WO2023165127A1 - 空调除霜的控制方法、控制系统、电子设备和存储介质 - Google Patents

空调除霜的控制方法、控制系统、电子设备和存储介质 Download PDF

Info

Publication number
WO2023165127A1
WO2023165127A1 PCT/CN2022/122206 CN2022122206W WO2023165127A1 WO 2023165127 A1 WO2023165127 A1 WO 2023165127A1 CN 2022122206 W CN2022122206 W CN 2022122206W WO 2023165127 A1 WO2023165127 A1 WO 2023165127A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
defrosting
compressor
state
controlling
Prior art date
Application number
PCT/CN2022/122206
Other languages
English (en)
French (fr)
Inventor
吕科磊
宋龙
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2023165127A1 publication Critical patent/WO2023165127A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to the technical field of air conditioners, and in particular to an air conditioner defrosting control method, control system, electronic equipment and storage medium.
  • Air conditioners are now a necessary electrical appliance for home and office, especially in summer and winter, air conditioners are used for a long time.
  • the air conditioner can cool in summer and heat in winter, and can adjust the indoor temperature to make it warm in winter and cool in summer, providing users with a comfortable environment.
  • the air conditioner When the air conditioner is in heating mode in a low-temperature environment, since the outdoor heat exchanger is in a low-temperature and high-humidity environment, when the air conditioner operates in a low-temperature environment for a long time, the surface of the outdoor heat exchanger is prone to frost, and the outdoor heat exchange after frost The heat transfer performance of the air conditioner is obviously reduced, which will affect the operation of the air conditioner.
  • the fixed split flow has a certain influence on its heat exchange effect, which limits the heat exchange capacity of the heat exchanger, and cannot make the air conditioner achieve the best defrosting effect.
  • Embodiments of the present application provide an air conditioner defrosting control method, control system, electronic equipment, and storage medium to solve the problem that the existing air conditioner defrosting adopts a fixed shunt state and cannot achieve an optimal defrosting effect for the air conditioner.
  • An embodiment of the present application provides a method for controlling defrosting of an air conditioner, including:
  • the operating state includes: a variable split state and a fixed split state; in the case of the variable split state, the refrigerant in the heat exchanger of the air conditioner adjusts the split state in real time; in the case of the fixed split state Next, the split state of the refrigerant in the heat exchanger is fixed.
  • the step of controlling and adjusting the operating frequency of the compressor and the operating state of the air conditioner based on the frosting condition of the air conditioner includes:
  • the step of controlling and adjusting the operating frequency of the compressor, and controlling the air conditioner to be in a variable split state includes:
  • the air conditioner is controlled to work in multiple ways, and the compressor is controlled to run at a second operating frequency; the second operating frequency is greater than the first operating frequency.
  • the step of controlling the air conditioner to enter a defrosting mode includes:
  • the air conditioner is controlled to adjust the refrigerant direction to operate in a cooling mode.
  • the step further includes:
  • the air conditioner is controlled to work in multiple ways.
  • the step of controlling the compressor to run at a fixed frequency and controlling the air conditioner to be in a fixed split state includes:
  • the air conditioner is controlled to work in the current split state, and the compressor is controlled to run at a fixed frequency.
  • the present application also provides a control system for air-conditioning defrosting, including:
  • the execution module is used to control the air conditioner to enter the defrosting mode when the defrosting condition is met;
  • An adjustment module configured to control and adjust the operating frequency of the compressor and the operating state of the air conditioner based on the frosting condition of the air conditioner;
  • the operating state includes: a variable split state and a fixed split state; in the case of the variable split state, the refrigerant in the heat exchanger of the air conditioner adjusts the split state in real time; in the case of the fixed split state Next, the split state of the refrigerant in the heat exchanger is fixed.
  • the embodiment of the present application also provides an electronic device, including a memory, a processor, and a computer program stored in the memory and operable on the processor, and the processor implements the air-conditioning defrosting control method when executing the program .
  • the embodiment of the present application also provides a non-transitory computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the method for controlling the defrosting of the air conditioner is implemented.
  • the embodiment of the present application also provides a computer program product, the computer program product includes a computer program stored on a non-transitory computer-readable storage medium, the computer program includes program instructions, and when the program instructions are executed by the computer , the computer can execute the air conditioner defrosting control method.
  • the air conditioner defrosting control method, control system, electronic equipment, and storage medium provided in this application control the air conditioner to enter the defrosting mode first when the defrosting conditions are met, and obtain the location of the air conditioner during the defrosting process of the air conditioner.
  • the ambient temperature and the cooling output temperature of the heat exchanger are used as a basis to control the operating state of the air conditioner, so that the air conditioner can be switched between the variable split state and the fixed split state, and the split state of the heat exchanger can be changed to make the air conditioner reach the optimum level. defrosting effect.
  • Fig. 1 is a schematic structural diagram of a variable flow distribution device provided by an embodiment of the present application
  • Fig. 2 is a schematic structural view of a heat exchanger provided by an embodiment of the present application.
  • Fig. 3 is a schematic flow chart of an air conditioner defrosting control method provided by an embodiment of the present application
  • Fig. 4 is a schematic flow diagram of a defrosting mode in a variable split state according to an embodiment of the present application
  • Fig. 5 is a schematic structural diagram of a defrosting control system provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the first diversion pipeline 10. One-way valve; 2. The second diversion pipeline;
  • Reversing valve 31. The first communication port; 32. The second communication port;
  • Communication interface 620. Communication interface; 630. Memory; 640. Communication bus.
  • connection and “connected” should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection, Or integrated connection; it can be mechanical connection or electrical connection; it can be direct connection or indirect connection through an intermediary.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection, Or integrated connection; it can be mechanical connection or electrical connection; it can be direct connection or indirect connection through an intermediary.
  • the present application provides a method for controlling defrosting of an air conditioner.
  • the air conditioner may be a wall-mounted air conditioner, a cabinet-type air conditioner, a window-type air conditioner, or a ceiling-mounted air conditioner.
  • the indoor heat exchanger or the outdoor heat exchanger of the air conditioner is provided with a variable flow splitting device, and the variable flow splitting device can also be set in the indoor heat exchanger and the outdoor heat exchanger at the same time.
  • the variable flow distribution device includes: a reversing valve 3 , a first flow distribution pipeline 1 , a second flow distribution pipeline 2 and at least two heat exchange pipelines 4 .
  • the first distribution pipeline 1 is connected with the second distribution pipeline 2 through at least two heat exchange pipelines 4 .
  • Both the first branch pipeline 1 and the second branch pipeline 2 are provided with a main pipeline and a plurality of branch pipelines, and check valves 10 can be provided in some of the branch pipelines as required.
  • the reversing valve 3 is a two-position four-way reversing valve, which is provided with a first communication port 31, a second communication port 32, a third communication port 33 and a fourth communication port 34.
  • the reversing valve 3 has a first station and a second communication port. Two workstations.
  • the first communication port 31 is connected to the refrigerant inlet, and the third communication port 33 is connected to the refrigerant outlet.
  • the air conditioner has a variable split state and a fixed split state.
  • a variable split state the refrigerant in the heat exchanger of the air conditioner adjusts the split state in real time.
  • a fixed split state the split state of the refrigerant in the outdoor heat exchanger of the air conditioner is fixed.
  • the shunt state is divided into single-way shunt and multi-way shunt.
  • the refrigerant in the outdoor heat exchanger of the air conditioner is multi-way shunted to work.
  • the refrigerant in the outdoor heat exchanger of the air conditioner works in one way. That is to say, in the variable flow state, the air conditioner switches between single flow flow and multi-way flow flow, and in the fixed flow flow state, the air conditioner works in fixed position single flow flow or multi-way flow flow.
  • the reversing valve 3 is in the first position, the first communication port 31 communicates with the second communication port 32 , and the third communication port 33 communicates with the fourth communication port 34 .
  • the second communication port 32 communicates with the first distribution pipeline 1
  • the fourth communication port 34 communicates with the second distribution pipeline 2 .
  • the refrigerant at the inlet of the refrigerant enters through the first branch pipeline 1, diverts in the branch pipes of the first branch pipeline 1, and enters each heat exchange pipeline 4 to exchange heat with the indoor air, and then flows through the branch pipes of the second branch pipeline 2.
  • the pipeline enters into its main pipeline, finally passes through the fourth communication port 34 and the third communication port 33, and is discharged from the refrigerant outlet, realizing heat exchange through multiple pipelines.
  • the reversing valve 3 is in the second position, the first communication port 31 communicates with the fourth communication port 34 , and the third communication port 33 communicates with the second communication port 32 .
  • the second communication port 32 communicates with the second distribution pipeline 2
  • the fourth communication port 34 communicates with the first distribution pipeline 1 .
  • the refrigerant at the refrigerant inlet enters through the second branch pipeline 2. Since the check valve 10 is set in part of the first branch pipeline 1, under its restriction, the refrigerant can only be discharged through heat exchange in part of the heat exchange pipeline 4. , at this time, the heat exchange pipeline can be reduced.
  • two heat exchange pipelines 4 are taken as an example, which are respectively the first heat exchange pipeline and the second heat exchange pipeline.
  • Both the first branch pipeline 1 and the second branch pipeline 2 are provided with a main pipeline and two branch pipelines.
  • a one-way valve 10 is provided in a branch pipeline in the first branch pipeline 1 . Assume that only one of the pipelines of the first branch pipeline 1 is provided with a one-way valve 10
  • the reversing valve 3 is in the first position, the first communication port 31 communicates with the second communication port 32 , and the third communication port 33 communicates with the fourth communication port 34 .
  • the second communication port 32 communicates with the first distribution pipeline 1
  • the fourth communication port 34 communicates with the second distribution pipeline 2 .
  • the refrigerant at the refrigerant inlet enters through the first diversion pipeline 1, diverts in the branch pipeline of the first diversion pipeline 1, enters the first heat exchange pipeline and the second heat exchange pipeline respectively to exchange heat with the indoor air, and then passes through the second heat exchange pipeline.
  • the branch pipe of the second branch pipe 2 enters the main pipe, passes through the fourth communication port 34 and the third communication port 33 , and is discharged from the refrigerant outlet, realizing simultaneous heat exchange of the two pipes.
  • the reversing valve 3 is in the second position, the first communication port 31 communicates with the fourth communication port 34 , and the third communication port 33 communicates with the second communication port 32 .
  • the second communication port 32 communicates with the second distribution pipeline 2
  • the fourth communication port 34 communicates with the first distribution pipeline 1 .
  • the refrigerant at the refrigerant inlet enters from the second branch pipeline 2. Since the branch pipeline in the first branch pipeline 1 is provided with a one-way valve 10, under its restriction, the refrigerant can only exchange heat in the first heat exchange pipeline 4 At this time, only one heat exchange pipeline 4 is used for heat exchange.
  • control method for air conditioner defrosting includes the following steps:
  • Step S110 When the defrosting condition is met, control the air conditioner to enter the defrosting mode.
  • the air conditioner can automatically judge whether it meets the defrosting conditions. For example, when the outdoor ambient temperature is lower than 5°C, if the air conditioner is working in heating mode, start to judge whether the running time of the air conditioner is greater than the set cumulative running threshold. If the running time is greater than the set cumulative running threshold, it means that the air conditioner meets the defrosting conditions to control the air conditioner to enter the defrosting mode.
  • Step S120 Control and adjust the operating frequency of the compressor and the operating state of the air conditioner based on the frosting condition of the air conditioner.
  • the running state includes: variable shunt state and fixed shunt state.
  • the refrigerant in the heat exchanger of the air conditioner adjusts the split state in real time, and the heat exchanger can be an indoor heat exchanger or an outdoor heat exchanger.
  • the split state of the refrigerant in the heat exchanger is fixed.
  • the outdoor temperature, the thickness or time of frosting of the outdoor heat exchanger it is judged whether the defrosting of the air conditioner in the current state meets the defrosting requirement.
  • the air conditioner can work normally in the current shunt state, and the single-way shunt or multi-way shunt can meet the requirements, then the compressor is controlled to run at a fixed frequency, and the air conditioner is controlled to be at a fixed frequency. shunt status.
  • the defrosting of the air conditioner in the current state does not meet the defrosting requirements, it means that the air conditioner cannot work normally in the current split state, then control and adjust the operating frequency of the compressor, and control the air conditioner in a variable split state, the indoor heat exchanger of the air conditioner or The refrigerant in the outdoor heat exchanger adjusts the diversion state through the reversing valve in real time.
  • the air conditioner defrosting control method provided by this application first controls the air conditioner to enter the defrosting mode when the defrosting conditions are met, and controls and adjusts the operation of the compressor based on the frosting condition of the air conditioner during the defrosting process of the air conditioner.
  • the frequency and the operating state of the air conditioner make the air conditioner switch between the variable split state and the fixed split state, change the split state of the heat exchanger, and make the air conditioner achieve the best defrosting effect.
  • the steps of controlling and adjusting the operating frequency of the compressor and controlling the air conditioner to be in a variable split state include:
  • Step S410 Control the air conditioner to work with single-way split flow, and control the compressor to run at the first working frequency.
  • the air conditioner In order to prevent the air conditioner from suddenly changing from the heating mode to the defrosting mode, the pressure in the pipe is too high to prevent the impact on the four-way valve used for refrigerant steering.
  • the air conditioner is first controlled to work with a single flow, and then the compressor is controlled to run at the first operating frequency. At this time, the compressor will run in low frequency mode, and defrost with a single split flow, so as to facilitate the volatilization of heat.
  • Step S420 Control the air conditioner to work in multiple ways, and control the compressor to run in the second working frequency.
  • the air conditioner After the air conditioner operates with single flow for a period of time, the temperature of the refrigerant in the outdoor heat exchanger will gradually rise.
  • the second working frequency runs. Wherein, the second working frequency is greater than the first working frequency.
  • the compressor will run in high-frequency mode and defrost with multi-way shunt to increase heat exchange.
  • the air conditioner exits the defrosting mode and enters the heating mode again.
  • three-way or four-way heat exchange pipelines can also be set according to needs, so that the split state can also be set in the intermediate state of partial flow.
  • part of the heat exchange pipelines can be used for heat exchange to ensure the operation process. Select as needed.
  • the air conditioner is also equipped with an intermediate device for partial flow, in the process of variable flow, it can also work in the state of single flow, and then work in the state of partial flow, or work in the state of partial flow first , and then work in the state of multi-channel shunting.
  • step S410 and step S420 also includes:
  • the oil return status of the compressor is acquired first. Then, according to the oil return state of the compressor, determine the oil return time of the compressor under the condition of the first operating frequency and single-way split flow.
  • the air conditioner is controlled to work in multiple ways within the second preset time before the compressor completes the oil return. For example, within 5 seconds before the compressor completes the oil return, use the reversing valve to adjust the diversion state, and control the air conditioner to work with multiple diversions.
  • the steps of controlling the compressor to run at a fixed frequency and controlling the air conditioner to be in a fixed split flow state include: controlling the air conditioner to work in a current split flow state, and controlling the compressor to run at a fixed frequency.
  • the compressor is first controlled to be turned off, and the time when the compressor is turned off is obtained. After it is determined that the time when the compressor is turned off reaches the first preset time, for example, after the compressor is turned off for 1 minute, then Control the air conditioner to adjust the refrigerant direction to run in cooling mode.
  • the air conditioner Since the defrosting of the air conditioner in the current state can meet the defrosting requirements, before the compressor is turned on, the air conditioner is controlled to work in the current split flow state. If it is in multi-way shunt, it will work with multi-way shunt. Since the shunt state does not change, the compressor will run at a fixed frequency at this time.
  • control system for defrosting the air conditioner provided by the embodiment of the present application is described below, and the control system for defrosting the air conditioner described below and the control method described above can be referred to in correspondence.
  • the air conditioner defrosting control system includes: an execution module 510 and an adjustment module 520 .
  • the execution module 510 is used to control the air conditioner to enter the defrosting mode when the defrosting condition is satisfied;
  • the adjustment module 520 is used to control and adjust the operating frequency of the compressor and the operation of the air conditioner based on the frosting condition of the air conditioner. state; wherein, the operating state includes: variable split state and fixed split state; in the case of variable split state, the refrigerant in the heat exchanger of the air conditioner adjusts the split state in real time; in the case of fixed split state, the heat exchanger The diversion state of the refrigerant is fixed.
  • FIG. 6 illustrates a schematic diagram of the physical structure of an electronic device.
  • the electronic device may include: a processor (processor) 610, a communication interface (Communications Interface) 620, a memory (memory) 630 and a communication bus 640, Wherein, the processor 610 , the communication interface 620 , and the memory 630 communicate with each other through the communication bus 640 .
  • processor processor
  • Communication interface Communication interface
  • memory memory
  • FIG. 6 illustrates a schematic diagram of the physical structure of an electronic device.
  • the electronic device may include: a processor (processor) 610, a communication interface (Communications Interface) 620, a memory (memory) 630 and a communication bus 640, Wherein, the processor 610 , the communication interface 620 , and the memory 630 communicate with each other through the communication bus 640 .
  • memory memory
  • the processor 610 may call the logic instructions in the memory 630 to execute the control method including: controlling the air conditioner to enter the defrosting mode when the defrosting condition is met; controlling and adjusting the operation of the compressor based on the frosting condition of the air conditioner frequency and the operating state of the air conditioner; wherein, the operating state includes: a variable split state and a fixed split state; in the case of the variable split state, the refrigerant in the heat exchanger of the air conditioner adjusts the split state in real time ; In the case of the fixed split flow state, the split flow state of the refrigerant in the heat exchanger is fixed.
  • the electronic device in this embodiment may be a server, a PC, or other devices during specific implementation, as long as its structure includes a processor 610, a communication interface 620 as shown in FIG. 6 , the memory 630 and the communication bus 640, wherein the processor 610, the communication interface 620, and the memory 630 communicate with each other through the communication bus 640, and the processor 610 can call the logic instructions in the memory 630 to execute the above method.
  • This embodiment does not limit the specific implementation form of the electronic device.
  • the logic instructions in the above-mentioned memory 630 may be implemented in the form of software functional units and when sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .
  • the embodiment of the present application discloses a computer program product
  • the computer program product includes a computer program stored on a non-transitory computer-readable storage medium
  • the computer program includes program instructions, when the program instructions are executed by the computer
  • the control method includes: when the defrosting condition is satisfied, controlling the air conditioner to enter the defrosting mode; based on the frosting condition of the air conditioner, controlling and adjusting the compression
  • the operating frequency of the machine and the operating state of the air conditioner wherein, the operating state includes: a variable split state and a fixed split state; in the case of the variable split state, the refrigerant in the heat exchanger of the air conditioner is real-time Adjusting the split flow state; in the case of the fixed split flow state, the split flow state of the refrigerant in the heat exchanger is fixed.
  • the embodiments of the present application also provide a non-transitory computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, it is implemented to execute the control methods provided by the above-mentioned embodiments.
  • the control method includes: when the defrosting condition is satisfied, controlling the air conditioner to enter the defrosting mode; based on the frosting condition of the air conditioner, controlling and adjusting the operating frequency of the compressor and the operating state of the air conditioner; wherein, the operating state Including: a variable split state and a fixed split state; in the case of the variable split state, the refrigerant in the heat exchanger of the air conditioner adjusts the split state in real time; in the case of the fixed split state, the heat exchange The diversion state of the refrigerant in the device is fixed.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network elements. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. It can be understood and implemented by those skilled in the art without any creative efforts.
  • each implementation can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware.
  • the essence of the above technical solution or the part that contributes to the prior art can be embodied in the form of software products, and the computer software products can be stored in computer-readable storage media, such as ROM/RAM, magnetic discs, optical discs, etc., including several instructions to make a computer device (which may be a personal computer, server, or network device, etc.) execute the methods described in various embodiments or some parts of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请提供一种空调除霜的控制方法、控制系统、电子设备和存储介质,包括:在满足除霜条件的情形下,控制空调进入除霜模式;基于空调的结霜情况,控制调整压缩机的运行频率和空调的运行状态;其中,运行状态包括:可变分流状态和固定分流状态;在可变分流状态的情形下,空调的换热器中冷媒实时调整分流状态;在固定分流状态的情形下,换热器中冷媒的分流状态固定。本申请提供的空调除霜的控制方法,在满足除霜条件的情形下,先控制空调进入除霜模式,在空调进行除霜的过程中,基于空调的结霜情况,控制调整压缩机的运行频率和空调的运行状态,使空调在可变分流状态和固定分流状态之间切换,改变换热器的分流状态,使空调达到最佳的除霜效果。

Description

空调除霜的控制方法、控制系统、电子设备和存储介质
相关申请的交叉引用
本申请要求于2022年3月1日提交的申请号为202210199917.3,名称为“空调除霜的控制方法、控制系统、电子设备和存储介质”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及空调技术领域,尤其涉及一种空调除霜的控制方法、控制系统、电子设备和存储介质。
背景技术
空调现如今已经是居家和办公的必用电器,尤其在夏、冬季节,空调更是被长时间地使用。空调夏天可以制冷、冬天可以制热,能够调节室内温度达到冬暖夏凉,为用户提供舒适的环境。
空调在低温环境下制热模式时,由于室外换热器处于低温高湿的环境,因此当空调长时间在低温环境下运行,室外换热器的表面容易结霜,结霜后的室外换热器的换热性能明显下降,会影响空调的运行。现有的空调在进行除霜的过程中,固定的分流状态对于其换热效果具有一定影响,限制了换热器的换热能力,无法使空调达到最佳的除霜效果。
发明内容
本申请实施例提供一种空调除霜的控制方法、控制系统、电子设备和存储介质,解决现有空调除霜采用固定的分流状态,无法使空调达到最佳的除霜效果的问题。
本申请实施例提供一种空调除霜的控制方法,包括:
在满足除霜条件的情形下,控制空调进入除霜模式;
基于所述空调的结霜情况,控制调整压缩机的运行频率和所述空调的运行状态;
其中,所述运行状态包括:可变分流状态和固定分流状态;在所述可变分流状态的情形下,所述空调的换热器中冷媒实时调整分流状态;在所 述固定分流状态的情形下,所述换热器中冷媒的分流状态固定。
根据本申请一个实施例提供的空调除霜的控制方法,所述基于所述空调的结霜情况,控制调整压缩机的运行频率和所述空调的运行状态的步骤包括:
基于所述空调的结霜情况,判断所述空调是否满足除霜需求;
若所述空调满足除霜需求,则控制所述压缩机以固定频率运行,并控制所述空调处于固定分流状态;
若所述空调不满足除霜需求,则控制调整所述压缩机的运行频率,并控制所述空调处于可变分流状态。
根据本申请一个实施例提供的空调除霜的控制方法,所述控制调整所述压缩机的运行频率,并控制所述空调处于可变分流状态的步骤包括:
控制所述空调以单路分流进行工作,并控制所述压缩机以第一工作频率运行;
控制所述空调以多路分流进行工作,并控制所述压缩机以第二工作频率运行;所述第二工作频率大于所述第一工作频率。
根据本申请一个实施例提供的空调除霜的控制方法,所述控制空调进入除霜模式的步骤包括:
控制所述压缩机关闭,获取所述压缩机关闭的时间;
在确定所述压缩机关闭的时间达到第一预设时间后,控制所述空调调整冷媒方向以制冷模式运行。
根据本申请一个实施例提供的空调除霜的控制方法,所述控制所述空调以单路分流进行工作,并控制所述压缩机以第一工作频率运行的步骤之后,所述控制所述空调以多路分流进行工作,并控制所述压缩机以第二工作频率运行的步骤之前还包括:
获取所述压缩机的回油状态;
基于所述回油状态,确定所述压缩机完成回油的时间;
在所述压缩机完成回油前的第二预设时间内,控制所述空调以多路分流进行工作。
根据本申请一个实施例提供的空调除霜的控制方法,所述控制所述压缩机以固定频率运行,并控制所述空调处于固定分流状态的步骤包括:
控制所述空调以当前分流状态进行工作,并控制所述压缩机以固定频率运行。
本申请还提供一种空调除霜的控制系统,包括:
执行模块,用于在满足除霜条件的情形下,控制空调进入除霜模式;
调整模块,用于基于所述空调的结霜情况,控制调整压缩机的运行频率和所述空调的运行状态;
其中,所述运行状态包括:可变分流状态和固定分流状态;在所述可变分流状态的情形下,所述空调的换热器中冷媒实时调整分流状态;在所述固定分流状态的情形下,所述换热器中冷媒的分流状态固定。
本申请实施例还提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现所述空调除霜的控制方法。
本申请实施例还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现所述空调除霜的控制方法。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,计算机能够执行所述空调除霜的控制方法。
本申请提供的空调除霜的控制方法、控制系统、电子设备和存储介质,在满足除霜条件的情形下,先控制空调进入除霜模式,在空调进行除霜的过程中,获取空调所处的环境温度和换热器的冷出温度,以此为依据控制空调的运行状态,使空调在可变分流状态和固定分流状态之间切换,改变换热器的分流状态,使空调达到最佳的除霜效果。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例提供的可变分流装置的结构示意图;
图2是本申请一实施例提供的换热器的结构示意图;
图3是本申请一实施例提供的空调除霜的控制方法的流程示意图;
图4是本申请一实施例除霜模式在可变分流状态的流程示意图;
图5是本申请一实施例提供的除霜的控制系统的结构示意图;
图6是本申请实施例提供的一种电子设备的结构示意图;
附图标记:
1、第一分流管路;         10、单向阀;          2、第二分流管路;
3、换向阀;               31、第一连通口;      32、第二连通口;
33、第三连通口;          34、第四连通口;      4、换热管路;
510、执行模块;           520、调整模块;       610、处理器;
620、通信接口;           630、存储器;         640、通信总线。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例用于说明本申请,但不能用来限制本申请的范围。
在本申请实施例的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请实施例中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请实施例的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
本申请提供一种空调除霜的控制方法,该空调可为挂壁式空调、立柜式空调、窗式空调和吊顶式空调等。
如图1和图2所示,该空调的室内换热器或室外换热器中设有可变分流装置,也可同时在室内换热器和室外换热器中设置可变分流装置,该可变分流装置包括:换向阀3、第一分流管路1、第二分流管路2和至少两个换热管路4。第一分流管路1通过至少两个换热管路4与第二分流管路2连接。第一分流管路1和第二分流管路2中均设有主管道和多个支管道,根据需要可在其中部分支管道中设置单向阀10。
换向阀3为二位四通换向阀,设有第一连通口31、第二连通口32、第三连通口33和第四连通口34,换向阀3具有第一工位和第二工位。第一连通口31与冷媒入口连接,第三连通口33与冷媒出口连接。
该空调具有可变分流状态和固定分流状态。在可变分流状态的情形下,空调的换热器中冷媒实时调整分流状态。在固定分流状态的情形下,空调的室外换热器中冷媒的分流状态固定。
分流状态分为单路分流和多路分流,在多路分流的情形下,空调的室外换热器中冷媒多路分流进行工作。在单路分流的情形下,空调的室外换热器中冷媒单路进行工作。也就是说,在可变分流状态的时候,空调在单路分流和多路分流之间切换,而在固定分流状态的时候,空调固定位单路分流或多路分流进行工作。
多路分流时,换向阀3处于第一工位,第一连通口31与第二连通口32连通,第三连通口33和第四连通口34连通。此时,第二连通口32与第一分流管路1连通,第四连通口34与第二分流管路2连通。冷媒入口的冷媒由第一分流管路1进入,在第一分流管路1的支管道分流,分别进入各个换热管路4与室内空气进行换热,再由第二分流管路2的支管道进入到其主管道,最后经过第四连通口34和第三连通口33,由冷媒出口排出,实现由多条管路的换热。
单路分流时,换向阀3处于第二工位,第一连通口31与第四连通口34连通,第三连通口33与第二连通口32连通。此时,第二连通口32与第二分流管路2连通,第四连通口34与第一分流管路1连通。冷媒入口的冷媒由第二分流管路2进入,由于第一分流管路1中的部分管道中设置单向阀10,再其限制下,冷媒仅能够在部分换热管路4中换热排出,此时可减少换热管路。
本实施例中,以两个换热管路4为例,分别为第一换热管路和第二换热 管路。第一分流管路1和第二分流管路2均设有一个主管道和两个支管道。第一分流管路1中的一个支管道中设有单向阀10。假设仅在第一分流管路1的其中一支管道中设置单向阀10
多路分流时,换向阀3处于第一工位,第一连通口31与第二连通口32连通,第三连通口33和第四连通口34连通。此时,第二连通口32与第一分流管路1连通,第四连通口34与第二分流管路2连通。冷媒入口的冷媒由第一分流管路1进入,在第一分流管路1的支管道分流,分别进入第一换热管路和第二换热管路与室内空气进行换热,再由第二分流管路2的支管道进入到其主管道,最后经过第四连通口34和第三连通口33,由冷媒出口排出,实现两条管路的同时换热。
单路分流时,换向阀3处于第二工位,第一连通口31与第四连通口34连通,第三连通口33与第二连通口32连通。此时,第二连通口32与第二分流管路2连通,第四连通口34与第一分流管路1连通。冷媒入口的冷媒由第二分流管路2进入,由于第一分流管路1中的支管道中设置单向阀10,再其限制下,冷媒仅能够在第一换热管路4中换热排出,此时仅通过一个换热管路4进行换热。
如图3所示,空调除霜的控制方法包括如下步骤:
步骤S110:在满足除霜条件的情形下,控制空调进入除霜模式。
空调开启后,空调可自动判断其是否满足除霜的条件。例如,当室外环境温度小于5℃时,如果空调工作在制热模式,开始判断空调的运行时间是否大于设定累计运行阈值,若运行时间大于设定累计运行阈值,则说明空调满足除霜条件,控制空调进入除霜模式。
步骤S120:基于空调的结霜情况,控制调整压缩机的运行频率和空调的运行状态。
在空调进入除霜模式之后,基于空调的结霜情况,判断并控制调整压缩机的运行频率和空调的运行状态。运行状态包括:可变分流状态和固定分流状态。空调在可变分流状态的情形下,空调的换热器中冷媒实时调整分流状态,换热器可为室内换热器或室外换热器。在固定分流状态的情形下,换热器中冷媒的分流状态固定。
具体地,基于空调的结霜情况,例如根据空调的运行情况、室外温度、室 外换热器的结霜的厚度或结霜的时间,判断空调以目前状态进行除霜是否满足除霜需求。
若空调以目前状态进行除霜能够满足除霜需求,空调以目前的分流状态能够正常工作,单路分流或多路分流均可满足要求,则控制压缩机以固定频率运行,并控制空调处于固定分流状态。
若空调以目前状态进行除霜不满足除霜需求,说明空调以目前的分流状态无法正常工作,则控制调整压缩机的运行频率,并控制空调处于可变分流状态,空调的室内换热器或室外换热器中冷媒实时通过换向阀调整分流状态。
本申请提供的空调除霜的控制方法,在满足除霜条件的情形下,先控制空调进入除霜模式,在空调进行除霜的过程中,基于空调的结霜情况,控制调整压缩机的运行频率和空调的运行状态,使空调在可变分流状态和固定分流状态之间切换,改变换热器的分流状态,使空调达到最佳的除霜效果。
如图4所示,若空调不满足除霜需求,控制调整压缩机的运行频率,并控制空调处于可变分流状态的步骤包括:
步骤S410:控制空调以单路分流进行工作,并控制压缩机以第一工作频率运行。
为防止空调突然在制热模式转变为除霜模式的过程中,管内压力过大防止冲击用于冷媒转向的四通阀,进入除霜模式的过程中,先控制压缩机关闭,获取压缩机关闭的时间,在确定压缩机关闭的时间达到第一预设时间后,例如在压缩机关闭1分钟之后,再控制空调调整冷媒方向以制冷模式运行。
由于空调以目前状态进行除霜不满足除霜需求,在压缩机开启前,先控制空调以单路分流进行工作,再控制压缩机以第一工作频率运行。此时压缩机会以低频模式运行,并以单路分流进行化霜,以便于热量的挥发。
步骤S420:控制空调以多路分流进行工作,并控制压缩机以第二工作频率运行。
空调以单路分流运行一段时间后,室外换热器中冷媒的温度逐渐上升,当冷媒的温度达到一定温度或温度逐渐稳定后,控制空调以多路分流的状态进行工作,并控制压缩机以第二工作频率运行。其中,第二工作频率大于第一工作频率。此时压缩机会以高频模式运行,并以多路分流进行化霜,以增加换热量。最后在除霜完成后,空调退出除霜模式,重新进入制热模式。
此外,根据需要还可设置三路或者四路换热管路,从而分流状态还可设置部分分流的中间状态,在部分分流的状态,可利用部分换热管路进行换热,以保证运行过程中根据需要进行选择。
若空调还设有部分分流的中间装置,则在可变分流的过程中,还可先以单路分流的状态进行工作,再以部分分流的状态进行工作,或者先以部分分流的状态进行工作,再以多路分流的状态进行工作。
为保证在单路分流向多路分流切换过程中,压缩机能够正常工作,在步骤S410和步骤S420之间还包括:
在空调以单路分流进行工作,且压缩机以第一工作频率运行后,先获取压缩机的回油状态。再根据压缩机的回油状态,确定压缩机在第一工作频率和单路分流情形下,确定回油的时间。
确定回油的时间后,在压缩机完成回油前的第二预设时间内,控制空调以多路分流进行工作。例如,在压缩机完成回油前的5秒内,利用换向阀调整分流状态,控制空调以多路分流进行工作。
若能够满足除霜需求,控制压缩机以固定频率运行,并控制空调处于固定分流状态的步骤包括:控制空调以当前分流状态进行工作,并控制压缩机以固定频率运行。
具体地,在进入除霜模式的过程中,先控制压缩机关闭,获取压缩机关闭的时间,在确定压缩机关闭的时间达到第一预设时间后,例如在压缩机关闭1分钟之后,再控制空调调整冷媒方向以制冷模式运行。
由于空调以目前状态进行除霜能够满足除霜需求,在压缩机开启前,控制空调以当前分流状态进行工作,若此时空调处于单路分流,则以单路分流进行工作,若此时空调处于多路分流,则以多路分流进行工作,由于分流状态未发生改变,则此时压缩机以固定频率运行。
下面对本申请实施例提供的空调除霜的控制系统进行描述,下文描述的空调除霜的控制系统与上文描述的控制方法可相互对应参照。
如图5所示,空调除霜的控制系统包括:执行模块510和调整模块520。
其中,执行模块510用于在满足除霜条件的情形下,控制空调进入除霜模式;调整模块520用于基于所述空调的结霜情况,控制调整压缩机的运行频率和所述空调的运行状态;其中,运行状态包括:可变分流状态和固定分 流状态;在可变分流状态的情形下,空调的换热器中冷媒实时调整分流状态;在固定分流状态的情形下,换热器中冷媒的分流状态固定。
图6示例了一种电子设备的实体结构示意图,如图6所示,该电子设备可以包括:处理器(processor)610、通信接口(Communications Interface)620、存储器(memory)630和通信总线640,其中,处理器610,通信接口620,存储器630通过通信总线640完成相互间的通信。处理器610可以调用存储器630中的逻辑指令,以执行该控制方法包括:在满足除霜条件的情形下,控制空调进入除霜模式;基于所述空调的结霜情况,控制调整压缩机的运行频率和所述空调的运行状态;其中,所述运行状态包括:可变分流状态和固定分流状态;在所述可变分流状态的情形下,所述空调的换热器中冷媒实时调整分流状态;在所述固定分流状态的情形下,所述换热器中冷媒的分流状态固定。
需要说明的是,本实施例中的电子设备在具体实现时可以为服务器,也可以为PC机,还可以为其他设备,只要其结构中包括如图6所示的处理器610、通信接口620、存储器630和通信总线640,其中处理器610,通信接口620,存储器630通过通信总线640完成相互间的通信,且处理器610可以调用存储器630中的逻辑指令以执行上述方法即可。本实施例不对电子设备的具体实现形式进行限定。
此外,上述的存储器630中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
进一步地,本申请实施例公开一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,计算机能够执行上述各方法实施例所提供的控制方法,该控制方法包括:在满足除霜条件的情形下, 控制空调进入除霜模式;基于所述空调的结霜情况,控制调整压缩机的运行频率和所述空调的运行状态;其中,所述运行状态包括:可变分流状态和固定分流状态;在所述可变分流状态的情形下,所述空调的换热器中冷媒实时调整分流状态;在所述固定分流状态的情形下,所述换热器中冷媒的分流状态固定。
另一方面,本申请实施例还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现以执行上述各实施例提供的控制方法,该控制方法包括:在满足除霜条件的情形下,控制空调进入除霜模式;基于所述空调的结霜情况,控制调整压缩机的运行频率和所述空调的运行状态;其中,所述运行状态包括:可变分流状态和固定分流状态;在所述可变分流状态的情形下,所述空调的换热器中冷媒实时调整分流状态;在所述固定分流状态的情形下,所述换热器中冷媒的分流状态固定。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。
以上实施方式仅用于说明本申请,而非对本申请的限制。尽管参照实施例对本申请进行了详细说明,本领域的普通技术人员应当理解,对本申请的技术方案进行各种组合、修改或者等同替换,都不脱离本申请技术方案的精神和范围,均应涵盖在本申请的权利要求范围中。

Claims (10)

  1. 一种空调除霜的控制方法,包括:
    在满足除霜条件的情形下,控制空调进入除霜模式;
    基于所述空调的结霜情况,控制调整压缩机的运行频率和所述空调的运行状态;
    其中,所述运行状态包括:可变分流状态和固定分流状态;在所述可变分流状态的情形下,所述空调的换热器中冷媒实时调整分流状态;在所述固定分流状态的情形下,所述换热器中冷媒的分流状态固定。
  2. 根据权利要求1所述的空调除霜的控制方法,其中,所述基于所述空调的结霜情况,控制调整压缩机的运行频率和所述空调的运行状态的步骤包括:
    基于所述空调的结霜情况,判断所述空调是否满足除霜需求;
    若所述空调满足除霜需求,则控制所述压缩机以固定频率运行,并控制所述空调处于固定分流状态;
    若所述空调不满足除霜需求,则控制调整所述压缩机的运行频率,并控制所述空调处于可变分流状态。
  3. 根据权利要求2所述的空调除霜的控制方法,其中,所述控制调整所述压缩机的运行频率,并控制所述空调处于可变分流状态的步骤包括:
    控制所述空调以单路分流进行工作,并控制所述压缩机以第一工作频率运行;
    控制所述空调以多路分流进行工作,并控制所述压缩机以第二工作频率运行;所述第二工作频率大于所述第一工作频率。
  4. 根据权利要求3所述的空调除霜的控制方法,其中,所述控制空调进入除霜模式的步骤包括:
    控制所述压缩机关闭,获取所述压缩机关闭的时间;
    在确定所述压缩机关闭的时间达到第一预设时间后,控制所述空调调整冷媒方向以制冷模式运行。
  5. 根据权利要求3所述的空调除霜的控制方法,其中,所述控制所述空调以单路分流进行工作,并控制所述压缩机以第一工作频率运行的步骤之后,所述控制所述空调以多路分流进行工作,并控制所述压缩机以第二 工作频率运行的步骤之前还包括:
    获取所述压缩机的回油状态;
    基于所述回油状态,确定所述压缩机完成回油的时间;
    在所述压缩机完成回油前的第二预设时间内,控制所述空调以多路分流进行工作。
  6. 根据权利要求2所述的空调除霜的控制方法,其中,所述控制所述压缩机以固定频率运行,并控制所述空调处于固定分流状态的步骤包括:
    控制所述空调以当前分流状态进行工作,并控制所述压缩机以固定频率运行。
  7. 一种空调除霜的控制系统,包括:
    执行模块,用于在满足除霜条件的情形下,控制空调进入除霜模式;
    调整模块,用于基于所述空调的结霜情况,控制调整压缩机的运行频率和所述空调的运行状态;
    其中,所述运行状态包括:可变分流状态和固定分流状态;在所述可变分流状态的情形下,所述空调的换热器中冷媒实时调整分流状态;在所述固定分流状态的情形下,所述换热器中冷媒的分流状态固定。
  8. 一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述处理器执行所述程序时实现如权利要求1至6任一项所述空调除霜的控制方法。
  9. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至6任一项所述空调除霜的控制方法。
  10. 一种计算机程序产品,其中,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,计算机能够执行如权利要求1至6任一项所述空调除霜的控制方法。
PCT/CN2022/122206 2022-03-01 2022-09-28 空调除霜的控制方法、控制系统、电子设备和存储介质 WO2023165127A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210199917.3 2022-03-01
CN202210199917.3A CN114484745B (zh) 2022-03-01 2022-03-01 空调除霜的控制方法、控制系统、电子设备和存储介质

Publications (1)

Publication Number Publication Date
WO2023165127A1 true WO2023165127A1 (zh) 2023-09-07

Family

ID=81483379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122206 WO2023165127A1 (zh) 2022-03-01 2022-09-28 空调除霜的控制方法、控制系统、电子设备和存储介质

Country Status (2)

Country Link
CN (1) CN114484745B (zh)
WO (1) WO2023165127A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114484745B (zh) * 2022-03-01 2024-01-16 青岛海尔空调器有限总公司 空调除霜的控制方法、控制系统、电子设备和存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157558A (ja) * 2006-12-25 2008-07-10 Daikin Ind Ltd 空気調和装置
CN104879973A (zh) * 2015-04-29 2015-09-02 广东美的制冷设备有限公司 一种不换向可自主连续除霜空调的控制方法及空调系统
CN106091265A (zh) * 2016-06-17 2016-11-09 广东美的制冷设备有限公司 空调器的控制方法
CN110762746A (zh) * 2018-07-10 2020-02-07 青岛海尔空调电子有限公司 一种空调及其除霜控制方法
CN110940055A (zh) * 2019-12-16 2020-03-31 宁波奥克斯电气股份有限公司 一种空调器制热除霜控制方法、装置及空调器
CN113710971A (zh) * 2019-04-11 2021-11-26 三菱电机株式会社 空气调节装置
CN113865005A (zh) * 2021-10-28 2021-12-31 珠海格力电器股份有限公司 除霜分流方法、空调系统和空调控制方法
CN114484745A (zh) * 2022-03-01 2022-05-13 青岛海尔空调器有限总公司 空调除霜的控制方法、控制系统、电子设备和存储介质

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089980A (ja) * 2000-09-20 2002-03-27 Fujitsu General Ltd 空気調和機
JP4675927B2 (ja) * 2007-03-30 2011-04-27 三菱電機株式会社 空気調和装置
CN104214898B (zh) * 2014-08-29 2016-08-17 广州华凌制冷设备有限公司 空调器及其除霜控制方法和除霜控制系统
CN107238222A (zh) * 2017-05-17 2017-10-10 青岛海尔空调器有限总公司 空调系统及其控制方法
JP2019184207A (ja) * 2018-04-17 2019-10-24 三菱電機株式会社 空気調和装置
CN110469959B (zh) * 2019-07-24 2022-03-29 青岛海尔空调器有限总公司 用于空调除霜的控制方法、装置及空调
CN110469983B (zh) * 2019-07-26 2022-01-21 青岛海尔空调器有限总公司 用于空调除霜的控制方法、装置及空调
CN110470011A (zh) * 2019-08-02 2019-11-19 青岛海尔空调器有限总公司 用于空调除霜的控制方法及装置、空调
CN110486891B (zh) * 2019-08-22 2021-04-23 海信(山东)空调有限公司 一种除霜控制方法及空调器
CN112880144A (zh) * 2021-01-29 2021-06-01 青岛海尔智能技术研发有限公司 用于双制冷式空调的控制方法、控制装置及双制冷式空调

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157558A (ja) * 2006-12-25 2008-07-10 Daikin Ind Ltd 空気調和装置
CN104879973A (zh) * 2015-04-29 2015-09-02 广东美的制冷设备有限公司 一种不换向可自主连续除霜空调的控制方法及空调系统
CN106091265A (zh) * 2016-06-17 2016-11-09 广东美的制冷设备有限公司 空调器的控制方法
CN110762746A (zh) * 2018-07-10 2020-02-07 青岛海尔空调电子有限公司 一种空调及其除霜控制方法
CN113710971A (zh) * 2019-04-11 2021-11-26 三菱电机株式会社 空气调节装置
CN110940055A (zh) * 2019-12-16 2020-03-31 宁波奥克斯电气股份有限公司 一种空调器制热除霜控制方法、装置及空调器
CN113865005A (zh) * 2021-10-28 2021-12-31 珠海格力电器股份有限公司 除霜分流方法、空调系统和空调控制方法
CN114484745A (zh) * 2022-03-01 2022-05-13 青岛海尔空调器有限总公司 空调除霜的控制方法、控制系统、电子设备和存储介质

Also Published As

Publication number Publication date
CN114484745B (zh) 2024-01-16
CN114484745A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
US20180340700A1 (en) Variable refrigerant flow system
WO2023159941A1 (zh) 空调分流的控制方法、控制系统、电子设备和存储介质
CN107514743A (zh) 一种空调器控制方法、控制装置及空调器
WO2023159918A1 (zh) 空调分流的控制方法、控制系统、电子设备和存储介质
US9732975B2 (en) Air-conditioning system
WO2023165127A1 (zh) 空调除霜的控制方法、控制系统、电子设备和存储介质
CN110749072A (zh) 空调器及其室外机除霜控制方法
WO2023165125A1 (zh) 空调自清洁的控制方法、控制系统、电子设备和存储介质
WO2023165126A1 (zh) 空调除菌的控制方法、控制系统、电子设备和存储介质
CN108534231B (zh) 空调器的新风调节系统及空调器
EP4033170B1 (en) Method for controlling balanced frosting of outdoor units in multi-split air-conditioning system
CN107238236B (zh) 补气增焓空调系统及其控制方法
CN114659239B (zh) 空调预热的控制方法、控制系统、电子设备和储存介质
CN114838458B (zh) 防止空调冻结的控制方法、控制系统、电子设备和介质
CN114838457B (zh) 防止空调冻结的控制方法、控制系统、电子设备和介质
CN114659305B (zh) 空调冷媒循环的控制方法、控制系统、电子设备和介质
CN114659304B (zh) 空调除湿的控制方法、控制系统、电子设备和储存介质
CN115111817A (zh) 空调节能的控制方法、控制系统、电子设备和存储介质
CN115077034A (zh) 空调降频的控制方法、控制系统、电子设备和存储介质
CN115264818A (zh) 空调除霜的控制方法、控制系统、电子设备和存储介质
CN115540168A (zh) 节流装置异音的控制方法、控制系统、电子设备和介质
CN117213000A (zh) 空调分流状态的控制方法、系统、电子设备和储存介质
CN114704944A (zh) 空调恒温除湿的控制方法、控制系统、电子设备和介质
CN117968221A (zh) 空调水洗补偿的控制方法、系统、电子设备和储存介质
CN117824064A (zh) 空调快速制冷制热的控制方法、系统、电子设备和介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929557

Country of ref document: EP

Kind code of ref document: A1