WO2023163444A1 - Method and device for generating precise ndt brain image - Google Patents
Method and device for generating precise ndt brain image Download PDFInfo
- Publication number
- WO2023163444A1 WO2023163444A1 PCT/KR2023/002186 KR2023002186W WO2023163444A1 WO 2023163444 A1 WO2023163444 A1 WO 2023163444A1 KR 2023002186 W KR2023002186 W KR 2023002186W WO 2023163444 A1 WO2023163444 A1 WO 2023163444A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- brain
- data
- computer
- image
- ndt
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/055—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/369—Electroencephalography [EEG]
- A61B5/372—Analysis of electroencephalograms
Definitions
- the present disclosure relates to a method and apparatus for generating nDT precise brain images.
- effective connectivity provides information on the directionality of the connection and the transmission/reception pattern of neural signals, thereby enabling the construction of a brain connectivity model that understands the flow of nerve signals.
- Effective connectivity also describes the flow of neural signals based on structural connectivity and functional connectivity based on specific hypotheses, but assumptions are always necessary and are subject to error. Therefore, in order to confirm effective connectivity, it is necessary to measure the directionality and propagation speed of large bundles of nerves through direct electrical stimulation.
- a method for confirming effective connectivity using invasive dynamic tractography can determine which white matter actual nerve information is delivered by combining effective connectivity information and structural connectivity information. At this time, if information such as the strength and speed of connectivity and electrophysiological abnormalities are additionally included in the invasive dynamic nerve fiber map (IDT), it can be used for basic research on the pathophysiology and cognitive function of brain diseases.
- effective connectivity confirmation methods using invasive dynamic nerve fiber maps (IDT) and invasive corticocortical evoked potentials (ICCEP) can be measured only by invasive brain waves, so they are effective only in the part where invasive brain waves are inserted Since connectivity was evaluated, effective connectivity of the whole brain could not be evaluated, and since it could only be measured in patients with epilepsy, the characteristics of normal people could not be reflected, errors could occur in the prediction model, and individual evaluation was impossible.
- IDT invasive dynamic nerve fiber maps
- ICCEP invasive corticocortical evoked potentials
- An object of the embodiments disclosed in the present disclosure is to provide a method and apparatus for generating nDT precise brain images using EEG data measured using a navigated transcranial magnetic stimulation (nTMS) system.
- nTMS navigated transcranial magnetic stimulation
- An nDT precise brain image generating apparatus for achieving the above technical problem includes a database; and a processor, wherein the processor measures EEG data using a navigated transcranial magnetic stimulation (nTMS) system when image data is acquired through Magnetic Resonance Imaging (MRI) imaging, and uses the EEG data to obtain noninvasive nCCEP (noninvasive) data.
- nTMS navigated transcranial magnetic stimulation
- MRI Magnetic Resonance Imaging
- nDT noninvasive dynamic tractography
- the image data includes a T1-weighted image and a diffusion-weighted image
- the processor acquires the image data
- the computer removes noise from the diffusion-weighted image and removes the skull to obtain the diffusion-weighted image.
- Pre-processing is performed, and an FA map may be extracted using the pre-processed diffusion-enhanced image.
- the processor divides the brain region using a cortical segmentation system, divides and displays the divided brain region on the T1-weighted image, and measures the exercise evoked potential to measure the intensity of stimulation. determining, stimulating the divided brain region with the determined intensity of stimulation using the nTMS system, and measuring and storing EEG data generated as the divided brain region is stimulated with the determined intensity of stimulation;
- the nTMS system may include, as a parameter, at least one of the frequency of stimulation, the strength of stimulation, the number of stimulations for each brain region, and the direction of stimulation.
- the processor when determining the non-invasive dynamic path, extracts a first component in the form of a sharp wave appearing in an initial period of 10 ms to 50 ms of the nCCEP data, and based on the first component, the Euclidean path between end points of the path (Euclidean) Statistical analysis is performed by calculating the distance and statistically inferring the length of the path, and a non-invasive dynamic path is extracted by performing multimodal imaging based on the statistical analysis result, and the initial 50ms to 300ms of the nCCEP data A second component in the form of a slow wave appearing in the interval up to is extracted, effective connectivity data is extracted using the first component and the second component, a brain region is defined based on the effective connectivity data, and an electrical source image By performing the analysis, the defined brain region is visualized, the non-invasive dynamic path has a positive correlation between the length of the inferred path and the latency of the first component, and the length of the inferred path and the first component have a positive correlation.
- the processor defines a brain region in which the connectivity index of the effective connectivity data is equal to or greater than a preset threshold voltage as an epileptogenic zone, and A brain region in which the connectivity index of the effective connectivity data has connectivity but is lower than a preset threshold voltage is defined as a propagation zone, and a brain region in which the connectivity index of the effective connectivity data has no connectivity is defined as a non-relevant zone (Non- Involved Zone) can be defined.
- a non-relevant zone Non- Involved Zone
- the processor categorizes the seizure prognosis after epileptic surgery into true positive, false positive, true negative, and false negative, and evaluates the final accuracy of localization of the epilepsy-inducing site.
- the processor displays at least one of a matrix, a circle map, a brain volume, and a surface of the brain, when visualizing the nDT precise brain image. can be visualized using
- the nDT precision brain image generation method for achieving the above technical problem includes acquiring image data by the computer through Magnetic Resonance Imaging (MRI) imaging; measuring EEG data by the computer using a navigated transcranial magnetic stimulation (nTMS) system; extracting, by the computer, noninvasive corticocortical evoked potential (nCCEP) data using the EEG data; determining, by the computer, a noninvasive dynamic tractography (nDT) by performing multimodal imaging based on the image data and the nCCEP data; Visualizing, by the computer, an nDT precise brain image based on the non-invasive dynamic path; and comparing and analyzing, by the computer, the non-invasive dynamic path and the visualized nDT precise brain image with data stored in a database, and determining whether there is an abnormality in the brain.
- MRI Magnetic Resonance Imaging
- nTMS navigated transcranial magnetic stimulation
- nCCEP noninvasive corticocortical evoked potential
- nDT noninvasive dynamic tractography
- a computer program stored in a computer readable recording medium for execution to implement the present disclosure may be further provided.
- a computer readable recording medium storing a computer program for executing a method for implementing the present disclosure may be further provided.
- the above-described problem solving means of the present disclosure it is possible to actively measure the epileptic induction site at a desired time point, the time required to measure the epileptic induction site and confirm effective connectivity suggesting the connection direction of the brain, and cost can be reduced.
- FIG. 1 is a flowchart of a method for generating an nDT precise brain image according to an embodiment of the present disclosure.
- FIG. 2 is a flowchart illustrating an embodiment of step S110 of FIG. 1 .
- FIG. 3 is a flowchart illustrating an embodiment of step S120 of FIG. 1 .
- FIG. 4 is a diagram for explaining a divided brain region according to an embodiment of the present disclosure.
- step S140 of FIG. 1 is a flowchart illustrating an embodiment of step S140 of FIG. 1 .
- step S140 of FIG. 1 is a flowchart illustrating another embodiment of step S140 of FIG. 1 .
- FIG. 7 is a diagram for explaining an nDT precision brain image visualization method according to an embodiment of the present disclosure.
- a 'computer' includes all of various devices capable of visually presenting a result to a user by performing calculation processing.
- a computer includes not only a desktop PC and a notebook (Note Book) but also a smart phone, a tablet PC, a cellular phone, a PCS phone (Personal Communication Service phone), synchronous/asynchronous A mobile terminal of IMT-2000 (International Mobile Telecommunication-2000), a Palm Personal Computer (Palm PC), and a Personal Digital Assistant (PDA) may also be applicable.
- the computer may also correspond to medical equipment for obtaining or observing medical images.
- the computer may correspond to a server computer connected to various client computers.
- a computer may consist of one or more devices.
- the processor may be composed of one or a plurality of processors.
- the one or more processors may be a general-purpose processor such as a CPU, an AP, or a digital signal processor (DSP), a graphics-only processor such as a GPU or a vision processing unit (VPU), or an artificial intelligence-only processor such as an NPU.
- DSP digital signal processor
- the one or more processors control input data to be processed according to predefined operating rules or artificial intelligence models stored in a memory.
- the processors dedicated to artificial intelligence may be designed with a hardware structure specialized for processing a specific artificial intelligence model.
- a predefined action rule or an artificial intelligence model is characterized in that it is created through learning.
- being made through learning means that a basic artificial intelligence model is learned using a plurality of learning data by a learning algorithm, so that a predefined action rule or artificial intelligence model set to perform a desired characteristic (or purpose) is created. means burden.
- Such learning may be performed in the device itself in which artificial intelligence according to the present disclosure is performed, or through a separate server and/or system.
- Examples of the learning algorithm include supervised learning, unsupervised learning, semi-supervised learning, or reinforcement learning, but are not limited to the above examples.
- An artificial intelligence model may be composed of a plurality of neural network layers.
- Each of the plurality of neural network layers has a plurality of weight values, and a neural network operation is performed through an operation between an operation result of a previous layer and a plurality of weight values.
- a plurality of weights possessed by a plurality of neural network layers may be optimized by a learning result of an artificial intelligence model. For example, a plurality of weights may be updated so that a loss value or a cost value obtained from an artificial intelligence model is reduced or minimized during a learning process.
- the artificial neural network may include a deep neural network (DNN), for example, a Convolutional Neural Network (CNN), a Deep Neural Network (DNN), a Recurrent Neural Network (RNN), a Restricted Boltzmann Machine (RBM), A deep belief network (DBN), a bidirectional recurrent deep neural network (BRDNN), or deep Q-networks, but is not limited to the above examples.
- DNN deep neural network
- CNN Convolutional Neural Network
- DNN Deep Neural Network
- RNN Recurrent Neural Network
- RBM Restricted Boltzmann Machine
- BBN Restricted Boltzmann Machine
- BBN deep belief network
- BNN bidirectional recurrent deep neural network
- Q-networks deep Q-networks
- a processor may implement artificial intelligence.
- Artificial intelligence refers to a machine learning method based on an artificial neural network in which a machine learns by mimicking a human's biological neuron.
- the methodology of artificial intelligence includes supervised learning in which input data and output data are provided together as training data according to the learning method, so that the answer (output data) of the problem (input data) is determined, and only input data is provided without output data.
- unsupervised learning where the answer (output data) of the problem (input data) is not determined, and whenever an action is taken in the current state, a reward is given in the external environment. , it can be classified as reinforcement learning in which learning proceeds in the direction of maximizing this reward.
- the methodology of artificial intelligence may be classified according to the architecture, which is the structure of the learning model.
- the architecture of widely used deep learning technology is Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN). , Transformers, and generative adversarial networks (GANs).
- the devices and systems may include artificial intelligence models.
- the artificial intelligence model may be one artificial intelligence model or may be implemented as a plurality of artificial intelligence models.
- Artificial intelligence models may be composed of neural networks (or artificial neural networks), and may include statistical learning algorithms that mimic biological neurons in machine learning and cognitive science.
- a neural network may refer to an overall model having a problem-solving ability by changing synaptic coupling strength through learning of artificial neurons (nodes) formed in a network by synaptic coupling. Neurons in a neural network may contain a combination of weights or biases.
- a neural network may include one or more layers composed of one or more neurons or nodes.
- the device may include an input layer, a hidden layer, and an output layer.
- a neural network constituting the device can infer a result (output) to be predicted from an arbitrary input (input) by changing the weight of a neuron through learning.
- the processor generates a neural network, trains or learns the neural network, performs an operation based on received input data, generates an information signal based on a result of the execution, or generates a neural network.
- Neural network models include GoogleNet, AlexNet, VGG Network, etc., CNN (Convolution Neural Network), R-CNN (Region with Convolution Neural Network), RPN (Region Proposal Network), RNN (Recurrent Neural Network), S-DNN (Stacking-based deep Neural Network), S-SDNN (State-Space Dynamic Neural Network), Deconvolution Network, DBN (Deep Belief Network), RBM (Restrcted Boltzman Machine), Fully Convolutional Network .
- the neural network may include a deep neural network.
- Neural networks include CNN (Convolutional Neural Network), RNN (Recurrent Neural Network), perceptron, multilayer perceptron, FF (Feed Forward), RBF (Radial Basis Network), DFF (Deep Feed Forward), LSTM (Long Short Term Memory), GRU (Gated Recurrent Unit), AE (Auto Encoder), VAE (Variational Auto Encoder), DAE (Denoising Auto Encoder), SAE (Sparse Auto Encoder), MC (Markov Chain), HN (Hopfield Network), BM(Boltzmann Machine), RBM(Restricted Boltzmann Machine), DBN(Depp Belief Network), DCN(Deep Convolutional Network), DN(Deconvolutional Network), DCIGN(Deep Convolutional Inverse Graphics Network), GAN(Generative Adversarial Network) ), LSM (Liquid State Machine), ELM (Extreme Learning Machine), ESN (Echo State Network), DRN (De
- the processor may include a Convolution Neural Network (CNN), a Region with Convolution Neural Network (R-CNN), a Region Proposal Network (RPN), a Recurrent Neural Network (RNN), such as GoogleNet, AlexNet, VGG Network, and the like.
- CNN Convolution Neural Network
- R-CNN Region with Convolution Neural Network
- RPN Region Proposal Network
- RNN Recurrent Neural Network
- S-DNN Stacking-based deep neural network
- S-SDNN State-Space Dynamic Neural Network
- Deconvolution Network DBN (Deep Belief Network)
- RBM Rasterrcted Boltzman Machine
- Fully Convolutional Network LSTM (Long Short-Term Memory) Network
- Classification Network Generative Modeling, eXplainable AI, Continual AI, Representation Learning, AI for Material Design, BERT for natural language processing, SP-BERT, MRC/QA, Text Analysis, Dialog System, GPT-3 , GPT-4, Visual Analytics for vision processing, Visual Understanding, Video Synthesis, ResNet Data intelligence for Anomaly Detection, Prediction, Time-Series Forecasting, Optimization, Recommendation, and Data Creation. , but not limited thereto.
- a processor in the present specification may control an operation of generating an nDT precise brain image using EEG data measured based on a nTMS (navigated transcranial magnetic stimulation) system described in FIGS. 1 to 7 below.
- nTMS navigated transcranial magnetic stimulation
- the processor measures EEG data using an nTMS system, extracts noninvasive corticocortical evoked potential (nCCEP) data using the EEG data, , determining a noninvasive dynamic tractography (nDT) by performing multimodal imaging based on the image data and the nCCEP data, visualizing an nDT precise brain image based on the noninvasive dynamic tractography, and By comparing and analyzing the invasive dynamic pathway and the visualized nDT precision brain image with data stored in a database (memory), it is possible to determine whether there is an abnormality in the brain.
- MRI Magnetic Resonance Imaging
- nDT noninvasive dynamic tractography
- the image data includes a T1-weighted image and a diffusion-enhanced image
- the processor when obtaining the image data through the MRI imaging, removes noise from the diffusion-enhanced image and removes the skull to enhance the diffusion-enhanced image.
- An image may be pre-processed, and an FA map may be extracted using the pre-processed diffusion-enhanced image.
- the processor divides brain regions using a cortical segmentation system, divides and displays the divided brain regions on the T1-weighted image, and calculates motion evoked potentials.
- the intensity of stimulation is determined by measuring, the divided brain regions are stimulated with the determined intensity of stimulation using the nTMS system, and the EEG data generated by stimulating the divided brain regions with the determined intensity of stimulation can be measured and stored.
- the nTMS system may include at least one of the frequency of stimulation, the intensity of stimulation, the number of stimulation for each brain region, and the direction of stimulation as a parameter.
- the processor may determine the minimum TMS stimulation intensity. That is, the processor may determine the stimulation intensity by measuring a motor evoked potential (MEP) before stimulation with TMS. In this case, the processor may perform 10 consecutive stimulations at an optimal position where the MEP is best induced, and determine a minimum stimulation intensity at which 50 ⁇ V or more is induced more than 5 times as a resting motor threshold (RMT).
- MEP motor evoked potential
- the processor may stimulate the brain region using the TANS method.
- the stimulation intensity can be stimulated up to 80 times every 5-6 seconds with a single pulse of 120% of the RMT intensity.
- the processor selects nerve fibers that can be stimulated by TMS through Atlas, identifies the location of the gyrus of the largest network cluster using at least one of diffusion-weighted imaging (DWI) and functional magnetic resonance imaging (fMRI), and each Create more than 3,000 search grids in the gyrus range that can stimulate nerve fibers, randomly select about 600 coil positions, conduct E-field modeling including various coil directions for each selected target cluster, and The stimulation location can be determined by selecting the hotspot that can stimulate the nerve fibers to the maximum.
- DWI diffusion-weighted imaging
- fMRI functional magnetic resonance imaging
- the processor when determining the non-invasive dynamic path, extracts a first component in the form of a sharp wave appearing in an initial period of 10 ms to 50 ms of the nCCEP data, and based on the first component, the Euclidean path between end points of the path (Euclidean) Statistical analysis is performed by calculating the distance and statistically inferring the length of the path, and a non-invasive dynamic path can be extracted by performing multimodal imaging based on the statistical analysis result, wherein the non-invasive dynamic path is The inferred path length and the latency of the first component have a positive correlation, the inferred path length and the amplitude of the first component have a negative correlation, and the FA map and the first component have a negative correlation.
- the processor may validate the dynamic pathway based on the CIPI analysis method, diffusion-weighted imaging (DWI) signal, functional magnetic resonance imaging (fMRI) signal, and seizure prognostic information after epilepsy surgery.
- CIPI diffusion-weighted imaging
- fMRI functional magnetic resonance imaging
- the processor may use the CIPI analysis method in the process of confirming the nCCEP.
- the processor may separate or combine independent elements using CIPI analysis.
- the CIPI (common independent process identification) analysis method is a method of confirming whether different brain signals are statistically the same. It is possible to identify nCCEPs originating from different nerve fibers by selecting the same elements and separating or combining independent elements. there is.
- the processor can identify independent nCCEPs for each nerve fiber using the CIPI analysis method, and can confirm similarity of nCCEPs for the same nerve fiber for each individual.
- TMS-EEG transcranial magnetic stimulation-EEG
- the processor when determining the non-invasive dynamic path, extracts a second component in the form of a slow wave appearing in the interval from the initial 50 ms to 300 ms of the nCCEP data, and using the first component and the second component
- An operation of extracting effective connectivity data, defining a brain region based on the effective connectivity data, and visualizing the defined brain region by performing electrical source image analysis by the computer may be further performed.
- the processor defines a brain region based on the effective connectivity data, a brain region in which a connectivity index of the effective connectivity data is equal to or greater than a preset threshold voltage is an epileptogenic zone.
- a brain region in which the connectivity index of the effective connectivity data has connectivity but is lower than a preset threshold voltage is defined as a propagation zone
- a brain region in which the connectivity index of the effective connectivity data has no connectivity is defined as a propagation zone. It can be defined as a non-involved zone.
- the processor converts the nDT precise brain image into a matrix, a circle map, a brain volume, and a surface of the brain. It can be visualized using at least one of (Surface).
- the processor compares and analyzes the non-invasive dynamic pathway and the visualized nDT precision brain image with data stored in a database to determine whether there is an abnormality in the brain. It can be categorized as true negative or false negative, and the final accuracy with which the epilepsy-induced site is localized can be evaluated.
- 'brain wave data' is data recorded by deriving and amplifying current generated according to brain activity.
- 'EEG data' is obtained in the form of a waveform graph by electroencephalography (EEG), which records the electrical activity of the brain by attaching electrodes to the scalp.
- EEG electroencephalography
- a 'navigated transcranial magnetic stimulation (nTMS) system' recognizes the location of stimulation and the motion of a patient when stimulation is applied to the surface of a patient's head with a transducer using two or more cameras. It may refer to a system that maps and provides a recognized result to an MR image.
- the navigational transcranial magnetic stimulation system may be referred to as an 'nTMS system'.
- FIG. 1 is a flowchart of a method for generating an nDT precise brain image according to an embodiment of the present invention.
- a method for generating an nDT precise brain image (S100) may include steps S110 to S160.
- the processor of the computer may obtain image data of the patient's brain provided through magnetic resonance imaging (hereinafter referred to as 'MRI').
- Image data of the patient's brain may include T1 weighted imaging and diffusion weighted imaging (DWI). Imaging data of the patient's brain can be used to generate nDT precise brain images in subsequent steps.
- 'MRI' magnetic resonance imaging
- DWI diffusion weighted imaging
- the processor of the computer may measure and store EEG data using the nTMS system.
- the processor of the computer recognizes the location of the stimulation and the motion of the patient when the stimulation is applied to the surface of the patient's head, and at the same time measures and stores EEG data provided through electroencephalography (EEG).
- EEG electroencephalography
- the processor of the computer may acquire EEG data of the patient for a predetermined period of time, and the EEG data may be divided into predetermined intervals.
- the predetermined period may be a minimum unit time length for determining the state of the brain, or may be a period arbitrarily designated by the user.
- the pre-determined period may refer to all times during which EEG data is measured using the nTMS system.
- the processor may determine the minimum TMS stimulation intensity. That is, the processor may determine the stimulation intensity by measuring a motor evoked potential (MEP) before stimulation with TMS. In this case, the processor may perform 10 consecutive stimulations at an optimal position where the MEP is best induced, and determine a minimum stimulation intensity at which 50 ⁇ V or more is induced more than 5 times as a resting motor threshold (RMT).
- MEP motor evoked potential
- the processor may stimulate the brain region using the TANS method.
- the stimulation intensity can be stimulated up to 80 times every 5-6 seconds with a single pulse of 120% of the RMT intensity.
- the processor selects nerve fibers that can be stimulated by TMS through Atlas, identifies the location of the gyrus of the largest network cluster using at least one of diffusion-weighted imaging (DWI) and functional magnetic resonance imaging (fMRI), and each Create more than 3,000 search grids in the gyrus range that can stimulate nerve fibers, randomly select about 600 coil positions, conduct E-field modeling including various coil directions for each selected target cluster, and The stimulation location can be determined by selecting the hotspot that can stimulate the nerve fibers to the maximum.
- DWI diffusion-weighted imaging
- fMRI functional magnetic resonance imaging
- the processor of the computer may extract noninvasive corticocortical evoked potential (hereinafter referred to as 'nCCEP') data based on the stored EEG data.
- the nCEEP data is data capable of grasping brain connectivity by recording brain waves at a location apart from a location where electrical stimulation is applied, and may represent data representing effective connectivity of the brain.
- the processor may validate the dynamic pathway based on the CIPI analysis method, diffusion-weighted imaging (DWI) signal, functional magnetic resonance imaging (fMRI) signal, and seizure prognostic information after epilepsy surgery.
- CIPI diffusion-weighted imaging
- fMRI functional magnetic resonance imaging
- the processor may use the CIPI analysis method in the process of confirming the nCCEP.
- the processor may separate or combine independent elements using CIPI analysis.
- the CIPI (common independent process identification) analysis method is a method of confirming whether different brain signals are statistically the same. It is possible to identify nCCEPs originating from different nerve fibers by selecting the same elements and separating or combining independent elements. there is.
- the processor can identify independent nCCEPs for each nerve fiber using the CIPI analysis method, and can confirm similarity of nCCEPs for the same nerve fiber for each individual.
- TMS-EEG transcranial magnetic stimulation-EEG
- step S140 the processor of the computer performs multi-modal imaging based on the image data and nCCEP data obtained through MRI imaging to obtain noninvasive dynamic tractography (hereinafter referred to as 'nDT'). ) can be extracted.
- the nDT may be a result of realizing an accurate brain connectivity location by combining structural connectivity of the brain represented by image data obtained through MRI imaging through multimodal imaging and effective connectivity of the brain represented by nCCEP data.
- Multimodal imaging may refer to the operation of a deep-learning model trained to extract significant information from image data and nCCEP data obtained through MRI imaging.
- the deep learning model can find spatial information such as the position, direction, and size of an object in real time, and can learn to process the image based on this.
- the processor of the computer may visualize the nDT precise brain image based on the determined nDT.
- the nDT precise brain image may be data expressed on a brain map (atlas).
- the present invention is not limited thereto, and nDT precision brain imaging can be implemented in various ways. Various methods of implementing nDT precision brain imaging will be described in detail with reference to FIG. 7 described later.
- the processor of the computer may determine whether the patient's brain is abnormal by comparing the nDT and the visualized nDT precise brain image with the brain image stored in the database.
- Computers can analyze abnormal areas of the brain and localize epilepsy-causing areas.
- the computer may classify and analyze the prognosis of seizures after epilepsy surgery.
- the processor of the computer may classify the prognosis following epilepsy surgery according to Engel and International League against Epilepsy (ILAE) scale criteria.
- ILAE International League against Epilepsy
- the computer can evaluate the final accuracy of localization after categorizing the seizure prognosis after epilepsy surgery into true positive, false positive, true negative, and false negative.
- the present disclosure since it is possible to actively check brain connectivity, it is possible to reduce time and cost consumed in examination. In addition, it is possible to non-invasively evaluate the connectivity of the entire brain of each individual, and individualized treatment can be performed by localizing the epileptic region using nDT precise brain images generated for each individual. In addition, there is an effect that can confirm the brain connectivity of the unconscious patient.
- embodiments according to the present disclosure may be applied not only to epilepsy, but also to various brain diseases such as dementia, language disorder, autism, depression, and stroke. Specifically, it can be used as a diagnostic and monitoring biomarker by identifying connectivity abnormalities in patients with language dysfunction using the embodiments according to the present disclosure.
- the navigation software used during brain tumor surgery with the embodiments according to the present disclosure, surgical treatment is performed by avoiding specific structures, thereby preventing postoperative complications such as language dysfunction, and performing neurological monitoring during surgery.
- Embodiments according to the present disclosure may be used.
- Embodiments according to the present disclosure may visualize effective connectivity and structural connectivity information for cognitive functions.
- embodiments according to the present disclosure can be used as diagnostic and monitoring biomarkers by identifying connectivity abnormalities in patients with cognitive dysfunction.
- diagnostic and monitoring biomarkers by identifying connectivity abnormalities in patients with cognitive dysfunction.
- specific cognition You can check the tract responsible for the function.
- the embodiments according to the present disclosure can be used as monitoring indicators in the evaluation of stopping epilepsy drugs and whether driving is possible.
- FIG. 2 is a flowchart for explaining step S110 of FIG. 1 .
- description will be made with reference to FIG. 1, and overlapping descriptions will be omitted.
- step S110 may include steps S111, S112, S113, and S114.
- step S111 MRI imaging may be performed.
- the processor of the computer may acquire T1 weighted imaging and diffusion weighted imaging (DWI) provided through MRI imaging.
- DWI diffusion weighted imaging
- a T1-weighted image is an image in which a difference in tissue relaxation time is reflected as a signal difference, and T1 may be a constant that causes image contrast by emphasizing different tissue components. For example, in a T1-weighted image, fat may have high contrast, water may have low contrast, and air and dense bone may have the lowest contrast.
- the T1-weighted image may be implemented in 3D.
- the diffusion-weighted image may be an image reflecting a difference in intensity of a signal caused by a phenomenon in which material molecules move from a side having a high molecular concentration to a side having a low molecular concentration.
- the processor of the computer may pre-process the diffusion-enhanced image (DWI). For example, the computer can remove noise in the diffusion-weighted image (DWI) and adjust the inhomogeneity and gradient eddy currents of the B1 field.
- the processor of the computer can bias-correct by removing the skull of the diffusion-weighted image (DWI) and correcting EPI (Echo Planar Imaging) distortion.
- the processor of the computer may extract a fractional anisotropy (hereinafter referred to as 'FA') map using the preprocessed diffusion-enhanced image (DWI).
- 'FA' fractional anisotropy
- the FA map shows that FA decreases as the diffusion of material molecules is free in various directions and isotropic, and FA increases as the diffusion of material molecules is biased in one direction and becomes anisotropic. there is.
- FIG. 3 is a flowchart for explaining step S120 of FIG. 1
- FIG. 4 is a diagram for explaining the brain region divided in step S121.
- description will be made with reference to FIGS. 1 and 2, and overlapping descriptions will be omitted.
- Step S120 may include steps S121, S122, S123, and S124.
- the processor of the computer may segment the brain region based on the T1-weighted image. For example, as shown in FIG. 4 , the processor of the computer may segment the patient's brain region using a cortical parcellation system (CPS), and may include a pre-photographed T1-weighted image of the patient. Brain regions can be distinguished and displayed.
- CPS cortical parcellation system
- step S122 the processor of the computer may determine the intensity of stimulation to be used in the nTMS system by measuring a Motor Evoked Potential (MEP).
- MEP Motor Evoked Potential
- the strength of the stimulus determined in step S122 may be referred to as 'RMT (Resting Motor Threshold)'.
- the processor of the computer may provide a single pulse to a coil disposed perpendicular to the motor cortical region to be stimulated, and continuously apply 10 pulses to a location where a motor evoked potential (MEP) is best induced. stimulus can be provided.
- the processor of the computer may determine, as the RMT, the minimum stimulus intensity at which a motor evoked potential (MEP) of 50 ⁇ V or more is induced 5 times or more out of 10 times.
- the coil may be an 8-character coil.
- the processor of the computer may stimulate the divided brain regions with RMT using the nTMS system.
- the processor of the computer may stimulate each divided brain region with the stimulus intensity RMT determined in step S122 through coils disposed in each brain region divided through step S121.
- the coil may be an 8-character coil.
- the nTMS system may include parameters such as frequency of the stimulation, stimulation intensity, number of stimulations, and stimulation orientation.
- Frequency of the stimulation is 0.2 Hz
- Number of stimulations is 30 times on average for each brain region
- Stimulation Orientation is by rotating the angle of the coil clockwise by 45 °. It is set to change, and the stimulation intensity (Stimulation intensity) is set to 100% of the RMT, but can be set to be adjusted by 10% based on the patient's pain level.
- the processor of the computer may stimulate each divided brain region up to 80 times every 5 to 6 seconds using a single pulse having an intensity of 120% of the RMT.
- the processor of the computer may measure and store EEG data generated by stimulating the brain region.
- the processor of a computer may measure brain waves using 64 or more channels of electrodes while stimulating a brain region.
- the processor of the computer may maintain the impedance of each channel to 5K ⁇ or less, and may set the sampling rate of EEG data to 2000Hz.
- the processor of the computer may filter the measured EEG data using a signal bandpass filter having a frequency of 1 Hz or more and 100 Hz or less.
- the processor of the computer may filter the measured EEG data using a signal band communication filter having various frequencies.
- the processor of the computer maintains the input of the amplifier from 100 ms before stimulation to 2 ms after stimulation in order to avoid amplifier saturation due to stimulation of the brain region (amplifier input constant) (sample-and-hold circuit) -hold circuit) can be used.
- amplifier input constant amplifier input constant
- sample-and-hold circuit sample-and-hold circuit
- the sample hold circuit may be omitted.
- a sample hold circuit may be omitted when a DC amplifier is used.
- FIG. 5 is a flowchart for explaining step S140 of FIG. 1
- FIG. 6 is a flowchart for explaining another embodiment of step S140 of FIG.
- all descriptions will be made with reference to FIGS. 1 to 4, and overlapping descriptions will be omitted.
- step S140 may include steps S141, S142, and S143.
- the processor of the computer may extract a component from nCCEP data.
- the component may include a first component N1 in the form of a sharp wave appearing in an initial period of 10 ms to 50 ms.
- the first component N1 may be a waveform that appears when nerve cells are excited by electrical stimulation.
- the processor of the computer may extract the first component N1 by checking electrical stimulation by the nTMS system and negative deflection appearing in the initial period from 10 ms to 50 ms.
- the computer can calculate the amplitude, latency and velocity of the first component N1 for each tract. For example, the processor of the computer may calculate the speed of the first component N1 by dividing the minimum path length between the two electrodes by the latency of the first component N1 between the two electrodes.
- the component may further include a second component N2 in the form of a slow wave appearing in an initial period of 50 ms to 300 ms.
- the second component N2 may be a waveform that appears when the brain goes through various inhibition processes.
- the second component N2 is an abnormal brain wave, and may be used as an indicator suggesting an epileptic induction site.
- the computer may extract the second component N2 by calculating the absolute value of the standard deviation (Z score) appearing in the interval from the initial 50 ms to 300 ms using the standard deviation of the baseline. For example, the computer may calculate the standard deviation for each electrode and determine that the data is significant when the peak of the second component (N2) is greater than a threshold value of ⁇ 6 standard deviations from the amplitude of the baseline. there is.
- the processor of the computer may perform statistical analysis based on the extracted components.
- the computer can calculate the Euclidean distance between the endpoints of the path and statistically infer the length of the path in order to minimize the biologically implausible path.
- the processor of the computer may perform statistical analysis using a deep learning model that has been trained to minimize biologically implausible paths.
- the deep learning model can be trained to compute a group-level linear regression model related to distance and length.
- the deep learning model may be trained to perform regression analysis for each interval in which the peak amplitude of the first component N1 and the latency of the first component N1 are averaged for each 10 mm interval of the path length.
- the deep learning model can calculate the average velocity for 15 FA bins of the same size in order to create a model that can compare the propagation velocity of the first component N1, and use the calculated result value in the regression model. can be learned to do.
- the deep learning model may be trained to remove paths with model errors greater than 3 standard deviations of the mean.
- the deep learning model uses only the amplitude, latency, and speed of the first significant component (N1), the length of the connection path extracted through diffusion-weighted image (DWI), and electrode pairs having an average FA value greater than 0.2. and can be trained to perform statistical analysis.
- the processor of the computer may extract a non-invasive dynamic path (nDT) by performing multi-modal imaging based on statistical analysis.
- the processor of the computer may determine whether the first component N1 conforms to the nDT model, and may select a part conforming to the nDT model and determine it as the nDT.
- nDT has a positive correlation between the length of the connection path inferred in step S142 and the latency of the first component N1, and nDT is the length of the connection path inferred in step S142 and the first component N1. It may be data conforming to an nDT model in which the amplitude of ⁇ has a negative correlation and the FA map and the velocity of the first component N1 have a positive correlation.
- the processor of the computer When the processor of the computer further extracts the second component N2, the processor of the computer implements a pattern corresponding to the epilepsy inducing region using the amplitude ratio of the first component N1 and the second component N2.
- a pattern corresponding to an epilepsy-inducing region can be implemented through the amplitude ratio of the first component N1 and the second component N2. . Therefore, in this case, several more steps may be performed to extract the non-invasive dynamic pathway (nDT). This will be described in more detail with reference to FIG. 6 .
- step S140′ may include steps S141, S143, S144, S145, S146, and S147, and steps S141 and S143 are steps S141 and 143 of FIG. ) may be the same step. Therefore, a description overlapping with that of FIG. 5 will be omitted.
- the processor of the computer may perform effective connectivity analysis using the amplitude ratio of the first component N1 and the second component N2.
- the computer can extract the overall effective connectivity data of one subject, organize and visualize the effective connectivity data through a matrix.
- the bipolar channel may constitute a node
- the root mean square (RMS) may constitute an edge
- Root Mean Square (RMS) can be configured with the size of nCCEP data to reconstruct an effective connectivity network indicator.
- the computer can extract the effective connectivity by calculating the average value of the connection weights connecting all nodes in the same area and between areas.
- the processor of the computer may define brain regions using the available connectivity data.
- the computer can use the available connectivity data to define brain regions as Epileptogenic Zone (EZ), Propagation Zone (PZ), and Non-Involved Zone (NIZ).
- EZ Epileptogenic Zone
- PZ Propagation Zone
- NIZ Non-Involved Zone
- the processor of the computer may define the corresponding brain region as an epileptic zone (EZ) when the connectivity index of the brain region is equal to or greater than a preset threshold voltage.
- the preset threshold voltage may be a value indicating an epileptic zone (EZ).
- the processor of the computer may define the corresponding brain region as a proliferative zone (PZ) when the connectivity index of the brain region has connectivity but is less than a specific threshold voltage indicating an epileptic zone (EZ).
- the processor of the computer may define the brain region as a non-involved zone (NIZ) when the connectivity index of the brain region has no connectivity.
- NIZ non-involved zone
- the processor of the computer may perform electrical source imaging (ESI) analysis on the defined brain regions and visualize them using various algorithms.
- ESI electrical source imaging
- the processor of a computer may use a fast spatiotemporal iteratively reweighted edge sparsity (FAST-IRES) algorithm to visualize data.
- FAST-IRES fast spatiotemporal iteratively reweighted edge sparsity
- the FAST-IRES algorithm determines the range by measuring the connectivity of each node by imposing a penalty according to the amplitude of the EEG data, and converts the brain signal measured from the scalp into a time base function through component analysis. function) and solve the identified focal source using a convex optimization tool.
- the processor of the computer may determine the direction based on the extracted effective connectivity data.
- the processor of the computer has no discharge in the epileptic zone (EZ), an epileptic zone (EZ) adjacent zone anatomically adjacent to the epileptic zone (EZ), an interictal state, and no discharge Directionality can be determined from electrical stimulation to a zone adjacent to the zone NIZ.
- the processor of the computer may implement a pattern corresponding to the epileptic induction site by performing multimodal imaging.
- the processor of the computer may output a pattern corresponding to the epileptic region as data such as nDT.
- FIG. 7 various methods of implementing nDT precision brain imaging according to an embodiment of the present invention are illustrated.
- the nDT precision brain image may be implemented as a matrix.
- the processor of the computer may use a two-dimensional heat map to represent the evoked connection strength (eg, RMS) of stimulating the pair of connections.
- the nDT precision brain image may be implemented as a circle map.
- the processor of a computer may visualize a connectivity matrix.
- the nDT precision brain image can be implemented by visualizing the brain volume.
- the processor of the computer may represent the response around the electrode location according to linear interpolation to estimate the activity of the unsampled surrounding area.
- the nDT precision brain image can be implemented by visualizing data on the surface of the brain.
- the processor of a computer may display a connectivity matrix on a three-dimensional brain surface along with connectivity locations to directly display connectivity and connectivity locations on the brain surface.
- the disclosed embodiments may be implemented in the form of a recording medium storing instructions executable by a computer. Instructions may be stored in the form of program codes, and when executed by a processor, create program modules to perform operations of the disclosed embodiments.
- the recording medium may be implemented as a computer-readable recording medium.
- Computer-readable recording media include all types of recording media in which instructions that can be decoded by a computer are stored. For example, there may be read only memory (ROM), random access memory (RAM), magnetic tape, magnetic disk, flash memory, optical data storage device, and the like.
- ROM read only memory
- RAM random access memory
- magnetic tape magnetic tape
- magnetic disk magnetic disk
- flash memory optical data storage device
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Animal Behavior & Ethology (AREA)
- Pathology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- High Energy & Nuclear Physics (AREA)
- Radiology & Medical Imaging (AREA)
- Psychiatry (AREA)
- Psychology (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
The present disclosure provides to a method and device for generating a precise nDT brain image. The method according to the present disclosure comprises the steps of: acquiring image data by a computer through magnetic resonance imaging (MRI); measuring, by the computer, electroencephalography data by using a navigated transcranial magnetic stimulation (nTMS) system; extracting, by the computer, noninvasive corticocortical evoked potential (nCCEP) data by using the electroencephalography data; determining, by the computer, a noninvasive dynamic tractography (nDT) by performing multimodal imaging on the basis of the image data and the nCCEP data; visualizing a precise nDT brain image by the computer on the basis of the noninvasive dynamic tractography; and by the computer, comparing the noninvasive dynamic tractography and the visualized precise nDT brain image with the data stored in a database, and analyzing the noninvasive dynamic tractography and the visualized precise nDT brain image to determine whether the brain is abnormal.
Description
본 개시는 nDT 정밀 뇌 영상 생성 방법 및 장치에 관한 것이다.The present disclosure relates to a method and apparatus for generating nDT precise brain images.
뇌 연결성은, 다양한 신경 질환 및 정신 질환과 관련 있다.Brain connectivity has been implicated in a variety of neurological and psychiatric disorders.
뇌 연결성 중 유효 연결성(effective connectivity)은, 연결의 방향성과 신경신호의 송수신 패턴의 정보를 제공하여, 신경 신호의 흐름을 파악하는 뇌 연결모델 구축을 가능하게 할 수 있다.Among brain connectivity, effective connectivity provides information on the directionality of the connection and the transmission/reception pattern of neural signals, thereby enabling the construction of a brain connectivity model that understands the flow of nerve signals.
유효 연결성은, 특정 가설을 기반으로 구조 연결성 및 기능 연결성에 기반하여 신경 신호의 흐름을 설명하기도 하지만, 가정이 항상 필요해 오류 가능성이 있다. 따라서, 유효 연결성을 확인하기 위해서는, 직접적인 전기 자극을 통해 큰 신경다발의 방향성 및 전파속도를 측정하는 것이 필요하다.Effective connectivity also describes the flow of neural signals based on structural connectivity and functional connectivity based on specific hypotheses, but assumptions are always necessary and are subject to error. Therefore, in order to confirm effective connectivity, it is necessary to measure the directionality and propagation speed of large bundles of nerves through direct electrical stimulation.
예를 들어, 침습적 역동적 신경섬유지도(invasive dynamic tractography, IDT)를 이용한 유효 연결성 확인 방법은, 유효 연결성 정보 및 구조 연결성 정보를 결합하여 실제 신경 정보가 어떠한 백질을 따라 전달되는지 확인할 수 있다. 이때, 침습적 역동적 신경섬유지도(IDT)에 연결성의 강도와 속도 및 전기생리학적 이상여부 등의 정보를 추가로 포함하면, 뇌질환의 병태생리 및 인지기능 기초연구에 활용이 가능하다.For example, a method for confirming effective connectivity using invasive dynamic tractography (IDT) can determine which white matter actual nerve information is delivered by combining effective connectivity information and structural connectivity information. At this time, if information such as the strength and speed of connectivity and electrophysiological abnormalities are additionally included in the invasive dynamic nerve fiber map (IDT), it can be used for basic research on the pathophysiology and cognitive function of brain diseases.
다른 예를 들어, 침습적 역동적 신경섬유지도(IDT) 및 침습적 피질유발전위(invasive corticocortical evoked potential, ICCEP)를 이용한 유효 연결성 확인 방법은, 침습적인 뇌파로만 측정이 가능하여 침습적 뇌파가 삽입된 부분에서만 유효 연결성을 평가하므로 뇌전체의 유효 연결성을 평가하지 못하였고, 뇌전증 환자에서만 측정이 가능하므로 정상인의 특성을 반영하지 못하고, 예측 모델에 오류가 발생할 수 있으며, 개인 별 평가도 불가능하였다.As another example, effective connectivity confirmation methods using invasive dynamic nerve fiber maps (IDT) and invasive corticocortical evoked potentials (ICCEP) can be measured only by invasive brain waves, so they are effective only in the part where invasive brain waves are inserted Since connectivity was evaluated, effective connectivity of the whole brain could not be evaluated, and since it could only be measured in patients with epilepsy, the characteristics of normal people could not be reflected, errors could occur in the prediction model, and individual evaluation was impossible.
따라서, 다양한 대상에서 개인 별로 전체 뇌영역에 대해 직접 유효 연결성을 평가할 수 있는 개선된 방법 및 장치의 연구가 지속적으로 행해져 오고 있다.Therefore, research on improved methods and devices capable of directly evaluating the effective connectivity of entire brain regions for each individual in various subjects has been continuously conducted.
본 개시에 개시된 실시예는 nTMS(navigated transcranial magnetic stimulation) 시스템을 이용하여 측정된 뇌파 데이터를 이용하여 nDT 정밀 뇌 영상 생성 방법 및 장치를 제공하는데 그 목적이 있다.An object of the embodiments disclosed in the present disclosure is to provide a method and apparatus for generating nDT precise brain images using EEG data measured using a navigated transcranial magnetic stimulation (nTMS) system.
본 개시가 해결하고자 하는 과제들은 이상에서 언급된 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.The problems to be solved by the present disclosure are not limited to the problems mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the description below.
상술한 기술적 과제를 달성하기 위한 본 개시에 따른 nDT 정밀 뇌 영상 생성 장치는, 데이터베이스; 및 프로세서를 포함하고, 상기 프로세서는 MRI(Magnetic Resonance Imaging) 촬영을 통해 영상 데이터가 획득된 경우 nTMS(navigated transcranial magnetic stimulation) 시스템을 이용하여 뇌파 데이터를 측정하고, 상기 뇌파 데이터를 이용하여 nCCEP(noninvasive corticocortical evoked potential) 데이터를 추출하고, 상기 영상 데이터 및 상기 nCCEP 데이터에 기초하여 멀티모달 이미징을 수행함으로써 비침습적 역동적 경로(nDT, noninvasive dynamic tractography)를 결정하고, 상기 비침습적 역동적 경로에 기초하여 nDT 정밀 뇌영상을 시각화하며, 상기 비침습적 역동적 경로 및 상기 시각화된 nDT 정밀 뇌영상을 데이터베이스에 저장된 데이터와 비교 및 분석함으로써 뇌의 이상 여부를 판단할 수 있다.An nDT precise brain image generating apparatus according to the present disclosure for achieving the above technical problem includes a database; and a processor, wherein the processor measures EEG data using a navigated transcranial magnetic stimulation (nTMS) system when image data is acquired through Magnetic Resonance Imaging (MRI) imaging, and uses the EEG data to obtain noninvasive nCCEP (noninvasive) data. extract corticocortical evoked potential) data, determine a noninvasive dynamic tractography (nDT) by performing multimodal imaging based on the image data and the nCCEP data, and nDT precision based on the noninvasive dynamic path It is possible to determine whether there is an abnormality in the brain by visualizing the brain image and comparing and analyzing the non-invasive dynamic pathway and the visualized nDT precise brain image with data stored in a database.
이때, 상기 영상 데이터는 T1 강조 영상 및 확산 강조 영상을 포함하고, 상기 프로세서는 상기 영상 데이터를 획득 시에, 상기 컴퓨터가 상기 확산 강조 영상의 노이즈를 제거하고, 두개골을 제거함으로써 상기 확산 강조 영상을 전처리하며, 상기 전처리된 확산 강조 영상을 이용하여 FA 맵을 추출할 수 있다.In this case, the image data includes a T1-weighted image and a diffusion-weighted image, and when the processor acquires the image data, the computer removes noise from the diffusion-weighted image and removes the skull to obtain the diffusion-weighted image. Pre-processing is performed, and an FA map may be extracted using the pre-processed diffusion-enhanced image.
또한, 상기 프로세서는 상기 뇌파 데이터를 측정 시에, 피질 분할 시스템을 이용하여 뇌 영역을 분할하고, 상기 T1 강조 영상에 상기 분할된 뇌 영역을 구분하여 표시하고, 운동 유발 전위를 측정함으로써 자극의 강도를 결정하고, 상기 nTMS 시스템을 이용하여 상기 분할된 뇌 영역을 상기 결정된 자극의 강도로 자극하며, 상기 분할된 뇌 영역을 상기 결정된 자극의 강도로 자극함에 따라 발생하는 뇌파 데이터를 측정 및 저장하고, 상기 nTMS 시스템은 자극의 빈도, 자극의 강도, 각 뇌영역에 대한 자극의 개수 및 자극의 방향 중 적어도 하나를 파라미터로 포함할 수 있다.In addition, when measuring the EEG data, the processor divides the brain region using a cortical segmentation system, divides and displays the divided brain region on the T1-weighted image, and measures the exercise evoked potential to measure the intensity of stimulation. determining, stimulating the divided brain region with the determined intensity of stimulation using the nTMS system, and measuring and storing EEG data generated as the divided brain region is stimulated with the determined intensity of stimulation; The nTMS system may include, as a parameter, at least one of the frequency of stimulation, the strength of stimulation, the number of stimulations for each brain region, and the direction of stimulation.
또한, 상기 프로세서는 상기 비침습적 역동적 경로를 결정 시에, 상기 nCCEP 데이터의 초기 10ms 부터 50ms까지의 구간에서 나타나는 예파 형태의 제1 컴포넌트를 추출하고, 상기 제1 컴포넌트에 기초하여 경로 끝점 사이의 유클리드(Euclidean) 거리를 계산하고 경로의 길이를 통계적으로 유추함으로써 통계 분석을 수행하고, 상기 통계 분석 결과에 기초하여 멀티모달 이미징을 수행함으로써 비침습적 역동적 경로를 추출하고, 상기 nCCEP 데이터의 초기 50ms 부터 300ms까지의 구간에서 나타나는 서파 형태의 제2 컴포넌트를 추출하고, 상기 제1 컴포넌트 및 상기 제2 컴포넌트를 이용하여 유효 연결성 데이터를 추출하고, 상기 유효 연결성 데이터에 기초하여 뇌 영역을 정의하며, 전기 근원 영상 분석을 수행함으로써 상기 정의된 뇌 영역을 시각화하고, 상기 비침습적 역동적 경로는 상기 유추된 경로의 길이와 상기 제1 컴포넌트의 잠복기가 양의 상관 관계를 가지고, 상기 유추된 경로의 길이와 상기 제1 컴포넌트의 진폭이 음의 상관 관계를 가지고, 상기 FA 맵과 상기 제1 컴포넌트의 속도가 양의 상관 관계를 가지는 역동적 경로 모델에 부합할 수 있다.In addition, when determining the non-invasive dynamic path, the processor extracts a first component in the form of a sharp wave appearing in an initial period of 10 ms to 50 ms of the nCCEP data, and based on the first component, the Euclidean path between end points of the path (Euclidean) Statistical analysis is performed by calculating the distance and statistically inferring the length of the path, and a non-invasive dynamic path is extracted by performing multimodal imaging based on the statistical analysis result, and the initial 50ms to 300ms of the nCCEP data A second component in the form of a slow wave appearing in the interval up to is extracted, effective connectivity data is extracted using the first component and the second component, a brain region is defined based on the effective connectivity data, and an electrical source image By performing the analysis, the defined brain region is visualized, the non-invasive dynamic path has a positive correlation between the length of the inferred path and the latency of the first component, and the length of the inferred path and the first component have a positive correlation. It may conform to a dynamic path model in which the amplitude of a component has a negative correlation and the FA map and the velocity of the first component have a positive correlation.
또한, 상기 프로세서는 상기 뇌 영역을 정의 시에, 상기 유효 연결성 데이터의 연결성 지표가 기 설정된 문턱 전압과 같거나 기 설정된 문턱 전압보다 큰 뇌 영역은 뇌전증 발생 구역(Epileptogenic zone)으로 정의하고, 상기 유효 연결성 데이터의 연결성 지표가 연결성이 있되, 기 설정된 문턱 전압보다 낮은 뇌 영역은 증식 구역(Propagation zone)으로 정의하고, 상기 유효 연결성 데이터의 연결성 지표가 연결성이 없는 뇌 영역은 비관련 구역(Non-Involved Zone)으로 정의할 수 있다.In addition, when defining the brain region, the processor defines a brain region in which the connectivity index of the effective connectivity data is equal to or greater than a preset threshold voltage as an epileptogenic zone, and A brain region in which the connectivity index of the effective connectivity data has connectivity but is lower than a preset threshold voltage is defined as a propagation zone, and a brain region in which the connectivity index of the effective connectivity data has no connectivity is defined as a non-relevant zone (Non- Involved Zone) can be defined.
또한, 상기 프로세서는 상기 뇌의 이상 여부를 판단 시에, 뇌전증 수술 이후의 발작 예후를 진양성, 위양성, 진음성, 위음성으로 범주화하며, 뇌전증 유발 부위가 국소화된 최종적 정확도를 평가할 수 있다.In addition, when determining whether the brain is abnormal, the processor categorizes the seizure prognosis after epileptic surgery into true positive, false positive, true negative, and false negative, and evaluates the final accuracy of localization of the epilepsy-inducing site.
또한, 상기 프로세서는 상기 nDT 정밀 뇌영상을 시각화 시에, 상기 nDT 정밀 뇌 영상을, 행렬(Matrix), 서클 맵(Circle map), 뇌 체적(Volume), 및 뇌의 표면(Surface) 중 적어도 하나를 이용하여 시각화할 수 있다.In addition, when visualizing the nDT precise brain image, the processor displays at least one of a matrix, a circle map, a brain volume, and a surface of the brain, when visualizing the nDT precise brain image. can be visualized using
또한, 상술한 기술적 과제를 달성하기 위한 본 개시에 따른 nDT 정밀 뇌 영상 생성 방법은, MRI(Magnetic Resonance Imaging) 촬영을 통해 상기 컴퓨터가 영상 데이터를 획득하는 단계; 상기 컴퓨터가 nTMS(navigated transcranial magnetic stimulation) 시스템을 이용하여 뇌파 데이터를 측정하는 단계; 상기 컴퓨터가 상기 뇌파 데이터를 이용하여 nCCEP(noninvasive corticocortical evoked potential) 데이터를 추출하는 단계; 상기 컴퓨터가 상기 영상 데이터 및 상기 nCCEP 데이터에 기초하여 멀티모달 이미징을 수행함으로써 비침습적 역동적 경로(nDT, noninvasive dynamic tractography)를 결정하는 단계; 상기 컴퓨터가 상기 비침습적 역동적 경로에 기초하여 nDT 정밀 뇌영상을 시각화하는 단계; 및 상기 컴퓨터가 상기 비침습적 역동적 경로 및 상기 시각화된 nDT 정밀 뇌영상을 데이터베이스에 저장된 데이터와 비교 및 분석함으로써 뇌의 이상 여부를 판단하는 단계를 포함할 수 있다.In addition, the nDT precision brain image generation method according to the present disclosure for achieving the above technical problem includes acquiring image data by the computer through Magnetic Resonance Imaging (MRI) imaging; measuring EEG data by the computer using a navigated transcranial magnetic stimulation (nTMS) system; extracting, by the computer, noninvasive corticocortical evoked potential (nCCEP) data using the EEG data; determining, by the computer, a noninvasive dynamic tractography (nDT) by performing multimodal imaging based on the image data and the nCCEP data; Visualizing, by the computer, an nDT precise brain image based on the non-invasive dynamic path; and comparing and analyzing, by the computer, the non-invasive dynamic path and the visualized nDT precise brain image with data stored in a database, and determining whether there is an abnormality in the brain.
이 외에도, 본 개시를 구현하기 위한 실행하기 위한 컴퓨터 판독 가능한 기록 매체에 저장된 컴퓨터 프로그램이 더 제공될 수 있다.In addition to this, a computer program stored in a computer readable recording medium for execution to implement the present disclosure may be further provided.
이 외에도, 본 개시를 구현하기 위한 방법을 실행하기 위한 컴퓨터 프로그램을 저장한 컴퓨터 판독 가능한 기록 매체가 더 제공될 수 있다.In addition to this, a computer readable recording medium storing a computer program for executing a method for implementing the present disclosure may be further provided.
본 개시의 전술한 과제 해결 수단에 의하면, 능동적으로 원하는 시점에 뇌전증 유발부위를 측정할 수 있고, 뇌전증 유발부위를 측정하고 뇌의 연결 방향성을 제시하는 유효 연결성을 확인하기 위해 소요되는 시간 및 비용이 절감될 수 있다. 또한, 환자 각각에 대한 뇌 연결성 평가가 가능하여 개인화된 치료를 개발할 수 있고, 치매, 언어장애, 자폐, 우울증, 뇌졸중 등 다양한 뇌질환에서 응용될 수 있다. According to the above-described problem solving means of the present disclosure, it is possible to actively measure the epileptic induction site at a desired time point, the time required to measure the epileptic induction site and confirm effective connectivity suggesting the connection direction of the brain, and cost can be reduced. In addition, it is possible to evaluate brain connectivity for each patient, so that personalized treatment can be developed, and it can be applied to various brain diseases such as dementia, language disorder, autism, depression, and stroke.
본 개시의 효과들은 이상에서 언급된 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.The effects of the present disclosure are not limited to the effects mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the description below.
도 1은 본 개시의 일 실시예에 따른 nDT 정밀 뇌 영상 생성 방법의 순서도이다.1 is a flowchart of a method for generating an nDT precise brain image according to an embodiment of the present disclosure.
도 2는 도 1의 단계(S110)의 일 실시 예를 설명하는 순서도이다.FIG. 2 is a flowchart illustrating an embodiment of step S110 of FIG. 1 .
도 3은 도 1의 단계(S120)의 일 실시 예를 설명하는 순서도이다.FIG. 3 is a flowchart illustrating an embodiment of step S120 of FIG. 1 .
도 4는 본 개시의 일 실시 예에 따른 분할된 뇌 영역을 설명하기 위한 도면이다.4 is a diagram for explaining a divided brain region according to an embodiment of the present disclosure.
도 5는 도 1의 단계(S140)의 일 실시 예를 설명하는 순서도이다.5 is a flowchart illustrating an embodiment of step S140 of FIG. 1 .
도 6은 도 1의 단계(S140)의 다른 실시 예를 설명하는 순서도이다.6 is a flowchart illustrating another embodiment of step S140 of FIG. 1 .
도 7은 본 개시의 일 실시예에 nDT 정밀 뇌영상 시각화 방법을 설명하기 위한 도면이다.7 is a diagram for explaining an nDT precision brain image visualization method according to an embodiment of the present disclosure.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 제한되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야의 통상의 기술자에게 본 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. Advantages and features of the present invention, and methods of achieving them, will become clear with reference to the detailed description of the following embodiments taken in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various different forms, only these embodiments are intended to complete the disclosure of the present invention, and are common in the art to which the present invention belongs. It is provided to fully inform the person skilled in the art of the scope of the invention, and the invention is only defined by the scope of the claims.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다. 명세서 전체에 걸쳐 동일한 도면 부호는 동일한 구성 요소를 지칭하며, "및/또는"은 언급된 구성요소들의 각각 및 하나 이상의 모든 조합을 포함한다. 비록 "제1", "제2" 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있음은 물론이다.Terminology used herein is for describing the embodiments and is not intended to limit the present invention. In this specification, singular forms also include plural forms unless specifically stated otherwise in a phrase. As used herein, "comprises" and/or "comprising" does not exclude the presence or addition of one or more other elements other than the recited elements. Like reference numerals throughout the specification refer to like elements, and “and/or” includes each and every combination of one or more of the recited elements. Although "first", "second", etc. are used to describe various components, these components are not limited by these terms, of course. These terms are only used to distinguish one component from another. Accordingly, it goes without saying that the first element mentioned below may also be the second element within the technical spirit of the present invention.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야의 통상의 기술자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또한, 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.Unless otherwise defined, all terms (including technical and scientific terms) used in this specification may be used with meanings commonly understood by those skilled in the art to which the present invention belongs. In addition, terms defined in commonly used dictionaries are not interpreted ideally or excessively unless explicitly specifically defined.
본 명세서에서 '컴퓨터'는 연산처리를 수행하여 사용자에게 결과를 시각적으로 제시할 수 있는 다양한 장치들이 모두 포함된다. 예를 들어, 컴퓨터는 데스크 탑 PC, 노트북(Note Book) 뿐만 아니라 스마트폰(Smart phone), 태블릿 PC, 셀룰러폰(Cellular phone), 피씨에스폰(PCS phone; Personal Communication Service phone), 동기식/비동기식 IMT-2000(International Mobile Telecommunication-2000)의 이동 단말기, 팜 PC(Palm Personal Computer), 개인용 디지털 보조기(PDA; Personal Digital Assistant) 등도 해당될 수 있다. 또한, 컴퓨터는 의료영상을 획득하거나 관찰하는 의료장비도 해당될 수 있다. 또한, 컴퓨터는 다양한 클라이언트 컴퓨터와 연결되는 서버 컴퓨터가 해당될 수 있다. 또한, 컴퓨터는 하나 이상의 장치로 이루어질 수도 있다.In this specification, a 'computer' includes all of various devices capable of visually presenting a result to a user by performing calculation processing. For example, a computer includes not only a desktop PC and a notebook (Note Book) but also a smart phone, a tablet PC, a cellular phone, a PCS phone (Personal Communication Service phone), synchronous/asynchronous A mobile terminal of IMT-2000 (International Mobile Telecommunication-2000), a Palm Personal Computer (Palm PC), and a Personal Digital Assistant (PDA) may also be applicable. In addition, the computer may also correspond to medical equipment for obtaining or observing medical images. Also, the computer may correspond to a server computer connected to various client computers. Also, a computer may consist of one or more devices.
본 명세서에서의 동작은 상기 컴퓨터 내의 프로세서와 메모리를 통해 동작될 수 있다. 즉, 프로세서는 하나 또는 복수의 프로세서로 구성될 수 있다. 이때, 하나 또는 복수의 프로세서는 CPU, AP, DSP(Digital Signal Processor) 등과 같은 범용 프로세서, GPU, VPU(Vision Processing Unit)와 같은 그래픽 전용 프로세서 또는 NPU와 같은 인공지능 전용 프로세서일 수 있다. 상기 하나 또는 복수의 프로세서는, 메모리에 저장된 기 정의된 동작 규칙 또는 인공지능 모델에 따라, 입력 데이터를 처리하도록 제어한다. 또는, 하나 또는 복수의 프로세서가 인공지능 전용 프로세서인 경우, 인공지능 전용 프로세서는, 특정 인공지능 모델의 처리에 특화된 하드웨어 구조로 설계될 수 있다.Operations in this specification may be operated through a processor and memory in the computer. That is, the processor may be composed of one or a plurality of processors. In this case, the one or more processors may be a general-purpose processor such as a CPU, an AP, or a digital signal processor (DSP), a graphics-only processor such as a GPU or a vision processing unit (VPU), or an artificial intelligence-only processor such as an NPU. The one or more processors control input data to be processed according to predefined operating rules or artificial intelligence models stored in a memory. Alternatively, when one or more processors are processors dedicated to artificial intelligence, the processors dedicated to artificial intelligence may be designed with a hardware structure specialized for processing a specific artificial intelligence model.
기 정의된 동작 규칙 또는 인공지능 모델은 학습을 통해 만들어진 것을 특징으로 한다. 여기서, 학습을 통해 만들어진다는 것은, 기본 인공지능 모델이 학습 알고리즘에 의하여 다수의 학습 데이터들을 이용하여 학습됨으로써, 원하는 특성(또는, 목적)을 수행하도록 설정된 기 정의된 동작 규칙 또는 인공지능 모델이 만들어짐을 의미한다. 이러한 학습은 본 개시에 따른 인공지능이 수행되는 기기 자체에서 이루어질 수도 있고, 별도의 서버 및/또는 시스템을 통해 이루어 질 수도 있다. 학습 알고리즘의 예로는, 지도형 학습(supervised learning), 비지도 형 학습(unsupervised learning), 준지도형 학습(semi-supervised learning) 또는 강화 학습(reinforcement learning)이 있으나, 전술한 예에 한정되지 않는다.A predefined action rule or an artificial intelligence model is characterized in that it is created through learning. Here, being made through learning means that a basic artificial intelligence model is learned using a plurality of learning data by a learning algorithm, so that a predefined action rule or artificial intelligence model set to perform a desired characteristic (or purpose) is created. means burden. Such learning may be performed in the device itself in which artificial intelligence according to the present disclosure is performed, or through a separate server and/or system. Examples of the learning algorithm include supervised learning, unsupervised learning, semi-supervised learning, or reinforcement learning, but are not limited to the above examples.
인공지능 모델은, 복수의 신경망 레이어들로 구성될 수 있다. 복수의 신경망 레이어들 각각은 복수의 가중치들 (weight values)을 갖고 있으며, 이전(previous) 레이어의 연산 결과와 복수의 가중치들 간의 연산을 통해 신경 망 연산을 수행한다. 복수의 신경망 레이어들이 갖고 있는 복수의 가중치들은 인공지능 모델의 학습 결과에 의해 최적화될 수 있다. 예를 들어, 학습 과정 동안 인공지능 모델에서 획득한 로스(loss) 값 또는 코스트(cost) 값이 감소 또는 최소화되도록 복수의 가중치들이 갱신될 수 있다. 인공 신경망은 심층 신경망(DNN:Deep Neural Network)를 포함할 수 있으며, 예를 들어, CNN (Convolutional Neural Network), DNN (Deep Neural Network), RNN (Recurrent Neural Network), RBM (Restricted Boltzmann Machine), DBN (Deep Belief Network), BRDNN(Bidirectional Recurrent Deep Neural Network) 또는 심층 Q-네트워크 (Deep Q-Networks) 등이 있으나, 전술한 예에 한정되지 않는다.An artificial intelligence model may be composed of a plurality of neural network layers. Each of the plurality of neural network layers has a plurality of weight values, and a neural network operation is performed through an operation between an operation result of a previous layer and a plurality of weight values. A plurality of weights possessed by a plurality of neural network layers may be optimized by a learning result of an artificial intelligence model. For example, a plurality of weights may be updated so that a loss value or a cost value obtained from an artificial intelligence model is reduced or minimized during a learning process. The artificial neural network may include a deep neural network (DNN), for example, a Convolutional Neural Network (CNN), a Deep Neural Network (DNN), a Recurrent Neural Network (RNN), a Restricted Boltzmann Machine (RBM), A deep belief network (DBN), a bidirectional recurrent deep neural network (BRDNN), or deep Q-networks, but is not limited to the above examples.
본 개시의 예시적인 실시예에 따르면, 프로세서는 인공지능을 구현할 수 있다. 인공지능이란 사람의 신경세포(biological neuron)를 모사하여 기계가 학습하도록 하는 인공신경망(Artificial Neural Network) 기반의 기계 학습법을 의미한다. 인공지능의 방법론에는 학습 방식에 따라 훈련데이터로서 입력데이터와 출력데이터가 같이 제공됨으로써 문제(입력데이터)의 해답(출력데이터)이 정해져 있는 지도학습(supervised learning), 및 출력데이터 없이 입력데이터만 제공되어 문제(입력데이터)의 해답(출력데이터)이 정해지지 않는 비지도학습(unsupervised learning), 및 현재의 상태(State)에서 어떤 행동(Action)을 취할 때마다 외부 환경에서 보상(Reward)이 주어지는데, 이러한 보상을 최대화하는 방향으로 학습을 진행하는 강화학습(reinforcement learning)으로 구분될 수 있다. 또한, 인공지능의 방법론은 학습 모델의 구조인 아키텍처에 따라 구분될 수도 있는데, 널리 이용되는 딥러닝 기술의 아키텍처는, 합성곱신경망(CNN; Convolutional Neural Network), 순환신경망(RNN; Recurrent Neural Network), 트랜스포머(Transformer), 생성적 대립 신경망(GAN; generative adversarial networks) 등으로 구분될 수 있다.According to an exemplary embodiment of the present disclosure, a processor may implement artificial intelligence. Artificial intelligence refers to a machine learning method based on an artificial neural network in which a machine learns by mimicking a human's biological neuron. The methodology of artificial intelligence includes supervised learning in which input data and output data are provided together as training data according to the learning method, so that the answer (output data) of the problem (input data) is determined, and only input data is provided without output data. In unsupervised learning, where the answer (output data) of the problem (input data) is not determined, and whenever an action is taken in the current state, a reward is given in the external environment. , it can be classified as reinforcement learning in which learning proceeds in the direction of maximizing this reward. In addition, the methodology of artificial intelligence may be classified according to the architecture, which is the structure of the learning model. The architecture of widely used deep learning technology is Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN). , Transformers, and generative adversarial networks (GANs).
본 장치와 시스템은 인공지능 모델을 포함할 수 있다. 인공지능 모델은 하나의 인공지능 모델일 수 있고, 복수의 인공지능 모델로 구현될 수도 있다. 인공지능 모델은 뉴럴 네트워크(또는 인공 신경망)로 구성될 수 있으며, 기계학습과 인지과학에서 생물학의 신경을 모방한 통계학적 학습 알고리즘을 포함할 수 있다. 뉴럴 네트워크는 시냅스의 결합으로 네트워크를 형성한 인공 뉴런(노드)이 학습을 통해 시냅스의 결합 세기를 변화시켜, 문제 해결 능력을 가지는 모델 전반을 의미할 수 있다. 뉴럴 네트워크의 뉴런은 가중치 또는 바이어스의 조합을 포함할 수 있다. 뉴럴 네트워크는 하나 이상의 뉴런 또는 노드로 구성된 하나 이상의 레이어(layer)를 포함할 수 있다. 예시적으로, 장치는 input layer, hidden layer, output layer를 포함할 수 있다. 장치를 구성하는 뉴럴 네트워크는 뉴런의 가중치를 학습을 통해 변화시킴으로써 임의의 입력(input)으로부터 예측하고자 하는 결과(output)를 추론할 수 있다.The devices and systems may include artificial intelligence models. The artificial intelligence model may be one artificial intelligence model or may be implemented as a plurality of artificial intelligence models. Artificial intelligence models may be composed of neural networks (or artificial neural networks), and may include statistical learning algorithms that mimic biological neurons in machine learning and cognitive science. A neural network may refer to an overall model having a problem-solving ability by changing synaptic coupling strength through learning of artificial neurons (nodes) formed in a network by synaptic coupling. Neurons in a neural network may contain a combination of weights or biases. A neural network may include one or more layers composed of one or more neurons or nodes. Illustratively, the device may include an input layer, a hidden layer, and an output layer. A neural network constituting the device can infer a result (output) to be predicted from an arbitrary input (input) by changing the weight of a neuron through learning.
프로세서는 뉴럴 네트워크를 생성하거나, 뉴럴 네트워크를 훈련(train, 또는 학습(learn)하거나, 수신되는 입력 데이터를 기초로 연산을 수행하고, 수행 결과를 기초로 정보 신호(information signal)를 생성하거나, 뉴럴 네트워크를 재훈련(retrain)할 수 있다. 뉴럴 네트워크의 모델들은 GoogleNet, AlexNet, VGG Network 등과 같은 CNN(Convolution Neural Network), R-CNN(Region with Convolution Neural Network), RPN(Region Proposal Network), RNN(Recurrent Neural Network), S-DNN(Stacking-based deep Neural Network), S-SDNN(State-Space Dynamic Neural Network), Deconvolution Network, DBN(Deep Belief Network), RBM(Restrcted Boltzman Machine), Fully Convolutional Network, LSTM(Long Short-Term Memory) Network, Classification Network 등 다양한 종류의 모델들을 포함할 수 있으나 이에 제한되지는 않는다. 프로세서는 뉴럴 네트워크의 모델들에 따른 연산을 수행하기 위한 하나 이상의 프로세서를 포함할 수 있다. 예를 들어 뉴럴 네트워크는 심층 뉴럴 네트워크 (Deep Neural Network)를 포함할 수 있다.The processor generates a neural network, trains or learns the neural network, performs an operation based on received input data, generates an information signal based on a result of the execution, or generates a neural network. Neural network models include GoogleNet, AlexNet, VGG Network, etc., CNN (Convolution Neural Network), R-CNN (Region with Convolution Neural Network), RPN (Region Proposal Network), RNN (Recurrent Neural Network), S-DNN (Stacking-based deep Neural Network), S-SDNN (State-Space Dynamic Neural Network), Deconvolution Network, DBN (Deep Belief Network), RBM (Restrcted Boltzman Machine), Fully Convolutional Network . For example, the neural network may include a deep neural network.
뉴럴 네트워크는 CNN(Convolutional Neural Network), RNN(Recurrent Neural Network), 퍼셉트론(perceptron), 다층 퍼셉트론(multilayer perceptron), FF(Feed Forward), RBF(Radial Basis Network), DFF(Deep Feed Forward), LSTM(Long Short Term Memory), GRU(Gated Recurrent Unit), AE(Auto Encoder), VAE(Variational Auto Encoder), DAE(Denoising Auto Encoder), SAE(Sparse Auto Encoder), MC(Markov Chain), HN(Hopfield Network), BM(Boltzmann Machine), RBM(Restricted Boltzmann Machine), DBN(Depp Belief Network), DCN(Deep Convolutional Network), DN(Deconvolutional Network), DCIGN(Deep Convolutional Inverse Graphics Network), GAN(Generative Adversarial Network), LSM(Liquid State Machine), ELM(Extreme Learning Machine), ESN(Echo State Network), DRN(Deep Residual Network), DNC(Differentiable Neural Computer), NTM(Neural Turning Machine), CN(Capsule Network), KN(Kohonen Network) 및 AN(Attention Network)를 포함할 수 있으나 이에 한정되는 것이 아닌 임의의 뉴럴 네트워크를 포함할 수 있음은 통상의 기술자가 이해할 것이다.Neural networks include CNN (Convolutional Neural Network), RNN (Recurrent Neural Network), perceptron, multilayer perceptron, FF (Feed Forward), RBF (Radial Basis Network), DFF (Deep Feed Forward), LSTM (Long Short Term Memory), GRU (Gated Recurrent Unit), AE (Auto Encoder), VAE (Variational Auto Encoder), DAE (Denoising Auto Encoder), SAE (Sparse Auto Encoder), MC (Markov Chain), HN (Hopfield Network), BM(Boltzmann Machine), RBM(Restricted Boltzmann Machine), DBN(Depp Belief Network), DCN(Deep Convolutional Network), DN(Deconvolutional Network), DCIGN(Deep Convolutional Inverse Graphics Network), GAN(Generative Adversarial Network) ), LSM (Liquid State Machine), ELM (Extreme Learning Machine), ESN (Echo State Network), DRN (Deep Residual Network), DNC (Differentiable Neural Computer), NTM (Neural Turning Machine), CN (Capsule Network), It will be appreciated by those skilled in the art that it may include any neural network, including but not limited to Kohonen Network (KN) and Attention Network (AN).
본 개시의 예시적인 실시예에 따르면, 프로세서는 GoogleNet, AlexNet, VGG Network 등과 같은 CNN(Convolution Neural Network), R-CNN(Region with Convolution Neural Network), RPN(Region Proposal Network), RNN(Recurrent Neural Network), S-DNN(Stacking-based deep Neural Network), S-SDNN(State-Space Dynamic Neural Network), Deconvolution Network, DBN(Deep Belief Network), RBM(Restrcted Boltzman Machine), Fully Convolutional Network, LSTM(Long Short-Term Memory) Network, Classification Network, Generative Modeling, eXplainable AI, Continual AI, Representation Learning, AI for Material Design, 자연어 처리를 위한 BERT, SP-BERT, MRC/QA, Text Analysis, Dialog System, GPT-3, GPT-4, 비전 처리를 위한 Visual Analytics, Visual Understanding, Video Synthesis, ResNet 데이터 지능을 위한 Anomaly Detection, Prediction, Time-Series Forecasting, Optimization, Recommendation, Data Creation 등 다양한 인공지능 구조 및 알고리즘을 이용할 수 있으며, 이에 제한되지 않는다. According to an exemplary embodiment of the present disclosure, the processor may include a Convolution Neural Network (CNN), a Region with Convolution Neural Network (R-CNN), a Region Proposal Network (RPN), a Recurrent Neural Network (RNN), such as GoogleNet, AlexNet, VGG Network, and the like. ), S-DNN (Stacking-based deep neural network), S-SDNN (State-Space Dynamic Neural Network), Deconvolution Network, DBN (Deep Belief Network), RBM (Restrcted Boltzman Machine), Fully Convolutional Network, LSTM (Long Short-Term Memory) Network, Classification Network, Generative Modeling, eXplainable AI, Continual AI, Representation Learning, AI for Material Design, BERT for natural language processing, SP-BERT, MRC/QA, Text Analysis, Dialog System, GPT-3 , GPT-4, Visual Analytics for vision processing, Visual Understanding, Video Synthesis, ResNet Data intelligence for Anomaly Detection, Prediction, Time-Series Forecasting, Optimization, Recommendation, and Data Creation. , but not limited thereto.
본 명세서에서의 프로세서는 이하의 도 1 내지 도 7에 설명된 nTMS(navigated transcranial magnetic stimulation) 시스템을 기반으로 측정된 뇌파 데이터를 이용하여 nDT 정밀 뇌 영상을 생성하는 동작을 제어할 수 있다.A processor in the present specification may control an operation of generating an nDT precise brain image using EEG data measured based on a nTMS (navigated transcranial magnetic stimulation) system described in FIGS. 1 to 7 below.
구체적으로, 상기 프로세서는 MRI(Magnetic Resonance Imaging) 촬영을 통해 영상 데이터가 획득된 경우, nTMS 시스템을 이용하여 뇌파 데이터를 측정하고, 상기 뇌파 데이터를 이용하여 nCCEP(noninvasive corticocortical evoked potential) 데이터를 추출하고, 상기 영상 데이터 및 상기 nCCEP 데이터에 기초하여 멀티모달 이미징을 수행함으로써 비침습적 역동적 경로(nDT, noninvasive dynamic tractography)를 결정하고, 상기 비침습적 역동적 경로에 기초하여 nDT 정밀 뇌영상을 시각화하며, 상기 비침습적 역동적 경로 및 상기 시각화된 nDT 정밀 뇌영상을 데이터베이스(메모리)에 저장된 데이터와 비교 및 분석함으로써 뇌의 이상 여부를 판단할 수 있는 것이다.Specifically, when image data is acquired through Magnetic Resonance Imaging (MRI) imaging, the processor measures EEG data using an nTMS system, extracts noninvasive corticocortical evoked potential (nCCEP) data using the EEG data, , determining a noninvasive dynamic tractography (nDT) by performing multimodal imaging based on the image data and the nCCEP data, visualizing an nDT precise brain image based on the noninvasive dynamic tractography, and By comparing and analyzing the invasive dynamic pathway and the visualized nDT precision brain image with data stored in a database (memory), it is possible to determine whether there is an abnormality in the brain.
이때, 상기 영상 데이터는 T1 강조 영상 및 확산 강조 영상을 포함하고, 상기 프로세서는 상기 MRI 촬영을 통해 상기 영상 데이터를 획득 시에, 상기 확산 강조 영상의 노이즈를 제거하고, 두개골을 제거함으로써 상기 확산 강조 영상을 전처리하고, 상기 전처리된 확산 강조 영상을 이용하여 FA 맵을 추출할 수 있다. In this case, the image data includes a T1-weighted image and a diffusion-enhanced image, and the processor, when obtaining the image data through the MRI imaging, removes noise from the diffusion-enhanced image and removes the skull to enhance the diffusion-enhanced image. An image may be pre-processed, and an FA map may be extracted using the pre-processed diffusion-enhanced image.
또한, 상기 프로세서는 상기 nTMS 시스템을 이용하여 뇌파 데이터를 측정 시에, 피질 분할 시스템을 이용하여 뇌 영역을 분할하고, 상기 T1 강조 영상에 상기 분할된 뇌 영역을 구분하여 표시하고, 운동 유발 전위를 측정함으로써 자극의 강도를 결정하고, 상기 nTMS 시스템을 이용하여 상기 분할된 뇌 영역을 상기 결정된 자극의 강도로 자극하며, 상기 분할된 뇌 영역을 상기 결정된 자극의 강도로 자극함에 따라 발생하는 뇌파 데이터를 측정 및 저장할 수 있다. 이때, 상기 nTMS 시스템은 자극의 빈도, 자극의 강도, 각 뇌영역에 대한 자극의 개수 및 자극의 방향 중 적어도 하나를 파라미터로 포함할 수 있다.In addition, when measuring EEG data using the nTMS system, the processor divides brain regions using a cortical segmentation system, divides and displays the divided brain regions on the T1-weighted image, and calculates motion evoked potentials. The intensity of stimulation is determined by measuring, the divided brain regions are stimulated with the determined intensity of stimulation using the nTMS system, and the EEG data generated by stimulating the divided brain regions with the determined intensity of stimulation can be measured and stored. In this case, the nTMS system may include at least one of the frequency of stimulation, the intensity of stimulation, the number of stimulation for each brain region, and the direction of stimulation as a parameter.
여기에서, 상기 프로세서는, TMS 최소 자극 강도를 결정할 수 있다. 즉, 상기 프로세서는, TMS로 자극 전, 운동유발전위(motor evoked potential, MEP)를 측정하여 자극 강도를 결정할 수 있다. 이때, 상기 프로세서는, MEP가 가장 잘 유도되는 최적의 위치에서 연속 10번의 자극을 하여, 그 중 5번 넘게 50μV 이상 유도되는 최소 자극 강도를 resting motor threshold (RMT)로 결정할 수 있다.Here, the processor may determine the minimum TMS stimulation intensity. That is, the processor may determine the stimulation intensity by measuring a motor evoked potential (MEP) before stimulation with TMS. In this case, the processor may perform 10 consecutive stimulations at an optimal position where the MEP is best induced, and determine a minimum stimulation intensity at which 50 μV or more is induced more than 5 times as a resting motor threshold (RMT).
또한, 상기 프로세서는, TANS 방법을 이용하여 뇌 영역을 자극할 수 있다. 여기에서, 자극 강도는 RMT의 120% 강도의 단일 펄스로 5-6초마다 80번까지 자극될 수 있다.In addition, the processor may stimulate the brain region using the TANS method. Here, the stimulation intensity can be stimulated up to 80 times every 5-6 seconds with a single pulse of 120% of the RMT intensity.
또한, 상기 프로세서는, Atlas를 통한 TMS 자극 가능한 신경 섬유를 선정하고, 확산 강조 영상(DWI)과 기능적 자기공명영상(fMRI)중 적어도 하나를 이용하여 가장 큰 네트워크 클러스터의 gyrus 위치를 확인하며, 각 신경섬유 자극가능한 gyrus 범위에서 3000개 이상의 탐색격자(search grid)를 생성하고, 600개 정도의 코일 위치를 무작위 선택하며, 선택된 target cluster 별 다양한 코일 방향을 포함하여 E-field 모델링을 시행하고, 각 신경섬유를 최대로 자극할 수 있는 hotspot를 선택하여 자극 위치로 결정할 수 있다.In addition, the processor selects nerve fibers that can be stimulated by TMS through Atlas, identifies the location of the gyrus of the largest network cluster using at least one of diffusion-weighted imaging (DWI) and functional magnetic resonance imaging (fMRI), and each Create more than 3,000 search grids in the gyrus range that can stimulate nerve fibers, randomly select about 600 coil positions, conduct E-field modeling including various coil directions for each selected target cluster, and The stimulation location can be determined by selecting the hotspot that can stimulate the nerve fibers to the maximum.
또한, 상기 프로세서는 상기 비침습적 역동적 경로를 결정 시에, 상기 nCCEP 데이터의 초기 10ms 부터 50ms까지의 구간에서 나타나는 예파 형태의 제1 컴포넌트를 추출하고, 상기 제1 컴포넌트에 기초하여 경로 끝점 사이의 유클리드(Euclidean) 거리를 계산하고 경로의 길이를 통계적으로 유추함으로써 통계 분석을 수행하며, 상기 통계 분석 결과에 기초하여 멀티모달 이미징을 수행함으로써 비침습적 역동적 경로를 추출할 수 있고, 상기 비침습적 역동적 경로는 상기 유추된 경로의 길이와 상기 제1 컴포넌트의 잠복기가 양의 상관 관계를 가지고, 상기 유추된 경로의 길이와 상기 제1 컴포넌트의 진폭이 음의 상관 관계를 가지며, 상기 FA 맵과 상기 제1 컴포넌트의 속도가 양의 상관 관계를 가지는 역동적 경로 모델에 부합할 수 있다. 이때, 상기 프로세서는, CIPI 분석 방법, 확산 강조 영상(DWI) 신호, 기능적 자기공명영상(fMRI) 신호, 뇌전증 수술 이후 발작 예후 정보를 기반으로, 역동적 경로를 validation할 수 있다.In addition, when determining the non-invasive dynamic path, the processor extracts a first component in the form of a sharp wave appearing in an initial period of 10 ms to 50 ms of the nCCEP data, and based on the first component, the Euclidean path between end points of the path (Euclidean) Statistical analysis is performed by calculating the distance and statistically inferring the length of the path, and a non-invasive dynamic path can be extracted by performing multimodal imaging based on the statistical analysis result, wherein the non-invasive dynamic path is The inferred path length and the latency of the first component have a positive correlation, the inferred path length and the amplitude of the first component have a negative correlation, and the FA map and the first component have a negative correlation. can fit a dynamic path model in which the velocity of is positively correlated. In this case, the processor may validate the dynamic pathway based on the CIPI analysis method, diffusion-weighted imaging (DWI) signal, functional magnetic resonance imaging (fMRI) signal, and seizure prognostic information after epilepsy surgery.
여기에서, 상기 프로세서는, nCCEP를 확인하는 과정에서 CIPI 분석 방법을 이용할 수 있다. 이때, 상기 프로세서는, CIPI 분석을 이용하여 독립요소들을 분리하거나 결합할 수 있다. 즉, CIPI(common independent process identification) 분석 방법은, 각기 다른 뇌신호가 통계적으로 동일한지 확인하는 방법으로, 같은 요소를 선택하여 독립요소들을 분리하거나 결합시켜, 다른 신경섬유에서 기인한 nCCEP를 확인할 수 있다. 또한, 상기 프로세서는, CIPI 분석 방법을 이용하여 신경섬유별 독립된 nCCEP를 확인할 수 있고, 개인별 동일한 신경섬유에 대해 nCCEP 유사성을 확인할 수 있다.Here, the processor may use the CIPI analysis method in the process of confirming the nCCEP. In this case, the processor may separate or combine independent elements using CIPI analysis. In other words, the CIPI (common independent process identification) analysis method is a method of confirming whether different brain signals are statistically the same. It is possible to identify nCCEPs originating from different nerve fibers by selecting the same elements and separating or combining independent elements. there is. In addition, the processor can identify independent nCCEPs for each nerve fiber using the CIPI analysis method, and can confirm similarity of nCCEPs for the same nerve fiber for each individual.
또한, 상기 프로세서는, TMS자극으로 인해 매우 큰 잡파가 발생하여, 초기 뇌신호에 대한 평가가 어려울 수 있으므로, 경두개자기자극-뇌파(TMS-EEG)에서 잡파(artifact)를 제거하여 비침습적 뇌신호를 기록할 수 있다. In addition, since TMS stimulation generates very large artifacts, and it may be difficult to evaluate early brain signals, the processor removes artifacts from transcranial magnetic stimulation-EEG (TMS-EEG) for non-invasive brain signal can be recorded.
또한, 상기 프로세서는 상기 비침습적 역동적 경로를 결정 시에, 상기 nCCEP 데이터의 초기 50ms 부터 300ms까지의 구간에서 나타나는 서파 형태의 제2 컴포넌트를 추출하고, 상기 제1 컴포넌트 및 상기 제2 컴포넌트를 이용하여 유효 연결성 데이터를 추출하고, 상기 유효 연결성 데이터에 기초하여 뇌 영역을 정의하며, 상기 컴퓨터가 전기 근원 영상 분석을 수행함으로써 상기 정의된 뇌 영역을 시각화하는 동작을 더 수행할 수 있다. 이때, 상기 프로세서는 상기 유효 연결성 데이터에 기초하여 뇌 영역을 정의 시에, 상기 유효 연결성 데이터의 연결성 지표가 기 설정된 문턱 전압과 같거나 기 설정된 문턱 전압보다 큰 뇌 영역은 뇌전증 발생 구역(Epileptogenic zone)으로 정의하고, 상기 유효 연결성 데이터의 연결성 지표가 연결성이 있되, 기 설정된 문턱 전압보다 낮은 뇌 영역은 증식 구역(Propagation zone)으로 정의하고, 상기 유효 연결성 데이터의 연결성 지표가 연결성이 없는 뇌 영역은 비관련 구역(Non-Involved Zone)으로 정의할 수 있다.In addition, when determining the non-invasive dynamic path, the processor extracts a second component in the form of a slow wave appearing in the interval from the initial 50 ms to 300 ms of the nCCEP data, and using the first component and the second component An operation of extracting effective connectivity data, defining a brain region based on the effective connectivity data, and visualizing the defined brain region by performing electrical source image analysis by the computer may be further performed. In this case, when the processor defines a brain region based on the effective connectivity data, a brain region in which a connectivity index of the effective connectivity data is equal to or greater than a preset threshold voltage is an epileptogenic zone. ), and a brain region in which the connectivity index of the effective connectivity data has connectivity but is lower than a preset threshold voltage is defined as a propagation zone, and a brain region in which the connectivity index of the effective connectivity data has no connectivity is defined as a propagation zone. It can be defined as a non-involved zone.
또한, 상기 프로세서는 상기 비침습적 역동적 경로에 기초하여 nDT 정밀 뇌영상을 시각화 시에, 상기 nDT 정밀 뇌 영상을 행렬(Matrix), 서클 맵(Circle map), 뇌 체적(Volume), 및 뇌의 표면(Surface) 중 적어도 하나를 이용하여 시각화할 수 있다.In addition, when visualizing the nDT precise brain image based on the non-invasive dynamic path, the processor converts the nDT precise brain image into a matrix, a circle map, a brain volume, and a surface of the brain. It can be visualized using at least one of (Surface).
또한, 상기 프로세서는 상기 비침습적 역동적 경로 및 상기 시각화된 nDT 정밀 뇌영상을 데이터베이스에 저장된 데이터와 비교 및 분석함으로써 뇌의 이상 여부를 판단 시에, 뇌전증 수술 이후의 발작 예후를 진양성, 위양성, 진음성, 위음성으로 범주화하고, 뇌전증 유발 부위가 국소화된 최종적 정확도를 평가할 수 있다.In addition, the processor compares and analyzes the non-invasive dynamic pathway and the visualized nDT precision brain image with data stored in a database to determine whether there is an abnormality in the brain. It can be categorized as true negative or false negative, and the final accuracy with which the epilepsy-induced site is localized can be evaluated.
본 명세서에서 '뇌파 데이터'는 뇌의 활동에 따라 발생되는 전류를 도출 및 증폭하여 기록한 데이터이다. '뇌파 데이터'는 두피에 전극을 붙여 뇌의 전기적 활동을 기록하는 뇌파 검사(Electroencephalography; EEG)에 의해 파형 그래프의 형태로 획득된다.In the present specification, 'brain wave data' is data recorded by deriving and amplifying current generated according to brain activity. 'EEG data' is obtained in the form of a waveform graph by electroencephalography (EEG), which records the electrical activity of the brain by attaching electrodes to the scalp.
본 명세서에서 '네비게이션 경두개 자기자극(navigated transcranial magnetic stimulation, nTMS) 시스템'은 두 개 이상의 카메라를 이용하여 트랜스듀서로 환자의 머리 표면에 자극을 주었을 때 발생하는 자극의 위치 및 환자의 동작을 인식하고, 인식한 결과를 MR 영상에 매핑하여 제공하는 시스템을 의미할 수 있다. 이하에서, 네비게이션 경두개 자기자극 시스템은 'nTMS 시스템'으로 지칭될 수 있다.In the present specification, a 'navigated transcranial magnetic stimulation (nTMS) system' recognizes the location of stimulation and the motion of a patient when stimulation is applied to the surface of a patient's head with a transducer using two or more cameras. It may refer to a system that maps and provides a recognized result to an MR image. Hereinafter, the navigational transcranial magnetic stimulation system may be referred to as an 'nTMS system'.
이하, 도면을 참조하여 본 발명의 실시예들에 따른 nDT 정밀 뇌 영상 생성 방법 및 프로그램에 대해 설명하기로 한다.Hereinafter, a method and program for generating an nDT precise brain image according to embodiments of the present invention will be described with reference to the drawings.
도 1은 본 발명의 일 실시예에 따른 nDT 정밀 뇌 영상 생성 방법의 순서도이다.1 is a flowchart of a method for generating an nDT precise brain image according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 nDT 정밀 뇌 영상 생성 방법(S100)은 단계들(S110~S160)을 포함할 수 있다.Referring to FIG. 1 , a method for generating an nDT precise brain image (S100) according to an embodiment of the present invention may include steps S110 to S160.
단계(S110)에서, 컴퓨터의 상기 프로세서는 자기 공명 영상(Magnetic Resonance Imaging, 이하에서 'MRI'라고 한다) 촬영을 통해 제공되는 환자의 뇌에 대한 영상 데이터를 획득할 수 있다. 환자의 뇌에 대한 영상 데이터는 T1 강조 영상(T1 weighted imaging) 및 확산 강조 영상(Diffusion Weighted Imaging, DWI)을 포함할 수 있다. 환자의 뇌에 대한 영상 데이터는 후속 단계들에서 nDT 정밀 뇌 영상을 생성하는 데 이용될 수 있다.In step S110, the processor of the computer may obtain image data of the patient's brain provided through magnetic resonance imaging (hereinafter referred to as 'MRI'). Image data of the patient's brain may include T1 weighted imaging and diffusion weighted imaging (DWI). Imaging data of the patient's brain can be used to generate nDT precise brain images in subsequent steps.
단계(S120)에서, 컴퓨터의 상기 프로세서는 nTMS 시스템을 이용하여 뇌파 데이터를 측정하고, 저장할 수 있다. 컴퓨터의 상기 프로세서는 nTMS 시스템에 따라 환자의 머리 표면에 자극을 주었을 때 발생하는 자극의 위치 및 환자의 동작을 인식함과 동시에 뇌파 검사(EEG)를 통해 제공되는 뇌파 데이터를 측정 및 저장할 수 있다.In step S120, the processor of the computer may measure and store EEG data using the nTMS system. According to the nTMS system, the processor of the computer recognizes the location of the stimulation and the motion of the patient when the stimulation is applied to the surface of the patient's head, and at the same time measures and stores EEG data provided through electroencephalography (EEG).
일 실시 예에서, 컴퓨터의 상기 프로세서는 미리 정해진 일정 시간동안 환자의 뇌파 데이터를 획득할 수 있고, 뇌파 데이터는 미리 정해진 일정 구간으로 분할될 수 있다. 예를 들어, 미리 정해진 일정 구간은 뇌의 상태를 판단하기 위한 최소 단위시간 길이일 수 있고, 사용자가 임의로 지정한 구간일 수 있다. 미리 정해진 일정 구간은 nTMS 시스템을 이용하여 뇌파 데이터를 측정하는 모든 시간을 의미할 수 있다.In one embodiment, the processor of the computer may acquire EEG data of the patient for a predetermined period of time, and the EEG data may be divided into predetermined intervals. For example, the predetermined period may be a minimum unit time length for determining the state of the brain, or may be a period arbitrarily designated by the user. The pre-determined period may refer to all times during which EEG data is measured using the nTMS system.
여기에서, 상기 프로세서는, TMS 최소 자극 강도를 결정할 수 있다. 즉, 상기 프로세서는, TMS로 자극 전, 운동유발전위(motor evoked potential, MEP)를 측정하여 자극 강도를 결정할 수 있다. 이때, 상기 프로세서는, MEP가 가장 잘 유도되는 최적의 위치에서 연속 10번의 자극을 하여, 그 중 5번 넘게 50μV 이상 유도되는 최소 자극 강도를 resting motor threshold (RMT)로 결정할 수 있다.Here, the processor may determine the minimum TMS stimulation intensity. That is, the processor may determine the stimulation intensity by measuring a motor evoked potential (MEP) before stimulation with TMS. In this case, the processor may perform 10 consecutive stimulations at an optimal position where the MEP is best induced, and determine a minimum stimulation intensity at which 50 μV or more is induced more than 5 times as a resting motor threshold (RMT).
또한, 상기 프로세서는, TANS 방법을 이용하여 뇌 영역을 자극할 수 있다. 여기에서, 자극 강도는 RMT의 120% 강도의 단일 펄스로 5-6초마다 80번까지 자극될 수 있다.In addition, the processor may stimulate the brain region using the TANS method. Here, the stimulation intensity can be stimulated up to 80 times every 5-6 seconds with a single pulse of 120% of the RMT intensity.
또한, 상기 프로세서는, Atlas를 통한 TMS 자극 가능한 신경 섬유를 선정하고, 확산 강조 영상(DWI)과 기능적 자기공명영상(fMRI)중 적어도 하나를 이용하여 가장 큰 네트워크 클러스터의 gyrus 위치를 확인하며, 각 신경섬유 자극가능한 gyrus 범위에서 3000개 이상의 탐색격자(search grid)를 생성하고, 600개 정도의 코일 위치를 무작위 선택하며, 선택된 target cluster 별 다양한 코일 방향을 포함하여 E-field 모델링을 시행하고, 각 신경섬유를 최대로 자극할 수 있는 hotspot를 선택하여 자극 위치로 결정할 수 있다.In addition, the processor selects nerve fibers that can be stimulated by TMS through Atlas, identifies the location of the gyrus of the largest network cluster using at least one of diffusion-weighted imaging (DWI) and functional magnetic resonance imaging (fMRI), and each Create more than 3,000 search grids in the gyrus range that can stimulate nerve fibers, randomly select about 600 coil positions, conduct E-field modeling including various coil directions for each selected target cluster, and The stimulation location can be determined by selecting the hotspot that can stimulate the nerve fibers to the maximum.
단계(S130)에서, 컴퓨터의 상기 프로세서는 저장된 뇌파 데이터에 기초하여 비침습적 피질 피질 유발 전위(noninvasive corticocortical evoked potential, 이하에서 'nCCEP'라고 지칭한다) 데이터를 추출할 수 있다. nCEEP 데이터는 전기 자극이 가해진 위치와 이격된 다른 위치에서의 뇌파를 기록함으로써 뇌 연결성을 파악할 수 있는 데이터로서, 뇌의 유효 연결성을 대변하는 데이터일 수 있다. In step S130, the processor of the computer may extract noninvasive corticocortical evoked potential (hereinafter referred to as 'nCCEP') data based on the stored EEG data. The nCEEP data is data capable of grasping brain connectivity by recording brain waves at a location apart from a location where electrical stimulation is applied, and may represent data representing effective connectivity of the brain.
이때, 상기 프로세서는, CIPI 분석 방법, 확산 강조 영상(DWI) 신호, 기능적 자기공명영상(fMRI) 신호, 뇌전증 수술 이후 발작 예후 정보를 기반으로, 역동적 경로를 validation할 수 있다.In this case, the processor may validate the dynamic pathway based on the CIPI analysis method, diffusion-weighted imaging (DWI) signal, functional magnetic resonance imaging (fMRI) signal, and seizure prognostic information after epilepsy surgery.
여기에서, 상기 프로세서는, nCCEP를 확인하는 과정에서 CIPI 분석 방법을 이용할 수 있다. 이때, 상기 프로세서는, CIPI 분석을 이용하여 독립요소들을 분리하거나 결합할 수 있다. 즉, CIPI(common independent process identification) 분석 방법은, 각기 다른 뇌신호가 통계적으로 동일한지 확인하는 방법으로, 같은 요소를 선택하여 독립요소들을 분리하거나 결합시켜, 다른 신경섬유에서 기인한 nCCEP를 확인할 수 있다. 또한, 상기 프로세서는, CIPI 분석 방법을 이용하여 신경섬유별 독립된 nCCEP를 확인할 수 있고, 개인별 동일한 신경섬유에 대해 nCCEP 유사성을 확인할 수 있다.Here, the processor may use the CIPI analysis method in the process of confirming the nCCEP. In this case, the processor may separate or combine independent elements using CIPI analysis. In other words, the CIPI (common independent process identification) analysis method is a method of confirming whether different brain signals are statistically the same. It is possible to identify nCCEPs originating from different nerve fibers by selecting the same elements and separating or combining independent elements. there is. In addition, the processor can identify independent nCCEPs for each nerve fiber using the CIPI analysis method, and can confirm similarity of nCCEPs for the same nerve fiber for each individual.
또한, 상기 프로세서는, TMS자극으로 인해 매우 큰 잡파가 발생하여, 초기 뇌신호에 대한 평가가 어려울 수 있으므로, 경두개자기자극-뇌파(TMS-EEG)에서 잡파(artifact)를 제거하여 비침습적 뇌신호를 기록할 수 있다. In addition, since TMS stimulation generates very large artifacts, and it may be difficult to evaluate early brain signals, the processor removes artifacts from transcranial magnetic stimulation-EEG (TMS-EEG) for non-invasive brain signal can be recorded.
단계(S140)에서, 컴퓨터의 상기 프로세서는 MRI 촬영을 통해 얻은 영상 데이터 및 nCCEP 데이터에 기초하여 멀티모달 이미징(Multi-modal imaging)을 수행함으로써 비침습적 역동적 경로(noninvasive dynamic tractography, 이하에서 'nDT'라고 지칭한다)를 추출할 수 있다. nDT는 멀티모달 이미징을 통해 MRI 촬영을 통해 획득한 영상 데이터로부터 대변되는 뇌의 구조 연결성과 nCCEP 데이터로부터 대변되는 뇌의 유효 연결성을 결합함으로써 정확한 뇌 연결성 위치를 구현한 결과 값일 수 있다.In step S140, the processor of the computer performs multi-modal imaging based on the image data and nCCEP data obtained through MRI imaging to obtain noninvasive dynamic tractography (hereinafter referred to as 'nDT'). ) can be extracted. The nDT may be a result of realizing an accurate brain connectivity location by combining structural connectivity of the brain represented by image data obtained through MRI imaging through multimodal imaging and effective connectivity of the brain represented by nCCEP data.
멀티모달 이미징은, MRI 촬영을 통해 얻은 영상 데이터 및 nCCEP 데이터의 유의미한 정보를 추출하도록 학습된 딥러닝 모델(Deep-learning model)의 동작을 지칭할 수 있다. 딥러닝 모델은 영상에서 객체의 위치, 방향, 크기 등의 공간정보를 실시간으로 알아낼 수 있고, 이에 기초하여 영상을 처리하도록 학습될 수 있다.Multimodal imaging may refer to the operation of a deep-learning model trained to extract significant information from image data and nCCEP data obtained through MRI imaging. The deep learning model can find spatial information such as the position, direction, and size of an object in real time, and can learn to process the image based on this.
단계(S150)에서, 컴퓨터의 상기 프로세서는 결정된 nDT에 기초하여 nDT 정밀 뇌영상을 시각화할 수 있다. nDT 정밀 뇌 영상은 뇌 지도(atlas)에 표현된 데이터일 수 있다. 그러나 본 발명이 이에 제한되는 것은 아니며, nDT 정밀 뇌 영상은 다양한 방식으로 구현될 수 있다. nDT 정밀 뇌 영상을 구현하는 다양한 방법에 대하여는 후술되는 도 7을 참조하여 보다 상세하게 설명한다.In step S150, the processor of the computer may visualize the nDT precise brain image based on the determined nDT. The nDT precise brain image may be data expressed on a brain map (atlas). However, the present invention is not limited thereto, and nDT precision brain imaging can be implemented in various ways. Various methods of implementing nDT precision brain imaging will be described in detail with reference to FIG. 7 described later.
단계(S160)에서, 컴퓨터의 상기 프로세서는 nDT 및 시각화된 nDT 정밀 뇌 영상을 데이터 베이스에 저장된 뇌영상과 비교함으로써 환자의 뇌의 이상 여부를 판단할 수 있다. 컴퓨터는 뇌의 이상 부위를 분석하고, 뇌전증 유발 부위를 국소화할 수 있다. 아울러, 컴퓨터는 뇌전증 수술 이후의 발작 예후를 분류하여 분석할 수 있다. 예를 들어, 컴퓨터의 상기 프로세서는 Engel 및 ILAE(International League Against Epilepsy) 척도 기준에 따라 뇌전증 수술 후의 예후를 분류할 수 있다. 또한, 컴퓨터는 뇌전증 수술 이후의 발작 예후를 진양성, 위양성, 진음성, 위음성으로 범주화한 후 국소화의 최종적 정확도를 평가할 수 있다. In step S160, the processor of the computer may determine whether the patient's brain is abnormal by comparing the nDT and the visualized nDT precise brain image with the brain image stored in the database. Computers can analyze abnormal areas of the brain and localize epilepsy-causing areas. In addition, the computer may classify and analyze the prognosis of seizures after epilepsy surgery. For example, the processor of the computer may classify the prognosis following epilepsy surgery according to Engel and International League Against Epilepsy (ILAE) scale criteria. In addition, the computer can evaluate the final accuracy of localization after categorizing the seizure prognosis after epilepsy surgery into true positive, false positive, true negative, and false negative.
본 개시의 일 실시 예에 따르면, 능동적으로 뇌 연결성을 확인할 수 있으므로 검사에 소모되는 시간 및 비용을 절감할 수 있다. 또한, 비침습적으로 개인 각각의 뇌 전체에 대한 연결성 평가가 가능하고, 개인 별로 생성되는 nDT 정밀 뇌영상을 이용하여 뇌전증 발생 부위를 국소화함으로써 개인별 맞춤 치료를 시행할 수 있다. 아울러, 의식이 없는 환자에의 뇌 연결성을 확인할 수 있는 효과가 있다.According to an embodiment of the present disclosure, since it is possible to actively check brain connectivity, it is possible to reduce time and cost consumed in examination. In addition, it is possible to non-invasively evaluate the connectivity of the entire brain of each individual, and individualized treatment can be performed by localizing the epileptic region using nDT precise brain images generated for each individual. In addition, there is an effect that can confirm the brain connectivity of the unconscious patient.
본 개시에 따른 실시 예들을 이용하여 언어기능에 대한 유효 연결성 및 구조 연결성 정보들을 시각화할 수 있다. 예를 들어, 본 개시에 따른 실시 예들은 뇌전증뿐만 아니라, 치매, 언어장애, 자폐, 우울, 뇌졸중 등 다양한 뇌질환에서 응용될 수 있다. 구체적으로, 본 개시에 따른 실시 예들을 이용하여 언어 기능 장애가 있는 환자로부터 연결성 이상을 확인함으로써 진단 및 모니터링 바이오 마커로 활용할 수 있다. 뿐만 아니라, 뇌종양 수술 중 사용되는 내비게이션 소프트웨어와 본 개시에 따른 실시 예들을 결합하여 특정 구조물을 피해서 수술적 치료를 수행함으로써 언어 기능 장애 등의 수술 후유증을 예방할 수 있고, 수술 중 신경계 모니터링을 시행하는데에도 본 개시에 따른 실시 예들이 사용될 수 있다. Effective connectivity and structural connectivity information for language functions can be visualized using embodiments according to the present disclosure. For example, embodiments according to the present disclosure may be applied not only to epilepsy, but also to various brain diseases such as dementia, language disorder, autism, depression, and stroke. Specifically, it can be used as a diagnostic and monitoring biomarker by identifying connectivity abnormalities in patients with language dysfunction using the embodiments according to the present disclosure. In addition, by combining the navigation software used during brain tumor surgery with the embodiments according to the present disclosure, surgical treatment is performed by avoiding specific structures, thereby preventing postoperative complications such as language dysfunction, and performing neurological monitoring during surgery. Embodiments according to the present disclosure may be used.
본 개시에 따른 실시 예들은, 인지 기능에 대한 유효 연결성 및 구조 연결성 정보를 시각화할 수 있다. 예를 들어, 본 개시에 따른 실시 예들은 인지 기능 장애가 있는 환자로부터 연결성 이상을 확인함으로써 진단 및 모니터링 바이오 마커로 활용할 수 있다. 예를 들어, 병변이 있는 환자들에 대해서 본 개시에 따른 nDT 정밀 뇌 영상을 추출하고 특정한 트랙(tract)에 이상이 있는 환자에서 특정한 인지 기능 영역에 이상이 있는지 확인하는 전향적인 연구를 통해 특정 인지 기능을 담당하는 트랙(tract)을 확인할 수 있다. 뿐만 아니라, 본 개시에 따른 실시 예들은 뇌전증 약물 중단 및 운전 가능 여부 등에 대한 평가에서 모니터링 지표로써 활용될 수 있다.Embodiments according to the present disclosure may visualize effective connectivity and structural connectivity information for cognitive functions. For example, embodiments according to the present disclosure can be used as diagnostic and monitoring biomarkers by identifying connectivity abnormalities in patients with cognitive dysfunction. For example, through a prospective study to extract nDT precision brain images according to the present disclosure for patients with lesions and to identify abnormalities in specific cognitive function areas in patients with abnormalities in specific tracts, specific cognition You can check the tract responsible for the function. In addition, the embodiments according to the present disclosure can be used as monitoring indicators in the evaluation of stopping epilepsy drugs and whether driving is possible.
도 2는 도 1의 단계(S110)를 설명하기 위한 순서도이다. 이하에서는, 도 1을 참조하여 설명하고, 중복되는 설명은 생략한다.FIG. 2 is a flowchart for explaining step S110 of FIG. 1 . Hereinafter, description will be made with reference to FIG. 1, and overlapping descriptions will be omitted.
도 2를 참조하면, 단계(S110)는 단계들(S111, S112, S113, S114)을 포함할 수 있다.Referring to FIG. 2 , step S110 may include steps S111, S112, S113, and S114.
단계(S111)에서, MRI 촬영이 수행될 수 있다. In step S111, MRI imaging may be performed.
단계(S112)에서, 컴퓨터의 상기 프로세서는 MRI 촬영을 통해 제공되는 T1 강조 영상(T1 weighted imaging) 및 확산 강조 영상(Diffusion Weighted Imaging, DWI)을 획득할 수 있다. In step S112, the processor of the computer may acquire T1 weighted imaging and diffusion weighted imaging (DWI) provided through MRI imaging.
T1 강조 영상은 조직의 이완 시간의 차이를 신호 차이로 반영한 영상으로서, T1은 상이한 조직 성분들을 강조함으로써 영상 대비를 야기하는 상수일 수 있다. 예를 들어, T1 강조 영상에서 지방은 고 대비를 갖고, 물은 저 대비를 가지며, 공기와 조밀한 뼈는 최저 대비를 갖도록 표현될 수 있다. T1 강조 영상은 3D로 구현될 수 있다. A T1-weighted image is an image in which a difference in tissue relaxation time is reflected as a signal difference, and T1 may be a constant that causes image contrast by emphasizing different tissue components. For example, in a T1-weighted image, fat may have high contrast, water may have low contrast, and air and dense bone may have the lowest contrast. The T1-weighted image may be implemented in 3D.
확산 강조 영상(DWI)은 물질 분자가 분자 농도가 높은 쪽에서 낮은 쪽으로 이동하는 현상을 통해 유발되는 신호의 세기 차이를 반영한 영상일 수 있다.The diffusion-weighted image (DWI) may be an image reflecting a difference in intensity of a signal caused by a phenomenon in which material molecules move from a side having a high molecular concentration to a side having a low molecular concentration.
단계(S113)에서, 컴퓨터의 상기 프로세서는 확산 강조 영상(DWI)을 전처리할 수 있다. 예를 들어, 컴퓨터는 확산 강조 영상(DWI)의 노이즈를 제거하고, B1 필드(filed)의 비균질성(inhomogeneity) 및 그래디언트 와전류(gradient eddy current)를 조정할 수 있다. 컴퓨터의 상기 프로세서는 확산 강조 영상(DWI)의 두개골을 제거하고 EPI(Echo Planar Imaging) 왜곡을 수정함으로써 편향 보정할 수 있다. In step S113, the processor of the computer may pre-process the diffusion-enhanced image (DWI). For example, the computer can remove noise in the diffusion-weighted image (DWI) and adjust the inhomogeneity and gradient eddy currents of the B1 field. The processor of the computer can bias-correct by removing the skull of the diffusion-weighted image (DWI) and correcting EPI (Echo Planar Imaging) distortion.
단계(S113)에서, 컴퓨터의 상기 프로세서는 전처리된 확산 강조 영상(DWI)을 이용하여 분할비등방도(fractional anisotropy, 이하에서 'FA'라고 한다) 맵을 추출할 수 있다. FA 맵은, 물질 분자의 확산이 여러 방향으로 자유로워 등방성(isotropy)을 띌수록 FA가 감소하고, 물질 분자 확산이 어느 한 방향으로 치우쳐 비등방성을 띌수록 FA가 증가하는 것을 표시한 데이터일 수 있다.In step S113, the processor of the computer may extract a fractional anisotropy (hereinafter referred to as 'FA') map using the preprocessed diffusion-enhanced image (DWI). The FA map shows that FA decreases as the diffusion of material molecules is free in various directions and isotropic, and FA increases as the diffusion of material molecules is biased in one direction and becomes anisotropic. there is.
도 3은 도 1의 단계(S120)를 설명하기 위한 순서도이고, 도 4는 단계(S121)에서 분할된 뇌 영역을 설명하기 위한 도면이다. 이하에서는, 도 1 및 도 2를 참조하여 설명하고, 중복되는 설명은 생략한다.FIG. 3 is a flowchart for explaining step S120 of FIG. 1, and FIG. 4 is a diagram for explaining the brain region divided in step S121. Hereinafter, description will be made with reference to FIGS. 1 and 2, and overlapping descriptions will be omitted.
단계(S120)는 단계들(S121, S122, S123, S124)을 포함할 수 있다.Step S120 may include steps S121, S122, S123, and S124.
단계(S121)에서, 컴퓨터의 상기 프로세서는 T1 강조 영상에 기초하여 뇌 영역을 분할할 수 있다. 예를 들어, 컴퓨터의 상기 프로세서는, 도 4에 도시된 바와 같이, 피질 분할 시스템(cortical parcellation system, CPS)을 이용하여 환자의 뇌 영역을 분할할 수 있고, 기 촬영된 환자의 T1 강조 영상에 뇌 영역을 구분하여 표시할 수 있다.In step S121, the processor of the computer may segment the brain region based on the T1-weighted image. For example, as shown in FIG. 4 , the processor of the computer may segment the patient's brain region using a cortical parcellation system (CPS), and may include a pre-photographed T1-weighted image of the patient. Brain regions can be distinguished and displayed.
단계(S122)에서, 컴퓨터의 상기 프로세서는 운동 유발 전위(Motor Evoked Potential, MEP)를 측정함으로써 nTMS 시스템에서 이용될 자극의 강도를 결정할 수 있다. 이하에서, 단계(S122)에서 결정된 자극의 강도는 'RMT(Resting Motor Threshold)'로 지칭될 수 있다.In step S122, the processor of the computer may determine the intensity of stimulation to be used in the nTMS system by measuring a Motor Evoked Potential (MEP). Hereinafter, the strength of the stimulus determined in step S122 may be referred to as 'RMT (Resting Motor Threshold)'.
예를 들어, 컴퓨터의 상기 프로세서는 자극하려는 운동 피질 영역에 수직이 되도록 배치된 코일에 단일 펄스(Single Pulse)를 제공할 수 있고, 운동 유발 전위(MEP)가 가장 잘 유도되는 위치에 연속적으로 10번의 자극을 제공할 수 있다. 컴퓨터의 상기 프로세서는, 10번 중 5번 이상 50μV 이상의 운동 유발 전위(MEP)가 유도되는 최소 자극 강도를 RMT로 결정할 수 있다. 상기 코일은 8자 코일일 수 있다.For example, the processor of the computer may provide a single pulse to a coil disposed perpendicular to the motor cortical region to be stimulated, and continuously apply 10 pulses to a location where a motor evoked potential (MEP) is best induced. stimulus can be provided. The processor of the computer may determine, as the RMT, the minimum stimulus intensity at which a motor evoked potential (MEP) of 50 μV or more is induced 5 times or more out of 10 times. The coil may be an 8-character coil.
단계(S123)에서, 컴퓨터의 상기 프로세서는 nTMS 시스템을 이용하여 분할된 뇌 영역을 RMT로 자극할 수 있다. 예를 들어, 컴퓨터의 상기 프로세서는, 단계(S121)를 통해 분할된 뇌 영역 각각에 배치된 코일을 통해 분할된 뇌 영역 각각을 단계(S122)에서 결정된 자극의 세기(RMT)로 자극할 수 있다. 상기 코일은 8자 코일일 수 있다. In step S123, the processor of the computer may stimulate the divided brain regions with RMT using the nTMS system. For example, the processor of the computer may stimulate each divided brain region with the stimulus intensity RMT determined in step S122 through coils disposed in each brain region divided through step S121. . The coil may be an 8-character coil.
예를 들어, nTMS 시스템은, 자극의 빈도(Frequency of the stimulation), 자극의 강도(Stimulation intensity), 자극 개수(Number of stimulations) 및 자극 방향(Stimulation Orientation) 등과 같은 파라미터를 포함할 수 있다. 예를 들어, 자극의 빈도(Frequency of the stimulation)는 0.2Hz, 자극 개수(Number of stimulations)는 각 뇌 영역마다 평균 30회, 자극 방향(Stimulation Orientation)은 코일의 각도를 45 °씩 시계방향으로 변경하도록 설정되고, 자극의 강도(Stimulation intensity)는 RMT의 100%로 설정하되, 환자의 고통 수준에 기초하여 10%씩 조정되도록 설정될 수 있다. 실시 예에 따라, 컴퓨터의 상기 프로세서는 분할된 뇌 영역 각각을 RMT의 120%의 강도를 갖는 단일 펄스를 이용하여 5초 내지 6초마다 최대 80번까지 자극할 수도 있다.For example, the nTMS system may include parameters such as frequency of the stimulation, stimulation intensity, number of stimulations, and stimulation orientation. For example, Frequency of the stimulation is 0.2 Hz, Number of stimulations is 30 times on average for each brain region, and Stimulation Orientation is by rotating the angle of the coil clockwise by 45 °. It is set to change, and the stimulation intensity (Stimulation intensity) is set to 100% of the RMT, but can be set to be adjusted by 10% based on the patient's pain level. According to an embodiment, the processor of the computer may stimulate each divided brain region up to 80 times every 5 to 6 seconds using a single pulse having an intensity of 120% of the RMT.
단계(S124)에서, 컴퓨터의 상기 프로세서는 뇌 영역을 자극함에 따라 생성되는 뇌파 데이터를 측정 및 저장할 수 있다. 예를 들어, 컴퓨터의 상기 프로세서는 뇌 영역을 자극하는 동안 64 채널 이상의 전극을 사용하여 뇌파를 측정할 수 있다. 이 때, 컴퓨터의 상기 프로세서는 각 채널의 임피던스(impedence)를 5KΩ 이하로 유지할 수 있고, 뇌파 데이터의 표본율(sampling rate)을 2000Hz로 설정할 수 있다. 컴퓨터의 상기 프로세서는 측정한 뇌파 데이터를 1Hz이상이고 100Hz 이하인 신호 대역 통과 필터(bandpass filter)를 사용하여 필터링할 수 있다. 그러나 본 개시에 따른 실시 예들이 이에 제한되는 것은 아니며, 컴퓨터의 상기 프로세서는 측정한 뇌파 데이터를 다양한 주파수를 갖는 신호 대역 통화 필터를 사용하여 필터링할 수도 있다. In step S124, the processor of the computer may measure and store EEG data generated by stimulating the brain region. For example, the processor of a computer may measure brain waves using 64 or more channels of electrodes while stimulating a brain region. At this time, the processor of the computer may maintain the impedance of each channel to 5KΩ or less, and may set the sampling rate of EEG data to 2000Hz. The processor of the computer may filter the measured EEG data using a signal bandpass filter having a frequency of 1 Hz or more and 100 Hz or less. However, embodiments according to the present disclosure are not limited thereto, and the processor of the computer may filter the measured EEG data using a signal band communication filter having various frequencies.
또한, 컴퓨터의 상기 프로세서는 뇌 영역을 자극함에 따른 증폭기 포화(amplifier saturation)를 회피하기 위하여 자극하기 전 100ms부터 자극 후 2ms까지 증폭기의 입력을 유지하는(amplifier input constant) 샘플홀드 회로(sample-and-hold circuit)를 이용할 수 있다. 그러나 본 개시에 따른 실시 예들이 이에 제한되는 것은 아니며, 샘플홀드 회로는 생략될 수 있다. 예를 들어, DC 증폭기(DC amplifier)를 사용하는 경우 샘플홀드 회로가 생략될 수 있다. In addition, the processor of the computer maintains the input of the amplifier from 100 ms before stimulation to 2 ms after stimulation in order to avoid amplifier saturation due to stimulation of the brain region (amplifier input constant) (sample-and-hold circuit) -hold circuit) can be used. However, embodiments according to the present disclosure are not limited thereto, and the sample hold circuit may be omitted. For example, a sample hold circuit may be omitted when a DC amplifier is used.
도 5는 도 1의 단계(S140)를 설명하기 위한 순서도이고, 도 6은 도 1의 단계(S140)의 다른 실시 예를 설명하기 위한 순서도이다. 이하에서는, 도 1 내지 도 4를 모두 참조하여 설명하고, 중복되는 설명은 생략한다.5 is a flowchart for explaining step S140 of FIG. 1, and FIG. 6 is a flowchart for explaining another embodiment of step S140 of FIG. Hereinafter, all descriptions will be made with reference to FIGS. 1 to 4, and overlapping descriptions will be omitted.
도 5를 참조하면, 단계(S140)는 단계들(S141, S142, S143)을 포함할 수 있다.Referring to FIG. 5 , step S140 may include steps S141, S142, and S143.
단계(S141)에서, 컴퓨터의 상기 프로세서는 nCCEP 데이터로부터 컴포넌트(Component)를 추출할 수 있다. 컴포넌트는 초기 10ms 부터 50ms까지의 구간에서 나타나는 예파 형태의 제1 컴포턴트(N1)를 포함할 수 있다. 제1 컴포턴트(N1)는 전기 자극에 의해 신경세포가 흥분함에 따라 나타나는 파형일 수 있다. 컴퓨터의 상기 프로세서는 nTMS 시스템에 의한 전기 자극과 초기 10ms 부터 50ms까지의 구간에서 나타나는 음의 굴곡(negative deflection)을 확인함으로써 제1 컴포넌트(N1)를 추출할 수 있다. 컴퓨터는 각 연결(tract)에 대하여 제1 컴포넌트(N1)의 진폭, 잠복기, 및 속도를 계산할 수 있다. 예를 들어, 컴퓨터의 상기 프로세서는 두 전극 사이의 최소 경로 길이를 두 전극 사이의 제1 컴포넌트(N1)의 잠복기로 나눔으로써 제1 컴포넌트(N1)의 속도를 계산할 수 있다.In step S141, the processor of the computer may extract a component from nCCEP data. The component may include a first component N1 in the form of a sharp wave appearing in an initial period of 10 ms to 50 ms. The first component N1 may be a waveform that appears when nerve cells are excited by electrical stimulation. The processor of the computer may extract the first component N1 by checking electrical stimulation by the nTMS system and negative deflection appearing in the initial period from 10 ms to 50 ms. The computer can calculate the amplitude, latency and velocity of the first component N1 for each tract. For example, the processor of the computer may calculate the speed of the first component N1 by dividing the minimum path length between the two electrodes by the latency of the first component N1 between the two electrodes.
실시 예에 따라, 컴포넌트는 초기 50ms 부터 300ms까지의 구간에서 나타나는 서파 형태의 제2 컴포넌트(N2)를 더 포함할 수 있다. 제2 컴포넌트(N2)는 뇌가 다양한 억제 과정을 거치면서 나타나는 파형일 수 있다. 제2 컴포넌트(N2)는 비정상적인 뇌파로서, 뇌전증 유발 부위를 시사하는 지표로 사용될 수 있다. 컴퓨터는 베이스라인(baseline)의 표준 편차를 사용하여 초기 50ms 부터 300ms까지의 구간에서 나타나는 표준 편차(Z점수)의 절대값을 계산함으로써 제2 컴포넌트(N2)를 추출할 수 있다. 예를 들어, 컴퓨터는 각각의 전극에 대하여 표준 편차를 계산할 수 있고, 제2 컴포넌트(N2)의 피크가 베이스라인(baseline)의 진폭보다 ±6 표준 편차의 임계값보다 클 때 유의미한 데이터로 결정할 수 있다.Depending on the embodiment, the component may further include a second component N2 in the form of a slow wave appearing in an initial period of 50 ms to 300 ms. The second component N2 may be a waveform that appears when the brain goes through various inhibition processes. The second component N2 is an abnormal brain wave, and may be used as an indicator suggesting an epileptic induction site. The computer may extract the second component N2 by calculating the absolute value of the standard deviation (Z score) appearing in the interval from the initial 50 ms to 300 ms using the standard deviation of the baseline. For example, the computer may calculate the standard deviation for each electrode and determine that the data is significant when the peak of the second component (N2) is greater than a threshold value of ±6 standard deviations from the amplitude of the baseline. there is.
단계(S142)에서, 컴퓨터의 상기 프로세서는 추출한 컴포넌트에 기초하여 통계 분석을 수행할 수 있다. 컴퓨터는 생물학적으로 타당하지 않은 경로를 최소화하기 위해 경로 끝점 사이의 유클리드(Euclidean) 거리를 계산하고 경로의 길이를 통계적으로 유추할 수 있다. 컴퓨터의 상기 프로세서는 생물학적으로 타당하지 않은 경로를 최소화하도록 학습된 딥러닝 모델을 이용하여 통계 분석을 수행할 수 있다. In step S142, the processor of the computer may perform statistical analysis based on the extracted components. The computer can calculate the Euclidean distance between the endpoints of the path and statistically infer the length of the path in order to minimize the biologically implausible path. The processor of the computer may perform statistical analysis using a deep learning model that has been trained to minimize biologically implausible paths.
딥러닝 모델은 거리(distance) 및 길이(length)와 관련된 집단 수준의 선형 회귀 모델을 계산하도록 학습될 수 있다. 예를 들어, 딥러닝 모델은 제1 컴포넌트(N1)의 피크 진폭과 제1 컴포넌트(N1)의 잠복기가 경로 길이의 10mm 간격마다 평균화된 간격별로 회귀 분석을 수행하도록 학습될 수 있다. 딥러닝 모델은, 제1 컴포넌트(N1)의 전파 속도에 대하여 비교할 수 있는 모델을 생성하기 위해, 15개의 동일한 크기의 FA bins에 대한 평균 속도를 계산할 수 있고, 계산된 결과 값을 회귀 모델에 사용하도록 학습될 수 있다. 실시 예에 따라, 딥러닝 모델은 평균의 3 표준 편차보다 큰 모델 오류가 있는 경로를 제거하도록 학습될 수 있다. 실시 예에 따라, 딥러닝 모델은 유의미한 제1 컴포넌트(N1)의 진폭, 잠복기, 속도, 확산 강조 영상(DWI)를 통해 추출된 연결 경로의 길이, 및 평균 FA 값이 0.2 보다 큰 전극 쌍만을 이용하여 통계 분석을 수행하도록 학습될 수 있다.The deep learning model can be trained to compute a group-level linear regression model related to distance and length. For example, the deep learning model may be trained to perform regression analysis for each interval in which the peak amplitude of the first component N1 and the latency of the first component N1 are averaged for each 10 mm interval of the path length. The deep learning model can calculate the average velocity for 15 FA bins of the same size in order to create a model that can compare the propagation velocity of the first component N1, and use the calculated result value in the regression model. can be learned to do. Depending on the embodiment, the deep learning model may be trained to remove paths with model errors greater than 3 standard deviations of the mean. According to the embodiment, the deep learning model uses only the amplitude, latency, and speed of the first significant component (N1), the length of the connection path extracted through diffusion-weighted image (DWI), and electrode pairs having an average FA value greater than 0.2. and can be trained to perform statistical analysis.
단계(S143)에서, 컴퓨터의 상기 프로세서는 통계 분석에 기초하여 멀티모달 이미징(Multi-modal imaging)을 수행함으로써 비침습적 역동적 경로(nDT)를 추출할 수 있다. 컴퓨터의 상기 프로세서는 제1 컴포넌트(N1)가 nDT모델에 부합하는지 판단할 수 있고, nDT 모델에 부합하는 부분을 선정하여 nDT로 결정할 수 있다. nDT는 단계(S142)에서 유추된 연결 경로의 길이와 제1 컴포넌트(N1)의 잠복기가 양의 상관 관계를 가지고, nDT는 단계(S142)에서 유추된 연결 경로의 길이와 제1 컴포넌트(N1)의 진폭이 음의 상관 관계를 가지며, FA 맵과 제1 컴포넌트(N1)의 속도가 양의 상관 관계를 가지는 nDT모델에 부합하는 데이터일 수 있다.In step S143, the processor of the computer may extract a non-invasive dynamic path (nDT) by performing multi-modal imaging based on statistical analysis. The processor of the computer may determine whether the first component N1 conforms to the nDT model, and may select a part conforming to the nDT model and determine it as the nDT. nDT has a positive correlation between the length of the connection path inferred in step S142 and the latency of the first component N1, and nDT is the length of the connection path inferred in step S142 and the first component N1. It may be data conforming to an nDT model in which the amplitude of β has a negative correlation and the FA map and the velocity of the first component N1 have a positive correlation.
컴퓨터의 상기 프로세서가 제2 컴포넌트(N2)를 더 추출하는 경우, 컴퓨터의 상기 프로세서는 제1 컴포넌트(N1)와 제2 컴포넌트(N2)의 진폭비를 이용하여 뇌전증 유발 부위에 해당되는 패턴을 구현할 수 있다. 즉, 본 개시의 일 실시 예에 따르면 뇌 전체에 대하여 nCCEP 데이터를 측정할 수 있으므로 제1 컴포넌트(N1)와 제2 컴포넌트(N2)의 진폭비를 통해 뇌전증 유발 부위에 해당되는 패턴을 구현할 수 있다. 따라서, 이 경우 비침습적 역동적 경로(nDT)를 추출하기 위한 몇 가지 단계들이 더 수행될 수 있다. 이에 대하여는 도 6을 참조하여 보다 상세하게 설명한다.When the processor of the computer further extracts the second component N2, the processor of the computer implements a pattern corresponding to the epilepsy inducing region using the amplitude ratio of the first component N1 and the second component N2. can That is, according to an embodiment of the present disclosure, since nCCEP data can be measured for the entire brain, a pattern corresponding to an epilepsy-inducing region can be implemented through the amplitude ratio of the first component N1 and the second component N2. . Therefore, in this case, several more steps may be performed to extract the non-invasive dynamic pathway (nDT). This will be described in more detail with reference to FIG. 6 .
도 6을 참조하면, 단계(S140')는 단계들(S141, S143, S144, S145, S146, S147)을 포함할 수 있고, 단계들(S141, S143)은 도 5의 단계들(S141, 143)과 같은 단계일 수 있다. 따라서, 도 5와 중복되는 설명은 생략한다.Referring to FIG. 6 , step S140′ may include steps S141, S143, S144, S145, S146, and S147, and steps S141 and S143 are steps S141 and 143 of FIG. ) may be the same step. Therefore, a description overlapping with that of FIG. 5 will be omitted.
단계(S144)에서, 컴퓨터의 상기 프로세서는 제1 컴포넌트(N1)와 제2 컴포넌트(N2)의 진폭비를 이용하여 유효 연결성 분석을 수행할 수 있다. 예를 들어, 컴퓨터는 한 대상자의 전체적인 유효 연결성 데이터를 추출할 수 있고, 매트릭스를 통해 유효 연결성 데이터를 정리하고 시각화할 수 있다. In step S144, the processor of the computer may perform effective connectivity analysis using the amplitude ratio of the first component N1 and the second component N2. For example, the computer can extract the overall effective connectivity data of one subject, organize and visualize the effective connectivity data through a matrix.
이 때, 바이폴라 채널은 노드를 구성하고, 평균 제곱근 편차(RMS, Root Mean Square)는 에지를 구성할 수 있다. 평균 제곱근 편차(RMS, Root Mean Square)는 유효 연결성 네트워크 지표를 재구성하기 위해 nCCEP 데이터의 크기로 구성될 수 있다. 컴퓨터는 동일한 영역 및 영역 사이의 모든 노드를 연결하는 연결 가중치의 평균값을 계산함으로써 유효 연결성을 추출할 수 있다. In this case, the bipolar channel may constitute a node, and the root mean square (RMS) may constitute an edge. Root Mean Square (RMS) can be configured with the size of nCCEP data to reconstruct an effective connectivity network indicator. The computer can extract the effective connectivity by calculating the average value of the connection weights connecting all nodes in the same area and between areas.
단계(S145)에서, 컴퓨터의 상기 프로세서는 유효 연결성 데이터를 이용하여 뇌 영역들을 정의할 수 있다. 컴퓨터는 유효 연결성 데이터를 사용하여 뇌 영역들을 뇌전증 발생 구역(EZ, Epileptogenic zone), 증식 구역(PZ, Propagation zone), 및 비관련 구역(NIZ, Non-Involved Zone)으로 정의할 수 있다. In step S145, the processor of the computer may define brain regions using the available connectivity data. The computer can use the available connectivity data to define brain regions as Epileptogenic Zone (EZ), Propagation Zone (PZ), and Non-Involved Zone (NIZ).
예를 들어, 컴퓨터의 상기 프로세서는 뇌 영역의 연결성 지표가 기 설정된 문턱 전압과 같거나 기 설정된 문턱 전압보다 클 때, 해당 뇌 영역을 뇌전증 발생 구역(EZ)으로 정의할 수 있다. 기 설정된 문턱 전압은 뇌전증 발생 구역(EZ)을 의미하는 값일 수 있다. 컴퓨터의 상기 프로세서는 뇌 영역의 연결성 지표가 연결성이 있으나 뇌전증 발생 구역(EZ)을 의미하는 특정 문턱 전압보다 작을 때, 해당 뇌 영역을 증식 구역(PZ)으로 정의할 수 있다. 컴퓨터의 상기 프로세서는 뇌 영역의 연결성 지표가 연결성이 없을 때 해당 뇌 영역을 비관련 구역(NIZ, Non-Involved Zone)으로 정의할 수 있다.For example, the processor of the computer may define the corresponding brain region as an epileptic zone (EZ) when the connectivity index of the brain region is equal to or greater than a preset threshold voltage. The preset threshold voltage may be a value indicating an epileptic zone (EZ). The processor of the computer may define the corresponding brain region as a proliferative zone (PZ) when the connectivity index of the brain region has connectivity but is less than a specific threshold voltage indicating an epileptic zone (EZ). The processor of the computer may define the brain region as a non-involved zone (NIZ) when the connectivity index of the brain region has no connectivity.
단계(S146)에서, 컴퓨터의 상기 프로세서는 정의된 뇌 영역들에 대하여 전기 근원 영상(Electrical source imaging, ESI) 분석을 수행할 수 있고, 다양한 알고리즘을 이용하여 시각화할 수 있다. 예를 들어, 컴퓨터의 상기 프로세서는 FAST-IRES(fast spatiotemporal iteratively reweighted edge sparsity) 알고리즘을 이용하여 데이터를 시각화할 수 있다. In step S146, the processor of the computer may perform electrical source imaging (ESI) analysis on the defined brain regions and visualize them using various algorithms. For example, the processor of a computer may use a fast spatiotemporal iteratively reweighted edge sparsity (FAST-IRES) algorithm to visualize data.
FAST-IRES 알고리즘은 뇌파 데이터의 진폭에 따라 벌점(penalization)을 부과하여 노드별 연결성을 측정함으로써 범위를 결정하고, 요소 분석(component analysis)를 통해 두피에서 측정된 뇌신호를 시간 기반 함수(time base function)으로 분석하고, 확인된 초점 소스(focal source)를 컨벡스 최적화 도구를 사용하여 해결하는 알고리즘일 수 있다.The FAST-IRES algorithm determines the range by measuring the connectivity of each node by imposing a penalty according to the amplitude of the EEG data, and converts the brain signal measured from the scalp into a time base function through component analysis. function) and solve the identified focal source using a convex optimization tool.
단계(S147)에서, 컴퓨터의 상기 프로세서는 추출된 유효 연결성 데이터에 기초하여 방향성을 결정할 수 있다. 컴퓨터의 상기 프로세서는 뇌전증 발생 구역(EZ), 뇌전증 발생 구역(EZ)에 해부학적으로 인접한 뇌전증 발생 구역(EZ) 인접 구역, 인터릭탈(interictal) 상태에서 방전(discharge)이 없었고 비관련 구역(NIZ)에 인접한 구역에 대한 전기 자극으로부터 방향성을 결정할 수 있다. In step S147, the processor of the computer may determine the direction based on the extracted effective connectivity data. The processor of the computer has no discharge in the epileptic zone (EZ), an epileptic zone (EZ) adjacent zone anatomically adjacent to the epileptic zone (EZ), an interictal state, and no discharge Directionality can be determined from electrical stimulation to a zone adjacent to the zone NIZ.
단계(S143)에서, 컴퓨터의 상기 프로세서는 멀티모달 이미징을 수행함으로써 뇌전증 유발 부위에 해당되는 패턴을 구현할 수 있다. 컴퓨터의 상기 프로세서는 뇌전증 유발 부위에 해당되는 패턴을 nDT와 같은 데이터로 출력할 수 있다.In step S143, the processor of the computer may implement a pattern corresponding to the epileptic induction site by performing multimodal imaging. The processor of the computer may output a pattern corresponding to the epileptic region as data such as nDT.
도 7을 참조하면, 본 발명의 일 실시 예에 따른 nDT 정밀 뇌 영상을 구현하는 다양한 방법이 도시되어 있다.Referring to FIG. 7 , various methods of implementing nDT precision brain imaging according to an embodiment of the present invention are illustrated.
제1 표시 방법(v1)에 따르면, nDT 정밀 뇌영상은 행렬(Matrix)로 구현될 수 있다. 예를 들어, 컴퓨터의 상기 프로세서는 2차원 히트맵(Heat map)을 사용하여 두 쌍의 연결을 자극하여 유발된 연결 강도(예를 들어, RMS)를 나타낼 수 있다. According to the first display method v1, the nDT precision brain image may be implemented as a matrix. For example, the processor of the computer may use a two-dimensional heat map to represent the evoked connection strength (eg, RMS) of stimulating the pair of connections.
제2 표시 방법(v2)에 따르면, nDT 정밀 뇌영상은 서클 맵(Circle map)으로 구현될 수 있다. 예를 들어, 컴퓨터의 상기 프로세서는 연결 행렬을 시각화할 수 있다.According to the second display method (v2), the nDT precision brain image may be implemented as a circle map. For example, the processor of a computer may visualize a connectivity matrix.
제3 표시 방법(v3)에 따르면, nDT 정밀 뇌영상은 뇌 체적(Volume)을 시각화함으로써 구현될 수 있다. 예를 들어, 컴퓨터의 상기 프로세서는 샘플링되지 않은 주변 영역의 활동을 추정하기 위해 전극 위치 주변의 반응을 선형 보간법(linear interpolation)에 따라 표현할 수 있다.According to the third display method (v3), the nDT precision brain image can be implemented by visualizing the brain volume. For example, the processor of the computer may represent the response around the electrode location according to linear interpolation to estimate the activity of the unsampled surrounding area.
제4 표시 방법(v4)에 따르면, nDT 정밀 뇌영상은 뇌의 표면(Surface)에 데이터를 시각화함으로써 구현될 수 있다. 예를 들어, 컴퓨터의 상기 프로세서는 뇌 표면에 연결성 및 연결 위치를 직접 표시하기 위해 연결성 매트릭스를 연결 위치와 함께 3차원 뇌 표면에 표시할 수 있다.According to the fourth display method (v4), the nDT precision brain image can be implemented by visualizing data on the surface of the brain. For example, the processor of a computer may display a connectivity matrix on a three-dimensional brain surface along with connectivity locations to directly display connectivity and connectivity locations on the brain surface.
한편, 개시된 실시예들은 컴퓨터에 의해 실행 가능한 명령어를 저장하는 기록매체의 형태로 구현될 수 있다. 명령어는 프로그램 코드의 형태로 저장될 수 있으며, 프로세서에 의해 실행되었을 때, 프로그램 모듈을 생성하여 개시된 실시예들의 동작을 수행할 수 있다. 기록매체는 컴퓨터로 읽을 수 있는 기록매체로 구현될 수 있다.Meanwhile, the disclosed embodiments may be implemented in the form of a recording medium storing instructions executable by a computer. Instructions may be stored in the form of program codes, and when executed by a processor, create program modules to perform operations of the disclosed embodiments. The recording medium may be implemented as a computer-readable recording medium.
컴퓨터가 읽을 수 있는 기록매체로는 컴퓨터에 의하여 해독될 수 있는 명령어가 저장된 모든 종류의 기록 매체를 포함한다. 예를 들어, ROM(Read Only Memory), RAM(Random Access Memory), 자기 테이프, 자기 디스크, 플래쉬 메모리, 광 데이터 저장장치 등이 있을 수 있다. Computer-readable recording media include all types of recording media in which instructions that can be decoded by a computer are stored. For example, there may be read only memory (ROM), random access memory (RAM), magnetic tape, magnetic disk, flash memory, optical data storage device, and the like.
이상에서와 같이 첨부된 도면을 참조하여 개시된 실시예들을 설명하였다. 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자는 본 개시의 기술적 사상이나 필수적인 특징을 변경하지 않고도, 개시된 실시예들과 다른 형태로 본 개시가 실시될 수 있음을 이해할 것이다. 개시된 실시예들은 예시적인 것이며, 한정적으로 해석되어서는 안 된다.As above, the disclosed embodiments have been described with reference to the accompanying drawings. Those skilled in the art to which the present disclosure pertains will understand that the present disclosure may be implemented in a form different from the disclosed embodiments without changing the technical spirit or essential features of the present disclosure. The disclosed embodiments are illustrative and should not be construed as limiting.
Claims (15)
- 데이터베이스; 및database; and프로세서를 포함하고,contains a processor;상기 프로세서는,the processor,MRI(Magnetic Resonance Imaging) 촬영을 통해 영상 데이터가 획득된 경우 nTMS(navigated transcranial magnetic stimulation) 시스템을 이용하여 뇌파 데이터를 측정하고,When image data is acquired through MRI (Magnetic Resonance Imaging) imaging, EEG data is measured using nTMS (navigated transcranial magnetic stimulation) system,상기 뇌파 데이터를 이용하여 nCCEP(noninvasive corticocortical evoked potential) 데이터를 추출하고,Extracting noninvasive corticocortical evoked potential (nCCEP) data using the brain wave data,상기 영상 데이터 및 상기 nCCEP 데이터에 기초하여 멀티모달 이미징을 수행함으로써 비침습적 역동적 경로(nDT, noninvasive dynamic tractography)를 결정하고,Determining a noninvasive dynamic tractography (nDT) by performing multimodal imaging based on the image data and the nCCEP data,상기 비침습적 역동적 경로에 기초하여 nDT 정밀 뇌영상을 시각화하며,Based on the non-invasive dynamic pathway, nDT precise brain imaging is visualized,상기 비침습적 역동적 경로 및 상기 시각화된 nDT 정밀 뇌영상을 데이터베이스에 저장된 데이터와 비교 및 분석함으로써 뇌의 이상 여부를 판단하는, nDT 정밀 뇌 영상 생성 장치.An nDT precise brain image generating device that determines whether there is an abnormality in the brain by comparing and analyzing the non-invasive dynamic pathway and the visualized nDT precise brain image with data stored in a database.
- 제1항에 있어서,According to claim 1,상기 영상 데이터는, T1 강조 영상 및 확산 강조 영상을 포함하고,The image data includes a T1-weighted image and a diffusion-weighted image,상기 프로세서는, the processor,상기 영상 데이터를 획득 시에, 상기 컴퓨터가 상기 확산 강조 영상의 노이즈를 제거하고, 두개골을 제거함으로써 상기 확산 강조 영상을 전처리하며,Upon obtaining the image data, the computer pre-processes the diffusion-enhanced image by removing noise from the diffusion-enhanced image and removing a skull;상기 전처리된 확산 강조 영상을 이용하여 FA 맵을 추출하는, nDT 정밀 뇌 영상 생성 장치.An apparatus for generating an nDT precise brain image, which extracts an FA map using the preprocessed diffusion-weighted image.
- 제2항에 있어서,According to claim 2,상기 프로세서는,the processor,상기 뇌파 데이터를 측정 시에, 피질 분할 시스템을 이용하여 뇌 영역을 분할하고, When measuring the brain wave data, the brain region is divided using a cortical segmentation system,상기 T1 강조 영상에 상기 분할된 뇌 영역을 구분하여 표시하고,The divided brain regions are divided and displayed on the T1-weighted image;운동 유발 전위를 측정함으로써 자극의 강도를 결정하고,determine the strength of the stimulus by measuring the motor evoked potential;상기 nTMS 시스템을 이용하여 상기 분할된 뇌 영역을 상기 결정된 자극의 강도로 자극하며,Stimulating the divided brain region with the determined intensity of stimulation using the nTMS system;상기 분할된 뇌 영역을 상기 결정된 자극의 강도로 자극함에 따라 발생하는 뇌파 데이터를 측정 및 저장하고,Measuring and storing EEG data generated as the divided brain regions are stimulated with the determined intensity of stimulation;상기 nTMS 시스템은, 자극의 빈도, 자극의 강도, 각 뇌영역에 대한 자극의 개수 및 자극의 방향 중 적어도 하나를 파라미터로 포함하는, nDT 정밀 뇌 영상 생성 장치.The nTMS system includes, as a parameter, at least one of the frequency of stimulation, the intensity of stimulation, the number of stimulation for each brain region, and the direction of stimulation, nDT precision brain image generating device.
- 제3항에 있어서,According to claim 3,상기 프로세서는,the processor,상기 비침습적 역동적 경로를 결정 시에, 상기 nCCEP 데이터의 초기 10ms 부터 50ms까지의 구간에서 나타나는 예파 형태의 제1 컴포넌트를 추출하고,When determining the non-invasive dynamic path, extracting a first component in the form of a sharp wave appearing in an initial period of 10 ms to 50 ms of the nCCEP data,상기 제1 컴포넌트에 기초하여 경로 끝점 사이의 유클리드(Euclidean) 거리를 계산하고 경로의 길이를 통계적으로 유추함으로써 통계 분석을 수행하고,Statistical analysis is performed by calculating a Euclidean distance between path endpoints based on the first component and statistically inferring a path length;상기 통계 분석 결과에 기초하여 멀티모달 이미징을 수행함으로써 비침습적 역동적 경로를 추출하고,Extracting a non-invasive dynamic path by performing multimodal imaging based on the statistical analysis results,상기 nCCEP 데이터의 초기 50ms 부터 300ms까지의 구간에서 나타나는 서파 형태의 제2 컴포넌트를 추출하고,Extracting a second component in the form of a slow wave appearing in the interval from the initial 50 ms to 300 ms of the nCCEP data,상기 제1 컴포넌트 및 상기 제2 컴포넌트를 이용하여 유효 연결성 데이터를 추출하고,Extracting effective connectivity data using the first component and the second component;상기 유효 연결성 데이터에 기초하여 뇌 영역을 정의하며,Defining a brain region based on the effective connectivity data;전기 근원 영상 분석을 수행함으로써 상기 정의된 뇌 영역을 시각화하고,Visualizing the defined brain region by performing electrical source image analysis;상기 비침습적 역동적 경로는, 상기 유추된 경로의 길이와 상기 제1 컴포넌트의 잠복기가 양의 상관 관계를 가지고, 상기 유추된 경로의 길이와 상기 제1 컴포넌트의 진폭이 음의 상관 관계를 가지고, 상기 FA 맵과 상기 제1 컴포넌트의 속도가 양의 상관 관계를 가지는 역동적 경로 모델에 부합하는, nDT 정밀 뇌 영상 생성 장치.In the non-invasive dynamic path, the length of the inferred path and the latency of the first component have a positive correlation, and the length of the inferred path and the amplitude of the first component have a negative correlation, An apparatus for generating nDT precise brain images, which conforms to a dynamic path model in which the FA map and the speed of the first component have a positive correlation.
- 제4항에 있어서,According to claim 4,상기 프로세서는,the processor,상기 뇌 영역을 정의 시에, 상기 유효 연결성 데이터의 연결성 지표가 기 설정된 문턱 전압과 같거나 기 설정된 문턱 전압보다 큰 뇌 영역은 뇌전증 발생 구역(Epileptogenic zone)으로 정의하고, When defining the brain region, a brain region in which the connectivity index of the effective connectivity data is equal to or greater than a preset threshold voltage is defined as an epileptogenic zone,상기 유효 연결성 데이터의 연결성 지표가 연결성이 있되, 기 설정된 문턱 전압보다 낮은 뇌 영역은 증식 구역(Propagation zone)으로 정의하고, A brain region where the connectivity index of the effective connectivity data has connectivity but is lower than a preset threshold voltage is defined as a propagation zone,상기 유효 연결성 데이터의 연결성 지표가 연결성이 없는 뇌 영역은 비관련 구역(Non-Involved Zone)으로 정의하는, nDT 정밀 뇌 영상 생성 장치.A brain region in which the connectivity index of the effective connectivity data has no connectivity is defined as a non-involved zone.
- 제5항에 있어서,According to claim 5,상기 프로세서는,the processor,상기 뇌의 이상 여부를 판단 시에, 뇌전증 수술 이후의 발작 예후를 진양성, 위양성, 진음성, 위음성으로 범주화하며,When determining whether the brain is abnormal, the prognosis of seizures after epilepsy surgery is categorized into true positive, false positive, true negative, and false negative,뇌전증 유발 부위가 국소화된 최종적 정확도를 평가하는, nDT 정밀 뇌 영상 생성 장치.An nDT precise brain image generating device that evaluates the final accuracy of localization of an epilepsy-induced region.
- 제6항에 있어서,According to claim 6,상기 프로세서는,the processor,상기 nDT 정밀 뇌영상을 시각화 시에, 상기 nDT 정밀 뇌 영상을, 행렬(Matrix), 서클 맵(Circle map), 뇌 체적(Volume), 및 뇌의 표면(Surface) 중 적어도 하나를 이용하여 시각화하는, nDT 정밀 뇌 영상 생성 장치.Visualizing the nDT precise brain image using at least one of a matrix, a circle map, a brain volume, and a surface of the brain when visualizing the nDT precise brain image , nDT precision brain image generating device.
- 컴퓨터에 의해 수행되는, nDT 정밀 뇌 영상 생성 방법에 있어서,In the nDT precision brain image generation method performed by a computer,MRI(Magnetic Resonance Imaging) 촬영을 통해 상기 컴퓨터가 영상 데이터를 획득하는 단계;obtaining, by the computer, image data through Magnetic Resonance Imaging (MRI) imaging;상기 컴퓨터가 nTMS(navigated transcranial magnetic stimulation) 시스템을 이용하여 뇌파 데이터를 측정하는 단계;measuring EEG data by the computer using a navigated transcranial magnetic stimulation (nTMS) system;상기 컴퓨터가 상기 뇌파 데이터를 이용하여 nCCEP(noninvasive corticocortical evoked potential) 데이터를 추출하는 단계;extracting, by the computer, noninvasive corticocortical evoked potential (nCCEP) data using the EEG data;상기 컴퓨터가 상기 영상 데이터 및 상기 nCCEP 데이터에 기초하여 멀티모달 이미징을 수행함으로써 비침습적 역동적 경로(nDT, noninvasive dynamic tractography)를 결정하는 단계;determining, by the computer, a noninvasive dynamic tractography (nDT) by performing multimodal imaging based on the image data and the nCCEP data;상기 컴퓨터가 상기 비침습적 역동적 경로에 기초하여 nDT 정밀 뇌영상을 시각화하는 단계; 및Visualizing, by the computer, an nDT precise brain image based on the non-invasive dynamic path; and상기 컴퓨터가 상기 비침습적 역동적 경로 및 상기 시각화된 nDT 정밀 뇌영상을 데이터베이스에 저장된 데이터와 비교 및 분석함으로써 뇌의 이상 여부를 판단하는 단계를 포함하는, nDT 정밀 뇌 영상 생성 방법.The nDT precise brain image generation method comprising the step of determining, by the computer, whether there is an abnormality in the brain by comparing and analyzing the non-invasive dynamic path and the visualized nDT precise brain image with data stored in a database.
- 제8항에 있어서,According to claim 8,상기 영상 데이터는, T1 강조 영상 및 확산 강조 영상을 포함하고,The image data includes a T1-weighted image and a diffusion-weighted image,상기 영상 데이터를 획득하는 단계는,Obtaining the image data,상기 컴퓨터가 상기 확산 강조 영상의 노이즈를 제거하고, 두개골을 제거함으로써 상기 확산 강조 영상을 전처리하는 단계; 및pre-processing, by the computer, the diffusion-enhanced image by removing noise from the diffusion-enhanced image and removing a skull; and상기 컴퓨터가 상기 전처리된 확산 강조 영상을 이용하여 FA 맵을 추출하는 단계를 더 포함하는, nDT 정밀 뇌 영상 생성 방법.Further comprising the step of extracting, by the computer, an FA map using the preprocessed diffusion-weighted image.
- 제9항에 있어서,According to claim 9,상기 뇌파 데이터를 측정하는 단계는,The step of measuring the brain wave data,상기 컴퓨터가 피질 분할 시스템을 이용하여 뇌 영역을 분할하고, 상기 T1 강조 영상에 상기 분할된 뇌 영역을 구분하여 표시하는 단계;dividing, by the computer, brain regions using a cortical segmentation system, and displaying the divided brain regions in the T1-weighted image;상기 컴퓨터가 운동 유발 전위를 측정함으로써 자극의 강도를 결정하는 단계;determining, by the computer, the strength of the stimulus by measuring the motor evoked potential;상기 컴퓨터가 상기 nTMS 시스템을 이용하여 상기 분할된 뇌 영역을 상기 결정된 자극의 강도로 자극하는 단계; 및stimulating, by the computer, the divided brain regions with the determined intensity of stimulation using the nTMS system; and상기 컴퓨터가 상기 분할된 뇌 영역을 상기 결정된 자극의 강도로 자극함에 따라 발생하는 뇌파 데이터를 측정 및 저장하는 단계를 포함하고,Measuring and storing EEG data generated as the computer stimulates the divided brain regions with the determined intensity of stimulation;상기 nTMS 시스템은, 자극의 빈도, 자극의 강도, 각 뇌영역에 대한 자극의 개수 및 자극의 방향 중 적어도 하나를 파라미터로 포함하는, nDT 정밀 뇌 영상 생성 방법.The nTMS system includes, as a parameter, at least one of the frequency of stimulation, the intensity of stimulation, the number of stimulation for each brain region, and the direction of stimulation, nDT precise brain image generation method.
- 제10항에 있어서,According to claim 10,상기 비침습적 역동적 경로를 결정하는 단계는,The step of determining the non-invasive dynamic path,상기 컴퓨터가 상기 nCCEP 데이터의 초기 10ms 부터 50ms까지의 구간에서 나타나는 예파 형태의 제1 컴포넌트를 추출하는 단계;extracting, by the computer, a first component in the form of a sharp wave appearing in an initial period of 10 ms to 50 ms of the nCCEP data;상기 컴퓨터가 상기 제1 컴포넌트에 기초하여 경로 끝점 사이의 유클리드(Euclidean) 거리를 계산하고 경로의 길이를 통계적으로 유추함으로써 통계 분석을 수행하는 단계;performing statistical analysis by the computer by calculating a Euclidean distance between path endpoints based on the first component and statistically inferring a path length;상기 통계 분석 결과에 기초하여 멀티모달 이미징을 수행함으로써 비침습적 역동적 경로를 추출하는 단계;extracting a non-invasive dynamic path by performing multimodal imaging based on the statistical analysis result;상기 컴퓨터가 상기 nCCEP 데이터의 초기 50ms 부터 300ms까지의 구간에서 나타나는 서파 형태의 제2 컴포넌트를 추출하는 단계;extracting, by the computer, a second component in the form of a slow wave appearing in a section from an initial period of 50 ms to 300 ms of the nCCEP data;상기 컴퓨터가 상기 제1 컴포넌트 및 상기 제2 컴포넌트를 이용하여 유효 연결성 데이터를 추출하는 단계;extracting, by the computer, valid connectivity data using the first component and the second component;상기 컴퓨터가 상기 유효 연결성 데이터에 기초하여 뇌 영역을 정의하는 단계; 및defining, by the computer, a brain region based on the valid connectivity data; and상기 컴퓨터가 전기 근원 영상 분석을 수행함으로써 상기 정의된 뇌 영역을 시각화하는 단계를 더 포함하고,further comprising the computer visualizing the defined brain region by performing electrical source image analysis;상기 비침습적 역동적 경로는, 상기 유추된 경로의 길이와 상기 제1 컴포넌트의 잠복기가 양의 상관 관계를 가지고, 상기 유추된 경로의 길이와 상기 제1 컴포넌트의 진폭이 음의 상관 관계를 가지고, 상기 FA 맵과 상기 제1 컴포넌트의 속도가 양의 상관 관계를 가지는 역동적 경로 모델에 부합하는, nDT 정밀 뇌 영상 생성 방법.In the non-invasive dynamic path, the length of the inferred path and the latency of the first component have a positive correlation, and the length of the inferred path and the amplitude of the first component have a negative correlation, A method for generating nDT precise brain images, wherein the FA map and the velocity of the first component conform to a dynamic path model having a positive correlation.
- 제11항에 있어서,According to claim 11,상기 뇌 영역을 정의하는 단계는,Defining the brain region,상기 컴퓨터가 상기 유효 연결성 데이터의 연결성 지표가 기 설정된 문턱 전압과 같거나 기 설정된 문턱 전압보다 큰 뇌 영역은 뇌전증 발생 구역(Epileptogenic zone)으로 정의하는 단계;defining, by the computer, a brain region in which a connectivity index of the effective connectivity data is equal to or greater than a preset threshold voltage as an epileptogenic zone;상기 유효 연결성 데이터의 연결성 지표가 연결성이 있되, 기 설정된 문턱 전압보다 낮은 뇌 영역은 증식 구역(Propagation zone)으로 정의하는 단계; 및 defining a brain region where the connectivity index of the effective connectivity data has connectivity but is lower than a preset threshold voltage as a propagation zone; and상기 유효 연결성 데이터의 연결성 지표가 연결성이 없는 뇌 영역은 비관련 구역(Non-Involved Zone)으로 정의하는 단계를 포함하는, nDT 정밀 뇌 영상 생성 방법.And defining a brain region in which the connectivity index of the effective connectivity data has no connectivity as a non-involved zone.
- 제12항에 있어서,According to claim 12,상기 뇌의 이상 여부를 판단하는 단계는,The step of determining whether the brain is abnormal,상기 컴퓨터가 뇌전증 수술 이후의 발작 예후를 진양성, 위양성, 진음성, 위음성으로 범주화하는 단계; 및categorizing, by the computer, the prognosis of seizures after epilepsy surgery into true positive, false positive, true negative, and false negative; and상기 컴퓨터가 뇌전증 유발 부위가 국소화된 최종적 정확도를 평가하는 단계를 더 포함하는, nDT 정밀 뇌 영상 생성 방법.The nDT precise brain image generation method, further comprising the step of allowing the computer to evaluate the final accuracy of localization of the epilepsy-induced region.
- 제13항에 있어서,According to claim 13,상기 nDT 정밀 뇌영상을 시각화하는 단계는,Visualizing the nDT precise brain image,상기 컴퓨터가 상기 nDT 정밀 뇌 영상을, 행렬(Matrix), 서클 맵(Circle map), 뇌 체적(Volume), 및 뇌의 표면(Surface) 중 적어도 하나를 이용하여 시각화하는 단계를 포함하는, nDT 정밀 뇌 영상 생성 방법.Visualizing, by the computer, the nDT precise brain image using at least one of a matrix, a circle map, a brain volume, and a surface of the brain. Methods for generating brain images.
- 하드웨어인 컴퓨터와 결합되어, 제8항에 따른 nDT 정밀 뇌 영상 생성 방법을 수행하기 위한 프로그램이 저장된 컴퓨터 판독 가능한 기록매체.A computer-readable recording medium in which a program for performing the method for generating an nDT precise brain image according to claim 8 is stored in combination with a computer, which is hardware.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20220025475 | 2022-02-25 | ||
KR10-2022-0025475 | 2022-02-25 | ||
KR10-2023-0019444 | 2023-02-14 | ||
KR1020230019444A KR20230127894A (en) | 2022-02-25 | 2023-02-14 | Method and device for creating noninvasive dynamic tractography precision neuroimaging |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023163444A1 true WO2023163444A1 (en) | 2023-08-31 |
Family
ID=87766324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2023/002186 WO2023163444A1 (en) | 2022-02-25 | 2023-02-15 | Method and device for generating precise ndt brain image |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023163444A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07194566A (en) * | 1993-12-31 | 1995-08-01 | Toshimitsu Musha | In-brain cortical activity tracing system and device therefor |
US6198958B1 (en) * | 1998-06-11 | 2001-03-06 | Beth Israel Deaconess Medical Center, Inc. | Method and apparatus for monitoring a magnetic resonance image during transcranial magnetic stimulation |
KR20150010048A (en) * | 2013-07-17 | 2015-01-28 | 삼성전자주식회사 | Method and apparatus for selecting a seed area for tracking nerve fibers in a brain |
KR101917947B1 (en) * | 2017-02-23 | 2018-11-12 | 고려대학교 산학협력단 | Method of predicting recurrence region and generating pet image using deep learning, and apparatus thereof |
KR20210157948A (en) * | 2020-06-22 | 2021-12-30 | 사회복지법인 삼성생명공익재단 | Method, Device and Computer Program for Predicting Distribution of Brain Tissue Lesion |
-
2023
- 2023-02-15 WO PCT/KR2023/002186 patent/WO2023163444A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07194566A (en) * | 1993-12-31 | 1995-08-01 | Toshimitsu Musha | In-brain cortical activity tracing system and device therefor |
US6198958B1 (en) * | 1998-06-11 | 2001-03-06 | Beth Israel Deaconess Medical Center, Inc. | Method and apparatus for monitoring a magnetic resonance image during transcranial magnetic stimulation |
KR20150010048A (en) * | 2013-07-17 | 2015-01-28 | 삼성전자주식회사 | Method and apparatus for selecting a seed area for tracking nerve fibers in a brain |
KR101917947B1 (en) * | 2017-02-23 | 2018-11-12 | 고려대학교 산학협력단 | Method of predicting recurrence region and generating pet image using deep learning, and apparatus thereof |
KR20210157948A (en) * | 2020-06-22 | 2021-12-30 | 사회복지법인 삼성생명공익재단 | Method, Device and Computer Program for Predicting Distribution of Brain Tissue Lesion |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Baillet | Magnetoencephalography for brain electrophysiology and imaging | |
Casarotto et al. | EEG responses to TMS are sensitive to changes in the perturbation parameters and repeatable over time | |
US20110028827A1 (en) | Spatiotemporal pattern classification of brain states | |
EP4193912A1 (en) | Method and system for use in monitoring neural activity in a subject's brain | |
Davey et al. | Expert system approach to detection of epileptiform activity in the EEG | |
Houck et al. | Through a glass darkly: some insights on change talk via magnetoencephalography. | |
US9320449B2 (en) | Method and system for on-line decision making support | |
US20170238879A1 (en) | Method of Analyzing the Brain Activity of a Subject | |
CN113827246A (en) | Magnetoencephalography data acquisition and analysis method and system | |
WO2023281399A1 (en) | Neuromonitoring data analysis apparatuses and methods | |
Kutepov et al. | Visualization of EEG signal entropy in schizophrenia | |
JP2021518205A (en) | Neurological examination system | |
Bai et al. | Network analysis of magnetoencephalogram signals in schizophrenia patients when viewing emotional facial stimuli | |
US20180271374A1 (en) | Characterizing neurological function and disease | |
WO2023163444A1 (en) | Method and device for generating precise ndt brain image | |
JP2001309898A (en) | Method of neural waveform diagnosis with wavelet function and its equipment | |
JP4482660B2 (en) | Neural cell stimulation site estimation method and brain function analysis apparatus using the same | |
KR20230127894A (en) | Method and device for creating noninvasive dynamic tractography precision neuroimaging | |
CN117063075A (en) | Monitoring of FMRI checks | |
Omar et al. | Brainwave classification for acute ischemic stroke group level using k-NN technique | |
Angiolelli et al. | The Virtual Parkinsonian Patient | |
Khanmohammadi et al. | Localizing focal brain injury via EEG spectral variance | |
Srinivasan et al. | A hybrid approach for analysis of brain lateralisation in autistic children using graph theory techniques and deep belief networks | |
Pamungkas | Data Analytics on EEG Signal Features to Distinguish Familiar and Unfamiliar Information in Human Brain Memory | |
Lin et al. | Normality evaluation of EEG signals based on amplitude level and entropy values |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23760318 Country of ref document: EP Kind code of ref document: A1 |