal is basically the same, and the fairness of sub-codebook allocation to the user terminal is ensured.
  • the embodiment of the present application provides a non-orthogonal multiple access detection device 300, including:
  • the first acquiring module 301 is configured to acquire a target codebook, the target codebook includes V sub-codebooks, the sub-codebooks are used to carry data sent by the user, and V is a positive integer;
  • the first determining module 302 is configured to determine V groups of channel quality indication information corresponding to the V sub-codebooks according to the target codebook;
  • the second determining module 303 is configured to sort the V groups of channel quality indication information to obtain a target detection sequence
  • the detection module 304 is configured to detect the data carried by the V sub-codebooks according to the target detection order.
  • the channel quality indication information includes at least one of a signal-to-interference-noise ratio and an instantaneous rate
  • the first determining module 302 includes:
  • V SINRs corresponding to the V sub-codebooks according to the V resource usage information, pre-acquired signal transmission power, and pre-acquired noise power, and/or determine V SINRs corresponding to the V sub-codebooks, and/or V instantaneous rates corresponding to sub-codebooks.
  • the second determination module 303 includes:
  • the V SINRs sort the V groups of channel quality indication information to obtain a first sequence; according to the order of the channel quality indication information in the first sequence, determine the V subgroups Arrangement order of the codebooks: determining the arrangement order of the V sub-codebooks as the target detection order, wherein the arrangement order of the V sub-codebooks is the same as the order of the channel quality indication information in the first sequence ;
  • the V instantaneous rates sort the V groups of channel quality indication information to obtain a second sequence; according to the order of the channel quality indication information in the second sequence, determine the V subgroups Arrangement order of the codebooks: determining the arrangement order of the V sub-codebooks as the target detection order, wherein the arrangement order of the V sub-codebooks is the same as the order of the channel quality indication information in the second sequence .
  • the device further includes:
  • V sub-codebooks Allocating the V sub-codebooks to the user terminal according to user requirements and the V MCS levels.
  • the device further includes:
  • the initial subcodebook sequence number being a subcodebook sequence number of any subcodebook of the V subcodebooks, and the shift step size being less than V;
  • the non-orthogonal multiple access detection device 300 provided in the embodiment of the present application can realize various processes that can be realized in the non-orthogonal multiple access detection method embodiment of the present application, and achieve the same beneficial effect. In order to avoid repetition, details are not repeated here .
  • the electronic device 400 includes: a processor 401, a memory 402, and a computer program stored on the memory 402 and operable on the processor, and each component in the electronic device 400 is coupled through a bus system 403 together. It can be understood that the bus system 403 is used to realize connection and communication between these components.
  • the processor 401 is configured to obtain a target codebook, the target codebook includes V sub-codebooks, the sub-codebooks are used to carry the data sent by the user, and V is a positive integer;
  • the data carried by the V sub-codebooks are detected according to the target detection sequence.
  • the channel quality indication information includes at least one of a signal-to-interference-noise ratio and an instantaneous rate
  • the processor 401 is further configured to, according to the target codebook, determine the Group V channel quality indication information, including:
  • V resource usage information pre-acquired signal transmission power, and pre-acquired noise power, determine V SINRs corresponding to the V sub-codebooks, and/or This corresponds to the V instantaneous rates.
  • the processor 401 is further configured to sort the V groups of channel quality indication information to obtain a target detection sequence, including:
  • the V SINRs sort the V groups of channel quality indication information to obtain a first sequence; according to the order of the channel quality indication information in the first sequence, determine the V subgroups Arrangement order of the codebooks: determining the arrangement order of the V sub-codebooks as the target detection order, wherein the arrangement order of the V sub-codebooks is the same as the order of the channel quality indication information in the first sequence ;
  • the V instantaneous rates sort the V groups of channel quality indication information to obtain a second sequence; according to the order of the channel quality indication information in the second sequence, determine the V subgroups Arrangement order of the codebooks: determining the arrangement order of the V sub-codebooks as the target detection order, wherein the arrangement order of the V sub-codebooks is the same as the order of the channel quality indication information in the second sequence .
  • the processor 401 is further configured, after the target codebook is acquired, the method further includes:
  • V sub-codebooks Allocating the V sub-codebooks to the user terminal according to user requirements and the V MCS levels.
  • the processor 401 is further configured, after the target codebook is acquired, the method further includes:
  • the initial subcodebook sequence number being a subcodebook sequence number of any subcodebook of the V subcodebooks, and the shift step size being less than V;
  • the electronic device 400 provided in the embodiment of the present application can implement various processes that can be realized in the embodiment of the non-orthogonal multiple access detection method of the present application, and achieve the same beneficial effect. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, each process of the above-mentioned non-orthogonal multiple access detection method embodiment is implemented, and can To achieve the same technical effect, in order to avoid repetition, no more details are given here.
  • the computer-readable storage medium is, for example, a read-only memory (Read-Only Memory, ROM for short), a random access memory (Random Access Memory, RAM for short), a magnetic disk or an optical disk, and the like.
  • modules, units, sub-modules, sub-units, etc. can be implemented in one or more application specific integrated circuits (Application Specific Integrated Circuits, ASIC), digital signal processor (Digital Signal Processing, DSP), digital signal processing equipment ( DSP Device, DSPD), Programmable Logic Device (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processor, controller, microcontroller, microprocessor, for In other electronic units or combinations thereof that perform the functions described in this disclosure.
  • ASIC Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD Programmable Logic Device
  • Field-Programmable Gate Array Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种非正交多址检测方法、装置及相关设备,其中方法包括获取目标码本,目标码本包括V个子码本,子码本用于承载用户发送的数据,V为正整数;根据目标码本,确定与V个子码本对应的V组信道质量指示信息;对V组信道质量指示信息进行排序,获得目标检测顺序;根据目标检测顺序,对V个子码本承载的数据进行检测。

Description

非正交多址检测方法、装置及相关设备
相关申请的交叉引用
本申请主张在2022年03月02日在中国提交的中国专利申请No.202210197639.8的优先权,其全部内容通过引用包含于此。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种非正交多址检测方法、装置及相关设备。
背景技术
未来第六代移动通信技术(6th generation mobile networks,6G)系统对用户体验速率、系统容量、连接数以及时延指标都提出了更高要求,相关技术中的正交多址(Orthogonal Multiple Access,OMA)技术可能无法满足6G要求,为此我们引入了非正交多址(Non-Orthogonal Multiple Access,NOMA)技术,NOMA技术相比于传统的OMA技术,具有以下优点,一是通过多用户信息的叠加传输,在相同的时频资源上可以支持更多的用户连接,可有效满足未来海量设备连接能力指标要求;二是利于实现免调度传输,相比于OMA技术可有效简化信令流程,降低空口时延;三是利用多维调制以及码域扩展可获得更高的频谱效率。
NOMA技术中一个子信道上不再只分配给一个用户,而是多个用户共享,即将多个用户的数据在一个子信道上传输,那么网络侧设备接收到多个用户的数据后,如何对利用NOMA技术的进行传输的数据进行检测成为亟待解决的问题。
发明内容
本申请实施例提供一种非正交多址检测方法、装置及相关设备,解决了如何对利用NOMA技术的进行传输的数据进行检测的问题。
为达到上述目的,第一方面,本申请实施例提供一种非正交多址检测方 法、包括:
获取目标码本,所述目标码本包括V个子码本,所述子码本用于承载用户发送的数据,V为正整数;
根据所述目标码本,确定与所述V个子码本对应的V组信道质量指示信息;
对所述V组信道质量指示信息进行排序,获得目标检测顺序;
根据所述目标检测顺序,对所述V个子码本承载的数据进行检测。
可选地,所述信道质量指示信息包括信干噪比和瞬时速率中的至少一项。
可选地,根据所述目标码本,确定与所述V个子码本对应的V组信道质量指示信息,包括:
根据所述目标码本,确定所述V个子码本的V个资源使用信息;
根据所述V个资源使用信息、预先获取的信号发射功率和预先获取的噪声功率,确定与所述V个子码本对应的V个所述信干噪比,和/或与所述V个子码本对应的V个所述瞬时速率。
可选地,所述对所述V组信道质量指示信息进行排序,获得目标检测顺序,包括:
根据V个所述信干噪比的第一顺序,对所述V组信道质量指示信息进行排序,获得第一序列;根据所述第一序列中信道质量指示信息的顺序,确定所述V个子码本的排列顺序;将所述V个子码本的排列顺序,确定为所述目标检测顺序,其中,所述V个子码本的排列顺序与所述第一序列中信道质量指示信息的顺序相同;
或者,根据V个所述瞬时速率的第二顺序,对所述V组信道质量指示信息进行排序,获得第二序列;根据所述第二序列中信道质量指示信息的顺序,确定所述V个子码本的排列顺序;将所述V个子码本的排列顺序,确定为所述目标检测顺序,其中,所述V个子码本的排列顺序与所述第二序列中信道质量指示信息的顺序相同。
可选地,所述获取目标码本之后,所述方法还包括:
确定与所述V个子码本对应的V个MCS等级;
根据用户需求和所述V个MCS等级,将所述V个子码本分配给用户终 端。
可选地,所述获取目标码本之后,所述方法还包括:
获取用户终端的初始子码本序号和移位步长,所述初始子码本序号为所述V个子码本的任意一个子码本的子码本序号,所述移位步长小于V;
根据所述初始子码本序号和所述移位步长,确定所述用户终端当前轮次的各目标子码本序号;
将所述各目标子码本序号对应的子码本分配给所述用户终端使用。
第二方面,本申请实施例提供一种非正交多址检测装置,包括:
第一获取模块,用于获取目标码本,所述目标码本包括V个子码本,所述子码本用于承载用户发送的数据,V为正整数;
第一确定模块,用于根据所述目标码本,确定与所述V个子码本对应的V组信道质量指示信息,所述信道质量指示信息包括信干噪比和瞬时速率中的至少一项;
第二确定模块,用于对所述V组信道质量指示信息进行排序,获得目标检测顺序;
检测模块,用于根据所述目标检测顺序,对所述V个子码本承载的数据进行检测。
可选地,所述信道质量指示信息包括信干噪比和瞬时速率中的至少一项,所述第一确定模块包括:
根据所述目标码本,确定所述V个子码本的V个资源使用信息;
根据所述V个资源使用信息、预先获取的信号发射功率和预先获取的噪声功率,确定与所述V个子码本对应的V个所述信干噪比,和/或与所述V个子码本对应的V个所述瞬时速率。
可选地,所述第二确定模块包括:
根据V个所述信干噪比的第一顺序,对所述V组信道质量指示信息进行排序,获得第一序列;根据所述第一序列中信道质量指示信息的顺序,确定所述V个子码本的排列顺序;将所述V个子码本的排列顺序,确定为所述目标检测顺序,其中,所述V个子码本的排列顺序与所述第一序列中信道质量指示信息的顺序相同;
或者,根据V个所述瞬时速率的第二顺序,对所述V组信道质量指示信息进行排序,获得第二序列;根据所述第二序列中信道质量指示信息的顺序,确定所述V个子码本的排列顺序;将所述V个子码本的排列顺序,确定为所述目标检测顺序,其中,所述V个子码本的排列顺序与所述第二序列中信道质量指示信息的顺序相同。
可选地,所述第一获取模块之后,所述装置还包括:
确定与所述V个子码本对应的V个调制与编码策略MCS等级;
根据用户需求和所述V个MCS等级,将所述V个子码本分配给用户终端。
可选地,所述第一获取模块之后,所述装置还包括:
获取用户终端的初始子码本序号和移位步长,所述初始子码本序号为所述V个子码本的任意一个子码本的子码本序号,所述移位步长小于V;
根据所述初始子码本序号和所述移位步长,确定所述用户终端当前轮次的各目标子码本序号;
将所述各目标子码本序号对应的子码本分配给所述用户终端使用。
第三方面,本申请实施例提供一种电子设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第一方面所述的非正交多址检测方法中的步骤。
第四方面,本申请实施例提供一种可读存储介质,所述可读存储介质上存储有程序,所述程序被处理器执行时实现如第一方面所述的非正交多址检测方法中的步骤。
本申请实施例中,由于子码本分别分配给不同的用户使用,每个子码本的信道质量指示信息不同,通过确定与V个子码本对应的V组信道质量指示信息,则可将在一个子信道上传输的多个用户数据区分开来,再对V组信道质量指示信息进行排序,获得目标检测顺序,这样,可以根据目标检测顺序,对接收的用户数据即V个子码本承载的数据进行检测。从而解决了如何对利用NOMA技术的进行传输的数据进行检测的问题。
附图说明
为了更清楚的说明本申请实施例中的技术方案,现对说明书附图作如下说明,显而易见地,下述附图仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据所列附图获得其他附图。
图1是本申请实施例可应用的网络系统的结构图;
图2是本申请实施例提供的非正交多址检测方法的流程示意图;
图3是本申请实施例提供的上行极化码-NOMA系统的结构示意图;
图4是本申请实施例提供的传输竞争单元的结构示意图;
图5是本申请实施例提供的非正交多址检测装置的结构示意图;
图6是本申请实施例提供的电子设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。在本申请中的实施例的基础上,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参见图1,图1是本申请实施例可应用的网络系统的结构图,如图1所示,包括终端11和网络侧设备12。终端11和网络侧设备12之间可进行通信。
终端11也可以称作用户设备(User Equipment,UE)、用户终端,在实际应用中,终端可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备等。网络侧设备12可以是基站、接入点或其他网元等。
以下对本申请实施例提供的非正交多址检测方法进行说明。
参见图2,图2是本申请实施例提供的非正交多址检测方法的流程示意图。图2所示的非正交多址检测方法可以由网络侧设备执行。
如图2所示,非正交多址检测方法可以包括以下步骤:
步骤201,获取目标码本,所述目标码本包括V个子码本,所述子码本 用于承载用户发送的数据,V为正整数;
上述目标码本为根据非正交多址接入(Non-Orthogonal Multiple Access,NOMA)系统确定的码本。非正交多址技术主要基于用户发送的数据在物理资源上的叠加传输来实现,在接收端采用基于串行干扰删除(Successive Interference Cancellation,SIC)技术或迭代消息传递的算法实现多用户检测。
具体实现时,可采用叠加矩阵或因子图的形式对目标码本进行描述。示例性地,对于3用户2资源的图样分割多址接入(Pattern division multiple access,PDMA)系统,PDMA系统是NOMA系统中的一种,其叠加矩阵F表示为
矩阵F的每一列对应一个子码本,用于承载用户发送的数据。矩阵F的三列分别对应三个子码本,每一个子码本可以分配给一个用户终端使用。矩阵中的数字代表资源占用情况,1表示占用该资源,0表示不占用该资源,矩阵F的第一列对应的子码本占用两个资源,矩阵F的第二列占用第一个资源,矩阵F的第三列占用第二个资源。
网络侧设备将目标码本中的子码本分配给用户终端使用,用户终端基于分配得到的子码本对其发送的数据进行编码,编码方案可以采用极化(Polar)码方案。Polar码可以达到香农极限且具有可实用化的线性复杂度编译码能力,且Polar码被业界确定为5G eMBB场景的控制信道编码方案。具体实现时,参见图3,图3是本申请实施例提供的上行Polar极化码-NOMA系统的结构示意图,对于用户v,其输入到Polar编码器G的数据块中包含Kv比特,经过编码得到长度N比特的码字,码率Rv=Kv/N。经过交织器后,码字中的每J个比特形成向量:
其中,J为调制阶数,τ=1,2,...,N/J为个交织器中数据帧的时隙序号。接着每个向量bv将通过信号映射成一个F维的NOMA码字xv=(xv,1,xv,2,...,xv,F)。映射函数可以表示为:gv:BJ→Xv,其中表示用户v的码本且|Xv|=M,J=log2(M)。由全部V个用户的码本组成集合{Xv},基站为每个用户分配一个不同的码本。对于NOMA系统,V>F,定义系统过载率为J=V/F。对于 Polar-NOMA系统,NOMA信道在三级信道极化变换下可以被分解为一系列比特极化信道。
具体实现时,参见图4,图4是本申请实施例提供的传输竞争单元的结构示意图。为了支持上行免授权接入,还可以定义传输竞争单元(Contention Transmission Unit,CTU)对目标码本进行描述。示例性地,定义了传输竞争单元(Contention Transmission Unit,CTU),表示为频率、时间、码本、导频序列的组合{f,t,Cj,Pj}。其中,每块时频资源有V个不同的码本,每个码本对应M个导频,总共有VM个不同的导频序列,即每个时频块有VM个CTU。应理解,导频位于资源上,有多少个导频就有多少个资源。每列时频块代表一个子码本。
步骤202,根据所述目标码本,确定与所述V个子码本对应的V组信道质量指示信息;
V组信道质量指示信息可包括用于描述V个子码本的传输性能的信息,传输性能可用传输容量表征。可选地,所述信道质量指示信息包括信干噪比和瞬时速率中的至少一项。但应理解,信道质量指示信息并不仅限于信干噪比,和/或瞬时速率。每个子码本对应的信道质量指示信息不同,具体而言,子码本的信道质量指示信息跟子码本的资源使用情况有关,可以通过子码本的资源使用情况确定子码本的信道质量指示信息。
可选地,所述步骤202,包括:
根据所述目标码本,确定所述V个子码本的V个资源使用信息。
具体实现时,可以根据描述目标码本的矩阵F确定V个子码本的资源使用信息。资源使用信息包括度df即矩阵F中第f行中的1的个数,表示矩阵F中第f行中的资源使用情况,以表达式(1)为例,d1=2,即矩阵F的第一行使用了两个资源。资源使用信息还包括矩阵F中第v列非0行的集合FV,仍以表达式(1)为例,F1包括{1}、{2}、{1、2},{1}表示第一行非0,{2}表示第二行非0,{1、2}表示第一行和第二行非0。
根据所述V个资源使用信息、预先获取的信号发射功率和预先获取的噪声功率,确定与所述V个子码本对应的V个所述信干噪比,和/或与所述V个子码本对应的V个所述瞬时速率。
具体实现时,可以根据上述矩阵F和如下表达式依次确定与V个子码本对应的V个信干噪比
其中,Dk={s1,s2,...,sk}表示已经完成检测的用户序号集合,常数l=P/N0,P为用户终端的信号发射功率,N0为噪声功率,df为度即矩阵F中第f行中的1的个数,f代表矩阵F的行数,f的取值范围为1至M中的正整数,M为正整数,M代表矩阵F中的资源数。FV代表矩阵F中第v列非0行的集合。
瞬时速率与信干噪比正相关,具体的,瞬时速率等于在具体实现时,可以确定与V个子码本对应的V个信干噪比,和/或与V个子码本对应的V个瞬时速率。
步骤203,对所述V组信道质量指示信息进行排序,获得目标检测顺序;
具体实现时,在V组信道质量指示信息包括V个信干噪比的情况下,可以将V个信干噪比按升序或者降序排列,得到信干噪比的排列顺序,前文已述信干噪比与子码本一一对应,因此可以根据信干噪比的排列顺序,确定与该排列顺序对应的子码本的排列顺序。又由于各子码本分配给不同的用户终端使用,即子码本与用户终端一一对应,可将子码本的排列顺序确定为目标检测顺序。
在V组信道质量指示信息包括V个瞬时速率的情况下,可以将V个瞬时速率按升序或者降序排列,得到瞬时速率的排列顺序,前文已述瞬时速率与子码本一一对应,因此可以根据瞬时速率的排列顺序,确定与该排列顺序对应的子码本的排列顺序。又由于各子码本分配给不同的用户终端使用,即子码本与用户终端一一对应,可将子码本的排列顺序确定为目标检测顺序。
在V组信道质量指示信息包括V个信干噪比和V个瞬时速率的情况下,因为信干噪比与瞬时速率正相关,因此可以任意选择将V个信干噪比按升序或者降序排列,或将V个瞬时速率按升序或者降序排列,两种方式下最终确定的与该排列顺序对应的子码本的排列顺序相同。又由于各子码本分配给不 同的用户终端使用,即子码本与用户终端一一对应,可将子码本的排列顺序确定为目标检测顺序。
步骤204,根据所述目标检测顺序,对所述V个子码本承载的数据进行检测。
本申请采用NOMA技术对用户数据进行传输,在用户终端发送时,对同一子信道上的不同用户基于上述目标码本进行数据发送,每个子码本对应的信道质量指示信息不同。因此,将不同的子码本分配给不同的用户的情况下,到达网络侧设备的每个用户数据的信干噪比和瞬时速率都不同。
网络侧设备每一次只检测一个用户的数据,若有V个用户,则需要V次检测。对V个用户发送的数据进行检测的顺序为目标检测顺序。具体而言,可以按信噪干比越大则越先检测的原则确定目标检测顺序,这样的话,用户终端分配到的子码本的信干噪比越大,该用户终端所发送给网络侧设备的数据越先被检测。每次检测后去除该次检测的用户数据,并将去除该次检测的用户数据之后所得到的用户数据作为下一次检测的依据。
本申请实施例中,由于子码本分别分配给不同的用户使用,每个子码本的信道质量指示信息不同,通过确定与V个子码本对应的V组信道质量指示信息,则可将在一个子信道上传输的多个用户数据区分开来,再对V组信道质量指示信息进行排序,获得目标检测顺序,这样,可以根据目标检测顺序,对接收的用户数据即V个子码本承载的数据进行检测,从而解决了如何对利用NOMA技术的进行传输的数据进行检测的问题。
需要说明的是,网络侧设备接收到的是用户终端基于分配得到的子码本对其发送的数据进行编码后的数据,本申请实施例可根据目标检测顺序,对V个子码本承载的数据进行检测,并恢复出用户发送的编码前的数据。
可选地,所述步骤203,包括:
根据V个所述信干噪比的第一顺序,对所述V组信道质量指示信息进行排序,获得第一序列;根据所述第一序列中信道质量指示信息的顺序,确定所述V个子码本的排列顺序;将所述V个子码本的排列顺序,确定为所述目标检测顺序,其中,所述V个子码本的排列顺序与所述第一序列中信道质量指示信息的顺序相同。
具体实现时,在V组信道质量指示信息包括V个信干噪比的情况下,可以根据信干噪比确定子码本的排列顺序,第一顺序可以为升序或者降序。按照V个信干噪比的排列顺序与V组信道质量指示信息的排列顺序相同的原则,确定第一序列。
或者,根据V个所述瞬时速率的第二顺序,对所述V组信道质量指示信息进行排序,获得第二序列;根据所述第二序列中信道质量指示信息的顺序,确定所述V个子码本的排列顺序;将所述V个子码本的排列顺序,确定为所述目标检测顺序,其中,所述V个子码本的排列顺序与所述第二序列中信道质量指示信息的顺序相同。
具体实现时,在V组信道质量指示信息包括V个瞬时速率的情况下,可以根据瞬时速率确定子码本的排列顺序,第二顺序可以为升序或者降序。按照V个瞬时速率的排列顺序与V组信道质量指示信息的排列顺序相同的原则,确定第二序列。
可选地,所述步骤201之后,所述方法还包括:
确定与所述V个子码本对应的V个调制与编码策略MCS等级。各子码本所支持的MCS等级不同,可以根据目标码本中的资源使用情况确定各子码本的MCS等级
根据用户需求和所述V个MCS等级,将所述V个子码本分配给用户终端。
具体实现时,可以根据用户终端的实际需求,将各子码本分配给不同的用户使用,示例性地,用户终端A对MSC等级的要求较高,用户终端B对MSC等级的要求较低,则将目标码本中MCS等级较高的子码本分配给用户终端A使用,将目标码本中MCS等级较低的子码本分配给用户终端B使用。这样,根据用户需求和V个MCS等级,将V个子码本分配给用户终端,可以合理调度资源,从而实现对资源较高效率的利用。
前文已述,各子码本的资源使用信息不同,若给不同的用户终端分配不同的子码本,则会使各用户终端的吞吐率不同,这样则会失去对用户终端分配子码本的公平性。为保证公平性,使各用户终端的吞吐率基本一致,本申请实施例基于轮训调度(Round-Robin Schedule,RRS)的思想,为各个用户 公平的分配资源,可选地,所述步骤201之后,所述方法还包括:
获取用户终端的初始子码本序号和移位步长,所述初始子码本序号为所述V个子码本的任意一个子码本的子码本序号,所述移位步长小于V。
根据所述初始子码本序号和所述移位步长,确定所述用户终端当前轮次的各目标子码本序号;
将所述各目标子码本序号对应的子码本分配给所述用户终端使用。
具体实现时,以目标码本被表示为矩阵F为例,矩阵F的第一列代表第一个子码本,其子码本序号为1,矩阵F的第二列代表第二个子码本,其子码本序号为2…矩阵F的第V列代表第V个子码本,其子码本序号为V。若有V个用户终端,则应为V个用户终端中的各用户终端均分配一个初始子码本序号和移位步长,初始子码本序号为1至V中任一个正整数。因一个子码本一次只能给一个用户终端使用,所以各用户终端分配到的初始子码本序号不同。
初始轮次即第0轮次中,各用户终端分配得到的子码本为与初始子码本序号对应的子码本,第Q轮次中(Q为正整数),各用户终端分配得到的子码本为与目标序号对应的子码本,目标序号等于移位步长与Q的乘积值与初始子码本序号之和。
作为一个示例,以半静态配置为例,网络侧设备可以利用下行链路控制信息((Downlink Control Information,DCI)信令添加seq_init(初始子码本序号)和step_cycle(移位步长)字段为用户终端配置码本序号。seq_init字段占用step_cycle字段占用对于用户k,在发送第一个码块时按照init_seq指定的码本序号及对应码率进行Polar编码,第二次发送时将按照step_cycle的值对初始序号进行移位,得到新的码本序号直至发送完成。seq_init的取值及对应的码本排序(Codebook sequence)可如表1所示:

表1
本申请实施例中,通过获取用户终端的初始子码本序号和移位步长,根据初始子码本序号和移位步长,确定用户终端当前轮次的各目标子码本序号,将各目标子码本序号对应的子码本分配给用户终端使用。可以实现将目标码本中的各子码本轮流分配给各用户终端使用,从而使用户终端可以共享到整套码本。具体而言,若在预设时间段内,可以实现两个轮次的子码本分配,那么根据初始子码本序号和移位步长,若用户终端A在第一轮次中分配到序号为1的子码本,用户终端B在第一轮次中分配到序号为2的子码本,那么在第二轮次中,用户终端A可能分配到序号为2的子码本,用户终端B可能分配到序号为1的子码本,这样,在该预设时间段内,用户终端A两次分配到的吞吐率之和与用户终端B两次分配到的吞吐率之和是相同的,从而使各用户终端的吞吐率基本一致,保证了对用户终端分配子码本的公平性。
参见图5,本申请实施例提供一种非正交多址检测装置300,包括:
第一获取模块301,用于获取目标码本,所述目标码本包括V个子码本,所述子码本用于承载用户发送的数据,V为正整数;
第一确定模块302,用于根据所述目标码本,确定与所述V个子码本对应的V组信道质量指示信息;
第二确定模块303,用于对所述V组信道质量指示信息进行排序,获得目标检测顺序;
检测模块304,用于根据所述目标检测顺序,对所述V个子码本承载的数据进行检测。
可选地,所述信道质量指示信息包括信干噪比和瞬时速率中的至少一项,所述第一确定模块302包括:
根据所述目标码本,确定所述V个子码本的V个资源使用信息;
根据所述V个资源使用信息、预先获取的信号发射功率和预先获取的噪声功率,确定与所述V个子码本对应的V个所述信干噪比,和/或与所述V 个子码本对应的V个所述瞬时速率。
可选地,所述第二确定模块303,包括:
根据V个所述信干噪比的第一顺序,对所述V组信道质量指示信息进行排序,获得第一序列;根据所述第一序列中信道质量指示信息的顺序,确定所述V个子码本的排列顺序;将所述V个子码本的排列顺序,确定为所述目标检测顺序,其中,所述V个子码本的排列顺序与所述第一序列中信道质量指示信息的顺序相同;
或者,根据V个所述瞬时速率的第二顺序,对所述V组信道质量指示信息进行排序,获得第二序列;根据所述第二序列中信道质量指示信息的顺序,确定所述V个子码本的排列顺序;将所述V个子码本的排列顺序,确定为所述目标检测顺序,其中,所述V个子码本的排列顺序与所述第二序列中信道质量指示信息的顺序相同。
可选地,所述第一获取模块301之后,所述装置还包括:
确定与所述V个子码本对应的V个调制与编码策略MCS等级;
根据用户需求和所述V个MCS等级,将所述V个子码本分配给用户终端。
可选地,所述第一获取模块301之后,所述装置还包括:
获取用户终端的初始子码本序号和移位步长,所述初始子码本序号为所述V个子码本的任意一个子码本的子码本序号,所述移位步长小于V;
根据所述初始子码本序号和所述移位步长,确定所述用户终端当前轮次的各目标子码本序号;
将所述各目标子码本序号对应的子码本分配给所述用户终端使用。
本申请实施例提供的非正交多址检测装置300能够实现本申请非正交多址检测方法实施例中能够实现的各个过程,以及达到相同的有益效果,为避免重复,在此不再赘述。
本申请实施例提供一种电子设备。如图6所示,电子设备400包括:处理器401、存储器402及存储在所述存储器402上并可在所述处理器上运行的计算机程序,电子设备400中的各个组件通过总线系统403耦合在一起。可理解,总线系统403用于实现这些组件之间的连接通信。
其中,处理器401,用于获取目标码本,所述目标码本包括V个子码本,所述子码本用于承载用户发送的数据,V为正整数;
根据所述目标码本,确定与所述V个子码本对应的V组信道质量指示信息;
对所述V组信道质量指示信息进行排序,获得目标检测顺序;
根据所述目标检测顺序,对所述V个子码本承载的数据进行检测。
可选地,所述信道质量指示信息包括信干噪比和瞬时速率中的至少一项,处理器401还用于,所述根据所述目标码本,确定与所述V个子码本对应的V组信道质量指示信息,包括:
根据所述目标码本,确定所述V个子码本的V个资源使用信息;
根据所述V个资源使用信息、预先获取的信号发射功率和预先获取的噪声功率,确定与所述V个子码本对应的V个所述信干噪比,和/或与所述V个子码本对应的V个所述瞬时速率。
可选地,处理器401还用于,所述对所述V组信道质量指示信息进行排序,获得目标检测顺序,包括:
根据V个所述信干噪比的第一顺序,对所述V组信道质量指示信息进行排序,获得第一序列;根据所述第一序列中信道质量指示信息的顺序,确定所述V个子码本的排列顺序;将所述V个子码本的排列顺序,确定为所述目标检测顺序,其中,所述V个子码本的排列顺序与所述第一序列中信道质量指示信息的顺序相同;
或者,根据V个所述瞬时速率的第二顺序,对所述V组信道质量指示信息进行排序,获得第二序列;根据所述第二序列中信道质量指示信息的顺序,确定所述V个子码本的排列顺序;将所述V个子码本的排列顺序,确定为所述目标检测顺序,其中,所述V个子码本的排列顺序与所述第二序列中信道质量指示信息的顺序相同。
可选地,处理器401还用于,所述获取目标码本之后,所述方法还包括:
确定与所述V个子码本对应的V个调制与编码策略MCS等级;
根据用户需求和所述V个MCS等级,将所述V个子码本分配给用户终端。
可选地,处理器401还用于,所述获取目标码本之后,所述方法还包括:
获取用户终端的初始子码本序号和移位步长,所述初始子码本序号为所述V个子码本的任意一个子码本的子码本序号,所述移位步长小于V;
根据所述初始子码本序号和所述移位步长,确定所述用户终端当前轮次的各目标子码本序号;
将所述各目标子码本序号对应的子码本分配给所述用户终端使用。
本申请实施例提供的电子设备400能够实现本申请非正交多址检测方法实施例中能够实现的各个过程,以及达到相同的有益效果,为避免重复,在此不再赘述。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述非正交多址检测方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子模块、子单元等可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (11)

  1. 一种非正交多址检测方法,应用于网络侧设备,包括:
    获取目标码本,所述目标码本包括V个子码本,所述子码本用于承载用户发送的数据,V为正整数;
    根据所述目标码本,确定与所述V个子码本对应的V组信道质量指示信息;
    对所述V组信道质量指示信息进行排序,获得目标检测顺序;
    根据所述目标检测顺序,对所述V个子码本承载的数据进行检测。
  2. 根据权利要求1所述的方法,其中,所述信道质量指示信息包括信干噪比和瞬时速率中的至少一项。
  3. 根据权利要求2所述的方法,其中,根据所述目标码本,确定与所述V个子码本对应的V组信道质量指示信息,包括:
    根据所述目标码本,确定所述V个子码本的V个资源使用信息;
    根据所述V个资源使用信息、预先获取的信号发射功率和预先获取的噪声功率,确定与所述V个子码本对应的V个所述信干噪比,和/或与所述V个子码本对应的V个所述瞬时速率。
  4. 根据权利要求3所述的方法,其中,所述对所述V组信道质量指示信息进行排序,获得目标检测顺序,包括:
    根据V个所述信干噪比的第一顺序,对所述V组信道质量指示信息进行排序,获得第一序列;根据所述第一序列中信道质量指示信息的顺序,确定所述V个子码本的排列顺序;将所述V个子码本的排列顺序,确定为所述目标检测顺序,其中,所述V个子码本的排列顺序与所述第一序列中信道质量指示信息的顺序相同;
    或者,根据V个所述瞬时速率的第二顺序,对所述V组信道质量指示信息进行排序,获得第二序列;根据所述第二序列中信道质量指示信息的顺序,确定所述V个子码本的排列顺序;将所述V个子码本的排列顺序,确定为所述目标检测顺序,其中,所述V个子码本的排列顺序与所述第二序列中信道质量指示信息的顺序相同。
  5. 根据权利要求1所述的方法,其中,所述获取目标码本之后,所述方法还包括:
    确定与所述V个子码本对应的V个MCS等级;
    根据用户需求和所述V个MCS等级,将所述V个子码本分配给用户终端。
  6. 根据权利要求1所述的方法,其中,所述获取目标码本之后,所述方法还包括:
    获取用户终端的初始子码本序号和移位步长,所述初始子码本序号为所述V个子码本的任意一个子码本的子码本序号,所述移位步长小于V;
    根据所述初始子码本序号和所述移位步长,确定所述用户终端当前轮次的各目标子码本序号;
    将所述各目标子码本序号对应的子码本分配给所述用户终端使用。
  7. 一种非正交多址检测装置,包括:
    第一获取模块,用于获取目标码本,所述目标码本包括V个子码本,所述子码本用于承载用户发送的数据,V为正整数;
    第一确定模块,用于根据所述目标码本,确定与所述V个子码本对应的V组信道质量指示信息;
    第二确定模块,用于对所述V组信道质量指示信息进行排序,获得目标检测顺序;
    检测模块,用于根据所述目标检测顺序,对所述V个子码本承载的数据进行检测。
  8. 根据权利要求7所述的装置,其中,所述信道质量指示信息包括信干噪比和瞬时速率中的至少一项,所述第一确定模块包括:
    根据所述目标码本,确定所述V个子码本的V个资源使用信息;
    根据所述V个资源使用信息、预先获取的信号发射功率和预先获取的噪声功率,确定与所述V个子码本对应的V个所述信干噪比,和/或与所述V个子码本对应的V个所述瞬时速率。
  9. 根据权利要求7所述的装置,其中,所述第一获取模块之后,所述装置还包括:
    获取用户终端的初始子码本序号和移位步长,所述初始子码本序号为所述V个子码本的任意一个子码本的子码本序号,所述移位步长小于V;
    根据所述初始子码本序号和所述移位步长,确定所述用户终端当前轮次的各目标子码本序号;
    将所述各目标子码本序号对应的子码本分配给所述用户终端使用。
  10. 一种电子设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述计算机程序被所述处理器执行时实现如权利要求1至6中任一项所述的非正交多址检测方法中的步骤。
  11. 一种可读存储介质,所述可读存储介质上存储有程序,其中,所述程序被处理器执行时实现如权利要求1至6中任一项所述的非正交多址检测方法中的步骤。
PCT/CN2023/078696 2022-03-02 2023-02-28 非正交多址检测方法、装置及相关设备 WO2023165466A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210197639.8A CN116743533A (zh) 2022-03-02 2022-03-02 非正交多址检测方法、装置及相关设备
CN202210197639.8 2022-03-02

Publications (1)

Publication Number Publication Date
WO2023165466A1 true WO2023165466A1 (zh) 2023-09-07

Family

ID=87882981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078696 WO2023165466A1 (zh) 2022-03-02 2023-02-28 非正交多址检测方法、装置及相关设备

Country Status (2)

Country Link
CN (1) CN116743533A (zh)
WO (1) WO2023165466A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101997584A (zh) * 2009-08-27 2011-03-30 大唐移动通信设备有限公司 一种确定码字的方法、系统和装置
CN104869094A (zh) * 2015-04-29 2015-08-26 清华大学 联合正交多址与非正交多址的上行多址接入方法
CN108462662A (zh) * 2017-02-17 2018-08-28 索尼公司 用于基于非正交资源的多址接入的电子设备和通信方法
US20210111772A1 (en) * 2019-10-15 2021-04-15 Samsung Electronics Co., Ltd. Apparatus and method for non-orthogonal multiple access in wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101997584A (zh) * 2009-08-27 2011-03-30 大唐移动通信设备有限公司 一种确定码字的方法、系统和装置
CN104869094A (zh) * 2015-04-29 2015-08-26 清华大学 联合正交多址与非正交多址的上行多址接入方法
CN108462662A (zh) * 2017-02-17 2018-08-28 索尼公司 用于基于非正交资源的多址接入的电子设备和通信方法
US20210111772A1 (en) * 2019-10-15 2021-04-15 Samsung Electronics Co., Ltd. Apparatus and method for non-orthogonal multiple access in wireless communication system

Also Published As

Publication number Publication date
CN116743533A (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
CN107359969B (zh) 一种harq的反馈信息传输方法、ue、基站和系统
CN106385300B (zh) 基于动态解码sic接收机的上行noma功率分配方法
CA2944066C (en) Method and apparatus for data transmission in a multiuser downlink cellular system
CN109962726B (zh) 信道状态信息的非周期性反馈方法、终端
CN108632192B (zh) 数据传输的方法、设备和系统
CN109600205B (zh) 一种数据传输方法及装置
WO2017206663A1 (zh) 免授权传输方法和装置
CN103931254B (zh) 控制信道的检测方法及设备
CN110650542A (zh) 用于上行数据传输的方法和装置
WO2017107707A1 (zh) 一种确定多用户传输方式的方法及装置
CN107431563B (zh) 网络节点、用户设备及其方法
CN106209301A (zh) 一种干扰信息指示方法、干扰删除方法及装置
EP3255908B1 (en) Method and apparatus for transmitting downlink control information
CN104038963A (zh) 无线通信系统中控制信息的传输方法和装置
CN107342844A (zh) 一种编码方法和装置
CN110855329B (zh) 一种确定码字映射方式的方法及装置
US8509204B2 (en) Efficient encoding of control signaling for communication systems with scheduling and link
CN103391624A (zh) 一种处理e-pdcch的方法和设备
WO2007109917A1 (en) Method and system for subband indicator signalling
CN105634672A (zh) 基于稀疏码多址接入系统的自适应编码调制方案与资源调度方法
CN101483441A (zh) 通信系统中添加循环冗余校验的设备
CN109150378A (zh) 一种数据处理方法及数据处理装置
WO2019154286A1 (zh) 一种数据调制和解调方法及装置
CN112260797A (zh) 一种信道状态信息传输方法及装置
CN103209053B (zh) 一种信息比特发送方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23762865

Country of ref document: EP

Kind code of ref document: A1