WO2023163310A1 - Drone station for automatically supplying spray agent, and drone spray system comprising same - Google Patents

Drone station for automatically supplying spray agent, and drone spray system comprising same Download PDF

Info

Publication number
WO2023163310A1
WO2023163310A1 PCT/KR2022/015822 KR2022015822W WO2023163310A1 WO 2023163310 A1 WO2023163310 A1 WO 2023163310A1 KR 2022015822 W KR2022015822 W KR 2022015822W WO 2023163310 A1 WO2023163310 A1 WO 2023163310A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
supply
container
spraying
agent
Prior art date
Application number
PCT/KR2022/015822
Other languages
French (fr)
Korean (ko)
Inventor
김동현
박광호
박진하
Original Assignee
전주대학교 산학협력단
주식회사 아이팝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전주대학교 산학협력단, 주식회사 아이팝 filed Critical 전주대학교 산학협력단
Publication of WO2023163310A1 publication Critical patent/WO2023163310A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/22Ground or aircraft-carrier-deck installations for handling aircraft
    • B64F1/222Ground or aircraft-carrier-deck installations for handling aircraft for storing aircraft, e.g. in hangars
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • A01M7/0025Mechanical sprayers
    • A01M7/0032Pressure sprayers
    • A01M7/0042Field sprayers, e.g. self-propelled, drawn or tractor-mounted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/22Ground or aircraft-carrier-deck installations for handling aircraft
    • B64F1/24Adaptations of turntables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/30Cleaning aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U80/00Transport or storage specially adapted for UAVs
    • B64U80/70Transport or storage specially adapted for UAVs in containers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]

Definitions

  • the present invention relates to a drone station that automatically supplies spraying agents such as seeds, fertilizers, and pesticides necessary for agriculture, and a drone spraying system including the same, and more particularly, to a storage tank for storing the spraying agent and an operation to automatically supply the stored spraying agent. It is possible to automatically supply the spraying agent to the receiving container of the landed drone, and determines the need to clean the receiving container based on the type of spraying agent recently stored in the receiving container of the landed drone, and accepts the landed drone.
  • the present disclosure relates to a drone station that automatically cleans a storage container when the spraying agent recently stored in the container is a type requiring washing of pesticides and the like, and a drone spraying system including the same.
  • unmanned aerial vehicles fly by remote control or by autonomous flight control devices without a pilot on board, so they can perform reconnaissance, bombing, cargo transportation, forest fire monitoring, radiological monitoring, etc. that are difficult or dangerous for humans to perform directly.
  • a drone is a helicopter-like unmanned aerial vehicle that is self-powered but does not have a pilot on board.
  • drones were developed for military purposes, but recently, they have been widely used not only for military purposes but also for corporations, media, and individuals, and their usage range is gradually widening.
  • drones Depending on the purpose of drone use, a variety of drones with various sizes and performance are being developed. It is also used in various commercial fields such as logistics, delivery, broadcasting and leisure.
  • drones for agriculture and forestry include a spraying agent container for accommodating a spraying agent and a spraying nozzle for spraying the spraying agent, and by flying a designated path and downward spraying the spraying agent contained in the spraying agent container through the spray nozzle, seeding is performed over a wide area.
  • fertilizer application and pest control work can be carried out efficiently, which can greatly reduce the number of working manpower in agriculture and forestry.
  • the drone sprays the spray agent on behalf of the worker, and the spray agent charging and cleaning process for spraying the spray agent of the drone requires the operator to perform the work directly on site. There are limits.
  • the present invention is to solve the problems of the prior art mentioned above, and an object of the present invention is to have a storage tank for storing the spraying agent and a supply module that operates to supply the stored spraying agent, and a receiving container for the landed drone.
  • a drone station capable of automatically supplying a spraying agent and a drone spraying system including the same.
  • Another object to be achieved by the present invention is to sow or plant seeds in existing agricultural activities, to spray fertilizers, and to spray pesticides through a drone station including an automatic spraying agent supply container for field workers. It is to supply the drone gas container remotely or automatically without manipulation.
  • Another object to be achieved by the present invention is to determine the need for cleaning the receiving container based on the type of spraying agent recently stored in the receiving container of the drone that landed, and to determine whether the recently stored spraying agent in the receiving container of the landed drone is pesticide or the like.
  • Another object to be achieved by the present invention is to provide an alignment module for aligning the landed drone in the correct position and direction for supplying the spraying agent, so that the drone can be placed in the correct position without an additional take-off and landing process even if the drone does not land accurately in the correct position and direction. And to provide a drone station that can be aligned in the forward direction and a drone distribution system including the same.
  • Another object to be achieved by the present invention is that the drone flies over the target area according to a preset flight schedule and sprays the spraying agent, but based on the weather information of the target area, the flight is delayed according to the schedule, so that the drone's flight or the spraying agent is sprayed. It is to provide a drone spraying system that automatically performs flight according to a schedule regardless of daytime or nighttime in suitable weather.
  • a drone station for automatically supplying a spray agent supplies a landing plate on which a drone can land, a storage tank for storing the spray agent, and a storage tank for storing the spray agent on the landing plate to the receiving container of the drone. Includes a working supply module.
  • the drone station operates and controls the supply module to supply the spray agent stored in the storage tank to the receiving container based on the supply determination unit for determining the supply of the spray agent based on the input signal or the external reception signal, and the supply determination unit.
  • a control unit may be included.
  • the storage tank is provided with two or more storage spaces separated from each other, and two or more types of spraying agents are individually stored in the storage space, and the supply determination unit determines the type of spraying agent supplied to the container based on an input signal or an external received signal. Upon selection, the supply control unit may operate and control the supply module to supply the spray agent selected by the supply determination unit to the container.
  • the supply module can be extended in one direction, and when the length is extended, a supply nozzle whose one end is connectable to the supply port of the receiving container of the landed drone, a plurality of first supply pipes having one end individually connected to the storage space, A second supply pipe connecting the other end of the plurality of first supply pipes and the supply nozzle, a valve disposed on the first supply pipe and opening and closing the first supply pipe, and connected to any one of the supply nozzle, the first supply pipe, and the second supply pipe It may include a pump that generates a fluid flow of fluid.
  • the drone station operates a cleaning determination unit that determines the need to clean the accommodation container by receiving information on the type of recently stored spray agent recently stored in the container of the drone, and a supply module to clean the container based on the judgment of the washing determination unit.
  • a washing controller may be further included, and washing water may be stored in at least one of the storage spaces of the storage tank.
  • the washing control unit controls the operation of the supply module to sequentially perform a supply process of supplying the washing water from the storage tank to the container and a recovery process of recovering the washing water of the container, and at least some of the recovered washing water is a recently stored dispersant type. It is possible to operate and control the supply module to store the same kind of spraying agent in the storage space of the storage tank.
  • the drone station includes an alignment module that operates to align the landed drone to the correct position or direction for supplying the spraying agent, and an alignment module to align the landed drone to the correct position or direction based on an input signal or an external received signal.
  • An alignment control unit for controlling operation may be further included.
  • the alignment module may include a positioning unit having an alignment rail formed with a predetermined length in the distance direction from the landing plate and a pressing member that moves along the alignment rail and is capable of pressing the drone toward the proper position.
  • the drone station further includes a direction detecting unit for detecting the arrangement direction of the landed drone
  • the alignment module includes a direction aligning unit having a rotating plate rotatably disposed on the landing plate and operating, and the alignment control unit detects the direction Based on the negative detection information, the rotary plate may be operated and controlled to align the drones in the forward direction.
  • the alignment control unit may operate and control the rotating plate for a predetermined time before the washing control unit collects the washing water after the washing control unit supplies the washing water to the container.
  • the drone spraying system is provided with the above-described drone station and a container for accommodating the spray agent, flying over the target area based on a preset flight schedule and spraying the spray agent contained in the container including drones.
  • the drone includes a flight decision unit for determining flight according to a preset flight schedule, and a weather reception unit for receiving weather information of a target area included in the flight schedule, and the flight decision unit is based on the weather information received from the weather reception unit.
  • a flight decision unit for determining flight according to a preset flight schedule
  • a weather reception unit for receiving weather information of a target area included in the flight schedule
  • the flight decision unit is based on the weather information received from the weather reception unit.
  • the drone spraying system further includes a user terminal capable of receiving information on the remaining amount of spraying agent from a drone station or a drone, and the user terminal generates spraying agent purchase request information based on the user's input or the remaining amount of spraying agent information, and the generated spraying agent purchase request Information can be sent to the distributor of the dispersant.
  • the drone spraying system may further include a management server that receives drone activity information from drones or drone stations in real time and records and stores drone agricultural activity information in conjunction with a Geographic Information System (GIS)-based drone control program.
  • GIS Geographic Information System
  • the storage tank for storing the spray agent and the supply module that operates to supply the stored spray agent are provided, it is possible to automatically supply the spray agent to the receiving container of the landed drone, reducing manpower due to not only spraying the spray agent but also filling the spray agent. This has the effect of standardizing work and reducing labor costs.
  • the present invention determines the need to wash the accommodating container based on the type of spraying agent recently stored in the accommodating container of the landed drone, and the dispersing agent recently stored in the accommodating container of the landed drone is the kind that requires washing of pesticides.
  • the dispersing agent recently stored in the accommodating container of the landed drone is the kind that requires washing of pesticides.
  • by automatically washing the container it is possible to use several types of spraying agents together without contamination between spraying agents using one container, and there is an effect of reducing manpower for drone management, standardizing work and reducing labor costs.
  • the present invention is provided with an alignment module for aligning the landed drone in the correct position and direction for supplying the spraying agent, so that even if the drone does not land accurately in the correct position and direction, the drone is aligned in the correct position and direction without additional take-off and landing processes.
  • an alignment module for aligning the landed drone in the correct position and direction for supplying the spraying agent, so that even if the drone does not land accurately in the correct position and direction, the drone is aligned in the correct position and direction without additional take-off and landing processes.
  • the drone flies over the target area according to a preset flight schedule and sprays the spraying agent, but based on the weather information of the target area, the flight according to the schedule is delayed, so that the drone flight or the spraying agent is sprayed in a suitable weather. It is possible to improve the efficiency of the spraying agent spraying operation and the safety of the drone flight by automatically performing the flight according to the method.
  • this patented technology can automatically record the type and amount of pesticides and fertilizers used per unit area to store and manage soil chemistry data for farmland, enabling more eco-friendly scientific agriculture.
  • automatic ordering and charging can be performed using an application program linked with the system of the present invention.
  • FIG. 1 is a diagram conceptually illustrating a drone spraying system according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically illustrating a drone of a drone distribution system according to an embodiment of the present invention.
  • FIG. 3 is a functional block diagram of a drone according to an embodiment of the present invention.
  • FIG. 4 is a diagram schematically showing a drone station of a drone distribution system according to an embodiment of the present invention.
  • FIG. 5 is a diagram showing some configurations of a drone station according to an embodiment of the present invention.
  • FIG. 6 is a diagram showing an example of a drone supply module connection according to an embodiment of the present invention.
  • FIG. 7 is a functional block diagram showing the configuration of a drone station for drone alignment according to an embodiment of the present invention.
  • FIG. 8 is a diagram showing an example of a landing state of a drone according to an embodiment of the present invention.
  • FIG. 9 is a diagram showing an example of position alignment of drones according to an embodiment of the present invention.
  • FIG. 10 is a diagram showing an example of direction alignment of drones according to an embodiment of the present invention.
  • FIG. 11 is a functional block diagram showing the configuration of a drone station for supplying and cleaning a spray agent according to an embodiment of the present invention.
  • FIG. 12 is a diagram showing an example of a cleaning process for a receiving vessel according to an embodiment of the present invention.
  • FIG. 1 is a diagram conceptually illustrating a drone spraying system according to an embodiment of the present invention.
  • the drone spraying system includes a drone 10 flying over a target area and spraying a spraying agent, and a drone station 30 capable of taking off and landing and storing the landed drone 10. It can be configured to include.
  • the drone 10 can automatically fly a set path based on a preset flight schedule, and can spray the spray agent to a target area by spraying the spray agent on a designated path among the set paths.
  • the drone 10 may communicate with the server 50 or the user terminal 70 through a network to receive flight schedule and route information.
  • the types of spraying agents may include seeds, fertilizers, pesticides, and the like, and the target area may be forests, agricultural lands, etc. requiring sowing, fertilizer application, and pest control.
  • the drone station 30 may allow the drone 10 to take off and land, and may store and store the landed drone 10. To this end, the drone station 30 is communicatively connected to the drone 10 through a network and can receive take-off and landing signals from the drone 10, and also connects the management server 50 or the user terminal 70 through the network. It is possible to receive flight schedule information of the drone and information on the type of spraying agent to be sprayed in each flight schedule.
  • the information of the drone 10 and the drone station 30 is interlocked with the GIS-based drone control program provided in the management server 50 or the user terminal 70 in real time to automatically record and record agricultural activities of the drone in real time. can be saved
  • FIG. 2 is a diagram schematically showing a drone of a drone distribution system according to an embodiment of the present invention
  • FIG. 3 is a functional block diagram of a drone according to an embodiment of the present invention.
  • the drone 10 according to this embodiment is for spraying a spraying agent while flying over a target area, and as shown in FIG. ).
  • the accommodating container 11 is mounted on the body of the drone and may form an accommodating space capable of accommodating the spraying agent.
  • the receiving container 11 may accommodate various types of spraying agents such as seeds, fertilizers, and pesticides as needed.
  • the receiving container 11 may be provided as a dedicated container for accommodating a specific type of spraying agent, but preferably, the type of spraying agent to be accommodated is not specified and can accommodate different types of spraying agents for each flight.
  • a supply port 11 communicating with the outside of the receiving space of the receiving container for supplying the spraying agent is disposed. and an opening/closing member capable of opening/closing operation may be disposed.
  • the spray nozzle 12 communicates with the receiving container 11 so as to be able to spray the spraying agent contained in the receiving container 11, and may be disposed downward to spray the spraying agent downward during flight of the drone.
  • the spray nozzle 12 can be arranged on the landing gear.
  • the drone 10 flies over the target area according to the preset flight schedule and sprays the spraying agent, but the drone 10 itself sets the flight schedule based on the environmental information of the target area to spray the spraying agent. Adjustable.
  • the drone 10 includes a schedule storage unit 13 for storing a flight schedule, a flight determination unit 14 for determining a flight according to the stored flight schedule, and a target region included in the flight schedule. It may be configured to include a weather receiving unit 15 for receiving weather information.
  • the schedule storage unit 13 may store flight schedule information received from the outside or flight schedule information input from the user.
  • the flight determination unit 14 may determine a flight according to flight schedule information stored in the schedule storage unit 13 .
  • the flight schedule information may include information such as flight time, flight route, target area, and spraying section, and the drone 10 automatically flies based on the flight schedule information determined by the flight decision unit 14 and
  • a separate control unit may be provided to control the flight driving unit and the spray nozzle 12 of the drone to spray the spray agent.
  • the weather receiver 15 When the flight start time of a specific flight schedule arrives based on the flight schedule information stored in the schedule storage unit 15, the weather receiver 15 transfers weather information of the target area included in the flight schedule information at which the flight start time arrives to the outside. can be received from Also, the weather receiving unit 15 may provide the received weather information to the flight determination unit 14 .
  • the flight determination unit 14 determines the flight so that the flight starts according to the flight schedule in which the flight start time arrives when the flight start time of a specific flight schedule arrives based on the flight schedule information stored in the schedule storage unit 13, , It is possible to determine whether to delay the flight based on the weather information provided from the weather receiving unit 15.
  • the weather information provided from the weather receiving unit 15 to the flight determining unit 14 may include at least one of wind speed information, precipitation information, and temperature information, and the flight determining unit 14 determines the wind speed of the target area. If this reference wind speed is exceeded, or if the amount of precipitation in the target area exceeds the reference amount of precipitation, or if the temperature in the target area is out of the reference temperature range, flight delay may be determined. At this time, when the flight delay is determined, the weather receiving unit 15 updates the flight time of the corresponding flight schedule information to a predetermined time later, and if a flight schedule with overlapping flight times occurs due to the delay update of the flight schedule information, the flight time is changed. Flight times of overlapping flight schedules can also be updated and stored after a predetermined time.
  • the drone 10 automatically stores data on all crop management, such as seeding, fertilizer, pesticide spraying, and plant growth index measurement for a unit area of the target area, and plants and plants according to the automatically stored information. Yield changes can be monitored through health. In addition, based on the monitored yield change information, it is possible to extract the optimal fertilizer application and pesticide application algorithm for improving yield by performing data analysis on meteorological data, pesticides and fertilizer application for each crop.
  • FIG. 4 is a diagram schematically showing a drone station of a drone distribution system according to an embodiment of the present invention
  • FIG. 5 is a diagram showing some configurations of a drone station according to an embodiment of the present invention
  • 6 is a diagram showing an example of a drone supply module connection according to an embodiment of the present invention.
  • the drone station 30 can take off and land the drone 10 and can store and store the landed drone 10.
  • the drone station has an inner space (s) capable of storing the drone 10, a door 31 that opens the inner space (s) or blocks it from the outside, and the drone 10.
  • a landing plate 32 for takeoff and landing may be provided.
  • the door 31 When the drone 10 is in flight or in storage, the door 31 is in a closed state to block the inner space (s) from the outside, protecting the inner space (s) from external factors such as rain, wind, dust, and the like. , When the drone 10 takes off or lands, it may be in an open state to allow the drone 10 to take off and land.
  • the landing plate 32 is disposed on the bottom surface of the inner space s, and is exposed to the outside according to the opening of the door 31 so that the drone 10 can take off and land.
  • the drone station 30 may supply spraying agent to the drone 10 on the landing plate.
  • the drone station 30 may include a storage tank 33 for storing the spray agent and a supply module 34 for supplying the spray agent.
  • the storage tank 33 is disposed on one side of the inner space s, and may include a plurality of tanks 331, 332, 333, and 334 that are separated from each other to form individual storage spaces, and a plurality of tanks 331, 332, 333, 334) can individually store two or more kinds of spraying agents among seeds, fertilizers, and pesticides.
  • washing water may be stored in at least one of the plurality of tanks 331 , 332 , 333 , and 334 .
  • the number of tanks 331, 332, 333, 334 may be determined according to the number and capacity of the type of spraying agent to be stored, and one type of spraying agent may be individually stored in each tank 331, 332, 333, 334.
  • the specific type of spraying agent may be stored in a plurality of tanks.
  • the storage tank 33 includes four tanks, that is, a first tank 331, a second tank 332, a third tank 333, and a fourth tank 334. ) is included, and each tank will be described as an example in which seeds, fertilizers, pesticides, and washing liquid are individually stored.
  • each tank (331, 332, 333, 334) is provided with a separate remaining capacity detection sensor (not shown), and each remaining capacity detection sensor generates and manages remaining capacity information for the spray agent stored in each tank. It can be transmitted to the server 50 or the user terminal 70 .
  • the residual capacity detecting sensor may be implemented in various sensor types such as an ultrasonic level sensor and a weight detecting sensor.
  • the management server 50 or the user terminal 70 receiving the remaining capacity information may provide the remaining capacity information to the user so that the manager can monitor the remaining capacity of the spray agent stored in each tank.
  • the management server 50 generates spray agent purchase information based on the received remaining capacity information, and transmits the generated spray agent purchase information to the outside (eg, spray agent seller) so that insufficient spray agent can be automatically purchased.
  • the management server 50 generates the spray agent purchase information when the spray agent is automatically purchased by transmitting the generated spray agent purchase information to the outside and transmits the spray agent purchase information to the user terminal 70 so that the user does not purchase the spray agent repeatedly.
  • the user terminal 70 based on the received remaining capacity information, when the remaining capacity of the spraying agent is less than the reference capacity by providing an alarm to the user can induce the user to purchase the spraying agent.
  • the user can generate spray agent purchase information through a separate application installed in the user terminal 70, and transmit the generated purchase information to the outside (for example, a spray agent seller) to purchase the insufficient spray agent.
  • the supply module 34 may operate to supply the spraying agent stored in the storage tank 33 to the receiving container 11 of the drone on the landing plate 32.
  • the supply module 34 is individually connected to a supply nozzle 341 connectable to the receiving container supply port 111 of the drone and to each of the tanks 331, 332, 333, and 334, as shown in FIG.
  • a first supply pipe 342, a second supply pipe 343 connecting the first supply pipe 342 and the supply nozzle 341, a valve 344 capable of opening and closing the supply path, and a fluid flow flow in the supply path It may be configured to include a pump 345 that generates.
  • the length of the supply nozzle 341 can be extended in one direction, and when the length is extended, the end in the direction of extension can be connected to the receiving container supply port 111 of the landed drone.
  • the supply module 34 may be configured to be extended in length through various methods, and for example, the length may be extended through a telescopic method.
  • a plurality of first supply pipes 342 are provided according to the number of tanks 331, 332, 333, and 334, and one end of the plurality of first supply pipes 342 is individually attached to each tank 331, 332, 333, and 334. can be connected
  • the second supply pipe 343 may be arranged to connect the other ends of the plurality of first supply pipes 342 and the supply nozzle 341 . Accordingly, each of the tanks 331 , 332 , 333 , and 334 may be connected to the supply nozzle 341 .
  • a plurality of valves 344 are provided, and the first supply pipe 342 is disposed in the first supply pipe 342 so that only one tank among all the tanks 331, 332, 333, and 334 can be selectively communicated with. can decide whether to open or close.
  • the pump 345 is connected to any one of the supply nozzle 341, the first supply pipe 342, and the second supply pipe 343 to generate a fluid flow, and may be preferably connected to the second supply pipe 343. there is. Accordingly, the supply module 34 is operable to supply the fluid stored in the storage tank 33 to the container 11 of the drone.
  • the flow direction of the fluid generated by the pump 345 may be bi-directional, and for this purpose, two or more pumps 345 may be provided as necessary. Accordingly, the supply module 34 is operable not only to supply the fluid stored in the storage tank 33 to the container 11 of the drone, but also to return the fluid in the container 11 to the storage tank 33. possible.
  • the drone 10 in order for the supply module 34 according to this embodiment to be connected to the container 11 of the drone, the drone 10 must be located in the right position, and the supply port 11 of the container must be connected to the supply nozzle 341. ), the arrangement direction of the drone 10 should be located in the forward direction. Therefore, when the drone 10 fails to land accurately in the correct position and in the correct direction, in order to connect the supply module 34 and the receiving container 11, additional take-off and landing are performed so that the drone 10 accurately lands in the correct position and in the correct direction. There are inconveniences to be had.
  • the drone station 30 moves the drone 10 on the landing plate 32 to the right position without an additional take-off and landing process even if the drone 10 does not accurately land in the right position and in the right direction. and an alignment module 35 capable of aligning in a forward direction.
  • the alignment module 35 may include a position aligning unit 351 for moving the drone 10 on the landing plate 32 to a normal position and a direction aligning unit 352 for rotating it in a forward direction.
  • the alignment module 35 moves along the alignment rails 3511 and a plurality of alignment rails 3511 formed with a predetermined length in the distance direction of the location on the landing plate 32 and presses the drone 10 in the direction of the location.
  • a possible pressing member 3512 may be provided, and as shown in FIG. 5, preferably, an alignment rail 3511 such that the pressing member 3512 is movable in the direction of the home position in four directions surrounding the home position. and a pressing member 3512 may be disposed.
  • the alignment module 35 may include a rotation plate 3521 that is rotatably disposed at a fixed position of the landing plate 32 and operates in rotation. A more specific description of the proper position and forward alignment of the drone using the position aligner 351 and the direction aligner 352 will be described later with reference to FIGS. 7 to 10 .
  • FIG. 7 is a functional block diagram showing the configuration of a drone station for alignment for drone alignment according to an embodiment of the present invention
  • FIG. 8 is a diagram showing an example of a drone landing according to an embodiment of the present invention.
  • 9 is a view showing an example of position alignment of drones according to an embodiment of the present invention.
  • 10 is a diagram showing an example of direction alignment of drones according to an embodiment of the present invention.
  • the drone station 30 uses the above-described alignment module 35 to align the landed drone 10 in the correct position and direction when the drone 10 lands on the landing plate 32.
  • a communication unit 36 for communicating with the outside, an alignment control unit 37 for operating and controlling the alignment module 35, and a direction detection unit 38 for detecting the disposition direction of the drone 10 may be provided.
  • the communication unit 36 may receive a landing completion signal from the drone 10 that is connected to the drone 10 and has completed landing on the landing plate 32 .
  • the landing completion signal received through the communication unit 36 is provided to the alignment control unit 37, and when the alignment control unit 37 receives the landing completion signal, the pressing member 3512 disposed farthest from the original position is aligned.
  • the pressing member 3512 may be operated and controlled to move toward the proper position along the rail 3511 . Therefore, as shown in FIGS. 8 and 9 , the drone 10 that has not landed in the correct position may be moved to the correct position by pressing the pressing member 3512 .
  • a rotary plate 3521 is disposed at the correct position for connecting the supply module 34 to the supply port 11, and preferably, a wireless charging module capable of wirelessly charging the battery of the drone 10 is placed below the rotary plate 3521. (not shown) may be disposed. Therefore, when the drone 10 is moved and placed in a fixed position using the pressing member 3512, it is possible to supply the spraying agent to the container 11 of the drone and wirelessly charge the battery of the drone 10.
  • the alignment control unit 37 may request arrangement direction information of the drone 10 from the direction detection unit 38 in order to align the drone 10 in the forward direction.
  • the direction detecting unit 38 that has received the arrangement direction information from the alignment control unit 37 may generate arrangement direction information by detecting the arrangement direction of the drone 10 located in the correct position, and the arrangement direction information generated may be used by the alignment control unit 38. (37) can be provided.
  • the direction detecting unit 38 may include an EO camera and analyze an image obtained from the EO camera to generate disposition direction information of the drone 10 .
  • the alignment control unit 37 Upon receiving the arrangement direction information, the alignment control unit 37 calculates a rotation angle for the drone 10 to be placed in the forward direction based on the provided arrangement direction information, and operates the rotation plate 3521 to rotate according to the calculated rotation angle.
  • the drone 10 may be disposed in a forward direction in which the supply port 11 of the drone faces the supply nozzle 341 .
  • the drone station 30 can align the drone 10 in the correct position and in the correct direction without an additional take-off and landing process even if the drone 10 does not accurately land in the correct position and in the correct direction. It is possible to accurately connect the supply module of the drone for supply, and it is possible to shorten the time required according to additional take-off and landing for the correct position and forward alignment of the drone 10 .
  • FIG. 11 is a functional block diagram showing the configuration of a drone station for supplying and cleaning a spray agent according to an embodiment of the present invention
  • FIG. 12 is a diagram showing an example of a cleaning process for a container according to an embodiment of the present invention. .
  • the drone station 30 according to this embodiment can automatically fill the spraying agent in the container 11 of the drone.
  • the drone station 30 according to the present embodiment may include a supply determination unit 39 that determines the supply of the spray agent and a supply control unit 40 that controls the operation of the supply module 34.
  • the supply determination unit 39 may determine the supply of the spray agent to the container 11 based on an input signal according to a user's input or an external reception signal received through the communication unit 36 .
  • the supply determination unit 39 may receive flight schedule information of the drone from the management server or the drone through the communication unit 36, and based on the received flight schedule information, the type of spraying agent to be sprayed in the next drone flight schedule is determined. It is possible to select the type of spray agent to be supplied to the container 11 by judgment.
  • the supply controller 40 may operate and control the supply module 34 to supply the spray agent stored in the storage tank 33 to the container 11 based on the selection of the type of spray agent by the supply determination unit 39 .
  • the supply control unit 40 controls the operation so that the supply nozzle 341 of the supply module is extended when the alignment control unit 37 completes the drone's normal position and forward alignment, so that the supply nozzle 341 is a receiving container. It can be connected to the supply port 11 of.
  • the supply control unit 40 individually controls each valve 344 so that only the tank storing the selected type of spray agent communicates with the container 11, and the spray agent Operation of the pump 345 may be controlled so that fluid flow in the supply direction occurs.
  • the drone station 30 can automatically supply the spray agent to the receiving container of the landed drone, and thus has the effect of reducing manpower according to the filling of the spray agent, standardizing the operation of spray agent charging, and reducing labor costs.
  • the drone station 30 determines the need to clean the receiving container 11 based on the type of spraying agent recently accommodated in the receiving container 11, and the spraying agent recently stored in the receiving container of the landed drone is If cleaning is required, the container 11 can be automatically cleaned.
  • the drone station 30 may include a washing determination unit 41 that determines the need for washing and a washing control unit 42 that controls the operation of the supply module 34 so that the container 11 is cleaned.
  • the cleaning determination unit 41 may determine the necessity of cleaning the housing container 11 by receiving information on the type of spray agent recently stored in the storage container of the drone through the communication unit 36 . Specifically, the washing determination unit 41 may receive information on the type of spray agent used in the flight schedule performed before landing from the flight schedule information received by the communication unit 36 from the drone 10 . The washing determining unit 41 may determine that washing of the storage container 11 is necessary when the recently stored kind of the spraying agent is a spraying agent (for example, pesticide) set to require cleaning.
  • a spraying agent for example, pesticide
  • the washing control unit 42 may control the supply nozzle 341 to clean the inside of the container 11 using the washing water stored in the storage tank 33 when the washing determination unit 41 determines that washing is necessary. there is.
  • the washing control unit 42 first controls the operation of the supply nozzle 341 so as to be connected between the supply nozzle 341 and the container 11 for washing the container 11 .
  • a washing preparation process may be performed in which each valve 344 is operated and controlled so that only the tank in which the washing water is stored communicates with the container 11 .
  • the washing control unit 42 controls the operation and control of the pump 345 in the supply direction to supply the washing water stored in the storage tank 33 to the container 11 and the washing water in the container 11
  • a washing process may be performed to sequentially perform a recovery process of operating and controlling the pump 345 in the recovery direction to recover the .
  • the washing process may be repeated several times as shown in FIG. 12 .
  • the washing control unit 42 may perform a washing termination process of returning the supply module 34 to an initial state.
  • the washing control unit 42 operates and controls the supply module 34 to store at least some of the washing water recovered in the washing process in the storage space of the storage tank 33 containing the same type of spraying agent as the lastly stored type of spraying agent.
  • the washing control unit 42 may store at least a part of the washing water recovered in the washing process in the tank in which the pesticide is stored. Washing water recovered in this way contains more than a certain amount of pesticide and can be reused as a pesticide. Therefore, it is possible to reduce environmental pollution caused by the washing water recovered in the washing process and to reduce the treatment cost of the recovered washing water.
  • the washing control unit 42 stores the washing water recovered in the first washing process among the plurality of repeated washing processes in the storage space of the storage tank 33 containing the same kind of spray agent as the last stored spray agent. ) can be controlled. This is because the concentration of the dispersant in the initially recovered wash liquid is the highest.
  • the supply capacity of the washing water supplied to the container 11 during the first washing is to be supplied to the container 11 during the second washing. It may be less than the washing water supply capacity.
  • the alignment control unit 37 may operate and control the rotating plate 3521 for a predetermined time before the washing water is recovered after the washing control unit 42 supplies the washing water to the container 11 .
  • the rotating operation of the rotating plate 3521 can improve washing efficiency by stirring the washing water supplied into the receiving container 11.
  • the supply nozzle 341 is inserted into the receiving container supply port ( 11) to prevent damage to the supply nozzle 341.
  • the present invention can use one receiving container 11 together to use various types of spraying agents without contamination between spraying agents and reduce manpower for drone management. This has the effect of standardizing work and reducing labor costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Transportation (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Agronomy & Crop Science (AREA)
  • Animal Husbandry (AREA)
  • Pest Control & Pesticides (AREA)
  • Mining & Mineral Resources (AREA)
  • Insects & Arthropods (AREA)
  • Zoology (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Catching Or Destruction (AREA)

Abstract

The present invention relates to a drone station for automatically supplying a spray agent, and a drone spray system comprising same. The drone station for automatically supplying a spray agent, according to one embodiment of the present invention, comprises: a landing board on which a drone can land; a storage tank for storing a spray agent; and a supply module operated to supply, to an accommodation container of the drone on the landing board, the spray agent stored in the storage tank. The present invention comprises the storage tank for storing the spray agent, and the supply module operated to supply the stored spray agent, so as to enable the spray agent to be automatically supplied to the accommodation container of the landed drone, and thus reduces manpower for spraying the spray agent and charging the spray agent so that work is standardized and labor costs are reduced.

Description

살포제를 자동 공급하는 드론스테이션 및 이를 포함하는 드론 살포 시스템Drone station automatically supplying spraying agent and drone spraying system including the same
본 발명은 농업에 필요한 종자, 비료 및 농약 등의 살포제를 자동 공급하는 드론스테이션 및 이를 포함하는 드론 살포 시스템에 관한 것으로, 더욱 상세하게는 살포제를 저장하는 저장 탱크와 저장한 살포제를 자동 공급하도록 작동하는 공급 모듈을 구비하여 착륙한 드론의 수용 용기에 살포제를 자동 공급 가능하며, 착륙한 드론의 수용 용기에 최근 저장한 살포제의 종류에 기초하여 수용 용기의 세척 필요성을 판단하고, 착륙한 드론의 수용 용기에 최근 저장한 살포제가 농약 등의 세척이 요구되는 종류인 경우 수용 용기를 자동 세척하는 드론스테이션 및 이를 포함하는 드론 살포 시스템에 관한 것이다.The present invention relates to a drone station that automatically supplies spraying agents such as seeds, fertilizers, and pesticides necessary for agriculture, and a drone spraying system including the same, and more particularly, to a storage tank for storing the spraying agent and an operation to automatically supply the stored spraying agent. It is possible to automatically supply the spraying agent to the receiving container of the landed drone, and determines the need to clean the receiving container based on the type of spraying agent recently stored in the receiving container of the landed drone, and accepts the landed drone. The present disclosure relates to a drone station that automatically cleans a storage container when the spraying agent recently stored in the container is a type requiring washing of pesticides and the like, and a drone spraying system including the same.
통상적으로 농업 또는 산림 분야에서의 방제 및 비료 살포 작업은 작물에 따라서 연간 10회 이상 필요한 것으로 작업자에게 큰 부담이 되고 있다. In general, pest control and fertilizer spraying in agriculture or forestry is a heavy burden on workers as they are required more than 10 times a year depending on the crop.
특히, 작업자에 의한 동력분무기를 이용한 노동집약적인 방제 및 비료 살포 작업은 생산비의 절감이 어렵고, 고압용 노즐에서 발생된 미세입자의 비산으로 인한 손실은 물론 근접 작업자의 중독사고가 우려되며, 불균일한 살포로 인하여 방제 및 비료 살포의 효과 감소를 초래할 수 있다.In particular, labor-intensive control and fertilizer spraying using a power sprayer by workers is difficult to reduce production costs, and there are concerns about losses due to scattering of fine particles generated from high-pressure nozzles as well as poisoning accidents of nearby workers, and uneven Spreading can lead to reduced effectiveness of control and fertilizer applications.
기존 벼농사의 경우, 모심기, 모내기 등의 과정이 고가의 농기계와 수많은 농업인력을 필요로 하고 있어 농업인력이 부족한 농촌의 인력난 문제와 농업샌산 비용 절감을 해결하기 어렵다.In the case of conventional rice farming, processes such as rice planting and planting require expensive agricultural machinery and a large number of agricultural manpower, making it difficult to solve the manpower shortage problem and reduce agricultural production costs in rural areas where there is a shortage of agricultural manpower.
한편, 무인비행기는 조종사가 탑승하지 않고 원격조종에 의해서 또는 자율비행제어 장치에 의해서 비행을 하여 정찰, 폭격, 화물 수송, 산불 감시, 방사능 감시 등 사람이 직접 수행하기가 힘들거나 직접 수행하기에 위험한 임무를 수행하는 비행기를 의미한다.On the other hand, unmanned aerial vehicles fly by remote control or by autonomous flight control devices without a pilot on board, so they can perform reconnaissance, bombing, cargo transportation, forest fire monitoring, radiological monitoring, etc. that are difficult or dangerous for humans to perform directly. Means an airplane that carries out missions.
드론은 무인 비행기의 하나로 자체 동력을 갖추고 있지만 조종사가 탑승하지 않는 헬리콥터 모양의 무인 항공기를 말한다. 초기의 드론은 군사용 목적으로 개발되었으나, 최근에는 군사용뿐 아니라 기업, 미디어나 개인을 위한 용도로 다양하게 활용되고 있으며, 그 활용 범위가 점차 넓어지고 있다.A drone is a helicopter-like unmanned aerial vehicle that is self-powered but does not have a pilot on board. Initially, drones were developed for military purposes, but recently, they have been widely used not only for military purposes but also for corporations, media, and individuals, and their usage range is gradually widening.
드론의 활용 목적에 따라 다양한 크기와 성능을 가진 비행체들이 다양하게 개발되고 있는데, 정글이나 오지, 화산지역, 자연재해지역, 원자력 발전소 사고지역 등 인간이 접근할 수 없는 지역에 드론을 투입하여 운용하거나, 물류 배송, 방 송 레저 등 다양한 상업적 분야에도 이용되고 있다.Depending on the purpose of drone use, a variety of drones with various sizes and performance are being developed. It is also used in various commercial fields such as logistics, delivery, broadcasting and leisure.
이에 따라 드론과 관련된 산업이 급격히 성장하고 있으며, 그 중 큰 비중을 차지하는 분야는 농업 및 산림이다. 드론의 농업 및 산림 분야 도입은 방제 및 비료 살포 작업을 작업자를 대신하여 드론이 수행함으로써 작업자가 방제 및 비료 살포 작업을 직접 수행함으로써 발생하는 상술한 문제들을 해결하고 있다. Accordingly, industries related to drones are rapidly growing, and agriculture and forestry account for a large portion of them. The introduction of drones into the agriculture and forestry fields solves the above-mentioned problems caused by direct control and fertilizer application by drones performing pest control and fertilizer application on behalf of workers.
통상적으로 농업 및 산림용 드론은 살포제를 수용하는 살포제 용기와, 살포제를 분사하는 분사 노즐을 구비하며, 지정된 경로를 비행하며 분사 노즐을 통해 살포제 용기에 수용된 살포제를 하향 분사함으로써 광범위한 지역을 대상으로 파종, 비료 살포 및 병해충 방제 작업을 효율적으로 수행 가능하여, 농업 및 산림 분야에서 작업 인력을 크게 감소시켜줄 수 있다.In general, drones for agriculture and forestry include a spraying agent container for accommodating a spraying agent and a spraying nozzle for spraying the spraying agent, and by flying a designated path and downward spraying the spraying agent contained in the spraying agent container through the spray nozzle, seeding is performed over a wide area. , fertilizer application and pest control work can be carried out efficiently, which can greatly reduce the number of working manpower in agriculture and forestry.
하지만, 종래의 농업 및 산림용 드론은 살포제의 분사 작업을 드론이 작업자를 대신하여 수행할 뿐, 드론의 살포제 분사를 위한 살포제 충전 및 세척 과정 등은 작업자가 현장에서 직접 작업을 수행해야 한다는 점에서 한계가 존재한다. However, in conventional agriculture and forestry drones, the drone sprays the spray agent on behalf of the worker, and the spray agent charging and cleaning process for spraying the spray agent of the drone requires the operator to perform the work directly on site. There are limits.
또한 드론의 특성상 배터리를 교체하여 다시 충전하여야 하는 단점이 있으며 야간 작업이 어려운 단점을 가지고 있어 하루 작업량은 일출시간 동안에만 작업이 가능하다. In addition, due to the nature of drones, there is a disadvantage that the battery must be replaced and recharged, and it is difficult to work at night, so the daily workload is only possible during sunrise.
본 발명은 위에서 언급한 종래 기술이 가지는 문제점을 해결하기 위한 것으로 본 발명이 이루고자 하는 목적은, 살포제를 저장하는 저장 탱크와 저장한 살포제를 공급하도록 작동하는 공급 모듈을 구비하여 착륙한 드론의 수용 용기에 살포제를 자동 공급 가능한 드론스테이션 및 이를 포함하는 드론 살포 시스템을 제공하는 것이다.The present invention is to solve the problems of the prior art mentioned above, and an object of the present invention is to have a storage tank for storing the spraying agent and a supply module that operates to supply the stored spraying agent, and a receiving container for the landed drone. To provide a drone station capable of automatically supplying a spraying agent and a drone spraying system including the same.
본 발명이 이루고자 하는 다른 목적은, 기존의 농업 등의 활동에서 종자를 뿌리거나 심거나 하는 작업과 비료를 살포하는 작업, 농약을 살포하는 작업을 살포제 자동 공급 수용용기를 포함한 드론 스테이션을 통해 현장 작업자 조작 없이 원격 또는 자동으로 드론기체 용기에 공급하는 것이다.Another object to be achieved by the present invention is to sow or plant seeds in existing agricultural activities, to spray fertilizers, and to spray pesticides through a drone station including an automatic spraying agent supply container for field workers. It is to supply the drone gas container remotely or automatically without manipulation.
본 발명이 이루고자 하는 또 다른 목적은, 착륙한 드론의 수용 용기에 최근 저장한 살포제의 종류에 기초하여 수용 용기의 세척 필요성을 판단하고, 착륙한 드론의 수용 용기에 최근 저장한 살포제가 농약 등의 세척이 요구되는 종류인 경우 수용 용기를 자동 세척하는 드론스테이션 및 이를 포함하는 드론 살포 시스템을 제공하는 것이다.Another object to be achieved by the present invention is to determine the need for cleaning the receiving container based on the type of spraying agent recently stored in the receiving container of the drone that landed, and to determine whether the recently stored spraying agent in the receiving container of the landed drone is pesticide or the like. To provide a drone station and a drone spraying system including the same that automatically cleans the receiving container when cleaning is required.
본 발명이 이루고자 하는 또 다른 목적은, 착륙한 드론을 살포제 공급을 위한 정위치 및 정방향에 정렬시키는 정렬 모듈을 구비하여 드론이 정위치 및 정방향으로 정확하게 착륙하지 못하여도 추가 이착륙 과정 없이 드론을 정위치 및 정방향으로 정렬시킬 수 있는 드론스테이션 및 이를 포함하는 드론 살포 시스템을 제공하는 것이다.Another object to be achieved by the present invention is to provide an alignment module for aligning the landed drone in the correct position and direction for supplying the spraying agent, so that the drone can be placed in the correct position without an additional take-off and landing process even if the drone does not land accurately in the correct position and direction. And to provide a drone station that can be aligned in the forward direction and a drone distribution system including the same.
본 발명이 이루고자 하는 또 다른 목적은, 드론이 사전 설정된 비행 스케줄에 따라 목표 지역 상공을 비행하며 살포제를 살포하되 목표 지역의 날씨 정보에 기초하여 스케줄에 따른 비행을 지연하여, 드론의 비행 또는 살포제 살포에 적합한 날씨에 스케줄에 따른 비행을 주간 및 야간 관계없이 자동 수행하는 드론 살포 시스템을 제공하는 것이다.Another object to be achieved by the present invention is that the drone flies over the target area according to a preset flight schedule and sprays the spraying agent, but based on the weather information of the target area, the flight is delayed according to the schedule, so that the drone's flight or the spraying agent is sprayed. It is to provide a drone spraying system that automatically performs flight according to a schedule regardless of daytime or nighttime in suitable weather.
본 발명의 일 실시예에 따른 살포제를 자동 공급하는 드론스테이션은, 드론이 착륙 가능한 착륙판과, 살포제를 저장하는 저장 탱크, 그리고 저장 탱크에 저장된 살포제를 착륙판 상에 드론의 수용 용기에 공급하도록 작동하는 공급 모듈을 포함한다.A drone station for automatically supplying a spray agent according to an embodiment of the present invention supplies a landing plate on which a drone can land, a storage tank for storing the spray agent, and a storage tank for storing the spray agent on the landing plate to the receiving container of the drone. Includes a working supply module.
이때, 드론스테이션은 입력 신호 또는 외부 수신 신호에 기초하여 살포제의 공급을 판단하는 공급 판단부, 그리고 공급 판단부의 판단에 기초하여 저장 탱크에 저장된 살포제를 수용 용기에 공급하도록 공급 모듈을 작동 제어하는 공급 제어부를 포함할 수 있다.At this time, the drone station operates and controls the supply module to supply the spray agent stored in the storage tank to the receiving container based on the supply determination unit for determining the supply of the spray agent based on the input signal or the external reception signal, and the supply determination unit. A control unit may be included.
또한, 저장 탱크는 서로 간에 분리된 둘 이상의 저장 공간을 구비하고, 두 종류 이상의 살포제를 저장 공간에 개별 저장하며, 공급 판단부는 입력 신호 또는 외부 수신 신호에 기초하여 수용 용기에 공급하는 살포제의 종류를 선택하고, 공급 제어부는 공급 결정부에서 선택한 살포제를 수용 용기에 공급하도록 공급 모듈을 작동 제어할 수 있다.In addition, the storage tank is provided with two or more storage spaces separated from each other, and two or more types of spraying agents are individually stored in the storage space, and the supply determination unit determines the type of spraying agent supplied to the container based on an input signal or an external received signal. Upon selection, the supply control unit may operate and control the supply module to supply the spray agent selected by the supply determination unit to the container.
또한, 공급 모듈은 일측 방향으로 길이가 연장 가능하며, 길이가 연장되면 착륙한 드론의 수용 용기 공급구에 일단부가 연결 가능한 공급 노즐과, 저장 공간에 일단이 개별 연결되는 다수개의 제1 공급관과, 다수개의 제1 공급관의 타단과 공급 노즐을 연결하는 제2 공급관과, 제1 공급관에 각각 배치되어 제1 공급관을 개폐하는 밸브, 그리고 공급 노즐, 제1 공급관, 제2 공급관 중 어느 하나에 연결되어 유체의 유동 흐름을 발생시키는 펌프를 포함할 수 있다.In addition, the supply module can be extended in one direction, and when the length is extended, a supply nozzle whose one end is connectable to the supply port of the receiving container of the landed drone, a plurality of first supply pipes having one end individually connected to the storage space, A second supply pipe connecting the other end of the plurality of first supply pipes and the supply nozzle, a valve disposed on the first supply pipe and opening and closing the first supply pipe, and connected to any one of the supply nozzle, the first supply pipe, and the second supply pipe It may include a pump that generates a fluid flow of fluid.
또한, 드론스테이션은 드론의 수용 용기에 최근 저장한 최근 저장 살포제 종류 정보를 제공받아 수용 용기의 세척 필요성을 판단하는 세척 판단부, 그리고 세척 판단부의 판단에 기초하여 수용 용기를 세척하도록 공급 모듈을 작동 제어하는 세척 제어부를 더 포함하고, 저장 탱크의 저장 공간 중 적어도 하나의 저장 공간에는 세척수가 저장될 수 있다.In addition, the drone station operates a cleaning determination unit that determines the need to clean the accommodation container by receiving information on the type of recently stored spray agent recently stored in the container of the drone, and a supply module to clean the container based on the judgment of the washing determination unit. A washing controller may be further included, and washing water may be stored in at least one of the storage spaces of the storage tank.
또한, 세척 제어부는 저장 탱크의 세척수를 수용 용기에 공급하는 공급 과정과 수용 용기의 세척수를 회수하는 회수 과정을 순차적으로 수행하도록 공급 모듈을 작동 제어하고, 회수한 세척수 중 적어도 일부는 최근 저장 살포제 종류와 동일한 종류의 살포제가 수용된 저장 탱크의 저장 공간에 저장하도록 공급 모듈을 작동 제어할 수 있다.In addition, the washing control unit controls the operation of the supply module to sequentially perform a supply process of supplying the washing water from the storage tank to the container and a recovery process of recovering the washing water of the container, and at least some of the recovered washing water is a recently stored dispersant type. It is possible to operate and control the supply module to store the same kind of spraying agent in the storage space of the storage tank.
또한, 드론스테이션은 착륙한 드론을 살포제 공급을 위한 정위치 또는 정방향에 정렬시키도록 작동하는 정렬 모듈과, 입력 신호 또는 외부 수신 신호에 기초하여 착륙한 드론이 정위치 또는 정방향에 정렬되도록 정렬 모듈을 작동 제어하는 정렬 제어부를 더 포함할 수 있다.In addition, the drone station includes an alignment module that operates to align the landed drone to the correct position or direction for supplying the spraying agent, and an alignment module to align the landed drone to the correct position or direction based on an input signal or an external received signal. An alignment control unit for controlling operation may be further included.
또한, 정렬 모듈은 착륙판에서 정위치의 원근 방향으로 소정 길이 형성되는 정렬 레일과, 정렬 레일을 따라 이동하며 드론을 정위치 방향으로 가압 가능한 가압 부재를 구비하는 위치 정렬부를 포함할 수 있다.In addition, the alignment module may include a positioning unit having an alignment rail formed with a predetermined length in the distance direction from the landing plate and a pressing member that moves along the alignment rail and is capable of pressing the drone toward the proper position.
또한, 드론스테이션은 착륙한 드론의 배치 방향을 감지하는 방향 감지부를 더 포함하고, 정렬 모듈은 착륙판에 회전 가능하게 배치되어 회전 작동하는 회전판을 구비하는 방향 정렬부를 포함하며, 정렬 제어부는 방향 감지부의 감지 정보에 기초하여 드론을 정방향으로 정렬시키도록 회전판을 작동 제어할 수 있다.In addition, the drone station further includes a direction detecting unit for detecting the arrangement direction of the landed drone, and the alignment module includes a direction aligning unit having a rotating plate rotatably disposed on the landing plate and operating, and the alignment control unit detects the direction Based on the negative detection information, the rotary plate may be operated and controlled to align the drones in the forward direction.
또한, 정렬 제어부는 세척 제어부가 세척수를 수용 용기에 공급한 후 세척수를 회수하기 전 소정 시간 동안 회전판을 작동 제어할 수 있다.Also, the alignment control unit may operate and control the rotating plate for a predetermined time before the washing control unit collects the washing water after the washing control unit supplies the washing water to the container.
한편, 본 발명의 일 실시예에 따른 드론 살포 시스템은 상술한 드론스테이션, 그리고 살포제를 수용하는 수용 용기를 구비하며 사전 설정된 비행 스케줄에 기초하여 목표 지역 상공을 비행하며 수용 용기에 수용된 살포제를 살포하는 드론을 포함한다.On the other hand, the drone spraying system according to an embodiment of the present invention is provided with the above-described drone station and a container for accommodating the spray agent, flying over the target area based on a preset flight schedule and spraying the spray agent contained in the container including drones.
이때, 드론은 사전 설정된 비행 스케줄에 따라 비행을 결정하는 비행 결정부와, 비행 스케줄에 포함된 목표 지역의 날씨 정보를 수신하는 날씨 수신부를 포함하고, 비행 결정부는 날씨 수신부에서 수신한 날씨 정보에 기초하여 비행 스케줄에 따른 비행을 지연 결정 가능할 수 있다.At this time, the drone includes a flight decision unit for determining flight according to a preset flight schedule, and a weather reception unit for receiving weather information of a target area included in the flight schedule, and the flight decision unit is based on the weather information received from the weather reception unit. Thus, it may be possible to determine a flight delay according to a flight schedule.
또한, 드론 살포 시스템은 드론스테이션 또는 드론으로부터 살포제 잔여량 정보를 수신 가능한 사용자 단말을 더 포함하고, 사용자 단말은 사용자의 입력 또는 살포제 잔여량 정보에 기초하여 살포제 구매 요청 정보를 생성하고, 생성한 살포제 구매 요청 정보를 살포제 판매처로 송신할 수 있다.In addition, the drone spraying system further includes a user terminal capable of receiving information on the remaining amount of spraying agent from a drone station or a drone, and the user terminal generates spraying agent purchase request information based on the user's input or the remaining amount of spraying agent information, and the generated spraying agent purchase request Information can be sent to the distributor of the dispersant.
또한, 드론 살포 시스템은 드론 또는 드론스테이션으로부터 드론 활동 정보를 실시간 수신하고, GIS(Geographic Information System) 기반 드론 제어 프로그램과 연동하여 드론의 농업 활동 정보를 기록 및 저장하는 관리 서버를 더 포함할 수 있다.In addition, the drone spraying system may further include a management server that receives drone activity information from drones or drone stations in real time and records and stores drone agricultural activity information in conjunction with a Geographic Information System (GIS)-based drone control program. .
본 발명에 의하면, 살포제를 저장하는 저장 탱크와 저장한 살포제를 공급하도록 작동하는 공급 모듈을 구비하여 착륙한 드론의 수용 용기에 살포제를 자동 공급 가능하므로, 살포제 살포뿐 아니라 살포제의 충전에 따른 인력 감소와 이에 따른 작업 표준화 및 인건비 절감의 효과가 있다.According to the present invention, since the storage tank for storing the spray agent and the supply module that operates to supply the stored spray agent are provided, it is possible to automatically supply the spray agent to the receiving container of the landed drone, reducing manpower due to not only spraying the spray agent but also filling the spray agent. This has the effect of standardizing work and reducing labor costs.
또한, 본 발명은 착륙한 드론의 수용 용기에 최근 저장한 살포제의 종류에 기초하여 수용 용기의 세척 필요성을 판단하고, 착륙한 드론의 수용 용기에 최근 저장한 살포제가 농약 등의 세척이 요구되는 종류인 경우 수용 용기를 자동 세척함으로써, 하나의 수용 용기를 이용하여 살포제 간의 오염 없이 여러 종류의 살포제를 함께 사용 가능하며 드론 관리를 위한 인력 감소와 이에 따른 작업 표준화 및 인건비 절감의 효과가 있다.In addition, the present invention determines the need to wash the accommodating container based on the type of spraying agent recently stored in the accommodating container of the landed drone, and the dispersing agent recently stored in the accommodating container of the landed drone is the kind that requires washing of pesticides. In the case of , by automatically washing the container, it is possible to use several types of spraying agents together without contamination between spraying agents using one container, and there is an effect of reducing manpower for drone management, standardizing work and reducing labor costs.
또한, 본 발명은 착륙한 드론을 살포제 공급을 위한 정위치 및 정방향에 정렬시키는 정렬 모듈을 구비하여 드론이 정위치 및 정방향으로 정확하게 착륙하지 못하여도 추가 이착륙 과정 없이 드론을 정위치 및 정방향으로 정렬시킴으로써, 살포제 공급을 위한 드론의 공금 모듈 연결을 정확하게 수행할 수 있고 드론의 정위치 및 정방향 정렬을 위한 추가 이착륙에 따라 소요되는 시간을 단축할 수 있다.In addition, the present invention is provided with an alignment module for aligning the landed drone in the correct position and direction for supplying the spraying agent, so that even if the drone does not land accurately in the correct position and direction, the drone is aligned in the correct position and direction without additional take-off and landing processes. In addition, it is possible to accurately connect the supply module of the drone for the supply of the spraying agent, and the time required for additional take-off and landing for the correct positioning and alignment of the drone can be shortened.
또한, 본 발명은 드론이 사전 설정된 비행 스케줄에 따라 목표 지역 상공을 비행하며 살포제를 살포하되 목표 지역의 날씨 정보에 기초하여 스케줄에 따른 비행을 지연하여, 드론의 비행 또는 살포제 살포에 적합한 날씨에 스케줄에 따른 비행을 자동 수행함으로써 살포제 살포 작업 효율과 드론 비행의 안전성을 향상시킬 수 있다.In addition, according to the present invention, the drone flies over the target area according to a preset flight schedule and sprays the spraying agent, but based on the weather information of the target area, the flight according to the schedule is delayed, so that the drone flight or the spraying agent is sprayed in a suitable weather. It is possible to improve the efficiency of the spraying agent spraying operation and the safety of the drone flight by automatically performing the flight according to the method.
현재의 국내 농업 환경에서는 농지에 대한 개별 단위면적당 농약 및 비료의 종류 및 사용량에 대한 정보를 가지고 있지 못하고 있어 농업 토양 상태 및 과다 농약사용에 대한 데이터를 확보할 수가 없어 과학적인 농업을 하기 어렵다. 이에 본 특허기술은 단위면적당 농약 및 비료의 종류와 사용량을 자동 기록하여 농지에 대한 토양 화학데이터를 저장, 관리하여 보다 친환경적인 과학농업을 할 수 있다.In the current domestic agricultural environment, it is difficult to do scientific farming because it is not possible to secure data on agricultural soil conditions and excessive use of pesticides because there is no information on the types and usage of pesticides and fertilizers per unit area for farmland. Accordingly, this patented technology can automatically record the type and amount of pesticides and fertilizers used per unit area to store and manage soil chemistry data for farmland, enabling more eco-friendly scientific agriculture.
본 발명의 농약 및 비료의 사용으로 재구매하여 보충할 필요가 있을 때 본 발명시스템과 연동된 애플리케이션 프로그램을 이용하여 자동 주문, 충전을 할 수 있다.When it is necessary to repurchase and replenish due to the use of pesticides and fertilizers of the present invention, automatic ordering and charging can be performed using an application program linked with the system of the present invention.
도 1은 본 발명의 일 실시예에 따른 드론 살포 시스템을 개념적으로 도시한 도면이다.1 is a diagram conceptually illustrating a drone spraying system according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 드론 살포 시스템의 드론을 개략적으로 도시한 도면이다.2 is a diagram schematically illustrating a drone of a drone distribution system according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 드론의 기능 블록도이다.3 is a functional block diagram of a drone according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 드론 살포 시스템의 드론스테이션을 개략적으로 도시한 도면이다.4 is a diagram schematically showing a drone station of a drone distribution system according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 드론스테이션의 일부 구성을 도시한 도면이다.5 is a diagram showing some configurations of a drone station according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 드론의 공급 모듈 연결 모습 일례를 도시한 도면이다.6 is a diagram showing an example of a drone supply module connection according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 드론 정렬을 위한 정렬을 위한 드론스테이션의 구성을 도시한 기능 블록도이다.7 is a functional block diagram showing the configuration of a drone station for drone alignment according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 드론의 착륙 모습 일례를 도시한 도면이다.8 is a diagram showing an example of a landing state of a drone according to an embodiment of the present invention.
도 9는 본 발명의 일 실시예에 따른 드론의 위치 정렬 모습 일례를 도시한 도면이다.9 is a diagram showing an example of position alignment of drones according to an embodiment of the present invention.
도 10은 본 발명의 일 실시예에 따른 드론의 방향 정렬 모습 일례를 도시한 도면이다.10 is a diagram showing an example of direction alignment of drones according to an embodiment of the present invention.
도 11은 본 발명의 일 실시예에 따른 살포제 공급 및 세척을 위한 드론스테이션의 구성을 도시한 기능 블록도이다.11 is a functional block diagram showing the configuration of a drone station for supplying and cleaning a spray agent according to an embodiment of the present invention.
도 12는 본 발명의 일 실시예에 따른 수용 용기 세척 과정 일례를 도시한 도면이다.12 is a diagram showing an example of a cleaning process for a receiving vessel according to an embodiment of the present invention.
본 발명에서 사용되는 기술적 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아님을 유의해야 한다. 또한, 본 발명에서 사용되는 기술적 용어는 본 발명에서 특별히 다른 의미로 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미로 해석되어야 하며, 과도하게 포괄적인 의미로 해석되거나, 과도하게 축소된 의미로 해석되지 않아야 한다. 또한, 본 발명에서 사용되는 기술적인 용어가 본 발명의 사상을 정확하게 표현하지 못하는 잘못된 기술적 용어일 때에는, 당업자가 올바르게 이해할 수 있는 기술적 용어로 대체되어 이해되어야 할 것이다.It should be noted that technical terms used in the present invention are only used to describe specific embodiments and are not intended to limit the present invention. In addition, technical terms used in the present invention should be interpreted in terms commonly understood by those of ordinary skill in the art to which the present invention belongs, unless specifically defined otherwise in the present invention, and are excessively inclusive. It should not be interpreted in a positive sense or in an excessively reduced sense. In addition, when the technical terms used in the present invention are incorrect technical terms that do not accurately express the spirit of the present invention, they should be replaced with technical terms that those skilled in the art can correctly understand.
또한, 본 발명에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다. 본 발명에서, "구성된다" 또는 "포함한다" 등의 용어는 발명에 기재된 여러 구성 요소들, 또는 여러 단계를 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.Also, singular expressions used in the present invention include plural expressions unless the context clearly dictates otherwise. In the present invention, terms such as "consisting of" or "comprising" should not be construed as necessarily including all of the various elements or steps described in the invention, and some of the elements or steps are included. It should be construed that it may not be, or may further include additional components or steps.
또한, 첨부된 도면은 본 발명의 사상을 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 발명의 사상이 제한되는 것으로 해석되어서는 아니 됨을 유의해야 한다.In addition, it should be noted that the accompanying drawings are only for easily understanding the spirit of the present invention, and should not be construed as limiting the spirit of the present invention by the accompanying drawings.
이하 첨부한 도면을 참고로 본 발명에 따른 살포제를 자동 공급하는 드론스테이션 및 이를 포함하는 드론 살포 시스템에 대해 보다 구체적으로 살펴본다.Hereinafter, with reference to the accompanying drawings, a drone station for automatically supplying a spray agent according to the present invention and a drone spray system including the same will be described in more detail.
도 1은 본 발명의 일 실시예에 따른 드론 살포 시스템을 개념적으로 도시한 도면이다.1 is a diagram conceptually illustrating a drone spraying system according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 드론 살포 시스템은 목표 지역 상공을 비행하며 살포제를 살포하는 드론(10)과, 드론(10)이 이착륙 가능하며 착륙한 드론(10)을 격납 가능한 드론스테이션(30)을 포함하여 구성될 수 있다.The drone spraying system according to an embodiment of the present invention includes a drone 10 flying over a target area and spraying a spraying agent, and a drone station 30 capable of taking off and landing and storing the landed drone 10. It can be configured to include.
본 실시예에 따른 드론(10)은 사전 설정된 비행 스케줄에 기초하여 설정 경로를 자동 비행 가능하며, 설정 경로 중 지정된 경로 상에서 살포제를 살포함으로써 목표 지역에 살포제를 살포할 수 있다. 그리고 드론(10)은 비행 스케줄 및 경로 정보를 수신하기 위해 네트워크를 통해 서버(50) 또는 사용자 단말(70)과 통신 연결될 수 있다.The drone 10 according to the present embodiment can automatically fly a set path based on a preset flight schedule, and can spray the spray agent to a target area by spraying the spray agent on a designated path among the set paths. In addition, the drone 10 may communicate with the server 50 or the user terminal 70 through a network to receive flight schedule and route information.
여기서, 살포제의 종류로는 종자, 비료, 농약 등이 포함될 수 있으며, 목표 지역은 파종, 비료 살포 및 병해충 방제가 요구되는 산림, 농경지 등일 수 있다. Here, the types of spraying agents may include seeds, fertilizers, pesticides, and the like, and the target area may be forests, agricultural lands, etc. requiring sowing, fertilizer application, and pest control.
드론스테이션(30)은 드론(10)이 이륙 및 착륙 가능하며 착륙한 드론(10)을 격납하여 보관 가능할 수 있다. 이를 위해 드론스테이션(30)은 네트워크를 통해 드론(10)과 통신 연결되어 드론(10)으로부터 이륙 및 착륙 신호를 수신 가능하며, 또한, 네트워크를 통해 관리 서버(50) 또는 사용자 단말(70) 연결되어 드론의 비행 스케줄 정보 및 각각의 비행 스케줄에서 살포할 살포제 종류 정보 등을 수신할 수 있다.The drone station 30 may allow the drone 10 to take off and land, and may store and store the landed drone 10. To this end, the drone station 30 is communicatively connected to the drone 10 through a network and can receive take-off and landing signals from the drone 10, and also connects the management server 50 or the user terminal 70 through the network. It is possible to receive flight schedule information of the drone and information on the type of spraying agent to be sprayed in each flight schedule.
바람직하게, 드론(10)과 드론스테이션(30)의 정보는 실시간으로 관리 서버(50) 또는 사용자 단말(70)에 구비되는 GIS 기반 드론 제어 프로그램과 연동하여 실시간 드론의 농업활동 사항을 자동 기록 및 저장할 수 있다.Preferably, the information of the drone 10 and the drone station 30 is interlocked with the GIS-based drone control program provided in the management server 50 or the user terminal 70 in real time to automatically record and record agricultural activities of the drone in real time. can be saved
도 2는 본 발명의 일 실시예에 따른 드론 살포 시스템의 드론을 개략적으로 도시한 도면이고, 도 3은 본 발명의 일 실시예에 따른 드론의 기능 블록도이다.2 is a diagram schematically showing a drone of a drone distribution system according to an embodiment of the present invention, and FIG. 3 is a functional block diagram of a drone according to an embodiment of the present invention.
이하에서는, 도 2 내지 도 3을 참조하여 본 실시예에 따른 드론(10)에 관하여 보다 구체적으로 설명하기로 한다. Hereinafter, the drone 10 according to the present embodiment will be described in more detail with reference to FIGS. 2 and 3 .
본 실시예에 따른 드론(10)은 목표 지역 상공을 비행하며 살포제를 살포하기 위한 것으로, 도 2에 도시된 바와 같이 살포제를 수용하는 수용 용기(11)와, 살포제를 분사하기 위한 살포 노즐(12)을 포함하여 구성될 수 있다.The drone 10 according to this embodiment is for spraying a spraying agent while flying over a target area, and as shown in FIG. ).
수용 용기(11)는 드론의 몸체에 장착되며 살포제를 수용 가능한 수용 공간을 형성할 수 있다. 수용 용기(11)에는 필요에 따라 종자, 비료, 농약 등 다양한 종류의 살포제가 수용될 수 있다. 이때, 수용 용기(11)는 특정 종류의 살포제를 수용하기 위한 전용 용기로 구비될 수 있으나, 바람직하게는, 수용하는 살포제 종류가 특정되지 않고 비행시 마다 다른 종류의 살포제를 수용할 수 있다.The accommodating container 11 is mounted on the body of the drone and may form an accommodating space capable of accommodating the spraying agent. The receiving container 11 may accommodate various types of spraying agents such as seeds, fertilizers, and pesticides as needed. At this time, the receiving container 11 may be provided as a dedicated container for accommodating a specific type of spraying agent, but preferably, the type of spraying agent to be accommodated is not specified and can accommodate different types of spraying agents for each flight.
수용 용기(11) 일측에는 살포제를 공급하기 위한 수용 용기의 수용 공간을 외부와 연통하는 공급구(11)가 배치되며, 바람직하게 공급구(11)는 수용 용기의 측면 둘레 중 어느 한 곳에 배치될 수 있으며, 개폐 동작 가능한 개폐 부재가 배치될 수 있다.On one side of the receiving container 11, a supply port 11 communicating with the outside of the receiving space of the receiving container for supplying the spraying agent is disposed. and an opening/closing member capable of opening/closing operation may be disposed.
살포 노즐(12)은 수용 용기(11)에 수용된 살포제를 살포 가능하도록 수용 용기(11)와 연통되며, 드론의 비행 중에 살포제를 하향 분사하도록 하측 방향을 향해 배치될 수 있다. 바람직하게, 살포 노즐(12)은 랜딩기어에 배치될 수 있다.The spray nozzle 12 communicates with the receiving container 11 so as to be able to spray the spraying agent contained in the receiving container 11, and may be disposed downward to spray the spraying agent downward during flight of the drone. Preferably, the spray nozzle 12 can be arranged on the landing gear.
본 실시예에 따른 드론(10) 상술한 바와 같이 사전 설정된 비행 스케줄에 따라 목표 지역 상공을 비행하며 살포제를 살포하되, 살포제를 살포하는 목표 지역의 환경 정보에 기초하여 드론(10) 스스로 비행 스케줄을 조절 가능하다.As described above, the drone 10 according to the present embodiment flies over the target area according to the preset flight schedule and sprays the spraying agent, but the drone 10 itself sets the flight schedule based on the environmental information of the target area to spray the spraying agent. Adjustable.
이를 위해, 본 실시예에 따른 드론(10)은 비행 스케줄을 저장하는 스케줄 저장부(13), 저장된 비행 스케줄에 따라 비행을 결정하는 비행 결정부(14), 그리고 비행 스케줄에 포함된 목표 지역의 날씨 정보를 수신하는 날씨 수신부(15)를 포함하여 구성될 수 있다.To this end, the drone 10 according to the present embodiment includes a schedule storage unit 13 for storing a flight schedule, a flight determination unit 14 for determining a flight according to the stored flight schedule, and a target region included in the flight schedule. It may be configured to include a weather receiving unit 15 for receiving weather information.
스케줄 저장부(13)는 외부로부터 수신한 비행 스케줄 정보 또는 사용자로부터 입력된 비행 스케줄 정보를 저장할 수 있다. 비행 결정부(14)는 스케줄 저장부(13)에 저장된 비행 스케줄 정보에 따라 비행을 결정할 수 있다. 이때, 비행 스케줄 정보에는 비행 시간, 비행 경로, 목표 지역, 살포 구간 등의 정보가 포함될 수 있으며, 드론(10)에는 비행 결정부(14)에서 결정한 비행 스케줄 정보에 기초하여 자동 비행하며 살포 구간에서 살포제를 살포하도록 드론의 비행 구동부 및 살포 노즐(12)을 제어하는 별도의 제어부가 구비될 수 있다.The schedule storage unit 13 may store flight schedule information received from the outside or flight schedule information input from the user. The flight determination unit 14 may determine a flight according to flight schedule information stored in the schedule storage unit 13 . At this time, the flight schedule information may include information such as flight time, flight route, target area, and spraying section, and the drone 10 automatically flies based on the flight schedule information determined by the flight decision unit 14 and A separate control unit may be provided to control the flight driving unit and the spray nozzle 12 of the drone to spray the spray agent.
날씨 수신부(15)는 스케줄 저장부(13)에 저장된 비행 스케줄 정보에 기초하여 특정 비행 스케줄의 비행 시작 시간이 도래하면, 비행 시작 시간이 도래한 비행 스케줄 정보에 포함된 목표 지역의 날씨 정보를 외부로부터 수신할 수 있다. 그리고 날씨 수신부(15)는 수신한 날씨 정보를 비행 결정부(14)에 제공할 수 있다.When the flight start time of a specific flight schedule arrives based on the flight schedule information stored in the schedule storage unit 15, the weather receiver 15 transfers weather information of the target area included in the flight schedule information at which the flight start time arrives to the outside. can be received from Also, the weather receiving unit 15 may provide the received weather information to the flight determination unit 14 .
비행 결정부(14)는 스케줄 저장부(13)에 저장된 비행 스케줄 정보에 기초하여 특정 비행 스케줄의 비행 시작 시간이 도래하면, 비행 시작 시간이 도래한 비행 스케줄에 따라 비행이 시작되도록 비행을 결정하되, 날씨 수신부(15)로부터 제공받은 날씨 정보에 기초하여 비행의 지연 여부를 결정할 수 있다.The flight determination unit 14 determines the flight so that the flight starts according to the flight schedule in which the flight start time arrives when the flight start time of a specific flight schedule arrives based on the flight schedule information stored in the schedule storage unit 13, , It is possible to determine whether to delay the flight based on the weather information provided from the weather receiving unit 15.
구체적으로, 날씨 수신부(15)에서 비행 결정부(14)로 제공하는 날씨 정보에는 풍속 정보, 강수량 정보, 기온 정보 중 적어도 하나의 정보가 포함될 수 있으며, 비행 결정부(14)는 목표 지역의 풍속이 기준 풍속을 초과하거나, 또는 목표 지역의 강수량이 기준 강수량을 초과하거나, 또는 목표 지역의 기온이 기준 기온 범위를 벗어나면, 비행의 지연을 결정할 수 있다. 이때, 날씨 수신부(15)는 비행의 지연을 결정한 경우 해당 비행 스케줄 정보의 비행 시간을 소정 시간 뒤로 갱신하며, 비행 스케줄 정보의 지연 갱신으로 인해 비행 시간이 중복되는 비행 스케줄이 발생한다면, 비행 시간이 중복된 비행 스케줄의 비행 시간 또한 소정 시간 뒤로 갱신하여 저장할 수 있다.Specifically, the weather information provided from the weather receiving unit 15 to the flight determining unit 14 may include at least one of wind speed information, precipitation information, and temperature information, and the flight determining unit 14 determines the wind speed of the target area. If this reference wind speed is exceeded, or if the amount of precipitation in the target area exceeds the reference amount of precipitation, or if the temperature in the target area is out of the reference temperature range, flight delay may be determined. At this time, when the flight delay is determined, the weather receiving unit 15 updates the flight time of the corresponding flight schedule information to a predetermined time later, and if a flight schedule with overlapping flight times occurs due to the delay update of the flight schedule information, the flight time is changed. Flight times of overlapping flight schedules can also be updated and stored after a predetermined time.
바람직하게, 본 실시예에 따른 드론(10)은 목표 지역의 단위 면적에 대한 파종, 비료, 농약 살포, 식물생장지수 측정 등 모든 농작물 관리에 대한 데이터를 자동 저장하고, 자동 저장한 정보에 따라 식물건강성을 통한 수확량 변화를 모니터링할 수 있다. 그리고 모니터링한 수확량 변화 정보에 기초하여 작물별 기상데이터 및 농약, 비료 살포 등의 데이터 분석을 수행하여, 수확량 향상을 위한 최적의 비료살포 및 농약 살포 알고리즘을 추출할 수 있다.Preferably, the drone 10 according to the present embodiment automatically stores data on all crop management, such as seeding, fertilizer, pesticide spraying, and plant growth index measurement for a unit area of the target area, and plants and plants according to the automatically stored information. Yield changes can be monitored through health. In addition, based on the monitored yield change information, it is possible to extract the optimal fertilizer application and pesticide application algorithm for improving yield by performing data analysis on meteorological data, pesticides and fertilizer application for each crop.
도 4는 본 발명의 일 실시예에 따른 드론 살포 시스템의 드론스테이션을 개략적으로 도시한 도면이고, 도 5는 본 발명의 일 실시예에 따른 드론스테이션의 일부 구성을 도시한 도면이다. 그리고 도 6은 본 발명의 일 실시예에 따른 드론의 공급 모듈 연결 모습 일례를 도시한 도면이다.4 is a diagram schematically showing a drone station of a drone distribution system according to an embodiment of the present invention, and FIG. 5 is a diagram showing some configurations of a drone station according to an embodiment of the present invention. 6 is a diagram showing an example of a drone supply module connection according to an embodiment of the present invention.
이하에서는, 도 4 내지 도 6을 참조하여 본 실시예에 따른 드론스테이션(30)에 관하여 보다 구체적으로 설명하기로 한다.Hereinafter, the drone station 30 according to the present embodiment will be described in more detail with reference to FIGS. 4 to 6 .
상술한 바와 같이 본 실시예에 따른 드론스테이션(30)은 드론(10)이 이착륙 가능하며 착륙한 드론(10)을 격납하여 보관할 수 있다.As described above, the drone station 30 according to the present embodiment can take off and land the drone 10 and can store and store the landed drone 10.
이를 위해, 본 실시예에 따른 드론스테이션은 드론(10)을 격납 가능한 내부 공간(s)을 구비하며, 내부 공간(s)을 개방하거나 외부로부터 차단하는 도어(31), 그리고 드론(10)의 이착륙을 위한 착륙판(32)이 구비될 수 있다.To this end, the drone station according to the present embodiment has an inner space (s) capable of storing the drone 10, a door 31 that opens the inner space (s) or blocks it from the outside, and the drone 10. A landing plate 32 for takeoff and landing may be provided.
도어(31)는 드론(10)이 비행 중이거나 또는 격납 중일 때, 내부 공간(s)을 외부로부터 차단하도록 닫힘 상태가 되어 비, 바람, 먼지 등의 외부 요소로부터 내부 공간(s)을 보호하며, 드론(10)이 이륙하거나 착륙할 때에는 개방 상태가되어 드론(10)의 이착륙을 가능하게 할 수 있다. 착륙판(32)은 내부공간(s)의 바닥면에 배치되며, 도어(31)의 개방에 따라 외부로 노출되어 드론(10)의 이착륙이 가능할 수 있다.When the drone 10 is in flight or in storage, the door 31 is in a closed state to block the inner space (s) from the outside, protecting the inner space (s) from external factors such as rain, wind, dust, and the like. , When the drone 10 takes off or lands, it may be in an open state to allow the drone 10 to take off and land. The landing plate 32 is disposed on the bottom surface of the inner space s, and is exposed to the outside according to the opening of the door 31 so that the drone 10 can take off and land.
본 실시예에 따른 드론스테이션(30)은 착륙판 상의 드론(10)에 살포제를 공급할 수 있다. 이를 위해, 드론스테이션(30)은 살포제를 저장하는 저장 탱크(33)와, 살포제를 공급하는 공급 모듈(34)을 포함하여 구성될 수 있다.The drone station 30 according to this embodiment may supply spraying agent to the drone 10 on the landing plate. To this end, the drone station 30 may include a storage tank 33 for storing the spray agent and a supply module 34 for supplying the spray agent.
저장 탱크(33)는 내부공간(s) 일측에 배치되며, 서로 간에 분리되어 개별적인 저장 공간을 형성하는 다수개의 탱크(331, 332, 333, 334)를 구비할 수 있으며, 다수개의 탱크(331, 332, 333, 334)에는 종자, 비료, 농약 중 두 종류 이상의 살포제가 개별적으로 저장될 수 있다. 또한, 다수개의 탱크(331, 332, 333, 334) 중 적어도 하나의 탱크에는 세척수가 저장될 수 있다.The storage tank 33 is disposed on one side of the inner space s, and may include a plurality of tanks 331, 332, 333, and 334 that are separated from each other to form individual storage spaces, and a plurality of tanks 331, 332, 333, 334) can individually store two or more kinds of spraying agents among seeds, fertilizers, and pesticides. In addition, washing water may be stored in at least one of the plurality of tanks 331 , 332 , 333 , and 334 .
이때, 탱크(331, 332, 333, 334)의 개수는 저장하는 살포제의 종류 개수 및 용량에 따라 결정될 수 있으며, 각각의 탱크(331, 332, 333, 334)에는 한 종류의 살포제가 개별 저장될 수 있다. 이때, 특정 종류의 살포제의 저장 요구량이 상대적으로 큰 경우에는 특정 종류의 살포제를 다수개의 탱크에 저장할 수 있다. 이하에서는 설명의 편의 상 도 5에 도시된 바와 같이 저장 탱크(33)에 4개의 탱크, 즉 제1 탱크(331), 제2 탱크(332), 제3 탱크(333), 제4 탱크(334)가 포함되고, 각 탱크에는 종자, 비료, 농약, 세척액이 개별 저장되는 것을 예로 하여 설명하기로 한다.At this time, the number of tanks 331, 332, 333, 334 may be determined according to the number and capacity of the type of spraying agent to be stored, and one type of spraying agent may be individually stored in each tank 331, 332, 333, 334. can At this time, when the storage requirement of a specific type of spraying agent is relatively large, the specific type of spraying agent may be stored in a plurality of tanks. Hereinafter, for convenience of description, as shown in FIG. 5 , the storage tank 33 includes four tanks, that is, a first tank 331, a second tank 332, a third tank 333, and a fourth tank 334. ) is included, and each tank will be described as an example in which seeds, fertilizers, pesticides, and washing liquid are individually stored.
바람직하게, 각 탱크(331, 332, 333, 334)에는 별도의 잔여 용량 감지 센서(미도시)가 구비되고, 각각의 잔여 용량 감지 센서는 각 탱크에 저장된 살포제에 대한 잔여 용량 정보를 생성하여 관리 서버(50) 또는 사용자 단말(70)로 송신할 수 있다. 여기서, 잔여 용량 감지 센서는 초음파 레벨 센서, 무게 감지 센서 등 다양한 센서 형태로 구현될 수 있다.Preferably, each tank (331, 332, 333, 334) is provided with a separate remaining capacity detection sensor (not shown), and each remaining capacity detection sensor generates and manages remaining capacity information for the spray agent stored in each tank. It can be transmitted to the server 50 or the user terminal 70 . Here, the residual capacity detecting sensor may be implemented in various sensor types such as an ultrasonic level sensor and a weight detecting sensor.
잔여 용량 정보를 수신한 관리 서버(50) 또는 사용자 단말(70)은 잔여 용량 정보를 사용자에게 제공하여 관리자가 각 탱크에 저장된 살포제 잔여 용량을 모니터링 가능하도록 할 수 있다.The management server 50 or the user terminal 70 receiving the remaining capacity information may provide the remaining capacity information to the user so that the manager can monitor the remaining capacity of the spray agent stored in each tank.
바람직하게, 관리 서버(50)는 수신한 잔여 용량 정보에 기초하여 살포제 구매 정보를 생성하고, 생성한 살포제 구매 정보를 외부(예를 들면 살포제 판매처)로 송신하여 부족한 살포제가 자동 구매되도록 할 수 있다. 여기서, 관리 서버(50)는 생성한 살포제 구매 정보를 외부로 송신하여 살포제를 자동 구매한 경우 살포제 구매 정보를 생성하여 사용자 단말(70)로 송신함으로써 사용자가 살포제를 중복 구매하지 않도록 할 수 있다.Preferably, the management server 50 generates spray agent purchase information based on the received remaining capacity information, and transmits the generated spray agent purchase information to the outside (eg, spray agent seller) so that insufficient spray agent can be automatically purchased. . Here, the management server 50 generates the spray agent purchase information when the spray agent is automatically purchased by transmitting the generated spray agent purchase information to the outside and transmits the spray agent purchase information to the user terminal 70 so that the user does not purchase the spray agent repeatedly.
바람직하게, 사용자 단말(70)은 수신한 잔여 용량 정보에 기초하여, 살포제의 잔여 용량이 기준 용량 이하인 경우 사용자에게 알람을 제공하여 사용자가 살포제를 구매하도록 유도할 수 있다. 이때, 사용자는 사용자 단말(70)에 설치된 별도의 애플리케이션을 통해 살포제 구매 정보를 생성하고, 생성한 구매 정보를 외부(예를 들면 살포제 판매처)로 송신하여 부족한 살포제를 구매할 수 있다.Preferably, the user terminal 70, based on the received remaining capacity information, when the remaining capacity of the spraying agent is less than the reference capacity by providing an alarm to the user can induce the user to purchase the spraying agent. At this time, the user can generate spray agent purchase information through a separate application installed in the user terminal 70, and transmit the generated purchase information to the outside (for example, a spray agent seller) to purchase the insufficient spray agent.
공급 모듈(34)은 저장 탱크(33)에 저장된 살포제를 착륙판(32) 상에 드론의 수용 용기(11)에 공급하도록 작동할 수 있다.The supply module 34 may operate to supply the spraying agent stored in the storage tank 33 to the receiving container 11 of the drone on the landing plate 32.
이를 위해, 공급 모듈(34)은 도 5에 도시된 바와 같이 드론의 수용 용기 공급구(111)에 연결 가능한 공급 노즐(341)과, 각각의 탱크(331, 332, 333, 334)에 개별 연결되는 제1 공급관(342)과, 제1 공급관(342)과 공급 노즐(341) 간을 연결하는 제2 공급관(343)과, 공급 경로를 개폐 가능한 밸브(344), 그리고 공급 경로에 유체 유동 흐름을 발생시키는 펌프(345)를 포함하여 구성될 수 있다. To this end, the supply module 34 is individually connected to a supply nozzle 341 connectable to the receiving container supply port 111 of the drone and to each of the tanks 331, 332, 333, and 334, as shown in FIG. A first supply pipe 342, a second supply pipe 343 connecting the first supply pipe 342 and the supply nozzle 341, a valve 344 capable of opening and closing the supply path, and a fluid flow flow in the supply path It may be configured to include a pump 345 that generates.
공급 노즐(341)은 도 6에 도시된 바와 같이 일측 방향으로 길이가 연장 가능하며, 길이가 연장되면 연장 방향 끝단부가 착륙한 드론의 수용 용기 공급구(111)에 연결될 수 있다. 공급 모듈(34)은 다양한 방식을 통해 길이 연장이 가능하도록 구성될 수 있으며, 일례로 텔레스코픽 방식을 통해 길이가 연장될 수 있다.As shown in FIG. 6 , the length of the supply nozzle 341 can be extended in one direction, and when the length is extended, the end in the direction of extension can be connected to the receiving container supply port 111 of the landed drone. The supply module 34 may be configured to be extended in length through various methods, and for example, the length may be extended through a telescopic method.
제1 공급관(342)은 탱크(331, 332, 333, 334)의 개수에 맞추어 다수개 구비되며, 다수개의 제1 공급관(342)의 일단은 각 탱크(331, 332, 333, 334)에 개별 연결될 수 있다. 제2 공급관(343)은 다수개의 제1 공급관(342) 타단과 공급 노즐(341)을 연결하도록 배치될 수 있다. 따라서, 각각의 탱크(331, 332, 333, 334)는 공급 노즐(341)과 연결될 수 있다.A plurality of first supply pipes 342 are provided according to the number of tanks 331, 332, 333, and 334, and one end of the plurality of first supply pipes 342 is individually attached to each tank 331, 332, 333, and 334. can be connected The second supply pipe 343 may be arranged to connect the other ends of the plurality of first supply pipes 342 and the supply nozzle 341 . Accordingly, each of the tanks 331 , 332 , 333 , and 334 may be connected to the supply nozzle 341 .
밸브(344)는 다수개 구비되며, 전체 탱크(331, 332, 333, 334) 중 어느 하나의 탱크만 선택적으로 연통 가능하도록 제1 공급관(342)에 각각 배치되어 배치된 제1 공급관(342)의 개폐를 결정할 수 있다. 펌프(345)는 공급 노즐(341), 제1 공급관(342), 제2 공급관(343) 중 어느 하나에 연결되어 유체의 유동 흐름을 발생시키며, 바람직하게는 제2 공급관(343)에 연결될 수 있다. 따라서, 공급 모듈(34)은 저장 탱크(33)에 저장된 유체를 드론의 수용 용기(11)에 공급하도록 작동 가능하다.A plurality of valves 344 are provided, and the first supply pipe 342 is disposed in the first supply pipe 342 so that only one tank among all the tanks 331, 332, 333, and 334 can be selectively communicated with. can decide whether to open or close. The pump 345 is connected to any one of the supply nozzle 341, the first supply pipe 342, and the second supply pipe 343 to generate a fluid flow, and may be preferably connected to the second supply pipe 343. there is. Accordingly, the supply module 34 is operable to supply the fluid stored in the storage tank 33 to the container 11 of the drone.
이때, 펌프(345)에 의해 발생하는 유체의 유동 흐름 방향은 양방향일 수 있으며, 이를 위해 필요에 따라서는 두 개 이상의 펌프(345)가 구비될 수 있다. 따라서, 공급 모듈(34)은 저장 탱크(33)에 저장된 유체를 드론의 수용 용기(11)에 공급하도록 작동 가능할 뿐만 아니라, 반대로 수용 용기(11)의 유체를 저장 탱크(33)로 회수하도록 작동 가능하다.At this time, the flow direction of the fluid generated by the pump 345 may be bi-directional, and for this purpose, two or more pumps 345 may be provided as necessary. Accordingly, the supply module 34 is operable not only to supply the fluid stored in the storage tank 33 to the container 11 of the drone, but also to return the fluid in the container 11 to the storage tank 33. possible.
한편, 본 실시예에 따른 공급 모듈(34)이 드론의 수용 용기(11)와 연결되기 위해서는 드론(10)이 정위치에 위치해야 하며, 또한 수용 용기의 공급구(11)가 공급 노즐(341)을 향하도록 드론(10)의 배치 방향이 정방향에 위치해야 한다. 따라서, 드론(10)이 정위치 및 정방향으로 정확하게 착륙하지 못한 경우, 공급 모듈(34)과 수용 용기(11) 간의 연결을 위해서는 추가 이착륙을 통해 드론(10)이 정위치 및 정방향으로 정확하게 착륙하도록 해야하는 불편함이 존재한다.On the other hand, in order for the supply module 34 according to this embodiment to be connected to the container 11 of the drone, the drone 10 must be located in the right position, and the supply port 11 of the container must be connected to the supply nozzle 341. ), the arrangement direction of the drone 10 should be located in the forward direction. Therefore, when the drone 10 fails to land accurately in the correct position and in the correct direction, in order to connect the supply module 34 and the receiving container 11, additional take-off and landing are performed so that the drone 10 accurately lands in the correct position and in the correct direction. There are inconveniences to be had.
이러한 문제점을 해결하기 위해, 본 실시예에 따른 드론스테이션(30)은 드론(10)이 정위치 및 정방향으로 정확하게 착륙하지 못하여도 추가 이착륙 과정 없이 착륙판(32) 상의 드론(10)을 정위치 및 정방향으로 정렬시킬 수 있는 정렬 모듈(35)을 구비할 수 있다.In order to solve this problem, the drone station 30 according to the present embodiment moves the drone 10 on the landing plate 32 to the right position without an additional take-off and landing process even if the drone 10 does not accurately land in the right position and in the right direction. and an alignment module 35 capable of aligning in a forward direction.
정렬 모듈(35)은 착륙판(32) 상의 드론(10)이 정위치로 이동시키는 위치 정렬부(351)와, 정방향으로 회전시키는 방향 정렬부(352)를 포함하여 구성될 수 있다.The alignment module 35 may include a position aligning unit 351 for moving the drone 10 on the landing plate 32 to a normal position and a direction aligning unit 352 for rotating it in a forward direction.
정렬 모듈(35)은 착륙판(32)에서 정위치의 원근 방향으로 소정 길이 형성되는 다수개의 정렬 레일(3511)과, 정렬 레일(3511)을 따라 이동하며 드론(10)을 정위치 방향으로 가압 가능한 가압 부재(3512)를 구비할 수 있으며, 도 5에 도시된 바와 같이 바람직하게는 정위치를 둘러싸는 4방향에서 가압 부재(3512)가 정위치의 원근 방향으로 이동 가능하도록 정렬 레일(3511)과 가압 부재(3512)가 배치될 수 있다. 정렬 모듈(35)은 착륙판(32)의 정위치에 회전 가능하게 배치되어 회전 작동하는 회전판(3521)을 구비할 수 있다. 이와 같은 위치 정렬부(351)와 방향 정렬부(352)를 이용한 드론의 정위치 및 정방향 정렬에 관한 보다 구체적인 설명은 도 7 내지 도 10을 참조하여 후술하기로 한다.The alignment module 35 moves along the alignment rails 3511 and a plurality of alignment rails 3511 formed with a predetermined length in the distance direction of the location on the landing plate 32 and presses the drone 10 in the direction of the location. A possible pressing member 3512 may be provided, and as shown in FIG. 5, preferably, an alignment rail 3511 such that the pressing member 3512 is movable in the direction of the home position in four directions surrounding the home position. and a pressing member 3512 may be disposed. The alignment module 35 may include a rotation plate 3521 that is rotatably disposed at a fixed position of the landing plate 32 and operates in rotation. A more specific description of the proper position and forward alignment of the drone using the position aligner 351 and the direction aligner 352 will be described later with reference to FIGS. 7 to 10 .
도 7은 본 발명의 일 실시예에 따른 드론 정렬을 위한 정렬을 위한 드론스테이션의 구성을 도시한 기능 블록도이고, 도 8은 본 발명의 일 실시예에 따른 드론의 착륙 모습 일례를 도시한 도면이며, 도 9는 본 발명의 일 실시예에 따른 드론의 위치 정렬 모습 일례를 도시한 도면이다. 그리고 도 10은 본 발명의 일 실시예에 따른 드론의 방향 정렬 모습 일례를 도시한 도면이다.7 is a functional block diagram showing the configuration of a drone station for alignment for drone alignment according to an embodiment of the present invention, and FIG. 8 is a diagram showing an example of a drone landing according to an embodiment of the present invention. 9 is a view showing an example of position alignment of drones according to an embodiment of the present invention. 10 is a diagram showing an example of direction alignment of drones according to an embodiment of the present invention.
도 7에 도시된 바와 같이 드론스테이션(30)은 드론(10)이 착륙판(32)에 착륙하면, 착륙한 드론(10)을 정위치 및 정방향으로 정렬시키기 위해서, 상술한 정렬 모듈(35) 외에도 외부와 통신 연결되는 통신부(36)와, 정렬 모듈(35)을 작동 제어하는 정렬 제어부(37), 그리고 드론(10)의 배치 방향을 감지하는 방향 감지부(38)를 구비할 수 있다. As shown in FIG. 7, the drone station 30 uses the above-described alignment module 35 to align the landed drone 10 in the correct position and direction when the drone 10 lands on the landing plate 32. In addition, a communication unit 36 for communicating with the outside, an alignment control unit 37 for operating and controlling the alignment module 35, and a direction detection unit 38 for detecting the disposition direction of the drone 10 may be provided.
통신부(36)는 드론(10)과 통신 연결되어 착륙판(32)에 착륙을 완료한 드론(10)으로부터 착륙 완료 신호를 수신할 수 있다. 통신부(36)를 통해 수신된 착륙 완료 신호는 정렬 제어부(37)로 제공되며, 정렬 제어부(37)는 착륙 완료 신호를 제공받으면, 정위치로부터 가장 먼 위치에 배치되었던 가압 부재(3512)가 정렬 레일(3511)을 따라 정위치를 향해 이동하도록, 가압 부재(3512)를 작동 제어할 수 있다. 따라서, 도 8 내지 도 9에 도시된 바와 같이 정위치에 착륙하지 못한 드론(10)을 가압 부재(3512)의 가압을 통해 정위치로 이동시킬 수 있다.The communication unit 36 may receive a landing completion signal from the drone 10 that is connected to the drone 10 and has completed landing on the landing plate 32 . The landing completion signal received through the communication unit 36 is provided to the alignment control unit 37, and when the alignment control unit 37 receives the landing completion signal, the pressing member 3512 disposed farthest from the original position is aligned. The pressing member 3512 may be operated and controlled to move toward the proper position along the rail 3511 . Therefore, as shown in FIGS. 8 and 9 , the drone 10 that has not landed in the correct position may be moved to the correct position by pressing the pressing member 3512 .
이때, 공급 모듈(34)을 공급구(11)에 연결하기 위한 정위치에는 회전판(3521)이 배치되며, 바람직하게, 회전판(3521) 하측에는 드론(10)의 배터리를 무선 충전 가능한 무선 충전 모듈(미도시)이 배치될 수 있다. 따라서, 가압 부재(3512)를 이용하여 드론(10)을 정위치로 이동 배치시키면, 드론의 수용 용기(11)에 살포제를 공급 가능할 뿐만 아니라 드론(10)의 배터리를 무선 충전 가능할 수 있다. At this time, a rotary plate 3521 is disposed at the correct position for connecting the supply module 34 to the supply port 11, and preferably, a wireless charging module capable of wirelessly charging the battery of the drone 10 is placed below the rotary plate 3521. (not shown) may be disposed. Therefore, when the drone 10 is moved and placed in a fixed position using the pressing member 3512, it is possible to supply the spraying agent to the container 11 of the drone and wirelessly charge the battery of the drone 10.
정렬 제어부(37)는 정렬 레일(3511) 상에서 정위치와 가장 근접한 위치까지 이동하도록 가압 부재(3512)를 작동 제어한 후에, 가압 부재(3512)가 정렬 레일(3511) 상에서 정위치와 가장 먼 위치로 되돌아가 초기화 되도록 가압 부재(3512)를 작동 제어할 수 있다. 이와 같은 가압 부재(3512)의 초기화 후 정렬 제어부(37)는 드론(10)을 정방향으로 정렬시키기 위해 드론(10)의 배치 방향 정보를 방향 감지부(38)에 요청할 수 있다.After the alignment controller 37 operates and controls the pressing member 3512 to move to a position closest to the original position on the alignment rail 3511, the pressing member 3512 moves to a position farthest from the original position on the alignment rail 3511. It is possible to control the operation of the pressing member 3512 to return to and initialize. After the initialization of the pressing member 3512, the alignment control unit 37 may request arrangement direction information of the drone 10 from the direction detection unit 38 in order to align the drone 10 in the forward direction.
정렬 제어부(37)로부터 배치 방향 정보를 요청받은 방향 감지부(38)는 정위치에 위치한 드론(10)의 배치 방향을 감지하여 배치 방향 정보를 생성할 수 있으며, 생성한 배치 방향 정보를 정렬 제어부(37)로 제공할 수 있다. 이때, 방향 감지부(38)는 EO 카메라를 구비하고, EO 카메라에서 획득한 이미지를 분석하여 드론(10)의 배치 방향 정보를 생성할 수 있다.The direction detecting unit 38 that has received the arrangement direction information from the alignment control unit 37 may generate arrangement direction information by detecting the arrangement direction of the drone 10 located in the correct position, and the arrangement direction information generated may be used by the alignment control unit 38. (37) can be provided. At this time, the direction detecting unit 38 may include an EO camera and analyze an image obtained from the EO camera to generate disposition direction information of the drone 10 .
배치 방향 정보를 제공받은 정렬 제어부(37)는 제공받은 배치 방향 정보에 기초하여 드론(10)이 정방향으로 배치되기 위한 회전 각도를 산출하고, 산출한 회전 각도에 따라 회전하도록 회전판(3521)을 작동 제어하여, 도 10에 도시된 바와 같이 드론의 공급구(11)가 공급 노즐(341)을 향하는 정방향으로 드론(10)을 배치시킬 수 있다.Upon receiving the arrangement direction information, the alignment control unit 37 calculates a rotation angle for the drone 10 to be placed in the forward direction based on the provided arrangement direction information, and operates the rotation plate 3521 to rotate according to the calculated rotation angle. By controlling, as shown in FIG. 10 , the drone 10 may be disposed in a forward direction in which the supply port 11 of the drone faces the supply nozzle 341 .
따라서, 본 실시예에 따른 드론스테이션(30)은 드론(10)이 정위치 및 정방향으로 정확하게 착륙하지 못하여도 추가 이착륙 과정 없이 드론(10)을 정위치 및 정방향으로 정렬시킬 수 있고, 이로 인해 살포제 공급을 위한 드론의 공금 모듈 연결을 정확하게 수행할 수 있으며 드론(10)의 정위치 및 정방향 정렬을 위한 추가 이착륙에 따라 소요되는 시간을 단축할 수 있다.Therefore, the drone station 30 according to the present embodiment can align the drone 10 in the correct position and in the correct direction without an additional take-off and landing process even if the drone 10 does not accurately land in the correct position and in the correct direction. It is possible to accurately connect the supply module of the drone for supply, and it is possible to shorten the time required according to additional take-off and landing for the correct position and forward alignment of the drone 10 .
도 11은 본 발명의 일 실시예에 따른 살포제 공급 및 세척을 위한 드론스테이션의 구성을 도시한 기능 블록도이고, 도 12는 본 발명의 일 실시예에 따른 수용 용기 세척 과정 일례를 도시한 도면이다.11 is a functional block diagram showing the configuration of a drone station for supplying and cleaning a spray agent according to an embodiment of the present invention, and FIG. 12 is a diagram showing an example of a cleaning process for a container according to an embodiment of the present invention. .
본 실시예에 따른 드론스테이션(30)은 드론의 수용 용기(11)에 살포제를 자동 충전할 수 있다. 이를 위해, 본 실시예에 따른 드론스테이션(30)은 살포제의 공급을 판단하는 공급 판단부(39), 그리고 공급 모듈(34)을 작동 제어하는 공급 제어부(40)를 포함하여 구성될 수 있다.The drone station 30 according to this embodiment can automatically fill the spraying agent in the container 11 of the drone. To this end, the drone station 30 according to the present embodiment may include a supply determination unit 39 that determines the supply of the spray agent and a supply control unit 40 that controls the operation of the supply module 34.
공급 판단부(39)는 사용자의 입력에 따른 입력 신호 또는 통신부(36)를 통해 수신한 외부 수신 신호에 기초하여 수용 용기(11)로의 살포제 공급을 판단할 수 있다. The supply determination unit 39 may determine the supply of the spray agent to the container 11 based on an input signal according to a user's input or an external reception signal received through the communication unit 36 .
구체적으로, 공급 판단부(39)는 통신부(36)를 통해 관리 서버 또는 드론으로부터 드론의 비행 스케줄 정보를 수신할 수 있으며, 수신한 비행 스케줄 정보에 기초하여 다음 드론 비행 스케줄에서 살포할 살포제 종류를 판단하여 수용 용기(11)에 공급할 살포제 종류를 선택할 수 있다. Specifically, the supply determination unit 39 may receive flight schedule information of the drone from the management server or the drone through the communication unit 36, and based on the received flight schedule information, the type of spraying agent to be sprayed in the next drone flight schedule is determined. It is possible to select the type of spray agent to be supplied to the container 11 by judgment.
공급 제어부(40)는 공급 판단부(39)의 살포제 종류 선택에 기초하여 저장 탱크(33)에 저장된 살포제를 수용 용기(11)에 공급하도록 공급 모듈(34)을 작동 제어할 수 있다.The supply controller 40 may operate and control the supply module 34 to supply the spray agent stored in the storage tank 33 to the container 11 based on the selection of the type of spray agent by the supply determination unit 39 .
구체적으로, 공급 제어부(40)는 정렬 제어부(37)에 의한 드론의 정위치 및 정방향 정렬이 완료되면, 공급 모듈의 공급 노즐(341)이 연장되도록 작동 제어하여, 공급 노즐(341)이 수용 용기의 공급구(11)와 연결되도록 할 수 있다. 공급 노즐(341)이 공급구(11)와 연결되면 공급 제어부(40)는 각각의 밸브(344)를 개별 제어하여 선택한 종류의 살포제를 저장하는 탱크만 수용 용기(11)와 연통하도록 하고, 살포제 공급 방향으로의 유체 흐름이 발생하도록 펌프(345)를 작동 제어할 수 있다.Specifically, the supply control unit 40 controls the operation so that the supply nozzle 341 of the supply module is extended when the alignment control unit 37 completes the drone's normal position and forward alignment, so that the supply nozzle 341 is a receiving container. It can be connected to the supply port 11 of. When the supply nozzle 341 is connected to the supply port 11, the supply control unit 40 individually controls each valve 344 so that only the tank storing the selected type of spray agent communicates with the container 11, and the spray agent Operation of the pump 345 may be controlled so that fluid flow in the supply direction occurs.
따라서, 본 실시예에 따른 드론스테이션(30)은 착륙한 드론의 수용 용기에 살포제를 자동 공급 가능하며, 이에 따라 살포제의 충전에 따른 인력 감소와 살포제 충전의 작업 표준화 및 인건비 절감의 효과가 있다.Therefore, the drone station 30 according to the present embodiment can automatically supply the spray agent to the receiving container of the landed drone, and thus has the effect of reducing manpower according to the filling of the spray agent, standardizing the operation of spray agent charging, and reducing labor costs.
한편, 드론스테이션(30)은 수용 용기(11)에 최근 수용하였던 살포제의 종류에 기초하여 수용 용기(11)의 세척 필요성을 판단하고, 착륙한 드론의 수용 용기에 최근 저장한 살포제가 농약 등의 세척이 요구되는 종류인 경우 수용 용기(11)를 자동 세척할 수 있다.On the other hand, the drone station 30 determines the need to clean the receiving container 11 based on the type of spraying agent recently accommodated in the receiving container 11, and the spraying agent recently stored in the receiving container of the landed drone is If cleaning is required, the container 11 can be automatically cleaned.
이를 위해, 드론스테이션(30)은 세척 필요성을 판단하는 세척 판단부(41)와, 수용 용기(11)가 세척되도록 공급 모듈(34)을 작동 제어하는 세척 제어부(42)를 구비할 수 있다.To this end, the drone station 30 may include a washing determination unit 41 that determines the need for washing and a washing control unit 42 that controls the operation of the supply module 34 so that the container 11 is cleaned.
세척 판단부(41)는 통신부(36)를 통해 드론의 수용 용기에 최근 저장한 최근 저장 살포제 종류 정보를 제공받아 수용 용기(11)의 세척 필요성을 판단할 수 있다. 구체적으로, 세척 판단부(41)는 통신부(36)가 드론(10)으로부터 수신한 비행 스케줄 정보로부터 착륙전 수행한 비행 스케줄에서 사용한 살포제 종류 정보를 제공받을 수 있다. 세척 판단부(41)는 최근 저장 살포제 종류가 세척이 필요한 것으로 설정된 살포제(예를 들면 농약)인 경우, 수용 용기(11)의 세척이 필요하다고 판단할 수 있다. The cleaning determination unit 41 may determine the necessity of cleaning the housing container 11 by receiving information on the type of spray agent recently stored in the storage container of the drone through the communication unit 36 . Specifically, the washing determination unit 41 may receive information on the type of spray agent used in the flight schedule performed before landing from the flight schedule information received by the communication unit 36 from the drone 10 . The washing determining unit 41 may determine that washing of the storage container 11 is necessary when the recently stored kind of the spraying agent is a spraying agent (for example, pesticide) set to require cleaning.
세척 제어부(42)는 세척 판단부(41)에서 세척이 필요하다고 판단하면, 저장 탱크(33)에 저장된 세척수를 이용하여 수용 용기(11) 내부를 세척하도록 공급 노즐(341)을 작동 제어할 수 있다.The washing control unit 42 may control the supply nozzle 341 to clean the inside of the container 11 using the washing water stored in the storage tank 33 when the washing determination unit 41 determines that washing is necessary. there is.
도 12를 참조하여 보다 구체적으로 설명하면, 세척 제어부(42)는 수용 용기(11)의 세척을 위해 우선, 공급 노즐(341)과 수용 용기(11) 간에 연결되도록 공급 노즐(341)을 작동 제어하고, 세척수가 저장된 탱크만이 수용 용기(11)와 연통되도록 각각의 밸브(344)를 작동 제어하는 세척 준비 과정을 수행할 수 있다.In more detail with reference to FIG. 12 , the washing control unit 42 first controls the operation of the supply nozzle 341 so as to be connected between the supply nozzle 341 and the container 11 for washing the container 11 . In addition, a washing preparation process may be performed in which each valve 344 is operated and controlled so that only the tank in which the washing water is stored communicates with the container 11 .
세척 준비 과정이 완료되면 세척 제어부(42)는 저장 탱크(33)에 저장된 세척수를 수용 용기(11)에 공급하도록 펌프(345)를 공급 방향으로 작동 제어하는 공급 과정과 수용 용기(11)의 세척수를 회수하도록 펌프(345)를 회수 방향으로 작동 제어하는 회수 과정을 순차적으로 수행하는 세척 과정을 수행할 수 있다. 바람직하게, 세척 과정은 도 12에 도시된 바와 같이 수회 반복하여 수행될 수 있다.When the washing preparation process is completed, the washing control unit 42 controls the operation and control of the pump 345 in the supply direction to supply the washing water stored in the storage tank 33 to the container 11 and the washing water in the container 11 A washing process may be performed to sequentially perform a recovery process of operating and controlling the pump 345 in the recovery direction to recover the . Preferably, the washing process may be repeated several times as shown in FIG. 12 .
세척 과정이 완료되면, 세척 제어부(42)는 공급 모듈(34)을 초기 상태로 되돌리는 세척 종료 과정을 수행할 수 있다.When the washing process is completed, the washing control unit 42 may perform a washing termination process of returning the supply module 34 to an initial state.
바람직하게, 세척 제어부(42)는 세척 과정에서 회수한 세척수 중 적어도 일부를 최근 저장 살포제 종류와 동일한 종류의 살포제가 수용된 저장 탱크(33)의 저장 공간에 저장하도록 공급 모듈(34)을 작동 제어할 수 있다. 즉, 수용 용기(11)에 최근 저장 살포제 종류가 농약인 경우, 세척 제어부(42)는 세척 과정에서 회수한 세척수 중 적어도 일부를 농약이 저장된 탱크에 저장할 수 있다. 이와같이 회수된 세척수는 농약이 일정량 이상 포함되어 농약으로 재사용할 수 있다. 따라서, 세척 과정에서 회수한 세척수에 의한 환경 오염을 저감시키고 회수한 세척수의 처리 비용을 절감할 수 있다.Preferably, the washing control unit 42 operates and controls the supply module 34 to store at least some of the washing water recovered in the washing process in the storage space of the storage tank 33 containing the same type of spraying agent as the lastly stored type of spraying agent. can That is, when the type of pesticide recently stored in the receiving container 11 is a pesticide, the washing control unit 42 may store at least a part of the washing water recovered in the washing process in the tank in which the pesticide is stored. Washing water recovered in this way contains more than a certain amount of pesticide and can be reused as a pesticide. Therefore, it is possible to reduce environmental pollution caused by the washing water recovered in the washing process and to reduce the treatment cost of the recovered washing water.
더욱 바람직하게 세척 제어부(42)는 다수의 반복되는 세척 과정 중 최초 세척 과정에서 회수한 세척수를 최근 저장 살포제 종류와 동일한 종류의 살포제가 수용된 저장 탱크(33)의 저장 공간에 저장하도록 공급 모듈(34)을 작동 제어할 수 있다. 이는, 최초 회수한 세척액의 살포제 농도가 가장 높기 때문이다. More preferably, the washing control unit 42 stores the washing water recovered in the first washing process among the plurality of repeated washing processes in the storage space of the storage tank 33 containing the same kind of spray agent as the last stored spray agent. ) can be controlled. This is because the concentration of the dispersant in the initially recovered wash liquid is the highest.
또한, 최초 회수한 세척액의 살포제 농도를 더욱 높여 재사용시 살포제 효과 저하를 방지하기 위해, 1차 세척시 수용 용기(11)에 공급하는 세척수 공급용량은 다른 차수 세척시 수용 용기(11)에 공급하는 세척수 공급용량에 비해 적을 수 있다.In addition, in order to further increase the concentration of the dispersant in the initially recovered cleaning liquid to prevent deterioration of the dispersant effect during reuse, the supply capacity of the washing water supplied to the container 11 during the first washing is to be supplied to the container 11 during the second washing. It may be less than the washing water supply capacity.
한편, 정렬 제어부(37)는 세척 제어부(42)가 세척수를 수용 용기(11)에 공급한 후 세척수를 회수하기 전 소정 시간 동안 회전판(3521)을 작동 제어할 수 있다. 이와 같은 회전판(3521) 회전 작동은 수용 용기(11) 내에 공급된 세척수를 교반하여 세척 효율을 향상시킬 수 있으며, 이때, 회전판(3521)의 회전 작동 전에 공급 노즐(341)을 수용 용기 공급구(11)로부터 분리시켜 공급 노즐(341)의 파손을 방지할 수 있다.Meanwhile, the alignment control unit 37 may operate and control the rotating plate 3521 for a predetermined time before the washing water is recovered after the washing control unit 42 supplies the washing water to the container 11 . The rotating operation of the rotating plate 3521 can improve washing efficiency by stirring the washing water supplied into the receiving container 11. At this time, before the rotating operation of the rotating plate 3521, the supply nozzle 341 is inserted into the receiving container supply port ( 11) to prevent damage to the supply nozzle 341.
상술한 드론스테이션(30)의 수용 용기(11) 자동 세척으로 인해, 본 발명은 하나의 수용 용기(11)를 이용하여 살포제 간의 오염 없이 여러 종류의 살포제를 함께 사용 가능하며 드론 관리를 위한 인력 감소와 이에 따른 작업 표준화 및 인건비 절감의 효과가 있다.Due to the automatic cleaning of the receiving container 11 of the drone station 30 described above, the present invention can use one receiving container 11 together to use various types of spraying agents without contamination between spraying agents and reduce manpower for drone management. This has the effect of standardizing work and reducing labor costs.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely an example of the technical idea of the present invention, and those skilled in the art will be able to make various modifications and variations without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention, but to explain, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be construed according to the claims below, and all technical ideas within the equivalent range should be construed as being included in the scope of the present invention.

Claims (14)

  1. 드론이 착륙 가능한 착륙판;a landing pad for drones to land on;
    살포제를 저장하는 저장 탱크; 및A storage tank for storing spraying agent; and
    상기 저장 탱크에 저장된 살포제를 상기 착륙판 상에 드론의 수용 용기에 공급하도록 작동하는 공급 모듈을 포함하는 드론스테이션.A drone station comprising a supply module that operates to supply the spraying agent stored in the storage tank to the receiving container of the drone on the landing plate.
  2. 제 1 항에 있어서, 상기 드론스테이션은The method of claim 1, wherein the drone station
    입력 신호 또는 외부 수신 신호에 기초하여 상기 살포제의 공급을 판단하는 공급 판단부; 및Supply determination unit for determining the supply of the spraying agent on the basis of an input signal or an external received signal; and
    상기 공급 판단부의 판단에 기초하여 상기 저장 탱크에 저장된 살포제를 상기 수용 용기에 공급하도록 상기 공급 모듈을 작동 제어하는 공급 제어부를 포함하는 것을 특징으로 하는 드론스테이션.and a supply control unit for operating and controlling the supply module to supply the spray agent stored in the storage tank to the container based on the determination of the supply determination unit.
  3. 제 2 항에 있어서,According to claim 2,
    상기 저장 탱크는 서로 간에 분리된 둘 이상의 저장 공간을 구비하고, 두 종류 이상의 살포제를 상기 저장 공간에 개별 저장하며,The storage tank is provided with two or more storage spaces separated from each other, and two or more kinds of spraying agents are individually stored in the storage space,
    상기 공급 판단부는 상기 입력 신호 또는 외부 수신 신호에 기초하여 상기 수용 용기에 공급하는 살포제의 종류를 선택하고,The supply determination unit selects the type of spraying agent to be supplied to the container based on the input signal or the external received signal,
    상기 공급 제어부는 상기 공급 결정부에서 선택한 살포제를 상기 수용 용기에 공급하도록 상기 공급 모듈을 작동 제어하는 것을 특징으로 하는 드론스테이션.The drone station, characterized in that the supply control unit operates and controls the supply module to supply the spray agent selected by the supply decision unit to the container.
  4. 제 3 항에 있어서, 상기 공급 모듈은The method of claim 3, wherein the supply module
    일측 방향으로 길이가 연장 가능하며, 길이가 연장되면 착륙한 상기 드론의 수용 용기 공급구에 일단부가 연결 가능한 공급 노즐;a supply nozzle whose length can be extended in one direction, and when the length is extended, one end of which can be connected to the supply port of the receiving container of the landed drone;
    상기 저장 공간에 일단이 개별 연결되는 다수개의 제1 공급관;a plurality of first supply pipes having one end individually connected to the storage space;
    다수개의 상기 제1 공급관의 타단과 상기 공급 노즐을 연결하는 제2 공급관;a second supply pipe connecting the other end of the plurality of first supply pipes and the supply nozzle;
    상기 제1 공급관에 각각 배치되어 상기 제1 공급관을 개폐하는 밸브; 및valves respectively disposed on the first supply pipe to open and close the first supply pipe; and
    상기 공급 노즐, 제1 공급관, 제2 공급관 중 어느 하나에 연결되어 유체의 유동 흐름을 발생시키는 펌프를 포함하는 것을 특징으로 하는 드론스테이션.The drone station characterized in that it comprises a pump connected to any one of the supply nozzle, the first supply pipe, and the second supply pipe to generate a fluid flow.
  5. 제 3 항에 있어서, 상기 드론스테이션은The method of claim 3, wherein the drone station
    상기 드론의 수용 용기에 최근 저장한 최근 저장 살포제 종류 정보를 제공받아 상기 수용 용기의 세척 필요성을 판단하는 세척 판단부; 및a washing determination unit receiving information on the type of spray agent recently stored in the container of the drone and determining the necessity of cleaning the container; and
    상기 세척 판단부의 판단에 기초하여 상기 수용 용기를 세척하도록 상기 공급 모듈을 작동 제어하는 세척 제어부를 더 포함하고, Further comprising a washing control unit for operating and controlling the supply module to wash the container based on the determination of the washing determination unit;
    상기 저장 탱크의 저장 공간 중 적어도 하나의 저장 공간에는 세척수가 저장되는 것을 특징으로 하는 드론스테이션.The drone station, characterized in that the washing water is stored in at least one of the storage spaces of the storage tank.
  6. 제 5 항에 있어서, 상기 세척 제어부는 The method of claim 5, wherein the washing control unit
    상기 저장 탱크의 세척수를 상기 수용 용기에 공급하는 공급 과정과 상기 수용 용기의 세척수를 회수하는 회수 과정을 순차적으로 수행하도록 상기 공급 모듈을 작동 제어하고, Operating and controlling the supply module to sequentially perform a supply process of supplying the washing water of the storage tank to the container and a recovery process of recovering the washing water of the container;
    상기 회수한 세척수 중 적어도 일부는 상기 최근 저장 살포제 종류와 동일한 종류의 살포제가 수용된 상기 저장 탱크의 저장 공간에 저장하도록 상기 공급 모듈을 작동 제어하는 것을 특징으로 하는 드론스테이션.The drone station, characterized in that the supply module is operated and controlled to store at least some of the recovered washing water in a storage space of the storage tank containing the same type of spray agent as the recently stored spray agent type.
  7. 제 6 항에 있어서, 상기 드론스테이션은The method of claim 6, wherein the drone station
    착륙한 상기 드론을 상기 살포제 공급을 위한 정위치 또는 정방향에 정렬시키도록 작동하는 정렬 모듈; 및an alignment module that operates to align the landed drone to a proper position or direction for supplying the spraying agent; and
    입력 신호 또는 외부 수신 신호에 기초하여 착륙한 상기 드론이 상기 정위치 또는 정방향에 정렬되도록 상기 정렬 모듈을 작동 제어하는 정렬 제어부를 더 포함하는 것을 특징으로 하는 드론스테이션.The drone station further comprises an alignment control unit for operating and controlling the alignment module so that the landed drone is aligned in the correct position or in the correct direction based on an input signal or an external received signal.
  8. 제 7 항에 있어서, According to claim 7,
    상기 정렬 모듈은 상기 착륙판에서 상기 정위치의 원근 방향으로 소정 길이 형성되는 정렬 레일과, 상기 정렬 레일을 따라 이동하며 상기 드론을 상기 정위치 방향으로 가압 가능한 가압 부재를 구비하는 위치 정렬부를 포함하는 것을 특징으로 하는 드론스테이션.The alignment module includes an alignment unit having an alignment rail formed with a predetermined length in the distance direction from the landing plate and a pressing member that moves along the alignment rail and is capable of pressing the drone in the direction of the alignment. A drone station, characterized in that.
  9. 제 7 항에 있어서, 상기 드론스테이션은The method of claim 7, wherein the drone station
    착륙한 상기 드론의 배치 방향을 감지하는 방향 감지부를 더 포함하고,Further comprising a direction detecting unit for detecting the disposition direction of the landed drone,
    상기 정렬 모듈은 상기 착륙판에 회전 가능하게 배치되어 회전 작동하는 회전판을 구비하는 방향 정렬부를 포함하며,The alignment module includes a direction alignment unit having a rotating plate rotatably disposed on the landing plate and operating,
    상기 정렬 제어부는 상기 방향 감지부의 감지 정보에 기초하여 상기 드론을 상기 정방향으로 정렬시키도록 상기 회전판을 작동 제어하는 것을 특징으로 하는 드론스테이션.The drone station of claim 1 , wherein the alignment control unit operates and controls the rotating plate to align the drones in the forward direction based on information detected by the direction detection unit.
  10. 제 9 항에 있어서,According to claim 9,
    상기 정렬 제어부는 상기 세척 제어부가 상기 세척수를 상기 수용 용기에 공급한 후 상기 세척수를 회수하기 전 소정 시간 동안 상기 회전판을 작동 제어하는 것을 특징으로 하는 드론스테이션.The drone station, characterized in that the alignment control unit operates and controls the rotation plate for a predetermined time before the washing water is recovered after the washing control unit supplies the washing water to the container.
  11. 제 1 항 내지 제 9 항 중, 어느 한 항에 기재된 드론스테이션; 및The drone station according to any one of claims 1 to 9; and
    살포제를 수용하는 수용 용기를 구비하며, 사전 설정된 비행 스케줄에 기초하여 목표 지역 상공을 비행하며 상기 수용 용기에 수용된 살포제를 살포하는 드론을 포함하는 드론 살포 시스템.A drone spraying system comprising a container for accommodating a spraying agent, and a drone flying over a target area based on a preset flight schedule and spraying the spraying agent stored in the container.
  12. 제 11 항에 있어서, 상기 드론은12. The method of claim 11, wherein the drone
    사전 설정된 상기 비행 스케줄에 따라 비행을 결정하는 비행 결정부; 및a flight determination unit for determining a flight according to the preset flight schedule; and
    상기 비행 스케줄에 포함된 목표 지역의 날씨 정보를 수신하는 날씨 수신부를 포함하고,A weather receiver configured to receive weather information of a target area included in the flight schedule;
    상기 비행 결정부는 상기 날씨 수신부에서 수신한 날씨 정보에 기초하여 상기 비행 스케줄에 따른 비행을 지연 결정 가능한 것을 특징으로 하는 드론 살포 시스템.The drone distribution system, characterized in that the flight determination unit can determine the flight delay according to the flight schedule based on the weather information received by the weather reception unit.
  13. 제 11 항에 있어서, 상기 드론 살포 시스템은The method of claim 11, wherein the drone spraying system
    상기 드론스테이션 또는 상기 드론으로부터 살포제 잔여량 정보를 수신 가능한 사용자 단말을 더 포함하고,Further comprising a user terminal capable of receiving residual amount information of the spraying agent from the drone station or the drone,
    상기 사용자 단말은 사용자의 입력 또는 상기 살포제 잔여량 정보에 기초하여 살포제 구매 요청 정보를 생성하고, 생성한 살포제 구매 요청 정보를 살포제 판매처로 송신 가능한 것을 특징으로 하는 드론 살포 시스템.Wherein the user terminal generates spray agent purchase request information based on a user's input or the spray agent remaining amount information, and transmits the generated spray agent purchase request information to a spray agent sales place.
  14. 제 11 항에 있어서, 상기 드론 살포 시스템은The method of claim 11, wherein the drone spraying system
    상기 드론 또는 드론스테이션으로부터 드론 활동 정보를 실시간 수신하고, GIS(Geographic Information System) 기반 드론 제어 프로그램과 연동하여 드론의 농업 활동 정보를 기록 및 저장하는 관리 서버를 더 포함하는 것을 특징으로 하는 드론 살포 시스템.The drone spraying system further comprises a management server that receives drone activity information from the drone or drone station in real time and records and stores drone agricultural activity information in conjunction with a GIS (Geographic Information System) based drone control program. .
PCT/KR2022/015822 2022-02-28 2022-10-18 Drone station for automatically supplying spray agent, and drone spray system comprising same WO2023163310A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220025737A KR102586714B1 (en) 2022-02-28 2022-02-28 Drone station supplying spraying agent and drone spraying system including the same
KR10-2022-0025737 2022-02-28

Publications (1)

Publication Number Publication Date
WO2023163310A1 true WO2023163310A1 (en) 2023-08-31

Family

ID=87766166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/015822 WO2023163310A1 (en) 2022-02-28 2022-10-18 Drone station for automatically supplying spray agent, and drone spray system comprising same

Country Status (2)

Country Link
KR (1) KR102586714B1 (en)
WO (1) WO2023163310A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117928926A (en) * 2024-03-25 2024-04-26 农业农村部南京农业机械化研究所 Unmanned aerial vehicle broadcast operation performance testing device and testing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000314105A (en) * 1999-04-28 2000-11-14 Nippon Hodo Co Ltd Method and apparatus for scattering bituminous material in combined type
US20140303814A1 (en) * 2013-03-24 2014-10-09 Bee Robotics Corporation Aerial farm robot system for crop dusting, planting, fertilizing and other field jobs
US20190389577A1 (en) * 2018-03-30 2019-12-26 Greensight Agronomics, Inc. Automated drone-based spraying system
KR102235998B1 (en) * 2020-09-17 2021-04-05 강명구 System for management and control of agricultural drones
KR102327088B1 (en) * 2021-07-15 2021-11-16 주식회사 엔에이치대풍 Artificial intelligence-based automatic spraying system using drones

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101040381B1 (en) * 2009-01-23 2011-06-10 한국도로공사 A snowplow and deicer spreading equipment capable of spreading snowplow and deicer using a central reservation on a road
KR102221603B1 (en) 2018-12-04 2021-03-02 주식회사 모빌엑스 Distributing system using agricultural drones
JP7387347B2 (en) * 2019-09-13 2023-11-28 株式会社クボタ Farming support system
KR102393406B1 (en) * 2020-03-12 2022-05-11 비클시스템주식회사 Drone of Snow removal Blower Drone Storage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000314105A (en) * 1999-04-28 2000-11-14 Nippon Hodo Co Ltd Method and apparatus for scattering bituminous material in combined type
US20140303814A1 (en) * 2013-03-24 2014-10-09 Bee Robotics Corporation Aerial farm robot system for crop dusting, planting, fertilizing and other field jobs
US20190389577A1 (en) * 2018-03-30 2019-12-26 Greensight Agronomics, Inc. Automated drone-based spraying system
KR102235998B1 (en) * 2020-09-17 2021-04-05 강명구 System for management and control of agricultural drones
KR102327088B1 (en) * 2021-07-15 2021-11-16 주식회사 엔에이치대풍 Artificial intelligence-based automatic spraying system using drones

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117928926A (en) * 2024-03-25 2024-04-26 农业农村部南京农业机械化研究所 Unmanned aerial vehicle broadcast operation performance testing device and testing method

Also Published As

Publication number Publication date
KR102586714B1 (en) 2023-10-11
KR20230128647A (en) 2023-09-05

Similar Documents

Publication Publication Date Title
US10514691B2 (en) Geographic area monitoring systems and methods through interchanging tool systems between unmanned vehicles
US10507918B2 (en) Systems and methods to interchangeably couple tool systems with unmanned vehicles
CN110011223B (en) Multi-unmanned aerial vehicle cooperative inspection method and system suitable for regional power transmission line
WO2017164544A1 (en) Drone for artificial pollination and artificial pollination system using same
CN101963806B (en) Unmanned helicopter pesticide applying operation automatic control system and method based on GPS (Global Positioning System) navigation
WO2023163310A1 (en) Drone station for automatically supplying spray agent, and drone spray system comprising same
US9382003B2 (en) Aerial farm robot system for crop dusting, planting, fertilizing and other field jobs
CN207096463U (en) A kind of agricultural Big Dipper difference direction finding navigation control system
US20180072416A1 (en) Geographic area monitoring systems and methods of cooperatively utilizing multiple unmanned vehicles
CN107272739B (en) Pesticide spraying system and method based on primary and secondary systems
US10423169B2 (en) Geographic area monitoring systems and methods utilizing computational sharing across multiple unmanned vehicles
WO2018049148A1 (en) Geographic area monitoring systems and methods that balance power usage between multiple unmanned vehicles
CN205418091U (en) Extreme low -altitude remote control flight seeding and fertilizing machine
CN106125762A (en) Internet-based unmanned aerial vehicle plant protection management system and method
CN205455559U (en) Automatic spray formula agricultural unmanned aerial vehicle
CN106371417A (en) Intelligent agricultural system based on unmanned aerial vehicle
KR20190062872A (en) Artificial pollination system using drones
CN109429598A (en) Agricultural planting auxiliary robot and its automatic job method
GB2583787A (en) Autonomous farming devices, systems and methods
CN108801350A (en) A kind of fruit tree growth monitoring system based on unmanned plane Technology of low altitude remote sensing
CN109507967B (en) Operation control method and device
KR102590320B1 (en) Robot for pest control in greenhouse
CN206869895U (en) High accuracy positioning self-navigation agricultural robot based on RTK technologies
CN209710647U (en) Agricultural planting auxiliary robot
CN112136788B (en) Multipurpose unmanned aerial vehicle plant protection system used in greenhouse and operation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929059

Country of ref document: EP

Kind code of ref document: A1