WO2023163149A1 - Optical laminate for oled display device - Google Patents

Optical laminate for oled display device Download PDF

Info

Publication number
WO2023163149A1
WO2023163149A1 PCT/JP2023/006941 JP2023006941W WO2023163149A1 WO 2023163149 A1 WO2023163149 A1 WO 2023163149A1 JP 2023006941 W JP2023006941 W JP 2023006941W WO 2023163149 A1 WO2023163149 A1 WO 2023163149A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
oled display
display device
adhesive layer
present
Prior art date
Application number
PCT/JP2023/006941
Other languages
French (fr)
Japanese (ja)
Inventor
岳仁 淵田
幸大 宮本
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2023026090A external-priority patent/JP2023126167A/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN202380023854.9A priority Critical patent/CN118696622A/en
Publication of WO2023163149A1 publication Critical patent/WO2023163149A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays

Definitions

  • the present invention relates to an optical laminate for an OLED display device. More particularly, it relates to an optical laminate used in an OLED display that does not use polarizing plates.
  • OLED Organic light emitting diode
  • display performance advantages such as high visibility, low viewing angle dependency, and fast response speed compared to liquid crystal display devices.
  • OLED display device does not use a backlight, it is advantageous for thinning, and can be used as a foldable device that can be flexibly curved or folded.
  • An OLED display device usually has an OLED element in which an anode, an OLED layer including a light-emitting layer, and a cathode are laminated in this order.
  • the electrode (anode or cathode) of the OLED element is made of a transparent conductive material with a high refractive index such as ITO or a metal material with a high reflectance. A glare problem may occur, degrading the display performance of the OLED display device.
  • a circularly polarizing plate also has a function of blocking ultraviolet rays contained in external light and preventing deterioration of the OLED element due to ultraviolet rays.
  • the mechanical properties of the circularly polarizing plate itself it also has the function of absorbing external shocks and preventing damage to the OLED display device.
  • the efficiency of light utilization (that is, the lighting rate) is poor due to absorption by the polarizing plate, resulting in low luminance. If the emission intensity of the OLED element is increased to obtain desired luminance, the power consumption increases and the life of the OLED element is shortened.
  • the polarizing plate has a thickness of about 0.15 mm including an adhesive layer for attachment, which is disadvantageous in reducing the thickness of the OLED display device. Furthermore, since the circularly polarizing plate is expensive, there is also the problem that the manufacturing cost is high.
  • a color filter is placed on the viewing side of the OLED element, and alignment is performed so that the color filter of the same color as the emitted color of the OLED layer faces each other, thereby preventing external light reflection.
  • a method for improving the luminous intensity of an OLED element has been proposed (for example, Patent Document 2).
  • OLED display device having a microcavity also called multiple reflection interference, optical resonator or microresonator
  • the spectrum of the light extracted to the outside becomes steep and high intensity, so it is said that the luminance and color purity can be improved (for example, Patent Document 3).
  • various optical element layers such as an adhesive layer, a base material such as plastic or thin glass, and a hard coat layer are laminated in order to provide functions such as surface protection and flexibility on the viewing side of the OLED element. It is
  • a color filter is placed on the viewing side of the OLED element, and alignment is performed so that the color filter of the same color as the emitted color of the OLED layer faces each other, thereby preventing external light reflection.
  • the regular two-dimensional structure of the color filter may cause uneven interference of reflected light, impairing the visibility of the OLED display device.
  • an object of the present invention is to provide an optical laminate used in an OLED display device that does not use a polarizing plate and in which interference unevenness is less likely to occur.
  • the present inventors have made intensive studies to achieve the above object, and found that in an OLED display device that does not use a polarizing plate, interference unevenness can be reduced by laminating an optical laminate including an antireflection layer on the viewing side of the OLED element.
  • the inventors have found that it is possible to provide a suppressed OLED display device, and completed the present invention.
  • the present invention provides an optical laminate used in an OLED display device in which only an optical element having a degree of polarization of 95% or less is laminated on the viewing side of the OLED element, the optical element having at least an antireflection layer.
  • An optical stack for an OLED display is provided.
  • the maximum value at a wavelength of 380 to 455 nm was Rp1
  • the reflectance of the antireflection layer at the wavelength in Rp1 was Rf1.
  • [Rf1/Rp1] is preferably 0.3 or less.
  • the maximum value at a wavelength of 460 to 530 nm was Rp2, and the reflectance of the antireflection layer at the wavelength in Rp2 was Rf2.
  • [Rf2/Rp2] is preferably 0.12 or less.
  • the sum of [Rf1/Rp1] and [Rf2/Rp2] is preferably 0.42 or less.
  • the antireflection layer preferably has a water contact angle of 100° or more.
  • the water contact angle of the antireflection layer after an eraser test is preferably 90° or more.
  • the antireflection layer is preferably composed of an inorganic substance.
  • a hard coat layer, a substrate layer, and an adhesive layer are preferably provided on the side opposite to the viewing side of the antireflection layer.
  • the haze value of the adhesive layer is preferably 20-90%.
  • the thickness of the hard coat layer is preferably 2 to 10 ⁇ m.
  • An OLED display device in which the optical layered body for an OLED display device of the present invention is laminated on the visible side of the OLED element is less prone to interference unevenness and has excellent visibility.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of an OLED display panel of the present invention
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of an OLED display device laminated with the optical laminate of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of an OLED display device laminated with the optical laminate of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of an OLED display device laminated with the optical laminate of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of an OLED display device laminated with the optical laminate of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of an OLED display device laminated with the optical laminate of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of an OLED display device laminated with the optical laminate of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of an OLED display device laminated with the optical laminate of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of an OLED display device laminated with the optical laminate of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of an OLED display device laminated with the optical laminate of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of an OLED display device laminated with the optical laminate of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of an OLED display device laminated with the optical laminate of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of an OLED display device laminated with the optical laminate of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of an OLED display device laminated with the optical laminate of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of an OLED display device laminated with the optical laminate of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of an OLED display device laminated with the optical laminate of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of an OLED display device laminated with the optical laminate of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of an OLED display device laminated with the optical laminate of the present invention.
  • the present invention provides an optical layered body (optical layered body for OLED display device) used in an OLED display device in which only an optical element having a degree of polarization of 95% or less is layered on the viewing side of the OLED element.
  • the optical layered body for an OLED display device of the present invention constitutes the "optical layered body of the present invention"
  • the OLED display device using the optical layered body of the present invention is the “OLED display device of the present invention”
  • the optical layered body of the present invention Such an optical element may be referred to as "the optical element of the present invention”.
  • the OLED display device of the present invention comprises, as essential components, an OLED display panel including an OLED element in which an anode, an OLED layer including a light-emitting layer, and a cathode are laminated in this order, and an optical laminate of the present invention on the viewing side of the OLED element. It has a laminated construction.
  • An OLED display panel constituting the OLED display device of the present invention may be referred to as "the OLED display panel of the present invention".
  • optical element having a degree of polarization of 95% or less is laminated on the OLED display panel on the viewing side of the OLED element.
  • "Only an optical element with a degree of polarization of 95% or less is laminated on the viewing side of the OLED element” means that the optical element on the viewing side of the OLED element does not include an optical element with a degree of polarization exceeding 95%. do.
  • the "optical element having a degree of polarization exceeding 95%” is not particularly limited, but includes polarizing plates such as linear polarizing plates, 1/4 retardation plates, 1/2 retardation plates, circular polarizing plates, and reflective polarizing plates. included.
  • the OLED display device of the present invention is an OLED display device that does not include a polarizing plate on the viewing side of the OLED element.
  • the degree of polarization is obtained by the following formula based on the parallel transmittance Tp and the orthogonal transmittance Tc, which are measured using an ultraviolet-visible spectrophotometer and subjected to visibility correction.
  • Degree of polarization (%) ⁇ (Tp-Tc)/(Tp+Tc) ⁇ 1/2 x 100
  • the OLED display device of the present invention does not include a polarizing plate on the viewing side of the OLED element, the absorption of light emitted from the OLED element by the polarizing plate is suppressed, the light acceptance rate is improved, and power consumption can be saved. Together with this, it leads to a longer life of the OLED element.
  • the polarizing plate since the polarizing plate is not used, the thickness can be reduced, and the manufacturing cost can be reduced.
  • the optical element of the present invention has at least an antireflection layer.
  • the OLED display device of the present invention is less prone to interference unevenness and has excellent visibility, which is preferable.
  • the optical element of this embodiment has at least an adhesive layer, and at least one of the adhesive layers may have light scattering properties.
  • the configuration in which the pressure-sensitive adhesive layer constituting the optical laminate of the present embodiment has light scattering properties suppresses color shift and interference unevenness caused by the OLED display device of the present embodiment, and provides excellent visibility. is suitable.
  • a color filter is arranged on the viewing side of the OLED element, and only the optical element of this embodiment is laminated on the viewing side of the color filter.
  • the optical element of this embodiment has at least an adhesive layer, at least one of the adhesive layers has a light scattering property, and the adhesive layer having the light scattering property and the color filter are The distance (d) between is preferably 700 ⁇ m or less. Since the distance between the adhesive layer having light scattering properties and the color filter is 700 ⁇ m or less, the light scattering layer is used to suppress color shift and interference unevenness caused by the OLED display device of the present embodiment. is preferable in that image blurring is less likely to occur and visibility is excellent.
  • the optical element of this embodiment preferably has at least an antiglare layer.
  • the antiglare layer in the optical element of the present embodiment color shift and interference unevenness caused by the OLED display device of the present embodiment are suppressed, and visibility is excellent.
  • the optical element of this embodiment has at least a glass layer and a resin layer, and the glass layer and the resin layer are bonded by an adhesive layer.
  • the glass layer and the resin layer are adhered by an adhesive layer, which is preferable because the impact resistance of the OLED display device of the present embodiment is improved.
  • the optical element of this embodiment preferably has at least a transparent polyimide layer and a hard coat layer. It is preferable that the optical element of the present embodiment has a transparent polyimide layer and a hard coat layer, because the impact resistance of the OLED display device of the present embodiment is improved.
  • the OLED display panel used in the OLED display device of the present invention includes, as essential components, an OLED element in which an anode, an OLED layer including a light-emitting layer, and a cathode are laminated in this order.
  • the optical laminate of the present invention is laminated on the viewing side of the OLED element of the OLED display panel.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of the OLED display panel of the present invention.
  • the OLED display panel 100 includes a transparent electrode 11a, a red OLED layer 10R that emits red light, a red OLED element 12R in which a back electrode 11b is laminated in this order, the transparent electrode 11a, and a green light.
  • element 12B OLED elements 12R, 12G, and 12B of respective multiple colors are arranged on substrate 13 in order.
  • a TFT (Thin Film Transistor) layer 14 is formed on the surface of the substrate 13 on which the OLED elements are arranged, and is connected to the back electrodes 11b of the OLED elements 12R, 12G, and 12B of the plurality of colors.
  • a color filter 15 is arranged on the visible side (upper side in FIG. 1) of each of the OLED elements 12R, 12G, and 12B of multiple colors.
  • the color filter 15 includes a red colored layer 15R, a green colored layer 15G, and a blue colored layer 15B.
  • a black matrix layer 16 is provided between the colored layers.
  • the color filter 15 is arranged such that the red colored layer 15R, the green colored layer 15G, and the blue colored layer 15B face the red OLED element 12R, the green OLED element 12G, and the blue OLED element 12B, respectively. It is
  • the transparent electrode 11a is either a cathode or an anode, but is generally provided as a cathode.
  • Transparent conductive materials such as ITO (indium tin oxide), indium oxide, IZO (indium zinc oxide), SnO 2 and ZnO are used as materials for forming the transparent electrode 11a.
  • the back electrode 11b functions as a counter electrode for the transparent electrode 11a.
  • a back electrode 11b which is either an anode or a cathode, is generally provided on the substrate 13 as an anode.
  • Examples of the forming material include metals such as gold, silver, and chromium. Therefore, the back electrode 11b can reflect light.
  • a bonding layer 17 is provided between the substrate 13 and the color filter 15 .
  • the bonding layer 17 has translucency.
  • a material used in a general OLED display device may be used.
  • a photocurable resin such as a photosensitive polyimide resin, or a thermosetting resin may be used.
  • OLED display panel 100 has, in addition to the configuration shown in FIG. (not shown).
  • a feature of the OLED display panel of FIG. 1 is that color filters 15 are placed on the OLED elements 12R, 12G, and 12B of a plurality of colors so that the colored layers 15R, 15G, and 15B of the same color face each other. It is arranged.
  • external light W which is white, passes through, for example, a red colored layer 15R, passes through a transparent electrode 11a and a red OLED layer 10R that emits red light, and reaches a rear electrode 11b. After being reflected, the reflected light G again passes through the red OLED layer 10R, the transparent electrode 11a, and the red colored layer 15R and enters the observer's eyes.
  • the green and blue colors of the external light W are absorbed by the red colored layer 15R, so the light intensity is reduced to 1/3.
  • the reflected light G passes through the red colored layer 15R and the red OLED layer 10R again, it is attenuated.
  • the reflected light G has a red color
  • the red light emitted from the OLED layer 10R can be enhanced.
  • green light and blue light can be enhanced, respectively. Therefore, by using a color filter together with the OLED display panel, it is possible to greatly suppress the reflection of external light and improve the luminous intensity of the OLED element without using a circularly polarizing plate for antireflection.
  • color filters are generally prone to uneven interference due to their regular two-dimensional structure.
  • the color filter has a problem in that reflection is likely to occur at the interface, and the lighting efficiency of the light emitted from the OLED element is lowered.
  • the color filter does not have a sufficient ultraviolet absorption function compared to the case of using a circularly polarizing plate, and the OLED element is likely to deteriorate over time due to the ultraviolet rays contained in the external light (i.e., the weather resistance is low).
  • the color filter has a problem that the impact absorption function is not sufficient as compared with the case of using the circularly polarizing plate.
  • the OLED display panel 100 of this embodiment has a microcavity structure.
  • Light emitted from the OLED layers 10R, 10G, and 10B passes through the transparent electrode 11a and is emitted to the outside.
  • the emitted light includes "direct light” directly emitted from the OLED layers 10R, 10G, and 10B toward the transparent electrode 11a, and emitted light from the OLED layers 10R, 10G, and 10B toward the back electrode 11b. Both components of the "reflected light” that travels toward the transparent electrode 11a after being reflected by the electrode 11b are included.
  • a first optical path C1 in which part of the light emitted from the OLED layers 10R, 10G, and 10B travels to the transparent electrode 11a side without traveling to the back electrode 11b side and is emitted to the outside through the transparent electrode 11a;
  • the rest of the light emitted from the OLED layers 10R, 10G, and 10B travels toward the back electrode 11b, is reflected by the back electrode 11b, and is then emitted to the outside through the OLED layers 10R, 10G, and 10B and the transparent electrode 11a.
  • a second optical path C2 is formed.
  • the thicknesses of the OLED layers 10R, 10G, and 10B are made different so that the light components corresponding to the respective colors strengthen each other due to interference between the direct light and the reflected light. That is, the OLED layers are arranged such that the optical path length between the back electrode (positive electrode) 11b and the transparent electrode (negative electrode) 11a is matched to the EL spectrum peak wavelength of each of red, green, and blue, and the strongest light is extracted from each color.
  • the thicknesses of 10R, 10G, and 10B are different. Specifically, the short wavelength blue OLED layer 10B is designed to be thin, and the long wavelength red OLED layer 10R is designed to be thick.
  • the light generated in the OLED layer is repeatedly reflected between the positive electrode and the negative electrode, and only the light with the wavelength matching the optical path length is resonated and emphasized, and the light with the other wavelengths with the different optical path length is weakened. , the spectrum of the light extracted to the outside becomes sharp and high intensity, and the luminance and color purity are improved.
  • the OLED display panel having the microcavity structure although excellent effects of improving luminance and color purity can be obtained, there is a problem that the viewing angle is strongly dependent (the viewing angle is narrow) due to the steep spectrum. can occur. For this reason, when an image is viewed from an oblique direction during image display, a color shift may occur in which the color appears to be different from the color originally desired to be displayed.
  • the optical element of the present invention is an optical element laminated on the viewing side of an OLED display device, and includes an adhesive layer, an adhesive layer, a resin layer, a glass layer, a hard coat layer, an antireflection layer, an antiglare layer, It contains at least one layer selected from an intermediate layer (compatible layer), an impact absorbing layer, an antistatic layer, and the like.
  • the optical elements of the present invention do not include those having a degree of polarization exceeding 95%, such as polarizing plates.
  • the adhesive layer is a layer that has adhesiveness at room temperature and adheres to the adherend with light pressure. It refers to the one that maintains a good adhesive strength.
  • the pressure-sensitive adhesive layer constituting the optical element of the present invention (hereinafter sometimes referred to as "the pressure-sensitive adhesive layer of the present invention"), from the viewpoint of efficiently reducing the color shift and interference unevenness of the OLED display device, light scattering It preferably has a property (a function of scattering light).
  • the pressure-sensitive adhesive layer of the present invention has light scattering properties, it preferably contains light-scattering fine particles dispersed in the pressure-sensitive adhesive layer.
  • the OLED display device of the present invention includes a color filter on the viewing side and the adhesive layer has light scattering properties, the color shift and interference unevenness of the OLED display device are reduced, and the OLED display device caused by light scattering is reduced.
  • the distance (d) between the pressure-sensitive adhesive layer having light scattering properties and the color filter is 700 ⁇ m or less.
  • the distance between the pressure-sensitive adhesive layer having light scattering properties and the color filter is more preferably 600 ⁇ m or less, more preferably 500 ⁇ m or less. More preferred.
  • the pressure-sensitive adhesive layer having light scattering properties and the color filter are in direct contact.
  • the distance between the pressure-sensitive adhesive layer having light scattering properties and the color filter is the distance ( ⁇ m) between the surface of the pressure-sensitive adhesive layer facing the color filter and the surface of the color filter facing the pressure-sensitive adhesive layer.
  • the thickness ( ⁇ m) of the other layer in the case of two or more layers, the total) Equivalent to.
  • the haze value (H) of the adhesive layer of the present invention is not particularly limited, but is preferably 20% or more, more preferably 30% or more, from the viewpoint of efficiently reducing color shift and interference unevenness of the OLED display device. More preferably 40% or more, particularly preferably 50% or more.
  • the haze value of the pressure-sensitive adhesive layer of the present invention is preferably 90% or less, more preferably 80% or less, and 70% or less. more preferred.
  • the total light transmittance of the pressure-sensitive adhesive layer of the present invention is not particularly limited, it is preferably 60% or more, more preferably 70% or more, and still more preferably 80% or more from the viewpoint of ensuring the brightness of the OLED display device. Especially preferably, it is 90% or more.
  • the upper limit of the total light transmittance of the pressure-sensitive adhesive layer of the present invention is not particularly limited, but may be less than 100%, 99.9% or less, or 99% or less.
  • the haze value and total light transmittance of the pressure-sensitive adhesive layer of the present invention can be measured by methods defined in JIS K7136 and JIS K7361, respectively. It can be controlled by adjusting the content and the blending amount.
  • the thickness (T) of the adhesive layer of the present invention is preferably 10 to 100 ⁇ m, more preferably 15 to 90 ⁇ m, from the viewpoint of efficiently reducing color shift and interference unevenness of the OLED display device. It is more preferably 20-80 ⁇ m.
  • the light-scattering fine particles have an appropriate refractive index difference with the adhesive in the adhesive layer, and impart light scattering properties to the adhesive layer.
  • light-scattering fine particles include inorganic fine particles and polymer fine particles.
  • materials for the inorganic fine particles include silica, calcium carbonate, aluminum hydroxide, magnesium hydroxide, clay, talc, and titanium dioxide.
  • Examples of materials for the polymer fine particles include silicone resins, acrylic resins, methacrylic resins (eg, polymethyl methacrylate), polystyrene resins, polyurethane resins, melamine resins, polyethylene resins, and epoxy resins.
  • the light-scattering microparticles are preferably polymer microparticles, and in particular, microparticles composed of silicone resin (e.g., Tospearl series manufactured by Momentive Performance Materials Japan Co., Ltd.) have excellent dispersion in the pressure-sensitive adhesive layer. Adhesive layer with excellent scattering performance showing uniform in-plane haze, which has properties, stability, and an appropriate refractive index difference with the adhesive layer. It is suitable in terms of The shape of the light-scattering fine particles can be spherical, flat, or irregular, for example. The light-scattering fine particles may be used alone or in combination of two or more.
  • the volume average particle diameter of the light-scattering fine particles is preferably 0.1 ⁇ m or more, more preferably 0.15 ⁇ m or more, still more preferably 0.2 ⁇ m or more, from the viewpoint of imparting appropriate light scattering properties to the pressure-sensitive adhesive layer. More preferably 0.25 ⁇ m or more, particularly preferably 1 ⁇ m or more.
  • the volume average particle diameter of the light-scattering fine particles is preferably 12 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 10 ⁇ m or less, from the viewpoint of preventing the haze value from becoming too high and displaying high-definition images. 8 ⁇ m or less, particularly preferably 5 ⁇ m or less.
  • the volume average particle size can be measured using, for example, a Coulter Counter.
  • the refractive index (n3) of the light-scattering fine particles is preferably 1.2 to 5, more preferably 1.25 to 4.5, 1.3 to 4, or 1.35 to 3. good too.
  • the absolute value of the refractive index difference between the light-scattering fine particles and the adhesive in the adhesive layer effectively reduces the color shift and interference unevenness of the OLED display device. From the viewpoint of reducing to There may be.
  • the absolute value of the refractive index difference between the light-scattering fine particles and the pressure-sensitive adhesive is preferably 5 or less from the viewpoint of preventing the haze value from becoming too high, suppressing image blur, and displaying high-definition images. , more preferably 4 or less, and still more preferably 3 or less.
  • the refractive index (n2) of the adhesive is preferably 1.40 to 1.60, more preferably 1.42 to 1.55, still more preferably 1.43 to 1.50.
  • the refractive index of the pressure-sensitive adhesive can be adjusted by the types and contents of aromatic ring-containing monomers, high-refractive-index organic materials, and high-refractive-index inorganic materials, which will be described later.
  • the content of the light-scattering fine particles in the adhesive layer is preferably 0.01 per 100 parts by weight of the adhesive constituting the adhesive layer. It is at least 0.05 part by weight, more preferably at least 0.1 part by weight, and particularly preferably at least 0.15 part by weight.
  • the content of the light-scattering fine particles is 100 parts by weight of the adhesive constituting the adhesive layer from the viewpoint of preventing the haze value from becoming too high, suppressing image blurring, and displaying high-definition images. On the other hand, it is preferably 80 parts by weight or less, more preferably 70 parts by weight or less.
  • the present invention when the pressure-sensitive adhesive layer of the present invention (particularly, a color filter is arranged on the viewing side of the OLED element and the distance (d) between the pressure-sensitive adhesive layer of the present invention and the color filter is 700 ⁇ m or less)
  • the pressure-sensitive adhesive layer is not particularly limited, but preferably has a high refractive index from the viewpoint of preventing interfacial reflection and improving the lighting efficiency of light emitted from the OLED element.
  • the refractive index of the pressure-sensitive adhesive layer of the present invention is preferably 1.57 or more, more preferably 1.575 or more, and more preferably 1.575 or more, from the viewpoint of preventing interfacial reflection and improving the lighting efficiency of light emitted from the OLED element.
  • the refractive index of the pressure-sensitive adhesive layer of the present invention can be adjusted by the types and contents of aromatic ring-containing monomers, high-refractive-index organic materials, and high-refractive-index inorganic materials, which will be described later.
  • the variation ratio of the refractive index of the pressure-sensitive adhesive layer of the present invention before and after humidification is not particularly limited. From the viewpoint, it is preferably 0.05 or less, preferably 0.04 or less, more preferably 0.02 or less, and particularly preferably 0.01 or less.
  • the variation ratio of the refractive index of the pressure-sensitive adhesive layer of the present invention before and after humidification can be calculated from the following formula after storing the pressure-sensitive adhesive layer of the present invention in a humidified environment at a temperature of 85° C. and a relative humidity of 85% for 120 hours. is.
  • Refractive index change ratio before and after humidification
  • the variation ratio of the refractive index before and after humidification depends on the type and content of the aromatic ring-containing monomer, high refractive index organic material, and high refractive inorganic material described later, the type of adhesive constituting the adhesive layer, the monomer composition, the degree of cross-linking, The thickness can be adjusted.
  • the adhesive constituting the adhesive layer of the present invention is not particularly limited, but for example, acrylic adhesive, rubber adhesive, vinyl alkyl ether adhesive, silicone adhesive, polyester adhesive, polyamide adhesive Adhesives, urethane-based adhesives, fluorine-based adhesives, epoxy-based adhesives, and the like can be used.
  • acrylic pressure-sensitive adhesives are preferable as the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer from the viewpoints of transparency, adhesiveness, weather resistance, cost, and ease of designing the pressure-sensitive adhesive.
  • the pressure-sensitive adhesive layer of the present invention is preferably an acrylic pressure-sensitive adhesive layer composed of an acrylic pressure-sensitive adhesive.
  • the said adhesive can be used individually or in combination of 2 or more types.
  • the acrylic pressure-sensitive adhesive layer contains an acrylic polymer as a base polymer.
  • the acrylic polymer is a polymer containing an acrylic monomer (a monomer having a (meth)acryloyl group in the molecule) as a monomer component constituting the polymer.
  • the acrylic polymer is preferably a polymer containing a (meth)acrylic acid alkyl ester as a monomer component constituting the polymer.
  • an acrylic polymer can be used individually or in combination of 2 or more types.
  • the adhesive composition forming the adhesive layer of the present invention may be in any form.
  • the pressure-sensitive adhesive composition may be an emulsion type, a solvent type (solution type), an active energy ray-curable type, a heat-melting type (hot-melt type), or the like.
  • solvent-type and active energy ray-curable pressure-sensitive adhesive compositions are preferable from the viewpoint of productivity and the ease with which a pressure-sensitive adhesive layer having excellent optical properties and appearance can be obtained.
  • the pressure-sensitive adhesive layer of the present invention is an acrylic pressure-sensitive adhesive layer containing an acrylic polymer as a base polymer, and is preferably formed from a solvent-type or active energy ray-curable acrylic pressure-sensitive adhesive composition.
  • the active energy rays include ionizing radiation such as ⁇ -rays, ⁇ -rays, ⁇ -rays, neutron beams and electron beams, and ultraviolet rays, with ultraviolet rays being particularly preferred. That is, the active energy ray-curable pressure-sensitive adhesive composition is preferably an ultraviolet-curable pressure-sensitive adhesive composition.
  • acrylic pressure-sensitive adhesive compositions containing a mixture of monomers sometimes referred to as a "monomer mixture" or a partial polymer thereof as an essential component.
  • the former includes, for example, a so-called solvent-type acrylic pressure-sensitive adhesive composition.
  • the latter includes, for example, so-called active energy ray-curable acrylic pressure-sensitive adhesive compositions.
  • the "monomer mixture” means a mixture containing monomer components that constitute a polymer.
  • the "partially polymerized product” may also be referred to as a "prepolymer", and means a composition in which one or more of the monomer components in the monomer mixture is partially polymerized. do.
  • the acrylic polymer is a polymer composed (formed) of an acrylic monomer as an essential monomer component (monomer component).
  • the acrylic polymer is preferably a polymer composed (formed) of a (meth)acrylic acid alkyl ester as an essential monomer component. That is, the acrylic polymer preferably contains a (meth)acrylic acid alkyl ester as a structural unit.
  • “(meth)acryl” represents “acryl” and/or "methacryl” (either or both of "acryl” and “methacryl"), and so on.
  • the said acrylic polymer is comprised by 1 type, or 2 or more types of monomer components.
  • (meth)acrylic acid alkyl ester as an essential monomer component, a (meth)acrylic acid alkyl ester having a linear or branched alkyl group is preferably mentioned.
  • (meth)acrylic-acid alkylester can be used individually or in combination of 2 or more types.
  • the (meth)acrylic acid alkyl ester having a linear or branched alkyl group is not particularly limited, but examples include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, ( meth)isopropyl acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, s-butyl (meth)acrylate, t-butyl (meth)acrylate, pentyl (meth)acrylate, (meth)acrylate isopentyl acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isooctyl (meth)acrylate, nonyl (meth)acrylate, (meth)acrylate ) isononyl acrylate, decyl (me
  • the (meth)acrylic acid alkyl ester having a linear or branched alkyl group is preferably a (meth)acrylic acid alkyl ester having a linear or branched alkyl group having 4 to 18 carbon atoms. , and more preferably 2-ethylhexyl acrylate (2EHA) and isostearyl acrylate (ISTA).
  • the (meth)acrylic acid alkyl esters having a linear or branched alkyl group can be used alone or in combination of two or more.
  • the ratio of the (meth)acrylic acid alkyl ester in the total monomer components (100% by weight) constituting the acrylic polymer is not particularly limited, but is 50% by weight or more (for example, 50 to 100% by weight). is preferred, more preferably 53 to 90% by weight, and even more preferably 55 to 85% by weight.
  • the acrylic polymer may contain a copolymerizable monomer together with the (meth)acrylic acid alkyl ester as a monomer component constituting the polymer. That is, the acrylic polymer may contain a copolymerizable monomer as a structural unit.
  • a copolymerizable monomer can be used individually or in combination of 2 or more types.
  • the copolymerizable monomer is not particularly limited. is preferably a monomer having an aromatic ring. That is, the acrylic polymer preferably contains a monomer having an aromatic ring in the molecule as a structural unit.
  • the monomer having an aromatic ring in its molecule is a monomer (monomer) having at least one aromatic ring in its molecule (within one molecule).
  • monomer having an aromatic ring in the molecule may be referred to as "aromatic ring-containing monomer”.
  • a compound containing at least one aromatic ring and at least one ethylenically unsaturated group in one molecule is used as the aromatic ring-containing monomer.
  • aromatic ring-containing monomer such compounds can be used singly or in combination of two or more.
  • Examples of the ethylenically unsaturated groups include (meth)acryloyl groups, vinyl groups, and (meth)allyl groups.
  • a (meth)acryloyl group is preferable from the viewpoint of polymerization reactivity, and an acryloyl group is more preferable from the viewpoint of flexibility and adhesiveness.
  • the aromatic ring-containing monomer a compound having one ethylenically unsaturated group contained in one molecule (that is, a monofunctional monomer) is preferably used.
  • the number of aromatic rings contained in one molecule of the compound used as the aromatic ring-containing monomer may be one, or two or more.
  • the upper limit of the number of aromatic rings contained in the aromatic ring-containing monomer is not particularly limited, and may be, for example, 16 or less.
  • the number of the aromatic rings may be, for example, 12 or less, preferably 8 or less, more preferably 6 or less, and 5 It may be less than or equal to 4, less than or equal to 3, or less than or equal to 2.
  • the aromatic ring possessed by the compound used as the aromatic ring-containing monomer is, for example, a benzene ring (which may be a benzene ring constituting part of a biphenyl structure or a fluorene structure); naphthalene ring, indene ring, azulene ring, anthracene ring, phenanthrene may be a carbocyclic ring, such as a pyridine ring, a pyrimidine ring, a pyridazine ring, a pyrazine ring, a triazine ring, a pyrrole ring, a pyrazole ring, an imidazole ring, a triazole ring, an oxazole ring, an isoxazole ring, A heterocyclic ring such as a thiazole ring or a thiophene ring may be used.
  • the heteroatoms included as ring-constituting atoms in the heterocyclic ring may be one or more selected from the group consisting of nitrogen, sulfur and oxygen, for example.
  • the heteroatoms that make up the heterocycle may be one or both of nitrogen and sulfur.
  • the aromatic ring-containing monomer may have a structure in which one or more carbon rings and one or more heterocycles are condensed, such as a dinaphthothiophene structure.
  • the aromatic ring may or may not have one or more substituents on the ring-constituting atoms.
  • the substituent includes an alkyl group, an alkoxy group, an aryloxy group, a hydroxyl group, a halogen atom (fluorine atom, chlorine atom, bromine atom, etc.), a hydroxyalkyl group, a hydroxyalkyloxy group, and a glycidyloxy group. etc. are exemplified, but not limited to these.
  • substituents containing carbon atoms the number of carbon atoms contained in the substituent is preferably 1-4, more preferably 1-3, and can be, for example, 1 or 2.
  • the aromatic ring is an aromatic ring having no substituents on ring-constituting atoms or having one or more substituents selected from the group consisting of alkyl groups, alkoxy groups and halogen atoms (e.g., bromine atoms). obtain.
  • the expression that the aromatic ring of the aromatic ring-containing monomer has a substituent on its ring-constituting atom means that the aromatic ring has a substituent other than a substituent having an ethylenically unsaturated group.
  • the aromatic ring and the ethylenically unsaturated group may be directly bonded or may be bonded via a linking group.
  • the linking group is, for example, an alkylene group, an oxyalkylene group, a poly(oxyalkylene) group, a phenyl group, an alkylphenyl group, an alkoxyphenyl group, or a structure in which one or more hydrogen atoms in these groups are substituted with hydroxyl groups. (eg, hydroxyalkylene group), oxy group (--O-- group), thiooxy group (--S-- group) and the like.
  • Ring-containing monomers may preferably be employed.
  • the number of carbon atoms in the alkylene group and the oxyalkylene group is preferably 1-4, more preferably 1-3, and may be 1 or 2, for example.
  • the number of repeating oxyalkylene units in the poly(oxyalkylene) group may be, for example, 2-3.
  • Examples of compounds that can be preferably employed as aromatic ring-containing monomers include aromatic ring-containing (meth)acrylates and aromatic ring-containing vinyl compounds.
  • the aromatic ring-containing (meth)acrylate and the aromatic ring-containing vinyl compound can be used singly or in combination of two or more.
  • One or two or more aromatic ring-containing (meth)acrylates and one or two or more aromatic ring-containing vinyl compounds may be used in combination.
  • the proportion of the aromatic ring-containing monomer in the total monomer components (100% by weight) constituting the acrylic polymer is although not particularly limited, it is preferably 30% by weight or more, more preferably 50% by weight or more, still more preferably 60% by weight or more, and may be 70% by weight or more. When the ratio is 30% by weight or more, a higher refractive index tends to be obtained, which is preferable.
  • the content of the aromatic ring-containing monomer may be, for example, more than 70% by weight, may be 75% by weight or more, may be 80% by weight or more, or may be 85% by weight or more. Well, it may be 90% by weight or more, or 95% by weight or more.
  • the upper limit of the ratio of the aromatic ring-containing monomer is preferably 99% by weight or less, more preferably 98% by weight, from the viewpoint of obtaining a pressure-sensitive adhesive layer having appropriate flexibility and obtaining a pressure-sensitive adhesive layer with excellent transparency. %, more preferably 97% by weight or less, and may be 96% by weight or less.
  • the content of the aromatic ring-containing monomer may be 93% by weight or less, 90% by weight or less, 80% by weight or less, or 75% by weight or less. In some embodiments where adhesive properties and/or optical properties are more important, the content of the aromatic ring-containing monomer may be 70% by weight or less, 60% by weight or less, or 45% by weight or less.
  • aromatic ring-containing monomer a monomer having two or more aromatic rings (preferably carbocyclic rings) in one molecule can be preferably used because it is easy to obtain a high effect of increasing the refractive index.
  • monomers having two or more aromatic rings in one molecule include monomers having a structure in which two or more non-condensed aromatic rings are bonded via a linking group.
  • a monomer having a structure in which two or more non-condensed aromatic rings are directly (that is, not via other atoms) chemically bonded a monomer having a condensed aromatic ring structure, a monomer having a fluorene structure, a monomer having a dinaphthothiophene structure , a monomer having a dibenzothiophene structure, and the like.
  • the monomers containing multiple aromatic rings may be used singly or in combination of two or more.
  • the linking group is, for example, an oxy group (--O--), a thiooxy group (--S--), an oxyalkylene group (eg a --O--(CH 2 ) n --- group, where n is 1 to 3, preferably 1).
  • a thiooxyalkylene group e.g., a -S-(CH 2 ) n - group, where n is 1 to 3, preferably 1)
  • a linear alkylene group i.e., a -(CH 2 ) n - group, where n is 1 to 6, preferably 1 to 3
  • the alkylene group in the oxyalkylene group, the thiooxyalkylene group and the linear alkylene group may be a partially or completely halogenated group.
  • Preferred examples of the linking group include an oxy group, a thiooxy group, an oxyalkylene group and a linear alkylene group from the viewpoint of the flexibility of the adhesive.
  • monomers having a structure in which two or more non-fused aromatic rings are bonded via a linking group include phenoxybenzyl (meth)acrylate (e.g., m-phenoxybenzyl (meth)acrylate), thiophenoxybenzyl (meth) Acrylate, benzylbenzyl (meth)acrylate and the like.
  • the monomer having a structure in which two or more non-fused aromatic rings are directly chemically bonded may be, for example, a biphenyl structure-containing (meth)acrylate, a triphenyl structure-containing (meth)acrylate, a vinyl group-containing biphenyl, or the like. Specific examples include o-phenylphenol (meth)acrylate and biphenylmethyl (meth)acrylate.
  • Examples of monomers having a condensed aromatic ring structure include naphthalene ring-containing (meth)acrylates, anthracene ring-containing (meth)acrylates, vinyl group-containing naphthalenes, and vinyl group-containing anthracenes.
  • Specific examples include 1-naphthylmethyl (meth)acrylate (also known as 1-naphthalenemethyl (meth)acrylate), hydroxyethylated ⁇ -naphthol acrylate, 2-naphthoethyl (meth)acrylate, 2-naphthoxyethyl acrylate, 2 -(4-methoxy-1-naphthoxy)ethyl (meth)acrylate and the like.
  • the monomer having a fluorene structure examples include 9,9-bis(4-hydroxyphenyl)fluorene (meth)acrylate and 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene (meth)acrylate. etc. Since the monomer having a fluorene structure includes a structural portion in which two benzene rings are directly chemically bonded, it is included in the concept of a monomer having a structure in which two or more non-fused aromatic rings are directly chemically bonded.
  • Examples of the monomer having a dinaphthothiophene structure include (meth)acryloyl group-containing dinaphthothiophene, vinyl group-containing dinaphthothiophene, and (meth)allyl group-containing dinaphthothiophene.
  • Specific examples include (meth)acryloyloxymethyldinaphthothiophene (for example, a compound having a structure in which CH 2 CH(R 1 )C(O)OCH 2 — is bonded to the 5- or 6-position of the dinaphthothiophene ring.
  • R 1 is a hydrogen atom or a methyl group
  • (meth)acryloyloxyethyl dinaphthothiophene for example, at the 5- or 6-position of the dinaphthothiophene ring, CH 2 CH(R 1 )C(O) OCH(CH 3 )— or a compound having a structure in which CH 2 CH(R 1 )C(O)OCH 2 CH 2 — is bonded, where R 1 is a hydrogen atom or a methyl group), vinyldinaphthothiophene (For example, compounds having a structure in which a vinyl group is bonded to the 5th or 6th position of the naphthothiophene ring), (meth)allyloxydinaphthothiophene, and the like.
  • the monomer having a dinaphthothiophene structure is included in the concept of the monomer having a condensed aromatic ring structure by including a naphthalene structure and by having a structure in which a thiophene ring and two naphthalene structures are condensed. be.
  • Examples of the monomer having a dibenzothiophene structure include (meth)acryloyl group-containing dibenzothiophene and vinyl group-containing dibenzothiophene.
  • a monomer having a dibenzothiophene structure is included in the concept of a monomer having a condensed aromatic ring structure because it has a structure in which a thiophene ring and two benzene rings are condensed. Neither the dinaphthothiophene structure nor the dibenzothiophene structure corresponds to structures in which two or more non-fused aromatic rings are directly chemically bonded.
  • a monomer having one aromatic ring (preferably a carbocyclic ring) in one molecule may be used as the aromatic ring-containing monomer.
  • a monomer having one aromatic ring in one molecule can be useful, for example, in improving the flexibility of the pressure-sensitive adhesive, adjusting the pressure-sensitive adhesive properties, improving the transparency, and the like.
  • a monomer having one aromatic ring in one molecule is preferably used in combination with a monomer containing multiple aromatic rings from the viewpoint of improving the refractive index of the pressure-sensitive adhesive.
  • Examples of monomers having one aromatic ring in one molecule include benzyl (meth)acrylate, methoxybenzyl (meth)acrylate, phenyl (meth)acrylate, ethoxylated phenol (meth)acrylate, phenoxypropyl (meth)acrylate 2-(4, 6-dibromo-2-s-butylphenoxy)ethyl (meth)acrylate, 2-(4,6-dibromo-2-isopropylphenoxy)ethyl (meth)acrylate, 6-(4,6-dibromo-2-s- Butylphenoxy)hexyl (meth)acrylate, 6-(4,6-dibromo-2-isopropylphenoxy)hexyl (meth)acrylate, 2,6-dibromo-4-nonylphenyl acrylate, 2,6-dibromo-4-dodecyl Bromine-substituted aromatic ring-containing (meth)acryl
  • aromatic ring-containing monomer a monomer having a structure in which an oxyethylene chain is interposed between the ethylenically unsaturated group and the aromatic ring in various aromatic ring-containing monomers as described above may be used.
  • a monomer with an oxyethylene chain interposed between the ethylenically unsaturated group and the aromatic ring can be understood as an ethoxylated product of the original monomer.
  • the number of repeating oxyethylene units ( --CH.sub.2CH.sub.2O-- ) in the oxyethylene chain is typically 1-4, preferably 1-3, more preferably 1-2, for example 1.
  • ethoxylated aromatic ring-containing monomers include ethoxylated o-phenylphenol (meth)acrylate, ethoxylated nonylphenol (meth)acrylate, ethoxylated cresol (meth)acrylate, phenoxyethyl (meth)acrylate, and phenoxydiethylene glycol. di(meth)acrylate and the like.
  • the content of the monomer containing multiple aromatic rings in the aromatic ring-containing monomer is not particularly limited, and may be, for example, 5% by weight or more, 25% by weight or more, or 40% by weight or more. From the viewpoint of easily realizing a pressure-sensitive adhesive having a higher refractive index, the content of the monomer containing multiple aromatic rings in the aromatic ring-containing monomer may be, for example, 50% by weight or more, preferably 70% by weight or more. , 85% by weight or more, 90% by weight or more, or 95% by weight or more. Substantially 100% by weight of the aromatic ring-containing monomer may be the multiple aromatic ring-containing monomer.
  • the aromatic ring-containing monomer may be used as the aromatic ring-containing monomer.
  • the content of the monomer containing multiple aromatic rings in the aromatic ring-containing monomer may be less than 100% by weight, or 98% by weight. 90% by weight or less, 80% by weight or less, or 65% by weight or less.
  • the content of the monomer containing multiple aromatic rings in the aromatic ring-containing monomer may be 70% by weight or less, 50% by weight or less, 25% by weight or less, or 10% by weight. % or less.
  • a mode in which the content of the monomer containing multiple aromatic rings in the monomer containing aromatic rings is less than 5% by weight can also be carried out.
  • a monomer containing multiple aromatic rings may not be used.
  • the proportion of the monomer containing multiple aromatic rings in the total monomer components (100% by weight) constituting the acrylic polymer. is not particularly limited, but is preferably 3% by weight or more, more preferably 10% by weight or more, and still more preferably 25% by weight or more.
  • the ratio is 3% by weight or more, a higher refractive index tends to be obtained, which is preferable.
  • the content of the monomer containing multiple aromatic rings may be, for example, more than 35% by weight, may be 50% by weight or more, may be 70% by weight or more, or may be 75% by weight or more.
  • the upper limit of the ratio of the monomer containing multiple aromatic rings is preferably 99% by weight or less, more preferably 98% by weight or less, from the viewpoint of achieving a good balance between a high refractive index and adhesive properties and/or optical properties. , more preferably 96% by weight or less, may be 93% by weight or less, may be 90% by weight or less, may be 85% by weight or less, or may be 80% by weight or less , 75% by weight or less.
  • the content of the monomer containing multiple aromatic rings may be 70% by weight or less, 50% by weight or less, 25% by weight or less, or 15% by weight or less. Well, it may be 5% by weight or less.
  • the copolymerizable monomer is not particularly limited, but from the viewpoint of suppressing cloudiness and improving durability in a high-humidity environment, compatibility with various additives such as ultraviolet absorbers, and transparency, A monomer having a nitrogen atom and a monomer having a hydroxyl group in the molecule are preferred. That is, the acrylic polymer preferably contains a monomer having a nitrogen atom in the molecule as a structural unit. Moreover, the acrylic polymer preferably contains a monomer having a hydroxyl group in the molecule as a structural unit.
  • the monomer having a nitrogen atom in its molecule is a monomer (monomer) having at least one nitrogen atom in its molecule (within one molecule).
  • the "monomer having a nitrogen atom in the molecule” may be referred to as a "nitrogen atom-containing monomer”.
  • the nitrogen atom-containing monomer is not particularly limited, but preferably includes a cyclic nitrogen-containing monomer, (meth)acrylamides, and the like. Incidentally, the nitrogen atom-containing monomers can be used alone or in combination of two or more.
  • the cyclic nitrogen-containing monomer is not particularly limited as long as it has a polymerizable functional group having an unsaturated double bond such as a (meth)acryloyl group or vinyl group and has a cyclic nitrogen structure.
  • the cyclic nitrogen structure preferably has a nitrogen atom in the cyclic structure.
  • cyclic nitrogen-containing monomers examples include N-vinyl cyclic amides (lactam-based vinyl monomers) and vinyl-based monomers having a nitrogen-containing heterocycle.
  • N-vinyl cyclic amides examples include N-vinyl cyclic amides represented by the following formula (1).
  • R 1 represents a divalent organic group
  • R 1 in the formula (1) is a divalent organic group, preferably a divalent saturated hydrocarbon group or an unsaturated hydrocarbon group, more preferably a divalent saturated hydrocarbon group (e.g., carbon number 3 to 5 alkylene groups, etc.).
  • N-vinyl cyclic amide represented by the formula (1) examples include N-vinyl-2-pyrrolidone, N-vinyl-2-piperidone, N-vinyl-3-morpholinone and N-vinyl-2-caprolactam. , N-vinyl-1,3-oxazin-2-one, N-vinyl-3,5-morpholinedione, and the like.
  • vinyl monomers having a nitrogen-containing heterocyclic ring examples include acrylic monomers having a nitrogen-containing heterocyclic ring such as a morpholine ring, a piperidine ring, a pyrrolidine ring, and a piperazine ring.
  • the vinyl-based monomer having a nitrogen-containing heterocycle is not particularly limited, but examples include (meth)acryloylmorpholine, N-vinylpiperazine, N-vinylpyrrole, N-vinylimidazole, N-vinylpyrazine, and N-vinylmorpholine.
  • acrylic monomers having a nitrogen-containing heterocycle are preferable, and (meth)acryloylmorpholine, (meth)acryloylpyrrolidine, and (meth)acryloylpiperidine are more preferable.
  • Examples of the (meth)acrylamides include (meth)acrylamide, N-alkyl(meth)acrylamide, and N,N-dialkyl(meth)acrylamide.
  • Examples of the N-alkyl(meth)acrylamide include N-ethyl(meth)acrylamide, N-isopropyl(meth)acrylamide, Nn-butyl(meth)acrylamide, N-octyl(meth)acrylamide and the like. .
  • N-alkyl(meth)acrylamides also include (meth)acrylamides having an amino group such as dimethylaminoethyl(meth)acrylamide, diethylaminoethyl(meth)acrylamide, and dimethylaminopropyl(meth)acrylamide.
  • N,N-dialkyl(meth)acrylamide examples include N,N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, N,N-dipropyl(meth)acrylamide, N,N-diisopropyl (Meth)acrylamide, N,N-di(n-butyl)(meth)acrylamide, N,N-di(t-butyl)(meth)acrylamide and the like.
  • the (meth)acrylamides also include, for example, various N-hydroxyalkyl(meth)acrylamides.
  • N-hydroxyalkyl(meth)acrylamide examples include N-methylol(meth)acrylamide, N-(2-hydroxyethyl)(meth)acrylamide, N-(2-hydroxypropyl)(meth)acrylamide, N- (1-hydroxypropyl)(meth)acrylamide, N-(3-hydroxypropyl)(meth)acrylamide, N-(2-hydroxybutyl)(meth)acrylamide, N-(3-hydroxybutyl)(meth)acrylamide, N-(4-hydroxybutyl)(meth)acrylamide, N-methyl-N-2-hydroxyethyl(meth)acrylamide and the like.
  • the (meth)acrylamides also include, for example, various N-alkoxyalkyl(meth)acrylamides.
  • Examples of the N-alkoxyalkyl(meth)acrylamides include N-methoxymethyl(meth)acrylamide and N-butoxymethyl(meth)acrylamide.
  • nitrogen atom-containing monomers other than the cyclic nitrogen-containing monomers and the (meth)acrylamides include amino group-containing monomers, cyano group-containing monomers, imide group-containing monomers, and isocyanate group-containing monomers.
  • the amino group-containing monomer include aminoethyl (meth)acrylate, dimethylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylate, and t-butylaminoethyl (meth)acrylate.
  • the cyano group-containing monomer include acrylonitrile and methacrylonitrile.
  • imide group-containing monomer examples include maleimide-based monomers (eg, N-cyclohexylmaleimide, N-isopropylmaleimide, N-laurylmaleimide, N-phenylmaleimide, etc.), itaconimide-based monomers (eg, N-methylitaconimide, N- ethylitaconimide, N-butylitaconimide, N-octylitaconimide, N-2-ethylhexylitaconimide, N-laurylitaconimide, N-cyclohexylitaconimide, etc.), succinimide-based monomers (e.g., N-(meth)acryloyl oxymethylenesuccinimide, N-(meth)acryloyl-6-oxyhexamethylenesuccinimide, N-(meth)acryloyl-8-oxyoctamethylenesuccinimide, etc.).
  • the nitrogen atom-containing monomer is preferably a cyclic nitrogen-containing monomer, and more preferably an N-vinyl cyclic amide. More specifically, N-vinyl-2-pyrrolidone (NVP) is particularly preferred.
  • the ratio of the nitrogen atom-containing monomer in the total monomer components (100% by weight) constituting the acrylic polymer is although not particularly limited, it is preferably 1% by weight or more, more preferably 3% by weight or more, and even more preferably 5% by weight or more.
  • the ratio is 1% by weight or more, suppression of cloudiness and durability in a high-humidity environment can be further improved, which is preferable.
  • the upper limit of the ratio of the nitrogen atom-containing monomer is preferably 30% by weight or less, more preferably 25% by weight, from the viewpoint of obtaining a pressure-sensitive adhesive layer having appropriate flexibility and obtaining a pressure-sensitive adhesive layer with excellent transparency. % or less, more preferably 20 wt % or less.
  • the monomer having a hydroxyl group in the molecule is a monomer having at least one hydroxyl group (hydroxyl group) in the molecule (in one molecule), and has an unsaturated double bond such as a (meth)acryloyl group or a vinyl group. Those having a functional group and a hydroxyl group are preferred.
  • the monomer containing a hydroxyl group in the molecule does not include the nitrogen atom-containing monomer. That is, in this specification, a monomer having both a nitrogen atom and a hydroxyl group in its molecule is included in the above-mentioned "nitrogen atom-containing monomer".
  • the "monomer having a hydroxyl group in the molecule” may be referred to as a "hydroxyl group-containing monomer".
  • a hydroxyl-containing monomer can be used individually or in combination of 2 or more types.
  • hydroxyl group-containing monomer examples include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, ( Hydroxyl group-containing (meth) 6-hydroxyhexyl acrylate, hydroxyoctyl (meth) acrylate, hydroxydecyl (meth) acrylate, hydroxyl lauryl (meth) acrylate, (4-hydroxymethylcyclohexyl) (meth) acrylate, etc. meth)acrylic acid ester; vinyl alcohol; and allyl alcohol.
  • the hydroxyl group-containing monomer is preferably a hydroxyl group-containing (meth)acrylic acid ester, more preferably 2-hydroxyethyl acrylate (HEA) or 4-hydroxybutyl acrylate (4HBA).
  • the proportion of the hydroxyl group-containing monomer in the total monomer components (100% by weight) constituting the acrylic polymer is particularly limited. However, it is preferably 0.5% by weight or more, more preferably 0.8% by weight or more, and still more preferably 1% by weight from the viewpoint of suppressing cloudiness and improving durability in a high-humidity environment. % or more. Further, the upper limit of the ratio of the hydroxyl group-containing monomer is preferably 30% by weight or less, more preferably 30% by weight or less, from the viewpoint of obtaining a pressure-sensitive adhesive layer having appropriate flexibility and obtaining a pressure-sensitive adhesive layer having excellent transparency. It is 25% by weight or less, more preferably 15% by weight or less.
  • the total ratio of the nitrogen atom-containing monomer and the hydroxyl group-containing monomer in the total monomer components (100% by weight) constituting the acrylic polymer is not particularly limited, but suppresses clouding in a high-humidity environment.
  • the content is preferably 1% by weight or more, more preferably 5% by weight or more, and still more preferably 10% by weight or more.
  • the upper limit of the total of the ratios is preferably 50% by weight or less, more preferably 40% by weight, from the viewpoint of obtaining a pressure-sensitive adhesive layer having moderate flexibility and obtaining a pressure-sensitive adhesive layer with excellent transparency. % or less, more preferably 35 wt % or less.
  • Copolymerizable monomers other than nitrogen atom-containing monomers and hydroxyl group-containing monomers further include alicyclic structure-containing monomers.
  • the alicyclic structure-containing monomer is not particularly limited as long as it has a polymerizable functional group having an unsaturated double bond such as a (meth)acryloyl group or a vinyl group and has an alicyclic structure.
  • an alkyl (meth)acrylate having a cycloalkyl group is included in the alicyclic structure-containing monomer.
  • an alicyclic structure containing monomer can be used individually or in combination of 2 or more types.
  • the alicyclic structure in the alicyclic structure-containing monomer is a cyclic hydrocarbon structure, preferably having 5 or more carbon atoms, more preferably 6 to 24 carbon atoms, further preferably 6 to 15 carbon atoms, and 6 to 10 are particularly preferred.
  • Examples of the alicyclic structure-containing monomer include cyclopropyl (meth)acrylate, cyclobutyl (meth)acrylate, cyclopentyl (meth)acrylate, cyclohexyl (meth)acrylate, cycloheptyl (meth)acrylate, cyclooctyl (meth)acrylate, isobornyl (meth)acrylate, dicyclopentanyl (meth)acrylate, HPMPA represented by the following formula (2), TMA-2 represented by the following formula (3), HCPA represented by the following formula (4), etc. of acrylic monomers.
  • the bonding position between the cyclohexyl ring connected by a line and the structural formula in parentheses there is no particular limitation on the bonding position between the cyclohexyl ring connected by a line and the structural formula in parentheses. Among these, isobornyl (meth)acrylate is preferred.
  • the proportion of the alicyclic structure-containing monomer in the total monomer components (100% by weight) constituting the acrylic polymer. is not particularly limited, but is preferably 10% by weight or more from the viewpoint of improving durability.
  • the upper limit of the ratio of the alicyclic structure-containing monomer is preferably 50% by weight or less, more preferably 40% by weight or less, and still more preferably 30% by weight or less, from the viewpoint of obtaining a pressure-sensitive adhesive layer having appropriate flexibility. is.
  • copolymerizable monomers include, for example, polyfunctional monomers.
  • the polyfunctional monomer include hexanediol di(meth)acrylate, butanediol di(meth)acrylate, (poly)ethylene glycol di(meth)acrylate, (poly)propylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, pentaerythritol di(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol hexa(meth)acrylate, trimethylolpropane tri(meth)acrylate, tetramethylolmethane tri(meth)acrylate, Allyl (meth)acrylate, vinyl (meth)acrylate, divinylbenzene, epoxy acrylate, polyester acrylate, urethane acrylate and the like.
  • a polyfunctional monomer can be used individually
  • the ratio of the polyfunctional monomer in the total monomer components (100% by weight) constituting the acrylic polymer is although not particularly limited, it is preferably 0.5% by weight or less (for example, more than 0% by weight and 0.5% by weight or less), more preferably 0.2% by weight or less (for example, more than 0% by weight and 0.5% by weight or less). 2% by weight or less).
  • examples of the copolymerizable monomer include (meth)acrylic acid alkoxyalkyl esters.
  • the (meth)acrylic acid alkoxyalkyl ester is not particularly limited, but examples thereof include 2-methoxyethyl (meth)acrylate, 2-ethoxyethyl (meth)acrylate, methoxytriethylene glycol (meth)acrylate, ( 3-methoxypropyl meth)acrylate, 3-ethoxypropyl (meth)acrylate, 4-methoxybutyl (meth)acrylate, 4-ethoxybutyl (meth)acrylate and the like.
  • the alkoxyalkyl (meth)acrylate is preferably an alkoxyalkyl acrylate, more preferably 2-methoxyethyl acrylate (MEA).
  • the (meth)acrylic acid alkoxyalkyl esters may be used alone or in combination of two or more.
  • the ratio of the (meth)acrylic acid alkyl ester and the (meth)acrylic acid alkoxyalkyl ester is although not particularly limited, the [former: latter] (weight ratio) is preferably more than 100:0 and 25:75 or less, more preferably more than 100:0 and 50:50 or less.
  • the copolymerizable monomers include, for example, carboxyl group-containing monomers, epoxy group-containing monomers, sulfonic acid group-containing monomers, phosphoric acid group-containing monomers, aromatic hydrocarbon group-containing (meth)acrylic acid esters, vinyl esters, aromatic vinyl compounds, olefins or dienes, vinyl ethers, vinyl chloride and the like.
  • carboxyl group-containing monomers include (meth)acrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, and isocrotonic acid.
  • the carboxyl group-containing monomers include maleic anhydride. and anhydride group-containing monomers such as itaconic anhydride.
  • Examples of the epoxy group-containing monomer include glycidyl (meth)acrylate and methylglycidyl (meth)acrylate.
  • Examples of the sulfonic acid group-containing monomer include sodium vinylsulfonate.
  • Examples of the (meth)acrylic ester having an aromatic hydrocarbon group include phenyl (meth)acrylate, phenoxyethyl (meth)acrylate, and benzyl (meth)acrylate.
  • Examples of the vinyl esters include vinyl acetate and vinyl propionate.
  • Examples of the aromatic vinyl compound include styrene and vinyltoluene.
  • Examples of the olefins or dienes include ethylene, propylene, butadiene, isoprene, and isobutylene.
  • Examples of the vinyl ethers include vinyl alkyl ethers.
  • the acrylic polymer constitutes a polymer in order to obtain an acrylic pressure-sensitive adhesive layer having excellent corrosion resistance.
  • the monomer component does not contain or substantially contains no acidic group-containing monomer, and particularly preferably does not contain or substantially contains no carboxyl group-containing monomer.
  • acidic group-containing monomers include carboxyl group-containing monomers, sulfonic acid group-containing monomers, phosphoric acid group-containing monomers, and the like.
  • the proportion of the acidic group-containing monomer in the total monomer components (100% by weight) constituting the acrylic polymer is 0.05% by weight or less (preferably 0.01% by weight or less). can be said to be substantially free of
  • the content of the base polymer (especially acrylic polymer) in the adhesive layer of the present invention is not particularly limited, but is 50% by weight or more (for example, 50% by weight) relative to 100% by weight of the total weight of the adhesive layer of the present invention. to 100% by weight), more preferably 80% by weight or more (eg, 80 to 100% by weight), and still more preferably 90% by weight or more (eg, 90 to 100% by weight).
  • the base polymer such as the acrylic polymer contained in the pressure-sensitive adhesive layer of the present invention is obtained by polymerizing monomer components.
  • the polymerization method is not particularly limited, but includes, for example, a solution polymerization method, an emulsion polymerization method, a bulk polymerization method, and a polymerization method using active energy ray irradiation (active energy ray polymerization method).
  • the solution polymerization method and the active energy ray polymerization method are preferable from the viewpoints of the transparency of the pressure-sensitive adhesive layer and the cost.
  • various general solvents may be used in the polymerization of the monomer components.
  • the solvent include esters such as ethyl acetate and n-butyl acetate; aromatic hydrocarbons such as toluene and benzene; aliphatic hydrocarbons such as n-hexane and n-heptane; cyclohexane, methylcyclohexane and the like. alicyclic hydrocarbons; and organic solvents such as ketones such as methyl ethyl ketone and methyl isobutyl ketone.
  • a solvent can be used individually or in combination of 2 or more types.
  • a polymerization initiator such as a thermal polymerization initiator or a photopolymerization initiator (photoinitiator) may be used depending on the type of polymerization reaction.
  • a polymerization initiator can be used individually or in combination of 2 or more types.
  • thermal polymerization initiator examples include, but are not limited to, azo polymerization initiators, peroxide polymerization initiators (eg, dibenzoyl peroxide, tert-butyl permaleate, etc.), redox polymerization initiators, and the like. is mentioned. Among them, the azo polymerization initiator disclosed in JP-A-2002-69411 is preferable.
  • azo polymerization initiator examples include 2,2'-azobisisobutyronitrile (hereinafter sometimes referred to as "AIBN”), 2,2'-azobis-2-methylbutyronitrile (hereinafter, “AMBN”), 2,2′-azobis(2-methylpropionate)dimethyl, 4,4′-azobis-4-cyanovaleric acid and the like.
  • AIBN 2,2'-azobisisobutyronitrile
  • AMBN 2,2'-azobis-2-methylbutyronitrile
  • 2,2′-azobis(2-methylpropionate)dimethyl 4,4′-azobis-4-cyanovaleric acid and the like.
  • a thermal polymerization initiator can be used individually or in combination of 2 or more types.
  • the amount of the azo polymerization initiator used is not particularly limited. , preferably 0.05 parts by weight or more, more preferably 0.1 parts by weight or more, and preferably 0.5 parts by weight or less, more preferably 0.3 parts by weight It is below.
  • the photopolymerization initiator is not particularly limited. Active oxime-based photopolymerization initiators, benzoin-based photopolymerization initiators, benzyl-based photopolymerization initiators, benzophenone-based photopolymerization initiators, ketal-based photopolymerization initiators, thioxanthone-based photopolymerization initiators, and the like are included. Other examples include acylphosphine oxide photopolymerization initiators and titanocene photopolymerization initiators.
  • benzoin ether photopolymerization initiator examples include benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 2,2-dimethoxy-1,2-diphenylethan-1-one, anisole methyl ether and the like.
  • acetophenone-based photopolymerization initiator examples include 2,2-diethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexylphenylketone, 4-phenoxydichloroacetophenone, 4-(t-butyl ) and dichloroacetophenone.
  • Examples of the ⁇ -ketol photopolymerization initiator include 2-methyl-2-hydroxypropiophenone, 1-[4-(2-hydroxyethyl)phenyl]-2-methylpropan-1-one, and the like. be done.
  • Examples of the aromatic sulfonyl chloride photopolymerization initiator include 2-naphthalenesulfonyl chloride.
  • Examples of the photoactive oxime photopolymerization initiator include 1-phenyl-1,1-propanedione-2-(O-ethoxycarbonyl)-oxime.
  • Examples of the benzoin-based photopolymerization initiator include benzoin.
  • Examples of the benzyl-based photopolymerization initiator include benzyl.
  • benzophenone-based photopolymerization initiator examples include benzophenone, benzoylbenzoic acid, 3,3'-dimethyl-4-methoxybenzophenone, polyvinylbenzophenone, ⁇ -hydroxycyclohexylphenyl ketone, and the like.
  • ketal-based photopolymerization initiator examples include benzyl dimethyl ketal.
  • Examples of the thioxanthone photopolymerization initiator include thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-diisopropylthioxanthone, and dodecylthioxanthone.
  • Examples of the acylphosphine oxide-based photopolymerization initiator include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide and bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide.
  • titanocene photopolymerization initiator examples include bis( ⁇ 5 -2,4-cyclopentadien-1-yl)-bis(2,6-difluoro-3-(1H-pyrrol-1-yl)-phenyl ) titanium and the like.
  • a photoinitiator can be used individually or in combination of 2 or more types.
  • the amount of the photopolymerization initiator used is not particularly limited. It is preferably 0.01 parts by weight or more, more preferably 0.1 parts by weight or more, and preferably 3 parts by weight or less, more preferably 1.5 parts by weight or less.
  • the present invention when the pressure-sensitive adhesive layer of the present invention is not particularly limited, but preferably contains a high refractive index organic material.
  • a high-refractive-index organic material a high-refractive-index pressure-sensitive adhesive layer can be obtained, interfacial reflection with an OLED display panel can be suppressed, and the acceptance rate of light from the OLED element can be improved. ,preferable.
  • the high refractive index organic material can be used alone or in combination of two or more.
  • a high refractive index organic material means an organic material with a high refractive index.
  • a high refractive index organic material in combination with an acrylic polymer, it is possible to improve the refractive index, adhesive properties (peel strength, flexibility, etc.) and/or optical properties (total light transmittance, haze value, etc.).
  • a suitably compatible pressure sensitive adhesive can be achieved.
  • the organic material used as the high refractive index organic material may be a polymer or a non-polymer. Moreover, it may or may not have a polymerizable functional group.
  • the refractive index of the high-refractive-index organic material is not limited to a specific range because it can be set within an appropriate range in relation to the refractive index of the acrylic polymer.
  • the high refractive index organic material has a refractive index greater than 1.50, greater than 1.55 or greater than 1.57, and higher than the refractive index of the acrylic polymer.
  • the refractive index of the high refractive index organic material is advantageously 1.58 or more, preferably 1.60 or more, and 1.63 or more. is more preferable, and may be 1.65 or more, 1.70 or more, or 1.75 or more.
  • a target refractive index can be achieved even by using a smaller amount of the high refractive index organic material. This is preferable from the viewpoint of suppressing deterioration of adhesive properties and optical properties.
  • the upper limit of the refractive index of the high-refractive-index organic material is not particularly limited. 2.500 or less, 2.000 or less, 1.950 or less, 1.900 or less, or 1.850 or less.
  • the high refractive index organic material can also be one that functions as a plasticizer that imparts flexibility to the pressure-sensitive adhesive layer.
  • the high refractive index organic material and the refractive index of the pressure-sensitive adhesive layer are measured using an Abbe refractometer under conditions of a measurement wavelength of 589 nm and a measurement temperature of 25°C. If the manufacturer or the like provides the nominal value of the refractive index at 25° C., the nominal value can be adopted.
  • ⁇ n A The difference between the refractive index n b of the high refractive index organic material and the refractive index na of the acrylic polymer, that is, n b ⁇ na (hereinafter also referred to as “ ⁇ n A ”) is set to be greater than 0. be.
  • ⁇ n A is, for example, 0.02 or more, 0.05 or more, 0.07 or more, 0.10 or more, 0.15 or more, 0.20 or more, or 0.25 or more good.
  • ⁇ n A may be, for example, 0.70 or less, 0.60 or less, 0.50 or less, or 0.40 or less, or 0.35 or less.
  • n B The difference between the refractive index n b of the high refractive index organic material and the refractive index n T of the adhesive layer containing the high refractive index organic material, that is, n b ⁇ n T (hereinafter also referred to as “ ⁇ n B ”) is , may be set to be greater than zero.
  • ⁇ n B is, for example, 0.02 or greater, 0.05 or greater, 0.07 or greater, 0.10 or greater, 0.15 or greater, or 0.20 or greater. Alternatively, it may be 0.25 or more.
  • ⁇ n B may be, for example, 0.70 or less, 0.60 or less, It may be 0.50 or less, 0.40 or less, or 0.35 or less.
  • the molecular weight of the organic material used as the high refractive index organic material is not particularly limited, and can be selected depending on the purpose. From the viewpoint of achieving a good balance between the effect of increasing the refractive index and other properties (e.g., flexibility suitable for adhesives, optical properties such as haze), the molecular weight of the high refractive index organic material is approximately less than 10,000. preferably less than 5,000, more preferably less than 3,000 (eg, less than 1,000), less than 800, less than 600, less than 500, or less than 400. It may be advantageous from the viewpoint of improving compatibility in the pressure-sensitive adhesive layer that the molecular weight of the high refractive index organic material is not too large.
  • the molecular weight of the high refractive index organic material may be, for example, 130 or more, or 150 or more. From the viewpoint of increasing the refractive index of the high refractive index organic material, the molecular weight of the high refractive index organic material is preferably 170 or more, more preferably 200 or more, may be 230 or more, or may be 250 or more. , 270 or more, 500 or more, 1000 or more, or 2000 or more. A polymer having a molecular weight of about 1000 to 10000 (for example, 1000 or more and less than 5000) can be used as the high refractive index organic material.
  • the molecular weight of the high refractive index organic material for non-polymers or polymers with a low degree of polymerization (for example, about 2- to 5-mers), the molecular weight calculated based on the chemical structure, or the matrix-assisted laser desorption ionization flight Measurements using time-based mass spectrometry (MALDI-TOF-MS) can be used. If the high refractive index organic material is a polymer with a higher degree of polymerization, the weight average molecular weight (Mw) based on GPC performed under appropriate conditions can be used. When the nominal value of the molecular weight is provided by the manufacturer or the like, the nominal value can be adopted.
  • Mw weight average molecular weight
  • organic materials that can be selected as high refractive index organic materials include organic compounds having aromatic rings, organic compounds having heterocyclic rings (which may be aromatic rings or non-aromatic heterocyclic rings), and the like. but not limited to these.
  • aromatic ring of the organic compound having an aromatic ring (hereinafter also referred to as "aromatic ring-containing compound") used as the high refractive index organic material is the same as the aromatic ring of the compound used as the aromatic ring-containing monomer. can be selected from
  • the aromatic ring may have one or more substituents on the ring-constituting atoms, or may have no substituents.
  • the substituent includes an alkyl group, an alkoxy group, an aryloxy group, a hydroxyl group, a halogen atom (fluorine atom, chlorine atom, bromine atom, etc.), a hydroxyalkyl group, a hydroxyalkyloxy group, and a glycidyloxy group. etc. are exemplified, but not limited to these.
  • the number of carbon atoms contained in the substituent is, for example, 1 to 10, preferably 1 to 6, preferably 1 to 4, more preferably 1 to 3.
  • the aromatic ring is an aromatic ring having no substituents on ring-constituting atoms or having one or more substituents selected from the group consisting of alkyl groups, alkoxy groups and halogen atoms (e.g., bromine atoms). obtain.
  • a group having an ethylenically unsaturated group which may be a substituent bonded to a ring-constituting atom
  • Non-limiting examples of aromatic ring-containing compounds that can be used as high refractive index organic materials include benzyl acrylate, m-phenoxybenzyl acrylate, 2-(o-phenylphenoxy)ethyl acrylate, phenoxyethyl acrylate, phenoxydiethylene glycol acrylate.
  • phenoxypolyethylene glycol acrylate 2-hydroxy-3-phenoxypropyl acrylate, monomers having a fluorene structure described above, monomers having a dinaphthothiophene structure, monomers having a dibenzothiophene structure, and other aromatic ring-containing monomers; 3-phenoxybenzyl alcohol , dinaphthothiophene and derivatives thereof (for example, a structure in which one or more substituents selected from a hydroxy group, a methanol group, a diethanol group, a glycidyl group, etc. are bonded to the dinaphthothiophene ring.
  • aromatic ring-containing compounds having no ethylenically unsaturated groups such as compounds of ();
  • the aromatic ring-containing compound is an oligomer containing such an aromatic ring-containing monomer as a monomer unit (preferably an oligomer having a molecular weight of about 5000 or less, more preferably about 1000 or less. For example, a low polymer of about 2 to 5 mers ).
  • the oligomers are, for example: homopolymers of aromatic ring-containing monomers; copolymers of one or more aromatic ring-containing monomers; copolymers of one or more aromatic ring-containing monomers with other monomers. coalescence; and the like.
  • the other monomer one or more monomers having no aromatic ring may be used.
  • an organic compound having two or more aromatic rings in one molecule (hereinafter referred to as "a compound containing multiple aromatic rings") is used because it is easy to obtain a high refractive index increasing effect. Also called.) can be preferably adopted.
  • the compound containing multiple aromatic rings may or may not have a polymerizable functional group such as an ethylenically unsaturated group.
  • the compound containing multiple aromatic rings may be a polymer or a non-polymer.
  • the polymer is an oligomer (preferably an oligomer having a molecular weight of about 5000 or less, more preferably about 1000 or less; for example, a low polymer of about 2 to 5 mers) containing multiple aromatic ring-containing monomers as monomer units.
  • the oligomer is, for example: a homopolymer of a monomer containing multiple aromatic rings; a copolymer of one or more monomers containing multiple aromatic rings; a monomer containing one or more than two aromatic rings and another monomer. a copolymer of;
  • the other monomer may be an aromatic ring-containing monomer that does not correspond to a monomer containing multiple aromatic rings, a monomer having no aromatic ring, or a combination thereof.
  • Non-limiting examples of compounds containing multiple aromatic rings include compounds having a structure in which two or more non-fused aromatic rings are linked via a linking group, two or more non-fused aromatic rings directly (i.e., other atoms compounds having a chemically bonded structure, compounds having a condensed aromatic ring structure, compounds having a fluorene structure, compounds having a dinaphthothiophene structure, compounds having a dibenzothiophene structure, and the like.
  • the compounds containing multiple aromatic rings may be used singly or in combination of two or more.
  • the compound having a fluorene structure include the above-described monomers having a fluorene structure, oligomers that are homopolymers or copolymers of such monomers, and 9,9-bis(4-hydroxyphenyl)fluorene ( refractive index: 1.68), 9,9-bis(4-aminophenyl)fluorene (refractive index: 1.73), 9,9-bis(4-hydroxy-3-methylphenyl)fluorene (refractive index: 1 .68), 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene (refractive index: 1.65) and its derivatives.
  • the compound having a dinaphthothiophene structure include the above-described monomers having a dinaphthothiophene structure, oligomers that are homopolymers or copolymers of such monomers, and dinaphthothiophene (refractive index: 1.0).
  • hydroxyalkyldinaphthothiophenes such as 6-hydroxymethyldinaphthothiophene (refractive index: 1.766); dihydroxydinaphthothiophenes such as 2,12-dihydroxydinaphthothiophene (refractive index: 1.750); , 12-dihydroxyethyloxydinaphthothiophene (refractive index: 1.677); diglycidyloxydinaphthothiophene (refractive index: 1.723); naphthothiophene; dinaphthothiophene having two or more ethylenically unsaturated groups such as 2,12-diallyloxydinaphthothiophene (abbreviation: 2,12-DAODNT, refractive index 1.729); Derivatives thereof may be mentioned.
  • 2,12-DAODNT refractive index 1.729
  • the compound having a dibenzothiophene structure include the above-described monomers having a dibenzothiophene structure, oligomers that are homopolymers or copolymers of such monomers, dibenzothiophene (refractive index: 1.607), 4-dimethyldibenzothiophene (refractive index: 1.617), 4,6-dimethyldibenzothiophene (refractive index: 1.617) and the like.
  • Examples of organic compounds having a heterocyclic ring that can be options for high refractive index organic materials include thioepoxy compounds and compounds having a triazine ring.
  • Examples of thioepoxy compounds include bis(2,3-epithiopropyl)disulfide and its polymer (refractive index: 1.74) described in Japanese Patent No. 3712653.
  • Examples of compounds having a triazine ring include compounds having at least one (eg, 3 to 40, preferably 5 to 20) triazine rings in one molecule.
  • the triazine ring has aromaticity
  • the compound having a triazine ring is also included in the concept of the compound containing the aromatic ring
  • the compound having multiple triazine rings is also included in the concept of the compound containing multiple aromatic rings. be done.
  • a compound having no ethylenically unsaturated group can be preferably employed as the high refractive index organic material.
  • deterioration of the pressure-sensitive adhesive composition due to heat or light (decrease in leveling properties due to progression of gelation or increase in viscosity) can be suppressed, and storage stability can be enhanced.
  • Employing a high refractive index organic material that does not have an ethylenically unsaturated group means that an adhesive film having an adhesive layer containing the high refractive index organic material, a laminate including the adhesive film, or the like has ethylenically unsaturated It is also preferable from the viewpoint of suppressing dimensional change and deformation (warpage, waviness, etc.), optical distortion, etc. caused by reaction of groups.
  • the oligomer can be obtained by polymerizing the corresponding monomer component by a known method.
  • polymerization can be carried out by appropriately adding a polymerization initiator, a chain transfer agent, an emulsifier, etc. used for radical polymerization to the monomer component.
  • the polymerization initiator, chain transfer agent, emulsifier and the like used in the radical polymerization are not particularly limited and can be appropriately selected and used.
  • the weight-average molecular weight of the oligomer can be controlled by adjusting the amount of the polymerization initiator and the chain transfer agent used and the reaction conditions, and the amount used is appropriately adjusted according to these types.
  • chain transfer agent examples include lauryl mercaptan, glycidyl mercaptan, mercaptoacetic acid, 2-mercaptoethanol, ⁇ -thioglycerol, thioglycolic acid, 2-ethylhexyl thioglycolate, 2,3-dimercapto-1-propanol, and the like. be done.
  • a chain transfer agent may be used individually by 1 type, and may be used in mixture of 2 or more types. The amount of the chain transfer agent used can be set according to the composition of the monomer components used in the synthesis of the oligomer, the type of the chain transfer agent, etc., so as to obtain an oligomer having a desired weight-average molecular weight.
  • the amount of the chain transfer agent used for 100 parts by weight of the total amount of monomers used in the synthesis of the oligomer is suitably about 15 parts by weight or less, may be 10 parts by weight or less, or may be 5 parts by weight. It may be less than a degree.
  • the lower limit of the amount of the chain transfer agent to be used with respect to 100 parts by weight of the total amount of monomers used for the synthesis of the oligomer is not particularly limited. It may be 5 parts by weight or more, or 1 part by weight or more.
  • the amount of the high-refractive-index organic material used relative to 100 parts by weight of the acrylic polymer (the total amount thereof when multiple types of compounds are used) is not particularly limited as long as it exceeds 0 parts by weight, and is set according to the purpose. be able to.
  • the amount of the high refractive index organic material used relative to 100 parts by weight of the acrylic polymer can be, for example, 80 parts by weight or less, achieving both a high refractive index of the adhesive and suppression of deterioration in adhesive properties and optical properties in a well-balanced manner. From the point of view, it is advantageous to use 60 parts by weight or less, preferably 45 parts by weight or less.
  • the amount of the high refractive index organic material used relative to 100 parts by weight of the acrylic polymer may be, for example, 30 parts by weight or less, 20 parts by weight or less, or 15 parts by weight or less. or less than 10 parts by weight.
  • the amount of the high refractive index organic material used relative to 100 parts by weight of the acrylic polymer can be, for example, 1 part by weight or more, and is preferably 3 parts by weight or more. It is preferably 5 parts by weight or more, may be 7 parts by weight or more, may be 10 parts by weight or more, may be 15 parts by weight or more, or may be 20 parts by weight or more.
  • the adhesive layer of the present invention is not particularly limited, it preferably contains an ultraviolet absorber (UVA).
  • UVA ultraviolet absorber
  • the pressure-sensitive adhesive layer of the present invention contains an ultraviolet absorber, it is possible to suppress deterioration of the OLED element due to ultraviolet rays contained in external light, and to obtain an OLED display device having excellent weather resistance without using a polarizing plate.
  • deterioration of the high refractive index component due to ultraviolet rays can be suppressed, and a high lighting efficiency can be maintained.
  • an ultraviolet absorber can be used individually or in combination of 2 or more types.
  • ultraviolet absorber examples include, but are not limited to, benzotriazole-based ultraviolet absorbers, hydroxyphenyltriazine-based ultraviolet absorbers, benzophenone-based ultraviolet absorbers, salicylic acid ester-based ultraviolet absorbers, cyanoacrylate-based ultraviolet absorbers, oxy Examples include benzophenone-based ultraviolet absorbers.
  • Benzotriazole-based UV absorbers include, for example, 2-(2-hydroxy-5-tert-butylphenyl)-2H-benzotriazole (trade name "TINUVIN PS", manufactured by BASF), benzene Ester compound of propanoic acid and 3-(2H-benzotriazol-2-yl)-5-(1,1-dimethylethyl)-4-hydroxy (C7-9 side chain and linear alkyl) (trade name "TINUVIN 384 -2", manufactured by BASF), octyl 3-[3-tert-butyl-4-hydroxy-5-(5-chloro-2H-benzotriazol-2-yl)phenyl]propionate and 2-ethylhexyl-3-[ A mixture of 3-tert-butyl-4-hydroxy-5-(5-chloro-2H-benzotriazol-2yl)phenyl]propionate (trade name "TINUVIN 109", manufactured by BASF), 2-(2-hydroxy-5-tert-buty
  • Hydroxyphenyltriazine-based UV absorbers include, for example, 2-(4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin-2-yl)-5 - Reaction product of hydroxyphenyl and [(C10-C16 (mainly C12-C13) alkyloxy) methyl] oxirane (trade name “TINUVIN 400” manufactured by BASF), 2-[4,6-bis(2, 4-dimethylphenyl)-1,3,5-triazin-2-yl]-5-[3-(dodecyloxy)-2-hydroxypropoxy]phenol), 2-(2,4-dihydroxyphenyl)-4, Reaction product of 6-bis-(2,4-dimethylphenyl)-1,3,5-triazine and (2-ethylhexyl)-glycidate (trade name “TINUVIN 405”, manufactured by BASF), 2,4 -bis(2-hydroxy-4-butoxyphenyl
  • Benzophenone UV absorbers (benzophenone compounds) and oxybenzophenone UV absorbers (oxybenzophenone compounds) include, for example, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4- Methoxybenzophenone-5-sulfonic acid (anhydrous and trihydrate), 2-hydroxy-4-octyloxybenzophenone, 4-dodecyloxy-2-hydroxybenzophenone, 4-benzyloxy-2-hydroxybenzophenone, 2,2'- Dihydroxy-4-methoxybenzophenone (trade name "KEMISORB 111", manufactured by Chemipro Kasei Co., Ltd.), 2,2',4,4'-tetrahydroxybenzophenone (trade name "SEESORB 106", manufactured by Sipro Kasei Co., Ltd.) , 2,2′-dihydroxy-4,4′-dimethoxybenzophenone and the like.
  • Salicylic acid ester-based ultraviolet absorbers include, for example, phenyl 2-acryloyloxybenzoate, phenyl 2-acryloyloxy-3-methylbenzoate, phenyl 2-acryloyloxy-4-methylbenzoate, phenyl 2- acryloyloxy-5-methylbenzoate, phenyl 2-acryloyloxy-3-methoxybenzoate, phenyl 2-hydroxybenzoate, phenyl 2-hydroxy-3-methylbenzoate, phenyl 2-hydroxy-4-methylbenzoate, phenyl 2-hydroxy- 5-methylbenzoate, phenyl 2-hydroxy-3-methoxybenzoate, 2,4-di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate (trade name "TINUVIN 120", manufactured by BASF Corporation ) and the like.
  • Cyanoacrylate-based UV absorbers include, for example, alkyl 2-cyanoacrylates, cycloalkyl 2-cyanoacrylates, alkoxyalkyl 2-cyanoacrylates, alkenyl 2-cyanoacrylates, alkynyl 2-cyanoacrylates, and the like. mentioned.
  • a benzotriazole-based UV-absorbing agent has high UV-absorbing properties, excellent optical properties, ease of obtaining a pressure-sensitive adhesive layer having high transparency, and excellent photostability.
  • At least one UV absorber selected from the group consisting of benzophenone-based UV absorbers, benzophenone-based UV absorbers, and hydroxyphenyltriazine-based UV absorbers is preferred, and benzotriazole-based UV absorbers and benzophenone-based UV absorbers are more preferred.
  • a benzotriazole-based ultraviolet absorber in which a phenyl group having a group having 6 or more carbon atoms and a hydroxyl group as a substituent is bonded to a nitrogen atom constituting a benzotriazole ring is preferred.
  • a liquid ultraviolet absorber or two or more kinds of ultraviolet absorbers it is preferable to use.
  • the ultraviolet absorber preferably has an absorbance A of 0.5 or less, which is determined below.
  • Absorbance A Absorbance measured by applying light with a wavelength of 400 nm to a 0.08% toluene solution of the ultraviolet absorber
  • the content of the ultraviolet absorber in the pressure-sensitive adhesive layer (especially acrylic pressure-sensitive adhesive layer) of the present invention is not particularly limited, but is included in external light. From the viewpoint of suppressing deterioration of the OLED element due to ultraviolet rays and obtaining an OLED display device with excellent weather resistance without using a polarizing plate, it is preferably 0.01 part by weight or more with respect to 100 parts by weight of the acrylic polymer. , more preferably 0.05 parts by weight or more, and still more preferably 0.1 parts by weight or more.
  • the upper limit of the content of the ultraviolet absorber is to suppress the occurrence of yellowing of the pressure-sensitive adhesive due to the addition of the ultraviolet absorber, and to obtain excellent optical properties, high transparency, and excellent appearance properties. More preferably, it is 20 parts by weight or less, more preferably 10 parts by weight or less, and even more preferably 8 parts by weight or less with respect to 100 parts by weight of the acrylic polymer.
  • a dye compound whose absorption spectrum has a maximum absorption wavelength in the wavelength region of 380 to 430 nm can be contained.
  • the dye compound can also suppress deterioration of the OLED element and deterioration of the high refractive index component due to ultraviolet light.
  • the dye compounds may be used singly or in combination of two or more.
  • the content of the colorant compound as a whole is preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of the base polymer (eg, acrylic polymer). It is preferably 1 to 10 parts by weight, preferably 0.1 to 5 parts by weight, more preferably 0.5 to 3 parts by weight.
  • Either one of the ultraviolet absorber and the dye compound can be used, but it is preferable to use the ultraviolet absorber and the dye compound together.
  • the ultraviolet absorber for example, although it can absorb light with a wavelength of 380 nm, the light in the wavelength region (380 nm to 430 nm) on the shorter wavelength side than the light emitting region (longer wavelength side than 430 nm) of the OLED element is sufficient. is not absorbed by the transmitted light, and deterioration may occur due to the transmitted light.
  • the dye compound can suppress the transmission of light with a wavelength (380 nm to 430 nm) on the shorter wavelength side than the light emitting region (longer wavelength side than 430 nm) of the OLED element, and the ultraviolet absorber and the dye compound are used in combination. As a result, a sufficient visible light transmittance can be ensured in the light emitting region of the OLED element.
  • the ultraviolet absorber is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the base polymer (eg, acrylic polymer).
  • the dye compound is preferably about 0.1 to 10 parts by weight, more preferably about 0.1 to 5 parts by weight, with respect to 100 parts by weight of the base polymer (eg, acrylic polymer). It is more preferably 0.5 to 3 parts by weight.
  • the base polymer eg, acrylic polymer
  • the dye compound is not particularly limited as long as it is a compound whose absorption spectrum has a maximum absorption wavelength in the wavelength range of 380 to 430 nm.
  • the maximum absorption wavelength means the absorption maximum wavelength showing the maximum absorbance among a plurality of absorption maxima in the spectral absorption spectrum in the wavelength region of 300 to 460 nm.
  • the maximum absorption wavelength of the absorption spectrum of the dye compound is more preferably in the wavelength region of 380-420 nm.
  • the dye compound is not particularly limited as long as it has the wavelength characteristics described above, but a material that does not impair the display properties of the OLED element and does not have fluorescence or phosphorescence (photoluminescence) is preferable.
  • organic dye compounds examples include azomethine compounds, indole compounds, cinnamic acid compounds, pyrimidine compounds, porphyrin compounds, and cyanine compounds.
  • organic dye compound commercially available ones can be suitably used.
  • indole compound BONASORB UA3911 (trade name, maximum absorption wavelength of absorption spectrum: 398 nm, Orient Chemical Kogyo Co., Ltd.)
  • SOM-5-0106 trade name, maximum absorption wavelength of absorption spectrum: 416 nm, manufactured by Orient Chemical Industry Co., Ltd.
  • porphyrin compound FDB-001 (trade name, maximum absorption wavelength of absorption spectrum: 420 nm, manufactured by Yamada Chemical Industry Co., Ltd.)
  • a merocyanine compound trade name: FDB-009, maximum absorption wavelength of absorption spectrum: 394 nm
  • polymethine compounds trade name: DAA-247, maximum absorption wavelength of absorption spectrum: 389 nm, manufactured by Yamada Chemical Industry Co.
  • the adhesive layer of the present invention may contain a light stabilizer.
  • a light stabilizer When the pressure-sensitive adhesive layer of the present invention contains a light stabilizer, it is particularly preferable to contain the light stabilizer together with the ultraviolet absorber.
  • the light stabilizer can scavenge radicals generated by photo-oxidation, and thus can improve the resistance of the pressure-sensitive adhesive layer to light (especially ultraviolet rays).
  • a light stabilizer can be used individually or in combination of 2 or more types.
  • the light stabilizer examples include, but are not limited to, phenol light stabilizers (phenol compounds), phosphorus light stabilizers (phosphorus compounds), thioether light stabilizers (thioether compounds), amine light stabilizers, Stabilizers (amine compounds) (especially hindered amine stabilizers (hindered amine compounds)) and the like.
  • phenolic light stabilizer examples include 2,6-di-tertiary-butyl-4-methylphenol, 4-hydroxymethyl-2,6-di-tertiary-butylphenol, 2, 6-di-tertiary-butyl-4-ethylphenol, butylated hydroxyanisole, n-octadecyl 3-(4-hydroxy-3,5-di-tertiary-butylphenyl) propionate, distearyl (4-hydroxy- 3-methyl-5-tertiary-butyl)benzylmalonate, tocopherol, 2,2′-methylenebis(4-methyl-6-tertiary-butylphenol), 2,2′-methylenebis(4-ethyl-6-tertiary tertiary butylphenol), 4,4'-methylenebis (2,6-di-tertiary butylphenol), 4,4'-butylidenebis (6-tertiary butyl-m-cre
  • Phosphorus-based light stabilizers include, for example, trisnonylphenyl phosphite, tris(2,4-di-tertiary-butylphenyl)phosphite, tris[2-tertiary-butyl-4-( 3-tertiary-butyl-4-hydroxy-5-methylphenylthio)-5-methylphenyl]phosphite, tridecylphosphite, octyldiphenylphosphite, di(decyl)monophenylphosphite, di(tridecyl)penta Erythritol diphosphite, distearyl pentaerythritol diphosphite, di(nonylphenyl) pentaerythritol diphosphite, bis(2,4-di-tert-butylphenyl) pentaerythritol dip
  • Thioether-based light stabilizers include, for example, dilauryl thiodipropionate, dimyristyl, dialkylthiodipropionate compounds such as distearyl; polyol ⁇ such as tetrakis[methylene(3-dodecylthio)propionate]methane; -alkylmercaptopropionate ester compounds, and the like.
  • amine-based light stabilizers examples include polymers of dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol (trade name "TINUVIN 622", BASF Co.), a polymer of dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol and N,N',N'',N''-tetrakis-(4, 6-bis-(butyl-(N-methyl-2,2,6,6-tetramethylpiperidin-4-yl)amino)-triazin-2-yl)-4,7-diazadecane-1,10-diamine and 1:1 reaction product (trade name "TINUVIN 119", manufactured by BASF), dibutylamine 1,3-triazine N,N'-bis(2,2,6,6-tetramethyl-4- Polycondensate of piperidyl-1,6-hexamethylenediamine and N-(2,2,6,6-tetramethyl-4-pipe
  • the content of the light stabilizer in the pressure-sensitive adhesive layer of the present invention is not particularly limited, but resistance to light is improved. From the viewpoint of facilitating expression, it is preferably 0.1 parts by weight or more, more preferably 0.2 parts by weight or more, relative to 100 parts by weight of the acrylic polymer. In addition, the upper limit of the content is 5 parts by weight or less with respect to 100 parts by weight of the acrylic polymer, from the viewpoints that coloring due to the light stabilizer itself is unlikely to occur, high transparency can be easily obtained, and optical properties. is preferably 3 parts by weight or less.
  • a cross-linking agent may be used to form the pressure-sensitive adhesive layer of the present invention.
  • the gel fraction can be controlled by cross-linking the acrylic polymer in the acrylic pressure-sensitive adhesive layer.
  • a crosslinking agent can be used individually or in combination of 2 or more types.
  • the cross-linking agent is not particularly limited. cross-linking agents, metal salt-based cross-linking agents, carbodiimide-based cross-linking agents, oxazoline-based cross-linking agents, aziridine-based cross-linking agents, and amine-based cross-linking agents. Among them, isocyanate-based cross-linking agents and epoxy-based cross-linking agents are preferable, and isocyanate-based cross-linking agents are more preferable.
  • Examples of the isocyanate-based cross-linking agent include lower aliphatic polyisocyanates such as 1,2-ethylene diisocyanate, 1,4-butylene diisocyanate, and 1,6-hexamethylene diisocyanate; cyclopentylene diisocyanate; , cyclohexylene diisocyanate, isophorone diisocyanate, hydrogenated tolylene diisocyanate, hydrogenated xylene diisocyanate and other alicyclic polyisocyanates; 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate and aromatic polyisocyanates such as xylylene diisocyanate.
  • lower aliphatic polyisocyanates such as 1,2-ethylene diisocyanate, 1,4-butylene diisocyanate, and 1,6-hexamethylene diisocyanate
  • cyclopentylene diisocyanate
  • isocyanate-based cross-linking agent examples include trimethylolpropane/tolylene diisocyanate adduct (trade name “Coronate L”, manufactured by Tosoh Corporation), trimethylolpropane/hexamethylene diisocyanate adduct (trade name “Coronate HL”, manufactured by Tosoh Corporation), trimethylolpropane/xylylene diisocyanate adduct (trade name "Takenate D-110N", manufactured by Mitsui Chemicals, Inc.).
  • epoxy-based cross-linking agent examples include N,N,N',N'-tetraglycidyl-m-xylenediamine, diglycidylaniline, 1,3-bis(N,N-diglycidyl aminomethyl)cyclohexane, 1,6-hexanediol diglycidyl ether, neopentyl glycol diglycidyl ether, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, sorbitol polyglycidyl ether , glycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, polyglycerol polyglycidyl ether, sorbitan polyglycidyl ether, trimethylolpropane polyglycidyl ether,
  • the amount of the cross-linking agent used is not particularly limited. 001 parts by weight or more, more preferably 0.01 parts by weight or more.
  • the upper limit of the amount used is preferably 10 parts by weight or less with respect to 100 parts by weight of the base polymer, more preferably 10 parts by weight or less, from the viewpoint of obtaining appropriate flexibility in the pressure-sensitive adhesive layer and improving the adhesive strength. is 5 parts by weight or less.
  • the pressure-sensitive adhesive layer (especially acrylic pressure-sensitive adhesive layer) of the present invention contains a silane coupling agent in order to improve adhesion reliability under humidified conditions, particularly to improve adhesion reliability to glass.
  • a silane coupling agent can be used individually or in combination of 2 or more types.
  • the pressure-sensitive adhesive layer contains a silane coupling agent, the adhesiveness under humidified conditions, particularly the adhesiveness to glass, can be improved.
  • silane coupling agent examples include, but are not limited to, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, N-phenyl-aminopropyltrimethoxysilane, methoxysilane and the like.
  • silane coupling agent for example, commercially available products such as the trade name "KBM-403" (manufactured by Shin-Etsu Chemical Co., Ltd.) can also be mentioned. Among them, ⁇ -glycidoxypropyltrimethoxysilane is preferable as the silane coupling agent.
  • the content of the silane coupling agent in the pressure-sensitive adhesive layer (particularly, acrylic pressure-sensitive adhesive layer) of the present invention is not particularly limited, but the It is preferably 0.01 parts by weight or more, more preferably 0.02 parts by weight or more, relative to 100 parts by weight of the base polymer.
  • the upper limit of the content of the silane coupling agent is preferably 10 parts by weight or less, more preferably 1 part by weight or less, relative to 100 parts by weight of the base polymer.
  • the pressure-sensitive adhesive layer of the present invention may optionally further contain a cross-linking accelerator, a tackifying resin (rosin derivative, polyterpene resin, petroleum resin, oil-soluble phenol, etc.), an antioxidant, a filler, a coloring agent (pigment or Dyes, etc.), antioxidants, chain transfer agents, plasticizers, softeners, surfactants, antistatic agents, and the like may be contained within the range that does not impair the effects of the present invention.
  • a cross-linking accelerator e.g., a tackifying resin (rosin derivative, polyterpene resin, petroleum resin, oil-soluble phenol, etc.), an antioxidant, a filler, a coloring agent (pigment or Dyes, etc.), antioxidants, chain transfer agents, plasticizers, softeners, surfactants, antistatic agents, and the like may be contained within the range that does not impair the effects of the present invention.
  • a cross-linking accelerator e.g., rosin derivative, polyterpene
  • the method for producing the pressure-sensitive adhesive layer (particularly, the acrylic pressure-sensitive adhesive layer) of the present invention is not particularly limited. and drying and curing the resulting adhesive composition layer, or coating (coating) the adhesive composition on a substrate (including a resin layer and a glass layer described later) or a release liner (coating process) and irradiating the obtained pressure-sensitive adhesive composition layer with an active energy ray to cure it. Moreover, you may heat-dry further as needed.
  • the active energy rays include ionizing radiation such as ⁇ -rays, ⁇ -rays, ⁇ -rays, neutron beams and electron beams, and ultraviolet rays, with ultraviolet rays being particularly preferred.
  • the irradiation energy of the active energy ray, the irradiation time, the irradiation method, etc. are not particularly limited.
  • the adhesive composition can be produced by a known or commonly used method.
  • a solvent-based acrylic pressure-sensitive adhesive composition can be prepared by mixing an additive (for example, an ultraviolet absorber, etc.) with a solution containing the acrylic polymer, if necessary.
  • an active energy ray-curable acrylic pressure-sensitive adhesive composition can be prepared by mixing an additive (for example, an ultraviolet absorber, etc.) with the acrylic monomer mixture or its partial polymer, if necessary. can be made.
  • a known coating method may be used for applying (coating) the pressure-sensitive adhesive composition.
  • coaters such as gravure roll coaters, reverse roll coaters, kiss roll coaters, dip roll coaters, bar coaters, knife coaters, spray coaters, comma coaters and direct coaters may be used.
  • the active energy ray-curable adhesive composition when the adhesive layer is formed from an active energy ray-curable adhesive composition, the active energy ray-curable adhesive composition preferably contains a photopolymerization initiator.
  • the active energy ray-curable pressure-sensitive adhesive composition contains an ultraviolet absorber, it preferably contains at least a photopolymerization initiator having light absorption properties in a wide wavelength range as a photopolymerization initiator.
  • it preferably contains at least a photopolymerization initiator that absorbs not only ultraviolet light but also visible light.
  • the adhesive composition contains a photopolymerization initiator that has light absorption characteristics in a wide wavelength range, high photocurability will be achieved in the adhesive composition. This is because it becomes easier to obtain.
  • An adhesive layer is a layer that can bind substances by being interposed between adherends. It means something that does not have
  • adhesive layer of the present invention Various adhesives can be applied as the adhesive for forming the adhesive layer constituting the optical element of the present invention (hereinafter sometimes referred to as the "adhesive layer of the present invention").
  • polyvinyl alcohol-based adhesives gelatin-based adhesives, vinyl-based latex-based adhesives, water-based polyesters, and the like. These adhesives are usually used as adhesives consisting of an aqueous solution (water-based adhesives) and contain 0.5 to 60% by weight of solids.
  • polyvinyl alcohol-based adhesives are preferable, and acetoacetyl group-containing polyvinyl alcohol-based adhesives are more preferable.
  • the water-based adhesive may contain a cross-linking agent.
  • a cross-linking agent a compound having at least two functional groups in one molecule that are reactive with components such as polymers constituting the adhesive is usually used. Examples include alkylenediamines; isocyanates; epoxies; Aldehydes: amino-formaldehydes such as methylol urea and methylol melamine.
  • the amount of the cross-linking agent compounded in the adhesive is usually about 10 to 60 parts by weight per 100 parts by weight of components such as polymers constituting the adhesive.
  • examples of the adhesive include active energy ray-curable adhesives such as ultraviolet-curable adhesives and electron beam-curable adhesives.
  • active energy ray-curable adhesive include (meth)acrylate adhesives.
  • examples of the curable component in the (meth)acrylate adhesive include a compound having a (meth)acryloyl group and a compound having a vinyl group.
  • examples of compounds having a (meth)acryloyl group include alkyl (meth)acrylates having 1 to 20 carbon atoms, chain alkyl (meth)acrylates, alicyclic alkyl (meth)acrylates, and polycyclic alkyl (meth)acrylates.
  • (Meth)acrylate adhesives include hydroxyethyl (meth)acrylamide, N-methylol (meth)acrylamide, N-methoxymethyl (meth)acrylamide, N-ethoxymethyl (meth)acrylamide, (meth)acrylamide, (meth) Nitrogen-containing monomers such as acryloylmorpholine may also be included.
  • (Meth)acrylate-based adhesives include tripropylene glycol diacrylate, 1,9-nonanediol diacrylate, tricyclodecanedimethanol diacrylate, cyclic trimethylolpropane formal acrylate, dioxane glycol diacrylate, and EO as crosslinking components.
  • Polyfunctional monomers such as modified diglycerin tetraacrylate may be included.
  • a compound having an epoxy group or an oxetanyl group can also be used as a cationic polymerization-curable adhesive.
  • the compound having an epoxy group is not particularly limited as long as it has at least two epoxy groups in the molecule, and various commonly known curable epoxy compounds can be used.
  • the adhesive may contain appropriate additives as necessary.
  • the additives include silane coupling agents, coupling agents such as titanium coupling agents, adhesion promoters such as ethylene oxide, ultraviolet absorbers, deterioration inhibitors, dyes, processing aids, ion trapping agents, and antioxidants. agents, tackifiers, fillers, plasticizers, leveling agents, foaming inhibitors, antistatic agents, heat stabilizers, hydrolysis stabilizers, and the like.
  • the adhesive may be applied to either one of the two adherends to be adhered, or to both.
  • a drying step can be performed to form the adhesive layer of the present invention consisting of a coated dry layer. After the drying step, ultraviolet rays or electron beams can be applied, if necessary.
  • the thickness of the adhesive layer of the present invention is not particularly limited. When using adhesives, electron beam curing adhesives, etc., the thickness is preferably about 0.1 to 100 ⁇ m, more preferably about 0.5 to 10 ⁇ m.
  • the indentation elastic modulus of the adhesive layer of the present invention is Ea
  • the indentation elastic modulus Ea is preferably 1 GPa or more, more preferably 2 GPa or more, and still more preferably 3 GPa or more.
  • impact resistance is further improved.
  • the indentation elastic modulus Ea is, for example, 50 GPa or less, and may be 30 GPa or less, or 10 GPa or less.
  • the indentation modulus Ea can be measured based on the nanoindenter method.
  • the above nanoindenter method is measured under the conditions of a spherical indenter (curvature radius of 10 ⁇ m), a temperature of 25°C, and an indentation depth of 100 nm.
  • the resin layer constituting the optical element of the present invention (hereinafter sometimes referred to as the "resin layer of the present invention") is not particularly limited, but examples thereof include plastic films.
  • Materials for the plastic film include polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); ), trade name “Zeonor” (manufactured by Nippon Zeon Co., Ltd.), etc.), acrylic resins such as polymethyl methacrylate (PMMA), polycarbonate (PC), triacetyl cellulose (TAC), polysulfone, polyarylate, polyether ether Plastic materials such as ketone (PEEK), polyimide (PI), transparent polyimide (CPI), polyvinyl chloride, polyvinyl acetate, polyethylene, polypropylene, ethylene-propylene copolymer, etc., have excellent dimensional stability and are resistant to shrinkage.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PET Polyethylene terephthalate
  • polyester resins such as polyethylene naphthalate (PEN), cyclic olefin polymers (COP), polycarbonate (PC), polyether ether ketone (PEEK), and transparent polyimide (CPI) are preferred, and polyethylene terephthalate is preferred.
  • PET polyethylene naphthalate
  • COP cyclic olefin polymers
  • PC polycarbonate
  • PEEK polyether ether ketone
  • CPI transparent polyimide
  • PET polyethylene terephthalate
  • CPI transparent polyimide
  • these plastic materials can be used individually or in combination of 2 or more types.
  • the "resin layer” does not include a release liner that is peeled off when the optical element of the present invention is used (attached).
  • the resin layer of the present invention is preferably transparent.
  • the total light transmittance (according to JIS K 7361-1) of the resin layer of the present invention in the visible light wavelength region is not particularly limited, but is preferably 85% or more, more preferably 88% or more.
  • the haze (according to JIS K 7136) of the resin layer of the present invention is not particularly limited, but is preferably 1.5% or less, more preferably 1.0% or less.
  • the difference in refractive index between the pressure-sensitive adhesive (the pressure-sensitive adhesive layer excluding the light-scattering fine particles in the pressure-sensitive adhesive layer) and the resin layer is Although it is not particularly limited, it is preferably 2 or less, preferably 1 or less, more preferably 0.5 or less, and particularly preferably 0.5 or less, from the viewpoint of improving the interface antireflection property and improving the lighting rate of light from the OLED element. 3 or less.
  • the thickness of the resin layer of the present invention is not particularly limited, it is preferably 10 to 80 ⁇ m, for example.
  • the resin layer of the present invention may have either a single layer structure or a multilayer structure.
  • the surface of the resin layer of the present invention may be appropriately subjected to known and commonly used surface treatments such as physical treatments such as corona discharge treatment and plasma treatment, and chemical treatments such as undercoating treatment.
  • the resin layer of the present invention is not particularly limited, it preferably contains an ultraviolet absorber (UVA) or a dye compound having a maximum absorption wavelength in the absorption spectrum of 380 to 430 nm.
  • UVA ultraviolet absorber
  • the resin layer of the present invention contains an ultraviolet absorber or the dye compound, deterioration of the OLED element due to ultraviolet rays contained in external light is suppressed, and an OLED display device having excellent weather resistance can be obtained without using a polarizing plate. can.
  • deterioration of the high refractive index component of the pressure-sensitive adhesive layer due to ultraviolet rays can be suppressed, and a high lighting rate can be maintained.
  • the resin layer of the present invention contains the ultraviolet absorber and the dye compound
  • the content of the ultraviolet absorber and the dye compound in the pressure-sensitive adhesive layer of the present invention can be reduced. Precipitation and bleeding out of the ultraviolet absorber and the dye compound in the inside can be suppressed, which is preferable.
  • UV absorber (UVA) and dye compound contained in the resin layer of the present invention the same ultraviolet absorber and dye compound contained in the pressure-sensitive adhesive layer of the present invention can be used.
  • the ultraviolet absorber and the dye compound can be used alone or in combination of two or more.
  • the content of each of the ultraviolet absorber and the dye compound in the resin layer of the present invention is not particularly limited, but is included in external light. From the viewpoint of suppressing deterioration of the OLED element due to ultraviolet rays and obtaining an OLED display device with excellent weather resistance without using a polarizing plate, it is preferably 0.01 part by weight or more with respect to 100 parts by weight of the resin layer, It is more preferably 0.05 parts by weight or more, and still more preferably 0.1 parts by weight or more.
  • the upper limit of the content of the ultraviolet absorber and the dye compound suppresses the occurrence of yellowing of the adhesive due to the addition of the ultraviolet absorber, and provides excellent optical properties, high transparency, and excellent appearance. From the viewpoint of obtaining properties, it is preferably 10 parts by weight or less, more preferably 9 parts by weight or less, and even more preferably 8 parts by weight or less with respect to 100 parts by weight of the resin layer.
  • the total amount may be adjusted to fall within the above range.
  • the moisture permeability of the resin layer of the present invention is not particularly limited. more preferably 40 g/m 2 ⁇ 24h or more, still more preferably 100 g/m 2 ⁇ 24h or more, and particularly preferably 200 g/m 2 ⁇ 24h or more.
  • the upper limit of the moisture permeability of the resin layer of the present invention is not particularly limited, it may be 1200 g/m 2 ⁇ 24 h or less from the viewpoint of suppressing swelling under humidification. Since the resin layer of the present invention has a high moisture permeability, there is a tendency that the reliability of daylighting is improved.
  • the moisture permeability of the resin layer of the present invention can be measured in accordance with JIS Z0208 under an environment of a temperature of 40° C. and a relative humidity of 92%, and can be adjusted by the type and thickness of the resin constituting the resin layer of the present invention. can be done.
  • the glass layer constituting the optical element of the present invention (hereinafter sometimes referred to as "the glass layer of the present invention") is not particularly limited, and suitable layers can be adopted depending on the purpose.
  • the glass layer of the present invention include soda-lime glass, boric acid glass, aluminosilicate glass, quartz glass, etc. according to classification according to composition.
  • the alkali component non-alkali glass and low-alkali glass can be mentioned.
  • the content of alkali metal components (eg, Na 2 O, K 2 O, Li 2 O) in the glass is preferably 15% by weight or less, more preferably 10% by weight or less.
  • the thickness of the glass layer of the present invention is preferably 20 ⁇ m or more, considering the surface hardness, airtightness, and corrosion resistance of the glass.
  • the glass layer of the present invention desirably has film-like flexibility and bendability, and suppresses the image from being doubled so that a clear image can be projected.
  • a thickness of 60 ⁇ m or less is preferable.
  • the thickness of the glass layer of the present invention is more preferably 30 ⁇ m or more and 55 ⁇ m or less, and particularly preferably 40 ⁇ m or more and 50 ⁇ m or less.
  • the light transmittance of the glass layer of the present invention at a wavelength of 550 nm is preferably 85% or more.
  • the refractive index of the glass layer of the present invention at a wavelength of 550 nm is preferably 1.4 to 1.65.
  • the density of the glass layer of the present invention is preferably 2.3 g/cm 3 to 3.0 g/cm 3 , more preferably 2.3 g/cm 3 to 2.7 g/cm 3 .
  • the method for forming the glass layer of the present invention is not particularly limited, and an appropriate method can be adopted depending on the purpose.
  • the glass layer of the present invention is prepared by heating a mixture containing a main raw material such as silica or alumina, an antifoaming agent such as mirabilite or antimony oxide, and a reducing agent such as carbon at a temperature of about 1400°C to 1600°C. It can be produced by melting at a high temperature, molding it into a thin plate, and then cooling it.
  • Examples of the method for forming the glass layer of the present invention include a slot down draw method, a fusion method, a float method and the like.
  • the glass layer formed into a plate shape by these methods may be chemically polished with a solvent such as hydrofluoric acid, if necessary, in order to thin the plate or improve smoothness.
  • the hard coat layer constituting the optical element of the present invention (hereinafter sometimes referred to as the "hard coat layer of the present invention") has sufficient surface hardness, excellent mechanical strength, and excellent light transmittance. , may be formed from any suitable resin. Specific examples of resins include thermosetting resins, thermoplastic resins, ultraviolet curing resins, electron beam curing resins, and two-liquid mixed resins. A UV curable resin is preferred. This is because the hard coat layer can be formed with simple operation and high efficiency.
  • UV-curable resins include polyester-based, acrylic-based, urethane-based, amide-based, silicone-based, and epoxy-based UV-curable resins.
  • UV-curable resins include UV-curable monomers, oligomers, and polymers.
  • Preferred UV-curable resins include resin compositions containing acrylic monomer or oligomer components having preferably 2 or more, more preferably 3 to 6, UV-polymerizable functional groups.
  • the UV curable resin contains a photopolymerization initiator.
  • the hard coat layer of the present invention can be formed by any appropriate method.
  • the hard coat layer of the present invention is formed by coating a resin composition for forming a hard coat layer on a substrate (including the resin layer and the glass layer), drying the coating, and irradiating the dried coating film with ultraviolet rays. can be formed by curing with
  • the thickness of the hard coat layer of the present invention is, for example, 2-20 ⁇ m, preferably 4-15 ⁇ m, more preferably 4-10 ⁇ m.
  • the water contact angle of the hard coat layer of the present invention is preferably 95° or more, more preferably 100° or more, still more preferably 105° or more, from the viewpoint of antifouling properties.
  • the water contact angle of the hard coat layer of the present invention is measured according to JIS R3257, and can be adjusted depending on the type of resin constituting the hard coat layer, curing conditions, and the like.
  • the hard coat layer of the present invention preferably has a water contact angle within the above range after the steel wool test described below. ⁇ Steel wool test> A 1 cm square piece of steel wool "product number #0000" manufactured by Trusco Co., Ltd. is cut, and the surface of the hard coat layer is rubbed 1,000 times under the conditions of a load of 1 kg and a moving speed of 100 mm/sec.
  • the Vickers hardness of the hard coat layer of the present invention is preferably 80 or higher, more preferably 90 or higher, still more preferably 100 or higher, from the viewpoint of excellent surface hardness and scratch resistance.
  • the Vickers hardness of the hard coat layer of the present invention is measured according to JIS Z2244, and can be adjusted depending on the type of resin constituting the hard coat layer, curing conditions, and the like.
  • the surface element ratio of carbon elements on the surface of the hard coat layer of the present invention is 50 atomic % or less, preferably 45 atomic % or less, from the viewpoint of antifouling properties, and the fluorine element ratio on the surface of the hard coat layer is 30 atomic % or more. be.
  • the nitrogen element ratio on the surface of the hard coat layer is, for example, less than 1.5 atomic %, preferably 1.3 atomic % or less, and is, for example, 0 atomic % or more.
  • the surface element ratio of fluorine element, carbon element, and nitrogen element on the surface of the hard coat layer of the present invention can be measured by X-ray photoelectron spectroscopy, and the type of resin constituting the hard coat layer, curing conditions, etc. can be adjusted by
  • the antireflection layer constituting the optical element of the present invention (hereinafter sometimes referred to as the "antireflection layer of the present invention") is preferably composed of an inorganic material.
  • inorganic substances include inorganic substances exemplified and explained as materials for forming the high refractive index layer, the low refractive index layer, and the medium refractive index layer, which will be described later.
  • any appropriate structure can be adopted as the antireflection layer of the present invention.
  • Materials that can form the low refractive index layer include, for example, silicon oxide (SiO 2 ) and magnesium fluoride (MgF 2 ).
  • the refractive index of the low refractive index layer is typically about 1.35 to 1.55.
  • the material of the low refractive index layer may be a cured product of a curable fluorine-containing resin.
  • a curable fluorine-containing resin has, for example, structural units derived from a fluorine-containing monomer and structural units derived from a crosslinkable monomer.
  • fluorine-containing monomers include fluoroolefins (fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3-dioxole, etc.).
  • crosslinkable monomers include (meth)acrylate monomers having crosslinkable functional groups in the molecule such as glycidyl methacrylate; (meth)acrylate monomers having functional groups such as carboxyl groups, hydroxyl groups, amino groups and sulfonic acid groups.
  • the fluorine-containing resin may have constitutional units derived from monomers other than the compounds described above (for example, olefin-based monomers, (meth)acrylate-based monomers, and styrene-based monomers).
  • Materials capable of forming the high refractive index layer include, for example, titanium oxide (TiO 2 ), niobium oxide (Nb 2 O 3 or Nb 2 O 5 ), tin-doped indium oxide (ITO), antimony-doped tin oxide (ATO), ZrO 2 --TiO 2 can be mentioned.
  • the refractive index of the high refractive index layer is typically about 1.60 to 2.40.
  • Materials capable of forming the medium refractive index layer include, for example, titanium oxide (TiO 2 ), a mixture of a material capable of forming a low refractive index layer and a material capable of forming a high refractive index layer (for example, titanium oxide and oxide mixtures with silicon).
  • the refractive index of the medium refractive index layer is typically about 1.50 to 1.85.
  • the thicknesses of the low refractive index layer, the medium refractive index layer, and the high refractive index layer can be set so as to realize an appropriate optical film thickness according to the layer structure of the antireflection layer, desired antireflection performance, and the like.
  • the antireflection layer of the present invention may be formed by a dry process (e.g., sputtering), may be formed by a wet process (e.g., coating), or may be formed by combining a dry process and a wet process.
  • a dry process e.g., sputtering
  • a wet process e.g., coating
  • a wet process e.g., coating
  • a dry process include a PVD (Physical Vapor Deposition) method and a CVD (Chemical Vapor Deposition) method.
  • PVD methods include vacuum vapor deposition, reactive vapor deposition, ion beam assist, sputtering, and ion plating.
  • the CVD method there is a plasma CVD method.
  • a coating liquid for forming an antireflection layer can be applied to form a coating film, and the coating film can be cured to form an antireflection layer.
  • coating methods that can be used include fountain coating, die coating, spin coating, spray coating, gravure coating, roll coating, and bar coating. It is preferable to dry the coating film prior to the curing. The drying may be, for example, natural drying, air drying by blowing air, heat drying, or a combination thereof. Curing means for the coating film is not particularly limited, but UV curing is preferred.
  • the thickness of the antireflection layer of the present invention is, for example, about 20 nm to 300 nm.
  • the antireflection layer of the present invention preferably has a water contact angle of 90° or more, more preferably 95° or more, still more preferably 100° or more, and particularly preferably 105° or more, from the viewpoint of antifouling properties.
  • the water contact angle of the antireflection layer of the invention is measured according to JIS R3257, and can be adjusted depending on the types of components constituting the antireflection layer. Further, the antireflection layer of the present invention preferably has a water contact angle within the above range after the following eraser test.
  • Antiglare layer As the antiglare layer constituting the optical element of the present invention (hereinafter sometimes referred to as the "antiglare layer of the present invention"), known ones can be employed without limitation. It is formed as a layer in which inorganic or organic particles are dispersed as an antiglare agent.
  • the antiglare layer of the present invention is not particularly limited. , convex portions are formed on the surface of the antiglare layer of the present invention. With this configuration, the antiglare layer has excellent display characteristics that achieve both antiglare properties and prevention of white blurring. It is possible to prevent the occurrence of protrusions on the surface of the anti-glare layer, which would be a defect in appearance, and improve the yield of the product.
  • the resin examples include thermosetting resins and ionizing radiation curable resins that are cured by ultraviolet light or light.
  • thermosetting resins examples include thermosetting resins and ionizing radiation curable resins that are cured by ultraviolet light or light.
  • the resin it is possible to use a commercially available thermosetting resin, ultraviolet curable resin, or the like.
  • thermosetting resin or UV-curable resin for example, a curable compound having at least one of an acrylate group and a methacrylate group that is cured by heat, light (ultraviolet rays, etc.), electron beams, or the like can be used.
  • Silicone resins, polyester resins, polyether resins, epoxy resins, urethane resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, oligomers or prepolymers such as acrylates and methacrylates of polyfunctional compounds such as polyhydric alcohols. can give. These may be used individually by 1 type, and may use 2 or more types together.
  • a reactive diluent having at least one of an acrylate group and a methacrylate group can be used.
  • the reactive diluent for example, reactive diluents described in JP-A-2008-88309 can be used, and examples include monofunctional acrylates, monofunctional methacrylates, polyfunctional acrylates, polyfunctional methacrylates, and the like.
  • the reactive diluent tri- or more functional acrylates and tri- or more functional methacrylates are preferable. This is because the antiglare layer of the present invention can have excellent hardness.
  • Examples of the reactive diluent include butanediol glycerol ether diacrylate, isocyanuric acid acrylate, and isocyanuric acid methacrylate. These may be used individually by 1 type, and may use 2 or more types together.
  • the resin preferably contains a urethane acrylate resin, more preferably a copolymer of a curable urethane acrylate resin and a polyfunctional acrylate (eg, pentathritol triacrylate).
  • a urethane acrylate resin more preferably a copolymer of a curable urethane acrylate resin and a polyfunctional acrylate (eg, pentathritol triacrylate).
  • the main functions of the particles for forming the antiglare layer of the present invention are to make the surface of the antiglare layer to be uneven to impart antiglare properties and to control the haze value of the antiglare layer.
  • the haze value of the antiglare layer can be designed by controlling the refractive index difference between the particles and the resin.
  • the particles include inorganic particles and organic particles.
  • the inorganic particles are not particularly limited, and examples include silicon oxide particles, titanium oxide particles, aluminum oxide particles, zinc oxide particles, tin oxide particles, zirconium oxide particles, calcium carbonate particles, barium sulfate particles, talc particles, kaolin particles, Examples include calcium sulfate particles.
  • the organic particles are not particularly limited, and examples include polymethyl methacrylate resin powder (PMMA fine particles), silicone resin powder, polystyrene resin powder, polycarbonate resin powder, acrylic styrene resin powder, benzoguanamine resin powder, melamine resin powder, polyolefin. Examples thereof include resin powder, polyester resin powder, polyamide resin powder, polyimide resin powder, polyethylene fluoride resin powder and the like. One type of these inorganic particles and organic particles may be used alone, or two or more types may be used in combination.
  • PMMA fine particles polymethyl methacrylate resin powder
  • silicone resin powder silicone resin powder
  • polystyrene resin powder polycarbonate resin powder
  • acrylic styrene resin powder acrylic styrene resin powder
  • benzoguanamine resin powder acrylic styrene resin powder
  • melamine resin powder polyolefin
  • polyolefin examples include resin powder, polyester resin powder, polyamide resin powder, polyimide resin powder, polyethylene fluoride resin powder
  • the weight average particle size (D) of the particles is preferably within the range of 2.5 to 10 ⁇ m. By setting the weight-average particle size of the particles within the above range, for example, the anti-glare property can be further improved and white blurring can be prevented.
  • the weight average particle size of the particles is more preferably in the range of 3-7 ⁇ m.
  • the weight-average particle diameter of the particles can be measured, for example, by the Coulter counting method. For example, using a particle size distribution measuring device (trade name: Coulter Multisizer, manufactured by Beckman Coulter, Inc.) using the pore electrical resistance method, the volume of the electrolyte solution corresponding to the volume of the particles when the particles pass through the pores. By measuring the electrical resistance, the number and volume of the particles are measured, and the weight average particle diameter is calculated.
  • the shape of the particles is not particularly limited, and may be, for example, a substantially spherical bead shape, or an irregular shape such as a powder. They are substantially spherical particles with a ratio of 1.5 or less, most preferably spherical particles.
  • the proportion of the particles in the antiglare layer of the present invention is preferably in the range of 0.2 to 12 parts by weight, more preferably in the range of 0.5 to 12 parts by weight, with respect to 100 parts by weight of the resin. It is preferably in the range of 1 to 7 parts by weight. By setting it as the said range, for example, it can be more excellent in anti-glare property and can prevent a white blur.
  • the antiglare layer of the present invention may contain a thixotropy-imparting agent.
  • a thixotropy-imparting agent By containing the thixotropy-imparting agent, the aggregation state of the particles can be easily controlled.
  • the thixotropy imparting agent for forming the antiglare layer of the present invention include organic clay, polyolefin oxide, modified urea and the like.
  • the organoclay is preferably an organically treated clay in order to improve the affinity with the resin.
  • organic clays include layered organic clays.
  • the organic clay may be self-prepared, or a commercially available product may be used.
  • the commercially available products include Lucentite SAN, Lucentite STN, Lucentite SEN, Lucentite SPN, Somasif ME-100, Somasif MAE, Somasif MTE, Somasif MEE, Somasif MPE (trade names, all of which are manufactured by Co-op Chemical Co., Ltd.).
  • the oxidized polyolefin may be prepared in-house, or a commercially available product may be used.
  • the commercially available products include Disparlon 4200-20 (trade name, manufactured by Kusumoto Kasei Co., Ltd.) and Flownon SA300 (trade name, manufactured by Kyoeisha Chemical Co., Ltd.).
  • the modified urea is a reaction product of an isocyanate monomer or its adduct and an organic amine.
  • the modified urea may be self-prepared, or a commercially available product may be used. Examples of the commercial product include BYK410 (manufactured by Big Chemie).
  • the thixotropy-imparting agents may be used singly or in combination of two or more.
  • the height of the convex portion from the roughness average line of the antiglare layer of the present invention is preferably less than 0.4 times the thickness of the antiglare layer. More preferably, it is in the range of 0.01 times or more and less than 0.4 times, and still more preferably in the range of 0.01 times or more and less than 0.3 times. If it is within this range, it is possible to suitably prevent the formation of protrusions that would cause defects in appearance on the convex portion.
  • the anti-glare layer of the present invention can make appearance defects less likely to occur by having convex portions with such heights.
  • the height from the average line can be measured, for example, by the method described in JP-A-2017-138620.
  • the ratio of the thixotropy imparting agent in the antiglare layer of the present invention is preferably in the range of 0.1 to 5 parts by weight, more preferably in the range of 0.2 to 4 parts by weight, with respect to 100 parts by weight of the resin. .
  • the thickness (d') of the antiglare layer of the present invention is not particularly limited, it is preferably in the range of 2 to 12 ⁇ m.
  • the thickness (d') of the antiglare layer is preferably in the range of 2 to 12 ⁇ m.
  • the weight average particle size (D) of the particles is preferably within the range of 2.5 to 10 ⁇ m as described above.
  • the thickness (d') of the antiglare layer of the invention is more preferably in the range of 2 to 10 ⁇ m, still more preferably in the range of 3 to 8 ⁇ m.
  • the relationship between the thickness (d') of the antiglare layer of the present invention and the weight average particle diameter (D) of the particles is preferably within the range of 0.3 ⁇ D/d' ⁇ 0.9. With such a relationship, it is possible to obtain an antiglare layer that is more excellent in antiglare properties, can prevent white blurring, and has no defects in appearance.
  • the haze value (H') of the antiglare layer of the present invention is not particularly limited, but is preferably 5% or more, more preferably 10% or more, from the viewpoint of efficiently reducing color shift and interference unevenness of the OLED display device. , more preferably 15% or more, particularly preferably 20% or more. Further, from the viewpoint of suppressing image blurring of the OLED display device and displaying high-definition images, the haze value of the antiglare layer of the present invention is preferably 80% or less, more preferably 70% or less, and still more preferably 60%. % or less, particularly preferably 50% or less.
  • the haze value of the antiglare layer of the present invention can be measured by a method defined by JIS K7136, and is designed by controlling the type and thickness of the antiglare layer and the refractive index difference between the particles and the resin. be able to.
  • the antiglare layer of the present invention projections are formed on the surface of the antiglare layer of the present invention by aggregation of the particles and the thixotropy-imparting agent.
  • the particles are present in a state in which a plurality of particles are aggregated in the plane direction of the antiglare layer of the present invention.
  • the convex portion has a gentle shape. Since the antiglare layer of the present invention has convex portions having such a shape, it is possible to prevent white blurring while maintaining antiglare properties, and to make appearance defects less likely to occur. can.
  • the surface shape of the antiglare layer of the present invention can be arbitrarily designed by controlling the aggregation state of the particles contained in the antiglare layer-forming material.
  • the aggregation state of the particles can be controlled by, for example, the material of the particles (for example, chemically modified state of the particle surface, affinity for solvent or resin, etc.), type of resin (binder) or solvent, combination, and the like.
  • the aggregation state of the particles can be controlled by the thixotropy imparting agent contained in the antiglare layer-forming material of the present invention. As a result, the aggregated state of the particles can be made as described above, and the convex portion can be formed into a smooth shape.
  • the number of appearance defects having a maximum diameter of 200 ⁇ m or more is 1 or less per 1 m 2 of the antiglare layer. More preferably, it does not have the appearance defect.
  • the average inclination angle ⁇ a (°) is preferably in the range of 0.1 to 5.0, more preferably in the range of 0.3 to 4.5. , more preferably in the range of 1.0 to 4.0, and particularly preferably in the range of 1.6 to 4.0.
  • the average tilt angle ⁇ a is a value defined by the following formula (1).
  • the average tilt angle ⁇ a is, for example, a value measured by the method described in JP-A-2017-138620.
  • Average tilt angle ⁇ a tan-1 ⁇ a (1)
  • ⁇ a is, as shown in the following formula (2), the maximum distance between the apex and valley of adjacent peaks in the reference length L of the roughness curve defined in JIS B0601 (1994 edition). It is a value obtained by dividing the total (h1+h2+h3 .
  • the roughness curve is a curve obtained by removing surface waviness components longer than a predetermined wavelength from the cross-sectional curve with a phase difference compensation type high-pass filter.
  • ⁇ a is within the above range, the antiglare property is more excellent and white blurring can be prevented.
  • the prepared antiglare layer forming material exhibits thixotropy
  • the Ti value defined below is 1.3 to 3.5. is preferably in the range of , more preferably in the range of 1.3 to 2.8.
  • Ti value ⁇ 1/ ⁇ 2
  • ⁇ 1 is the viscosity measured at a shear rate of 20 (1/s) using HAAKE's Rheostress 6000
  • ⁇ 2 is the viscosity measured using HAAKE's Rheostress 6000 at a shear rate of 200 (1/s). Viscosity measured under conditions.
  • the Ti value is less than 1.3, defects in appearance tend to occur, and the properties of antiglare properties and white blur deteriorate.
  • the Ti value exceeds 3.5, the particles are less likely to agglomerate and more likely to be in a dispersed state.
  • the method for producing the antiglare layer of the present invention is not particularly limited and may be produced by any method.
  • liquid) is prepared, the antiglare layer-forming material (coating liquid) is applied to form a coating film, and the coating film is cured to form an antiglare layer.
  • a transfer method using a mold, a method of imparting an uneven shape by an appropriate method such as sandblasting, embossing roll, or the like can also be used together.
  • the solvent is not particularly limited, and various solvents can be used. One type may be used alone, or two or more types may be used in combination. There is an optimum solvent type and solvent ratio depending on the composition of the resin, the types and contents of the particles and the thixotropy-imparting agent, and the like.
  • solvents include, but are not limited to, alcohols such as methanol, ethanol, isopropyl alcohol, butanol, and 2-methoxyethanol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclopentanone; methyl acetate, ethyl acetate.
  • Esters such as butyl acetate; Ethers such as diisopropyl ether and propylene glycol monomethyl ether; Glycols such as ethylene glycol and propylene glycol; Cellosolves such as ethyl cellosolve and butyl cellosolve; Aliphatic hydrocarbons such as hexane, heptane and octane Aromatic hydrocarbons such as benzene, toluene, and xylene.
  • the thixotropy of the antiglare layer-forming material (coating liquid) by the thixotropy-imparting agent can be exhibited satisfactorily.
  • organoclays when organoclays are used, toluene and xylene can be suitably used alone or in combination. They can be used or used in combination.
  • modified urea when modified urea is used, butyl acetate and methyl isobutyl ketone can be preferably used alone or in combination.
  • leveling agents can be added to the antiglare layer-forming material.
  • a fluorine-based or silicone-based leveling agent can be used for the purpose of preventing coating unevenness (uniformizing the coated surface).
  • a suitable leveling agent is selected according to the case where the antifouling property is required on the surface of the antiglare layer of the present invention, or the case where an antireflection layer or a layer containing an interlayer filler is formed on the antiglare layer. be able to.
  • the inclusion of the thixotropy-imparting agent makes it possible to express thixotropic properties in the coating liquid, so that unevenness in coating is less likely to occur. Therefore, for example, it has an advantage that the options for the leveling agent can be expanded.
  • the amount of the leveling agent compounded is, for example, 5 parts by weight or less, preferably in the range of 0.01 to 5 parts by weight, per 100 parts by weight of the resin.
  • Pigments, fillers, dispersants, plasticizers, ultraviolet absorbers, surfactants, antifouling agents, antioxidants, etc. are added to the antiglare layer-forming material as necessary within a range that does not impair the performance. may be These additives may be used singly or in combination of two or more.
  • photopolymerization initiators such as those described in JP-A-2008-88309, can be used.
  • Examples of the method for applying the antiglare layer-forming material include a fountain coating method, a die coating method, a spin coating method, a spray coating method, a gravure coating method, a roll coating method, a bar coating method, and the like. can be done.
  • the antiglare layer-forming material is applied to form a coating film, and the coating film is cured. It is preferable to dry the coating film prior to the curing.
  • the drying may be, for example, natural drying, air drying by blowing air, heat drying, or a combination thereof.
  • the means for curing the coating film of the antiglare layer-forming material is not particularly limited, but ultraviolet curing is preferable.
  • the irradiation amount of the energy beam source is preferably 50 to 500 mJ/cm 2 as an integrated exposure amount at an ultraviolet wavelength of 365 nm.
  • the irradiation dose is 50 mJ/cm 2 or more, the curing becomes more sufficient, and the hardness of the formed antiglare layer becomes more sufficient. Also, if it is 500 mJ/cm 2 or less, coloring of the formed antiglare layer can be prevented.
  • the antiglare layer of the present invention can be formed as described above. In addition, you may form an anti-glare layer by manufacturing methods other than the above-mentioned method.
  • the hardness of the antiglare layer of the present invention is preferably 2H or higher in terms of pencil hardness, although it is also affected by the thickness of the layer.
  • the antiglare layer of the present invention may have a multi-layer structure in which two or more layers are laminated.
  • the antireflection layer described above may be placed on the antiglare layer of the present invention.
  • one factor that reduces the visibility of an OLED display device is the reflection of light at the interface between the air and the antiglare layer.
  • An antireflection layer reduces the surface reflection.
  • the antiglare layer and the antireflection layer of the present invention may each have a multi-layer structure in which two or more layers are laminated.
  • the intermediate layer constituting the optical element of the present invention (hereinafter sometimes referred to as the “intermediate layer of the present invention") is provided between the resin layer and the hard coat layer, antireflection layer, or antiglare layer. is formed in Formation of this intermediate layer improves adhesion between the resin layer and the hard coat layer, antireflection layer, or antiglare layer.
  • the mechanism by which the intermediate layer (also referred to as a permeation layer or compatible layer) of the present invention is formed is not particularly limited. It is formed in the process of coating, permeating, and drying the resin layer with a coating solution for coating, a coating solution for forming an antireflection layer, or a coating solution for forming an antiglare layer.
  • the coating liquid for forming a hard coat layer, the coating liquid for forming an antireflection layer, or the coating liquid for forming an antiglare layer permeates the resin layer, and the resin derived from the resin layer and the hard coat
  • the intermediate layer is formed comprising a layer, an antireflection layer, or a resin derived from the antiglare layer.
  • the resin contained in the intermediate layer is not particularly limited.
  • the resin contained in the resin layer and the resin contained in the hard coat layer, the antireflection layer, or the antiglare layer are simply mixed (compatible). It's okay.
  • At least one of the resin contained in the intermediate layer and the resin contained in the hard coat layer, the antireflection layer, or the antiglare layer may be chemically cured by heating, light irradiation, or the like. may have changed.
  • the thickness ratio R of the intermediate layer defined by the following formula (3) is not particularly limited, but is, for example, 0.10 to 0.80. 0.30 or more, 0.40 or more, or 0.45 or more, for example, 0.75 or less, 0.70 or less, 0.65 or less, 0.60 or less, 0.50 or less, It may be 0.40 or less, 0.45 or less, or 0.30 or less.
  • the thickness ratio R of the intermediate layer is, for example, 0.15 to 0.75, 0.20 to 0.70, 0.25 to 0.65, 0.30 to 0.60, 0.40 to 0.50. , 0.45-0.50, 0.15-0.45, 0.15-0.40, 0.15-0.30, or 0.20-0.30.
  • the intermediate layer can be confirmed, for example, by observing the cross section of the optical element with a transmission electron microscope (TEM), and the thickness can be measured.
  • TEM transmission electron microscope
  • R [DC/(DC+DB)] (3)
  • DB is the thickness [ ⁇ m] of the hard coat layer, the antireflection layer, or the antiglare layer
  • DC is the thickness [ ⁇ m] of the intermediate layer.
  • the strength is preferably 20 MPa or more, more preferably 50 MPa or more.
  • the shear breaking strength can be obtained by the SAICAS method, and the type of resin layer, the composition of the coating liquid for forming the hard coat layer, the coating liquid for forming the antireflection layer, the coating liquid for forming the antiglare layer, and the film formation It can be adjusted according to the law.
  • the impact-absorbing layer constituting the optical element of the present invention may be composed of any appropriate resin layer capable of achieving a desired impact-absorbing rate.
  • the resin layer may be composed of a resin film or an adhesive.
  • the shock absorbing layer typically contains epoxy resin, urethane resin or acrylic resin. These resins may be used alone or in combination.
  • the thickness of the shock absorbing layer of the present invention is preferably 30 ⁇ m to 200 ⁇ m, more preferably 30 ⁇ m to 150 ⁇ m, still more preferably 40 ⁇ m to 120 ⁇ m. If the thickness of the impact-absorbing layer of the present invention is within such a range, an optical laminate having excellent impact resistance can be realized.
  • the storage elastic modulus G' of the shock absorbing layer of the present invention at 25°C is preferably 0.1 GPa or less, more preferably 0.01 MPa to 0.1 GPa. If the storage elastic modulus of the impact-absorbing layer of the present invention is within such a range, there is an advantage that the impact can be absorbed and cracking of the optical layered body can be prevented. Furthermore, a synergistic effect with the thickness effect can also be exhibited.
  • the antistatic layer constituting the optical element of the present invention (hereinafter sometimes referred to as the "antistatic layer of the present invention") is not particularly limited, but for example, a conductive coating liquid containing a conductive polymer is coated. It is the antistatic layer that is formed. Specific coating methods include a roll coating method, a bar coating method, a gravure coating method, and the like.
  • Examples of the conductive polymer include a conductive polymer obtained by doping a ⁇ -conjugated conductive polymer with a polyanion.
  • Examples of ⁇ -conjugated conductive polymers include linear conductive polymers such as polythiophene, polypyrrole, polyaniline, and polyacetylene.
  • Polyanions include polystyrene sulfonic acid, polyisoprene sulfonic acid, polyvinyl sulfonic acid, polyallylsulfonic acid, polyethyl acrylate sulfonic acid, polymethacrylic carboxylic acid and the like.
  • the thickness of the antistatic layer is preferably 1 nm to 1000 nm, more preferably 5 nm to 900 nm.
  • the antistatic layer may consist of only one layer, or may consist of two or more layers.
  • Rp1 is the maximum value at a wavelength of 380 to 455 nm, and the wavelength (WL1) at Rp1 is
  • [Rf1/Rp1] is preferably 0.3 or less, more preferably 0.25 or less, still more preferably 0.2 or less, and still more preferably 0.15 or less. , particularly preferably 0.1 or less. The smaller the [Rf1/Rp1], the more the interference unevenness is suppressed.
  • Rp2 is the maximum value at a wavelength of 460 to 530 nm, and the wavelength (WL2) at Rp2 is
  • [Rf2/Rp2] is preferably 0.12 or less, more preferably 0.1 or less, still more preferably 0.05 or less, and still more preferably 0.03 or less. , particularly preferably 0.01 or less. The smaller the [Rf2/Rp2], the more the interference unevenness is suppressed.
  • the wavelength WL1 is, for example, 430 nm or 440 nm
  • the wavelength WL2 is, for example, 500 nm or 510 nm
  • each of Rp1 and Rp2 is, for example, 7% or more (eg, 7 to 20%), preferably 10% or more (eg, 10 to 18%).
  • the sum of [Rf1/Rp1] and [Rf2/Rp2] is preferably 0.42 or less, more preferably 0.4 or less, still more preferably 0.3 or less, still more preferably 0.2 or less, and particularly preferably is 0.1 or less. Interference unevenness is more suppressed as the total is smaller.
  • the optical laminate of the present invention preferably has a configuration comprising the hard coat layer of the present invention, the substrate layer of the present invention, and the adhesive layer of the present invention on the side opposite to the viewing side of the antireflection layer of the present invention. It is more preferable to have structures with this order.
  • the resin layer of the present invention or the glass layer of the present invention can be used for the substrate layer.
  • the pressure-sensitive adhesive layer of the present invention is provided on at least one surface of the resin layer of the present invention.
  • n1>n2>n3 where n1 is the refractive index of the resin layer of the present invention, n2 is the refractive index of the adhesive in the adhesive layer of the present invention, and n3 is the refractive index of the light-scattering fine particles of the present invention. is preferably satisfied. In this case, white blurring is further suppressed.
  • the refractive index (n1) of the resin layer of the present invention is preferably 1. 0.50 to 1.80, more preferably 1.55 to 1.75, still more preferably 1.60 to 1.70.
  • the refractive index of the resin layer can be adjusted by the type and content of the resin constituting the resin layer.
  • the pressure-sensitive adhesive layer of the present invention is provided on one side of the resin layer of the present invention.
  • the pressure-sensitive adhesive layer having light scattering properties preferably has a structure in which the hard coat layer of the present invention is provided on the other surface. In particular, it is preferable to satisfy n1>n2>n3 in this embodiment.
  • a color filter is arranged on the viewing side of the OLED element, and the distance (d) between the pressure-sensitive adhesive layer and the color filter is 700 ⁇ m or less, the distance between the pressure-sensitive adhesive layer of the present invention (especially the pressure-sensitive adhesive layer having light scattering properties) and the color filter is When d [ ⁇ m] and the haze value of the pressure-sensitive adhesive layer of the present invention (particularly, the pressure-sensitive adhesive layer having light scattering properties) is H [%], the value of d ⁇ H is preferably 70000 or less, and more It is preferably 60,000 or less, more preferably 50,000 or less.
  • d ⁇ H When the value of d ⁇ H is 700000 or less, image blurring is less likely to occur.
  • the value of d ⁇ H is, for example, 100 or more, and may be 1000 or more, 10000 or more, or 20000 or more. In this case, H is preferably 20 or more.
  • the pressure-sensitive adhesive layer of the present invention is the thickness of T [ ⁇ m]
  • the haze value of the pressure-sensitive adhesive layer of the present invention is H [%]
  • the value of T ⁇ H is 400 or more. more preferably 600 or more, still more preferably 800 or more, still more preferably 1000 or more, and particularly preferably 1500 or more.
  • image blurring is less likely to occur.
  • the value of T ⁇ H is, for example, 10000 or less, and may be 8000 or less, 6000 or less, or 4000 or less.
  • the OLED display device without laminating the optical layered body for the OLED display device.
  • S1 is the scattering efficiency of the antiglare layer of the present invention at a wavelength WL1 showing the maximum value at a wavelength of 380 to 455 nm in the reflectance spectrum of
  • S1 is preferably 15% or more, more preferably 20% or more, More preferably 30% or more, more preferably 40% or more, particularly preferably 50% or more. The larger S1 is, the more the interference unevenness is suppressed.
  • the OLED display device without laminating the optical layered body for the OLED display device.
  • S2 is preferably 15% or more, more preferably 20% or more, More preferably 30% or more, more preferably 40% or more, particularly preferably 50% or more. The larger S2 is, the more the interference unevenness is suppressed.
  • the scattering efficiencies S1 and S2 are obtained by measuring the optical layered body having the antiglare layer of the present invention in contact with an integrating sphere and measuring the transmittance at a predetermined wavelength, Tn1, and the optical layered body having the antiglare layer. is placed at a distance of 145 mm from the integrating sphere, and Tn2 is the transmittance at the predetermined wavelength.
  • the sum of S1 and S2 is preferably 30% or more, more preferably 40% or more, still more preferably 60% or more, still more preferably 80% or more, and particularly preferably 100% or more. The larger the sum, the more the interference unevenness is suppressed.
  • a base material is provided on the side opposite to the viewing side of the antiglare layer of the present invention. It is preferable to have a structure comprising a layer and the pressure-sensitive adhesive layer of the present invention, and more preferably to have a structure provided in this order.
  • the resin layer of the present invention or the glass layer of the present invention can be used for the substrate layer.
  • One embodiment of the optical layered body of the present invention is an optical element of the present invention on the viewing side of the glass layer of the present invention.
  • the pressure-sensitive adhesive layer of the present invention, the substrate layer, and the hard coat layer of the present invention and more preferably have a structure provided in this order.
  • the resin layer of the present invention or the glass layer of the present invention can be used for the substrate layer.
  • the indentation elastic modulus of the adhesive layer of the present invention is Ea
  • the indentation elastic modulus of the adhesive layer of the present invention is Ea
  • the absolute value of Ea-Er is preferably 1 GPa or less, more preferably 0.9 GPa or less, still more preferably 0.7 GPa or less, and particularly preferably 0.5 GPa. It is below. Impact resistance improves further that the said absolute value is 1 GPa or less.
  • the resin layer of the present invention has a tensile storage elastic modulus Er of 4 GPa or more. is preferred, more preferably 4.3 GPa or more, still more preferably 4.6 GPa or more.
  • the tensile storage elasticity Er is, for example, 50 GPa or less, and may be 30 GPa or less, or 10 GPa or less.
  • the tensile storage modulus Er can be measured according to JIS K7161.
  • the optical layered body of the present invention for example, an optical layered body in an OLED display device of the present invention shown in FIGS. 16 and 17 described later
  • an intermediate layer (compatible layer) is formed between the transparent polyimide layer and the hard coat layer of the present invention.
  • the intermediate layer is a layer formed by permeation of the composition (coating agent) for forming the hard coat layer of the present invention into the transparent polyimide layer. That is, the intermediate layer is a portion of the transparent polyimide layer where the hard coat layer components of the present invention are present.
  • the ratio (P1) of the shear fracture strength of the intermediate layer to the shear fracture strength of the hard coat layer of the present invention is preferably 0.25 or less, more preferably 0.23, and still more preferably 0.21 or less.
  • the ratio (P1) is, for example, 0.02 or more, and may be 0.05 or more, or 0.08 or more.
  • the ratio of the transparent polyimide layer to the shear fracture strength of the hard coat layer of the present invention is preferably 0.65 or more, more preferably 0.70 or more, still more preferably 0.80 or more, and particularly preferably 0.90 or more.
  • the ratio (P2) is, for example, 1.50 or less, and may be 1.30 or less, or 1.10 or less.
  • the difference (P2-P1) between the ratio (P1) and the ratio (P2) is preferably 0.6 or more, more preferably 0.70 or more, and may be 0.80 or more.
  • the difference (P2-P1) is, for example, 1.5 or less, and may be 1.2 or less, or 0.9 or less.
  • the transparent polyimide layer on the side opposite to the hard coat layer of the present invention It is preferable to have a structure further provided with an adhesive layer.
  • the method for producing the optical laminate of the present invention is not particularly limited, and the adhesive layer, adhesive layer, resin layer, glass layer, hard coat layer, antireflection layer, antiglare layer, An intermediate layer (compatible layer), a shock absorbing layer, etc. can be produced by laminating sequentially on the viewing side of the OLED display panel of the present invention. It can be produced by preparing it in advance and laminating it on the viewing side of the OLED display panel of the present invention.
  • the laminate constituting the optical laminate of the present invention is prepared in advance, it may be the laminate constituting the entire optical laminate of the present invention, or the laminate constituting a part of the optical laminate of the present invention. may be split and laminated on the viewing side of the OLED display panel of the present invention.
  • the layers constituting the optical element of the present invention or the laminate thereof may be protected with a release liner or surface protection film until use.
  • a release liner When the optical element of the present invention includes an adhesive layer, a release liner may be provided on the surface (adhesive surface) of the adhesive layer until use.
  • a release liner is used as a protective material for the pressure-sensitive adhesive layer, and is peeled off when applied to an adherend. Note that the release liner does not constitute the optical element of the present invention and may not necessarily be provided.
  • a conventional release paper or the like can be used, and is not particularly limited. etc.
  • the base material having the release treatment layer include plastic films and paper surface-treated with release agents such as silicone, long-chain alkyl, fluorine, and molybdenum sulfide.
  • the fluorine-based polymer in the low-adhesive substrate made of the fluorine polymer include polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinyl fluoride, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, chloro fluoroethylene-vinylidene fluoride copolymer and the like.
  • the non-polar polymer include olefin resins (eg, polyethylene, polypropylene, etc.).
  • the release liner can be formed by a known or commonly used method. Also, the thickness of the release liner is not particularly limited.
  • the outermost surface (the outermost surface on the viewing side) of the optical layered body of the present invention may be protected with a surface protective film.
  • the surface protection film may be applied by the consumer.
  • the surface protective film does not constitute the optical element of the present invention and may not necessarily be provided.
  • the surface protective film a known or commonly used surface protective film can be used, and although it is not particularly limited, for example, a plastic film having an adhesive layer on its surface can be used.
  • the plastic film include polyester (polyethylene terephthalate, polyethylene naphthalate, etc.), polyolefin (polyethylene, polypropylene, cyclic polyolefin, etc.), polystyrene, acrylic resin, polycarbonate, epoxy resin, fluororesin, silicone resin, diacetate resin, Examples thereof include plastic films formed from plastic materials such as triacetate resin, polyarylate, polyvinyl chloride, polysulfone, polyethersulfone, polyetheretherimide, polyimide, and polyamide.
  • the adhesive layer examples include acrylic adhesives, natural rubber adhesives, synthetic rubber adhesives, ethylene-vinyl acetate copolymer adhesives, ethylene-(meth)acrylic acid ester copolymer adhesives, A pressure-sensitive adhesive layer formed from one or more known or commonly used pressure-sensitive adhesives such as a styrene-isoprene block copolymer-based pressure-sensitive adhesive and a styrene-butadiene block copolymer-based pressure-sensitive adhesive can be used.
  • the pressure-sensitive adhesive layer may contain various additives (eg, antistatic agents, slip agents, etc.).
  • the plastic film and the pressure-sensitive adhesive layer may each have a single-layer structure, or may have a multi-layer (multilayer) structure.
  • the thickness of the surface protective film is not particularly limited, and can be appropriately selected.
  • FIG. 2 is a schematic cross-sectional view showing one embodiment of the basic configuration of an OLED display device laminated with the optical laminate of the present invention.
  • the layers forming the optical laminate 20 are laminated on the visible side of the OLED display panel 100 (upper side in FIG. 2).
  • the OLED display panel 100 is not particularly limited, for example, the same configuration as the OLED display panel 100 shown in FIG. 1 can be adopted.
  • 21 to 29 are layers constituting the optical laminate 20, 21 is an adhesive layer or adhesive layer, 22 is a resin layer, a glass layer or a shock absorbing layer, and 23 is a hard layer.
  • the laminated structure of the optical laminated body 20 shown in FIG. 2 is not limited to this embodiment, and the optical element of the present invention is formed between arbitrary layers of the laminated structure of the optical laminated body 20 shown in FIG. Other layers may be interposed and any layer of the laminate structure of the optical stack 20 shown in FIG. 2 may be absent.
  • FIG. 2 shows an OLED display device 300A according to this embodiment.
  • 34A to 38A are layers constituting the optical laminate 30A, 34A is an adhesive layer or adhesive layer, 35A is a glass layer, 36A is an adhesive layer having light scattering properties, and 37A is a resin layer.
  • 38A is a hard coat layer. Since the pressure-sensitive adhesive layer 36A has light scattering properties, color shift and uneven interference caused by the OLED display panel 100 are suppressed, and the OLED display device 300 has excellent visibility. In addition, in the OLED display device 300A shown in FIG. 3, an antireflection layer may be present on the visible side of the hard coat layer 38A.
  • 21 is an adhesive layer
  • 22 is a resin layer
  • 23 is a hard coat layer
  • 24 is an adhesive layer
  • 25 is a glass layer
  • 26 is an adhesive layer
  • Resin layer 28 is a hard coat layer
  • antireflection layer 29 is not present, and at least one of adhesive layers 21, 24, and 26 is an adhesive layer having light scattering properties.
  • FIG. 4 shows an OLED display device 300B according to this embodiment.
  • 31B to 38B are layers constituting the optical laminate 30B, 31B is an adhesive layer, 32B is a resin layer, 33B is a hard coat layer, 34B is an adhesive layer, 35B is a glass layer, and 36B is a An adhesive layer having light scattering properties, 37B is a resin layer, and 38B is a hard coat layer. Since the pressure-sensitive adhesive layer 36B has light scattering properties, color shift and uneven interference caused by the OLED display panel 100 are suppressed, and the OLED display device 300B has excellent visibility. In addition, in the OLED display device 300B shown in FIG. 4, an antireflection layer may exist on the visible side of the hard coat layer 38B.
  • the OLED display panel 100 has a color filter arranged on the viewing side, 26 is an adhesive layer having light scattering properties, 27 is a resin layer, and 28 is The distance d ( ⁇ m) between the pressure-sensitive adhesive layer 26, which is a hard coat layer, does not include 21 to 25 and 29 and has light scattering properties, and the color filter is 700 ⁇ m or less. Since the distance d between the adhesive layer having light scattering properties and the color filter is 700 ⁇ m or less, the light scattering layer is laminated to suppress color shift and interference unevenness caused by the OLED display device 300. Also, image blurring is less likely to occur, and visibility is excellent.
  • FIG. 5 shows an OLED display device 400A according to this embodiment. In FIG.
  • 46A to 48A are layers constituting the optical laminate 40A, 46A is an adhesive layer having light scattering properties, 47A is a resin layer, and 48A is a hard coat layer.
  • 15A is a color filter arranged on the viewing side (upper side in FIG. 5) of the OLED display panel 400A.
  • the pressure-sensitive adhesive layer 46A having light scattering properties and the color filter 15A are in direct contact, that is, the distance between the pressure-sensitive adhesive layer 46A having light scattering properties and the color filter 15A is 0 ⁇ m. Color shift and interference unevenness due to 400A can be suppressed most efficiently.
  • an antireflection layer may be present on the visible side of the hard coat layer 48A.
  • the OLED display panel 100 has a color filter arranged on the viewing side, 24 is an adhesive layer having light scattering properties, 25 is a glass layer, and 26 is An adhesive layer or adhesive layer, 27 is a resin layer, 28 is a hard coat layer, 21 to 23 and 29 are absent, and the distance d ( ⁇ m) between the adhesive layer 24 having scattering properties and the color filter ) is 700 ⁇ m or less. Since the distance d between the adhesive layer having light scattering properties and the color filter is 700 ⁇ m or less, the light scattering layer is laminated to suppress color shift and interference unevenness caused by the OLED display device 300. Also, image blurring is less likely to occur, and visibility is excellent.
  • FIG. 6 shows an OLED display device 400B according to this embodiment.
  • 44B to 48B are layers constituting the optical laminate 40B, 44B is an adhesive layer having light scattering properties, 44B is an adhesive layer having light scattering properties, 45B is a glass layer, and 46B is an adhesive layer.
  • 15B is a color filter arranged on the viewing side (upper side in FIG. 6) of the OLED display panel 400B.
  • the pressure-sensitive adhesive layer 44B having light scattering properties and the color filter 15B are in direct contact, that is, the distance between the pressure-sensitive adhesive layer 44B having light scattering properties and the color filter 15B is 0 ⁇ m. Color shift and interference unevenness due to 400B can be suppressed most efficiently.
  • an antireflection layer may exist on the visible side of the hard coat layer 48B.
  • FIG. is an adhesive layer
  • 25 is a glass layer
  • 26 is an adhesive layer
  • 27 is a resin layer
  • 28 is a hard coat layer.
  • the pressure-sensitive adhesive layer has a light-scattering property
  • the distance d ( ⁇ m) between the pressure-sensitive adhesive layer having a light-scattering property and the color filter is 700 ⁇ m or less. Since the distance d between the adhesive layer having light scattering properties and the color filter is 700 ⁇ m or less, the light scattering layer is laminated to suppress color shift and interference unevenness caused by the OLED display device 300. Also, image blurring is less likely to occur, and visibility is excellent.
  • the distance between the pressure-sensitive adhesive layer having light scattering properties and the color filter is more preferably 600 ⁇ m or less. , 500 ⁇ m or less, and most preferably, the pressure-sensitive adhesive layer having light scattering properties and the color filter are in direct contact with each other.
  • OLED display devices 400C and 400D according to this embodiment are shown in FIGS. 7(a) and 7(b), respectively.
  • 41C to 48C are layers constituting the optical laminate 40C, 41C is an adhesive layer, 42C is a resin layer, 43C is a hard coat layer, 44C is an adhesive layer, and 45C is a glass layer.
  • 46C is an adhesive layer having light scattering properties
  • 47C is a resin layer
  • 48C is a hard coat layer
  • 15C is a color filter arranged on the viewing side (upper side in FIG. 7A) of the OLED display panel 400C, and the distance d ( ⁇ m) between the adhesive layer 46D having light scattering properties and the color filter 15C. is 700 ⁇ m or less.
  • 41D to 48D are layers constituting the optical laminate 40D, 41D is an adhesive layer having light scattering properties, 42D is a resin layer, 43D is a hard coat layer, and 44D is an adhesive layer.
  • 45D is a glass layer, 46D is an adhesive layer, 47D is a resin layer, and 48D is a hard coat layer.
  • the 15D is a color filter arranged on the viewing side (upper side in FIG. 7B) of the OLED display panel 400D.
  • the pressure-sensitive adhesive layer 41D having light scattering properties and the color filters 15D are in direct contact, that is, the distance between the pressure-sensitive adhesive layer 41D having light scattering properties and the color filters 15D is 0 ⁇ m. Color shift and interference unevenness due to 400D can be most efficiently suppressed.
  • an antireflection layer may be present on the viewing side of the hard coat layers 48C and 48D.
  • FIG. 2 shows an adhesive layer or adhesive layer
  • 27 is a resin layer
  • 28 is an antiglare layer
  • 21 to 25 and 29 are absent.
  • FIG. 8 shows an OLED display device 500A according to this embodiment.
  • 56A to 58A are layers constituting the optical layered body 50A
  • 56A is an adhesive layer or adhesive layer
  • 57A is a resin layer
  • 58A is an antiglare layer. Since the optical layered body 50A has the antiglare layer 58A, color shift and interference unevenness caused by the OLED display panel 100 are suppressed, and the OLED display device 500A has excellent visibility.
  • an antireflection layer may exist on the viewing side of the antiglare layer 58A.
  • FIG. 9 shows an OLED display device 500B according to this embodiment.
  • 54B to 58B are layers constituting the optical laminate 50B
  • 54B is an adhesive layer or adhesive layer
  • 55B is a glass layer
  • 56B is an adhesive layer or adhesive layer
  • 57B is a resin layer
  • 58B is an antiglare layer. Since the optical layered body 50B has the antiglare layer 58B, color shift and interference unevenness caused by the OLED display panel 100 are suppressed, and the OLED display device 500B has excellent visibility.
  • an antireflection layer may exist on the viewing side of the antiglare layer 58B.
  • FIG. 10 shows an OLED display device 500C according to this embodiment.
  • 51C to 58C are layers constituting an optical laminate 50C
  • 51C is an adhesive layer
  • 52C is a resin layer
  • 53C is a hard coat layer
  • 54C is an adhesive layer
  • 55C is a glass layer
  • 56C is a glass layer.
  • An adhesive layer, 57C is a resin layer
  • 58C is an antiglare layer.
  • the optical layered body 50C has the antiglare layer 58C, color shift and interference unevenness caused by the OLED display panel 100 are suppressed, and the OLED display device 500C has excellent visibility.
  • an antireflection layer may exist on the viewing side of the antiglare layer 58C.
  • FIG. 11 shows an OLED display device 600A according to this embodiment.
  • 61A to 69A are layers constituting an optical laminate 60A
  • 66 is an adhesive layer or adhesive layer
  • 67A is a resin layer
  • 68A is a hard coat layer
  • 69A is an antireflection layer. Since the optical laminate 60A has the antireflection layer 69A, interference unevenness caused by the OLED display panel 100 is suppressed, and the OLED display device 600A has excellent visibility.
  • 68A may be an antiglare layer, or an antiglare layer may be laminated between the hard coat layer 68A and the antireflection layer 69A.
  • the antireflection function is further improved by laminating the antiglare layer 68A and the antireflection layer 69A.
  • FIG. 2 shows an OLED display device 600B according to this embodiment.
  • 61B to 69B are layers constituting the optical laminate 60B
  • 64B is an adhesive layer or adhesive layer
  • 65B is a glass layer
  • 66B is an adhesive layer or adhesive layer
  • 67B is a resin layer
  • 68B is a hard coat layer
  • 69B is an antireflection layer.
  • the optical layered body 60B has the antireflection layer 69B, interference unevenness caused by the OLED display panel 100 is suppressed, and the OLED display device 600B has excellent visibility.
  • 68B may be an antiglare layer, or an antiglare layer may be laminated between the hard coat layer 68B and the antireflection layer 69B.
  • the antireflection function is further improved by laminating the antiglare layer 68B and the antireflection layer 69B.
  • FIG. 2 shows an OLED display device 600C according to this embodiment.
  • 61C to 69C are layers constituting an optical laminate 60C
  • 61C is an adhesive layer
  • 62C is a resin layer
  • 63C is a hard coat layer
  • 64C is an adhesive layer
  • 65C is a glass layer
  • 66C is a glass layer.
  • An adhesive layer, 67C is a resin layer, 68C is a hard coat layer, and 69C is an antireflection layer. Since the optical layered body 60C has the antireflection layer 69C, interference unevenness caused by the OLED display panel 100 is suppressed, and the OLED display device 600C has excellent visibility.
  • 68C may be an antiglare layer, or an antiglare layer may be laminated between the hard coat layer 68C and the antireflection layer 69C. In this embodiment, the antireflection function is further improved by laminating the antiglare layer 68C and the antireflection layer 69C.
  • FIG. 14 shows an OLED display device 700A according to this embodiment.
  • 71A, 72A, 74A, and 75A are layers constituting the optical laminate 70A
  • 71A is a pressure-sensitive adhesive layer or adhesive layer
  • 72A is a resin layer
  • 73A is absent
  • 74A is an adhesive.
  • Layer, 75A is a glass layer.
  • the glass layer is a material that is easily broken and has low flexibility, although it has excellent impact resistance.
  • 21 is an adhesive layer
  • 22 is a resin layer
  • 23 is absent
  • 24 is an adhesive layer
  • 25 is a glass layer
  • 26 is an adhesive layer
  • 27 is a resin layer
  • 28 is a hard coat layer
  • the antireflection layer 29 is not present.
  • 21 is an adhesive layer
  • 22 is a resin layer
  • 23 is a hard coat layer
  • 24 is an adhesive layer
  • 25 is a glass layer
  • 26 is an adhesive layer
  • 27 is a resin layer
  • 28 is a hard coat layer.
  • the antireflection layer 29 does not exist.
  • OLED display devices 700B and 700C according to this embodiment are shown in FIGS. 15(a) and 15(b), respectively. In FIG.
  • 71B, 72B, 74B to 78B are layers constituting the optical laminate 70B, 71B is an adhesive layer, 72B is a resin layer, 74B is an adhesive layer, 75B is a glass layer, and 76B. is an adhesive layer, 77B is a resin layer, and 78B is a hard coat layer.
  • 71C to 78C are layers constituting an optical laminate 70C, 71C is an adhesive layer, 72C is a resin layer, 73C is a hard coat layer, 74C is an adhesive layer, and 75C is A glass layer, 76C an adhesive layer, 77C a resin layer, and 78C a hard coat layer.
  • the resin layer 72B and the glass layer 75B are bonded by the adhesive layer 74B, or in FIG. 15(b), the glass layer 75C and the resin layer 77C are bonded by the adhesive. Bonding by layer 76C imparts excellent impact resistance to each of optical stacks 70B and 70C even if they do not have polarizers.
  • the glass layer is a material that is easily broken and has low flexibility, although it has excellent impact resistance. By bonding the glass layer and the resin layer with an adhesive layer, flexibility and bendability are improved, and the OLED display devices 700B and 700C can be used for flexible devices and foldable devices.
  • an antireflection layer may be present on the visible side of the hard coat layers 78B and 78C.
  • FIG. 16 shows an OLED display device 800A according to this embodiment.
  • 81A to 83A are layers constituting an optical laminate 80A
  • 81A is an adhesive layer or adhesive layer
  • 82A is a transparent polyimide layer
  • 83A is a hard coat layer.
  • the optical layered body 80A having the transparent polyimide layer 82A and the hard coat layer 83A provides excellent impact resistance even when the optical layered body 80A does not have a polarizing plate.
  • the optical layered body 80A does not have a glass layer.
  • the glass layer is a material that exhibits high hardness and excellent impact resistance, but is poor in handleability and is difficult to use for large displays used in PCs, tablets, and the like.
  • a transparent polyimide layer and a hard coat layer By laminating a transparent polyimide layer and a hard coat layer, it is possible to achieve a high hardness equivalent to that of a glass layer, and it is also easy to handle, so it can be applied to large displays used in PCs, tablets, etc.
  • FIG. 17 shows an OLED display device 800B according to this embodiment.
  • 81B to 84B, 87B, and 88B are layers constituting the optical laminate 80B
  • 81B is an adhesive layer
  • 82B is a transparent polyimide layer
  • 83B is a hard coat layer
  • 84B is an adhesive layer
  • 87B is A resin layer 88B is a hard coat layer.
  • the optical layered body 80B having the transparent polyimide layer 82B and the hard coat layer 83B provides excellent impact resistance even when the optical layered body 80B does not have a polarizing plate. Also, in this embodiment, the optical layered body 80B does not have a glass layer.
  • the glass layer is a material that exhibits high hardness and excellent impact resistance, but is poor in handleability and is difficult to use for large displays used in PCs, tablets, and the like.
  • intermediate layers are formed between the transparent polyimide layer 82A and the hard coat layer 83A and between the transparent polyimide layer 82B and the hard coat layer 83B. is preferred (not shown).
  • an intermediate layer (compatible layer) between the transparent polyimide layers 82A, B and the hard coat layers 83A, B
  • adhesion between the transparent polyimide layers 82A, B and the hard coat layers 83A, B is improved. do.
  • the shear breaking strength between the transparent polyimide layers 82A, B and the hard coat layers 83A, B is preferably 20 MPa or more.
  • Example 1 An OLED display device was prepared by peeling off the optical film laminated on the viewing side of a 4K OLED monitor (model number: EPS269Q015A) manufactured by JOLED Corporation.
  • the composition for forming a hard coat layer was applied to one surface of a PET film (trade name “50U48”, manufactured by Toray Industries, Inc., thickness: 50 ⁇ m) as a transparent film substrate to form a coating film. .
  • this coating film was dried by heating at a temperature of 80° C. for 60 seconds, and then cured by ultraviolet irradiation.
  • a high-pressure mercury lamp was used as a light source, ultraviolet rays with a wavelength of 365 nm were used, and the integrated amount of light was set at 300 mJ/cm 2 .
  • a hard coat layer having a thickness of 3 ⁇ m was formed on the PET film.
  • the heated optical film was introduced into a roll-to-roll type sputtering film forming apparatus, and the pressure in the film forming chamber was reduced to 1 ⁇ 10 ⁇ 4 Pa.
  • argon gas and oxygen gas were introduced at a volume ratio of 100:10, the surface temperature of the film-forming roll was set to -8°C, and a thickness of 1.5°C was formed on the hard coat layer by a sputtering method.
  • An ITO layer (primer layer) of 5 nm was formed.
  • An ITO target containing indium oxide and tin oxide at a weight ratio of 90:10 was used as the target material for forming the primer layer.
  • the power source was an MFAC power supply
  • the discharge power was 2.5 kW
  • the pressure in the film formation chamber was 0.2 Pa.
  • a first layer Nb 2 having a thickness of 12 nm was formed on the primer layer by a sputtering method.
  • O5 layer reffractive index: 2.32
  • 2nd layer 29 nm thick SiO2 layer (refractive index: 1.46)
  • 3rd layer 107 nm thick Nb2O5 layer
  • 4th layer thick An 81 nm SiO 2 layer was deposited in this order.
  • an antireflection layer having a four-layer structure (a four-layer structure consisting of a first layer, a second layer, a third layer, and a fourth layer) was formed on the primer layer.
  • the surface temperature of the deposition roll was ⁇ 8° C.
  • the power source was the MFAC power source
  • the pressure in the deposition chamber was 0.7 Pa.
  • a Nb target was used, argon gas and oxygen gas were introduced at a volume ratio of 100:5, and the discharge power was set to 10.5 kW.
  • a Si target was used, argon gas and oxygen gas were introduced at a volume ratio of 100:30, and the discharge power was set to 14 kW.
  • a Nb target was used, argon gas and oxygen gas were introduced at a volume ratio of 100:13, and the discharge power was set at 22 kW.
  • a Si target was used, argon gas and oxygen gas were introduced at a volume ratio of 100:30, and the discharge power was 12 kW.
  • the optical layered body was laminated on the OLED display device via an acrylic pressure-sensitive adhesive layer such that the antifouling layer of the optical layered body was on the viewing side, to produce an OLED display device with the optical layered body.
  • Examples 2-4 OLED display devices with optical laminates of Examples 2 to 4 were produced by the same manufacturing method as in Example 1, except that the thicknesses of the first to fourth layers in the step of forming the antireflection layer were changed to the conditions shown in Table 1. made.
  • Comparative example 1 OLED display with an optical laminate of Comparative Example 1 by the same manufacturing method as in Example 1 except that the surface treatment of the hard coat layer, the formation of the primer layer, the formation of the antireflection layer, and the formation of the antifouling layer were not performed. A device was fabricated.
  • Rf1, Rf2, Rp1, Rp2 A spectrophotometer manufactured by Hitachi High-Tech Co., Ltd. was used to measure the reflectance of the optical laminate at each wavelength of 380 to 780 nm.
  • the reflectance at each wavelength of 380 to 780 nm of the surface from which the optical film was removed of the OLED display device from which the optical film laminated on the viewing side of the 4K OLED monitor (model number: EPS269Q015A) made by JOLED Co., Ltd. was removed.
  • a spectrophotometer "CM-2600d” manufactured by Konica Minolta, Inc. to calculate the first peak wavelength WL1 (nm) and the second peak wavelength WL2 (nm).
  • the first peak was the maximum value at a wavelength of 380-455 nm
  • the second peak was the maximum value at a wavelength of 460-530 nm.
  • Rp1 and Rp2 be the reflectances of the OLED monitor at the first peak wavelength WL1 (nm) and the second peak wavelength WL2 (nm), respectively, and at the first peak wavelength WL1 (nm) and the second peak wavelength WL2 (nm)
  • the reflectances of the optical layered body were calculated as Rf1 and Rf2, respectively.
  • the reflectance of the optical laminate in Examples 1 to 4 corresponds to the reflectance of the antireflection layer.
  • Rp1 is the maximum value at a wavelength of 380 to 455 nm, and the reflectance of the antireflection layer at the wavelength at Rp1. is Rf1, the maximum value at a wavelength of 460 to 530 nm is Rp2, and the reflectance of the antireflection layer at the wavelength in Rp2 is Rf2, 4.
  • the optical laminate for an OLED display device according to any one of Appendices 1 to 3, wherein the sum of [Rf1/Rp1] and [Rf2/Rp2] is 0.42 or less.
  • [Appendix 5] The optical laminate for an OLED display device according to any one of Appendices 1 to 4, wherein the antireflection layer has a water contact angle of 100° or more.
  • [Appendix 6] The optical laminate for an OLED display device according to any one of Appendices 1 to 5, wherein the antireflection layer has a water contact angle of 90° or more after an eraser test.
  • [Appendix 7] The optical laminate for an OLED display device according to any one of Appendices 1 to 6, wherein the antireflection layer is made of an inorganic substance.
  • Appendix 8 The optical laminate for an OLED display device according to any one of Appendices 1 to 7, comprising a hard coat layer, a base layer, and an adhesive layer on the side opposite to the viewing side of the antireflection layer. body.
  • Appendix 9 The optical laminate for an OLED display device according to Appendix 8, wherein the pressure-sensitive adhesive layer has a haze value of 20 to 90%.
  • Appendix 10 The optical laminate for an OLED display device according to Appendix 8 or 9, wherein the hard coat layer has a thickness of 2 to 10 ⁇ m.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polarising Elements (AREA)

Abstract

Provided is an optical laminate for use in an OLED display device that does not use a polarizing plate and is not susceptible to interference variations. The present invention provides an optical laminate for use in an OLED display device in which only an optical element having a degree of polarization of 95% or less is laminated on the viewing side of an OLED element. The optical element has at least an antireflection layer on the viewing side thereof.

Description

OLED表示装置用光学積層体Optical laminate for OLED display
 本発明は、OLED表示装置用光学積層体に関する。より詳細には、偏光板を使用しないOLED表示装置に用いられる光学積層体に関する。 The present invention relates to an optical laminate for an OLED display device. More particularly, it relates to an optical laminate used in an OLED display that does not use polarizing plates.
 OLED(Organic light emitting diode:有機発光ダイオード)表示装置は、液晶表示装置と比較して視認性が高い、視野角依存性が少ない、応答速度が速いことなどの表示性能の利点を有する。また、OLED表示装置は、バックライトを使用しないので、薄型化に有利であり、フレキシブルに湾曲させたり、折り曲げ可能なフォルダブルデバイスとして使用することも可能となる。 OLED (Organic light emitting diode) display devices have display performance advantages such as high visibility, low viewing angle dependency, and fast response speed compared to liquid crystal display devices. In addition, since the OLED display device does not use a backlight, it is advantageous for thinning, and can be used as a foldable device that can be flexibly curved or folded.
 OLED表示装置は、通常、陽極、発光層を含むOLED層及び陰極がこの順に積層されたOLED素子を有する。OLED素子の電極(陽極または陰極)には、ITOなどの高屈折率の透明導電性材料や反射率の高い金属材料などが用いられるため、外光が電極によって反射し、コントラスト低下や内部反射による映り込みの問題が生じ、OLED表示装置の表示性能が悪化してしまう場合がある。 An OLED display device usually has an OLED element in which an anode, an OLED layer including a light-emitting layer, and a cathode are laminated in this order. The electrode (anode or cathode) of the OLED element is made of a transparent conductive material with a high refractive index such as ITO or a metal material with a high reflectance. A glare problem may occur, degrading the display performance of the OLED display device.
 外光反射による悪影響を抑えるため、OLED表示装置の視認側に、偏光板と、λ/4板のような円偏光板とを配置する提案がなされている(例えば、特許文献1)。このような円偏光板は、外光に含まれる紫外線を遮断し、紫外線によるOLED素子の劣化を防止する機能も有する。さらには、円偏光板自体の機械的特性により、外部からの衝撃を吸収し、OLED表示装置の損傷も防止するという機能をも有する。 In order to suppress adverse effects due to reflection of external light, a proposal has been made to arrange a polarizing plate and a circularly polarizing plate such as a λ/4 plate on the viewing side of the OLED display device (for example, Patent Document 1). Such a circularly polarizing plate also has a function of blocking ultraviolet rays contained in external light and preventing deterioration of the OLED element due to ultraviolet rays. Furthermore, due to the mechanical properties of the circularly polarizing plate itself, it also has the function of absorbing external shocks and preventing damage to the OLED display device.
 しかしながら、円偏光板を用いると、偏光板による吸収のために光の利用効率(すなわち採光率)が悪く、輝度が低くなってしまう。所望の輝度を得るためにOLED素子の発光強度を高めると、消費電力が増加すると共に、OLED素子の短寿命化につながる。また、偏光板は貼り付けるための粘着剤層を含めると、0.15mm程度の厚さになり、OLED表示装置の薄型化には不利となる。さらには、円偏光板は高価なため、製造コストが高くなるという問題もある。 However, when a circularly polarizing plate is used, the efficiency of light utilization (that is, the lighting rate) is poor due to absorption by the polarizing plate, resulting in low luminance. If the emission intensity of the OLED element is increased to obtain desired luminance, the power consumption increases and the life of the OLED element is shortened. In addition, the polarizing plate has a thickness of about 0.15 mm including an adhesive layer for attachment, which is disadvantageous in reducing the thickness of the OLED display device. Furthermore, since the circularly polarizing plate is expensive, there is also the problem that the manufacturing cost is high.
 円偏光板の代替として、OLED素子に対して視認側にカラーフィルタを配置し、OLED層発光色と同じ色のカラーフィルタが対向するように位置合わせを行うことにより、外光反射を防止しながら、OLED素子の発光光度を向上させる方法が提案されている(例えば、特許文献2)。 As an alternative to the circularly polarizing plate, a color filter is placed on the viewing side of the OLED element, and alignment is performed so that the color filter of the same color as the emitted color of the OLED layer faces each other, thereby preventing external light reflection. , a method for improving the luminous intensity of an OLED element has been proposed (for example, Patent Document 2).
 OLED表示装置の1つの形態として、マイクロキャビティ(多重反射干渉、光共振器または微小共振器とも称される)構造を有するOLED表示装置が知られている。マイクロキャビティ構造を有するOLED表示装置によれば、外部に取り出される光のスペクトルが急峻かつ高強度となるので、輝度および色純度を向上させることができるとされている(例えば、特許文献3)。 An OLED display device having a microcavity (also called multiple reflection interference, optical resonator or microresonator) structure is known as one form of OLED display device. According to the OLED display device having the microcavity structure, the spectrum of the light extracted to the outside becomes steep and high intensity, so it is said that the luminance and color purity can be improved (for example, Patent Document 3).
 OLED表示装置では、OLED素子の視認側に、表面保護、屈曲性などの機能を付与するため、粘着剤層、プラスチックや薄ガラス等の基材、ハードコート層等の各種光学素子の層が積層されている。 In an OLED display device, various optical element layers such as an adhesive layer, a base material such as plastic or thin glass, and a hard coat layer are laminated in order to provide functions such as surface protection and flexibility on the viewing side of the OLED element. It is
特開2003-332068号公報JP-A-2003-332068 特開2018-112715号公報JP 2018-112715 A 特開2015-207377号公報JP 2015-207377 A
 円偏光板の代替として、OLED素子に対して視認側にカラーフィルタを配置し、OLED層発光色と同じ色のカラーフィルタが対向するように位置合わせを行うことにより、外光反射を防止しながら、OLED素子の発光光度を向上させる方法は、カラーフィルタの規則的な二次元構造により反射光の干渉ムラが生じ、OLED表示装置の視認性を損なう場合がある。 As an alternative to the circularly polarizing plate, a color filter is placed on the viewing side of the OLED element, and alignment is performed so that the color filter of the same color as the emitted color of the OLED layer faces each other, thereby preventing external light reflection. However, the regular two-dimensional structure of the color filter may cause uneven interference of reflected light, impairing the visibility of the OLED display device.
 従って、本発明の目的は、偏光板を使用しないOLED表示装置において、干渉ムラが生じにくいOLED表示装置に用いられる光学積層体を提供することにある。 Accordingly, an object of the present invention is to provide an optical laminate used in an OLED display device that does not use a polarizing plate and in which interference unevenness is less likely to occur.
 本発明者らは前記目的を達成するために鋭意検討した結果、偏光板を使用しないOLED表示装置において、OLED素子の視認側に反射防止層を含む光学積層体を積層させることにより、干渉ムラが抑制されたOLED表示装置を提供することができることを見出し、本発明を完成した。 The present inventors have made intensive studies to achieve the above object, and found that in an OLED display device that does not use a polarizing plate, interference unevenness can be reduced by laminating an optical laminate including an antireflection layer on the viewing side of the OLED element. The inventors have found that it is possible to provide a suppressed OLED display device, and completed the present invention.
 すなわち、本発明は、OLED素子の視認側に偏光度95%以下の光学素子のみが積層されたOLED表示装置に用いられる光学積層体であって、前記光学素子は、少なくとも反射防止層を有する、OLED表示装置用光学積層体を提供する。 That is, the present invention provides an optical laminate used in an OLED display device in which only an optical element having a degree of polarization of 95% or less is laminated on the viewing side of the OLED element, the optical element having at least an antireflection layer. An optical stack for an OLED display is provided.
 前記OLED表示装置用光学積層体を積層しない状態の前記OLED表示装置の反射率スペクトルにおいて、波長380~455nmにおける最大値をRp1、前記Rp1における波長での前記反射防止層の反射率をRf1としたとき、[Rf1/Rp1]は0.3以下であることが好ましい。 In the reflectance spectrum of the OLED display device without laminating the optical laminate for an OLED display device, the maximum value at a wavelength of 380 to 455 nm was Rp1, and the reflectance of the antireflection layer at the wavelength in Rp1 was Rf1. At this time, [Rf1/Rp1] is preferably 0.3 or less.
 前記OLED表示装置用光学積層体を積層しない状態の前記OLED表示装置の反射率スペクトルにおいて、波長460~530nmにおける最大値をRp2、前記Rp2における波長での前記反射防止層の反射率をRf2としたとき、[Rf2/Rp2]は0.12以下であることが好ましい。 In the reflectance spectrum of the OLED display device without laminating the optical layered body for an OLED display device, the maximum value at a wavelength of 460 to 530 nm was Rp2, and the reflectance of the antireflection layer at the wavelength in Rp2 was Rf2. At this time, [Rf2/Rp2] is preferably 0.12 or less.
 前記[Rf1/Rp1]および前記[Rf2/Rp2]の合計は0.42以下であることが好ましい。 The sum of [Rf1/Rp1] and [Rf2/Rp2] is preferably 0.42 or less.
 前記反射防止層の水接触角は100°以上であることが好ましい。 The antireflection layer preferably has a water contact angle of 100° or more.
 前記反射防止層の消しゴム試験後の水接触角は90°以上であることが好ましい。 The water contact angle of the antireflection layer after an eraser test is preferably 90° or more.
 前記反射防止層は無機物から構成されることが好ましい。 The antireflection layer is preferably composed of an inorganic substance.
 前記反射防止層の視認側とは反対側に、ハードコート層、基材層、および粘着剤層を備えることが好ましい。 A hard coat layer, a substrate layer, and an adhesive layer are preferably provided on the side opposite to the viewing side of the antireflection layer.
 前記粘着剤層のヘイズ値は20~90%であることが好ましい。 The haze value of the adhesive layer is preferably 20-90%.
 前記ハードコート層の厚みは2~10μmであることが好ましい。 The thickness of the hard coat layer is preferably 2 to 10 μm.
 本発明のOLED表示装置用光学積層体がOLED素子の視認側に積層されたOLED表示装置は、干渉ムラが生じにくくなり、視認性に優れる。 An OLED display device in which the optical layered body for an OLED display device of the present invention is laminated on the visible side of the OLED element is less prone to interference unevenness and has excellent visibility.
本発明のOLED表示パネルの一実施形態を示す概略断面図である。1 is a schematic cross-sectional view showing one embodiment of an OLED display panel of the present invention; FIG. 本発明の光学積層体が積層されたOLED表示装置の一実施形態を示す概略断面図である。1 is a schematic cross-sectional view showing an embodiment of an OLED display device laminated with the optical laminate of the present invention. FIG. 本発明の光学積層体が積層されたOLED表示装置の一実施形態を示す概略断面図である。1 is a schematic cross-sectional view showing an embodiment of an OLED display device laminated with the optical laminate of the present invention. FIG. 本発明の光学積層体が積層されたOLED表示装置の一実施形態を示す概略断面図である。1 is a schematic cross-sectional view showing an embodiment of an OLED display device laminated with the optical laminate of the present invention. FIG. 本発明の光学積層体が積層されたOLED表示装置の一実施形態を示す概略断面図である。1 is a schematic cross-sectional view showing an embodiment of an OLED display device laminated with the optical laminate of the present invention. FIG. 本発明の光学積層体が積層されたOLED表示装置の一実施形態を示す概略断面図である。1 is a schematic cross-sectional view showing an embodiment of an OLED display device laminated with the optical laminate of the present invention. FIG. 本発明の光学積層体が積層されたOLED表示装置の一実施形態を示す概略断面図である。1 is a schematic cross-sectional view showing an embodiment of an OLED display device laminated with the optical laminate of the present invention. FIG. 本発明の光学積層体が積層されたOLED表示装置の一実施形態を示す概略断面図である。1 is a schematic cross-sectional view showing an embodiment of an OLED display device laminated with the optical laminate of the present invention. FIG. 本発明の光学積層体が積層されたOLED表示装置の一実施形態を示す概略断面図である。1 is a schematic cross-sectional view showing an embodiment of an OLED display device laminated with the optical laminate of the present invention. FIG. 本発明の光学積層体が積層されたOLED表示装置の一実施形態を示す概略断面図である。1 is a schematic cross-sectional view showing an embodiment of an OLED display device laminated with the optical laminate of the present invention. FIG. 本発明の光学積層体が積層されたOLED表示装置の一実施形態を示す概略断面図である。1 is a schematic cross-sectional view showing an embodiment of an OLED display device laminated with the optical laminate of the present invention. FIG. 本発明の光学積層体が積層されたOLED表示装置の一実施形態を示す概略断面図である。1 is a schematic cross-sectional view showing an embodiment of an OLED display device laminated with the optical laminate of the present invention. FIG. 本発明の光学積層体が積層されたOLED表示装置の一実施形態を示す概略断面図である。1 is a schematic cross-sectional view showing an embodiment of an OLED display device laminated with the optical laminate of the present invention. FIG. 本発明の光学積層体が積層されたOLED表示装置の一実施形態を示す概略断面図である。1 is a schematic cross-sectional view showing an embodiment of an OLED display device laminated with the optical laminate of the present invention. FIG. 本発明の光学積層体が積層されたOLED表示装置の一実施形態を示す概略断面図である。1 is a schematic cross-sectional view showing an embodiment of an OLED display device laminated with the optical laminate of the present invention. FIG. 本発明の光学積層体が積層されたOLED表示装置の一実施形態を示す概略断面図である。1 is a schematic cross-sectional view showing an embodiment of an OLED display device laminated with the optical laminate of the present invention. FIG. 本発明の光学積層体が積層されたOLED表示装置の一実施形態を示す概略断面図である。1 is a schematic cross-sectional view showing an embodiment of an OLED display device laminated with the optical laminate of the present invention. FIG.
 本発明は、OLED素子の視認側に偏光度95%以下の光学素子のみが積層されたOLED表示装置に用いられる光学積層体(OLED表示装置用光学積層体)を提供する。本発明のOLED表示装置用光学積層体を、「本発明の光学積層体」、本発明の光学積層体を用いるOLED表示装置を「本発明のOLED表示装置」、本発明の光学積層体を構成する光学素子を「本発明の光学素子」と称する場合がある。 The present invention provides an optical layered body (optical layered body for OLED display device) used in an OLED display device in which only an optical element having a degree of polarization of 95% or less is layered on the viewing side of the OLED element. The optical layered body for an OLED display device of the present invention constitutes the "optical layered body of the present invention", the OLED display device using the optical layered body of the present invention is the "OLED display device of the present invention", and the optical layered body of the present invention. Such an optical element may be referred to as "the optical element of the present invention".
 本発明のOLED表示装置は、必須構成として、陽極、発光層を含むOLED層及び陰極がこの順に積層されたOLED素子を含むOLED表示パネルと、OLED素子の視認側に本発明の光学積層体が積層された構成を有する。本発明のOLED表示装置を構成するOLED表示パネルを、「本発明のOLED表示パネル」と称する場合がある。 The OLED display device of the present invention comprises, as essential components, an OLED display panel including an OLED element in which an anode, an OLED layer including a light-emitting layer, and a cathode are laminated in this order, and an optical laminate of the present invention on the viewing side of the OLED element. It has a laminated construction. An OLED display panel constituting the OLED display device of the present invention may be referred to as "the OLED display panel of the present invention".
 本発明のOLED表示装置は、OLED表示パネルに、OLED素子の視認側に偏光度95%以下の光学素子のみが積層されている。「OLED素子の視認側に偏光度95%以下の光学素子のみが積層されている」とは、OLED素子の視認側の光学素子に、偏光度95%を超える光学素子が含まれないことを意味する。「偏光度95%を超える光学素子」としては、特に限定さないが、直線偏光板、1/4位相差板、1/2位相差板、円偏光板、反射型偏光板などの偏光板が含まれる。すなわち、本発明のOLED表示装置は、OLED素子の視認側に偏光板を含まないOLED表示装置である。
 偏光度は、紫外可視分光光度計を用いて測定して視感度補正を行なった平行透過率Tpおよび直交透過率Tcに基づいて、下記式により求められるものである。
 偏光度(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
In the OLED display device of the present invention, only an optical element having a degree of polarization of 95% or less is laminated on the OLED display panel on the viewing side of the OLED element. "Only an optical element with a degree of polarization of 95% or less is laminated on the viewing side of the OLED element" means that the optical element on the viewing side of the OLED element does not include an optical element with a degree of polarization exceeding 95%. do. The "optical element having a degree of polarization exceeding 95%" is not particularly limited, but includes polarizing plates such as linear polarizing plates, 1/4 retardation plates, 1/2 retardation plates, circular polarizing plates, and reflective polarizing plates. included. That is, the OLED display device of the present invention is an OLED display device that does not include a polarizing plate on the viewing side of the OLED element.
The degree of polarization is obtained by the following formula based on the parallel transmittance Tp and the orthogonal transmittance Tc, which are measured using an ultraviolet-visible spectrophotometer and subjected to visibility correction.
Degree of polarization (%) = {(Tp-Tc)/(Tp+Tc)} 1/2 x 100
 本発明のOLED表示装置が、OLED素子の視認側に偏光板を含まないことにより、偏光板によるOLED素子から発せられる光の吸収が抑制され、光の採光率が向上して消費電力を節約できると共に、OLED素子の長寿命化につながる。また、偏光板を使用しないことにより薄型化が可能になり、製造コストも低減できる。 Since the OLED display device of the present invention does not include a polarizing plate on the viewing side of the OLED element, the absorption of light emitted from the OLED element by the polarizing plate is suppressed, the light acceptance rate is improved, and power consumption can be saved. Together with this, it leads to a longer life of the OLED element. In addition, since the polarizing plate is not used, the thickness can be reduced, and the manufacturing cost can be reduced.
 本発明の光学素子は、少なくとも反射防止層を有する。本発明の光学素子が、反射防止層を有することにより、本発明のOLED表示装置の干渉ムラが生じにくく、視認性に優れるため好適である。 The optical element of the present invention has at least an antireflection layer. When the optical element of the present invention has an antireflection layer, the OLED display device of the present invention is less prone to interference unevenness and has excellent visibility, which is preferable.
 本発明のOLED表示装置の他の実施形態では、本実施形態の光学素子は、少なくとも粘着剤層を有しており、前記粘着剤層の少なくとも1層は光散乱特性を有していることが好ましい。本実施形態の光学積層体を構成する粘着剤層が光散乱特性を有しているという構成は、本実施形態のOLED表示装置に起因するカラーシフトや干渉ムラを抑制し、視認性に優れる点で好適である。 In another embodiment of the OLED display device of the present invention, the optical element of this embodiment has at least an adhesive layer, and at least one of the adhesive layers may have light scattering properties. preferable. The configuration in which the pressure-sensitive adhesive layer constituting the optical laminate of the present embodiment has light scattering properties suppresses color shift and interference unevenness caused by the OLED display device of the present embodiment, and provides excellent visibility. is suitable.
 本発明のOLED表示装置の他の実施形態では、OLED素子の視認側にカラーフィルタが配置されており、前記カラーフィルタの視認側には、本実施形態の光学素子のみが積層されていることが好ましい。本実施形態の光学素子は、少なくとも粘着剤層を有し、前記粘着剤層の少なくとも1層は、光散乱特性を有しており、前記光散乱特性を有する粘着剤層と、前記カラーフィルタとの間の距離(d)が700μm以下であることが好ましい。前記光散乱特性を有する粘着剤層と、前記カラーフィルタとの間の距離が700μm以下であることにより、本実施形態のOLED表示装置に起因するカラーシフトや干渉ムラを抑制するために光散乱層を積層しても、画像ボケが生じにくく、さらに視認性に優れる点で好適である。 In another embodiment of the OLED display device of the present invention, a color filter is arranged on the viewing side of the OLED element, and only the optical element of this embodiment is laminated on the viewing side of the color filter. preferable. The optical element of this embodiment has at least an adhesive layer, at least one of the adhesive layers has a light scattering property, and the adhesive layer having the light scattering property and the color filter are The distance (d) between is preferably 700 μm or less. Since the distance between the adhesive layer having light scattering properties and the color filter is 700 μm or less, the light scattering layer is used to suppress color shift and interference unevenness caused by the OLED display device of the present embodiment. is preferable in that image blurring is less likely to occur and visibility is excellent.
 本発明のOLED表示装置の他の実施形態では、本実施形態の光学素子は、少なくとも防眩層を有することが好ましい。本実施形態の光学素子が、防眩層を有することにより、本実施形態のOLED表示装置に起因するカラーシフトや干渉ムラを抑制し、視認性に優れる点で好適である。 In another embodiment of the OLED display device of the present invention, the optical element of this embodiment preferably has at least an antiglare layer. By having the antiglare layer in the optical element of the present embodiment, color shift and interference unevenness caused by the OLED display device of the present embodiment are suppressed, and visibility is excellent.
 本発明のOLED表示装置の他の実施形態では、本実施形態の光学素子は、少なくともガラス層及び樹脂層を有し、前記ガラス層及び前記樹脂層は、接着剤層により接着されていることが好ましい。本実施形態の光学積層体において、前記ガラス層及び前記樹脂層が接着剤層により接着されていることにより、本実施形態のOLED表示装置の耐衝撃性が向上するため、好適である。 In another embodiment of the OLED display device of the present invention, the optical element of this embodiment has at least a glass layer and a resin layer, and the glass layer and the resin layer are bonded by an adhesive layer. preferable. In the optical layered body of the present embodiment, the glass layer and the resin layer are adhered by an adhesive layer, which is preferable because the impact resistance of the OLED display device of the present embodiment is improved.
 本発明のOLED表示装置の他の実施形態では、本実施形態の光学素子は、少なくとも透明ポリイミド層及びハードコート層を有することが好ましい。本実施形態の光学素子が、透明ポリイミド層及びハードコート層を有することにより、本実施形態のOLED表示装置の耐衝撃性が向上するため、好適である。
 以下、各構成について、説明する。
In another embodiment of the OLED display device of the present invention, the optical element of this embodiment preferably has at least a transparent polyimide layer and a hard coat layer. It is preferable that the optical element of the present embodiment has a transparent polyimide layer and a hard coat layer, because the impact resistance of the OLED display device of the present embodiment is improved.
Each configuration will be described below.
(OLED表示パネル)
 本発明のOLED表示装置に用いられるOLED表示パネルは、必須構成として、陽極、発光層を含むOLED層及び陰極がこの順に積層されたOLED素子を含む。OLED表示パネルのOLED素子の視認側に本発明の光学積層体が積層される。
(OLED display panel)
The OLED display panel used in the OLED display device of the present invention includes, as essential components, an OLED element in which an anode, an OLED layer including a light-emitting layer, and a cathode are laminated in this order. The optical laminate of the present invention is laminated on the viewing side of the OLED element of the OLED display panel.
 以下に、本発明のOLED表示装置を構成するOLED表示パネルの一実施形態を、図面を参照して説明するが、本発明は、本実施形態に限定されない。
 図1は、本発明のOLED表示パネルの一実施形態を示す概略断面図である。
An embodiment of the OLED display panel that constitutes the OLED display device of the present invention will be described below with reference to the drawings, but the present invention is not limited to this embodiment.
FIG. 1 is a schematic cross-sectional view showing one embodiment of the OLED display panel of the present invention.
 図1に示すように、OLED表示パネル100は、透明電極11aと、赤色光を放射する赤色OLED層10Rと、背面電極11bがこの順に積層された赤色OLED素子12Rと、透明電極11aと、緑色光を放射する緑色OLED層10Gと背面電極11bがこの順に積層された緑色OLED素子12Gと、透明電極11aと、青色光を放射する青色OLED層10Bと背面電極11bがこの順に積層された青色OLED素子12Bとを有している。各複数色のOLED素子12R、12G、12Bが、基板13上に順番に配置されている。基板13の各OLED素子が配置する面には、TFT(Thin Film Transistor)層14が形成されており、各複数色のOLED素子12R、12G、12Bの背面電極11bと接続されている。 As shown in FIG. 1, the OLED display panel 100 includes a transparent electrode 11a, a red OLED layer 10R that emits red light, a red OLED element 12R in which a back electrode 11b is laminated in this order, the transparent electrode 11a, and a green light. A green OLED element 12G in which a green OLED layer 10G emitting light and a back electrode 11b are stacked in this order, a transparent electrode 11a, and a blue OLED in which a blue OLED layer 10B emitting blue light and a back electrode 11b are stacked in this order. element 12B. OLED elements 12R, 12G, and 12B of respective multiple colors are arranged on substrate 13 in order. A TFT (Thin Film Transistor) layer 14 is formed on the surface of the substrate 13 on which the OLED elements are arranged, and is connected to the back electrodes 11b of the OLED elements 12R, 12G, and 12B of the plurality of colors.
 図1のOLED表示パネル100において、各複数色のOLED素子12R、12G、12Bの視認側(図1において上側)に、カラーフィルタ15が配置されている。カラーフィルタ15は、赤色の着色層15R、緑色の着色層15G、青色の着色層15Bを含み、各着色層の間には、ブラックマトリックス層16が設けられている。 In the OLED display panel 100 of FIG. 1, a color filter 15 is arranged on the visible side (upper side in FIG. 1) of each of the OLED elements 12R, 12G, and 12B of multiple colors. The color filter 15 includes a red colored layer 15R, a green colored layer 15G, and a blue colored layer 15B. A black matrix layer 16 is provided between the colored layers.
 図1において、カラーフィルタ15は、赤色の着色層15R、緑色の着色層15G、青色の着色層15Bが、それぞれ、赤色OLED素子12R、緑色OLED素子12G、青色OLED素子12Bと対向するように配置されている。 In FIG. 1, the color filter 15 is arranged such that the red colored layer 15R, the green colored layer 15G, and the blue colored layer 15B face the red OLED element 12R, the green OLED element 12G, and the blue OLED element 12B, respectively. It is
 透明電極11aは、陰極または陽極のいずれかであるが、一般的には陰極として設けられる。透明電極11aの形成材料としては、ITO(インジウム錫オキサイド)、酸化インジウム、IZO(インジウム亜鉛オキサイド)、SnO2、ZnO等の透明導電材料が用いられる。 The transparent electrode 11a is either a cathode or an anode, but is generally provided as a cathode. Transparent conductive materials such as ITO (indium tin oxide), indium oxide, IZO (indium zinc oxide), SnO 2 and ZnO are used as materials for forming the transparent electrode 11a.
 背面電極11bは、透明電極11aの対極として機能するものである。背面電極11bは、陽極または陰極のいずれかであるが、一般的には陽極として基板13の上に設けられる。形成材料としては、金、銀、クロム等の金属等を挙げることができる。従って背面電極11bは、光を反射可能になっている。 The back electrode 11b functions as a counter electrode for the transparent electrode 11a. A back electrode 11b, which is either an anode or a cathode, is generally provided on the substrate 13 as an anode. Examples of the forming material include metals such as gold, silver, and chromium. Therefore, the back electrode 11b can reflect light.
 基板13とカラーフィルタ15との間には、接合層17が設けられる。接合層17は、透光性を有する。接合層17の材料としては、一般的なOLED表示装置に用いられる材料を用いればよく、例えば、感光性ポリイミド樹脂等の光硬化型樹脂、又は、熱硬化型樹脂等を用いることができる。 A bonding layer 17 is provided between the substrate 13 and the color filter 15 . The bonding layer 17 has translucency. As the material of the bonding layer 17, a material used in a general OLED display device may be used. For example, a photocurable resin such as a photosensitive polyimide resin, or a thermosetting resin may be used.
 OLED表示パネル100は、図1に示した構成以外に、OLED表示パネルが有する構成、例えば、正孔注入層、正孔輸送層、電子輸送層、封止層、タッチセンサーパネルなどを有していてもよい(図示略)。 OLED display panel 100 has, in addition to the configuration shown in FIG. (not shown).
 図1のOLED表示パネルの特徴は、各複数色のOLED素子12R、12G、12Bの上に、それぞれ、同じ色の着色層15R、着色層15G、着色層15Bが対向するようにカラーフィルタ15が配置されていることである。図1に示すように、白色である外光Wは、例えば、赤色の着色層15Rを通過し、さらに、透明電極11aと、赤色光を放射する赤色OLED層10Rを通過して背面電極11bで反射し、再び赤色OLED層10R、透明電極11a、及び赤色の着色層15Rを通過して、反射光Gが観察者の眼に入る。 A feature of the OLED display panel of FIG. 1 is that color filters 15 are placed on the OLED elements 12R, 12G, and 12B of a plurality of colors so that the colored layers 15R, 15G, and 15B of the same color face each other. It is arranged. As shown in FIG. 1, external light W, which is white, passes through, for example, a red colored layer 15R, passes through a transparent electrode 11a and a red OLED layer 10R that emits red light, and reaches a rear electrode 11b. After being reflected, the reflected light G again passes through the red OLED layer 10R, the transparent electrode 11a, and the red colored layer 15R and enters the observer's eyes.
 外光Wは赤色の着色層15Rによって、緑色、青色は吸収されるので、光強度は1/3になる。また、反射光Gは赤色の着色層15Rと赤色OLED層10Rを再び通過しているので、これにより減衰を生ずる。また、反射光Gは赤色を呈するので、OLED層10Rから発せられる赤色光を増強し得る。緑色の着色層15G及び青色の着色層15Bに外光Wが入射する場合も同様に、それぞれ緑色光及び青色光が増強され得る。したがって、OLED表示パネルにカラーフィルタを併用することによって、反射防止用に円偏光板を使用しなくとも、外光の反射を大幅に抑えると共に、OLED素子の発光光度を向上させることが出来る。 The green and blue colors of the external light W are absorbed by the red colored layer 15R, so the light intensity is reduced to 1/3. In addition, since the reflected light G passes through the red colored layer 15R and the red OLED layer 10R again, it is attenuated. In addition, since the reflected light G has a red color, the red light emitted from the OLED layer 10R can be enhanced. Likewise, when external light W enters the green colored layer 15G and the blue colored layer 15B, green light and blue light can be enhanced, respectively. Therefore, by using a color filter together with the OLED display panel, it is possible to greatly suppress the reflection of external light and improve the luminous intensity of the OLED element without using a circularly polarizing plate for antireflection.
 しかし、カラーフィルタは、一般に、規則的な二次元構造に起因する干渉ムラが生じやすい。
 また、カラーフィルタは、界面で反射が起こりやすく、OLED素子から発せられる光の採光率が低下するという問題がある。
 また、カラーフィルタには、円偏光板を使用する場合と比べて紫外線吸収機能が十分ではなく、外光に含まれる紫外線により、OLED素子が経年劣化しやすい(すなわち、耐候性が低い)という問題がある。
 また、カラーフィルタは、円偏光板を使用する場合と比べて衝撃吸収機能が十分ではないという問題があった。
However, color filters are generally prone to uneven interference due to their regular two-dimensional structure.
In addition, the color filter has a problem in that reflection is likely to occur at the interface, and the lighting efficiency of the light emitted from the OLED element is lowered.
In addition, the color filter does not have a sufficient ultraviolet absorption function compared to the case of using a circularly polarizing plate, and the OLED element is likely to deteriorate over time due to the ultraviolet rays contained in the external light (i.e., the weather resistance is low). There is
Moreover, the color filter has a problem that the impact absorption function is not sufficient as compared with the case of using the circularly polarizing plate.
 また、本実施形態のOLED表示パネル100は、マイクロキャビティ構造を有する。OLED層10R、10G、10Bから発生した光は、透明電極11aを通過して外部に出射される。ここで、出射光には、OLED層10R、10G、10Bから透明電極11aに向けて直接出射される「直接光」と、OLED層10R、10G、10Bから背面電極11bに向けて出射され、背面電極11bで反射されてから透明電極11aに向かう「反射光」の両方の成分が含まれる。すなわち、OLED層10R、10G、10Bから出射された光の一部が背面電極11b側に進行することなく透明電極11a側に進行し、透明電極11aを通じて外部に出射される第1光路C1と、OLED層10R、10G、10Bから出射された光の残りの一部が背面電極11b側に進行し背面電極11bにより反射された後、OLED層10R、10G、10Bおよび透明電極11aを通じて外部に出射される第2光路C2とが形成される。この直接光と反射光との干渉によって、各色に対応する光成分が強め合うように、OLED層10R、10G、10Bのそれぞれの厚みが異なるものとされている。すなわち、赤色、緑色および青色のそれぞれのELスペクトルピーク波長に背面電極(正極)11bと透明電極(負極)11aとの間の光路長を合致させ、各色から最も強い光を取り出すように、OLED層10R、10G、10Bのそれぞれの厚みが異なるものとされている。具体的には、短波長の青色OLED層10Bの厚みが薄く設計され、長波長の赤色OLED層10Rの厚みが厚く設計されている。OLED層で発生した光は正極と負極との間で反射を繰り返すところ、光路長の合致した波長の光のみを共振させて強調し、光路長のずれたそれ以外の波長の光を弱めることにより、外部に取り出される光のスペクトルが急峻かつ高強度になり、輝度と色純度が向上する。
 マイクロキャビティ構造を有するOLED表示パネルによれば、輝度と色純度が向上するという優れた効果が得られる一方で、スペクトルが急峻であるがゆえに視野角依存性が強い(視野角が狭い)という問題が生じ得る。このため、画像表示時に斜めから画像を見た場合、本来表示したい色とは別の色に見えるカラーシフトが生じる場合がある。
Also, the OLED display panel 100 of this embodiment has a microcavity structure. Light emitted from the OLED layers 10R, 10G, and 10B passes through the transparent electrode 11a and is emitted to the outside. Here, the emitted light includes "direct light" directly emitted from the OLED layers 10R, 10G, and 10B toward the transparent electrode 11a, and emitted light from the OLED layers 10R, 10G, and 10B toward the back electrode 11b. Both components of the "reflected light" that travels toward the transparent electrode 11a after being reflected by the electrode 11b are included. That is, a first optical path C1 in which part of the light emitted from the OLED layers 10R, 10G, and 10B travels to the transparent electrode 11a side without traveling to the back electrode 11b side and is emitted to the outside through the transparent electrode 11a; The rest of the light emitted from the OLED layers 10R, 10G, and 10B travels toward the back electrode 11b, is reflected by the back electrode 11b, and is then emitted to the outside through the OLED layers 10R, 10G, and 10B and the transparent electrode 11a. A second optical path C2 is formed. The thicknesses of the OLED layers 10R, 10G, and 10B are made different so that the light components corresponding to the respective colors strengthen each other due to interference between the direct light and the reflected light. That is, the OLED layers are arranged such that the optical path length between the back electrode (positive electrode) 11b and the transparent electrode (negative electrode) 11a is matched to the EL spectrum peak wavelength of each of red, green, and blue, and the strongest light is extracted from each color. The thicknesses of 10R, 10G, and 10B are different. Specifically, the short wavelength blue OLED layer 10B is designed to be thin, and the long wavelength red OLED layer 10R is designed to be thick. The light generated in the OLED layer is repeatedly reflected between the positive electrode and the negative electrode, and only the light with the wavelength matching the optical path length is resonated and emphasized, and the light with the other wavelengths with the different optical path length is weakened. , the spectrum of the light extracted to the outside becomes sharp and high intensity, and the luminance and color purity are improved.
According to the OLED display panel having the microcavity structure, although excellent effects of improving luminance and color purity can be obtained, there is a problem that the viewing angle is strongly dependent (the viewing angle is narrow) due to the steep spectrum. can occur. For this reason, when an image is viewed from an oblique direction during image display, a color shift may occur in which the color appears to be different from the color originally desired to be displayed.
(本発明の光学素子)
 本発明の光学素子は、OLED表示装置の視認側に積層される光学的な要素であり、粘着剤層、接着剤層、樹脂層、ガラス層、ハードコート層、反射防止層、防眩層、中間層(相溶層)、衝撃吸収層、帯電防止層などから選ばれる少なくとも1層を含むものである。ただし、本発明の光学素子には、偏光板などの偏光度95%を超えるものは含まれない。
(Optical element of the present invention)
The optical element of the present invention is an optical element laminated on the viewing side of an OLED display device, and includes an adhesive layer, an adhesive layer, a resin layer, a glass layer, a hard coat layer, an antireflection layer, an antiglare layer, It contains at least one layer selected from an intermediate layer (compatible layer), an impact absorbing layer, an antistatic layer, and the like. However, the optical elements of the present invention do not include those having a degree of polarization exceeding 95%, such as polarizing plates.
(粘着剤層)
 粘着剤層とは、常温で接着性を有し、軽い圧力で被着体に接着する層をいい、粘着剤層に貼着した被着体を剥離した場合にも、粘着剤層は実用的な粘着力を保持するものをいう。
(Adhesive layer)
The adhesive layer is a layer that has adhesiveness at room temperature and adheres to the adherend with light pressure. It refers to the one that maintains a good adhesive strength.
 本発明の光学素子を構成する粘着剤層(以下、「本発明の粘着剤層」と称する場合がある)は、OLED表示装置のカラーシフトや干渉ムラを効率的に低減する観点から、光散乱特性(光を散乱する機能)を有することが好ましい。本発明の粘着剤層が光散乱特性を有する場合、粘着剤層中に分散した光散乱性微粒子を含むことが好ましい。 The pressure-sensitive adhesive layer constituting the optical element of the present invention (hereinafter sometimes referred to as "the pressure-sensitive adhesive layer of the present invention"), from the viewpoint of efficiently reducing the color shift and interference unevenness of the OLED display device, light scattering It preferably has a property (a function of scattering light). When the pressure-sensitive adhesive layer of the present invention has light scattering properties, it preferably contains light-scattering fine particles dispersed in the pressure-sensitive adhesive layer.
 本発明のOLED表示装置が、視認側にカラーフィルタを含み、且つ粘着剤層が光散乱特性を有する場合、OLED表示装置のカラーシフトや干渉ムラを低減し、且つ光散乱により引き起こされるOLED表示装置の画像ボケを抑制する観点から、前記光散乱特性を有する粘着剤層と、前記カラーフィルタとの間の距離(d)が700μm以下であることが好ましい。光散乱により引き起こされるOLED表示装置の画像ボケを抑制する観点から、光散乱特性を有する粘着剤層と、カラーフィルタとの間の距離が600μm以下であることがより好ましく、500μm以下であることがさらに好ましい。光散乱特性を有する粘着剤層と、カラーフィルタとが直接接していることが最も好ましい。
 光散乱特性を有する粘着剤層と、カラーフィルタとの間の距離とは、粘着剤層のカラーフィルタ方向の表面と、カラーフィルタの粘着剤層方向の表面との間の距離(μm)を示し、光散乱特性を有する粘着剤層と、カラーフィルタとの間に、他の層が積層されている場合は、当該他の層(2層以上の場合はその合計)の厚さ(μm)に相当する。
When the OLED display device of the present invention includes a color filter on the viewing side and the adhesive layer has light scattering properties, the color shift and interference unevenness of the OLED display device are reduced, and the OLED display device caused by light scattering is reduced. From the viewpoint of suppressing image blurring, it is preferable that the distance (d) between the pressure-sensitive adhesive layer having light scattering properties and the color filter is 700 μm or less. From the viewpoint of suppressing image blur of an OLED display device caused by light scattering, the distance between the pressure-sensitive adhesive layer having light scattering properties and the color filter is more preferably 600 μm or less, more preferably 500 μm or less. More preferred. Most preferably, the pressure-sensitive adhesive layer having light scattering properties and the color filter are in direct contact.
The distance between the pressure-sensitive adhesive layer having light scattering properties and the color filter is the distance (μm) between the surface of the pressure-sensitive adhesive layer facing the color filter and the surface of the color filter facing the pressure-sensitive adhesive layer. , When another layer is laminated between the pressure-sensitive adhesive layer having light scattering properties and the color filter, the thickness (μm) of the other layer (in the case of two or more layers, the total) Equivalent to.
 本発明の粘着剤層のヘイズ値(H)は、特に限定されないが、OLED表示装置のカラーシフトや干渉ムラを効率的に低減する観点から、20%以上が好ましく、より好ましくは30%以上、さらに好ましくは40%以上、特に好ましくは50%以上である。また、OLED表示装置の画像ボケを抑制し、高精細な画像を表示する観点から、本発明の粘着剤層のヘイズ値は、90%以下が好ましく、80%以下がより好ましく、70%以下がより好ましい。 The haze value (H) of the adhesive layer of the present invention is not particularly limited, but is preferably 20% or more, more preferably 30% or more, from the viewpoint of efficiently reducing color shift and interference unevenness of the OLED display device. More preferably 40% or more, particularly preferably 50% or more. In addition, from the viewpoint of suppressing image blurring of the OLED display device and displaying a high-definition image, the haze value of the pressure-sensitive adhesive layer of the present invention is preferably 90% or less, more preferably 80% or less, and 70% or less. more preferred.
 本発明の粘着剤層の全光線透過率は、特に限定されないが、OLED表示装置の輝度を確保するという観点から、60%以上が好ましく、より好ましくは70%以上、さらに好ましくは80%以上、特に好ましくは90%以上である。また、本発明の粘着剤層の全光線透過率の上限値は特に限定されないが、100%未満であってもよく、99.9%以下、又は99%以下であってもよい。 Although the total light transmittance of the pressure-sensitive adhesive layer of the present invention is not particularly limited, it is preferably 60% or more, more preferably 70% or more, and still more preferably 80% or more from the viewpoint of ensuring the brightness of the OLED display device. Especially preferably, it is 90% or more. Moreover, the upper limit of the total light transmittance of the pressure-sensitive adhesive layer of the present invention is not particularly limited, but may be less than 100%, 99.9% or less, or 99% or less.
 本発明の粘着剤層のヘイズ値及び全光線透過率は、それぞれ、JIS K7136、JIS K7361で定める方法により測定できるものであり、粘着剤層の種類や厚さ、後述の光散乱性微粒子の種類や配合量などにより制御することができる。 The haze value and total light transmittance of the pressure-sensitive adhesive layer of the present invention can be measured by methods defined in JIS K7136 and JIS K7361, respectively. It can be controlled by adjusting the content and the blending amount.
 本発明の粘着剤層の厚み(T)は、OLED表示装置のカラーシフトや干渉ムラを効率的に低減する観点から、10~100μmであることが好ましく、15~90μmであることがより好ましく、20~80μmであることがより好ましい。 The thickness (T) of the adhesive layer of the present invention is preferably 10 to 100 μm, more preferably 15 to 90 μm, from the viewpoint of efficiently reducing color shift and interference unevenness of the OLED display device. It is more preferably 20-80 μm.
 前記光散乱性微粒子は、粘着剤層中の粘着剤との適切な屈折率差を有し、粘着剤層に光散乱特性を付与するものである。粘着剤層が、光散乱性微粒子を含有すると、光に対する散乱性能が付与され、好ましい。光散乱性微粒子としては、無機微粒子、高分子微粒子などが挙げられる。無機微粒子の材質としては、例えば、シリカ、炭酸カルシウム、水酸化アルミニウム、水酸化マグネシウム、クレー、タルク、二酸化チタン等が挙げられる。高分子微粒子の材質としては、例えば、シリコーン樹脂、アクリル系樹脂、メタアクリル系樹脂(例えば、ポリメタクリル酸メチル)、ポリスチレン樹脂、ポリウレタン樹脂、メラミン樹脂、ポリエチレン樹脂、エポキシ樹脂等が挙げられる。光散乱性微粒子は、好ましくは高分子微粒子であり、特に、シリコーン樹脂で構成される微粒子(例えば、モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製のトスパールシリーズ)が、粘着剤層に対する優れた分散性、安定性および粘着剤層との適切な屈折率差を有し、面内に均一なヘイズを示す散乱性能に優れた粘着剤層が得られ、OLED表示装置のカラーシフトや干渉ムラを低減する点で好適である。光散乱性微粒子の形状は、例えば、真球状、扁平状、不定形状であり得る。光散乱性微粒子は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The light-scattering fine particles have an appropriate refractive index difference with the adhesive in the adhesive layer, and impart light scattering properties to the adhesive layer. When the pressure-sensitive adhesive layer contains light-scattering fine particles, light-scattering performance is imparted, which is preferable. Examples of light-scattering fine particles include inorganic fine particles and polymer fine particles. Examples of materials for the inorganic fine particles include silica, calcium carbonate, aluminum hydroxide, magnesium hydroxide, clay, talc, and titanium dioxide. Examples of materials for the polymer fine particles include silicone resins, acrylic resins, methacrylic resins (eg, polymethyl methacrylate), polystyrene resins, polyurethane resins, melamine resins, polyethylene resins, and epoxy resins. The light-scattering microparticles are preferably polymer microparticles, and in particular, microparticles composed of silicone resin (e.g., Tospearl series manufactured by Momentive Performance Materials Japan Co., Ltd.) have excellent dispersion in the pressure-sensitive adhesive layer. Adhesive layer with excellent scattering performance showing uniform in-plane haze, which has properties, stability, and an appropriate refractive index difference with the adhesive layer. It is suitable in terms of The shape of the light-scattering fine particles can be spherical, flat, or irregular, for example. The light-scattering fine particles may be used alone or in combination of two or more.
 光散乱性微粒子の体積平均粒子径は、適切な光散乱特性を粘着剤層に付与する観点からは、好ましくは0.1μm以上、より好ましくは0.15μm以上、さらに好ましくは0.2μm以上、さらに好ましくは0.25μm以上、特に好ましくは1μm以上である。また、光散乱性微粒子の体積平均粒子径は、ヘイズ値が高くなり過ぎることを防止し、高精細な画像を表示する観点から、好ましくは12μm以下であり、より好ましくは10μm以下、さらに好ましくは8μm以下、特に好ましくは5μm以下である。体積平均粒子径は、例えば、コールターカウンターを用いて測定することができる。 The volume average particle diameter of the light-scattering fine particles is preferably 0.1 µm or more, more preferably 0.15 µm or more, still more preferably 0.2 µm or more, from the viewpoint of imparting appropriate light scattering properties to the pressure-sensitive adhesive layer. More preferably 0.25 μm or more, particularly preferably 1 μm or more. In addition, the volume average particle diameter of the light-scattering fine particles is preferably 12 μm or less, more preferably 10 μm or less, and even more preferably 10 μm or less, from the viewpoint of preventing the haze value from becoming too high and displaying high-definition images. 8 μm or less, particularly preferably 5 μm or less. The volume average particle size can be measured using, for example, a Coulter Counter.
 光散乱性微粒子の屈折率(n3)は、好ましくは1.2~5であり、より好ましくは1.25~4.5であり、1.3~4、又は1.35~3であってもよい。 The refractive index (n3) of the light-scattering fine particles is preferably 1.2 to 5, more preferably 1.25 to 4.5, 1.3 to 4, or 1.35 to 3. good too.
 光散乱性微粒子と粘着剤層中の粘着剤(粘着剤層において光散乱性微粒子を除いた粘着剤層)との屈折率差の絶対値は、OLED表示装置のカラーシフトや干渉ムラを効率的に低減する観点から、好ましくは0.001以上、より好ましくは0.01以上、さらに好ましくは0.02以上、特に好ましくは0.03以上であり、0.04以上、又は0.05以上であってもよい。また、光散乱性微粒子と粘着剤との屈折率差の絶対値は、ヘイズ値が高くなり過ぎることを防止して画像ボケを抑制し、高精細な画像を表示する観点から、好ましくは5以下であり、より好ましくは4以下であり、さらに好ましくは3以下である。 The absolute value of the refractive index difference between the light-scattering fine particles and the adhesive in the adhesive layer (adhesive layer excluding the light-scattering fine particles in the adhesive layer) effectively reduces the color shift and interference unevenness of the OLED display device. From the viewpoint of reducing to There may be. In addition, the absolute value of the refractive index difference between the light-scattering fine particles and the pressure-sensitive adhesive is preferably 5 or less from the viewpoint of preventing the haze value from becoming too high, suppressing image blur, and displaying high-definition images. , more preferably 4 or less, and still more preferably 3 or less.
 前記粘着剤の屈折率(n2)は、好ましくは1.40~1.60であり、より好ましくは1.42~1.55、さらに好ましくは1.43~1.50である。前記粘着剤の屈折率は、後述の芳香環含有モノマー、高屈折率有機材料、高屈折無機材料の種類や含有量により、調整することができる。 The refractive index (n2) of the adhesive is preferably 1.40 to 1.60, more preferably 1.42 to 1.55, still more preferably 1.43 to 1.50. The refractive index of the pressure-sensitive adhesive can be adjusted by the types and contents of aromatic ring-containing monomers, high-refractive-index organic materials, and high-refractive-index inorganic materials, which will be described later.
 粘着剤層中における光散乱性微粒子の含有量は、適切な光散乱特性を粘着剤層に付与する観点からは、粘着剤層を構成する粘着剤100重量部に対して、好ましくは0.01重量部以上、より好ましくは0.05重量部以上、さらに好ましくは0.1重量部以上、特に好ましくは0.15重量部以上である。また、光散乱性微粒子の含有量は、ヘイズ値が高くなり過ぎることを防止して画像ボケを抑制し、高精細な画像を表示する観点から、粘着剤層を構成する粘着剤100重量部に対して、好ましくは80重量部以下であり、より好ましくは70重量部以下である。 From the viewpoint of imparting appropriate light scattering properties to the adhesive layer, the content of the light-scattering fine particles in the adhesive layer is preferably 0.01 per 100 parts by weight of the adhesive constituting the adhesive layer. It is at least 0.05 part by weight, more preferably at least 0.1 part by weight, and particularly preferably at least 0.15 part by weight. In addition, the content of the light-scattering fine particles is 100 parts by weight of the adhesive constituting the adhesive layer from the viewpoint of preventing the haze value from becoming too high, suppressing image blurring, and displaying high-definition images. On the other hand, it is preferably 80 parts by weight or less, more preferably 70 parts by weight or less.
 本発明の粘着剤層(特に、OLED素子の視認側にカラーフィルタが配置されており、本発明の粘着剤層と前記カラーフィルタとの間の距離(d)が700μm以下である場合の本発明の粘着剤層)は、特に限定されないが、界面反射を防止し、OLED素子から発せられる光の採光率を向上できる観点から、高屈折率であることが好ましい。本発明の粘着剤層の屈折率は、界面反射を防止し、OLED素子から発せられる光の採光率を向上できる観点から、好ましくは1.57以上であり、より好ましくは1.575以上、さらに好ましくは1.580以上、特に好ましくは1.585以上、一層好ましくは1.590以上であり、1.595以上であってもよい。
 本発明の粘着剤層の屈折率は、後述の芳香環含有モノマー、高屈折率有機材料、高屈折無機材料の種類や含有量により、調整することができる。
The present invention when the pressure-sensitive adhesive layer of the present invention (particularly, a color filter is arranged on the viewing side of the OLED element and the distance (d) between the pressure-sensitive adhesive layer of the present invention and the color filter is 700 μm or less) The pressure-sensitive adhesive layer) is not particularly limited, but preferably has a high refractive index from the viewpoint of preventing interfacial reflection and improving the lighting efficiency of light emitted from the OLED element. The refractive index of the pressure-sensitive adhesive layer of the present invention is preferably 1.57 or more, more preferably 1.575 or more, and more preferably 1.575 or more, from the viewpoint of preventing interfacial reflection and improving the lighting efficiency of light emitted from the OLED element. It is preferably 1.580 or more, particularly preferably 1.585 or more, still more preferably 1.590 or more, and may be 1.595 or more.
The refractive index of the pressure-sensitive adhesive layer of the present invention can be adjusted by the types and contents of aromatic ring-containing monomers, high-refractive-index organic materials, and high-refractive-index inorganic materials, which will be described later.
 本発明の粘着剤層の加湿前後の屈折率の変動比は、特に限定されないが、高温高湿環境においても、界面反射を防止し、OLED素子から発せられる光の採光率を安定して向上できる観点から、好ましくは0.05以下、好ましくは0.04以下、さらに好ましくは0.02以下、特に好ましくは0.01以下である。
 本発明の粘着剤層の加湿前後の屈折率の変動比は、本発明の粘着剤層を温度85℃、相対湿度85%の加湿環境下で120時間保管し、以下の式のより算出できるものである。
 加湿前後の屈折率の変動比=|初期の屈折率-加湿後の屈折率|/(初期の屈折率)
 加湿前後の屈折率の変動比は、後述の芳香環含有モノマー、高屈折率有機材料、高屈折無機材料の種類や含有量、粘着剤層を構成する粘着剤の種類、モノマー組成、架橋度、厚さなどにより、調整することができる。
The variation ratio of the refractive index of the pressure-sensitive adhesive layer of the present invention before and after humidification is not particularly limited. From the viewpoint, it is preferably 0.05 or less, preferably 0.04 or less, more preferably 0.02 or less, and particularly preferably 0.01 or less.
The variation ratio of the refractive index of the pressure-sensitive adhesive layer of the present invention before and after humidification can be calculated from the following formula after storing the pressure-sensitive adhesive layer of the present invention in a humidified environment at a temperature of 85° C. and a relative humidity of 85% for 120 hours. is.
Refractive index change ratio before and after humidification =|initial refractive index−refractive index after humidification|/(initial refractive index)
The variation ratio of the refractive index before and after humidification depends on the type and content of the aromatic ring-containing monomer, high refractive index organic material, and high refractive inorganic material described later, the type of adhesive constituting the adhesive layer, the monomer composition, the degree of cross-linking, The thickness can be adjusted.
 本発明の粘着剤層を構成する粘着剤としては、特に限定されないが、例えば、アクリル系粘着剤、ゴム系粘着剤、ビニルアルキルエーテル系粘着剤、シリコーン系粘着剤、ポリエステル系粘着剤、ポリアミド系粘着剤、ウレタン系粘着剤、フッ素系粘着剤、エポキシ系粘着剤などが挙げられる。中でも、粘着剤層を構成する粘着剤としては、透明性、粘着性、耐候性、コスト、粘着剤の設計のしやすさの点より、アクリル系粘着剤が好ましい。つまり、本発明の粘着剤層は、アクリル系粘着剤から構成されたアクリル系粘着剤層であることが好ましい。前記粘着剤は、単独で又は2種以上組み合わせて用いることができる。 The adhesive constituting the adhesive layer of the present invention is not particularly limited, but for example, acrylic adhesive, rubber adhesive, vinyl alkyl ether adhesive, silicone adhesive, polyester adhesive, polyamide adhesive Adhesives, urethane-based adhesives, fluorine-based adhesives, epoxy-based adhesives, and the like can be used. Among them, acrylic pressure-sensitive adhesives are preferable as the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer from the viewpoints of transparency, adhesiveness, weather resistance, cost, and ease of designing the pressure-sensitive adhesive. In other words, the pressure-sensitive adhesive layer of the present invention is preferably an acrylic pressure-sensitive adhesive layer composed of an acrylic pressure-sensitive adhesive. The said adhesive can be used individually or in combination of 2 or more types.
 前記アクリル系粘着剤層は、ベースポリマーとしてアクリル系ポリマーを含有する。前記アクリル系ポリマーは、ポリマーを構成するモノマー成分として、アクリル系モノマー(分子中に(メタ)アクリロイル基を有するモノマー)を含むポリマーである。前記アクリル系ポリマーは、ポリマーを構成するモノマー成分として(メタ)アクリル酸アルキルエステルを含むポリマーであることが好ましい。なお、アクリル系ポリマーは、単独で又は2種以上組み合わせて用いることができる。 The acrylic pressure-sensitive adhesive layer contains an acrylic polymer as a base polymer. The acrylic polymer is a polymer containing an acrylic monomer (a monomer having a (meth)acryloyl group in the molecule) as a monomer component constituting the polymer. The acrylic polymer is preferably a polymer containing a (meth)acrylic acid alkyl ester as a monomer component constituting the polymer. In addition, an acrylic polymer can be used individually or in combination of 2 or more types.
 本発明の粘着剤層を形成する粘着剤組成物は、いずれの形態であってもよい。例えば、粘着剤組成物は、エマルジョン型、溶剤型(溶液型)、活性エネルギー線硬化型、熱溶融型(ホットメルト型)などであってもよい。中でも、生産性の点、光学特性や外観性に優れる粘着剤層が得やすい点より、溶剤型、活性エネルギー線硬化型の粘着剤組成物が好ましい。 The adhesive composition forming the adhesive layer of the present invention may be in any form. For example, the pressure-sensitive adhesive composition may be an emulsion type, a solvent type (solution type), an active energy ray-curable type, a heat-melting type (hot-melt type), or the like. Among them, solvent-type and active energy ray-curable pressure-sensitive adhesive compositions are preferable from the viewpoint of productivity and the ease with which a pressure-sensitive adhesive layer having excellent optical properties and appearance can be obtained.
 つまり、本発明の粘着剤層は、アクリル系ポリマーをベースポリマーとして含有するアクリル系粘着剤層であり、溶剤型又は活性エネルギー線硬化型のアクリル系粘着剤組成物により形成されることが好ましい。 That is, the pressure-sensitive adhesive layer of the present invention is an acrylic pressure-sensitive adhesive layer containing an acrylic polymer as a base polymer, and is preferably formed from a solvent-type or active energy ray-curable acrylic pressure-sensitive adhesive composition.
 前記活性エネルギー線としては、例えば、α線、β線、γ線、中性子線、電子線などの電離性放射線や、紫外線などが挙げられ、特に、紫外線が好ましい。即ち、前記活性エネルギー線硬化型の粘着剤組成物は、紫外線硬化型の粘着剤組成物が好ましい。 Examples of the active energy rays include ionizing radiation such as α-rays, β-rays, γ-rays, neutron beams and electron beams, and ultraviolet rays, with ultraviolet rays being particularly preferred. That is, the active energy ray-curable pressure-sensitive adhesive composition is preferably an ultraviolet-curable pressure-sensitive adhesive composition.
 前記アクリル系粘着剤層を形成する粘着剤組成物(アクリル系粘着剤組成物)としては、例えば、アクリル系ポリマーを必須成分とするアクリル系粘着剤組成物、又は、アクリル系ポリマーを構成する単量体(モノマー)の混合物(「モノマー混合物」と称する場合がある)若しくはその部分重合物を必須成分とするアクリル系粘着剤組成物などが挙げられる。前者としては、例えば、いわゆる溶剤型のアクリル系粘着剤組成物などが挙げられる。また、後者としては、例えば、いわゆる活性エネルギー線硬化型のアクリル系粘着剤組成物などが挙げられる。前記「モノマー混合物」とは、ポリマーを構成するモノマー成分を含む混合物を意味する。また、前記「部分重合物」とは、「プレポリマー」と称する場合もあり、前記モノマー混合物中のモノマー成分のうちの1又は2以上のモノマー成分が部分的に重合している組成物を意味する。 As the adhesive composition (acrylic adhesive composition) forming the acrylic adhesive layer, for example, an acrylic adhesive composition containing an acrylic polymer as an essential component, or a unit constituting the acrylic polymer Examples include acrylic pressure-sensitive adhesive compositions containing a mixture of monomers (sometimes referred to as a "monomer mixture") or a partial polymer thereof as an essential component. The former includes, for example, a so-called solvent-type acrylic pressure-sensitive adhesive composition. The latter includes, for example, so-called active energy ray-curable acrylic pressure-sensitive adhesive compositions. The "monomer mixture" means a mixture containing monomer components that constitute a polymer. Further, the "partially polymerized product" may also be referred to as a "prepolymer", and means a composition in which one or more of the monomer components in the monomer mixture is partially polymerized. do.
 前記アクリル系ポリマーは、アクリル系モノマーを必須のモノマー成分(単量体成分)として構成(形成)された重合体である。前記アクリル系ポリマーは、(メタ)アクリル酸アルキルエステルを必須のモノマー成分として構成(形成)された重合体であることが好ましい。すなわち、前記アクリル系ポリマーは、構成単位として、(メタ)アクリル酸アルキルエステルを含むことが好ましい。本明細書において、「(メタ)アクリル」とは、「アクリル」及び/又は「メタクリル」(「アクリル」及び「メタクリル」のうち、いずれか一方又は両方)を表し、他も同様である。なお、前記アクリル系ポリマーは、1種又は2種以上のモノマー成分により構成される。 The acrylic polymer is a polymer composed (formed) of an acrylic monomer as an essential monomer component (monomer component). The acrylic polymer is preferably a polymer composed (formed) of a (meth)acrylic acid alkyl ester as an essential monomer component. That is, the acrylic polymer preferably contains a (meth)acrylic acid alkyl ester as a structural unit. As used herein, "(meth)acryl" represents "acryl" and/or "methacryl" (either or both of "acryl" and "methacryl"), and so on. In addition, the said acrylic polymer is comprised by 1 type, or 2 or more types of monomer components.
 必須のモノマー成分としての前記(メタ)アクリル酸アルキルエステルとしては、直鎖又は分岐鎖状のアルキル基を有する(メタ)アクリル酸アルキルエステルが好ましく挙げられる。なお、(メタ)アクリル酸アルキルエステルは、単独で又は2種以上組み合わせて用いることができる。 As the (meth)acrylic acid alkyl ester as an essential monomer component, a (meth)acrylic acid alkyl ester having a linear or branched alkyl group is preferably mentioned. In addition, (meth)acrylic-acid alkylester can be used individually or in combination of 2 or more types.
 直鎖又は分岐鎖状のアルキル基を有する(メタ)アクリル酸アルキルエステルとしては、特に限定されないが、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸s-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸イソペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル(ステアリル(メタ)アクリレート)、イソステアリル(メタ)アクリレート、(メタ)アクリル酸ノナデシル、(メタ)アクリル酸エイコシルなどの炭素数が1~20の直鎖又は分岐鎖状のアルキル基を有する(メタ)アクリル酸アルキルエステルが挙げられる。中でも、前記直鎖又は分岐鎖状のアルキル基を有する(メタ)アクリル酸アルキルエステルは、炭素数が4~18の直鎖又は分岐鎖状のアルキル基を有する(メタ)アクリル酸アルキルエステルが好ましく、より好ましくはアクリル酸2-エチルヘキシル(2EHA)、イソステアリルアクリレート(ISTA)である。また、前記直鎖又は分岐鎖状のアルキル基を有する(メタ)アクリル酸アルキルエステルは、単独で又は2種以上を組み合わせて用いることができる。 The (meth)acrylic acid alkyl ester having a linear or branched alkyl group is not particularly limited, but examples include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, ( meth)isopropyl acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, s-butyl (meth)acrylate, t-butyl (meth)acrylate, pentyl (meth)acrylate, (meth)acrylate isopentyl acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, isooctyl (meth)acrylate, nonyl (meth)acrylate, (meth)acrylate ) isononyl acrylate, decyl (meth)acrylate, isodecyl (meth)acrylate, undecyl (meth)acrylate, dodecyl (meth)acrylate, tridecyl (meth)acrylate, tetradecyl (meth)acrylate, (meth)acrylate Pentadecyl acrylate, hexadecyl (meth)acrylate, heptadecyl (meth)acrylate, octadecyl (meth)acrylate (stearyl (meth)acrylate), isostearyl (meth)acrylate, nonadecyl (meth)acrylate, (meth)acrylic (Meth)acrylic acid alkyl esters having a linear or branched alkyl group having 1 to 20 carbon atoms such as eicosyl acid. Among them, the (meth)acrylic acid alkyl ester having a linear or branched alkyl group is preferably a (meth)acrylic acid alkyl ester having a linear or branched alkyl group having 4 to 18 carbon atoms. , and more preferably 2-ethylhexyl acrylate (2EHA) and isostearyl acrylate (ISTA). In addition, the (meth)acrylic acid alkyl esters having a linear or branched alkyl group can be used alone or in combination of two or more.
 前記アクリル系ポリマーを構成する全モノマー成分(100重量%)中の、前記(メタ)アクリル酸アルキルエステルの割合は、特に限定されないが、50重量%以上(例えば、50~100重量%)であることが好ましく、より好ましくは53~90重量%、さらに好ましくは55~85重量%である。 The ratio of the (meth)acrylic acid alkyl ester in the total monomer components (100% by weight) constituting the acrylic polymer is not particularly limited, but is 50% by weight or more (for example, 50 to 100% by weight). is preferred, more preferably 53 to 90% by weight, and even more preferably 55 to 85% by weight.
 前記アクリル系ポリマーは、ポリマーを構成するモノマー成分として、前記(メタ)アクリル酸アルキルエステルとともに、共重合性モノマーを含んでいてもよい。すなわち、前記アクリル系ポリマーは、構成単位として、共重合性モノマーを含んでいてもよい。なお、共重合性モノマーは、単独で又は2種以上を組み合わせて用いることができる。 The acrylic polymer may contain a copolymerizable monomer together with the (meth)acrylic acid alkyl ester as a monomer component constituting the polymer. That is, the acrylic polymer may contain a copolymerizable monomer as a structural unit. In addition, a copolymerizable monomer can be used individually or in combination of 2 or more types.
 前記共重合性モノマーとしては、特に限定されないが、高屈折率の粘着剤層を得、OLED表示パネルとの界面反射を抑制し、OLED素子からの光の採光率が向上できる点より、分子内に芳香環を有するモノマーが好ましく挙げられる。すなわち、前記アクリル系ポリマーは、構成単位として、分子内に芳香環を有するモノマーを含むことが好ましい。 The copolymerizable monomer is not particularly limited. is preferably a monomer having an aromatic ring. That is, the acrylic polymer preferably contains a monomer having an aromatic ring in the molecule as a structural unit.
 前記分子内に芳香環を有するモノマーは、分子内(1分子内)に芳香環を少なくとも1つ有するモノマー(単量体)である。本明細書において、前記「分子内に芳香環を有するモノマー」を「芳香環含有モノマー」と称する場合がある。 The monomer having an aromatic ring in its molecule is a monomer (monomer) having at least one aromatic ring in its molecule (within one molecule). In this specification, the above-mentioned "monomer having an aromatic ring in the molecule" may be referred to as "aromatic ring-containing monomer".
 芳香環含有モノマーとしては、1分子中に少なくとも1つの芳香環と少なくとも1つのエチレン性不飽和基とを含む化合物が用いられる。芳香環含有モノマーとしては、かかる化合物の1種を単独でまたは2種以上を組み合わせて用いることができる。 A compound containing at least one aromatic ring and at least one ethylenically unsaturated group in one molecule is used as the aromatic ring-containing monomer. As the aromatic ring-containing monomer, such compounds can be used singly or in combination of two or more.
 前記エチレン性不飽和基の例としては、(メタ)アクリロイル基、ビニル基、(メタ)アリル基等が挙げられる。重合反応性の観点から(メタ)アクリロイル基が好ましく、柔軟性や粘着性の観点からアクリロイル基がより好ましい。粘着剤の柔軟性低下を抑制する観点から、芳香環含有モノマーとしては、1分子中に含まれるエチレン性不飽和基の数が1である化合物(すなわち、単官能モノマー)が好ましく用いられる。 Examples of the ethylenically unsaturated groups include (meth)acryloyl groups, vinyl groups, and (meth)allyl groups. A (meth)acryloyl group is preferable from the viewpoint of polymerization reactivity, and an acryloyl group is more preferable from the viewpoint of flexibility and adhesiveness. From the viewpoint of suppressing a decrease in the flexibility of the pressure-sensitive adhesive, as the aromatic ring-containing monomer, a compound having one ethylenically unsaturated group contained in one molecule (that is, a monofunctional monomer) is preferably used.
 芳香環含有モノマーとして用いられる化合物1分子に含まれる芳香環の数は、1でもよく、2以上でもよい。芳香環含有モノマーに含まれる芳香環の数の上限は特に制限されず、例えば16以下であり得る。アクリル系ポリマーの調製容易性や粘着剤の透明性の観点から、前記芳香環の数は、例えば12以下であってよく、8以下であることが好ましく、6以下であることがより好ましく、5以下でもよく、4以下でもよく、3以下でもよく、2以下でもよい。 The number of aromatic rings contained in one molecule of the compound used as the aromatic ring-containing monomer may be one, or two or more. The upper limit of the number of aromatic rings contained in the aromatic ring-containing monomer is not particularly limited, and may be, for example, 16 or less. From the viewpoint of ease of preparation of the acrylic polymer and transparency of the adhesive, the number of the aromatic rings may be, for example, 12 or less, preferably 8 or less, more preferably 6 or less, and 5 It may be less than or equal to 4, less than or equal to 3, or less than or equal to 2.
 芳香環含有モノマーとして用いられる化合物の有する芳香環は、例えばベンゼン環(ビフェニル構造やフルオレン構造の一部を構成するベンゼン環であり得る。);ナフタレン環、インデン環、アズレン環、アントラセン環、フェナントレン環の縮合環;等の炭素環であってもよく、例えばピリジン環、ピリミジン環、ピリダジン環、ピラジン環、トリアジン環、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環、オキサゾール環、イソオキサゾール環、チアゾール環、チオフェン環;等の複素環であってもよい。前記複素環において環構成原子として含まれるヘテロ原子は、例えば窒素、硫黄および酸素からなる群から選択される1または2以上であり得る。前記複素環を構成するヘテロ原子は、窒素および硫黄の一方または両方であり得る。芳香環含有モノマーは、例えばジナフトチオフェン構造のように、1または2以上の炭素環と1または2以上の複素環とが縮合した構造を有していてもよい。 The aromatic ring possessed by the compound used as the aromatic ring-containing monomer is, for example, a benzene ring (which may be a benzene ring constituting part of a biphenyl structure or a fluorene structure); naphthalene ring, indene ring, azulene ring, anthracene ring, phenanthrene may be a carbocyclic ring, such as a pyridine ring, a pyrimidine ring, a pyridazine ring, a pyrazine ring, a triazine ring, a pyrrole ring, a pyrazole ring, an imidazole ring, a triazole ring, an oxazole ring, an isoxazole ring, A heterocyclic ring such as a thiazole ring or a thiophene ring may be used. The heteroatoms included as ring-constituting atoms in the heterocyclic ring may be one or more selected from the group consisting of nitrogen, sulfur and oxygen, for example. The heteroatoms that make up the heterocycle may be one or both of nitrogen and sulfur. The aromatic ring-containing monomer may have a structure in which one or more carbon rings and one or more heterocycles are condensed, such as a dinaphthothiophene structure.
 前記芳香環(好ましくは炭素環)は、環構成原子上に1または2以上の置換基を有していてもよく、置換基を有していなくてもよい。置換基を有する場合、該置換基としては、アルキル基、アルコキシ基、アリールオキシ基、水酸基、ハロゲン原子(フッ素原子、塩素原子、臭素原子等)、ヒドロキシアルキル基、ヒドロキシアルキルオキシ基、グリシジルオキシ基等が例示されるが、これらに限定されない。炭素原子を含む置換基において、該置換基に含まれる炭素原子の数は、好ましくは1~4であり、より好ましくは1~3であり、例えば1または2であり得る。前記芳香環は、環構成原子上に置換基を有しないか、アルキル基、アルコキシ基およびハロゲン原子(例えば臭素原子)からなる群から選択される1または2以上の置換基を有する芳香環であり得る。なお、芳香環含有モノマーの有する芳香環がその環構成原子上に置換基を有するとは、該芳香環が、エチレン性不飽和基を有する置換基以外の置換基を有することをいう。 The aromatic ring (preferably carbocyclic ring) may or may not have one or more substituents on the ring-constituting atoms. When having a substituent, the substituent includes an alkyl group, an alkoxy group, an aryloxy group, a hydroxyl group, a halogen atom (fluorine atom, chlorine atom, bromine atom, etc.), a hydroxyalkyl group, a hydroxyalkyloxy group, and a glycidyloxy group. etc. are exemplified, but not limited to these. In substituents containing carbon atoms, the number of carbon atoms contained in the substituent is preferably 1-4, more preferably 1-3, and can be, for example, 1 or 2. The aromatic ring is an aromatic ring having no substituents on ring-constituting atoms or having one or more substituents selected from the group consisting of alkyl groups, alkoxy groups and halogen atoms (e.g., bromine atoms). obtain. The expression that the aromatic ring of the aromatic ring-containing monomer has a substituent on its ring-constituting atom means that the aromatic ring has a substituent other than a substituent having an ethylenically unsaturated group.
 芳香環とエチレン性不飽和基とは、直接結合していてもよく、リンキング基を介して結合していてもよい。前記リンキング基は、例えば、アルキレン基、オキシアルキレン基、ポリ(オキシアルキレン)基、フェニル基、アルキルフェニル基、アルコキシフェニル基、これらの基において1または2以上の水素原子が水酸基で置換された構造の基(例えば、ヒドロキシアルキレン基)、オキシ基(-O-基)、チオオキシ基(-S-基)等から選択される1または2以上の構造を含む基であり得る。芳香環とエチレン性不飽和基とが、直接結合しているか、またはアルキレン基、オキシアルキレン基およびポリ(オキシアルキレン)基からなる群から選択されるリンキング基を介して結合している構造の芳香環含有モノマーを好ましく採用し得る。前記アルキレン基および前記オキシアルキレン基における炭素原子数は、好ましくは1~4であり、より好ましくは1~3であり、例えば1または2であり得る。前記ポリ(オキシアルキレン)基におけるオキシアルキレン単位の繰り返し数は、例えば2~3であり得る。 The aromatic ring and the ethylenically unsaturated group may be directly bonded or may be bonded via a linking group. The linking group is, for example, an alkylene group, an oxyalkylene group, a poly(oxyalkylene) group, a phenyl group, an alkylphenyl group, an alkoxyphenyl group, or a structure in which one or more hydrogen atoms in these groups are substituted with hydroxyl groups. (eg, hydroxyalkylene group), oxy group (--O-- group), thiooxy group (--S-- group) and the like. An aromatic structure in which an aromatic ring and an ethylenically unsaturated group are directly bonded or bonded via a linking group selected from the group consisting of an alkylene group, an oxyalkylene group and a poly(oxyalkylene) group. Ring-containing monomers may preferably be employed. The number of carbon atoms in the alkylene group and the oxyalkylene group is preferably 1-4, more preferably 1-3, and may be 1 or 2, for example. The number of repeating oxyalkylene units in the poly(oxyalkylene) group may be, for example, 2-3.
 芳香環含有モノマーとして好ましく採用し得る化合物の例として、芳香環含有(メタ)アクリレートおよび芳香環含有ビニル化合物が挙げられる。芳香環含有(メタ)アクリレートおよび芳香環含有ビニル化合物は、それぞれ、1種を単独でまたは2種以上を組み合わせて用いることができる。1種または2種以上の芳香環含有(メタ)アクリレートと、1種または2種以上の芳香環含有ビニル化合物とを組み合わせて用いてもよい。 Examples of compounds that can be preferably employed as aromatic ring-containing monomers include aromatic ring-containing (meth)acrylates and aromatic ring-containing vinyl compounds. The aromatic ring-containing (meth)acrylate and the aromatic ring-containing vinyl compound can be used singly or in combination of two or more. One or two or more aromatic ring-containing (meth)acrylates and one or two or more aromatic ring-containing vinyl compounds may be used in combination.
 前記アクリル系ポリマーが、ポリマーを構成するモノマー成分として前記芳香環含有モノマーを含有する場合、前記アクリル系ポリマーを構成する全モノマー成分(100重量%)中の、前記芳香環含有モノマーの割合は、特に限定されないが、30重量%以上が好ましく、より好ましくは50重量%以上であり、さらに好ましくは60重量%以上であり、70重量%以上であってもよい。前記割合が30重量%以上であると、より高い屈折率を得やすくなる傾向にあり、好ましい。さらに高い屈折率を得やすくする観点から、前記芳香環含有モノマーの含有量は、例えば70重量%超であってよく、75重量%以上でもよく、80重量%以上でもよく、85重量%以上でもよく、90重量%以上でもよく、95重量%以上でもよい。また、前記芳香環含有モノマーの割合の上限は、適度な柔軟性を有する粘着剤層を得る点、透明性に優れる粘着剤層を得る点より、99重量%以下が好ましく、より好ましくは98重量%以下であり、さらに好ましくは97重量%以下であり、96重量%以下であってもよい。また、前記芳香環含有モノマーの含有量は、93重量%以下でもよく、90重量%以下でもよく、80重量%以下でもよく、75重量%以下でもよい。より粘着特性および/または光学特性を重視するいくつかの態様において、前記芳香環含有モノマーの含有量は、70重量%以下でもよく、60重量%以下でもよく、45重量%以下でもよい。 When the acrylic polymer contains the aromatic ring-containing monomer as a monomer component constituting the polymer, the proportion of the aromatic ring-containing monomer in the total monomer components (100% by weight) constituting the acrylic polymer is Although not particularly limited, it is preferably 30% by weight or more, more preferably 50% by weight or more, still more preferably 60% by weight or more, and may be 70% by weight or more. When the ratio is 30% by weight or more, a higher refractive index tends to be obtained, which is preferable. From the viewpoint of making it easier to obtain a higher refractive index, the content of the aromatic ring-containing monomer may be, for example, more than 70% by weight, may be 75% by weight or more, may be 80% by weight or more, or may be 85% by weight or more. Well, it may be 90% by weight or more, or 95% by weight or more. Further, the upper limit of the ratio of the aromatic ring-containing monomer is preferably 99% by weight or less, more preferably 98% by weight, from the viewpoint of obtaining a pressure-sensitive adhesive layer having appropriate flexibility and obtaining a pressure-sensitive adhesive layer with excellent transparency. %, more preferably 97% by weight or less, and may be 96% by weight or less. Also, the content of the aromatic ring-containing monomer may be 93% by weight or less, 90% by weight or less, 80% by weight or less, or 75% by weight or less. In some embodiments where adhesive properties and/or optical properties are more important, the content of the aromatic ring-containing monomer may be 70% by weight or less, 60% by weight or less, or 45% by weight or less.
 芳香環含有モノマーとしては、高い高屈折率化効果が得られやすいことから、1分子中に2以上の芳香環(好ましくは炭素環)を有するモノマーを好ましく採用し得る。1分子内に2以上の芳香環を有するモノマー(以下、「芳香環複数含有モノマー」ともいう。)の例としては、2以上の非縮合芳香環がリンキング基を介して結合した構造を有するモノマー、2以上の非縮合芳香環が直接(すなわち、他の原子を介さずに)化学結合した構造を有するモノマー、縮合芳香環構造を有するモノマー、フルオレン構造を有するモノマー、ジナフトチオフェン構造を有するモノマー、ジベンゾチオフェン構造を有するモノマー等が挙げられる。芳香環複数含有モノマーは、1種を単独でまたは2種以上を組み合わせて用いることができる。 As the aromatic ring-containing monomer, a monomer having two or more aromatic rings (preferably carbocyclic rings) in one molecule can be preferably used because it is easy to obtain a high effect of increasing the refractive index. Examples of monomers having two or more aromatic rings in one molecule (hereinafter also referred to as "multiple aromatic ring-containing monomers") include monomers having a structure in which two or more non-condensed aromatic rings are bonded via a linking group. , a monomer having a structure in which two or more non-condensed aromatic rings are directly (that is, not via other atoms) chemically bonded, a monomer having a condensed aromatic ring structure, a monomer having a fluorene structure, a monomer having a dinaphthothiophene structure , a monomer having a dibenzothiophene structure, and the like. The monomers containing multiple aromatic rings may be used singly or in combination of two or more.
 前記リンキング基は、例えばオキシ基(-O-)、チオオキシ基(-S-)、オキシアルキレン基(例えば-O-(CH2n-基、ここでnは1~3、好ましくは1)、チオオキシアルキレン基(例えば-S-(CH2n-基、ここでnは1~3、好ましくは1)、直鎖アルキレン基(すなわち-(CH2n-基、ここでnは1~6、好ましくは1~3)、前記オキシアルキレン基、前記チオオキシアルキレン基および前記直鎖アルキレン基におけるアルキレン基が部分ハロゲン化または完全ハロゲン化された基等であり得る。粘着剤の柔軟性等の観点から、前記リンキング基の好適例として、オキシ基、チオオキシ基、オキシアルキレン基および直鎖アルキレン基が挙げられる。2以上の非縮合芳香環がリンキング基を介して結合した構造を有するモノマーの具体例としては、フェノキシベンジル(メタ)アクリレート(例えば、m-フェノキシベンジル(メタ)アクリレート)、チオフェノキシベンジル(メタ)アクリレート、ベンジルベンジル(メタ)アクリレート等が挙げられる。 The linking group is, for example, an oxy group (--O--), a thiooxy group (--S--), an oxyalkylene group (eg a --O--(CH 2 ) n --- group, where n is 1 to 3, preferably 1). , a thiooxyalkylene group (e.g., a -S-(CH 2 ) n - group, where n is 1 to 3, preferably 1), a linear alkylene group (i.e., a -(CH 2 ) n - group, where n is 1 to 6, preferably 1 to 3), the alkylene group in the oxyalkylene group, the thiooxyalkylene group and the linear alkylene group may be a partially or completely halogenated group. Preferred examples of the linking group include an oxy group, a thiooxy group, an oxyalkylene group and a linear alkylene group from the viewpoint of the flexibility of the adhesive. Specific examples of monomers having a structure in which two or more non-fused aromatic rings are bonded via a linking group include phenoxybenzyl (meth)acrylate (e.g., m-phenoxybenzyl (meth)acrylate), thiophenoxybenzyl (meth) Acrylate, benzylbenzyl (meth)acrylate and the like.
 前記2以上の非縮合芳香環が直接化学結合した構造を有するモノマーは、例えばビフェニル構造含有(メタ)アクリレート、トリフェニル構造含有(メタ)アクリレート、ビニル基含有ビフェニル等であり得る。具体例としては、o-フェニルフェノール(メタ)アクリレート、ビフェニルメチル(メタ)アクリレート等が挙げられる。 The monomer having a structure in which two or more non-fused aromatic rings are directly chemically bonded may be, for example, a biphenyl structure-containing (meth)acrylate, a triphenyl structure-containing (meth)acrylate, a vinyl group-containing biphenyl, or the like. Specific examples include o-phenylphenol (meth)acrylate and biphenylmethyl (meth)acrylate.
 前記縮合芳香環構造を有するモノマーの例としては、ナフタレン環含有(メタ)アクリレート、アントラセン環含有(メタ)アクリレート、ビニル基含有ナフタレン、ビニル基含有アントラセン等が挙げられる。具体例としては、1-ナフチルメチル(メタ)アクリレート(別名:1-ナフタレンメチル(メタ)アクリレート)、ヒドロキシエチル化β-ナフトールアクリレート、2-ナフトエチル(メタ)アクリレート、2-ナフトキシエチルアクリレート、2-(4-メトキシ-1-ナフトキシ)エチル(メタ)アクリレート等が挙げられる。 Examples of monomers having a condensed aromatic ring structure include naphthalene ring-containing (meth)acrylates, anthracene ring-containing (meth)acrylates, vinyl group-containing naphthalenes, and vinyl group-containing anthracenes. Specific examples include 1-naphthylmethyl (meth)acrylate (also known as 1-naphthalenemethyl (meth)acrylate), hydroxyethylated β-naphthol acrylate, 2-naphthoethyl (meth)acrylate, 2-naphthoxyethyl acrylate, 2 -(4-methoxy-1-naphthoxy)ethyl (meth)acrylate and the like.
 前記フルオレン構造を有するモノマーの具体例としては、9,9-ビス(4-ヒドロキシフェニル)フルオレン(メタ)アクリレート、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(メタ)アクリレート等が挙げられる。なお、フルオレン構造を有するモノマーは、2つのベンゼン環が直接化学結合した構造部分を含むため、前記2以上の非縮合芳香環が直接化学結合した構造を有するモノマーの概念に包含される。 Specific examples of the monomer having a fluorene structure include 9,9-bis(4-hydroxyphenyl)fluorene (meth)acrylate and 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene (meth)acrylate. etc. Since the monomer having a fluorene structure includes a structural portion in which two benzene rings are directly chemically bonded, it is included in the concept of a monomer having a structure in which two or more non-fused aromatic rings are directly chemically bonded.
 前記ジナフトチオフェン構造を有するモノマーとしては、(メタ)アクリロイル基含有ジナフトチオフェン、ビニル基含有ジナフトチオフェン、(メタ)アリル基含有ジナフトチオフェン等が挙げられる。具体例としては、(メタ)アクリロイルオキシメチルジナフトチオフェン(例えば、ジナフトチオフェン環の5位または6位にCH2CH(R1)C(O)OCH2-が結合した構造の化合物。ここで、R1は水素原子またはメチル基である。)、(メタ)アクリロイルオキシエチルジナフトチオフェン(例えば、ジナフトチオフェン環の5位または6位に、CH2CH(R1)C(O)OCH(CH3)-またはCH2CH(R1)C(O)OCH2CH2-が結合した構造の化合物。ここで、R1は水素原子またはメチル基である。)、ビニルジナフトチオフェン(例えば、ナフトチオフェン環の5位または6位にビニル基が結合した構造の化合物)、(メタ)アリルオキシジナフトチオフェン等が挙げられる。なお、ジナフトチオフェン構造を有するモノマーは、ナフタレン構造を含むことにより、またチオフェン環と2つのナフタレン構造とが縮合した構造を有することによっても、前記縮合芳香環構造を有するモノマーの概念に包含される。 Examples of the monomer having a dinaphthothiophene structure include (meth)acryloyl group-containing dinaphthothiophene, vinyl group-containing dinaphthothiophene, and (meth)allyl group-containing dinaphthothiophene. Specific examples include (meth)acryloyloxymethyldinaphthothiophene (for example, a compound having a structure in which CH 2 CH(R 1 )C(O)OCH 2 — is bonded to the 5- or 6-position of the dinaphthothiophene ring. and R 1 is a hydrogen atom or a methyl group), (meth)acryloyloxyethyl dinaphthothiophene (for example, at the 5- or 6-position of the dinaphthothiophene ring, CH 2 CH(R 1 )C(O) OCH(CH 3 )— or a compound having a structure in which CH 2 CH(R 1 )C(O)OCH 2 CH 2 — is bonded, where R 1 is a hydrogen atom or a methyl group), vinyldinaphthothiophene (For example, compounds having a structure in which a vinyl group is bonded to the 5th or 6th position of the naphthothiophene ring), (meth)allyloxydinaphthothiophene, and the like. Note that the monomer having a dinaphthothiophene structure is included in the concept of the monomer having a condensed aromatic ring structure by including a naphthalene structure and by having a structure in which a thiophene ring and two naphthalene structures are condensed. be.
 前記ジベンゾチオフェン構造を有するモノマーとしては、(メタ)アクリロイル基含有ジベンゾチオフェン、ビニル基含有ジベンゾチオフェン等が挙げられる。なお、ジベンゾチオフェン構造を有するモノマーは、チオフェン環と2つのベンゼン環とが縮合した構造を有することから、前記縮合芳香環構造を有するモノマーの概念に包含される。
 なお、ジナフトチオフェン構造およびジベンゾチオフェン構造は、いずれも、2以上の非縮合芳香環が直接化学結合した構造には該当しない。
Examples of the monomer having a dibenzothiophene structure include (meth)acryloyl group-containing dibenzothiophene and vinyl group-containing dibenzothiophene. A monomer having a dibenzothiophene structure is included in the concept of a monomer having a condensed aromatic ring structure because it has a structure in which a thiophene ring and two benzene rings are condensed.
Neither the dinaphthothiophene structure nor the dibenzothiophene structure corresponds to structures in which two or more non-fused aromatic rings are directly chemically bonded.
 芳香環含有モノマーとして、1分子中に1つの芳香環(好ましくは炭素環)を有するモノマーを使用してもよい。1分子中に1つの芳香環を有するモノマーは、例えば、粘着剤の柔軟性の向上や粘着特性の調整、透明性の向上等に役立ち得る。1分子中に1つの芳香環を有するモノマーは、粘着剤の屈折率向上の観点から、芳香環複数含有モノマーと組み合わせて用いることが好ましい。 A monomer having one aromatic ring (preferably a carbocyclic ring) in one molecule may be used as the aromatic ring-containing monomer. A monomer having one aromatic ring in one molecule can be useful, for example, in improving the flexibility of the pressure-sensitive adhesive, adjusting the pressure-sensitive adhesive properties, improving the transparency, and the like. A monomer having one aromatic ring in one molecule is preferably used in combination with a monomer containing multiple aromatic rings from the viewpoint of improving the refractive index of the pressure-sensitive adhesive.
 1分子中に1つの芳香環を有するモノマーの例としては、べンジル(メタ)アクリレート、メトキシベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、エトキシ化フェノール(メタ)アクリレート、フェノキシプロピル(メタ)アクリレート、フェノキシブチル(メタ)アクリレート、クレジル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、クロロベンジル(メタ)アクリレート等の、炭素芳香環含有(メタ)アクリレート;2-(4,6-ジブロモ-2-s-ブチルフェノキシ)エチル(メタ)アクリレート、2-(4,6-ジブロモ-2-イソプロピルフェノキシ)エチル(メタ)アクリレート、6-(4,6-ジブロモ-2-s-ブチルフェノキシ)ヘキシル(メタ)アクリレート、6-(4,6-ジブロモ-2-イソプロピルフェノキシ)ヘキシル(メタ)アクリレート、2,6-ジブロモ-4-ノニルフェニルアクリレート、2,6-ジブロモ-4-ドデシルフェニルアクリレート等の、臭素置換芳香環含有(メタ)アクリレート;スチレン、α-メチルスチレン、ビニルトルエン、tert-ブチルスチレン等の、炭素芳香環含有ビニル化合物;N-ビニルピリジン、N-ビニルピリミジン、N-ビニルピラジン、N-ビニルピロール、N-ビニルイミダゾール、N-ビニルオキサゾール等の、複素芳香環上にビニル置換基を有する化合物;等が挙げられる。 Examples of monomers having one aromatic ring in one molecule include benzyl (meth)acrylate, methoxybenzyl (meth)acrylate, phenyl (meth)acrylate, ethoxylated phenol (meth)acrylate, phenoxypropyl (meth)acrylate 2-(4, 6-dibromo-2-s-butylphenoxy)ethyl (meth)acrylate, 2-(4,6-dibromo-2-isopropylphenoxy)ethyl (meth)acrylate, 6-(4,6-dibromo-2-s- Butylphenoxy)hexyl (meth)acrylate, 6-(4,6-dibromo-2-isopropylphenoxy)hexyl (meth)acrylate, 2,6-dibromo-4-nonylphenyl acrylate, 2,6-dibromo-4-dodecyl Bromine-substituted aromatic ring-containing (meth)acrylates such as phenyl acrylate; carbon aromatic ring-containing vinyl compounds such as styrene, α-methylstyrene, vinyltoluene, tert-butylstyrene; N-vinylpyridine, N-vinylpyrimidine, N - compounds having a vinyl substituent on a heteroaromatic ring, such as vinylpyrazine, N-vinylpyrrole, N-vinylimidazole, and N-vinyloxazole;
 芳香環含有モノマーとしては、上述のような各種芳香環含有モノマーにおけるエチレン性不飽和基と芳香環との間にオキシエチレン鎖を介在させた構造のモノマーを使用してもよい。エチレン性不飽和基と芳香環との間にオキシエチレン鎖を介在させたモノマーは、元のモノマーのエトキシ化物として把握され得る。前記オキシエチレン鎖におけるオキシエチレン単位(-CH2CH2O-)の繰返し数は、典型的には1~4、好ましくは1~3、より好ましくは1~2であり、例えば1である。エトキシ化された芳香環含有モノマーの具体例としては、エトキシ化o-フェニルフェノール(メタ)アクリレート、エトキシ化ノニルフェノール(メタ)アクリレート、エトキシ化クレゾール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコールジ(メタ)アクリレート等が挙げられる。 As the aromatic ring-containing monomer, a monomer having a structure in which an oxyethylene chain is interposed between the ethylenically unsaturated group and the aromatic ring in various aromatic ring-containing monomers as described above may be used. A monomer with an oxyethylene chain interposed between the ethylenically unsaturated group and the aromatic ring can be understood as an ethoxylated product of the original monomer. The number of repeating oxyethylene units ( --CH.sub.2CH.sub.2O-- ) in the oxyethylene chain is typically 1-4, preferably 1-3, more preferably 1-2, for example 1. Specific examples of ethoxylated aromatic ring-containing monomers include ethoxylated o-phenylphenol (meth)acrylate, ethoxylated nonylphenol (meth)acrylate, ethoxylated cresol (meth)acrylate, phenoxyethyl (meth)acrylate, and phenoxydiethylene glycol. di(meth)acrylate and the like.
 芳香環含有モノマーにおける芳香環複数含有モノマーの含有量は、特に制限されず、例えば5重量%以上であってよく、25重量%以上でもよく、40重量%以上でもよい。より高い屈折率を有する粘着剤を実現しやすくする観点から、芳香環含有モノマーにおける芳香環複数含有モノマーの含有量は、例えば50重量%以上であってよく、70重量%以上であることが好ましく、85重量%以上でもよく、90重量%以上でもよく、95重量%以上でもよい。芳香環含有モノマーの実質的に100重量%が芳香環複数含有モノマーであってもよい。すなわち、芳香環含有モノマーとして1種または2種以上の芳香環複数含有モノマーのみを使用してもよい。また、例えば高屈折率と粘着特性および/または光学特性とのバランスを考慮して、芳香環含有モノマーにおける芳香環複数含有モノマーの含有量は、100重量%未満であってもよく、98重量%以下でもよく、90重量%以下でもよく、80重量%以下でもよく、65重量%以下でもよい。粘着特性および/または光学特性を考慮して、芳香環含有モノマーにおける芳香環複数含有モノマーの含有量は、70重量%以下でもよく、50重量%以下でもよく、25重量%以下でもよく、10重量%以下でもよい。芳香環含有モノマーにおける芳香環複数含有モノマーの含有量が5重量%未満である態様も実施し得る。芳香環複数含有モノマーを使用しなくてもよい。 The content of the monomer containing multiple aromatic rings in the aromatic ring-containing monomer is not particularly limited, and may be, for example, 5% by weight or more, 25% by weight or more, or 40% by weight or more. From the viewpoint of easily realizing a pressure-sensitive adhesive having a higher refractive index, the content of the monomer containing multiple aromatic rings in the aromatic ring-containing monomer may be, for example, 50% by weight or more, preferably 70% by weight or more. , 85% by weight or more, 90% by weight or more, or 95% by weight or more. Substantially 100% by weight of the aromatic ring-containing monomer may be the multiple aromatic ring-containing monomer. That is, only one or two or more aromatic ring-containing monomers may be used as the aromatic ring-containing monomer. Further, for example, considering the balance between the high refractive index and the adhesive properties and / or optical properties, the content of the monomer containing multiple aromatic rings in the aromatic ring-containing monomer may be less than 100% by weight, or 98% by weight. 90% by weight or less, 80% by weight or less, or 65% by weight or less. Considering adhesive properties and/or optical properties, the content of the monomer containing multiple aromatic rings in the aromatic ring-containing monomer may be 70% by weight or less, 50% by weight or less, 25% by weight or less, or 10% by weight. % or less. A mode in which the content of the monomer containing multiple aromatic rings in the monomer containing aromatic rings is less than 5% by weight can also be carried out. A monomer containing multiple aromatic rings may not be used.
 前記アクリル系ポリマーが、ポリマーを構成するモノマー成分として前記芳香環複数含有モノマーを含有する場合、前記アクリル系ポリマーを構成する全モノマー成分(100重量%)中の、前記芳香環複数含有モノマーの割合は、特に限定されないが、3重量%以上が好ましく、より好ましくは10重量%以上であり、さらに好ましくは25重量%以上である。前記割合が3重量%以上であると、より高い屈折率を得やすくなる傾向にあり、好ましい。さらに高い屈折率を得やすくする観点から、前記芳香環複数含有モノマーの含有量は、例えば35重量%超であってよく、50重量%以上でもよく、70重量%以上でもよく、75重量%以上でもよく、85重量%以上でもよく、90重量%以上でもよく、95重量%以上でもよい。また、前記芳香環複数含有モノマーの割合の上限は、高屈折率と粘着特性および/または光学特性とをバランスよく両立する観点から、99重量%以下が好ましく、より好ましくは98重量%以下であり、さらに好ましくは96重量%以下であり、93重量%以下であってもよく、90重量%以下であってもよく、85重量%以下であってもよく、80重量%以下であってもよく、75重量%以下であってもよい。また、粘着特性および/または光学特性の観点より、前記芳香環複数含有モノマーの含有量は、70重量%以下でもよく、50重量%以下でもよく、25重量%以下でもよく、15重量%以下でもよく、5重量%以下でもよい。 When the acrylic polymer contains the monomer containing multiple aromatic rings as a monomer component constituting the polymer, the proportion of the monomer containing multiple aromatic rings in the total monomer components (100% by weight) constituting the acrylic polymer. is not particularly limited, but is preferably 3% by weight or more, more preferably 10% by weight or more, and still more preferably 25% by weight or more. When the ratio is 3% by weight or more, a higher refractive index tends to be obtained, which is preferable. From the viewpoint of making it easier to obtain a higher refractive index, the content of the monomer containing multiple aromatic rings may be, for example, more than 35% by weight, may be 50% by weight or more, may be 70% by weight or more, or may be 75% by weight or more. 85% by weight or more, 90% by weight or more, or 95% by weight or more. Further, the upper limit of the ratio of the monomer containing multiple aromatic rings is preferably 99% by weight or less, more preferably 98% by weight or less, from the viewpoint of achieving a good balance between a high refractive index and adhesive properties and/or optical properties. , more preferably 96% by weight or less, may be 93% by weight or less, may be 90% by weight or less, may be 85% by weight or less, or may be 80% by weight or less , 75% by weight or less. Further, from the viewpoint of adhesive properties and/or optical properties, the content of the monomer containing multiple aromatic rings may be 70% by weight or less, 50% by weight or less, 25% by weight or less, or 15% by weight or less. Well, it may be 5% by weight or less.
 前記共重合性モノマーとしては、特に限定されないが、高湿環境下での白濁化の抑制と耐久性向上、紫外線吸収剤等の各種添加剤との相溶性、透明性の点より、分子内に窒素原子を有するモノマー、分子内に水酸基を有するモノマーが好ましく挙げられる。すなわち、前記アクリル系ポリマーは、構成単位として、分子内に窒素原子を有するモノマーを含むことが好ましい。また、前記アクリル系ポリマーは、構成単位として、分子内に水酸基を有するモノマーを含むことが好ましい。 The copolymerizable monomer is not particularly limited, but from the viewpoint of suppressing cloudiness and improving durability in a high-humidity environment, compatibility with various additives such as ultraviolet absorbers, and transparency, A monomer having a nitrogen atom and a monomer having a hydroxyl group in the molecule are preferred. That is, the acrylic polymer preferably contains a monomer having a nitrogen atom in the molecule as a structural unit. Moreover, the acrylic polymer preferably contains a monomer having a hydroxyl group in the molecule as a structural unit.
 前記分子内に窒素原子を有するモノマーは、分子内(1分子内)に窒素原子を少なくとも1つ有するモノマー(単量体)である。本明細書において、前記「分子内に窒素原子を有するモノマー」を「窒素原子含有モノマー」と称する場合がある。前記窒素原子含有モノマーとしては、特に限定されないが、環状窒素含有モノマー、(メタ)アクリルアミド類などが好ましく挙げられる。なお、窒素原子含有モノマーは、単独で又は2種以上組み合わせて用いることができる。 The monomer having a nitrogen atom in its molecule is a monomer (monomer) having at least one nitrogen atom in its molecule (within one molecule). In this specification, the "monomer having a nitrogen atom in the molecule" may be referred to as a "nitrogen atom-containing monomer". The nitrogen atom-containing monomer is not particularly limited, but preferably includes a cyclic nitrogen-containing monomer, (meth)acrylamides, and the like. Incidentally, the nitrogen atom-containing monomers can be used alone or in combination of two or more.
 前記環状窒素含有モノマーは、(メタ)アクリロイル基又はビニル基等の不飽和二重結合を有する重合性の官能基を有し、かつ環状窒素構造を有するものであれば特に限定されない。前記環状窒素構造は、環状構造内に窒素原子を有するものが好ましい。 The cyclic nitrogen-containing monomer is not particularly limited as long as it has a polymerizable functional group having an unsaturated double bond such as a (meth)acryloyl group or vinyl group and has a cyclic nitrogen structure. The cyclic nitrogen structure preferably has a nitrogen atom in the cyclic structure.
 前記環状窒素含有モノマーとしては、例えば、N-ビニル環状アミド(ラクタム系ビニルモノマー)、窒素含有複素環を有するビニル系モノマーなどが挙げられる。 Examples of the cyclic nitrogen-containing monomers include N-vinyl cyclic amides (lactam-based vinyl monomers) and vinyl-based monomers having a nitrogen-containing heterocycle.
 前記N-ビニル環状アミドとしては、例えば、下記式(1)で表されるN-ビニル環状アミドが挙げられる。
Figure JPOXMLDOC01-appb-C000001
(式(1)中、R1は2価の有機基を示す)
Examples of the N-vinyl cyclic amides include N-vinyl cyclic amides represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001
(In formula (1), R 1 represents a divalent organic group)
 前記式(1)におけるR1は2価の有機基であり、好ましくは2価の飽和炭化水素基又は不飽和炭化水素基であり、より好ましくは2価の飽和炭化水素基(例えば、炭素数3~5のアルキレン基など)である。 R 1 in the formula (1) is a divalent organic group, preferably a divalent saturated hydrocarbon group or an unsaturated hydrocarbon group, more preferably a divalent saturated hydrocarbon group (e.g., carbon number 3 to 5 alkylene groups, etc.).
 前記式(1)で表されるN-ビニル環状アミドとしては、例えば、N-ビニル-2-ピロリドン、N-ビニル-2-ピペリドン、N-ビニル-3-モルホリノン、N-ビニル-2-カプロラクタム、N-ビニル-1,3-オキサジン-2-オン、N-ビニル-3,5-モルホリンジオンなどが挙げられる。 Examples of the N-vinyl cyclic amide represented by the formula (1) include N-vinyl-2-pyrrolidone, N-vinyl-2-piperidone, N-vinyl-3-morpholinone and N-vinyl-2-caprolactam. , N-vinyl-1,3-oxazin-2-one, N-vinyl-3,5-morpholinedione, and the like.
 前記窒素含有複素環を有するビニル系モノマーとしては、例えば、モルホリン環、ピペリジン環、ピロリジン環、ピペラジン環等の窒素含有複素環を有するアクリル系モノマーなどが挙げられる。 Examples of vinyl monomers having a nitrogen-containing heterocyclic ring include acrylic monomers having a nitrogen-containing heterocyclic ring such as a morpholine ring, a piperidine ring, a pyrrolidine ring, and a piperazine ring.
 前記窒素含有複素環を有するビニル系モノマーとしては、特に限定されないが、例えば、(メタ)アクリロイルモルホリン、N-ビニルピペラジン、N-ビニルピロール、N-ビニルイミダゾール、N-ビニルピラジン、N-ビニルモルホリン、N-ビニルピラゾール、ビニルピリジン、ビニルピリミジン、ビニルオキサゾール、ビニルイソオキサゾール、ビニルチアゾール、ビニルイソチアゾール、ビニルピリダジン、(メタ)アクリロイルピロリドン、(メタ)アクリロイルピロリジン、(メタ)アクリロイルピペリジンなどが挙げられる。 The vinyl-based monomer having a nitrogen-containing heterocycle is not particularly limited, but examples include (meth)acryloylmorpholine, N-vinylpiperazine, N-vinylpyrrole, N-vinylimidazole, N-vinylpyrazine, and N-vinylmorpholine. , N-vinylpyrazole, vinylpyridine, vinylpyrimidine, vinyloxazole, vinylisoxazole, vinylthiazole, vinylisothiazole, vinylpyridazine, (meth)acryloylpyrrolidone, (meth)acryloylpyrrolidine, (meth)acryloylpiperidine and the like. .
 前記窒素含有複素環を有するビニル系モノマーとしては、中でも、窒素含有複素環を有するアクリル系モノマーが好ましく、より好ましくは(メタ)アクリロイルモルホリン、(メタ)アクリロイルピロリジン、(メタ)アクリロイルピペリジンである。 Among the vinyl-based monomers having a nitrogen-containing heterocycle, acrylic monomers having a nitrogen-containing heterocycle are preferable, and (meth)acryloylmorpholine, (meth)acryloylpyrrolidine, and (meth)acryloylpiperidine are more preferable.
 前記(メタ)アクリルアミド類としては、例えば、(メタ)アクリルアミド、N-アルキル(メタ)アクリルアミド、N,N-ジアルキル(メタ)アクリルアミドなどが挙げられる。前記N-アルキル(メタ)アクリルアミドとしては、例えば、N-エチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-n-ブチル(メタ)アクリルアミド、N-オクチル(メタ)アクリルアミドなどが挙げられる。さらに、前記N-アルキル(メタ)アクリルアミドには、ジメチルアミノエチル(メタ)アクリルアミド、ジエチルアミノエチル(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミドのようなアミノ基を有する(メタ)アクリルアミドも含まれる。前記N,N-ジアルキル(メタ)アクリルアミドとしては、例えば、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N,N-ジプロピル(メタ)アクリルアミド、N,N-ジイソプロピル(メタ)アクリルアミド、N,N-ジ(n-ブチル)(メタ)アクリルアミド、N,N-ジ(t-ブチル)(メタ)アクリルアミドなどが挙げられる。 Examples of the (meth)acrylamides include (meth)acrylamide, N-alkyl(meth)acrylamide, and N,N-dialkyl(meth)acrylamide. Examples of the N-alkyl(meth)acrylamide include N-ethyl(meth)acrylamide, N-isopropyl(meth)acrylamide, Nn-butyl(meth)acrylamide, N-octyl(meth)acrylamide and the like. . Furthermore, the N-alkyl(meth)acrylamides also include (meth)acrylamides having an amino group such as dimethylaminoethyl(meth)acrylamide, diethylaminoethyl(meth)acrylamide, and dimethylaminopropyl(meth)acrylamide. Examples of the N,N-dialkyl(meth)acrylamide include N,N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, N,N-dipropyl(meth)acrylamide, N,N-diisopropyl (Meth)acrylamide, N,N-di(n-butyl)(meth)acrylamide, N,N-di(t-butyl)(meth)acrylamide and the like.
 また、前記(メタ)アクリルアミド類には、例えば、各種のN-ヒドロキシアルキル(メタ)アクリルアミドも含まれる。前記N-ヒドロキシアルキル(メタ)アクリルアミドとしては、例えば、N-メチロール(メタ)アクリルアミド、N-(2-ヒドロキシエチル)(メタ)アクリルアミド、N-(2-ヒドロキシプロピル)(メタ)アクリルアミド、N-(1-ヒドロキシプロピル)(メタ)アクリルアミド、N-(3-ヒドロキシプロピル)(メタ)アクリルアミド、N-(2-ヒドロキシブチル)(メタ)アクリルアミド、N-(3-ヒドロキシブチル)(メタ)アクリルアミド、N-(4-ヒドロキシブチル)(メタ)アクリルアミド、N-メチル-N-2-ヒドロキシエチル(メタ)アクリルアミドなどが挙げられる。 The (meth)acrylamides also include, for example, various N-hydroxyalkyl(meth)acrylamides. Examples of the N-hydroxyalkyl(meth)acrylamide include N-methylol(meth)acrylamide, N-(2-hydroxyethyl)(meth)acrylamide, N-(2-hydroxypropyl)(meth)acrylamide, N- (1-hydroxypropyl)(meth)acrylamide, N-(3-hydroxypropyl)(meth)acrylamide, N-(2-hydroxybutyl)(meth)acrylamide, N-(3-hydroxybutyl)(meth)acrylamide, N-(4-hydroxybutyl)(meth)acrylamide, N-methyl-N-2-hydroxyethyl(meth)acrylamide and the like.
 また、前記(メタ)アクリルアミド類には、例えば、各種のN-アルコキシアルキル(メタ)アクリルアミドも含まれる。前記N-アルコキシアルキル(メタ)アクリルアミドとしては、例えば、N-メトキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミドなどが挙げられる。 The (meth)acrylamides also include, for example, various N-alkoxyalkyl(meth)acrylamides. Examples of the N-alkoxyalkyl(meth)acrylamides include N-methoxymethyl(meth)acrylamide and N-butoxymethyl(meth)acrylamide.
 また、前記環状窒素含有モノマー、前記(メタ)アクリルアミド類以外の窒素原子含有モノマーとしては、例えば、アミノ基含有モノマー、シアノ基含有モノマー、イミド基含有モノマー、イソシアネート基含有モノマーなどが挙げられる。前記アミノ基含有モノマーとしては、例えば、(メタ)アクリル酸アミノエチル、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ジメチルアミノプロピル、(メタ)アクリル酸t-ブチルアミノエチルなどが挙げられる。前記シアノ基含有モノマーとしては、例えば、アクリロニトリル、メタクリロニトリルなどが挙げられる。前記イミド基含有モノマーとしては、マレイミド系モノマー(例えば、N-シクロヘキシルマレイミド、N-イソプロピルマレイミド、N-ラウリルマレイミド、N-フェニルマレイミド等)、イタコンイミド系モノマー(例えば、N-メチルイタコンイミド、N-エチルイタコンイミド、N-ブチルイタコンイミド、N-オクチルイタコンイミド、N-2-エチルヘキシルイタコンイミド、N-ラウリルイタコンイミド、N-シクロヘキシルイタコンイミド等)、スクシンイミド系モノマー(例えば、N-(メタ)アクリロイルオキシメチレンスクシンイミド、N-(メタ)アクリロイル-6-オキシヘキサメチレンスクシンイミド、N-(メタ)アクリロイル-8-オキシオクタメチレンスクシンイミド等)など挙げられる。前記イソシアネート基含有モノマーとしては、例えば、2-(メタ)アクリロイルオキシエチルイソシアネートなどが挙げられる。 Examples of nitrogen atom-containing monomers other than the cyclic nitrogen-containing monomers and the (meth)acrylamides include amino group-containing monomers, cyano group-containing monomers, imide group-containing monomers, and isocyanate group-containing monomers. Examples of the amino group-containing monomer include aminoethyl (meth)acrylate, dimethylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylate, and t-butylaminoethyl (meth)acrylate. . Examples of the cyano group-containing monomer include acrylonitrile and methacrylonitrile. Examples of the imide group-containing monomer include maleimide-based monomers (eg, N-cyclohexylmaleimide, N-isopropylmaleimide, N-laurylmaleimide, N-phenylmaleimide, etc.), itaconimide-based monomers (eg, N-methylitaconimide, N- ethylitaconimide, N-butylitaconimide, N-octylitaconimide, N-2-ethylhexylitaconimide, N-laurylitaconimide, N-cyclohexylitaconimide, etc.), succinimide-based monomers (e.g., N-(meth)acryloyl oxymethylenesuccinimide, N-(meth)acryloyl-6-oxyhexamethylenesuccinimide, N-(meth)acryloyl-8-oxyoctamethylenesuccinimide, etc.). Examples of the isocyanate group-containing monomer include 2-(meth)acryloyloxyethyl isocyanate.
 中でも、前記窒素原子含有モノマーとしては、環状窒素含有モノマーが好ましく、N-ビニル環状アミドがより好ましい。より具体的には、N-ビニル-2-ピロリドン(NVP)が特に好ましい。 Among them, the nitrogen atom-containing monomer is preferably a cyclic nitrogen-containing monomer, and more preferably an N-vinyl cyclic amide. More specifically, N-vinyl-2-pyrrolidone (NVP) is particularly preferred.
 前記アクリル系ポリマーが、ポリマーを構成するモノマー成分として前記窒素原子含有モノマーを含有する場合、前記アクリル系ポリマーを構成する全モノマー成分(100重量%)中の、前記窒素原子含有モノマーの割合は、特に限定されないが、1重量%以上が好ましく、より好ましくは3重量%以上であり、さらに好ましくは5重量%以上である。前記割合が1重量%以上であると、高湿環境下での白濁化の抑制と耐久性がより向上することができ、好ましい。また、前記窒素原子含有モノマーの割合の上限は、適度な柔軟性を有する粘着剤層を得る点、透明性に優れる粘着剤層を得る点より、30重量%以下が好ましく、より好ましくは25重量%以下であり、さらに好ましくは20重量%以下である。 When the acrylic polymer contains the nitrogen atom-containing monomer as a monomer component constituting the polymer, the ratio of the nitrogen atom-containing monomer in the total monomer components (100% by weight) constituting the acrylic polymer is Although not particularly limited, it is preferably 1% by weight or more, more preferably 3% by weight or more, and even more preferably 5% by weight or more. When the ratio is 1% by weight or more, suppression of cloudiness and durability in a high-humidity environment can be further improved, which is preferable. In addition, the upper limit of the ratio of the nitrogen atom-containing monomer is preferably 30% by weight or less, more preferably 25% by weight, from the viewpoint of obtaining a pressure-sensitive adhesive layer having appropriate flexibility and obtaining a pressure-sensitive adhesive layer with excellent transparency. % or less, more preferably 20 wt % or less.
 前記分子内に水酸基を有するモノマーは、分子内(1分子内)に水酸基(ヒドロキシル基)を少なくとも1つ有するモノマーであり、(メタ)アクリロイル基又はビニル基等の不飽和二重結合を有する重合性の官能基を有し、かつヒドロキシル基を有するものが好ましく挙げられる。ただし、前記分子内に水酸基を有するモノマーには、前記窒素原子含有モノマーは含まれないものとする。すなわち、本明細書において、分子内に窒素原子と水酸基をともに有するモノマーは、前記「窒素原子含有モノマー」に含まれるものとする。本明細書においては、前記「分子内に水酸基を有するモノマー」を「水酸基含有モノマー」と称する場合がある。なお、水酸基含有モノマーは、単独で又は2種以上を組み合わせて用いることができる。 The monomer having a hydroxyl group in the molecule is a monomer having at least one hydroxyl group (hydroxyl group) in the molecule (in one molecule), and has an unsaturated double bond such as a (meth)acryloyl group or a vinyl group. Those having a functional group and a hydroxyl group are preferred. However, the monomer containing a hydroxyl group in the molecule does not include the nitrogen atom-containing monomer. That is, in this specification, a monomer having both a nitrogen atom and a hydroxyl group in its molecule is included in the above-mentioned "nitrogen atom-containing monomer". In this specification, the "monomer having a hydroxyl group in the molecule" may be referred to as a "hydroxyl group-containing monomer". In addition, a hydroxyl-containing monomer can be used individually or in combination of 2 or more types.
 前記水酸基含有モノマーとしては、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸ヒドロキシオクチル、(メタ)アクリル酸ヒドロキシデシル、(メタ)アクリル酸ヒドロキシラウリル、(メタ)アクリル酸(4-ヒドロキシメチルシクロヘキシル)などの水酸基含有(メタ)アクリル酸エステル;ビニルアルコール;アリルアルコールなどが挙げられる。 Examples of the hydroxyl group-containing monomer include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, ( Hydroxyl group-containing (meth) 6-hydroxyhexyl acrylate, hydroxyoctyl (meth) acrylate, hydroxydecyl (meth) acrylate, hydroxyl lauryl (meth) acrylate, (4-hydroxymethylcyclohexyl) (meth) acrylate, etc. meth)acrylic acid ester; vinyl alcohol; and allyl alcohol.
 中でも、前記水酸基含有モノマーとしては、水酸基含有(メタ)アクリル酸エステルが好ましく、より好ましくはアクリル酸2-ヒドロキシエチル(HEA)、アクリル酸4-ヒドロキシブチル(4HBA)である。 Among them, the hydroxyl group-containing monomer is preferably a hydroxyl group-containing (meth)acrylic acid ester, more preferably 2-hydroxyethyl acrylate (HEA) or 4-hydroxybutyl acrylate (4HBA).
 前記アクリル系ポリマーが、ポリマーを構成するモノマー成分として前記水酸基含有モノマーを含有する場合、前記アクリル系ポリマーを構成する全モノマー成分(100重量%)中の、前記水酸基含有モノマーの割合は、特に限定されないが、高湿環境下での白濁化の抑制と耐久性向上の観点より、0.5重量%以上であることが好ましく、より好ましくは0.8重量%以上であり、さらに好ましくは1重量%以上である。また、前記水酸基含有モノマーの割合の上限は、適度な柔軟性を有する粘着剤層を得る点、透明性に優れる粘着剤層を得る点より、30重量%以下であることが好ましく、より好ましくは25重量%以下であり、さらに好ましくは15重量%以下である。 When the acrylic polymer contains the hydroxyl group-containing monomer as a monomer component constituting the polymer, the proportion of the hydroxyl group-containing monomer in the total monomer components (100% by weight) constituting the acrylic polymer is particularly limited. However, it is preferably 0.5% by weight or more, more preferably 0.8% by weight or more, and still more preferably 1% by weight from the viewpoint of suppressing cloudiness and improving durability in a high-humidity environment. % or more. Further, the upper limit of the ratio of the hydroxyl group-containing monomer is preferably 30% by weight or less, more preferably 30% by weight or less, from the viewpoint of obtaining a pressure-sensitive adhesive layer having appropriate flexibility and obtaining a pressure-sensitive adhesive layer having excellent transparency. It is 25% by weight or less, more preferably 15% by weight or less.
 前記アクリル系ポリマーを構成する全モノマー成分(100重量%)中の、前記窒素原子含有モノマー及び前記水酸基含有モノマーの割合の合計は、特に限定されないが、高湿環境下での白濁化の抑制と耐久性向上の点より、1重量%以上であることが好ましく、より好ましくは5重量%以上であり、さらに好ましくは10重量%以上である。また、前記割合の合計の上限は、適度な柔軟性を有する粘着剤層を得る点、透明性に優れる粘着剤層を得る点より、50重量%以下であることが好ましく、より好ましくは40重量%以下であり、さらに好ましくは35重量%以下である。 The total ratio of the nitrogen atom-containing monomer and the hydroxyl group-containing monomer in the total monomer components (100% by weight) constituting the acrylic polymer is not particularly limited, but suppresses clouding in a high-humidity environment. From the viewpoint of improving durability, the content is preferably 1% by weight or more, more preferably 5% by weight or more, and still more preferably 10% by weight or more. In addition, the upper limit of the total of the ratios is preferably 50% by weight or less, more preferably 40% by weight, from the viewpoint of obtaining a pressure-sensitive adhesive layer having moderate flexibility and obtaining a pressure-sensitive adhesive layer with excellent transparency. % or less, more preferably 35 wt % or less.
 窒素原子含有モノマー及び水酸基含有モノマー以外の共重合性モノマーとしては、さらに、脂環構造含有モノマーが挙げられる。前記脂環構造含有モノマーは、(メタ)アクリロイル基またはビニル基等の不飽和二重結合を有する重合性の官能基を有し、かつ脂環構造を有するものであれば特に限定されない。例えば、シクロアルキル基を有するアルキル(メタ)アクリレートは、前記脂環構造含有モノマーに含まれる。なお、脂環構造含有モノマーは、単独で又は2種以上組み合わせて用いることができる。 Copolymerizable monomers other than nitrogen atom-containing monomers and hydroxyl group-containing monomers further include alicyclic structure-containing monomers. The alicyclic structure-containing monomer is not particularly limited as long as it has a polymerizable functional group having an unsaturated double bond such as a (meth)acryloyl group or a vinyl group and has an alicyclic structure. For example, an alkyl (meth)acrylate having a cycloalkyl group is included in the alicyclic structure-containing monomer. In addition, an alicyclic structure containing monomer can be used individually or in combination of 2 or more types.
 前記脂環構造含有モノマーにおける脂環構造は、環状の炭化水素構造であり、炭素数5以上であることが好ましく、炭素数6~24がより好ましく、炭素数6~15がさらに好ましく、炭素数6~10が特に好ましい。 The alicyclic structure in the alicyclic structure-containing monomer is a cyclic hydrocarbon structure, preferably having 5 or more carbon atoms, more preferably 6 to 24 carbon atoms, further preferably 6 to 15 carbon atoms, and 6 to 10 are particularly preferred.
 前記脂環構造含有モノマーとしては、例えば、シクロプロピル(メタ)アクリレート、シクロブチル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、シクロヘプチル(メタ)アクリレート、シクロオクチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、下記式(2)で表されるHPMPA、下記式(3)で表されるTMA-2、下記式(4)で表されるHCPAなどのアクリル系モノマーが挙げられる。なお、下記式(4)において、線でつないだシクロヘキシル環と括弧内の構造式との結合場所は特に限定されない。これらの中でも、イソボルニル(メタ)アクリレートが好ましい。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Examples of the alicyclic structure-containing monomer include cyclopropyl (meth)acrylate, cyclobutyl (meth)acrylate, cyclopentyl (meth)acrylate, cyclohexyl (meth)acrylate, cycloheptyl (meth)acrylate, cyclooctyl (meth)acrylate, isobornyl (meth)acrylate, dicyclopentanyl (meth)acrylate, HPMPA represented by the following formula (2), TMA-2 represented by the following formula (3), HCPA represented by the following formula (4), etc. of acrylic monomers. In the following formula (4), there is no particular limitation on the bonding position between the cyclohexyl ring connected by a line and the structural formula in parentheses. Among these, isobornyl (meth)acrylate is preferred.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 前記アクリル系ポリマーが、ポリマーを構成するモノマー成分として前記脂環構造含有モノマーを含有する場合、前記アクリル系ポリマーを構成する全モノマー成分(100重量%)中の、前記脂環構造含有モノマーの割合は、特に限定されないが、耐久性向上の点より、10重量%以上であることが好ましい。また、前記脂環構造含有モノマーの割合の上限は、適度な柔軟性を有する粘着剤層を得る点より、50重量%以下が好ましく、より好ましくは40重量%以下、さらに好ましくは30重量%以下である。 When the acrylic polymer contains the alicyclic structure-containing monomer as a monomer component constituting the polymer, the proportion of the alicyclic structure-containing monomer in the total monomer components (100% by weight) constituting the acrylic polymer. is not particularly limited, but is preferably 10% by weight or more from the viewpoint of improving durability. In addition, the upper limit of the ratio of the alicyclic structure-containing monomer is preferably 50% by weight or less, more preferably 40% by weight or less, and still more preferably 30% by weight or less, from the viewpoint of obtaining a pressure-sensitive adhesive layer having appropriate flexibility. is.
 さらに、共重合性モノマーとしては、例えば、多官能性モノマーが挙げられる。前記多官能性モノマーとしては、例えば、ヘキサンジオールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、アリル(メタ)アクリレート、ビニル(メタ)アクリレート、ジビニルベンゼン、エポキシアクリレート、ポリエステルアクリレート、ウレタンアクリレートなどが挙げられる。なお、多官能性モノマーは、単独で又は2種以上を組み合わせて用いることができる。 Furthermore, copolymerizable monomers include, for example, polyfunctional monomers. Examples of the polyfunctional monomer include hexanediol di(meth)acrylate, butanediol di(meth)acrylate, (poly)ethylene glycol di(meth)acrylate, (poly)propylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, pentaerythritol di(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol hexa(meth)acrylate, trimethylolpropane tri(meth)acrylate, tetramethylolmethane tri(meth)acrylate, Allyl (meth)acrylate, vinyl (meth)acrylate, divinylbenzene, epoxy acrylate, polyester acrylate, urethane acrylate and the like. In addition, a polyfunctional monomer can be used individually or in combination of 2 or more types.
 前記アクリル系ポリマーが、ポリマーを構成するモノマー成分として前記多官能性モノマーを含有する場合、前記アクリル系ポリマーを構成する全モノマー成分(100重量%)中の、前記多官能性モノマーの割合は、特に限定されないが、0.5重量%以下(例えば、0重量%を超えて0.5重量%以下)が好ましく、より好ましくは0.2重量%以下(例えば、0重量%を超えて0.2重量%以下)である。 When the acrylic polymer contains the polyfunctional monomer as a monomer component constituting the polymer, the ratio of the polyfunctional monomer in the total monomer components (100% by weight) constituting the acrylic polymer is Although not particularly limited, it is preferably 0.5% by weight or less (for example, more than 0% by weight and 0.5% by weight or less), more preferably 0.2% by weight or less (for example, more than 0% by weight and 0.5% by weight or less). 2% by weight or less).
 また、前記共重合性モノマーとしては、(メタ)アクリル酸アルコキシアルキルエステルが挙げられる。前記(メタ)アクリル酸アルコキシアルキルエステルとしては、特に限定されないが、例えば、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸2-エトキシエチル、(メタ)アクリル酸メトキシトリエチレングリコール、(メタ)アクリル酸3-メトキシプロピル、(メタ)アクリル酸3-エトキシプロピル、(メタ)アクリル酸4-メトキシブチル、(メタ)アクリル酸4-エトキシブチルなどが挙げられる。中でも、前記(メタ)アクリル酸アルコキシアルキルエステルは、アクリル酸アルコキシアルキルエステルが好ましく、より好ましくはアクリル酸2-メトキシエチル(MEA)である。なお、前記(メタ)アクリル酸アルコキシアルキルエステルは、単独で又は2種以上を組み合わせて用いることができる。 Further, examples of the copolymerizable monomer include (meth)acrylic acid alkoxyalkyl esters. The (meth)acrylic acid alkoxyalkyl ester is not particularly limited, but examples thereof include 2-methoxyethyl (meth)acrylate, 2-ethoxyethyl (meth)acrylate, methoxytriethylene glycol (meth)acrylate, ( 3-methoxypropyl meth)acrylate, 3-ethoxypropyl (meth)acrylate, 4-methoxybutyl (meth)acrylate, 4-ethoxybutyl (meth)acrylate and the like. Among them, the alkoxyalkyl (meth)acrylate is preferably an alkoxyalkyl acrylate, more preferably 2-methoxyethyl acrylate (MEA). The (meth)acrylic acid alkoxyalkyl esters may be used alone or in combination of two or more.
 前記アクリル系ポリマーが、ポリマーを構成するモノマー成分として、前記(メタ)アクリル酸アルコキシアルキルエステルを含む場合、前記(メタ)アクリル酸アルキルエステルと前記(メタ)アクリル酸アルコキシアルキルエステルとの割合は、特に限定されないが、[前者:後者](重量比)で、100:0を超えて25:75以下が好ましく、より好ましくは100:0を超えて50:50以下である。 When the acrylic polymer contains the (meth)acrylic acid alkoxyalkyl ester as a monomer component constituting the polymer, the ratio of the (meth)acrylic acid alkyl ester and the (meth)acrylic acid alkoxyalkyl ester is Although not particularly limited, the [former: latter] (weight ratio) is preferably more than 100:0 and 25:75 or less, more preferably more than 100:0 and 50:50 or less.
 他にも、前記共重合性モノマーとしては、例えば、カルボキシル基含有モノマー、エポキシ基含有モノマー、スルホン酸基含有モノマー、リン酸基含有モノマー、芳香族炭化水素基を有する(メタ)アクリル酸エステル、ビニルエステル類、芳香族ビニル化合物、オレフィン類又はジエン類、ビニルエーテル類、塩化ビニルなどが挙げられる。前記カルボキシル基含有モノマーとしては、例えば、(メタ)アクリル酸、イタコン酸、マレイン酸、フマル酸、クロトン酸、イソクロトン酸などが挙げられる、また、前記カルボキシル基含有モノマーには、例えば、無水マレイン酸、無水イタコン酸等の酸無水物基含有モノマーも含まれるものとする。前記エポキシ基含有モノマーとしては、例えば、(メタ)アクリル酸グリシジル、(メタ)アクリル酸メチルグリシジルなどが挙げられる。前記スルホン酸基含有モノマーとしては、例えば、ビニルスルホン酸ナトリウムなどが挙げられる。前記芳香族炭化水素基を有する(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸フェニル、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸ベンジルなどが挙げられる。前記ビニルエステル類としては、例えば、酢酸ビニル、プロピオン酸ビニルなどが挙げられる。前記芳香族ビニル化合物としては、例えば、スチレン、ビニルトルエンなどが挙げられる。前記オレフィン類又はジエン類としては、例えば、エチレン、プロピレン、ブタジエン、イソプレン、イソブチレンなどが挙げられる。前記ビニルエーテル類としては、例えば、ビニルアルキルエーテルなどが挙げられる。 In addition, the copolymerizable monomers include, for example, carboxyl group-containing monomers, epoxy group-containing monomers, sulfonic acid group-containing monomers, phosphoric acid group-containing monomers, aromatic hydrocarbon group-containing (meth)acrylic acid esters, vinyl esters, aromatic vinyl compounds, olefins or dienes, vinyl ethers, vinyl chloride and the like. Examples of the carboxyl group-containing monomers include (meth)acrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid, and isocrotonic acid. Examples of the carboxyl group-containing monomers include maleic anhydride. and anhydride group-containing monomers such as itaconic anhydride. Examples of the epoxy group-containing monomer include glycidyl (meth)acrylate and methylglycidyl (meth)acrylate. Examples of the sulfonic acid group-containing monomer include sodium vinylsulfonate. Examples of the (meth)acrylic ester having an aromatic hydrocarbon group include phenyl (meth)acrylate, phenoxyethyl (meth)acrylate, and benzyl (meth)acrylate. Examples of the vinyl esters include vinyl acetate and vinyl propionate. Examples of the aromatic vinyl compound include styrene and vinyltoluene. Examples of the olefins or dienes include ethylene, propylene, butadiene, isoprene, and isobutylene. Examples of the vinyl ethers include vinyl alkyl ethers.
 前記アクリル系ポリマーは、粘着剤層の被着体がタッチパネル等の金属または金属酸化物の配線を含む場合は、優れた耐腐食性を有するアクリル系粘着剤層を得る点より、ポリマーを構成するモノマー成分として酸性基含有モノマーを含まない又は実質的に含まないことが好ましく、特にカルボキシル基含有モノマーを含まない又は実質的に含まないことが好ましい。酸性基含有モノマーとしては、例えば、カルボキシル基含有モノマー、スルホン酸基含有モノマー、リン酸基含有モノマーなどが挙げられる。具体的には、前記アクリル系ポリマーを構成する全モノマー成分(100重量%)中の、酸性基含有モノマーの割合が、0.05重量%以下(好ましくは0.01重量%以下)であるものは、実質的に含有しないということができる。 When the adherend of the pressure-sensitive adhesive layer includes metal or metal oxide wiring such as a touch panel, the acrylic polymer constitutes a polymer in order to obtain an acrylic pressure-sensitive adhesive layer having excellent corrosion resistance. Preferably, the monomer component does not contain or substantially contains no acidic group-containing monomer, and particularly preferably does not contain or substantially contains no carboxyl group-containing monomer. Examples of acidic group-containing monomers include carboxyl group-containing monomers, sulfonic acid group-containing monomers, phosphoric acid group-containing monomers, and the like. Specifically, the proportion of the acidic group-containing monomer in the total monomer components (100% by weight) constituting the acrylic polymer is 0.05% by weight or less (preferably 0.01% by weight or less). can be said to be substantially free of
 本発明の粘着剤層中のベースポリマー(特にアクリル系ポリマー)の含有量は、特に限定されないが、本発明の粘着剤層の総重量100重量%に対して、50重量%以上(例えば、50~100重量%)が好ましく、より好ましくは80重量%以上(例えば、80~100重量%)、さらに好ましくは90重量%以上(例えば、90~100重量%)である。 The content of the base polymer (especially acrylic polymer) in the adhesive layer of the present invention is not particularly limited, but is 50% by weight or more (for example, 50% by weight) relative to 100% by weight of the total weight of the adhesive layer of the present invention. to 100% by weight), more preferably 80% by weight or more (eg, 80 to 100% by weight), and still more preferably 90% by weight or more (eg, 90 to 100% by weight).
 本発明の粘着剤層が含有する、前記アクリル系ポリマーなどのベースポリマーは、モノマー成分を重合することにより得られる。この重合方法としては、特に限定されないが、例えば、溶液重合方法、乳化重合方法、塊状重合方法、活性エネルギー線照射による重合方法(活性エネルギー線重合方法)などが挙げられる。中でも、粘着剤層の透明性、コストなどの点より、溶液重合方法、活性エネルギー線重合方法が好ましい。 The base polymer such as the acrylic polymer contained in the pressure-sensitive adhesive layer of the present invention is obtained by polymerizing monomer components. The polymerization method is not particularly limited, but includes, for example, a solution polymerization method, an emulsion polymerization method, a bulk polymerization method, and a polymerization method using active energy ray irradiation (active energy ray polymerization method). Among them, the solution polymerization method and the active energy ray polymerization method are preferable from the viewpoints of the transparency of the pressure-sensitive adhesive layer and the cost.
 また、前記のモノマー成分の重合に際しては、各種の一般的な溶剤が用いられてもよい。前記溶剤としては、例えば、酢酸エチル、酢酸n-ブチル等のエステル類;トルエン、ベンゼン等の芳香族炭化水素類;n-ヘキサン、n-ヘプタン等の脂肪族炭化水素類;シクロヘキサン、メチルシクロヘキサン等の脂環式炭化水素類;メチルエチルケトン、メチルイソブチルケトン等のケトン類などの有機溶剤が挙げられる。なお、溶剤は、単独で又は2種以上組み合わせて用いることができる。 In addition, various general solvents may be used in the polymerization of the monomer components. Examples of the solvent include esters such as ethyl acetate and n-butyl acetate; aromatic hydrocarbons such as toluene and benzene; aliphatic hydrocarbons such as n-hexane and n-heptane; cyclohexane, methylcyclohexane and the like. alicyclic hydrocarbons; and organic solvents such as ketones such as methyl ethyl ketone and methyl isobutyl ketone. In addition, a solvent can be used individually or in combination of 2 or more types.
 前記のモノマー成分の重合に際しては、重合反応の種類に応じて、熱重合開始剤や光重合開始剤(光開始剤)などの重合開始剤が用いられてもよい。なお、重合開始剤は、単独で又は2種以上を組み合わせて用いることができる。 Upon polymerization of the monomer component, a polymerization initiator such as a thermal polymerization initiator or a photopolymerization initiator (photoinitiator) may be used depending on the type of polymerization reaction. In addition, a polymerization initiator can be used individually or in combination of 2 or more types.
 前記熱重合開始剤としては、特に限定されないが、例えば、アゾ系重合開始剤、過酸化物系重合開始剤(例えば、ジベンゾイルペルオキシド、tert-ブチルペルマレエート等)、レドックス系重合開始剤等が挙げられる。中でも、特開2002-69411号公報に開示されたアゾ系重合開始剤が好ましい。前記アゾ系重合開始剤としては、2,2'-アゾビスイソブチロニトリル(以下、「AIBN」と称する場合がある)、2,2'-アゾビス-2-メチルブチロニトリル(以下、「AMBN」と称する場合がある)、2,2'-アゾビス(2-メチルプロピオン酸)ジメチル、4,4'-アゾビス-4-シアノバレリアン酸などが挙げられる。なお、熱重合開始剤は、単独で又は2種以上を組み合わせて用いることができる。 Examples of the thermal polymerization initiator include, but are not limited to, azo polymerization initiators, peroxide polymerization initiators (eg, dibenzoyl peroxide, tert-butyl permaleate, etc.), redox polymerization initiators, and the like. is mentioned. Among them, the azo polymerization initiator disclosed in JP-A-2002-69411 is preferable. Examples of the azo polymerization initiator include 2,2'-azobisisobutyronitrile (hereinafter sometimes referred to as "AIBN"), 2,2'-azobis-2-methylbutyronitrile (hereinafter, " AMBN”), 2,2′-azobis(2-methylpropionate)dimethyl, 4,4′-azobis-4-cyanovaleric acid and the like. In addition, a thermal polymerization initiator can be used individually or in combination of 2 or more types.
 前記アクリル系ポリマーの重合の際に前記アゾ系重合開始剤を用いる場合、前記アゾ系重合開始剤の使用量は、特に限定されないが、例えば、前記アクリル系ポリマーを構成する全モノマー成分100重量部に対して、0.05重量部以上であることが好ましく、より好ましくは0.1重量部以上であり、また、0.5重量部以下であることが好ましく、より好ましくは0.3重量部以下である。 When the azo polymerization initiator is used in the polymerization of the acrylic polymer, the amount of the azo polymerization initiator used is not particularly limited. , preferably 0.05 parts by weight or more, more preferably 0.1 parts by weight or more, and preferably 0.5 parts by weight or less, more preferably 0.3 parts by weight It is below.
 前記光重合開始剤としては、特に限定されないが、例えば、ベンゾインエーテル系光重合開始剤、アセトフェノン系光重合開始剤、α-ケトール系光重合開始剤、芳香族スルホニルクロリド系光重合開始剤、光活性オキシム系光重合開始剤、ベンゾイン系光重合開始剤、ベンジル系光重合開始剤、ベンゾフェノン系光重合開始剤、ケタール系光重合開始剤、チオキサントン系光重合開始剤等が挙げられる。他にも、アシルフォスフィンオキサイド系光重合開始剤、チタノセン系光重合開始剤が挙げられる。前記ベンゾインエーテル系光重合開始剤としては、例えば、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、アニソールメチルエーテル等が挙げられる。前記アセトフェノン系光重合開始剤としては、例えば、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、4-フェノキシジクロロアセトフェノン、4-(t-ブチル)ジクロロアセトフェノン等が挙げられる。前記α-ケトール系光重合開始剤としては、例えば、2-メチル-2-ヒドロキシプロピオフェノン、1-[4-(2-ヒドロキシエチル)フェニル]-2-メチルプロパン-1-オン等が挙げられる。前記芳香族スルホニルクロリド系光重合開始剤としては、例えば、2-ナフタレンスルホニルクロライド等が挙げられる。前記光活性オキシム系光重合開始剤としては、例えば、1-フェニル-1,1-プロパンジオン-2-(O-エトキシカルボニル)-オキシム等が挙げられる。前記ベンゾイン系光重合開始剤としては、例えば、ベンゾイン等が挙げられる。前記ベンジル系光重合開始剤としては、例えば、ベンジル等が挙げられる。前記ベンゾフェノン系光重合開始剤としては、例えば、ベンゾフェノン、ベンゾイル安息香酸、3,3'-ジメチル-4-メトキシベンゾフェノン、ポリビニルベンゾフェノン、α-ヒドロキシシクロヘキシルフェニルケトン等が挙げられる。前記ケタール系光重合開始剤としては、例えば、ベンジルジメチルケタール等が挙げられる。前記チオキサントン系光重合開始剤としては、例えば、チオキサントン、2-クロロチオキサントン、2-メチルチオキサントン、2,4-ジメチルチオキサントン、イソプロピルチオキサントン、2,4-ジイソプロピルチオキサントン、ドデシルチオキサントン等が挙げられる。前記アシルフォスフィンオキサイド系光重合開始剤としては、例えば、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等が挙げられる。前記チタノセン系光重合開始剤としては、例えば、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム等が挙げられる。なお、光重合開始剤は、単独で又は2種以上を組み合わせて用いることができる。 The photopolymerization initiator is not particularly limited. Active oxime-based photopolymerization initiators, benzoin-based photopolymerization initiators, benzyl-based photopolymerization initiators, benzophenone-based photopolymerization initiators, ketal-based photopolymerization initiators, thioxanthone-based photopolymerization initiators, and the like are included. Other examples include acylphosphine oxide photopolymerization initiators and titanocene photopolymerization initiators. Examples of the benzoin ether photopolymerization initiator include benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 2,2-dimethoxy-1,2-diphenylethan-1-one, anisole methyl ether and the like. Examples of the acetophenone-based photopolymerization initiator include 2,2-diethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexylphenylketone, 4-phenoxydichloroacetophenone, 4-(t-butyl ) and dichloroacetophenone. Examples of the α-ketol photopolymerization initiator include 2-methyl-2-hydroxypropiophenone, 1-[4-(2-hydroxyethyl)phenyl]-2-methylpropan-1-one, and the like. be done. Examples of the aromatic sulfonyl chloride photopolymerization initiator include 2-naphthalenesulfonyl chloride. Examples of the photoactive oxime photopolymerization initiator include 1-phenyl-1,1-propanedione-2-(O-ethoxycarbonyl)-oxime. Examples of the benzoin-based photopolymerization initiator include benzoin. Examples of the benzyl-based photopolymerization initiator include benzyl. Examples of the benzophenone-based photopolymerization initiator include benzophenone, benzoylbenzoic acid, 3,3'-dimethyl-4-methoxybenzophenone, polyvinylbenzophenone, α-hydroxycyclohexylphenyl ketone, and the like. Examples of the ketal-based photopolymerization initiator include benzyl dimethyl ketal. Examples of the thioxanthone photopolymerization initiator include thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-diisopropylthioxanthone, and dodecylthioxanthone. Examples of the acylphosphine oxide-based photopolymerization initiator include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide and bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide. . Examples of the titanocene photopolymerization initiator include bis(η 5 -2,4-cyclopentadien-1-yl)-bis(2,6-difluoro-3-(1H-pyrrol-1-yl)-phenyl ) titanium and the like. In addition, a photoinitiator can be used individually or in combination of 2 or more types.
 前記アクリル系ポリマーの重合の際に前記光重合開始剤を用いる場合、前記光重合開始剤の使用量は、特に限定されないが、例えば、前記アクリル系ポリマーを構成する全モノマー成分100重量部に対して、0.01重量部以上であることが好ましく、より好ましくは0.1重量部以上であり、また、3重量部以下であることが好ましく、より好ましくは1.5重量部以下である。 When the photopolymerization initiator is used in the polymerization of the acrylic polymer, the amount of the photopolymerization initiator used is not particularly limited. It is preferably 0.01 parts by weight or more, more preferably 0.1 parts by weight or more, and preferably 3 parts by weight or less, more preferably 1.5 parts by weight or less.
 本発明の粘着剤層(特に、OLED素子の視認側にカラーフィルタが配置されており、本発明の粘着剤層と前記カラーフィルタとの間の距離(d)が700μm以下である場合の本発明の粘着剤層)は、特に限定されないが、高屈折率有機材料を含有することが好ましい。本発明の粘着剤層が高屈折率有機材料を含むと、高屈折率の粘着剤層を得、OLED表示パネルとの界面反射を抑制し、OLED素子からの光の採光率が向上できる点より、好ましい。なお、高屈折率有機材料は、単独で又は2種以上組み合わせて用いることができる。 The present invention when the pressure-sensitive adhesive layer of the present invention (particularly, a color filter is arranged on the viewing side of the OLED element and the distance (d) between the pressure-sensitive adhesive layer of the present invention and the color filter is 700 μm or less) is not particularly limited, but preferably contains a high refractive index organic material. When the pressure-sensitive adhesive layer of the present invention contains a high-refractive-index organic material, a high-refractive-index pressure-sensitive adhesive layer can be obtained, interfacial reflection with an OLED display panel can be suppressed, and the acceptance rate of light from the OLED element can be improved. ,preferable. The high refractive index organic material can be used alone or in combination of two or more.
 高屈折率有機材料は、高屈折率(High Refractive index)の有機材料(Organic material)であることを表す。このような高屈折率有機材料とアクリル系ポリマーとを組み合わせて用いることにより、屈折率と粘着特性(剥離強度、柔軟性等)および/または光学特性(全光線透過率、ヘイズ値等)とを好適に両立する粘着剤を実現し得る。高屈折率有機材料として用いられる有機材料は、重合体であってもよく、非重合体であってもよい。また、重合性官能基を有していてもよく、有していなくてもよい。 A high refractive index organic material means an organic material with a high refractive index. By using such a high refractive index organic material in combination with an acrylic polymer, it is possible to improve the refractive index, adhesive properties (peel strength, flexibility, etc.) and/or optical properties (total light transmittance, haze value, etc.). A suitably compatible pressure sensitive adhesive can be achieved. The organic material used as the high refractive index organic material may be a polymer or a non-polymer. Moreover, it may or may not have a polymerizable functional group.
 高屈折率有機材料の屈折率は、アクリル系ポリマーの屈折率との相対関係で適当な範囲に設定し得るので、特定の範囲に限定されない。高屈折率有機材料の屈折率は、例えば1.50超、1.55超または1.57超であって、アクリル系ポリマーの屈折率より高いことが好ましい。粘着剤の高屈折率化の観点から、高屈折率有機材料の屈折率は、1.58以上であることが有利であり、1.60以上であることが好ましく、1.63以上であることがより好ましく、1.65以上でもよく、1.70以上でもよく、1.75以上でもよい。より屈折率の高い高屈折率有機材料によると、より少量の高屈折率有機材料の使用によっても目的の屈折率を達成し得る。このことは粘着特性や光学特性の低下抑制の観点から好ましい。高屈折率有機材料の屈折率の上限は特に制限されないが、粘着剤内における相溶性や、高屈折率化と粘着剤として適した柔軟性との両立容易性等の観点から、例えば3.000以下であり、2.500以下でもよく、2.000以下でもよく、1.950以下でもよく、1.900以下でもよく、1.850以下でもよい。また、高屈折率有機材料は粘着剤層の柔軟性を付与する可塑剤として機能するものを用いることもできる。
 なお、高屈折率有機材料、粘着剤層の屈折率は、アッベ屈折率計を用いて、測定波長589nm、測定温度25℃の条件で測定される。メーカー等から25℃における屈折率の公称値が提供されている場合は、その公称値を採用することができる。
The refractive index of the high-refractive-index organic material is not limited to a specific range because it can be set within an appropriate range in relation to the refractive index of the acrylic polymer. Preferably, the high refractive index organic material has a refractive index greater than 1.50, greater than 1.55 or greater than 1.57, and higher than the refractive index of the acrylic polymer. From the viewpoint of increasing the refractive index of the adhesive, the refractive index of the high refractive index organic material is advantageously 1.58 or more, preferably 1.60 or more, and 1.63 or more. is more preferable, and may be 1.65 or more, 1.70 or more, or 1.75 or more. With a high refractive index organic material having a higher refractive index, a target refractive index can be achieved even by using a smaller amount of the high refractive index organic material. This is preferable from the viewpoint of suppressing deterioration of adhesive properties and optical properties. The upper limit of the refractive index of the high-refractive-index organic material is not particularly limited. 2.500 or less, 2.000 or less, 1.950 or less, 1.900 or less, or 1.850 or less. Moreover, the high refractive index organic material can also be one that functions as a plasticizer that imparts flexibility to the pressure-sensitive adhesive layer.
The high refractive index organic material and the refractive index of the pressure-sensitive adhesive layer are measured using an Abbe refractometer under conditions of a measurement wavelength of 589 nm and a measurement temperature of 25°C. If the manufacturer or the like provides the nominal value of the refractive index at 25° C., the nominal value can be adopted.
 高屈折率有機材料の屈折率nbとアクリル系ポリマーの屈折率naとの差、すなわちnb-na(以下、「ΔnA」ともいう。)は、0より大きくなるように設定される。ΔnAは、例えば0.02以上であり、0.05以上でもよく、0.07以上でもよく、0.10以上でもよく、0.15以上でもよく、0.20以上または0.25以上でもよい。ΔnAがより大きくなるようにアクリル系ポリマーおよび高屈折率有機材料を選択することにより、高屈折率有機材料の使用による屈折率向上効果は高くなる傾向にある。また、粘着剤層内における高屈折率有機材料の相溶性の観点から、ΔnAは、例えば0.70以下であってよく、0.60以下でもよく、0.50以下でもよく、0.40以下または0.35以下でもよい。 The difference between the refractive index n b of the high refractive index organic material and the refractive index na of the acrylic polymer, that is, n b −na (hereinafter also referred to as “Δn A ”) is set to be greater than 0. be. Δn A is, for example, 0.02 or more, 0.05 or more, 0.07 or more, 0.10 or more, 0.15 or more, 0.20 or more, or 0.25 or more good. By selecting the acrylic polymer and the high refractive index organic material so that Δn A becomes larger, the effect of improving the refractive index by using the high refractive index organic material tends to be enhanced. Further, from the viewpoint of compatibility of the high refractive index organic material in the adhesive layer, Δn A may be, for example, 0.70 or less, 0.60 or less, 0.50 or less, or 0.40 or less, or 0.35 or less.
 高屈折率有機材料の屈折率nbと、該高屈折率有機材料を含む粘着剤層の屈折率nTとの差、すなわちnb-nT(以下、「ΔnB」ともいう。)は、0より大きくなるように設定され得る。いくつかの態様において、ΔnBは、例えば0.02以上であり、0.05以上でもよく、0.07以上でもよく、0.10以上でもよく、0.15以上でもよく、0.20以上または0.25以上でもよい。ΔnBがより大きくなるように粘着剤層の組成および高屈折率有機材料を選択することにより、高屈折率有機材料の使用による屈折率向上効果は高くなる傾向にある。また、粘着剤層内における相溶性や、粘着剤層の透明性等の観点から、いくつかの態様において、ΔnBは、例えば0.70以下であってよく、0.60以下でもよく、0.50以下でもよく、0.40以下または0.35以下でもよい。 The difference between the refractive index n b of the high refractive index organic material and the refractive index n T of the adhesive layer containing the high refractive index organic material, that is, n b −n T (hereinafter also referred to as “Δn B ”) is , may be set to be greater than zero. In some embodiments, Δn B is, for example, 0.02 or greater, 0.05 or greater, 0.07 or greater, 0.10 or greater, 0.15 or greater, or 0.20 or greater. Alternatively, it may be 0.25 or more. By selecting the composition of the pressure-sensitive adhesive layer and the high refractive index organic material so as to increase Δn B , the effect of improving the refractive index by using the high refractive index organic material tends to increase. Further, from the viewpoint of compatibility in the pressure-sensitive adhesive layer, transparency of the pressure-sensitive adhesive layer, etc., in some embodiments, Δn B may be, for example, 0.70 or less, 0.60 or less, It may be 0.50 or less, 0.40 or less, or 0.35 or less.
 高屈折率有機材料として使用する有機材料の分子量は、特に限定されず、目的に応じて選択し得る。高屈折率化の効果と他の特性(例えば、粘着剤に適した柔軟性、ヘイズ等の光学特性)とをバランスよく両立する観点から、高屈折率有機材料の分子量は、凡そ10000未満であることが適当であり、5000未満であることが好ましく、3000未満(例えば1000未満)であることがより好ましく、800未満でもよく、600未満でもよく、500未満でもよく、400未満でもよい。高屈折率有機材料の分子量が大きすぎないことは、粘着剤層内における相溶性向上の観点から有利となり得る。また、高屈折率有機材料の分子量は、例えば130以上であってよく、150以上でもよい。高屈折率有機材料の分子量は、該高屈折率有機材料の高屈折率化の観点から、170以上であることが好ましく、200以上であることがより好ましく、230以上でもよく、250以上でもよく、270以上でもよく、500以上でもよく、1000以上でもよく、2000以上でもよい。分子量が1000~10000程度(例えば1000以上5000未満)の重合体を、高屈折率有機材料として用いることができる。
 高屈折率有機材料の分子量としては、非重合体または低重合度(例えば2~5量体程度)の重合体については、化学構造に基づいて算出される分子量、もしくはマトリックス支援レーザー脱離イオン化飛行時間型質量分析法(MALDI-TOF-MS)を用いた測定値を用いることができる。高屈折率有機材料がより重合度の高い重合体である場合は、適切な条件で行われるGPCに基づく重量平均分子量(Mw)を用いることができる。メーカー等から分子量の公称値が提供されている場合は、その公称値を採用することができる。
The molecular weight of the organic material used as the high refractive index organic material is not particularly limited, and can be selected depending on the purpose. From the viewpoint of achieving a good balance between the effect of increasing the refractive index and other properties (e.g., flexibility suitable for adhesives, optical properties such as haze), the molecular weight of the high refractive index organic material is approximately less than 10,000. preferably less than 5,000, more preferably less than 3,000 (eg, less than 1,000), less than 800, less than 600, less than 500, or less than 400. It may be advantageous from the viewpoint of improving compatibility in the pressure-sensitive adhesive layer that the molecular weight of the high refractive index organic material is not too large. Also, the molecular weight of the high refractive index organic material may be, for example, 130 or more, or 150 or more. From the viewpoint of increasing the refractive index of the high refractive index organic material, the molecular weight of the high refractive index organic material is preferably 170 or more, more preferably 200 or more, may be 230 or more, or may be 250 or more. , 270 or more, 500 or more, 1000 or more, or 2000 or more. A polymer having a molecular weight of about 1000 to 10000 (for example, 1000 or more and less than 5000) can be used as the high refractive index organic material.
As for the molecular weight of the high refractive index organic material, for non-polymers or polymers with a low degree of polymerization (for example, about 2- to 5-mers), the molecular weight calculated based on the chemical structure, or the matrix-assisted laser desorption ionization flight Measurements using time-based mass spectrometry (MALDI-TOF-MS) can be used. If the high refractive index organic material is a polymer with a higher degree of polymerization, the weight average molecular weight (Mw) based on GPC performed under appropriate conditions can be used. When the nominal value of the molecular weight is provided by the manufacturer or the like, the nominal value can be adopted.
 高屈折率有機材料の選択肢となり得る有機材料の例には、芳香環を有する有機化合物、複素環(芳香環でもよく、非芳香族性の複素環でもよい。)を有する有機化合物等が含まれるが、これらに限定されない。 Examples of organic materials that can be selected as high refractive index organic materials include organic compounds having aromatic rings, organic compounds having heterocyclic rings (which may be aromatic rings or non-aromatic heterocyclic rings), and the like. but not limited to these.
 高屈折率有機材料として用いられる前記芳香環を有する有機化合物(以下、「芳香環含有化合物」ともいう。)の有する芳香環は、前記芳香環含有モノマーとして用いられる化合物の有する芳香環と同様のものから選択され得る。 The aromatic ring of the organic compound having an aromatic ring (hereinafter also referred to as "aromatic ring-containing compound") used as the high refractive index organic material is the same as the aromatic ring of the compound used as the aromatic ring-containing monomer. can be selected from
 前記芳香環は、環構成原子上に1または2以上の置換基を有していてもよく、置換基を有していなくてもよい。置換基を有する場合、該置換基としては、アルキル基、アルコキシ基、アリールオキシ基、水酸基、ハロゲン原子(フッ素原子、塩素原子、臭素原子等)、ヒドロキシアルキル基、ヒドロキシアルキルオキシ基、グリシジルオキシ基等が例示されるが、これらに限定されない。炭素原子を含む置換基において、該置換基に含まれる炭素原子の数は、例えば1~10であり、有利には1~6であり、好ましくは1~4であり、より好ましくは1~3であり、例えば1または2であり得る。前記芳香環は、環構成原子上に置換基を有しないか、アルキル基、アルコキシ基およびハロゲン原子(例えば臭素原子)からなる群から選択される1または2以上の置換基を有する芳香環であり得る。 The aromatic ring may have one or more substituents on the ring-constituting atoms, or may have no substituents. When having a substituent, the substituent includes an alkyl group, an alkoxy group, an aryloxy group, a hydroxyl group, a halogen atom (fluorine atom, chlorine atom, bromine atom, etc.), a hydroxyalkyl group, a hydroxyalkyloxy group, and a glycidyloxy group. etc. are exemplified, but not limited to these. In the substituent containing carbon atoms, the number of carbon atoms contained in the substituent is, for example, 1 to 10, preferably 1 to 6, preferably 1 to 4, more preferably 1 to 3. and can be, for example, 1 or 2. The aromatic ring is an aromatic ring having no substituents on ring-constituting atoms or having one or more substituents selected from the group consisting of alkyl groups, alkoxy groups and halogen atoms (e.g., bromine atoms). obtain.
 高屈折率有機材料として用いられ得る芳香環含有化合物の例としては、例えば:芳香環含有モノマーとして用いられ得る化合物;芳香環含有モノマーとして用いられ得る化合物をモノマー単位として含むオリゴマー;芳香環含有モノマーとして用いられ得る化合物から、エチレン性不飽和基を有する基(環構成原子に結合した置換基であり得る。)または該基のうちエチレン性不飽和基を構成する部分を除き、水素原子またはエチレン性不飽和基を有しない基(例えば、水酸基、アミノ基、ハロゲン原子、アルキル基、アルコキシ基、ヒドロキシアルキル基、ヒドロキシアルキルオキシ基、グリシジルオキシ基等)に置き換えた構造の化合物;等が挙げられるが、これらに限定されない。高屈折率有機材料として用いられ得る芳香環含有化合物の非限定的な具体例には、ベンジルアクリレート、m-フェノキシベンジルアクリレート、2-(o-フェニルフェノキシ)エチルアクリレート、フェノキシエチルアクリレート、フェノキシジエチレングリコールアクリレート、フェノキシポリエチレングリコールアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、上述したフルオレン構造を有するモノマー、ジナフトチオフェン構造を有するモノマー、ジベンゾチオフェン構造を有するモノマー等の芳香環含有モノマー;3-フェノキシベンジルアルコール、ジナフトチオフェンおよびその誘導体(例えば、ジナフトチオフェン環に、ヒドロキシ基、メタノール基、ジエタノール基、グリシジル基等から選択される1種または2種以上の置換基が、1または2以上結合した構造の化合物)等の、エチレン性不飽和基を有しない芳香環含有化合物;等が含まれ得る。また、芳香環含有化合物は、このような芳香環含有モノマーをモノマー単位として含むオリゴマー(好ましくは分子量が凡そ5000以下、より好ましくは凡そ1000以下のオリゴマー。例えば2~5量体程度の低重合物)であり得る。前記オリゴマーは、例えば:芳香環含有モノマーの単独重合体;1種または2種以上の芳香環含有モノマーの共重合体;1種または2種以上の芳香環含有モノマーと他のモノマーとの共重合体;等であり得る。前記他のモノマーとしては、芳香環を有しないモノマーの1種または2種以上が用いられ得る。 Examples of aromatic ring-containing compounds that can be used as high refractive index organic materials include: compounds that can be used as aromatic ring-containing monomers; oligomers that contain compounds that can be used as aromatic ring-containing monomers as monomer units; aromatic ring-containing monomers from a compound that can be used as a group having an ethylenically unsaturated group (which may be a substituent bonded to a ring-constituting atom) or a hydrogen atom or ethylene a compound having a structure substituted with a group having no polyunsaturated group (e.g., hydroxyl group, amino group, halogen atom, alkyl group, alkoxy group, hydroxyalkyl group, hydroxyalkyloxy group, glycidyloxy group, etc.); but not limited to these. Non-limiting examples of aromatic ring-containing compounds that can be used as high refractive index organic materials include benzyl acrylate, m-phenoxybenzyl acrylate, 2-(o-phenylphenoxy)ethyl acrylate, phenoxyethyl acrylate, phenoxydiethylene glycol acrylate. , phenoxypolyethylene glycol acrylate, 2-hydroxy-3-phenoxypropyl acrylate, monomers having a fluorene structure described above, monomers having a dinaphthothiophene structure, monomers having a dibenzothiophene structure, and other aromatic ring-containing monomers; 3-phenoxybenzyl alcohol , dinaphthothiophene and derivatives thereof (for example, a structure in which one or more substituents selected from a hydroxy group, a methanol group, a diethanol group, a glycidyl group, etc. are bonded to the dinaphthothiophene ring. aromatic ring-containing compounds having no ethylenically unsaturated groups, such as compounds of (); Further, the aromatic ring-containing compound is an oligomer containing such an aromatic ring-containing monomer as a monomer unit (preferably an oligomer having a molecular weight of about 5000 or less, more preferably about 1000 or less. For example, a low polymer of about 2 to 5 mers ). The oligomers are, for example: homopolymers of aromatic ring-containing monomers; copolymers of one or more aromatic ring-containing monomers; copolymers of one or more aromatic ring-containing monomers with other monomers. coalescence; and the like. As the other monomer, one or more monomers having no aromatic ring may be used.
 いくつかの態様において、高屈折率有機材料としては、高い高屈折率化効果が得られやすいことから、1分子中に2以上の芳香環を有する有機化合物(以下、「芳香環複数含有化合物」ともいう。)を好ましく採用し得る。芳香環複数含有化合物は、エチレン性不飽和基等の重合性官能基を有していてもよく、有していなくてもよい。また、芳香環複数含有化合物は、重合体であってもよく、非重合体であってもよい。また、前記重合体は、芳香環複数含有モノマーをモノマー単位として含むオリゴマー(好ましくは分子量が凡そ5000以下、より好ましくは凡そ1000以下のオリゴマー。例えば2~5量体程度の低重合物)であり得る。前記オリゴマーは、例えば:芳香環複数含有モノマーの単独重合体;1種または2種以上の芳香環複数含有モノマーの共重合体;1種または2種以上の芳香環複数含有モノマーと他のモノマーとの共重合体;等であり得る。前記他のモノマーは、芳香環複数含有モノマーに該当しない芳香環含有モノマーでもよく、芳香環を有しないモノマーでもよく、これらの組合せであってもよい。 In some aspects, as the high refractive index organic material, an organic compound having two or more aromatic rings in one molecule (hereinafter referred to as "a compound containing multiple aromatic rings") is used because it is easy to obtain a high refractive index increasing effect. Also called.) can be preferably adopted. The compound containing multiple aromatic rings may or may not have a polymerizable functional group such as an ethylenically unsaturated group. Moreover, the compound containing multiple aromatic rings may be a polymer or a non-polymer. In addition, the polymer is an oligomer (preferably an oligomer having a molecular weight of about 5000 or less, more preferably about 1000 or less; for example, a low polymer of about 2 to 5 mers) containing multiple aromatic ring-containing monomers as monomer units. obtain. The oligomer is, for example: a homopolymer of a monomer containing multiple aromatic rings; a copolymer of one or more monomers containing multiple aromatic rings; a monomer containing one or more than two aromatic rings and another monomer. a copolymer of; The other monomer may be an aromatic ring-containing monomer that does not correspond to a monomer containing multiple aromatic rings, a monomer having no aromatic ring, or a combination thereof.
 芳香環複数含有化合物の非限定的な例としては、2以上の非縮合芳香環がリンキング基を介して結合した構造を有する化合物、2以上の非縮合芳香環が直接(すなわち、他の原子を介さずに)化学結合した構造を有する化合物、縮合芳香環構造を有する化合物、フルオレン構造を有する化合物、ジナフトチオフェン構造を有する化合物、ジベンゾチオフェン構造を有する化合物等が挙げられる。芳香環複数含有化合物は、1種を単独でまたは2種以上を組み合せて用いることができる。 Non-limiting examples of compounds containing multiple aromatic rings include compounds having a structure in which two or more non-fused aromatic rings are linked via a linking group, two or more non-fused aromatic rings directly (i.e., other atoms compounds having a chemically bonded structure, compounds having a condensed aromatic ring structure, compounds having a fluorene structure, compounds having a dinaphthothiophene structure, compounds having a dibenzothiophene structure, and the like. The compounds containing multiple aromatic rings may be used singly or in combination of two or more.
 前記フルオレン構造を有する化合物の具体例としては、上述したフルオレン構造を有するモノマーや、かかるモノマーの単独重合体または共重合体であるオリゴマーのほか、9,9-ビス(4-ヒドロキシフェニル)フルオレン(屈折率:1.68)、9,9-ビス(4-アミノフェニル)フルオレン(屈折率:1.73)、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン(屈折率:1.68)、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(屈折率:1.65)等の、9,9-ビスフェニルフルオレンおよびその誘導体が挙げられる。 Specific examples of the compound having a fluorene structure include the above-described monomers having a fluorene structure, oligomers that are homopolymers or copolymers of such monomers, and 9,9-bis(4-hydroxyphenyl)fluorene ( refractive index: 1.68), 9,9-bis(4-aminophenyl)fluorene (refractive index: 1.73), 9,9-bis(4-hydroxy-3-methylphenyl)fluorene (refractive index: 1 .68), 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene (refractive index: 1.65) and its derivatives.
 前記ジナフトチオフェン構造を有する化合物の具体例としては、上述したジナフトチオフェン構造を有するモノマーや、かかるモノマーの単独重合体または共重合体であるオリゴマーのほか、ジナフトチオフェン(屈折率:1.808);6-ヒドロキシメチルジナフトチオフェン(屈折率:1.766)等のヒドロキシアルキルジナフトチオフェン;2,12-ジヒドロキシジナフトチオフェン(屈折率:1.750)等のジヒドロキシジナフトチオフェン;2,12-ジヒドロキエチルオキシジナフトチオフェン(屈折率:1.677)等のジヒドロキシアルキルオキシジナフトチオフェン;2,12-ジグリシジルオキシジナフトチオフェン(屈折率1.723)等のジグリシジルオキシジナフトチオフェン;2,12-ジアリルオキシジナフトチオフェン(略号:2,12-DAODNT、屈折率1.729)等の、エチレン性不飽和基を2以上有するジナフトチオフェン;等の、ジナフトチオフェンおよびその誘導体が挙げられる。 Specific examples of the compound having a dinaphthothiophene structure include the above-described monomers having a dinaphthothiophene structure, oligomers that are homopolymers or copolymers of such monomers, and dinaphthothiophene (refractive index: 1.0). 808); hydroxyalkyldinaphthothiophenes such as 6-hydroxymethyldinaphthothiophene (refractive index: 1.766); dihydroxydinaphthothiophenes such as 2,12-dihydroxydinaphthothiophene (refractive index: 1.750); , 12-dihydroxyethyloxydinaphthothiophene (refractive index: 1.677); diglycidyloxydinaphthothiophene (refractive index: 1.723); naphthothiophene; dinaphthothiophene having two or more ethylenically unsaturated groups such as 2,12-diallyloxydinaphthothiophene (abbreviation: 2,12-DAODNT, refractive index 1.729); Derivatives thereof may be mentioned.
 前記ジベンゾチオフェン構造を有する化合物の具体例としては、上述したジベンゾチオフェン構造を有するモノマーや、かかるモノマーの単独重合体または共重合体であるオリゴマーのほか、ジベンゾチオフェン(屈折率:1.607)、4-ジメチルジベンゾチオフェン(屈折率:1.617)、4,6-ジメチルジベンゾチオフェン(屈折率:1.617)等が挙げられる。 Specific examples of the compound having a dibenzothiophene structure include the above-described monomers having a dibenzothiophene structure, oligomers that are homopolymers or copolymers of such monomers, dibenzothiophene (refractive index: 1.607), 4-dimethyldibenzothiophene (refractive index: 1.617), 4,6-dimethyldibenzothiophene (refractive index: 1.617) and the like.
 高屈折率有機材料の選択肢となり得る、複素環を有する有機化合物(以下、複素環含有有機化合物ともいう。)の例としては、チオエポキシ化合物、トリアジン環を有する化合物等が挙げられる。チオエポキシ化合物の例としては、特許第3712653号公報に記載のビス(2,3-エピチオプロピル)ジスルフィドおよびその重合物(屈折率1.74)が挙げられる。トリアジン環を有する化合物の例としては、1分子内にトリアジン環を少なくとも1つ(例えば3~40個、好ましくは5~20個)有する化合物が挙げられる。なお、トリアジン環は芳香族性を有するため、トリアジン環を有する化合物は前記芳香環含有化合物の概念にも包含され、また、トリアジン環を複数有する化合物は前記芳香環複数含有化合物の概念にも包含される。 Examples of organic compounds having a heterocyclic ring (hereinafter also referred to as heterocyclic ring-containing organic compounds) that can be options for high refractive index organic materials include thioepoxy compounds and compounds having a triazine ring. Examples of thioepoxy compounds include bis(2,3-epithiopropyl)disulfide and its polymer (refractive index: 1.74) described in Japanese Patent No. 3712653. Examples of compounds having a triazine ring include compounds having at least one (eg, 3 to 40, preferably 5 to 20) triazine rings in one molecule. In addition, since the triazine ring has aromaticity, the compound having a triazine ring is also included in the concept of the compound containing the aromatic ring, and the compound having multiple triazine rings is also included in the concept of the compound containing multiple aromatic rings. be done.
 高屈折率有機材料としては、エチレン性不飽和基を有しない化合物を好ましく採用し得る。これにより、熱や光による粘着剤組成物の変質(ゲル化の進行や粘度上昇によるレベリング性の低下)を抑制し、保存安定性を高めることができる。エチレン性不飽和基を有しない高屈折率有機材料を採用することは、該高屈折率有機材料を含む粘着剤層を有する粘着フィルムや、該粘着フィルムを含む積層体等において、エチレン性不飽和基の反応に起因する寸法変化や変形(反り、波打ち等)、光学歪の発生等を抑制する観点からも好ましい。 A compound having no ethylenically unsaturated group can be preferably employed as the high refractive index organic material. As a result, deterioration of the pressure-sensitive adhesive composition due to heat or light (decrease in leveling properties due to progression of gelation or increase in viscosity) can be suppressed, and storage stability can be enhanced. Employing a high refractive index organic material that does not have an ethylenically unsaturated group means that an adhesive film having an adhesive layer containing the high refractive index organic material, a laminate including the adhesive film, or the like has ethylenically unsaturated It is also preferable from the viewpoint of suppressing dimensional change and deformation (warpage, waviness, etc.), optical distortion, etc. caused by reaction of groups.
 高屈折率有機材料としてオリゴマーを使用する態様において、該オリゴマーは、対応するモノマー成分を公知の方法で重合させることにより得ることができる。前記オリゴマーをラジカル重合により製造する場合には、前記モノマー成分に、ラジカル重合に用いられる重合開始剤、連鎖移動剤、乳化剤等を適宜添加して、重合を行うことができる。前記ラジカル重合に用いられる重合開始剤、連鎖移動剤、乳化剤等は、特に限定されず、適宜選択して使用することができる。なお、オリゴマーの重量平均分子量は、重合開始剤、連鎖移動剤の使用量、反応条件により制御可能であり、これらの種類に応じて適宜その使用量が調整される。 In embodiments where an oligomer is used as the high refractive index organic material, the oligomer can be obtained by polymerizing the corresponding monomer component by a known method. When the oligomer is produced by radical polymerization, polymerization can be carried out by appropriately adding a polymerization initiator, a chain transfer agent, an emulsifier, etc. used for radical polymerization to the monomer component. The polymerization initiator, chain transfer agent, emulsifier and the like used in the radical polymerization are not particularly limited and can be appropriately selected and used. The weight-average molecular weight of the oligomer can be controlled by adjusting the amount of the polymerization initiator and the chain transfer agent used and the reaction conditions, and the amount used is appropriately adjusted according to these types.
 前記連鎖移動剤としては、例えば、ラウリルメルカプタン、グリシジルメルカプタン、メルカプト酢酸、2-メルカプトエタノール、α-チオグリセロール、チオグリコール酸、チオグルコール酸2-エチルヘキシル、2,3-ジメルカプト-1-プロパノール等が挙げられる。連鎖移動剤は、1種を単独で使用してもよく、2種以上を混合して使用してもよい。連鎖移動剤の使用量は、オリゴマーの合成に用いられるモノマー成分の組成や連鎖移動剤の種類等に応じて、所望の重量平均分子量のオリゴマーが得られるように設定することができる。いくつかの態様において、オリゴマーの合成に用いられるモノマーの全量100重量部に対する連鎖移動剤の使用量は、凡そ15重量部以下とすることが適当であり、10重量部以下でもよく、5重量部程度以下でもよい。オリゴマーの合成に用いられるモノマーの全量100重量部に対する連鎖移動剤の使用量の下限は特に制限されないが、例えば0.01重量部以上であってよく、0.1重量部以上でもよく、0.5重量部以上でもよく、1重量部以上でもよい。 Examples of the chain transfer agent include lauryl mercaptan, glycidyl mercaptan, mercaptoacetic acid, 2-mercaptoethanol, α-thioglycerol, thioglycolic acid, 2-ethylhexyl thioglycolate, 2,3-dimercapto-1-propanol, and the like. be done. A chain transfer agent may be used individually by 1 type, and may be used in mixture of 2 or more types. The amount of the chain transfer agent used can be set according to the composition of the monomer components used in the synthesis of the oligomer, the type of the chain transfer agent, etc., so as to obtain an oligomer having a desired weight-average molecular weight. In some embodiments, the amount of the chain transfer agent used for 100 parts by weight of the total amount of monomers used in the synthesis of the oligomer is suitably about 15 parts by weight or less, may be 10 parts by weight or less, or may be 5 parts by weight. It may be less than a degree. The lower limit of the amount of the chain transfer agent to be used with respect to 100 parts by weight of the total amount of monomers used for the synthesis of the oligomer is not particularly limited. It may be 5 parts by weight or more, or 1 part by weight or more.
 アクリル系ポリマー100重量部に対する高屈折率有機材料の使用量(複数種の化合物を用いる場合は、それらの合計量)は、0重量部超であれば特に限定されず、目的に応じて設定することができる。アクリル系ポリマー100重量部に対する高屈折率有機材料の使用量は、例えば80重量部以下とすることができ、粘着剤の高屈折率化と粘着特性や光学特性の低下抑制とをバランスよく両立する観点から、60重量部以下とすることが有利であり、45重量部以下とすることが好ましい。より粘着特性や光学特性を重視する観点から、アクリル系ポリマー100重量部に対する高屈折率有機材料の使用量は、例えば30重量部以下であってよく、20重量部以下でもよく、15重量部以下でもよく、10重量部以下でもよい。また、粘着剤の高屈折率化の観点から、アクリル系ポリマー100重量部に対する高屈折率有機材料の使用量は、例えば1重量部以上とすることができ、3重量部以上とすることが有利であり、5重量部以上とすることが好ましく、7重量部以上でもよく、10重量部以上でもよく、15重量部以上でもよく、20重量部以上でもよい。 The amount of the high-refractive-index organic material used relative to 100 parts by weight of the acrylic polymer (the total amount thereof when multiple types of compounds are used) is not particularly limited as long as it exceeds 0 parts by weight, and is set according to the purpose. be able to. The amount of the high refractive index organic material used relative to 100 parts by weight of the acrylic polymer can be, for example, 80 parts by weight or less, achieving both a high refractive index of the adhesive and suppression of deterioration in adhesive properties and optical properties in a well-balanced manner. From the point of view, it is advantageous to use 60 parts by weight or less, preferably 45 parts by weight or less. From the viewpoint of emphasizing adhesive properties and optical properties, the amount of the high refractive index organic material used relative to 100 parts by weight of the acrylic polymer may be, for example, 30 parts by weight or less, 20 parts by weight or less, or 15 parts by weight or less. or less than 10 parts by weight. In addition, from the viewpoint of increasing the refractive index of the adhesive, the amount of the high refractive index organic material used relative to 100 parts by weight of the acrylic polymer can be, for example, 1 part by weight or more, and is preferably 3 parts by weight or more. It is preferably 5 parts by weight or more, may be 7 parts by weight or more, may be 10 parts by weight or more, may be 15 parts by weight or more, or may be 20 parts by weight or more.
 本発明の粘着剤層は、特に限定されないが、紫外線吸収剤(UVA)を含有することが好ましい。本発明の粘着剤層が紫外線吸収剤を含むと、外光に含まれる紫外線によるOLED素子の劣化を抑制し、偏光板を使用しなくとも耐候性に優れるOLED表示装置を得ることができる。また、紫外線による前記高屈折率成分の劣化を抑制し、高い採光率を維持することができる。なお、紫外線吸収剤は、単独で又は2種以上組み合わせて用いることができる。 Although the adhesive layer of the present invention is not particularly limited, it preferably contains an ultraviolet absorber (UVA). When the pressure-sensitive adhesive layer of the present invention contains an ultraviolet absorber, it is possible to suppress deterioration of the OLED element due to ultraviolet rays contained in external light, and to obtain an OLED display device having excellent weather resistance without using a polarizing plate. In addition, deterioration of the high refractive index component due to ultraviolet rays can be suppressed, and a high lighting efficiency can be maintained. In addition, an ultraviolet absorber can be used individually or in combination of 2 or more types.
 前記紫外線吸収剤としては、特に限定されないが、例えば、ベンゾトリアゾール系紫外線吸収剤、ヒドロキシフェニルトリアジン系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、サリチル酸エステル系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、オキシベンゾフェノン系紫外線吸収剤などが挙げられる。 Examples of the ultraviolet absorber include, but are not limited to, benzotriazole-based ultraviolet absorbers, hydroxyphenyltriazine-based ultraviolet absorbers, benzophenone-based ultraviolet absorbers, salicylic acid ester-based ultraviolet absorbers, cyanoacrylate-based ultraviolet absorbers, oxy Examples include benzophenone-based ultraviolet absorbers.
 ベンゾトリアゾール系紫外線吸収剤(ベンゾトリアゾール系化合物)としては、例えば、2-(2-ヒドロキシ-5-tert-ブチルフェニル)-2H-ベンゾトリアゾール(商品名「TINUVIN PS」、BASF社製)、ベンゼンプロパン酸および3-(2H-ベンゾトリアゾール-2-イル)-5-(1,1-ジメチルエチル)-4-ヒドロキシ(C7-9側鎖および直鎖アルキル)のエステル化合物(商品名「TINUVIN 384-2」、BASF社製)、オクチル3-[3-tert-ブチル-4-ヒドロキシ-5-(5-クロロ-2H-ベンゾトリアゾール-2-イル)フェニル]プロピオネートおよび2-エチルヘキシル-3-[3-tert-ブチル-4-ヒドロキシ-5-(5-クロロ-2H-ベンゾトリアゾール-2イル)フェニル]プロピオネートの混合物(商品名「TINUVIN 109」、BASF社製)、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(商品名「TINUVIN 900」、BASF社製)、2-(2H-ベンゾトリアゾール-2-イル)-6-(1-メチル-1-フェニルエチル)-4-(1,1,3,3-テトラメチルブチル)フェノール(商品名「TINUVIN 928」、BASF製)、メチル3-(3-(2H-ベンゾトリアゾール-2-イル)-5-tert-ブチル-4-ヒドロキシフェニル)プロピオネート/ポリエチレングリコール300の反応生成物(商品名「TINUVIN 1130」、BASF社製)、2-(2H-ベンゾトリアゾール-2-イル)-p-クレゾール(商品名「TINUVIN P」、BASF社製)、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(商品名「TINUVIN 234」、BASF社製)、2-[5-クロロ-2H-ベンゾトリアゾール-2-イル]-4-メチル-6-(tert-ブチル)フェノール(商品名「TINUVIN 326」、BASF社製)、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ジ-tert-ペンチルフェノール(商品名「TINUVIN 328」、BASF社製)、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール(商品名「TINUVIN 329」、BASF社製)、2,2'-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール](商品名「TINUVIN 360」、BASF社製)、メチル3-(3-(2H-ベンゾトリアゾール-2-イル)-5-tert-ブチル-4-ヒドロキシフェニル)プロピオネートとポリエチレングリコール300との反応生成物(商品名「TINUVIN 213」、BASF社製)、2-(2H-ベンゾトリアゾール-2-イル)-6-ドデシル-4-メチルフェノール(商品名「TINUVIN 571」、BASF社製)、2-[2-ヒドロキシ-3-(3,4,5,6-テトラヒドロフタルイミド-メチル)-5-メチルフェニル]ベンゾトリアゾール(商品名「Sumisorb 250」、住友化学(株)製)、2,2'-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-tert-オクチルフェノール](商品名「アデカスタブ LA-31」、(株)ADEKA製)などが挙げられる。 Benzotriazole-based UV absorbers (benzotriazole-based compounds) include, for example, 2-(2-hydroxy-5-tert-butylphenyl)-2H-benzotriazole (trade name "TINUVIN PS", manufactured by BASF), benzene Ester compound of propanoic acid and 3-(2H-benzotriazol-2-yl)-5-(1,1-dimethylethyl)-4-hydroxy (C7-9 side chain and linear alkyl) (trade name "TINUVIN 384 -2", manufactured by BASF), octyl 3-[3-tert-butyl-4-hydroxy-5-(5-chloro-2H-benzotriazol-2-yl)phenyl]propionate and 2-ethylhexyl-3-[ A mixture of 3-tert-butyl-4-hydroxy-5-(5-chloro-2H-benzotriazol-2yl)phenyl]propionate (trade name "TINUVIN 109", manufactured by BASF), 2-(2H-benzotriazole -2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol (trade name "TINUVIN 900", manufactured by BASF), 2-(2H-benzotriazol-2-yl)-6- (1-methyl-1-phenylethyl)-4-(1,1,3,3-tetramethylbutyl)phenol (trade name "TINUVIN 928", manufactured by BASF), methyl 3-(3-(2H-benzotriazole) -2-yl)-5-tert-butyl-4-hydroxyphenyl)propionate/polyethylene glycol 300 reaction product (trade name "TINUVIN 1130", manufactured by BASF), 2-(2H-benzotriazol-2-yl )-p-cresol (trade name “TINUVIN P”, manufactured by BASF), 2-(2H-benzotriazol-2-yl)-4,6-bis(1-methyl-1-phenylethyl)phenol (trade name "TINUVIN 234", manufactured by BASF), 2-[5-chloro-2H-benzotriazol-2-yl]-4-methyl-6-(tert-butyl)phenol (trade name "TINUVIN 326", manufactured by BASF) ), 2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol (trade name “TINUVIN 328”, manufactured by BASF), 2-(2H-benzotriazol-2-yl) -4-(1,1,3,3-tetramethylbutyl)phenol (trade name "TINUVIN 329", manufactured by BASF), 2,2'-methylenebis[6-(2H-benzotriazol-2-yl)- 4-(1,1,3,3-tetramethylbutyl)phenol] (trade name “TINUVIN 360”, manufactured by BASF), methyl 3-(3-(2H-benzotriazol-2-yl)-5-tert -Butyl-4-hydroxyphenyl)propionate and polyethylene glycol 300 reaction product (trade name "TINUVIN 213", manufactured by BASF), 2-(2H-benzotriazol-2-yl)-6-dodecyl-4- Methylphenol (trade name "TINUVIN 571", manufactured by BASF), 2-[2-hydroxy-3-(3,4,5,6-tetrahydrophthalimido-methyl)-5-methylphenyl]benzotriazole (trade name " Sumisorb 250", manufactured by Sumitomo Chemical Co., Ltd.), 2,2'-methylenebis[6-(2H-benzotriazol-2-yl)-4-tert-octylphenol] (trade name "ADEKA STAB LA-31", ) manufactured by ADEKA) and the like.
 ヒドロキシフェニルトリアジン系紫外線吸収剤(ヒドロキシフェニルトリアジン系化合物)としては、例えば、2-(4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル)-5-ヒドロキシフェニルと[(C10-C16(主としてC12-C13)アルキルオキシ)メチル]オキシランとの反応生成物(商品名「TINUVIN 400」、BASF社製)、2-[4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル]-5-[3-(ドデシルオキシ)-2-ヒドロキシプロポキシ]フェノール)、2-(2,4-ジヒドロキシフェニル)-4,6-ビス-(2,4-ジメチルフェニル)-1,3,5-トリアジンと(2-エチルヘキシル)-グリシド酸エステルの反応生成物(商品名「TINUVIN 405」、BASF社製)、2,4-ビス(2-ヒドロキシ-4-ブトキシフェニル)-6-(2,4-ジブトキシフェニル)-1,3,5-トリアジン(商品名「TINUVIN 460」、BASF社製)、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(ヘキシル)オキシ]-フェノール(商品名「TINUVIN 1577」、BASF社製)、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[2-(2-エチルヘキサノイルオキシ)エトキシ]-フェノール(商品名「アデカスタブ LA-46」、(株)ADEKA製)、2-(2-ヒドロキシ-4-[1-オクチルオキシカルボニルエトキシ]フェニル)-4,6-ビス(4-フェニルフェニル)-1,3,5-トリアジン(商品名「TINUVIN 479」、BASF社製)などが挙げられる。他にも、下記式(5)で示される化合物(商品名「TINUVIN 477」、BASF社製)が挙げられる。
Figure JPOXMLDOC01-appb-C000005
Hydroxyphenyltriazine-based UV absorbers (hydroxyphenyltriazine-based compounds) include, for example, 2-(4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin-2-yl)-5 - Reaction product of hydroxyphenyl and [(C10-C16 (mainly C12-C13) alkyloxy) methyl] oxirane (trade name “TINUVIN 400” manufactured by BASF), 2-[4,6-bis(2, 4-dimethylphenyl)-1,3,5-triazin-2-yl]-5-[3-(dodecyloxy)-2-hydroxypropoxy]phenol), 2-(2,4-dihydroxyphenyl)-4, Reaction product of 6-bis-(2,4-dimethylphenyl)-1,3,5-triazine and (2-ethylhexyl)-glycidate (trade name “TINUVIN 405”, manufactured by BASF), 2,4 -bis(2-hydroxy-4-butoxyphenyl)-6-(2,4-dibutoxyphenyl)-1,3,5-triazine (trade name “TINUVIN 460”, manufactured by BASF), 2-(4, 6-diphenyl-1,3,5-triazin-2-yl)-5-[(hexyl)oxy]-phenol (trade name “TINUVIN 1577”, manufactured by BASF), 2-(4,6-diphenyl-1 ,3,5-triazin-2-yl)-5-[2-(2-ethylhexanoyloxy)ethoxy]-phenol (trade name “ADEKA STAB LA-46”, manufactured by ADEKA Corporation), 2-(2 -Hydroxy-4-[1-octyloxycarbonylethoxy]phenyl)-4,6-bis(4-phenylphenyl)-1,3,5-triazine (trade name “TINUVIN 479”, manufactured by BASF) and the like. be done. In addition, a compound represented by the following formula (5) (trade name “TINUVIN 477”, manufactured by BASF) can be used.
Figure JPOXMLDOC01-appb-C000005
 ベンゾフェノン系紫外線吸収剤(ベンゾフェノン系化合物)、オキシベンゾフェノン系紫外線吸収剤(オキシベンゾフェノン系化合物)としては、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン-5-スルホン酸(無水及び三水塩)、2-ヒドロキシ-4-オクチルオキシベンゾフェノン、4-ドデシルオキシ-2-ヒドロキシベンゾフェノン、4-ベンジルオキシ-2-ヒドロキシベンゾフェノン、2,2'-ジヒドロキシ-4-メトキシベンゾフェノン(商品名「KEMISORB 111」、ケミプロ化成(株)製)、2,2',4,4'-テトラヒドロキシベンゾフェノン(商品名「SEESORB 106」、シプロ化成(株)製)、2,2'-ジヒドロキシ-4,4'-ジメトキシベンゾフェノンなどが挙げられる。 Benzophenone UV absorbers (benzophenone compounds) and oxybenzophenone UV absorbers (oxybenzophenone compounds) include, for example, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4- Methoxybenzophenone-5-sulfonic acid (anhydrous and trihydrate), 2-hydroxy-4-octyloxybenzophenone, 4-dodecyloxy-2-hydroxybenzophenone, 4-benzyloxy-2-hydroxybenzophenone, 2,2'- Dihydroxy-4-methoxybenzophenone (trade name "KEMISORB 111", manufactured by Chemipro Kasei Co., Ltd.), 2,2',4,4'-tetrahydroxybenzophenone (trade name "SEESORB 106", manufactured by Sipro Kasei Co., Ltd.) , 2,2′-dihydroxy-4,4′-dimethoxybenzophenone and the like.
 サリチル酸エステル系紫外線吸収剤(サリチル酸エステル系化合物)としては、例えば、フェニル2-アクリロイルオキシベンゾエート、フェニル2-アクロリイルオキシ-3-メチルベンゾエート、フェニル2-アクリロイルオキシ-4-メチルベンゾエート、フェニル2-アクリロイルオキシ-5-メチルベンゾエート、フェニル2-アクリロイルオキシ-3-メトキシベンゾエート、フェニル2-ヒドロキシベンゾエート、フェニル2-ヒドロキシ-3-メチルベンゾエート、フェニル2-ヒドロキシ-4-メチルベンゾエート、フェニル2-ヒドロキシ-5-メチルベンゾエート、フェニル2-ヒドロキシ-3-メトキシベンゾエート、2,4-ジ-tert-ブチルフェニル3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート(商品名「TINUVIN 120」、BASF社製)などが挙げられる。 Salicylic acid ester-based ultraviolet absorbers (salicylic acid ester-based compounds) include, for example, phenyl 2-acryloyloxybenzoate, phenyl 2-acryloyloxy-3-methylbenzoate, phenyl 2-acryloyloxy-4-methylbenzoate, phenyl 2- acryloyloxy-5-methylbenzoate, phenyl 2-acryloyloxy-3-methoxybenzoate, phenyl 2-hydroxybenzoate, phenyl 2-hydroxy-3-methylbenzoate, phenyl 2-hydroxy-4-methylbenzoate, phenyl 2-hydroxy- 5-methylbenzoate, phenyl 2-hydroxy-3-methoxybenzoate, 2,4-di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate (trade name "TINUVIN 120", manufactured by BASF Corporation ) and the like.
 シアノアクリレート系紫外線吸収剤(シアノアクリレート系化合物)としては、例えば、アルキル2-シアノアクリレート、シクロアルキル2-シアノアクリレート、アルコキシアルキル2-シアノアクリレート、アルケニル2-シアノアクリレート、アルキニル2-シアノアクリレートなどが挙げられる。 Cyanoacrylate-based UV absorbers (cyanoacrylate-based compounds) include, for example, alkyl 2-cyanoacrylates, cycloalkyl 2-cyanoacrylates, alkoxyalkyl 2-cyanoacrylates, alkenyl 2-cyanoacrylates, alkynyl 2-cyanoacrylates, and the like. mentioned.
 前記紫外線吸収剤としては、高い紫外線吸収性を有する点、優れた光学特性、高い透明性を有する粘着剤層の得やすさの点、優れた光安定性をもつ点より、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、及びヒドロキシフェニルトリアジン系紫外線吸収剤からなる群より選ばれる少なくとも1種の紫外線吸収剤が好ましく、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤がより好ましい。特に、炭素数が6以上の基及び水酸基を置換基として有するフェニル基がベンゾトリアゾール環を構成する窒素原子に結合しているベンゾトリアゾール系紫外線吸収剤が好ましい。また、紫外線吸収剤の析出による外観の低下を予防する観点からは、液状の紫外線吸収剤や2種以上の紫外線吸収剤を用いることが好ましい。 As the UV absorber, a benzotriazole-based UV-absorbing agent has high UV-absorbing properties, excellent optical properties, ease of obtaining a pressure-sensitive adhesive layer having high transparency, and excellent photostability. At least one UV absorber selected from the group consisting of benzophenone-based UV absorbers, benzophenone-based UV absorbers, and hydroxyphenyltriazine-based UV absorbers is preferred, and benzotriazole-based UV absorbers and benzophenone-based UV absorbers are more preferred. In particular, a benzotriazole-based ultraviolet absorber in which a phenyl group having a group having 6 or more carbon atoms and a hydroxyl group as a substituent is bonded to a nitrogen atom constituting a benzotriazole ring is preferred. Moreover, from the viewpoint of preventing deterioration of the appearance due to precipitation of the ultraviolet absorber, it is preferable to use a liquid ultraviolet absorber or two or more kinds of ultraviolet absorbers.
 また、前記紫外線吸収剤は、より高い紫外線吸収性を得る点から、下記で求められる吸光度Aが0.5以下であることが好ましい。
 吸光度A:前記紫外線吸収剤の0.08%トルエン溶液に対して、波長400nmの光を当て、測定される吸光度
In order to obtain higher ultraviolet absorption, the ultraviolet absorber preferably has an absorbance A of 0.5 or less, which is determined below.
Absorbance A: Absorbance measured by applying light with a wavelength of 400 nm to a 0.08% toluene solution of the ultraviolet absorber
 本発明の粘着剤層が紫外線吸収剤を含有する場合、本発明の粘着剤層(特にアクリル系粘着剤層)中の前記紫外線吸収剤の含有量は、特に限定されないが、外光に含まれる紫外線によるOLED素子の劣化を抑制し、偏光板を使用しなくとも耐候性に優れるOLED表示装置を得る点より、アクリル系ポリマー100重量部に対して、0.01重量部以上であることが好ましく、より好ましくは0.05重量部以上であり、さらに好ましくは0.1重量部以上である。また、前記紫外線吸収剤の含有量の上限は、紫外線吸収剤の添加に伴う粘着剤の黄色化現象の発生を抑制し、優れた光学特性、高い透明性、及び、優れた外観特性を得る点より、アクリル系ポリマー100重量部に対して、20重量部以下であることが好ましく、より好ましくは10重量部以下であり、さらに好ましくは8重量部以下である。 When the pressure-sensitive adhesive layer of the present invention contains an ultraviolet absorber, the content of the ultraviolet absorber in the pressure-sensitive adhesive layer (especially acrylic pressure-sensitive adhesive layer) of the present invention is not particularly limited, but is included in external light. From the viewpoint of suppressing deterioration of the OLED element due to ultraviolet rays and obtaining an OLED display device with excellent weather resistance without using a polarizing plate, it is preferably 0.01 part by weight or more with respect to 100 parts by weight of the acrylic polymer. , more preferably 0.05 parts by weight or more, and still more preferably 0.1 parts by weight or more. In addition, the upper limit of the content of the ultraviolet absorber is to suppress the occurrence of yellowing of the pressure-sensitive adhesive due to the addition of the ultraviolet absorber, and to obtain excellent optical properties, high transparency, and excellent appearance properties. More preferably, it is 20 parts by weight or less, more preferably 10 parts by weight or less, and even more preferably 8 parts by weight or less with respect to 100 parts by weight of the acrylic polymer.
 前記紫外線吸収剤の代わりに、または前記紫外線吸収剤と併用して吸収スペクトルの最大吸収波長が380~430nmの波長領域に存在する色素化合物を含有することができる。当該色素化合物によっても、紫外光によるOLED素子の劣化や高屈折率成分の劣化を抑制することができる。 Instead of the ultraviolet absorber, or in combination with the ultraviolet absorber, a dye compound whose absorption spectrum has a maximum absorption wavelength in the wavelength region of 380 to 430 nm can be contained. The dye compound can also suppress deterioration of the OLED element and deterioration of the high refractive index component due to ultraviolet light.
 前記色素化合物は、単独で使用してもよく、また2種以上を混合して使用してもよい。前記色素化合物のみを用いる場合、前記色素化合物の全体としての含有量は、ベースポリマー(例えば、アクリル系ポリマー)100重量部に対して、0.1~20重量部であることが好ましく、0.1~10重量部であることが好ましく、0.1~5重量部であることが好ましく、0.5~3重量部であることがより好ましい。色素化合物の添加量を前記範囲とすることで、OLED素子の発光に影響しない領域の光を十分に吸収することができ、当該粘着剤組成物から形成される粘着剤層を用いることで、OLED素子の劣化や高屈折率成分の劣化を抑制することができるため、好ましい。 The dye compounds may be used singly or in combination of two or more. When only the colorant compound is used, the content of the colorant compound as a whole is preferably 0.1 to 20 parts by weight with respect to 100 parts by weight of the base polymer (eg, acrylic polymer). It is preferably 1 to 10 parts by weight, preferably 0.1 to 5 parts by weight, more preferably 0.5 to 3 parts by weight. By setting the amount of the dye compound added in the above range, it is possible to sufficiently absorb light in a region that does not affect the light emission of the OLED element. This is preferable because deterioration of the element and deterioration of the high refractive index component can be suppressed.
 前記紫外線吸収剤、色素化合物はいずれか一方を用いることができるが、前記紫外線吸収剤および色素化合物を併用することが好ましい。紫外線吸収剤によれば、例えば、波長380nmの光を吸収することができるものの、OLED素子の発光領域(430nmよりも長波長側)より短波長側の波長領域(380nm~430nm)の光が十分に吸収されておらず、当該透過光により劣化が生じる場合がある。前記色素化合物は、OLED素子の発光領域(430nmよりも長波長側)より短波長側の波長(380nm~430nm)の光の透過を抑制することができ、前記紫外線吸収剤および色素化合物を併用することにより、前記OLED素子の発光領域における可視光の透過率を十分に確保できる。
 本発明においては、このような色素化合物と前記紫外線吸収剤を組み合わせて用いることで、OLED素子の発光に影響しない領域(波長380nm~430nm)の光を十分に吸収することができ、かつ、OLED素子の発光領域(430nmよりも長波長側)は十分に透過することができるものであり、その結果、OLED素子の外光による劣化と高屈折率成分の劣化を同時に抑制することができる。前記紫外線吸収剤および色素化合物を併用する場合には、前記紫外線吸収剤は、ベースポリマー(例えば、アクリル系ポリマー)100重量部に対して、0.1~10重量部であることが好ましく、0.1~5重量部であることが好ましく、0.5~3重量部であることがより好ましい。前記色素化合物は、ベースポリマー(例えば、アクリル系ポリマー)100重量部に対して、0.1~10重量部程度であることが好ましく、0.1~5重量部程度であることがより好ましく、0.5~3重量部であることがより好ましい。
Either one of the ultraviolet absorber and the dye compound can be used, but it is preferable to use the ultraviolet absorber and the dye compound together. According to the ultraviolet absorber, for example, although it can absorb light with a wavelength of 380 nm, the light in the wavelength region (380 nm to 430 nm) on the shorter wavelength side than the light emitting region (longer wavelength side than 430 nm) of the OLED element is sufficient. is not absorbed by the transmitted light, and deterioration may occur due to the transmitted light. The dye compound can suppress the transmission of light with a wavelength (380 nm to 430 nm) on the shorter wavelength side than the light emitting region (longer wavelength side than 430 nm) of the OLED element, and the ultraviolet absorber and the dye compound are used in combination. As a result, a sufficient visible light transmittance can be ensured in the light emitting region of the OLED element.
In the present invention, by using such a dye compound and the ultraviolet absorber in combination, it is possible to sufficiently absorb light in a region (wavelength 380 nm to 430 nm) that does not affect the light emission of the OLED element, and the OLED The light-emitting region of the element (on the longer wavelength side than 430 nm) is sufficiently transmissive, and as a result, the deterioration of the OLED element due to external light and the deterioration of the high refractive index component can be suppressed at the same time. When the ultraviolet absorber and the dye compound are used in combination, the ultraviolet absorber is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the base polymer (eg, acrylic polymer). .1 to 5 parts by weight, more preferably 0.5 to 3 parts by weight. The dye compound is preferably about 0.1 to 10 parts by weight, more preferably about 0.1 to 5 parts by weight, with respect to 100 parts by weight of the base polymer (eg, acrylic polymer). It is more preferably 0.5 to 3 parts by weight.
 色素化合物は、吸収スペクトルの最大吸収波長が380~430nmの波長領域に存在する化合物であればよく、特に限定されるものではない。なお、最大吸収波長とは、300~460nmの波長領域での分光吸収スペクトルにおいて、複数の吸収極大が存在する場合には、その中で最大の吸光度を示す吸収極大波長を意味するものである。 The dye compound is not particularly limited as long as it is a compound whose absorption spectrum has a maximum absorption wavelength in the wavelength range of 380 to 430 nm. The maximum absorption wavelength means the absorption maximum wavelength showing the maximum absorbance among a plurality of absorption maxima in the spectral absorption spectrum in the wavelength region of 300 to 460 nm.
 色素化合物の吸収スペクトルの最大吸収波長は、380~420nmの波長領域に存在することがより好ましい。また、色素化合物は前記波長特性を有するものであれば特に限定されないが、OLED素子の表示性を阻害しないような、蛍光および燐光性能(フォトルミネセンス)を有しない材料が好ましい。 The maximum absorption wavelength of the absorption spectrum of the dye compound is more preferably in the wavelength region of 380-420 nm. The dye compound is not particularly limited as long as it has the wavelength characteristics described above, but a material that does not impair the display properties of the OLED element and does not have fluorescence or phosphorescence (photoluminescence) is preferable.
 前記有機系色素化合物としては、アゾメチン系化合物、インドール系化合物、けい皮酸系化合物、ピリミジン系化合物、ポルフィリン系化合物、シアニン系化合物等を挙げることができる。 Examples of the organic dye compounds include azomethine compounds, indole compounds, cinnamic acid compounds, pyrimidine compounds, porphyrin compounds, and cyanine compounds.
 前記有機系色素化合物としては、市販されているものを好適に用いることができ、具体的には、前記インドール系化合物としては、BONASORB UA3911(商品名、吸収スペクトルの最大吸収波長:398nm、オリエント化学工業(株)製)を、けい皮酸系化合物としては、SOM-5-0106(商品名、吸収スペクトルの最大吸収波長:416nm、オリエント化学工業(株)製)を、ポルフィリン系化合物としては、FDB-001(商品名、吸収スペクトルの最大吸収波長:420nm、山田化学工業(株)製)を、シアニン系化合物としては、メロシアニン化合物(商品名:FDB-009、吸収スペクトルの最大吸収波長:394nm、山田化学工業(株)製)、ポリメチン化合物(商品名:DAA-247、吸収スペクトルの最大吸収波長:389nm、山田化学工業(株)製)等を挙げることができ、中でも、架橋阻害抑制と光学信頼性の観点から、前記シアニン系化合物が好ましく、ポリメチン化合物が特に好ましい。 As the organic dye compound, commercially available ones can be suitably used. Specifically, as the indole compound, BONASORB UA3911 (trade name, maximum absorption wavelength of absorption spectrum: 398 nm, Orient Chemical Kogyo Co., Ltd.), as a cinnamic acid compound, SOM-5-0106 (trade name, maximum absorption wavelength of absorption spectrum: 416 nm, manufactured by Orient Chemical Industry Co., Ltd.), and as a porphyrin compound, FDB-001 (trade name, maximum absorption wavelength of absorption spectrum: 420 nm, manufactured by Yamada Chemical Industry Co., Ltd.), and a merocyanine compound (trade name: FDB-009, maximum absorption wavelength of absorption spectrum: 394 nm) as a cyanine compound , manufactured by Yamada Chemical Industry Co., Ltd.), polymethine compounds (trade name: DAA-247, maximum absorption wavelength of absorption spectrum: 389 nm, manufactured by Yamada Chemical Industry Co., Ltd.). From the viewpoint of optical reliability, the cyanine compounds are preferred, and polymethine compounds are particularly preferred.
 本発明の粘着剤層は、光安定剤を含有していてもよい。本発明の粘着剤層が光安定剤を含有する場合は、特に、前記紫外線吸収剤とともに光安定剤を含有することが好ましい。光安定剤は、光酸化で生成するラジカルを捕捉できるので、粘着剤層の光(特に紫外線)に対する耐性を向上させることができる。なお、光安定剤は、単独で又は2種以上組み合わせて用いることができる。 The adhesive layer of the present invention may contain a light stabilizer. When the pressure-sensitive adhesive layer of the present invention contains a light stabilizer, it is particularly preferable to contain the light stabilizer together with the ultraviolet absorber. The light stabilizer can scavenge radicals generated by photo-oxidation, and thus can improve the resistance of the pressure-sensitive adhesive layer to light (especially ultraviolet rays). In addition, a light stabilizer can be used individually or in combination of 2 or more types.
 前記光安定剤としては、特に限定されないが、例えば、フェノール系光安定剤(フェノール系化合物)、リン系光安定剤(リン系化合物)、チオエーテル系光安定剤(チオエーテル系化合物)、アミン系光安定剤(アミン系化合物)(特にヒンダードアミン系安定剤(ヒンダードアミン系化合物))などが挙げられる。 Examples of the light stabilizer include, but are not limited to, phenol light stabilizers (phenol compounds), phosphorus light stabilizers (phosphorus compounds), thioether light stabilizers (thioether compounds), amine light stabilizers, Stabilizers (amine compounds) (especially hindered amine stabilizers (hindered amine compounds)) and the like.
 前記フェノール系光安定剤(フェノール系化合物)としては、例えば、2,6-ジ-第3級ブチル-4-メチルフェノール、4-ヒドロキシメチル-2,6-ジ-第3級ブチルフェノール、2,6-ジ-第3級ブチル-4-エチルフェノール、ブチル化ヒドロキシアニソール、n-オクタデシル3-(4-ヒドロキシ-3,5-ジ-第3級ブチルフェニル)プロピオネート、ジステアリル(4-ヒドロキシ-3-メチル-5-第3級ブチル)ベンジルマロネート、トコフェロール、2,2'-メチレンビス(4-メチル-6-第3級ブチルフェノール)、2,2'-メチレンビス(4-エチル-6-第3級ブチルフェノール)、4,4'-メチレンビス(2,6-ジ-第3級ブチルフェノール)、4,4'-ブチリデンビス(6-第3級ブチル-m-クレゾール)、4,4'-チオビス(6-第3級ブチル-m-クレゾール)、スチレン化フェノール、N,N'-ヘキサメチレンビス(3,5-ジ-第3級ブチル-4-ヒドロキシヒドロシンナミド、ビス(3,5-ジ-第3級ブチル-4-ヒドロキシベンジルホスホン酸エチルエステル)カルシウム、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-第3級ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-第3級ブチル-4-ヒドロキシベンジル)ベンゼン、テトラキス[3-(3,5-ジ-第3級ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-第3級ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2'-メチレンビス(4-メチル-6-シクロヘキシルフェノール)、2,2'-メチレンビス[6-(1-メチルシクロヘキシル)-p-クレゾール]、1,3,5-トリス(4-第3級ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)イソシアヌル酸、1,3,5-トリス(3,5-ジ-第3級ブチル-4-ヒドロキシベンジル)イソシアヌル酸、トリエチレングリコール-ビス[3-(3-第3級ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート]、2,2'-オキサミドビス[エチル3-(3,5-ジ-第3級ブチル-4-ヒドロキシフェニル)プロピオネート]、6-(4-ヒドロキシ-3,5-ジ-第3級ブチルアニリノ)-2,4-ジオクチルチオ-1,3,5-トリアジン、ビス[2-第3級ブチル-4-メチル-6-(2-ヒドロキシ-3-第3級ブチル-5-メチルベンジル)フェニル]テレフタレート、3,9-ビス{2-[3-(3-第3級ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]-1,1-ジメチルエチル}-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、3,9-ビス{2-[3-(3,5-ジ-第3級ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]-1,1-ジメチルエチル}-2,4,8,10-テトラオキサスピロ[5.5]ウンデカンなどが挙げられる。 Examples of the phenolic light stabilizer (phenolic compound) include 2,6-di-tertiary-butyl-4-methylphenol, 4-hydroxymethyl-2,6-di-tertiary-butylphenol, 2, 6-di-tertiary-butyl-4-ethylphenol, butylated hydroxyanisole, n-octadecyl 3-(4-hydroxy-3,5-di-tertiary-butylphenyl) propionate, distearyl (4-hydroxy- 3-methyl-5-tertiary-butyl)benzylmalonate, tocopherol, 2,2′-methylenebis(4-methyl-6-tertiary-butylphenol), 2,2′-methylenebis(4-ethyl-6-tertiary tertiary butylphenol), 4,4'-methylenebis (2,6-di-tertiary butylphenol), 4,4'-butylidenebis (6-tertiary butyl-m-cresol), 4,4'-thiobis ( 6-tertiary-butyl-m-cresol), styrenated phenol, N,N'-hexamethylenebis(3,5-di-tertiary-butyl-4-hydroxyhydrocinnamide, bis(3,5-di -tert-butyl-4-hydroxybenzylphosphonic acid ethyl ester) calcium, 1,1,3-tris(2-methyl-4-hydroxy-5-tert-butylphenyl)butane, 1,3,5-trimethyl -2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene, tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionyloxy methyl]methane, 1,6-hexanediol-bis[3-(3,5-di-tertiary-butyl-4-hydroxyphenyl)propionate], 2,2′-methylenebis(4-methyl-6-cyclohexylphenol ), 2,2′-methylenebis[6-(1-methylcyclohexyl)-p-cresol], 1,3,5-tris(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)isocyanurate acid, 1,3,5-tris(3,5-di-tert-butyl-4-hydroxybenzyl)isocyanuric acid, triethylene glycol-bis[3-(3-tert-butyl-4-hydroxy-5 -methylphenyl)propionate], 2,2′-oxamide bis[ethyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], 6-(4-hydroxy-3,5-di- tert-butylanilino)-2,4-dioctylthio-1,3,5-triazine, bis[2-tert-butyl-4-methyl-6-(2-hydroxy-3-tert-butyl-5- methylbenzyl)phenyl]terephthalate, 3,9-bis{2-[3-(3-tertiary-butyl-4-hydroxy-5-methylphenyl)propionyloxy]-1,1-dimethylethyl}-2,4 , 8,10-tetraoxaspiro[5.5]undecane, 3,9-bis{2-[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionyloxy]-1,1 -dimethylethyl}-2,4,8,10-tetraoxaspiro[5.5]undecane and the like.
 リン系光安定剤(リン系化合物)としては、例えば、トリスノニルフェニルホスファイト、トリス(2,4-ジ-第3級ブチルフェニル)ホスファイト、トリス[2-第3級ブチル-4-(3-第3級ブチル-4-ヒドロキシ-5-メチルフェニルチオ)-5-メチルフェニル]ホスファイト、トリデシルホスファイト、オクチルジフェニルホスファイト、ジ(デシル)モノフェニルホスファイト、ジ(トリデシル)ペンタエリスリトールジホスファイト、ジステアリルペンタエリスリトールジホスファイト、ジ(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ-第3級ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-第3級ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4,6-トリ-第3級ブチルフェニル)ペンタエリスリトールジホスファイト、テトラ(トリデシル)イソプロピリデンジフェノールジホスファイト、テトラ(トリデシル)-4,4'-n-ブチリデンビス(2-第3級ブチル-5-メチルフェノール)ジホスファイト、ヘキサ(トリデシル)-1,1,3-トリス(2-メチル-4-ヒドロキシ-5-第3級ブチルフェニル)ブタントリホスファイト、テトラキス(2,4-ジ-第3級ブチルフェニル)ビフェニレンジホスホナイト、9,10-ジハイドロ-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、トリス(2-[(2,4,8,10-テトラキス-第3級ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン-6-イル)オキシ]エチル)アミンなどが挙げられる。 Phosphorus-based light stabilizers (phosphorus-based compounds) include, for example, trisnonylphenyl phosphite, tris(2,4-di-tertiary-butylphenyl)phosphite, tris[2-tertiary-butyl-4-( 3-tertiary-butyl-4-hydroxy-5-methylphenylthio)-5-methylphenyl]phosphite, tridecylphosphite, octyldiphenylphosphite, di(decyl)monophenylphosphite, di(tridecyl)penta Erythritol diphosphite, distearyl pentaerythritol diphosphite, di(nonylphenyl) pentaerythritol diphosphite, bis(2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis(2,6- Di-tertiary-butyl-4-methylphenyl)pentaerythritol diphosphite, bis(2,4,6-tri-tertiary-butylphenyl)pentaerythritol diphosphite, tetra(tridecyl)isopropylidenediphenol diphosphite phyte, tetra(tridecyl)-4,4'-n-butylidenebis(2-tertiary-butyl-5-methylphenol) diphosphite, hexa(tridecyl)-1,1,3-tris(2-methyl-4-hydroxy -5-tertiary-butylphenyl)butanetriphosphite, tetrakis(2,4-di-tertiary-butylphenyl)biphenylenediphosphonite, 9,10-dihydro-9-oxa-10-phosphaphenanthrene- 10-oxide, tris(2-[(2,4,8,10-tetrakis-tertiary-butyldibenzo[d,f][1,3,2]dioxaphosphepin-6-yl)oxy]ethyl ) amines and the like.
 チオエーテル系光安定剤(チオエーテル系化合物)としては、例えば、チオジプロピオン酸ジラウリル、ジミリスチル、ジステアリル等のジアルキルチオジプロピオネート化合物;テトラキス[メチレン(3-ドデシルチオ)プロピオネート]メタン等のポリオールのβ-アルキルメルカプトプロピオン酸エステル化合物などが挙げられる。 Thioether-based light stabilizers (thioether-based compounds) include, for example, dilauryl thiodipropionate, dimyristyl, dialkylthiodipropionate compounds such as distearyl; polyol β such as tetrakis[methylene(3-dodecylthio)propionate]methane; -alkylmercaptopropionate ester compounds, and the like.
 アミン系光安定剤(アミン系化合物)としては、例えば、コハク酸ジメチルおよび4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールの重合物(商品名「TINUVIN 622」、BASF社製)、コハク酸ジメチルおよび4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールの重合物とN,N',N'',N'''-テトラキス-(4,6-ビス-(ブチル-(N-メチル-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ)-トリアジン-2-イル)-4,7-ジアザデカン-1,10-ジアミンとの1対1の反応生成物(商品名「TINUVIN 119」、BASF社製)、ジブチルアミン・1,3-トリアジン・N、N'-ビス(2,2,6,6-テトラメチル-4-ピペリジル-1,6-ヘキサメチレンジアミンとN-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンの重縮合物(商品名「TINUVIN 2020」、BASF社製)、ポリ[{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2-4-ジイル}{2,2,6,6-テトラメチル-4-ピペリジル}イミノ]ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}(商品名「TINUVIN 944」、BASF社製)、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケートおよびメチル1、2,2,6,6-ペンタメチル-4-ピペリジルセバケートの混合物(商品名「TINUVIN 765」、BASF社製)、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート(商品名「TINUVIN 770」、BASF社製)、デカン二酸ビス(2,2,6,6-テトラメチル-1-(オクチルオキシ)-4-ピペリジニル)エステル、1,1-ジメチルエチルヒドロペルオキシドとオクタンの反応生成物(商品名「TINUVIN 123」、BASF社製)、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]ブチルマロネート(商品名「TINUVIN 144」、BASF社製)、シクロヘキサンおよび過酸化N-ブチル2,2,6,6-テトラメチル-4-ピペリジンアミン-2,4,6-トリクロロ-1,3,5-トリアジンの反応生成物と2-アミノエタノールとの反応生成物(商品名「TINUVIN 152」、BASF社製)、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケートおよびメチル1,2,2,6,6-ペンタメチル-4-ピペリジルセバケートの混合物(商品名「TINUVIN 292」、BASF社製)、1,2,3,4-ブタンテトラカルボン酸と1,2,2,6,6-ペンタメチル-4-ピペリジノールおよび3,9-ビス(2-ヒドロキシ-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカンとの混合エステル化物(商品名「アデカスタブ LA-63P」、(株)ADEKA製)などが挙げられる。アミン系安定剤としては、特に、ヒンダードアミン系安定剤が好ましい。 Examples of amine-based light stabilizers (amine-based compounds) include polymers of dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol (trade name "TINUVIN 622", BASF Co.), a polymer of dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol and N,N',N'',N'''-tetrakis-(4, 6-bis-(butyl-(N-methyl-2,2,6,6-tetramethylpiperidin-4-yl)amino)-triazin-2-yl)-4,7-diazadecane-1,10-diamine and 1:1 reaction product (trade name "TINUVIN 119", manufactured by BASF), dibutylamine 1,3-triazine N,N'-bis(2,2,6,6-tetramethyl-4- Polycondensate of piperidyl-1,6-hexamethylenediamine and N-(2,2,6,6-tetramethyl-4-piperidyl)butylamine (trade name “TINUVIN 2020”, manufactured by BASF), poly[{6 -(1,1,3,3-tetramethylbutyl)amino-1,3,5-triazine-2-4-diyl}{2,2,6,6-tetramethyl-4-piperidyl}imino]hexamethylene {(2,2,6,6-tetramethyl-4-piperidyl)imino} (trade name "TINUVIN 944", manufactured by BASF), bis(1,2,2,6,6-pentamethyl-4-piperidyl) A mixture of sebacate and methyl 1,2,2,6,6-pentamethyl-4-piperidyl sebacate (trade name "TINUVIN 765", manufactured by BASF), bis(2,2,6,6-tetramethyl-4- piperidyl) sebacate (trade name "TINUVIN 770", manufactured by BASF), decanedioic acid bis(2,2,6,6-tetramethyl-1-(octyloxy)-4-piperidinyl) ester, 1,1-dimethyl Reaction product of ethyl hydroperoxide and octane (trade name "TINUVIN 123", manufactured by BASF), bis(1,2,2,6,6-pentamethyl-4-piperidyl) [[3,5-bis(1, 1-dimethylethyl)-4-hydroxyphenyl]methyl]butylmalonate (trade name "TINUVIN 144", manufactured by BASF), cyclohexane and N-butyl peroxide 2,2,6,6-tetramethyl-4-piperidine Reaction product of amine-2,4,6-trichloro-1,3,5-triazine and 2-aminoethanol (trade name “TINUVIN 152” manufactured by BASF), bis(1,2, A mixture of 2,6,6-pentamethyl-4-piperidyl) sebacate and methyl 1,2,2,6,6-pentamethyl-4-piperidyl sebacate (trade name "TINUVIN 292", manufactured by BASF), 1,2 , 3,4-butanetetracarboxylic acid with 1,2,2,6,6-pentamethyl-4-piperidinol and 3,9-bis(2-hydroxy-1,1-dimethylethyl)-2,4,8, A mixed ester with 10-tetraoxaspiro[5.5]undecane (trade name “ADEKA STAB LA-63P”, manufactured by ADEKA Co., Ltd.) and the like can be mentioned. As the amine stabilizer, a hindered amine stabilizer is particularly preferred.
 本発明の粘着剤層が光安定剤を含有する場合、本発明の粘着剤層(特に、アクリル系粘着剤層)中の、光安定剤の含有量は、特に限定されないが、光に対する耐性を発現しやすくする点より、アクリル系ポリマー100重量部に対して、0.1重量部以上であることが好ましく、より好ましくは0.2重量部以上である。また、前記含有量の上限は、光安定剤自体による着色が生じにくくなり、高い透明性が得やすい点、光学特性の点より、アクリル系ポリマー100重量部に対して、5重量部以下であることが好ましく、より好ましくは3重量部以下である。 When the pressure-sensitive adhesive layer of the present invention contains a light stabilizer, the content of the light stabilizer in the pressure-sensitive adhesive layer of the present invention (particularly, the acrylic pressure-sensitive adhesive layer) is not particularly limited, but resistance to light is improved. From the viewpoint of facilitating expression, it is preferably 0.1 parts by weight or more, more preferably 0.2 parts by weight or more, relative to 100 parts by weight of the acrylic polymer. In addition, the upper limit of the content is 5 parts by weight or less with respect to 100 parts by weight of the acrylic polymer, from the viewpoints that coloring due to the light stabilizer itself is unlikely to occur, high transparency can be easily obtained, and optical properties. is preferably 3 parts by weight or less.
 本発明の粘着剤層の形成には、特に限定されないが、架橋剤が用いられていてもよい。例えば、アクリル系粘着剤層におけるアクリル系ポリマーを架橋し、ゲル分率をコントロールすることができる。なお、架橋剤は、単独で又は2種以上組み合わせて用いることができる。 Although not particularly limited, a cross-linking agent may be used to form the pressure-sensitive adhesive layer of the present invention. For example, the gel fraction can be controlled by cross-linking the acrylic polymer in the acrylic pressure-sensitive adhesive layer. In addition, a crosslinking agent can be used individually or in combination of 2 or more types.
 前記架橋剤としては、特に限定されないが、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、メラミン系架橋剤、過酸化物系架橋剤、尿素系架橋剤、金属アルコキシド系架橋剤、金属キレート系架橋剤、金属塩系架橋剤、カルボジイミド系架橋剤、オキサゾリン系架橋剤、アジリジン系架橋剤、アミン系架橋剤などが挙げられる。中でも、イソシアネート系架橋剤、エポキシ系架橋剤が好ましく、より好ましくはイソシアネート系架橋剤である。 The cross-linking agent is not particularly limited. cross-linking agents, metal salt-based cross-linking agents, carbodiimide-based cross-linking agents, oxazoline-based cross-linking agents, aziridine-based cross-linking agents, and amine-based cross-linking agents. Among them, isocyanate-based cross-linking agents and epoxy-based cross-linking agents are preferable, and isocyanate-based cross-linking agents are more preferable.
 前記イソシアネート系架橋剤(多官能イソシアネート化合物)としては、例えば、1,2-エチレンジイソシアネート、1,4-ブチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネートなどの低級脂肪族ポリイソシアネート類;シクロペンチレンジイソシアネート、シクロヘキシレンジイソシアネート、イソホロンジイソシアネート、水素添加トリレンジイソシアネート、水素添加キシレンジイソシアネートなどの脂環族ポリイソシアネート類;2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4'-ジフェニルメタンジイソシアネート、キシリレンジイソシアネートなどの芳香族ポリイソシアネート類などが挙げられる。また、前記イソシアネート系架橋剤としては、例えば、トリメチロールプロパン/トリレンジイソシアネート付加物(商品名「コロネートL」、東ソー(株)製)、トリメチロールプロパン/ヘキサメチレンジイソシアネート付加物(商品名「コロネートHL」、東ソー(株)製)、トリメチロールプロパン/キシリレンジイソシアネート付加物(商品名「タケネートD-110N」、三井化学(株)製)などの市販品も挙げられる。 Examples of the isocyanate-based cross-linking agent (polyfunctional isocyanate compound) include lower aliphatic polyisocyanates such as 1,2-ethylene diisocyanate, 1,4-butylene diisocyanate, and 1,6-hexamethylene diisocyanate; cyclopentylene diisocyanate; , cyclohexylene diisocyanate, isophorone diisocyanate, hydrogenated tolylene diisocyanate, hydrogenated xylene diisocyanate and other alicyclic polyisocyanates; 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate and aromatic polyisocyanates such as xylylene diisocyanate. Examples of the isocyanate-based cross-linking agent include trimethylolpropane/tolylene diisocyanate adduct (trade name “Coronate L”, manufactured by Tosoh Corporation), trimethylolpropane/hexamethylene diisocyanate adduct (trade name “Coronate HL", manufactured by Tosoh Corporation), trimethylolpropane/xylylene diisocyanate adduct (trade name "Takenate D-110N", manufactured by Mitsui Chemicals, Inc.).
 前記エポキシ系架橋剤(多官能エポキシ化合物)としては、例えば、N,N,N',N'-テトラグリシジル-m-キシレンジアミン、ジグリシジルアニリン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、1,6-ヘキサンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ソルビトールポリグリシジルエーテル、グリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ソルビタンポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、アジピン酸ジグリシジルエステル、o-フタル酸ジグリシジルエステル、トリグリシジル-トリス(2-ヒドロキシエチル)イソシアヌレート、レゾルシンジグリシジルエーテル、ビスフェノール-S-ジグリシジルエーテルの他、分子内にエポキシ基を2つ以上有するエポキシ系樹脂などが挙げられる。また、前記エポキシ系架橋剤としては、例えば、商品名「テトラッドC」(三菱ガス化学(株)製)などの市販品も挙げられる。 Examples of the epoxy-based cross-linking agent (polyfunctional epoxy compound) include N,N,N',N'-tetraglycidyl-m-xylenediamine, diglycidylaniline, 1,3-bis(N,N-diglycidyl aminomethyl)cyclohexane, 1,6-hexanediol diglycidyl ether, neopentyl glycol diglycidyl ether, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, sorbitol polyglycidyl ether , glycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, polyglycerol polyglycidyl ether, sorbitan polyglycidyl ether, trimethylolpropane polyglycidyl ether, adipate diglycidyl ester, o-phthalate diglycidyl ester, triglycidyl-tris(2 -hydroxyethyl)isocyanurate, resorcinol diglycidyl ether, bisphenol-S-diglycidyl ether, and epoxy resins having two or more epoxy groups in the molecule. Examples of the epoxy-based cross-linking agent include commercially available products such as the trade name "Tetrad C" (manufactured by Mitsubishi Gas Chemical Company, Inc.).
 本発明の粘着剤層の形成に架橋剤が用いられる場合、前記架橋剤の使用量は、特に限定されないが、十分な接着信頼性を得る点より、ベースポリマー100重量部に対して、0.001重量部以上であることが好ましく、より好ましくは0.01重量部以上である。また、前記使用量の上限は、粘着剤層において適度な柔軟性を得て、粘着力を向上させる点より、ベースポリマー100重量部に対して、10重量部以下であることが好ましく、より好ましくは5重量部以下である。 When a cross-linking agent is used to form the pressure-sensitive adhesive layer of the present invention, the amount of the cross-linking agent used is not particularly limited. 001 parts by weight or more, more preferably 0.01 parts by weight or more. In addition, the upper limit of the amount used is preferably 10 parts by weight or less with respect to 100 parts by weight of the base polymer, more preferably 10 parts by weight or less, from the viewpoint of obtaining appropriate flexibility in the pressure-sensitive adhesive layer and improving the adhesive strength. is 5 parts by weight or less.
 本発明の粘着剤層(特に、アクリル系粘着剤層)は、加湿条件下での接着信頼性を向上させる点、特にガラスに対する接着信頼性を向上させる点より、シランカップリング剤を含有していてもよい。なお、シランカップリング剤は、単独で又は2種以上組み合わせて用いることができる。前記粘着剤層がシランカップリング剤を含有すると、加湿条件下での接着性、特にガラスに対する接着性を向上させることができる。 The pressure-sensitive adhesive layer (especially acrylic pressure-sensitive adhesive layer) of the present invention contains a silane coupling agent in order to improve adhesion reliability under humidified conditions, particularly to improve adhesion reliability to glass. may In addition, a silane coupling agent can be used individually or in combination of 2 or more types. When the pressure-sensitive adhesive layer contains a silane coupling agent, the adhesiveness under humidified conditions, particularly the adhesiveness to glass, can be improved.
 前記シランカップリング剤としては、特に限定されないが、例えば、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、N-フェニル-アミノプロピルトリメトキシシランなどが挙げられる。さらに、シランカップリング剤としては、例えば、商品名「KBM-403」(信越化学工業(株)製)などの市販品も挙げられる。中でも、前記シランカップリング剤としては、γ-グリシドキシプロピルトリメトキシシランが好ましい。 Examples of the silane coupling agent include, but are not limited to, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-aminopropyltrimethoxysilane, N-phenyl-aminopropyltrimethoxysilane, methoxysilane and the like. Furthermore, as the silane coupling agent, for example, commercially available products such as the trade name "KBM-403" (manufactured by Shin-Etsu Chemical Co., Ltd.) can also be mentioned. Among them, γ-glycidoxypropyltrimethoxysilane is preferable as the silane coupling agent.
 本発明の粘着剤層がシランカップリング剤を含有する場合、本発明の粘着剤層(特に、アクリル系粘着剤層)中の、前記シランカップリング剤の含有量は、特に限定されないが、前記ベースポリマー100重量部に対して、0.01重量部以上であることが好ましく、より好ましくは0.02重量部以上である。また、前記シランカップリング剤の含有量の上限は、前記ベースポリマー100重量部に対して、10重量部以下であることが好ましく、より好ましくは1重量部以下である。 When the pressure-sensitive adhesive layer of the present invention contains a silane coupling agent, the content of the silane coupling agent in the pressure-sensitive adhesive layer (particularly, acrylic pressure-sensitive adhesive layer) of the present invention is not particularly limited, but the It is preferably 0.01 parts by weight or more, more preferably 0.02 parts by weight or more, relative to 100 parts by weight of the base polymer. The upper limit of the content of the silane coupling agent is preferably 10 parts by weight or less, more preferably 1 part by weight or less, relative to 100 parts by weight of the base polymer.
 本発明の粘着剤層は、必要に応じて、さらに、架橋促進剤、粘着付与樹脂(ロジン誘導体、ポリテルペン樹脂、石油樹脂、油溶性フェノールなど)、老化防止剤、充填剤、着色剤(顔料や染料など)、酸化防止剤、連鎖移動剤、可塑剤、軟化剤、界面活性剤、帯電防止剤などの添加剤を、本発明の効果を損なわない範囲で含有していてもよい。なお、このような添加剤は、単独で又は2種以上組み合わせて用いることができる。 The pressure-sensitive adhesive layer of the present invention may optionally further contain a cross-linking accelerator, a tackifying resin (rosin derivative, polyterpene resin, petroleum resin, oil-soluble phenol, etc.), an antioxidant, a filler, a coloring agent (pigment or Dyes, etc.), antioxidants, chain transfer agents, plasticizers, softeners, surfactants, antistatic agents, and the like may be contained within the range that does not impair the effects of the present invention. Such additives can be used alone or in combination of two or more.
 本発明の粘着剤層(特に、アクリル系粘着剤層)の作製方法は、特に限定されないが、例えば、前記粘着剤組成物を基材(後述の樹脂層、ガラス層を含む)又ははく離ライナー上に塗布(塗工)し、得られた粘着剤組成物層を乾燥硬化させることや、前記粘着剤組成物を基材(後述の樹脂層、ガラス層を含む)又ははく離ライナー上に塗布(塗工)し、得られた粘着剤組成物層に活性エネルギー線を照射して硬化させることが挙げられる。また、必要に応じて、さらに、加熱乾燥してもよい。 The method for producing the pressure-sensitive adhesive layer (particularly, the acrylic pressure-sensitive adhesive layer) of the present invention is not particularly limited. and drying and curing the resulting adhesive composition layer, or coating (coating) the adhesive composition on a substrate (including a resin layer and a glass layer described later) or a release liner (coating process) and irradiating the obtained pressure-sensitive adhesive composition layer with an active energy ray to cure it. Moreover, you may heat-dry further as needed.
 前記活性エネルギー線としては、例えば、α線、β線、γ線、中性子線、電子線などの電離性放射線や、紫外線などが挙げられ、特に、紫外線が好ましい。また、活性エネルギー線の照射エネルギー、照射時間、照射方法などは特に制限されない。 Examples of the active energy rays include ionizing radiation such as α-rays, β-rays, γ-rays, neutron beams and electron beams, and ultraviolet rays, with ultraviolet rays being particularly preferred. Moreover, the irradiation energy of the active energy ray, the irradiation time, the irradiation method, etc. are not particularly limited.
 前記粘着剤組成物は、公知乃至慣用の方法で作製することができる。例えば、溶剤型のアクリル系粘着剤組成物は、前記アクリル系ポリマーを含有する溶液に、必要に応じて、添加剤(例えば、紫外線吸収剤など)を混合することにより、作製することができる。例えば、活性エネルギー線硬化型のアクリル系粘着剤組成物は、前記アクリル系モノマーの混合物又はその部分重合物に、必要に応じて、添加剤(例えば、紫外線吸収剤など)を混合することにより、作製することができる。 The adhesive composition can be produced by a known or commonly used method. For example, a solvent-based acrylic pressure-sensitive adhesive composition can be prepared by mixing an additive (for example, an ultraviolet absorber, etc.) with a solution containing the acrylic polymer, if necessary. For example, an active energy ray-curable acrylic pressure-sensitive adhesive composition can be prepared by mixing an additive (for example, an ultraviolet absorber, etc.) with the acrylic monomer mixture or its partial polymer, if necessary. can be made.
 なお、前記粘着剤組成物の塗布(塗工)には、公知のコーティング法を利用してもよい。例えば、グラビヤロールコーター、リバースロールコーター、キスロールコーター、ディップロールコーター、バーコーター、ナイフコーター、スプレーコーター、コンマコーター、ダイレクトコーターなどのコーターが用いられてもよい。 A known coating method may be used for applying (coating) the pressure-sensitive adhesive composition. For example, coaters such as gravure roll coaters, reverse roll coaters, kiss roll coaters, dip roll coaters, bar coaters, knife coaters, spray coaters, comma coaters and direct coaters may be used.
 特に、活性エネルギー線硬化型の粘着剤組成物により粘着剤層を形成する場合、活性エネルギー線硬化型の粘着剤組成物は光重合開始剤を含むことが好ましい。なお、活性エネルギー線硬化型の粘着剤組成物が紫外線吸収剤を含有する場合には、光重合開始剤として、広い波長範囲で吸光特性を有する光重合開始剤を少なくとも含むことが好ましい。例えば、紫外光に加え、可視光でも吸光特性を有する光重合開始剤を少なくとも含むことが好ましい。これは、紫外線吸収剤の作用により活性エネルギー線による硬化の阻害が懸念されるところ、広い波長範囲で吸光特性を有する光重合開始剤を含んでいると、粘着剤組成物において高い光硬化性が得やすくなるからである。 In particular, when the adhesive layer is formed from an active energy ray-curable adhesive composition, the active energy ray-curable adhesive composition preferably contains a photopolymerization initiator. When the active energy ray-curable pressure-sensitive adhesive composition contains an ultraviolet absorber, it preferably contains at least a photopolymerization initiator having light absorption properties in a wide wavelength range as a photopolymerization initiator. For example, it preferably contains at least a photopolymerization initiator that absorbs not only ultraviolet light but also visible light. This is because there is concern that curing by active energy rays may be inhibited due to the action of the ultraviolet absorber, and if the adhesive composition contains a photopolymerization initiator that has light absorption characteristics in a wide wavelength range, high photocurability will be achieved in the adhesive composition. This is because it becomes easier to obtain.
(接着剤層)
 接着剤層とは、被着体の間に介在することによって物質を結合できる層であり、接着剤層で貼着した被着体を剥離した場合には、接着剤層は実用的な接着力を有さないものをいう。
(adhesive layer)
An adhesive layer is a layer that can bind substances by being interposed between adherends. It means something that does not have
 本発明の光学素子を構成する接着剤層(以下、「本発明の接着剤層」と称する場合がある)を形成する接着剤としては、各種の接着剤を適用でき、例えば、イソシアネート系接着剤、ポリビニルアルコール系接着剤、ゼラチン系接着剤、ビニル系ラテックス系、水系ポリエステル等が挙げられる。これら接着剤は、通常、水溶液からなる接着剤(水系接着剤)として用いられ、0.5~60重量%の固形分を含有してなる。これらの中でも、ポリビニルアルコール系接着剤が好ましく、アセトアセチル基含有ポリビニルアルコール系接着剤がより好ましい。 Various adhesives can be applied as the adhesive for forming the adhesive layer constituting the optical element of the present invention (hereinafter sometimes referred to as the "adhesive layer of the present invention"). , polyvinyl alcohol-based adhesives, gelatin-based adhesives, vinyl-based latex-based adhesives, water-based polyesters, and the like. These adhesives are usually used as adhesives consisting of an aqueous solution (water-based adhesives) and contain 0.5 to 60% by weight of solids. Among these, polyvinyl alcohol-based adhesives are preferable, and acetoacetyl group-containing polyvinyl alcohol-based adhesives are more preferable.
 前記水系接着剤は、架橋剤を含んでいてもよい。前記架橋剤としては、通常、接着剤を構成するポリマー等の成分と反応性を有する官能基を1分子中に少なくとも2つ有する化合物が用いられ、例えば、アルキレンジアミン類;イソシアネート類;エポキシ類;アルデヒド類;メチロール尿素、メチロールメラミン等のアミノ-ホルムアルデヒド等が挙げられる。接着剤中の架橋剤の配合量は、接着剤を構成するポリマー等の成分100重量部に対して、通常、10~60重量部程度である。 The water-based adhesive may contain a cross-linking agent. As the cross-linking agent, a compound having at least two functional groups in one molecule that are reactive with components such as polymers constituting the adhesive is usually used. Examples include alkylenediamines; isocyanates; epoxies; Aldehydes: amino-formaldehydes such as methylol urea and methylol melamine. The amount of the cross-linking agent compounded in the adhesive is usually about 10 to 60 parts by weight per 100 parts by weight of components such as polymers constituting the adhesive.
 前記接着剤としては、前記の他、紫外線硬化型接着剤、電子線硬化型接着剤等の活性エネルギー線硬化型接着剤が挙げられる。前記活性エネルギー線硬化型接着剤としては、例えば、(メタ)アクリレート系接着剤が挙げられる。前記(メタ)アクリレート系接着剤における硬化性成分としては、例えば、(メタ)アクリロイル基を有する化合物、ビニル基を有する化合物が挙げられる。(メタ)アクリロイル基を有する化合物としては、例えば、炭素数が1~20の鎖状アルキル(メタ)アクリレート、脂環式アルキル(メタ)アクリレート、多環式アルキル(メタ)アクリレート等のアルキル(メタ)アクリレート;ヒドロキシル基含有(メタ)アクリレート;グリシジル(メタ)アクリレート等のエポキシ基含有(メタ)アクリレート等が挙げられる。(メタ)アクリレート系接着剤は、ヒドロキシエチル(メタ)アクリルアミド、N‐メチロール(メタ)アクリルアミド、N‐メトキシメチル(メタ)アクリルアミド、N‐エトキシメチル(メタ)アクリルアミド、(メタ)アクリルアミド、(メタ)アクリロイルモルホリン等の窒素含有モノマーを含んでいてもよい。(メタ)アクリレート系接着剤は、架橋成分として、トリプロピレングリコールジアクリレート、1,9-ノナンジオールジアクリレート、トリシクロデカンジメタノールジアクリレート、環状トリメチロールプロパンフォルマルアクリレート、ジオキサングリコールジアクリレート、EO変性ジグリセリンテトラアクリレート等の多官能モノマーを含んでいてもよい。また、カチオン重合硬化型接着剤としてエポキシ基やオキセタニル基を有する化合物も使用することができる。エポキシ基を有する化合物は、分子内に少なくとも2個のエポキシ基を有するものであれば特に限定されず、一般に知られている各種の硬化性エポキシ化合物を用いることができる。 In addition to the above, examples of the adhesive include active energy ray-curable adhesives such as ultraviolet-curable adhesives and electron beam-curable adhesives. Examples of the active energy ray-curable adhesive include (meth)acrylate adhesives. Examples of the curable component in the (meth)acrylate adhesive include a compound having a (meth)acryloyl group and a compound having a vinyl group. Examples of compounds having a (meth)acryloyl group include alkyl (meth)acrylates having 1 to 20 carbon atoms, chain alkyl (meth)acrylates, alicyclic alkyl (meth)acrylates, and polycyclic alkyl (meth)acrylates. ) acrylates; hydroxyl group-containing (meth)acrylates; and epoxy group-containing (meth)acrylates such as glycidyl (meth)acrylate. (Meth)acrylate adhesives include hydroxyethyl (meth)acrylamide, N-methylol (meth)acrylamide, N-methoxymethyl (meth)acrylamide, N-ethoxymethyl (meth)acrylamide, (meth)acrylamide, (meth) Nitrogen-containing monomers such as acryloylmorpholine may also be included. (Meth)acrylate-based adhesives include tripropylene glycol diacrylate, 1,9-nonanediol diacrylate, tricyclodecanedimethanol diacrylate, cyclic trimethylolpropane formal acrylate, dioxane glycol diacrylate, and EO as crosslinking components. Polyfunctional monomers such as modified diglycerin tetraacrylate may be included. A compound having an epoxy group or an oxetanyl group can also be used as a cationic polymerization-curable adhesive. The compound having an epoxy group is not particularly limited as long as it has at least two epoxy groups in the molecule, and various commonly known curable epoxy compounds can be used.
 前記接着剤は、必要に応じて適宜の添加剤を含んでいてもよい。前記添加剤としては、例えば、シランカップリング剤、チタンカップリング剤等のカップリング剤、エチレンオキシド等の接着促進剤、紫外線吸収剤、劣化防止剤、染料、加工助剤、イオントラップ剤、酸化防止剤、粘着付与剤、充填剤、可塑剤、レベリング剤、発泡抑制剤、帯電防止剤、耐熱安定剤、耐加水分解安定剤等が挙げられる。 The adhesive may contain appropriate additives as necessary. Examples of the additives include silane coupling agents, coupling agents such as titanium coupling agents, adhesion promoters such as ethylene oxide, ultraviolet absorbers, deterioration inhibitors, dyes, processing aids, ion trapping agents, and antioxidants. agents, tackifiers, fillers, plasticizers, leveling agents, foaming inhibitors, antistatic agents, heat stabilizers, hydrolysis stabilizers, and the like.
 前記接着剤の塗布は、接着する2つの被着体のいずれか一方に行ってもよく、両者に行ってもよい。貼り合わせ後には、乾燥工程を施し、塗布乾燥層からなる本発明の接着剤層を形成することができる。前記乾燥工程の後には、必要に応じ、紫外線や電子線を照射することができる。本発明の接着剤層の厚さは、特に制限されず、水系接着剤等を用いる場合には、30~5000nm程度であることが好ましく、100~1000nm程度であることがより好ましく、紫外線硬化型接着剤、電子線硬化型接着剤等を用いる場合には、0.1~100μm程度であることが好ましく、0.5~10μm程度であることがより好ましい。 The adhesive may be applied to either one of the two adherends to be adhered, or to both. After lamination, a drying step can be performed to form the adhesive layer of the present invention consisting of a coated dry layer. After the drying step, ultraviolet rays or electron beams can be applied, if necessary. The thickness of the adhesive layer of the present invention is not particularly limited. When using adhesives, electron beam curing adhesives, etc., the thickness is preferably about 0.1 to 100 μm, more preferably about 0.5 to 10 μm.
 本発明の接着剤層の押し込み弾性率をEaとしたとき、押し込み弾性率Eaは1GPa以上であることが好ましく、より好ましくは2GPa以上、さらに好ましくは3GPa以上である。前記押し込み弾性率Eaが1GPa以上であると、耐衝撃性がよりいっそう向上する。前記押し込み弾性率Eaは、例えば50GPa以下であり、30GPa以下、10GPa以下であってもよい。 When the indentation elastic modulus of the adhesive layer of the present invention is Ea, the indentation elastic modulus Ea is preferably 1 GPa or more, more preferably 2 GPa or more, and still more preferably 3 GPa or more. When the indentation elastic modulus Ea is 1 GPa or more, impact resistance is further improved. The indentation elastic modulus Ea is, for example, 50 GPa or less, and may be 30 GPa or less, or 10 GPa or less.
 前記押し込み弾性率Eaは、ナノインデンター法に基づいて測定することができる。 上記ナノインデンター法は、球形圧子(曲率半径10μm)、温度25℃、圧子の押込深さ100nm の条件で測定される。 The indentation modulus Ea can be measured based on the nanoindenter method. The above nanoindenter method is measured under the conditions of a spherical indenter (curvature radius of 10 μm), a temperature of 25°C, and an indentation depth of 100 nm.
(樹脂層)
 本発明の光学素子を構成する樹脂層(以下、「本発明の樹脂層」と称する場合がある)としては、特に限定されないが、例えば、プラスチックフィルムが挙げられる。前記プラスチックフィルムなどの素材としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル系樹脂、環状オレフィン系ポリマー(COP)(例えば、商品名「アートン」(JSR(株)製)、商品名「ゼオノア」(日本ゼオン(株)製)等)、ポリメチルメタクリレート(PMMA)等のアクリル系樹脂、ポリカーボネート(PC)、トリアセチルセルロース(TAC)、ポリサルフォン、ポリアリレート、ポリエーテルエーテルケトン(PEEK)、ポリイミド(PI)、透明ポリイミド(CPI)、ポリ塩化ビニル、ポリ酢酸ビニル、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体などのプラスチック材料が挙げられ、寸法安定性に優れ、収縮しにくいポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル系樹脂、環状オレフィン系ポリマー(COP)、ポリカーボネート(PC)、ポリエーテルエーテルケトン(PEEK)、透明ポリイミド(CPI)が好ましく、ポリエチレンテレフタレート(PET)、透明ポリイミド(CPI)がより好ましく、耐衝撃性に優れる透明ポリイミド(CPI)が特に好ましい。なお、これらのプラスチック材料は、単独で又は2種以上を組み合わせて用いることができる。本発明の光学素子の使用時(貼付時)に剥離されるはく離ライナーは「樹脂層」には含まない。
(resin layer)
The resin layer constituting the optical element of the present invention (hereinafter sometimes referred to as the "resin layer of the present invention") is not particularly limited, but examples thereof include plastic films. Materials for the plastic film include polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); ), trade name “Zeonor” (manufactured by Nippon Zeon Co., Ltd.), etc.), acrylic resins such as polymethyl methacrylate (PMMA), polycarbonate (PC), triacetyl cellulose (TAC), polysulfone, polyarylate, polyether ether Plastic materials such as ketone (PEEK), polyimide (PI), transparent polyimide (CPI), polyvinyl chloride, polyvinyl acetate, polyethylene, polypropylene, ethylene-propylene copolymer, etc., have excellent dimensional stability and are resistant to shrinkage. Polyethylene terephthalate (PET), polyester resins such as polyethylene naphthalate (PEN), cyclic olefin polymers (COP), polycarbonate (PC), polyether ether ketone (PEEK), and transparent polyimide (CPI) are preferred, and polyethylene terephthalate is preferred. (PET) and transparent polyimide (CPI) are more preferable, and transparent polyimide (CPI), which is excellent in impact resistance, is particularly preferable. In addition, these plastic materials can be used individually or in combination of 2 or more types. The "resin layer" does not include a release liner that is peeled off when the optical element of the present invention is used (attached).
 本発明の樹脂層は、透明であることが好ましい。本発明の樹脂層の可視光波長領域における全光線透過率(JIS K 7361-1に準じる)は、特に限定されないが、85%以上が好ましく、より好ましくは88%以上である。また、本発明の樹脂層のヘイズ(JIS K 7136に準じる)は、特に限定されないが、1.5%以下が好ましく、より好ましくは1.0%以下である。 The resin layer of the present invention is preferably transparent. The total light transmittance (according to JIS K 7361-1) of the resin layer of the present invention in the visible light wavelength region is not particularly limited, but is preferably 85% or more, more preferably 88% or more. In addition, the haze (according to JIS K 7136) of the resin layer of the present invention is not particularly limited, but is preferably 1.5% or less, more preferably 1.0% or less.
 本発明における、粘着剤(粘着剤層において光散乱性微粒子を除いた粘着剤層)と樹脂層の屈折率差(「粘着剤の屈折率」-「樹脂層の屈折率」の絶対値)は特に限定されないが、界面反射防止性を高くし、OLED素子からの光の採光率を向上できる観点から、好ましくは2以下、好ましくは1以下、さらに好ましくは0.5以下、特に好ましくは0.3以下である。 In the present invention, the difference in refractive index between the pressure-sensitive adhesive (the pressure-sensitive adhesive layer excluding the light-scattering fine particles in the pressure-sensitive adhesive layer) and the resin layer ("refractive index of pressure-sensitive adhesive" - "refractive index of resin layer") is Although it is not particularly limited, it is preferably 2 or less, preferably 1 or less, more preferably 0.5 or less, and particularly preferably 0.5 or less, from the viewpoint of improving the interface antireflection property and improving the lighting rate of light from the OLED element. 3 or less.
 本発明の樹脂層の厚みは、特に限定されないが、例えば、10~80μmが好ましい。なお、本発明の樹脂層は単層および複層のいずれの形態を有していてもよい。また、本発明の樹脂層の表面には、例えば、コロナ放電処理、プラズマ処理等の物理的処理、下塗り処理等の化学的処理などの公知慣用の表面処理が適宜施されていてもよい。 Although the thickness of the resin layer of the present invention is not particularly limited, it is preferably 10 to 80 μm, for example. In addition, the resin layer of the present invention may have either a single layer structure or a multilayer structure. In addition, the surface of the resin layer of the present invention may be appropriately subjected to known and commonly used surface treatments such as physical treatments such as corona discharge treatment and plasma treatment, and chemical treatments such as undercoating treatment.
 本発明の樹脂層は、特に限定されないが、紫外線吸収剤(UVA)や吸収スペクトルの最大吸収波長が380~430nmの波長領域に存在する色素化合物を含有することが好ましい。本発明の樹脂層が紫外線吸収剤や前記色素化合物を含むと、外光に含まれる紫外線によるOLED素子の劣化を抑制し、偏光板を使用しなくとも耐候性に優れるOLED表示装置を得ることができる。また、紫外線による粘着剤層の高屈折率成分の劣化を抑制し、高い採光率を維持することができる。特に、本発明の樹脂層が紫外線吸収剤や前記色素化合物を含むことにより、本発明の粘着剤層の紫外線吸収剤や前記色素化合物の含有量を低減させることができ、本発明の粘着剤層中の紫外線吸収剤や前記色素化合物の析出やブリードアウトを抑制することができ、好ましい。 Although the resin layer of the present invention is not particularly limited, it preferably contains an ultraviolet absorber (UVA) or a dye compound having a maximum absorption wavelength in the absorption spectrum of 380 to 430 nm. When the resin layer of the present invention contains an ultraviolet absorber or the dye compound, deterioration of the OLED element due to ultraviolet rays contained in external light is suppressed, and an OLED display device having excellent weather resistance can be obtained without using a polarizing plate. can. In addition, deterioration of the high refractive index component of the pressure-sensitive adhesive layer due to ultraviolet rays can be suppressed, and a high lighting rate can be maintained. In particular, when the resin layer of the present invention contains the ultraviolet absorber and the dye compound, the content of the ultraviolet absorber and the dye compound in the pressure-sensitive adhesive layer of the present invention can be reduced. Precipitation and bleeding out of the ultraviolet absorber and the dye compound in the inside can be suppressed, which is preferable.
 本発明の樹脂層に含まれる紫外線吸収剤(UVA)や前記色素化合物としては、前記本発明の粘着剤層に含まれる紫外線吸収剤や前記色素化合物と同じものを使用可能である。なお、紫外線吸収剤や前記色素化合物は、単独で又は2種以上組み合わせて用いることができる。 As the ultraviolet absorber (UVA) and dye compound contained in the resin layer of the present invention, the same ultraviolet absorber and dye compound contained in the pressure-sensitive adhesive layer of the present invention can be used. In addition, the ultraviolet absorber and the dye compound can be used alone or in combination of two or more.
 本発明の樹脂層が紫外線吸収剤や前記色素化合物を含有する場合、本発明の樹脂層中の前記紫外線吸収剤や前記色素化合物のそれぞれの含有量は、特に限定されないが、外光に含まれる紫外線によるOLED素子の劣化を抑制し、偏光板を使用しなくとも耐候性に優れるOLED表示装置を得る点より、樹脂層100重量部に対して、0.01重量部以上であることが好ましく、より好ましくは0.05重量部以上であり、さらに好ましくは0.1重量部以上である。また、前記紫外線吸収剤や前記色素化合物の含有量の上限は、紫外線吸収剤の添加に伴う粘着剤の黄色化現象の発生を抑制し、優れた光学特性、高い透明性、及び、優れた外観特性を得る点より、樹脂層100重量部に対して、10重量部以下であることが好ましく、より好ましくは9重量部以下であり、さらに好ましくは8重量部以下である。 When the resin layer of the present invention contains an ultraviolet absorber or the dye compound, the content of each of the ultraviolet absorber and the dye compound in the resin layer of the present invention is not particularly limited, but is included in external light. From the viewpoint of suppressing deterioration of the OLED element due to ultraviolet rays and obtaining an OLED display device with excellent weather resistance without using a polarizing plate, it is preferably 0.01 part by weight or more with respect to 100 parts by weight of the resin layer, It is more preferably 0.05 parts by weight or more, and still more preferably 0.1 parts by weight or more. In addition, the upper limit of the content of the ultraviolet absorber and the dye compound suppresses the occurrence of yellowing of the adhesive due to the addition of the ultraviolet absorber, and provides excellent optical properties, high transparency, and excellent appearance. From the viewpoint of obtaining properties, it is preferably 10 parts by weight or less, more preferably 9 parts by weight or less, and even more preferably 8 parts by weight or less with respect to 100 parts by weight of the resin layer.
 本発明の樹脂層と粘着剤層の両方が紫外線吸収剤や前記色素化合物を含有する場合、その合計量が、前記の範囲になるように調整すればよい。 When both the resin layer and the pressure-sensitive adhesive layer of the present invention contain an ultraviolet absorber or the dye compound, the total amount may be adjusted to fall within the above range.
 本発明の樹脂層の透湿度は、特に限定されないが、例えば、上述の粘着剤層中の高屈折率有機材料などの添加剤の分離、析出を抑制する観点からある程度高いこと(高透湿度であること)が好ましく、40g/m2・24h以上がより好ましく、さらに好ましくは100g/m2・24h以上、特に好ましくは200g/m2・24h以上である。本発明の樹脂層の透湿度の上限値は、特に限定されないが、加湿膨張抑制の観点から、1200g/m2・24h以下であってもよい。本発明の樹脂層が高透湿度であることにより、採光性信頼性が向上する傾向がある。
 本発明の樹脂層の透湿度は、温度40℃、相対湿度92%環境下で、JIS Z0208に準拠して測定でき、本発明の樹脂層を構成する樹脂の種類、厚さなどにより調整することができる。
The moisture permeability of the resin layer of the present invention is not particularly limited. more preferably 40 g/m 2 ·24h or more, still more preferably 100 g/m 2 ·24h or more, and particularly preferably 200 g/m 2 ·24h or more. Although the upper limit of the moisture permeability of the resin layer of the present invention is not particularly limited, it may be 1200 g/m 2 ·24 h or less from the viewpoint of suppressing swelling under humidification. Since the resin layer of the present invention has a high moisture permeability, there is a tendency that the reliability of daylighting is improved.
The moisture permeability of the resin layer of the present invention can be measured in accordance with JIS Z0208 under an environment of a temperature of 40° C. and a relative humidity of 92%, and can be adjusted by the type and thickness of the resin constituting the resin layer of the present invention. can be done.
(ガラス層)
 本発明の光学素子を構成するガラス層(以下、「本発明のガラス層」と称する場合がある)は、特に限定はなく、目的に応じて適切なものを採用できる。本発明のガラス層は、組成による分類によれば、例えば、ソーダ石灰ガラス、ホウ酸ガラス、アルミノ珪酸ガラス、石英ガラス等が挙げられる。また、アルカリ成分による分類によれば、無アルカリガラス、低アルカリガラスが挙げられる。前記ガラスのアルカリ金属成分(例えば、Na2O、K2O、Li2O)の含有量は、好ましくは15重量%以下であり、更に好ましくは10重量%以下である。
(glass layer)
The glass layer constituting the optical element of the present invention (hereinafter sometimes referred to as "the glass layer of the present invention") is not particularly limited, and suitable layers can be adopted depending on the purpose. Examples of the glass layer of the present invention include soda-lime glass, boric acid glass, aluminosilicate glass, quartz glass, etc. according to classification according to composition. Moreover, according to the classification by the alkali component, non-alkali glass and low-alkali glass can be mentioned. The content of alkali metal components (eg, Na 2 O, K 2 O, Li 2 O) in the glass is preferably 15% by weight or less, more preferably 10% by weight or less.
 本発明のガラス層の厚みは、ガラスの持つ表面硬度や気密性や耐腐食性を考慮すると、20μm以上が好ましい。また、本発明のガラス層は、フィルムのような可撓性、折り曲げ性を有することが望ましく、かつ、像が二重に映ることを抑制してクリアな像を映し出すことを可能とするため、厚みは60μm以下が好ましい。本発明のガラス層の厚みは、更に好ましくは30μm以上55μm以下、特に好ましくは40μm以上50μm以下である。 The thickness of the glass layer of the present invention is preferably 20 μm or more, considering the surface hardness, airtightness, and corrosion resistance of the glass. In addition, the glass layer of the present invention desirably has film-like flexibility and bendability, and suppresses the image from being doubled so that a clear image can be projected. A thickness of 60 μm or less is preferable. The thickness of the glass layer of the present invention is more preferably 30 μm or more and 55 μm or less, and particularly preferably 40 μm or more and 50 μm or less.
 本発明のガラス層の波長550nmにおける光透過率は、好ましくは85%以上である。本発明のガラス層の波長550nmにおける屈折率は、好ましくは1.4~1.65である。本発明のガラス層の密度は、好ましくは2.3g/cm3~3.0g/cm3であり、さらに好ましくは2.3g/cm3~2.7g/cm3である。 The light transmittance of the glass layer of the present invention at a wavelength of 550 nm is preferably 85% or more. The refractive index of the glass layer of the present invention at a wavelength of 550 nm is preferably 1.4 to 1.65. The density of the glass layer of the present invention is preferably 2.3 g/cm 3 to 3.0 g/cm 3 , more preferably 2.3 g/cm 3 to 2.7 g/cm 3 .
 本発明のガラス層の成形方法は、特に限定はなく、目的に応じて適切なものを採用できる。代表的には、本発明のガラス層は、シリカやアルミナ等の主原料と、芒硝や酸化アンチモン等の消泡剤と、カーボン等の還元剤とを含む混合物を、1400℃~1600℃程度の温度で溶融し、薄板状に成形した後、冷却して作製できる。本発明のガラス層の成形方法としては、例えば、スロットダウンドロー法、フュージョン法、フロート法等が挙げられる。これらの方法によって板状に成形されたガラス層は、薄板化したり、平滑性を高めたりするために、必要に応じて、フッ酸等の溶剤により化学的に研磨されてもよい。 The method for forming the glass layer of the present invention is not particularly limited, and an appropriate method can be adopted depending on the purpose. Typically, the glass layer of the present invention is prepared by heating a mixture containing a main raw material such as silica or alumina, an antifoaming agent such as mirabilite or antimony oxide, and a reducing agent such as carbon at a temperature of about 1400°C to 1600°C. It can be produced by melting at a high temperature, molding it into a thin plate, and then cooling it. Examples of the method for forming the glass layer of the present invention include a slot down draw method, a fusion method, a float method and the like. The glass layer formed into a plate shape by these methods may be chemically polished with a solvent such as hydrofluoric acid, if necessary, in order to thin the plate or improve smoothness.
(ハードコート層)
 本発明の光学素子を構成するハードコート層(以下、「本発明のハードコート層」と称する場合がある)は、十分な表面硬度、優れた機械的強度、および優れた光透過性を有する限り、任意の適切な樹脂から形成され得る。樹脂の具体例としては、熱硬化型樹脂、熱可塑型樹脂、紫外線硬化型樹脂、電子線硬化型樹脂、二液混合型樹脂が挙げられる。紫外線硬化型樹脂が好ましい。簡便な操作および高効率でハードコート層を形成することができるからである。
(Hard coat layer)
The hard coat layer constituting the optical element of the present invention (hereinafter sometimes referred to as the "hard coat layer of the present invention") has sufficient surface hardness, excellent mechanical strength, and excellent light transmittance. , may be formed from any suitable resin. Specific examples of resins include thermosetting resins, thermoplastic resins, ultraviolet curing resins, electron beam curing resins, and two-liquid mixed resins. A UV curable resin is preferred. This is because the hard coat layer can be formed with simple operation and high efficiency.
 紫外線硬化型樹脂の具体例としては、ポリエステル系、アクリル系、ウレタン系、アミド系、シリコーン系、エポキシ系の紫外線硬化型樹脂が挙げられる。紫外線硬化型樹脂には、紫外線硬化型のモノマー、オリゴマー、ポリマーが含まれる。好ましい紫外線硬化型樹脂としては、紫外線重合性の官能基を好ましくは2個以上、より好ましくは3~6個有するアクリル系のモノマー成分またはオリゴマー成分を含む樹脂組成物が挙げられる。代表的には、紫外線硬化型樹脂には、光重合開始剤が配合されている。 Specific examples of UV-curable resins include polyester-based, acrylic-based, urethane-based, amide-based, silicone-based, and epoxy-based UV-curable resins. UV-curable resins include UV-curable monomers, oligomers, and polymers. Preferred UV-curable resins include resin compositions containing acrylic monomer or oligomer components having preferably 2 or more, more preferably 3 to 6, UV-polymerizable functional groups. Typically, the UV curable resin contains a photopolymerization initiator.
 本発明のハードコート層は、任意の適切な方法により形成され得る。例えば、本発明のハードコート層は、基材(前記樹脂層、ガラス層を含む)上にハードコート層形成用樹脂組成物を塗工し、乾燥させ、乾燥した塗工膜に紫外線を照射して硬化させることにより形成され得る。 The hard coat layer of the present invention can be formed by any appropriate method. For example, the hard coat layer of the present invention is formed by coating a resin composition for forming a hard coat layer on a substrate (including the resin layer and the glass layer), drying the coating, and irradiating the dried coating film with ultraviolet rays. can be formed by curing with
 本発明のハードコート層の厚みは、例えば2~20μmであり、好ましくは4~15μm、より好ましくは4~10μmである。 The thickness of the hard coat layer of the present invention is, for example, 2-20 μm, preferably 4-15 μm, more preferably 4-10 μm.
 本発明のハードコート層の水接触角は、防汚性の観点から、好ましくは95°以上であり、より好ましくは100°以上、さらに好ましくは105°以上である。
 本発明のハードコート層の水接触角は、JIS R3257に準拠して測定されるものであり、ハードコート層を構成する樹脂の種類、硬化条件などにより、調整することができる。また、本発明のハードコート層は、下記スチールウール試験後の水接触角が前記範囲内であることが好ましい。
<スチールウール試験>
 トラスコ社製スチールウール「品番#0000」を1cm角に切り出し、荷重1kg、移動速度100mm /秒の条件で、1000往復、ハードコート層の表面を擦る。
The water contact angle of the hard coat layer of the present invention is preferably 95° or more, more preferably 100° or more, still more preferably 105° or more, from the viewpoint of antifouling properties.
The water contact angle of the hard coat layer of the present invention is measured according to JIS R3257, and can be adjusted depending on the type of resin constituting the hard coat layer, curing conditions, and the like. Further, the hard coat layer of the present invention preferably has a water contact angle within the above range after the steel wool test described below.
<Steel wool test>
A 1 cm square piece of steel wool "product number #0000" manufactured by Trusco Co., Ltd. is cut, and the surface of the hard coat layer is rubbed 1,000 times under the conditions of a load of 1 kg and a moving speed of 100 mm/sec.
 本発明のハードコート層のビッカース硬さは、優れた表面硬度、耐擦傷性の観点から80以上が好ましく、より好ましくは90以上、さらに好ましくは100以上である。
 本発明のハードコート層のビッカース硬さは、JIS Z2244に準拠して測定されるものであり、ハードコート層を構成する樹脂の種類、硬化条件などにより、調整することができる。
The Vickers hardness of the hard coat layer of the present invention is preferably 80 or higher, more preferably 90 or higher, still more preferably 100 or higher, from the viewpoint of excellent surface hardness and scratch resistance.
The Vickers hardness of the hard coat layer of the present invention is measured according to JIS Z2244, and can be adjusted depending on the type of resin constituting the hard coat layer, curing conditions, and the like.
 本発明のハードコート層の表面の炭素元素の表面元素比率は、防汚性の観点から、50atomic%以下、好ましくは45atomic%以下であり、ハードコート層の表面のフッ素元素比率は30atomic%以上である。
 また、ハードコート層の表面における窒素元素比率は、例えば1.5atomic%未満、好ましくは1.3atomic%以下であり、例えば0原子%以上である。
 本発明のハードコート層の表面のフッ素元素及び炭素元素、窒素元素の表面元素比率は、X線光電子分光分析法により測定できるものであり、ハードコート層を構成する樹脂の種類、硬化条件をなどにより、調整することができる。
The surface element ratio of carbon elements on the surface of the hard coat layer of the present invention is 50 atomic % or less, preferably 45 atomic % or less, from the viewpoint of antifouling properties, and the fluorine element ratio on the surface of the hard coat layer is 30 atomic % or more. be.
Further, the nitrogen element ratio on the surface of the hard coat layer is, for example, less than 1.5 atomic %, preferably 1.3 atomic % or less, and is, for example, 0 atomic % or more.
The surface element ratio of fluorine element, carbon element, and nitrogen element on the surface of the hard coat layer of the present invention can be measured by X-ray photoelectron spectroscopy, and the type of resin constituting the hard coat layer, curing conditions, etc. can be adjusted by
(反射防止層)
 本発明の光学素子を構成する反射防止層(以下、「本発明の反射防止層」と称する場合がある)は、無機物から構成されることが好ましい。上記無機物としては、後述の高屈折率層、低屈折率層、および中屈折率層を構成する材料として例示および説明された無機物が挙げられる。
(Antireflection layer)
The antireflection layer constituting the optical element of the present invention (hereinafter sometimes referred to as the "antireflection layer of the present invention") is preferably composed of an inorganic material. Examples of the above-mentioned inorganic substances include inorganic substances exemplified and explained as materials for forming the high refractive index layer, the low refractive index layer, and the medium refractive index layer, which will be described later.
 本発明の反射防止層としては、任意の適切な構成が採用でき、例えば、(i)光学膜厚が120nm~140nmである、屈折率が1.35~1.55の低屈折率層の単一層、(ii)中屈折率層と高屈折率層と低屈折率層とをこの順で有する積層体、(iii)高屈折率層と低屈折率層との交互多層積層体が挙げられる。 Any appropriate structure can be adopted as the antireflection layer of the present invention. (ii) a laminate having a medium refractive index layer, a high refractive index layer and a low refractive index layer in this order;
 低屈折率層を形成し得る材料としては、例えば、酸化ケイ素(SiO2)、フッ化マグネシウム(MgF2)が挙げられる。低屈折率層の屈折率は、代表的には1.35~1.55程度である。 Materials that can form the low refractive index layer include, for example, silicon oxide (SiO 2 ) and magnesium fluoride (MgF 2 ). The refractive index of the low refractive index layer is typically about 1.35 to 1.55.
 低屈折率層の材料は、硬化性の含フッ素系樹脂の硬化物であってもよい。硬化性の含フッ素系樹脂は、例えば、含フッ素モノマー由来の構成単位と架橋性モノマー由来の構成単位とを有する。含フッ素モノマーの具体例としては、例えば、フルオロオレフィン類(フルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ-2,2-ジメチル-1,3-ジオキソール等)、部分的に又は完全にフッ素化されたアルキル基を有する(メタ)アクリル酸エステル誘導体類(ビスコート6FM(大阪有機化学社製)、M-2020(ダイキン社製)等)、完全に又は部分的にフッ素化されたビニルエーテル類等が挙げられる。架橋性モノマーとしては、例えば、グリシジルメタクリレート等の分子内に架橋性官能基を有する(メタ)アクリレートモノマー;カルボキシル基、ヒドロキシル基、アミノ基、スルホン酸基等の官能基を有する(メタ)アクリレートモノマー((メタ)アクリル酸、メチロール(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アリル(メタ)アクリレート等)が挙げられる。含フッ素系樹脂は、上述した化合物以外の他のモノマー(例えば、オレフィン系モノマー、(メタ)アクリレート系モノマー、スチレン系モノマー)由来の構成単位を有していてもよい。 The material of the low refractive index layer may be a cured product of a curable fluorine-containing resin. A curable fluorine-containing resin has, for example, structural units derived from a fluorine-containing monomer and structural units derived from a crosslinkable monomer. Specific examples of fluorine-containing monomers include fluoroolefins (fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3-dioxole, etc.). , partially or completely fluorinated alkyl group (meth) acrylic acid ester derivatives (Viscoat 6FM (manufactured by Osaka Organic Chemical Co., Ltd.), M-2020 (manufactured by Daikin), etc.), completely or partially fluorinated vinyl ethers and the like. Examples of crosslinkable monomers include (meth)acrylate monomers having crosslinkable functional groups in the molecule such as glycidyl methacrylate; (meth)acrylate monomers having functional groups such as carboxyl groups, hydroxyl groups, amino groups and sulfonic acid groups. ((meth)acrylic acid, methylol (meth)acrylate, hydroxyalkyl (meth)acrylate, allyl (meth)acrylate, etc.). The fluorine-containing resin may have constitutional units derived from monomers other than the compounds described above (for example, olefin-based monomers, (meth)acrylate-based monomers, and styrene-based monomers).
 高屈折率層を形成し得る材料としては、例えば、酸化チタン(TiO2)、酸化ニオブ(Nb23またはNb25)、スズドープ酸化インジウム(ITO)、アンチモンドープ酸化スズ(ATO)、ZrO2-TiO2が挙げられる。高屈折率層の屈折率は、代表的には1.60~2.40程度である。 Materials capable of forming the high refractive index layer include, for example, titanium oxide (TiO 2 ), niobium oxide (Nb 2 O 3 or Nb 2 O 5 ), tin-doped indium oxide (ITO), antimony-doped tin oxide (ATO), ZrO 2 --TiO 2 can be mentioned. The refractive index of the high refractive index layer is typically about 1.60 to 2.40.
 中屈折率層を形成し得る材料としては、例えば、酸化チタン(TiO2)、低屈折率層を形成し得る材料と高屈折率層を形成し得る材料との混合物(例えば、酸化チタンと酸化ケイ素との混合物)が挙げられる。中屈折率層の屈折率は、代表的には1.50~1.85程度である。低屈折率層、中屈折率層および高屈折率層の厚みは、反射防止層の層構造、所望の反射防止性能等に応じた適切な光学膜厚が実現されるように設定され得る。 Materials capable of forming the medium refractive index layer include, for example, titanium oxide (TiO 2 ), a mixture of a material capable of forming a low refractive index layer and a material capable of forming a high refractive index layer (for example, titanium oxide and oxide mixtures with silicon). The refractive index of the medium refractive index layer is typically about 1.50 to 1.85. The thicknesses of the low refractive index layer, the medium refractive index layer, and the high refractive index layer can be set so as to realize an appropriate optical film thickness according to the layer structure of the antireflection layer, desired antireflection performance, and the like.
 本発明の反射防止層は、ドライプロセス(例えば、スパッタリング)により形成されてもよく、ウェットプロセス(例えば、塗布)により形成されてもよく、ドライプロセスとウェットプロセスとを組み合わせて形成されてもよい。ドライプロセスの具体例としては、PVD(Physical Vapor Deposition)法、CVD(Chemical Vapor Deposition)法が挙げられる。PVD法としては、真空蒸着法、反応性蒸着法、イオンビームアシスト法、スパッタリング法、イオンプレーティング法が挙げられる。CVD法としては、プラズマCVD法が挙げられる。 The antireflection layer of the present invention may be formed by a dry process (e.g., sputtering), may be formed by a wet process (e.g., coating), or may be formed by combining a dry process and a wet process. . Specific examples of the dry process include a PVD (Physical Vapor Deposition) method and a CVD (Chemical Vapor Deposition) method. PVD methods include vacuum vapor deposition, reactive vapor deposition, ion beam assist, sputtering, and ion plating. As the CVD method, there is a plasma CVD method.
 ウェットプロセスの具体例としては、例えば、反射防止層形成用塗工液を塗工して塗膜を形成し、前記塗膜を硬化させて反射防止層を形成することができる。塗工する方法としては、例えば、ファンテンコート法、ダイコート法、スピンコート法、スプレーコート法、グラビアコート法、ロールコート法、バーコート法等の塗工法を用いることができる。前記硬化に先立ち、前記塗膜を乾燥させることが好ましい。前記乾燥は、例えば、自然乾燥でもよいし、風を吹きつけての風乾であってもよいし、加熱乾燥であってもよいし、これらを組み合わせた方法であってもよい。塗膜の硬化手段は、特に制限されないが、紫外線硬化が好ましい。 As a specific example of the wet process, for example, a coating liquid for forming an antireflection layer can be applied to form a coating film, and the coating film can be cured to form an antireflection layer. Examples of coating methods that can be used include fountain coating, die coating, spin coating, spray coating, gravure coating, roll coating, and bar coating. It is preferable to dry the coating film prior to the curing. The drying may be, for example, natural drying, air drying by blowing air, heat drying, or a combination thereof. Curing means for the coating film is not particularly limited, but UV curing is preferred.
 本発明の反射防止層の厚みは、例えば20nm~300nm程度である。 The thickness of the antireflection layer of the present invention is, for example, about 20 nm to 300 nm.
 本発明の反射防止層の水接触角は、防汚性の観点から、好ましくは90°以上であり、より好ましくは95°以上、さらに好ましくは100°以上、特に好ましくは105°以上である。
 本発明の反射防止層の水接触角は、JIS R3257に準拠して測定されるものであり、反射防止層を構成する成分の種類などにより、調整することができる。また、本発明の反射防止層は、下記消しゴム試験後の水接触角が前記範囲内であることが好ましい。消しゴム試験後の水接触角がこれらの範囲内の反射防止層を、OLED表示装置の視認側、特に最表面に積層することで、OLED表示装置が人の手や布で擦られた後でも、優れた防汚性を維持する事ができる。
<消しゴム試験>
 Minoan社製の耐摩耗性評価用消しゴム「品番4004005007」を7mmに切り出し、荷重1kg、移動速度32mm /秒の条件で、6000往復、ハードコート層の表面を擦る。
The antireflection layer of the present invention preferably has a water contact angle of 90° or more, more preferably 95° or more, still more preferably 100° or more, and particularly preferably 105° or more, from the viewpoint of antifouling properties.
The water contact angle of the antireflection layer of the invention is measured according to JIS R3257, and can be adjusted depending on the types of components constituting the antireflection layer. Further, the antireflection layer of the present invention preferably has a water contact angle within the above range after the following eraser test. By laminating an antireflection layer having a water contact angle within these ranges after the eraser test on the viewing side of the OLED display device, especially on the outermost surface, even after the OLED display device is rubbed with a human hand or cloth, Excellent antifouling property can be maintained.
<Eraser test>
Abrasion resistance evaluation eraser "Product No. 4004005007" manufactured by Minoan was cut into 7 mm pieces, and the surface of the hard coat layer was rubbed 6000 times under the conditions of a load of 1 kg and a moving speed of 32 mm/sec.
(防眩層)
 本発明の光学素子を構成する防眩層(以下、「本発明の防眩層」と称する場合がある)としては、公知のものを制限なく採用することができ、一般的に、樹脂中に防眩剤として無機又は有機の粒子を分散した層として形成される。
(Antiglare layer)
As the antiglare layer constituting the optical element of the present invention (hereinafter sometimes referred to as the "antiglare layer of the present invention"), known ones can be employed without limitation. It is formed as a layer in which inorganic or organic particles are dispersed as an antiglare agent.
 本発明の防眩層としては、特に限定されないが、例えば、樹脂、粒子およびチキソトロピー付与剤を含む防眩層形成材料を用いて形成されており、前記粒子および前記チキソトロピー付与剤が凝集することによって、本発明の防眩層の表面に凸状部が形成される。当該構成により、防眩層は、防眩性と、白ボケの防止とを両立した優れた表示特性を有するとともに、粒子の凝集を利用して防眩層を形成しているにもかかわらず、外観欠点となる防眩層表面の突起状物の発生を防止して製品の歩留まりを向上させることができる。 The antiglare layer of the present invention is not particularly limited. , convex portions are formed on the surface of the antiglare layer of the present invention. With this configuration, the antiglare layer has excellent display characteristics that achieve both antiglare properties and prevention of white blurring. It is possible to prevent the occurrence of protrusions on the surface of the anti-glare layer, which would be a defect in appearance, and improve the yield of the product.
 前記樹脂は、例えば、熱硬化性樹脂、紫外線や光で硬化する電離放射線硬化性樹脂があげられる。前記樹脂として、市販の熱硬化型樹脂や紫外線硬化型樹脂等を用いることも可能である。 Examples of the resin include thermosetting resins and ionizing radiation curable resins that are cured by ultraviolet light or light. As the resin, it is possible to use a commercially available thermosetting resin, ultraviolet curable resin, or the like.
 前記熱硬化型樹脂や紫外線硬化型樹脂としては、例えば、熱、光(紫外線等)または電子線等により硬化するアクリレート基およびメタクリレート基の少なくとも一方の基を有する硬化型化合物が使用でき、例えば、シリコーン樹脂、ポリエステル樹脂、ポリエーテル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂、多価アルコール等の多官能化合物のアクリレートやメタクリレート等のオリゴマーまたはプレポリマー等があげられる。これらは、1種類を単独で用いてもよく、2種類以上を併用してもよい。 As the thermosetting resin or UV-curable resin, for example, a curable compound having at least one of an acrylate group and a methacrylate group that is cured by heat, light (ultraviolet rays, etc.), electron beams, or the like can be used. Silicone resins, polyester resins, polyether resins, epoxy resins, urethane resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, oligomers or prepolymers such as acrylates and methacrylates of polyfunctional compounds such as polyhydric alcohols. can give. These may be used individually by 1 type, and may use 2 or more types together.
 前記樹脂には、例えば、アクリレート基およびメタクリレート基の少なくとも一方の基を有する反応性希釈剤を用いることもできる。前記反応性希釈剤は、例えば、特開2008-88309号公報に記載の反応性希釈剤を用いることができ、例えば、単官能アクリレート、単官能メタクリレート、多官能アクリレート、多官能メタクリレート等を含む。前記反応性希釈剤としては、3官能以上のアクリレート、3官能以上のメタクリレートが好ましい。これは、本発明の防眩層の硬度を、優れたものにできるからである。前記反応性希釈剤としては、例えば、ブタンジオールグリセリンエーテルジアクリレート、イソシアヌル酸のアクリレート、イソシアヌル酸のメタクリレート等もあげられる。これらは、1種類を単独で用いてもよく、2種類以上を併用してもよい。 For the resin, for example, a reactive diluent having at least one of an acrylate group and a methacrylate group can be used. As the reactive diluent, for example, reactive diluents described in JP-A-2008-88309 can be used, and examples include monofunctional acrylates, monofunctional methacrylates, polyfunctional acrylates, polyfunctional methacrylates, and the like. As the reactive diluent, tri- or more functional acrylates and tri- or more functional methacrylates are preferable. This is because the antiglare layer of the present invention can have excellent hardness. Examples of the reactive diluent include butanediol glycerol ether diacrylate, isocyanuric acid acrylate, and isocyanuric acid methacrylate. These may be used individually by 1 type, and may use 2 or more types together.
 前記樹脂としては、ウレタンアクリレート樹脂を含むことが好ましく、硬化型ウレタンアクリレート樹脂および多官能アクリレート(例えば、ペンタスリトールトリアクリレート)の共重合物であることがより好ましい。 The resin preferably contains a urethane acrylate resin, more preferably a copolymer of a curable urethane acrylate resin and a polyfunctional acrylate (eg, pentathritol triacrylate).
 本発明の防眩層を形成するための粒子は、形成される防眩層の表面を凹凸形状にして防眩性を付与し、また、防眩層のヘイズ値を制御することを主な機能とする。防眩層のヘイズ値は、前記粒子と前記樹脂との屈折率差を制御することで、設計することができる。前記粒子としては、例えば、無機粒子と有機粒子とがある。前記無機粒子は、特に制限されず、例えば、酸化ケイ素粒子、酸化チタン粒子、酸化アルミニウム粒子、酸化亜鉛粒子、酸化錫粒子、酸化ジルコニウム粒子、炭酸カルシウム粒子、硫酸バリウム粒子、タルク粒子、カオリン粒子、硫酸カルシウム粒子等があげられる。また、前記有機粒子は、特に制限されず、例えば、ポリメチルメタクリレート樹脂粉末(PMMA微粒子)、シリコーン樹脂粉末、ポリスチレン樹脂粉末、ポリカーボネート樹脂粉末、アクリルスチレン樹脂粉末、ベンゾグアナミン樹脂粉末、メラミン樹脂粉末、ポリオレフィン樹脂粉末、ポリエステル樹脂粉末、ポリアミド樹脂粉末、ポリイミド樹脂粉末、ポリフッ化エチレン樹脂粉末等があげられる。これらの無機粒子および有機粒子は、一種類を単独で使用してもよいし、二種類以上を併用してもよい。 The main functions of the particles for forming the antiglare layer of the present invention are to make the surface of the antiglare layer to be uneven to impart antiglare properties and to control the haze value of the antiglare layer. and The haze value of the antiglare layer can be designed by controlling the refractive index difference between the particles and the resin. Examples of the particles include inorganic particles and organic particles. The inorganic particles are not particularly limited, and examples include silicon oxide particles, titanium oxide particles, aluminum oxide particles, zinc oxide particles, tin oxide particles, zirconium oxide particles, calcium carbonate particles, barium sulfate particles, talc particles, kaolin particles, Examples include calcium sulfate particles. The organic particles are not particularly limited, and examples include polymethyl methacrylate resin powder (PMMA fine particles), silicone resin powder, polystyrene resin powder, polycarbonate resin powder, acrylic styrene resin powder, benzoguanamine resin powder, melamine resin powder, polyolefin. Examples thereof include resin powder, polyester resin powder, polyamide resin powder, polyimide resin powder, polyethylene fluoride resin powder and the like. One type of these inorganic particles and organic particles may be used alone, or two or more types may be used in combination.
 前記粒子の重量平均粒径(D)は、2.5~10μmの範囲内にあることが好ましい。前記粒子の重量平均粒径を、前記範囲とすることで、例えば、より防眩性に優れ、かつ白ボケが防止できる。前記粒子の重量平均粒径は、より好ましくは、3~7μmの範囲内である。なお、前記粒子の重量平均粒径は、例えば、コールターカウント法により測定できる。例えば、細孔電気抵抗法を利用した粒度分布測定装置(商品名:コールターマルチサイザー、ベックマン・コールター社製)を用い、粒子が前記細孔を通過する際の粒子の体積に相当する電解液の電気抵抗を測定することにより、前記粒子の数と体積を測定し、重量平均粒径を算出する。 The weight average particle size (D) of the particles is preferably within the range of 2.5 to 10 μm. By setting the weight-average particle size of the particles within the above range, for example, the anti-glare property can be further improved and white blurring can be prevented. The weight average particle size of the particles is more preferably in the range of 3-7 μm. The weight-average particle diameter of the particles can be measured, for example, by the Coulter counting method. For example, using a particle size distribution measuring device (trade name: Coulter Multisizer, manufactured by Beckman Coulter, Inc.) using the pore electrical resistance method, the volume of the electrolyte solution corresponding to the volume of the particles when the particles pass through the pores. By measuring the electrical resistance, the number and volume of the particles are measured, and the weight average particle diameter is calculated.
 前記粒子の形状は、特に制限されず、例えば、ビーズ状の略球形であってもよく、粉末等の不定形のものであってもよいが、略球形のものが好ましく、より好ましくは、アスペクト比が1.5以下の略球形の粒子であり、最も好ましくは球形の粒子である。 The shape of the particles is not particularly limited, and may be, for example, a substantially spherical bead shape, or an irregular shape such as a powder. They are substantially spherical particles with a ratio of 1.5 or less, most preferably spherical particles.
 本発明の防眩層における前記粒子の割合は、前記樹脂100重量部に対し、0.2~12重量部の範囲が好ましく、より好ましくは、0.5~12重量部の範囲であり、さらに好ましくは1~7重量部の範囲である。前記範囲とすることで、例えば、より防眩性に優れ、かつ白ボケが防止できる。 The proportion of the particles in the antiglare layer of the present invention is preferably in the range of 0.2 to 12 parts by weight, more preferably in the range of 0.5 to 12 parts by weight, with respect to 100 parts by weight of the resin. It is preferably in the range of 1 to 7 parts by weight. By setting it as the said range, for example, it can be more excellent in anti-glare property and can prevent a white blur.
 本発明の防眩層は、チキソトロピー付与剤を含んでいてもよい。前記チキソトロピー付与剤を含むことで、前記粒子の凝集状態の制御を容易に行うことができる。本発明の防眩層を形成するためのチキソトロピー付与剤としては、例えば、有機粘土、酸化ポリオレフィン、変性ウレア等があげられる。 The antiglare layer of the present invention may contain a thixotropy-imparting agent. By containing the thixotropy-imparting agent, the aggregation state of the particles can be easily controlled. Examples of the thixotropy imparting agent for forming the antiglare layer of the present invention include organic clay, polyolefin oxide, modified urea and the like.
 前記有機粘土は、前記樹脂との親和性を改善するために、有機化処理した粘土であることが好ましい。有機粘土としては、例えば、層状有機粘土をあげることができる。前記有機粘土は、自家調製してもよいし、市販品を用いてもよい。前記市販品としては、例えば、ルーセンタイトSAN、ルーセンタイトSTN、ルーセンタイトSEN、ルーセンタイトSPN、ソマシフME-100、ソマシフMAE、ソマシフMTE、ソマシフMEE、ソマシフMPE(商品名、いずれもコープケミカル(株)製);エスベン、エスベンC、エスベンE、エスベンW、エスベンP、エスベンWX、エスベンN-400、エスベンNX、エスベンNX80、エスベンNO12S、エスベンNEZ、エスベンNO12、エスベンNE、エスベンNZ、エスベンNZ70、オルガナイト、オルガナイトD、オルガナイトT(商品名、いずれも(株)ホージュン製);クニピアF、クニピアG、クニピアG4(商品名、いずれもクニミネ工業(株)製);チクソゲルVZ、クレイトンHT、クレイトン40(商品名、いずれもロックウッド アディティブズ社製)等があげられる。 The organoclay is preferably an organically treated clay in order to improve the affinity with the resin. Examples of organic clays include layered organic clays. The organic clay may be self-prepared, or a commercially available product may be used. Examples of the commercially available products include Lucentite SAN, Lucentite STN, Lucentite SEN, Lucentite SPN, Somasif ME-100, Somasif MAE, Somasif MTE, Somasif MEE, Somasif MPE (trade names, all of which are manufactured by Co-op Chemical Co., Ltd.). ) manufactured); Organite, Organite D, Organite T (trade names, all manufactured by Hojun Co., Ltd.); Kunipia F, Kunipia G, Kunipia G4 (trade names, manufactured by Kunimine Industry Co., Ltd.); Thixogel VZ, Kraton HT , Clayton 40 (trade name, both manufactured by Rockwood Additives), and the like.
 前記酸化ポリオレフィンは、自家調製してもよいし、市販品を用いてもよい。前記市販品としては、例えば、ディスパロン4200-20(商品名、楠本化成(株)製)、フローノンSA300(商品名、共栄社化学(株)製)等があげられる。 The oxidized polyolefin may be prepared in-house, or a commercially available product may be used. Examples of the commercially available products include Disparlon 4200-20 (trade name, manufactured by Kusumoto Kasei Co., Ltd.) and Flownon SA300 (trade name, manufactured by Kyoeisha Chemical Co., Ltd.).
 前記変性ウレアは、イソシアネート単量体あるいはそのアダクト体と有機アミンとの反応物である。前記変性ウレアは、自家調製してもよいし、市販品を用いてもよい。前記市販品としては、例えば、BYK410(ビッグケミー社製)等があげられる。 The modified urea is a reaction product of an isocyanate monomer or its adduct and an organic amine. The modified urea may be self-prepared, or a commercially available product may be used. Examples of the commercial product include BYK410 (manufactured by Big Chemie).
 前記チキソトロピー付与剤は、一種類を単独で使用してもよいし、二種類以上を併用してもよい。 The thixotropy-imparting agents may be used singly or in combination of two or more.
 前記凸状部の本発明の防眩層の粗さ平均線からの高さが、防眩層の厚みの0.4倍未満であることが好ましい。より好ましくは、0.01倍以上0.4倍未満の範囲であり、さらに好ましくは、0.01倍以上0.3倍未満の範囲である。この範囲であれば、前記凸状部に外観欠点となる突起物が形成されることを好適に防止できる。本発明の防眩層は、このような高さの凸状部を有することで、外観欠点を生じにくくすることができる。ここで、前記平均線からの高さは、例えば、特開2017-138620号公報に記載の方法により測定することができる。 The height of the convex portion from the roughness average line of the antiglare layer of the present invention is preferably less than 0.4 times the thickness of the antiglare layer. More preferably, it is in the range of 0.01 times or more and less than 0.4 times, and still more preferably in the range of 0.01 times or more and less than 0.3 times. If it is within this range, it is possible to suitably prevent the formation of protrusions that would cause defects in appearance on the convex portion. The anti-glare layer of the present invention can make appearance defects less likely to occur by having convex portions with such heights. Here, the height from the average line can be measured, for example, by the method described in JP-A-2017-138620.
 本発明の防眩層における前記チキソトロピー付与剤の割合は、前記樹脂100重量部に対し、0.1~5重量部の範囲が好ましく、より好ましくは、0.2~4重量部の範囲である。 The ratio of the thixotropy imparting agent in the antiglare layer of the present invention is preferably in the range of 0.1 to 5 parts by weight, more preferably in the range of 0.2 to 4 parts by weight, with respect to 100 parts by weight of the resin. .
 本発明の防眩層の厚み(d’)は、特に制限されないが、2~12μmの範囲内にあることが好ましい。防眩層の厚み(d’)を、前記範囲とすることで、例えば、本発明の光学積層体のカールの発生を防ぐことができ、搬送性不良等の生産性の低下の問題を回避できる。また、前記厚み(d’)が前記範囲にある場合、前記粒子の重量平均粒径(D)は、前述のように、2.5~10μmの範囲内にあることが好ましい。本発明の防眩層の厚み(d’)と、前記粒子の重量平均粒径(D)とが、前述の組み合わせであることで、さらに防眩性に優れるものとすることができる。本発明の防眩層の厚み(d’)は、より好ましくは2~10μmの範囲内であり、さらに好ましくは3~8μmの範囲内である。 Although the thickness (d') of the antiglare layer of the present invention is not particularly limited, it is preferably in the range of 2 to 12 µm. By setting the thickness (d') of the antiglare layer within the above range, for example, it is possible to prevent curling of the optical layered body of the present invention, and to avoid the problem of reduced productivity such as poor transportability. . Further, when the thickness (d') is within the above range, the weight average particle size (D) of the particles is preferably within the range of 2.5 to 10 µm as described above. When the thickness (d') of the antiglare layer of the present invention and the weight average particle size (D) of the particles are in the above-described combination, the antiglare property can be further improved. The thickness (d') of the antiglare layer of the invention is more preferably in the range of 2 to 10 µm, still more preferably in the range of 3 to 8 µm.
 本発明の防眩層の厚み(d’)と前記粒子の重量平均粒径(D)との関係は、0.3≦D/d’≦0.9の範囲内にあることが好ましい。このような関係にあることにより、より防眩性に優れ、かつ白ボケが防止でき、さらに、外観欠点のない防眩層とすることができる。 The relationship between the thickness (d') of the antiglare layer of the present invention and the weight average particle diameter (D) of the particles is preferably within the range of 0.3≤D/d'≤0.9. With such a relationship, it is possible to obtain an antiglare layer that is more excellent in antiglare properties, can prevent white blurring, and has no defects in appearance.
 本発明の防眩層のヘイズ値(H’)は、特に限定されないが、OLED表示装置のカラーシフトや干渉ムラを効率的に低減する観点から、5%以上が好ましく、より好ましくは10%以上、さらに好ましくは15%以上、特に好ましくは20%以上である。また、OLED表示装置の画像ボケを抑制し、高精細な画像を表示する観点から、本発明の防眩層のヘイズ値は、80%以下が好ましく、より好ましくは70%以下、さらに好ましくは60%以下、特に好ましくは50%以下である。 The haze value (H') of the antiglare layer of the present invention is not particularly limited, but is preferably 5% or more, more preferably 10% or more, from the viewpoint of efficiently reducing color shift and interference unevenness of the OLED display device. , more preferably 15% or more, particularly preferably 20% or more. Further, from the viewpoint of suppressing image blurring of the OLED display device and displaying high-definition images, the haze value of the antiglare layer of the present invention is preferably 80% or less, more preferably 70% or less, and still more preferably 60%. % or less, particularly preferably 50% or less.
 本発明の防眩層のヘイズ値は、JIS K7136で定める方法により測定できるものであり、防眩層の種類や厚さ、前記粒子と前記樹脂との屈折率差を制御することで、設計することができる。 The haze value of the antiglare layer of the present invention can be measured by a method defined by JIS K7136, and is designed by controlling the type and thickness of the antiglare layer and the refractive index difference between the particles and the resin. be able to.
 本発明の防眩層は、前記粒子および前記チキソトロピー付与剤が凝集することによって、本発明の防眩層の表面に凸状部を形成する。前記凸状部を形成する凝集部においては、前記粒子が、本発明の防眩層の面方向に、複数集まった状態で存在する。これにより、前記凸状部が、なだらかな形状となっている。本発明の防眩層は、このような形状の凸状部を有することで、防眩性を維持しつつ、かつ、白ボケを防止することができ、さらに、外観欠点を生じにくくすることができる。 In the antiglare layer of the present invention, projections are formed on the surface of the antiglare layer of the present invention by aggregation of the particles and the thixotropy-imparting agent. In the aggregated portion forming the convex portion, the particles are present in a state in which a plurality of particles are aggregated in the plane direction of the antiglare layer of the present invention. As a result, the convex portion has a gentle shape. Since the antiglare layer of the present invention has convex portions having such a shape, it is possible to prevent white blurring while maintaining antiglare properties, and to make appearance defects less likely to occur. can.
 本発明の防眩層の表面形状は、防眩層形成材料に含まれる粒子の凝集状態を制御することで、任意に設計することができる。前記粒子の凝集状態は、例えば、前記粒子の材質(例えば、粒子表面の化学的修飾状態、溶媒や樹脂に対する親和性等)、樹脂(バインダー)または溶媒の種類、組合せ等により制御できる。ここで、本発明の防眩層形成材料に含まれるチキソトロピー付与剤により、前記粒子の凝集状態をコントロールすることができる。この結果、前記粒子の凝集状態を前述のようにすることができ、前記凸状部を、なだらかな形状とすることができる。 The surface shape of the antiglare layer of the present invention can be arbitrarily designed by controlling the aggregation state of the particles contained in the antiglare layer-forming material. The aggregation state of the particles can be controlled by, for example, the material of the particles (for example, chemically modified state of the particle surface, affinity for solvent or resin, etc.), type of resin (binder) or solvent, combination, and the like. The aggregation state of the particles can be controlled by the thixotropy imparting agent contained in the antiglare layer-forming material of the present invention. As a result, the aggregated state of the particles can be made as described above, and the convex portion can be formed into a smooth shape.
 本発明の防眩層において、最大径が200μm以上の外観欠点が防眩層の1m2あたり1個以下であることが好ましい。より好ましくは、前記外観欠点が無いことである。 In the antiglare layer of the present invention, it is preferable that the number of appearance defects having a maximum diameter of 200 μm or more is 1 or less per 1 m 2 of the antiglare layer. More preferably, it does not have the appearance defect.
 本発明の防眩層表面の凹凸形状において、平均傾斜角θa(°)が0.1~5.0の範囲であることが好ましく、0.3~4.5の範囲であることがより好ましく、1.0~4.0の範囲であることがさらに好ましく、1.6~4.0であることが特に好ましい。ここで、前記平均傾斜角θaは、下記数式(1)で定義される値である。前記平均傾斜角θaは、例えば、特開2017-138620に記載の方法により測定される値である。
  平均傾斜角θa=tan-1Δa      (1)
In the uneven shape of the antiglare layer surface of the present invention, the average inclination angle θa (°) is preferably in the range of 0.1 to 5.0, more preferably in the range of 0.3 to 4.5. , more preferably in the range of 1.0 to 4.0, and particularly preferably in the range of 1.6 to 4.0. Here, the average tilt angle θa is a value defined by the following formula (1). The average tilt angle θa is, for example, a value measured by the method described in JP-A-2017-138620.
Average tilt angle θa=tan-1Δa (1)
 前記数式(1)において、Δaは、下記数式(2)に示すように、JIS B0601(1994年度版)に規定される粗さ曲線の基準長さLにおいて、隣り合う山の頂点と谷の最下点との差(高さh)の合計(h1+h2+h3・・・+hn)を前記基準長さLで割った値である。前記粗さ曲線は、断面曲線から、所定の波長より長い表面うねり成分を位相差補償形高域フィルタで除去した曲線である。また、前記断面曲線とは、対象面に直角な平面で対象面を切断したときに、その切り口に現れる輪郭である。
  Δa=(h1+h2+h3・・・+hn)/L      (2)
In the above formula (1), Δa is, as shown in the following formula (2), the maximum distance between the apex and valley of adjacent peaks in the reference length L of the roughness curve defined in JIS B0601 (1994 edition). It is a value obtained by dividing the total (h1+h2+h3 . The roughness curve is a curve obtained by removing surface waviness components longer than a predetermined wavelength from the cross-sectional curve with a phase difference compensation type high-pass filter. Further, the cross-sectional curve is a contour that appears at the cut end when the target plane is cut along a plane perpendicular to the target plane.
Δa=(h1+h2+h3...+hn)/L (2)
 θaが、前記範囲にあると、より防眩性に優れ、かつ白ボケが防止できる。 When θa is within the above range, the antiglare property is more excellent and white blurring can be prevented.
 本発明の防眩層を形成するにあたり、調製した防眩層形成材料(塗工液)がチキソ性を示していることが好ましく、下記で規定されるTi値が、1.3~3.5の範囲にあることが好ましく、より好ましくは1.3~2.8の範囲である。
 Ti値=β1/β2
 ここで、β1はHAAKE社製レオストレス6000を用いてずり速度20(1/s)の条件で測定される粘度、β2はHAAKE社製レオストレス6000を用いてずり速度200(1/s)の条件で測定される粘度である。
In forming the antiglare layer of the present invention, it is preferable that the prepared antiglare layer forming material (coating solution) exhibits thixotropy, and the Ti value defined below is 1.3 to 3.5. is preferably in the range of , more preferably in the range of 1.3 to 2.8.
Ti value = β1/β2
Here, β1 is the viscosity measured at a shear rate of 20 (1/s) using HAAKE's Rheostress 6000, and β2 is the viscosity measured using HAAKE's Rheostress 6000 at a shear rate of 200 (1/s). Viscosity measured under conditions.
 Ti値が、1.3未満であると、外観欠点が生じやすくなり、防眩性、白ボケについての特性が悪化する。また、Ti値が、3.5を超えると、前記粒子が凝集しにくく分散状態となりやすくなる。 If the Ti value is less than 1.3, defects in appearance tend to occur, and the properties of antiglare properties and white blur deteriorate. On the other hand, when the Ti value exceeds 3.5, the particles are less likely to agglomerate and more likely to be in a dispersed state.
 本発明の防眩層の製造方法は、特に制限されず、いかなる方法で製造されてもよいが、例えば、前記樹脂、前記粒子、前記チキソトロピー付与剤および溶媒を含む防眩層形成材料(塗工液)を準備し、前記防眩層形成材料(塗工液)を塗工して塗膜を形成し、前記塗膜を硬化させて防眩層を形成することにより、製造できる。金型による転写方式や、サンドブラスト、エンボスロールなどの適宜な方式で凹凸形状を付与する方法などを、併せて用いることもできる。 The method for producing the antiglare layer of the present invention is not particularly limited and may be produced by any method. liquid) is prepared, the antiglare layer-forming material (coating liquid) is applied to form a coating film, and the coating film is cured to form an antiglare layer. A transfer method using a mold, a method of imparting an uneven shape by an appropriate method such as sandblasting, embossing roll, or the like can also be used together.
 前記溶媒は、特に制限されず、種々の溶媒を使用可能であり、一種類を単独で使用してもよいし、二種類以上を併用してもよい。前記樹脂の組成、前記粒子および前記チキソトロピー付与剤の種類、含有量等に応じて最適な溶媒種類や溶媒比率が存在する。溶媒としては、特に限定されないが、例えば、メタノール、エタノール、イソプロピルアルコール、ブタノール、2-メトキシエタノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン等のケトン類;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類;ジイソプロピルエーテル、プロピレングリコールモノメチルエーテル等のエーテル類;エチレングリコール、プロピレングリコール等のグリコール類;エチルセロソルブ、ブチルセロソルブ等のセロソルブ類;ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類等があげられる。 The solvent is not particularly limited, and various solvents can be used. One type may be used alone, or two or more types may be used in combination. There is an optimum solvent type and solvent ratio depending on the composition of the resin, the types and contents of the particles and the thixotropy-imparting agent, and the like. Examples of solvents include, but are not limited to, alcohols such as methanol, ethanol, isopropyl alcohol, butanol, and 2-methoxyethanol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclopentanone; methyl acetate, ethyl acetate. , Esters such as butyl acetate; Ethers such as diisopropyl ether and propylene glycol monomethyl ether; Glycols such as ethylene glycol and propylene glycol; Cellosolves such as ethyl cellosolve and butyl cellosolve; Aliphatic hydrocarbons such as hexane, heptane and octane Aromatic hydrocarbons such as benzene, toluene, and xylene.
 前記溶媒を適宜選択することによって、チキソトロピー付与剤による防眩層形成材料(塗工液)へのチキソ性を良好に発現させることができる。例えば、有機粘土を用いる場合には、トルエンおよびキシレンを好適に、単独使用または併用することができ、例えば、酸化ポリオレフィンを用いる場合には、メチルエチルケトン、酢酸エチル、プロピレングリコールモノメチルエーテルを好適に、単独使用または併用することができ、例えば、変性ウレアを用いる場合には、酢酸ブチルおよびメチルイソブチルケトンを好適に、単独使用または併用することができる。 By appropriately selecting the solvent, the thixotropy of the antiglare layer-forming material (coating liquid) by the thixotropy-imparting agent can be exhibited satisfactorily. For example, when organoclays are used, toluene and xylene can be suitably used alone or in combination. They can be used or used in combination. For example, when modified urea is used, butyl acetate and methyl isobutyl ketone can be preferably used alone or in combination.
 前記防眩層形成材料には、各種レベリング剤を添加することができる。前記レベリング剤としては、塗工ムラ防止(塗工面の均一化)を目的に、例えば、フッ素系またはシリコーン系のレベリング剤を用いることができる。本発明の防眩層の表面に防汚性が求められる場合、または、反射防止層や層間充填剤を含む層が防眩層上に形成される場合などに応じて、適宜レベリング剤を選定することができる。例えば、前記チキソトロピー付与剤を含ませることで塗工液にチキソ性を発現させることができるため、塗工ムラが発生しにくい。このため、例えば、前記レベリング剤の選択肢を広げられるという優位点を有している。 Various leveling agents can be added to the antiglare layer-forming material. As the leveling agent, for example, a fluorine-based or silicone-based leveling agent can be used for the purpose of preventing coating unevenness (uniformizing the coated surface). A suitable leveling agent is selected according to the case where the antifouling property is required on the surface of the antiglare layer of the present invention, or the case where an antireflection layer or a layer containing an interlayer filler is formed on the antiglare layer. be able to. For example, the inclusion of the thixotropy-imparting agent makes it possible to express thixotropic properties in the coating liquid, so that unevenness in coating is less likely to occur. Therefore, for example, it has an advantage that the options for the leveling agent can be expanded.
 前記レベリング剤の配合量は、前記樹脂100重量部に対して、例えば、5重量部以下、好ましくは0.01~5重量部の範囲である。 The amount of the leveling agent compounded is, for example, 5 parts by weight or less, preferably in the range of 0.01 to 5 parts by weight, per 100 parts by weight of the resin.
 前記防眩層形成材料には、必要に応じて、性能を損なわない範囲で、顔料、充填剤、分散剤、可塑剤、紫外線吸収剤、界面活性剤、防汚剤、酸化防止剤等が添加されてもよい。これらの添加剤は一種類を単独で使用してもよく、また二種類以上併用してもよい。 Pigments, fillers, dispersants, plasticizers, ultraviolet absorbers, surfactants, antifouling agents, antioxidants, etc., are added to the antiglare layer-forming material as necessary within a range that does not impair the performance. may be These additives may be used singly or in combination of two or more.
 前記防眩層形成材料には、例えば、特開2008-88309号公報に記載されるような、従来公知の光重合開始剤を用いることができる。 For the antiglare layer-forming material, conventionally known photopolymerization initiators, such as those described in JP-A-2008-88309, can be used.
 前記防眩層形成材料を塗工する方法としては、例えば、ファンテンコート法、ダイコート法、スピンコート法、スプレーコート法、グラビアコート法、ロールコート法、バーコート法等の塗工法を用いることができる。 Examples of the method for applying the antiglare layer-forming material include a fountain coating method, a die coating method, a spin coating method, a spray coating method, a gravure coating method, a roll coating method, a bar coating method, and the like. can be done.
 前記防眩層形成材料を塗工して塗膜を形成し、前記塗膜を硬化させる。前記硬化に先立ち、前記塗膜を乾燥させることが好ましい。前記乾燥は、例えば、自然乾燥でもよいし、風を吹きつけての風乾であってもよいし、加熱乾燥であってもよいし、これらを組み合わせた方法であってもよい。 The antiglare layer-forming material is applied to form a coating film, and the coating film is cured. It is preferable to dry the coating film prior to the curing. The drying may be, for example, natural drying, air drying by blowing air, heat drying, or a combination thereof.
 前記防眩層形成材料の塗膜の硬化手段は、特に制限されないが、紫外線硬化が好ましい。エネルギー線源の照射量は、紫外線波長365nmでの積算露光量として、50~500mJ/cm2が好ましい。照射量が、50mJ/cm2以上であれば、硬化がより十分となり、形成される防眩層の硬度もより十分なものとなる。また、500mJ/cm2以下であれば、形成される防眩層の着色を防止することができる。 The means for curing the coating film of the antiglare layer-forming material is not particularly limited, but ultraviolet curing is preferable. The irradiation amount of the energy beam source is preferably 50 to 500 mJ/cm 2 as an integrated exposure amount at an ultraviolet wavelength of 365 nm. When the irradiation dose is 50 mJ/cm 2 or more, the curing becomes more sufficient, and the hardness of the formed antiglare layer becomes more sufficient. Also, if it is 500 mJ/cm 2 or less, coloring of the formed antiglare layer can be prevented.
 以上のようにして、本発明の防眩層を形成することができる。なお、前述の方法以外の製造方法で防眩層を形成してもよい。本発明の防眩層の硬度は、鉛筆硬度において、層の厚みにも影響されるが、2H以上の硬度を有することが好ましい。 The antiglare layer of the present invention can be formed as described above. In addition, you may form an anti-glare layer by manufacturing methods other than the above-mentioned method. The hardness of the antiglare layer of the present invention is preferably 2H or higher in terms of pencil hardness, although it is also affected by the thickness of the layer.
 本発明の防眩層は、二層以上が積層された複数層構造であってもよい。 The antiglare layer of the present invention may have a multi-layer structure in which two or more layers are laminated.
 本発明の防眩層の上に、上述の反射防止層を配置してもよい。例えば、OLED表示装置の視認性を低下させる要因のひとつに空気と防眩層界面での光の反射があげられる。反射防止層は、その表面反射を低減させるものである。なお、本発明の防眩層および反射防止層は、それぞれ、二層以上が積層された複数層構造であってもよい。 The antireflection layer described above may be placed on the antiglare layer of the present invention. For example, one factor that reduces the visibility of an OLED display device is the reflection of light at the interface between the air and the antiglare layer. An antireflection layer reduces the surface reflection. The antiglare layer and the antireflection layer of the present invention may each have a multi-layer structure in which two or more layers are laminated.
(中間層)
 本発明の光学素子を構成する中間層(以下、「本発明の中間層」と称する場合がある)は、前記の樹脂層と、前記ハードコート層、反射防止層、又は防眩層との間に形成されるものである。この中間層の形成により、樹脂層と、前記ハードコート層、反射防止層、又は防眩層との間の密着性が向上する。
(middle layer)
The intermediate layer constituting the optical element of the present invention (hereinafter sometimes referred to as the "intermediate layer of the present invention") is provided between the resin layer and the hard coat layer, antireflection layer, or antiglare layer. is formed in Formation of this intermediate layer improves adhesion between the resin layer and the hard coat layer, antireflection layer, or antiglare layer.
 本発明の中間層(浸透層、相溶層ともいう)が形成されるメカニズムは、特に限定されないが、例えば、前記ハードコート層、反射防止層、又は防眩層の形成において、ハードコート層形成用塗工液、反射防止層形成用塗工液、又は防眩層形成用塗工液を樹脂層に塗布、浸透、乾燥する過程で形成される。前記乾燥工程において、例えば、ハードコート層形成用塗工液、反射防止層形成用塗工液、又は防眩層形成用塗工液が樹脂層に浸透し、樹脂層由来の樹脂と、ハードコート層、反射防止層、又は防眩層由来の樹脂とを含む前記中間層が形成される。前記中間層に含まれる樹脂は、特に限定されず、例えば、樹脂層に含まれる樹脂とハードコート層、反射防止層、又は防眩層に含まれる樹脂とが単に混合(相溶)されたものでもよい。また、前記中間層に含まれる樹脂は、例えば、樹脂層に含まれる樹脂とハードコート層、反射防止層、又は防眩層に含まれる樹脂との、少なくとも一方が、加熱、光照射等により化学変化していてもよい。 The mechanism by which the intermediate layer (also referred to as a permeation layer or compatible layer) of the present invention is formed is not particularly limited. It is formed in the process of coating, permeating, and drying the resin layer with a coating solution for coating, a coating solution for forming an antireflection layer, or a coating solution for forming an antiglare layer. In the drying step, for example, the coating liquid for forming a hard coat layer, the coating liquid for forming an antireflection layer, or the coating liquid for forming an antiglare layer permeates the resin layer, and the resin derived from the resin layer and the hard coat The intermediate layer is formed comprising a layer, an antireflection layer, or a resin derived from the antiglare layer. The resin contained in the intermediate layer is not particularly limited. For example, the resin contained in the resin layer and the resin contained in the hard coat layer, the antireflection layer, or the antiglare layer are simply mixed (compatible). It's okay. At least one of the resin contained in the intermediate layer and the resin contained in the hard coat layer, the antireflection layer, or the antiglare layer may be chemically cured by heating, light irradiation, or the like. may have changed.
 下記数式(3)で定義される前記中間層の厚み比率Rは、特に限定されないが、例えば、0.10~0.80であり、例えば、0.15以上、0.20以上、0.25以上、0.30以上、0.40以上、または0.45以上であってもよく、例えば、0.75以下、0.70以下、0.65以下、0.60以下、0.50以下、0.40以下、0.45以下、または0.30以下であってもよい。前記中間層の厚み比率Rは、例えば、0.15~0.75、0.20~0.70、0.25~0.65、0.30~0.60、0.40~0.50、0.45~0.50、0.15~0.45、0.15~0.40、0.15~0.30、または0.20~0.30であってもよい。前記中間層は、例えば、光学素子の断面を、透過型電子顕微鏡(TEM)で観察することで、確認することができ、厚みを測定することができる。

R=[DC/(DC+DB)]   (3)

 前記数式(3)において、DBは、ハードコート層、反射防止層、又は防眩層の厚み[μm]であり、DCは、前記中間層の厚み[μm]である。
The thickness ratio R of the intermediate layer defined by the following formula (3) is not particularly limited, but is, for example, 0.10 to 0.80. 0.30 or more, 0.40 or more, or 0.45 or more, for example, 0.75 or less, 0.70 or less, 0.65 or less, 0.60 or less, 0.50 or less, It may be 0.40 or less, 0.45 or less, or 0.30 or less. The thickness ratio R of the intermediate layer is, for example, 0.15 to 0.75, 0.20 to 0.70, 0.25 to 0.65, 0.30 to 0.60, 0.40 to 0.50. , 0.45-0.50, 0.15-0.45, 0.15-0.40, 0.15-0.30, or 0.20-0.30. The intermediate layer can be confirmed, for example, by observing the cross section of the optical element with a transmission electron microscope (TEM), and the thickness can be measured.

R=[DC/(DC+DB)] (3)

In the formula (3), DB is the thickness [μm] of the hard coat layer, the antireflection layer, or the antiglare layer, and DC is the thickness [μm] of the intermediate layer.
 樹脂層と、ハードコート層、反射防止層、又は防眩層との間に中間層が形成される場合、樹脂層と、ハードコート層、反射防止層、又は防眩層との間のせん断破壊強度は、優れた密着性の観点から、20MPa以上が好ましく、50MPa以上がより好ましい。
 前記せん断破壊強度は、SAICAS法により求めることができ、樹脂層の種類、ハードコート層形成用塗工液、反射防止層形成用塗工液、防眩層形成用塗工液の組成や成膜法などにより、調整することができる。
When an intermediate layer is formed between a resin layer and a hard coat layer, an antireflection layer, or an antiglare layer, shear failure between the resin layer and the hard coat layer, antireflection layer, or antiglare layer From the viewpoint of excellent adhesion, the strength is preferably 20 MPa or more, more preferably 50 MPa or more.
The shear breaking strength can be obtained by the SAICAS method, and the type of resin layer, the composition of the coating liquid for forming the hard coat layer, the coating liquid for forming the antireflection layer, the coating liquid for forming the antiglare layer, and the film formation It can be adjusted according to the law.
(衝撃吸収層)
 本発明の光学素子を構成する衝撃吸収層(以下、「本発明の衝撃吸収層」と称する場合がある)は、所望の衝撃吸収率を実現し得る任意の適切な樹脂層で構成され得る。樹脂層は、樹脂フィルムで構成されてもよく、粘着剤で構成されてもよい。衝撃吸収層は、代表的には、エポキシ系樹脂、ウレタン系樹脂またはアクリル系樹脂を含む。これらの樹脂は、単独で用いてもよく併用してもよい。
(shock absorption layer)
The impact-absorbing layer constituting the optical element of the present invention (hereinafter sometimes referred to as the "impact-absorbing layer of the present invention") may be composed of any appropriate resin layer capable of achieving a desired impact-absorbing rate. The resin layer may be composed of a resin film or an adhesive. The shock absorbing layer typically contains epoxy resin, urethane resin or acrylic resin. These resins may be used alone or in combination.
 本発明の衝撃吸収層の厚みは、好ましくは30μm~200μmであり、より好ましくは30μm~150μmであり、さらに好ましくは40μm~120μmである。本発明の衝撃吸収層の厚みがこのような範囲であれば、優れた耐衝撃性を有する光学積層体を実現することができる。 The thickness of the shock absorbing layer of the present invention is preferably 30 µm to 200 µm, more preferably 30 µm to 150 µm, still more preferably 40 µm to 120 µm. If the thickness of the impact-absorbing layer of the present invention is within such a range, an optical laminate having excellent impact resistance can be realized.
 本発明の衝撃吸収層の25℃における貯蔵弾性率G'は、好ましくは0.1GPa以下であり、より好ましくは0.01MPa~0.1GPaである。本発明の衝撃吸収層の貯蔵弾性率がこのような範囲であれば、衝撃を吸収し、光学積層体の割れを防止できるという利点を有する。さらに、前記厚みの効果との相乗的な効果も発揮され得る。 The storage elastic modulus G' of the shock absorbing layer of the present invention at 25°C is preferably 0.1 GPa or less, more preferably 0.01 MPa to 0.1 GPa. If the storage elastic modulus of the impact-absorbing layer of the present invention is within such a range, there is an advantage that the impact can be absorbed and cracking of the optical layered body can be prevented. Furthermore, a synergistic effect with the thickness effect can also be exhibited.
(帯電防止層)
 本発明の光学素子を構成する帯電防止層(以下、「本発明の帯電防止層」と称する場合がある)としては、特に限定されないが、例えば、導電性ポリマーを含む導電コート液をコーティングして形成される帯電防止層である。具体的なコーティングの方法としては、ロールコート法、バーコート法、グラビアコート法などが挙げられる。
(Antistatic layer)
The antistatic layer constituting the optical element of the present invention (hereinafter sometimes referred to as the "antistatic layer of the present invention") is not particularly limited, but for example, a conductive coating liquid containing a conductive polymer is coated. It is the antistatic layer that is formed. Specific coating methods include a roll coating method, a bar coating method, a gravure coating method, and the like.
 前記導電性ポリマーとしては、例えば、π共役系導電性ポリマーにポリアニオンがドープされた導電性ポリマーなどが挙げられる。π共役系導電性ポリマーとしては、ポリチオフェン、ポリピロール、ポリアニリン、ポリアセチレンなどの鎖状導電性ポリマーが挙げられる。ポリアニオンとしては、ポリスチレンスルホン酸、ポリイソプレンスルホン酸、ポリビニルスルホン酸、ポリアリルスルホン酸、ポリアクリル酸エチルスルホン酸、ポリメタクリルカルボン酸などが挙げられる。 Examples of the conductive polymer include a conductive polymer obtained by doping a π-conjugated conductive polymer with a polyanion. Examples of π-conjugated conductive polymers include linear conductive polymers such as polythiophene, polypyrrole, polyaniline, and polyacetylene. Polyanions include polystyrene sulfonic acid, polyisoprene sulfonic acid, polyvinyl sulfonic acid, polyallylsulfonic acid, polyethyl acrylate sulfonic acid, polymethacrylic carboxylic acid and the like.
 前記帯電防止層の厚みとしては、好ましくは1nm~1000nmであり、より好ましくは5nm~900nmである。前記 帯電防止層は、1層のみであってもよいし、2層以上であってもよい。 The thickness of the antistatic layer is preferably 1 nm to 1000 nm, more preferably 5 nm to 900 nm. The antistatic layer may consist of only one layer, or may consist of two or more layers.
(光学積層体)
 本発明の光学積層体は、前記OLED表示装置用光学積層体を積層しない状態の前記OLED表示装置の反射率スペクトルにおいて、波長380~455nmにおける最大値をRp1、前記Rp1における波長(WL1)での前記反射防止層の反射率をRf1としたとき、[Rf1/Rp1]は、0.3以下が好ましく、より好ましくは0.25以下、さらに好ましくは0.2以下、さらに好ましくは0.15以下、特に好ましくは0.1以下である。前記[Rf1/Rp1]が小さいほど干渉ムラがより抑制される。
(Optical laminate)
In the optical laminate of the present invention, in the reflectance spectrum of the OLED display device in which the optical laminate for an OLED display device is not laminated, Rp1 is the maximum value at a wavelength of 380 to 455 nm, and the wavelength (WL1) at Rp1 is When the reflectance of the antireflection layer is Rf1, [Rf1/Rp1] is preferably 0.3 or less, more preferably 0.25 or less, still more preferably 0.2 or less, and still more preferably 0.15 or less. , particularly preferably 0.1 or less. The smaller the [Rf1/Rp1], the more the interference unevenness is suppressed.
 本発明の光学積層体は、前記OLED表示装置用光学積層体を積層しない状態の前記OLED表示装置の反射率スペクトルにおいて、波長460~530nmにおける最大値をRp2、前記Rp2における波長(WL2)での前記反射防止層の反射率をRf2としたとき、[Rf2/Rp2]は、0.12以下が好ましく、より好ましくは0.1以下、さらに好ましくは0.05以下、さらに好ましくは0.03以下、特に好ましくは0.01以下である。前記[Rf2/Rp2]が小さいほど干渉ムラがより抑制される。 In the optical laminate of the present invention, in the reflectance spectrum of the OLED display device in which the optical laminate for an OLED display device is not laminated, Rp2 is the maximum value at a wavelength of 460 to 530 nm, and the wavelength (WL2) at Rp2 is When the reflectance of the antireflection layer is Rf2, [Rf2/Rp2] is preferably 0.12 or less, more preferably 0.1 or less, still more preferably 0.05 or less, and still more preferably 0.03 or less. , particularly preferably 0.01 or less. The smaller the [Rf2/Rp2], the more the interference unevenness is suppressed.
 なお、本明細書において、波長WL1は、例えば430nmまたは440nmであり、波長WL2は、例えば500nmまたは510nmである。また、Rp1およびRp2は、それぞれ、例えば7%以上(例えば7~20%)であり、好ましくは10%以上(例えば10~18%)である。 In this specification, the wavelength WL1 is, for example, 430 nm or 440 nm, and the wavelength WL2 is, for example, 500 nm or 510 nm. Also, each of Rp1 and Rp2 is, for example, 7% or more (eg, 7 to 20%), preferably 10% or more (eg, 10 to 18%).
 前記[Rf1/Rp1]および前記[Rf2/Rp2]の合計は、0.42以下が好ましく、より好ましくは0.4以下、さらに好ましくは0.3以下、さらに好ましくは0.2以下、特に好ましくは0.1以下である。前記合計が小さいほど干渉ムラがより抑制される。 The sum of [Rf1/Rp1] and [Rf2/Rp2] is preferably 0.42 or less, more preferably 0.4 or less, still more preferably 0.3 or less, still more preferably 0.2 or less, and particularly preferably is 0.1 or less. Interference unevenness is more suppressed as the total is smaller.
 本発明の光学積層体は、本発明の反射防止層の視認側とは反対側に、本発明のハードコート層、基材層、および本発明の粘着剤層を備える構成を有することが好ましく、この順に備える構造を有することがより好ましい。前記基材層には本発明の樹脂層や本発明のガラス層を使用することができる。 The optical laminate of the present invention preferably has a configuration comprising the hard coat layer of the present invention, the substrate layer of the present invention, and the adhesive layer of the present invention on the side opposite to the viewing side of the antireflection layer of the present invention. It is more preferable to have structures with this order. The resin layer of the present invention or the glass layer of the present invention can be used for the substrate layer.
 本発明の光学積層体の一実施形態(例えば後述の図3及び図4に示す本発明のOLED表示装置における光学積層体)において、本発明の粘着剤層(特に、光散乱特性を有する粘着剤層)が本発明の樹脂層の少なくとも一方の面に備えられた構造を有することが好ましい。この場合、本発明の樹脂層の屈折率をn1、本発明の粘着剤層の粘着剤の屈折率をn2、本発明の光散乱性微粒子の屈折率をn3としたとき、n1>n2>n3を満たすことが好ましい。この場合、白ボケがより抑制される。 In one embodiment of the optical layered body of the present invention (for example, an optical layered body in an OLED display device of the present invention shown in FIGS. 3 and 4 described later), the pressure-sensitive adhesive layer of the present invention (in particular, a light-scattering pressure-sensitive adhesive layer) is provided on at least one surface of the resin layer of the present invention. In this case, n1>n2>n3, where n1 is the refractive index of the resin layer of the present invention, n2 is the refractive index of the adhesive in the adhesive layer of the present invention, and n3 is the refractive index of the light-scattering fine particles of the present invention. is preferably satisfied. In this case, white blurring is further suppressed.
 本発明の光学積層体の一実施形態(例えば後述の図3及び図4に示す本発明のOLED表示装置における光学積層体)において、本発明の樹脂層の屈折率(n1)は、好ましくは1.50~1.80であり、より好ましくは1.55~1.75、さらに好ましくは1.60~1.70である。前記樹脂層の屈折率は、樹脂層を構成する樹脂の種類や含有量などにより、調整することができる。 In one embodiment of the optical layered body of the present invention (for example, an optical layered body in an OLED display device of the present invention shown in later-described FIGS. 3 and 4), the refractive index (n1) of the resin layer of the present invention is preferably 1. 0.50 to 1.80, more preferably 1.55 to 1.75, still more preferably 1.60 to 1.70. The refractive index of the resin layer can be adjusted by the type and content of the resin constituting the resin layer.
 本発明の光学積層体の一実施形態(例えば後述の図3及び図4に示す本発明のOLED表示装置における光学積層体)において、本発明の樹脂層の一方の面に本発明の粘着剤層(特に、光散乱特性を有する粘着剤層)が、他方の面に本発明のハードコート層が備えられた構造を有することが好ましい。特に、当該実施形態においてn1>n2>n3を満たすことが好ましい。 In one embodiment of the optical layered body of the present invention (for example, an optical layered body in an OLED display device of the present invention shown in later-described FIGS. 3 and 4), the pressure-sensitive adhesive layer of the present invention is provided on one side of the resin layer of the present invention. (In particular, the pressure-sensitive adhesive layer having light scattering properties) preferably has a structure in which the hard coat layer of the present invention is provided on the other surface. In particular, it is preferable to satisfy n1>n2>n3 in this embodiment.
 本発明の光学積層体の一実施形態(例えば後述の図5~7に示す本発明のOLED表示装置における光学積層体)において、OLED素子の視認側にカラーフィルタが配置されており、本発明の粘着剤層と前記カラーフィルタとの間の距離(d)が700μm以下である場合の本発明の粘着剤層(特に、光散乱特性を有する粘着剤層)と前記カラーフィルタとの間の距離をd[μm]、本発明の粘着剤層(特に、光散乱特性を有する粘着剤層)のヘイズ値をH[%]としたとき、d×Hの値が70000以下であることが好ましく、より好ましくは60000以下、さらに好ましくは50000以下である。d×Hの値が700000以下であると、画像ボケがより生じにくい。d×Hの値は、例えば100以上であり、1000以上、10000以上、または20000以上であってもよい。この場合、Hは20以上であることが好ましい。 In one embodiment of the optical layered body of the present invention (for example, the optical layered body in the OLED display device of the present invention shown in FIGS. 5 to 7 described later), a color filter is arranged on the viewing side of the OLED element, and the When the distance (d) between the pressure-sensitive adhesive layer and the color filter is 700 μm or less, the distance between the pressure-sensitive adhesive layer of the present invention (especially the pressure-sensitive adhesive layer having light scattering properties) and the color filter is When d [μm] and the haze value of the pressure-sensitive adhesive layer of the present invention (particularly, the pressure-sensitive adhesive layer having light scattering properties) is H [%], the value of d×H is preferably 70000 or less, and more It is preferably 60,000 or less, more preferably 50,000 or less. When the value of d×H is 700000 or less, image blurring is less likely to occur. The value of d×H is, for example, 100 or more, and may be 1000 or more, 10000 or more, or 20000 or more. In this case, H is preferably 20 or more.
 本発明の光学積層体の一実施形態(例えば後述の図5~7に示す本発明のOLED表示装置における光学積層体)において、本発明の粘着剤層(特に、光散乱特性を有する粘着剤層)の厚さをT[μm]、本発明の粘着剤層(特に、光散乱特性を有する粘着剤層)のヘイズ値をH[%]としたとき、T×Hの値が400以上であることが好ましく、より好ましくは600以上、さらに好ましくは800以上で、さらに好ましくは1000以上、特に好ましくは1500以上である。T×Hの値が400以下であると、画像ボケがより生じにくい。T×Hの値は、例えば10000以下であり、8000以下、6000以下、または4000以下であってもよい。 In one embodiment of the optical layered body of the present invention (for example, an optical layered body in an OLED display device of the present invention shown in FIGS. 5 to 7 described later), the pressure-sensitive adhesive layer of the present invention (in particular, the pressure-sensitive adhesive layer having light scattering properties) ) is the thickness of T [μm], and the haze value of the pressure-sensitive adhesive layer of the present invention (especially the pressure-sensitive adhesive layer having light scattering properties) is H [%], the value of T×H is 400 or more. more preferably 600 or more, still more preferably 800 or more, still more preferably 1000 or more, and particularly preferably 1500 or more. When the value of T×H is 400 or less, image blurring is less likely to occur. The value of T×H is, for example, 10000 or less, and may be 8000 or less, 6000 or less, or 4000 or less.
 本発明の光学積層体の一実施形態(例えば後述の図8~10に示す本発明のOLED表示装置における光学積層体)において、前記OLED表示装置用光学積層体を積層しない状態の前記OLED表示装置の反射率スペクトルにおいて、波長380~455nmにおける最大値を示す波長WL1での本発明の防眩層の散乱効率をS1としたとき、S1は、15%以上が好ましく、より好ましくは20%以上、さらに好ましくは30%以上、さらに好ましくは40%以上、特に好ましくは50%以上である。前記S1が大きいほど干渉ムラがより抑制される。 In one embodiment of the optical layered body of the present invention (for example, the optical layered body in the OLED display device of the present invention shown in later-described FIGS. 8 to 10), the OLED display device without laminating the optical layered body for the OLED display device. When S1 is the scattering efficiency of the antiglare layer of the present invention at a wavelength WL1 showing the maximum value at a wavelength of 380 to 455 nm in the reflectance spectrum of , S1 is preferably 15% or more, more preferably 20% or more, More preferably 30% or more, more preferably 40% or more, particularly preferably 50% or more. The larger S1 is, the more the interference unevenness is suppressed.
 本発明の光学積層体の一実施形態(例えば後述の図8~10に示す本発明のOLED表示装置における光学積層体)において、前記OLED表示装置用光学積層体を積層しない状態の前記OLED表示装置の反射率スペクトルにおいて、波長460~530nmにおける最大値を示す波長WL2での本発明の防眩層の散乱効率をS2としたとき、S2は、15%以上が好ましく、より好ましくは20%以上、さらに好ましくは30%以上、さらに好ましくは40%以上、特に好ましくは50%以上である。前記S2が大きいほど干渉ムラがより抑制される。 In one embodiment of the optical layered body of the present invention (for example, the optical layered body in the OLED display device of the present invention shown in later-described FIGS. 8 to 10), the OLED display device without laminating the optical layered body for the OLED display device. When the scattering efficiency of the antiglare layer of the present invention at the wavelength WL2 showing the maximum value at a wavelength of 460 to 530 nm in the reflectance spectrum of is S2, S2 is preferably 15% or more, more preferably 20% or more, More preferably 30% or more, more preferably 40% or more, particularly preferably 50% or more. The larger S2 is, the more the interference unevenness is suppressed.
 上記散乱効率S1およびS2は、本発明の防眩層が形成された光学積層体を積分球に接した状態で測定した所定の波長における透過率をTn1、防眩層が形成された光学積層体を積分球から145mmの距離に設置した状態で測定した上記所定の波長における透過率をTn2とした時、Tn1-Tn2として算出される。 The scattering efficiencies S1 and S2 are obtained by measuring the optical layered body having the antiglare layer of the present invention in contact with an integrating sphere and measuring the transmittance at a predetermined wavelength, Tn1, and the optical layered body having the antiglare layer. is placed at a distance of 145 mm from the integrating sphere, and Tn2 is the transmittance at the predetermined wavelength.
 前記S1および前記S2の合計は、30%以上が好ましく、より好ましくは40%以上、さらに好ましくは60%以上、さらに好ましくは80%以上、特に好ましくは100%以上である。前記合計が大きいほど干渉ムラがより抑制される。 The sum of S1 and S2 is preferably 30% or more, more preferably 40% or more, still more preferably 60% or more, still more preferably 80% or more, and particularly preferably 100% or more. The larger the sum, the more the interference unevenness is suppressed.
 本発明の光学積層体の一実施形態(例えば後述の図8~10に示す本発明のOLED表示装置における光学積層体)において、本発明の防眩層の視認側とは反対側に、基材層、および本発明の粘着剤層を備える構成を有することが好ましく、この順に備える構造を有することがより好ましい。前記基材層には本発明の樹脂層や本発明のガラス層を使用することができる。 In one embodiment of the optical layered body of the present invention (for example, an optical layered body in an OLED display device of the present invention shown in FIGS. 8 to 10 described later), a base material is provided on the side opposite to the viewing side of the antiglare layer of the present invention. It is preferable to have a structure comprising a layer and the pressure-sensitive adhesive layer of the present invention, and more preferably to have a structure provided in this order. The resin layer of the present invention or the glass layer of the present invention can be used for the substrate layer.
 本発明の光学積層体の一実施形態(例えば後述の図14及び図15に示す本発明のOLED表示装置における光学積層体)は、本発明の光学素子として、本発明のガラス層の視認側に、本発明の粘着剤層、基材層、および本発明のハードコート層をさらに備える構造を有することが好ましく、この順に備える構造を有することがより好ましい。前記基材層には本発明の樹脂層や本発明のガラス層を使用することができる。 One embodiment of the optical layered body of the present invention (for example, an optical layered body in an OLED display device of the present invention shown in FIGS. 14 and 15 described later) is an optical element of the present invention on the viewing side of the glass layer of the present invention. , the pressure-sensitive adhesive layer of the present invention, the substrate layer, and the hard coat layer of the present invention, and more preferably have a structure provided in this order. The resin layer of the present invention or the glass layer of the present invention can be used for the substrate layer.
 本発明の光学積層体の一実施形態(例えば後述の図14及び図15に示す本発明のOLED表示装置における光学積層体)において、本発明の接着剤層の押し込み弾性率をEa、本発明の樹脂層の引張貯蔵弾性率をErとしたとき、Ea-Erの絶対値が1GPa以下であることが好ましく、より好ましくは0.9GPa以下、さらに好ましくは0.7GPa以下、特に好ましくは0.5GPa以下である。前記絶対値が1GPa以下であると、耐衝撃性がよりいっそう向上する。 In one embodiment of the optical layered body of the present invention (for example, an optical layered body in an OLED display device of the present invention shown in later-described FIGS. 14 and 15), the indentation elastic modulus of the adhesive layer of the present invention is Ea, and the indentation elastic modulus of the adhesive layer of the present invention is Ea. When the tensile storage modulus of the resin layer is Er, the absolute value of Ea-Er is preferably 1 GPa or less, more preferably 0.9 GPa or less, still more preferably 0.7 GPa or less, and particularly preferably 0.5 GPa. It is below. Impact resistance improves further that the said absolute value is 1 GPa or less.
 本発明の光学積層体の一実施形態(例えば後述の図14及び図15に示す本発明のOLED表示装置における光学積層体)において、本発明の樹脂層の引張貯蔵弾性率Erは4GPa以上であることが好ましく、より好ましくは4.3GPa以上、さらに好ましくは4.6GPa以上である。前記引張貯蔵弾性率Erが4GPa以上であると、耐衝撃性がよりいっそう向上する。前記引張貯蔵弾性Erは、例えば50GPa以下であり、30GPa以下、10GPa以下であってもよい。前記引張貯蔵弾性率ErはJIS K7161に準拠して測定することができる。 In one embodiment of the optical layered body of the present invention (for example, an optical layered body in an OLED display device of the present invention shown in FIGS. 14 and 15 to be described later), the resin layer of the present invention has a tensile storage elastic modulus Er of 4 GPa or more. is preferred, more preferably 4.3 GPa or more, still more preferably 4.6 GPa or more. When the tensile storage elastic modulus Er is 4 GPa or more, impact resistance is further improved. The tensile storage elasticity Er is, for example, 50 GPa or less, and may be 30 GPa or less, or 10 GPa or less. The tensile storage modulus Er can be measured according to JIS K7161.
 本発明の光学積層体の一実施形態(例えば後述の図16及び図17に示す本発明のOLED表示装置における光学積層体)において、前記透明ポリイミド層と本発明のハードコート層との間には中間層(相溶層)が形成されている構造を有することが好ましい。上記中間層が形成されることにより、透明ポリイミド層および本発明のハードコート層の間の密着性が向上する。上記中間層は、本発明のハードコート層を形成するための組成物(コーティング剤)が前記透明ポリイミド層に浸透して形成される層である。すなわち、前記中間層は、前記透明ポリイミド層において、本発明のハードコート層成分が存在している部分である。 In one embodiment of the optical layered body of the present invention (for example, an optical layered body in an OLED display device of the present invention shown in FIGS. 16 and 17 described later), between the transparent polyimide layer and the hard coat layer of the present invention, It is preferable to have a structure in which an intermediate layer (compatible layer) is formed. By forming the intermediate layer, the adhesion between the transparent polyimide layer and the hard coat layer of the present invention is improved. The intermediate layer is a layer formed by permeation of the composition (coating agent) for forming the hard coat layer of the present invention into the transparent polyimide layer. That is, the intermediate layer is a portion of the transparent polyimide layer where the hard coat layer components of the present invention are present.
 本発明のハードコート層のせん断破壊強度に対する前記中間層のせん断破壊強度の比(P1)は、0.25以下が好ましく、より好ましくは0.23、さらに好ましくは0.21以下である。前記比(P1)は、例えば0.02以上であり、0.05以上、0.08以上であってもよい。 The ratio (P1) of the shear fracture strength of the intermediate layer to the shear fracture strength of the hard coat layer of the present invention is preferably 0.25 or less, more preferably 0.23, and still more preferably 0.21 or less. The ratio (P1) is, for example, 0.02 or more, and may be 0.05 or more, or 0.08 or more.
 本発明の光学積層体の一実施形態(例えば後述の図16及び図17に示す本発明のOLED表示装置における光学積層体)において、本発明のハードコート層のせん断破壊強度に対する前記透明ポリイミド層のせん断破壊強度の比(P2)は、0.65以上が好ましく、より好ましくは0.70以上、さらに好ましくは0.80以上、特に好ましくは0.90以上である。前記比(P2)は、例えば1.50以下であり、1.30以下、1.10以下であってもよい。 In one embodiment of the optical layered body of the present invention (for example, the optical layered body in the OLED display device of the present invention shown in FIGS. 16 and 17 described later), the ratio of the transparent polyimide layer to the shear fracture strength of the hard coat layer of the present invention The shear breaking strength ratio (P2) is preferably 0.65 or more, more preferably 0.70 or more, still more preferably 0.80 or more, and particularly preferably 0.90 or more. The ratio (P2) is, for example, 1.50 or less, and may be 1.30 or less, or 1.10 or less.
 前記比(P1)と前記比(P2)との差(P2-P1)は、0.6以上が好ましく、より好ましくは0.70以上であり、0.80以上であってもよい。前記差(P2-P1)は、例えば1.5以下であり、1.2以下、0.9以下であってもよい。 The difference (P2-P1) between the ratio (P1) and the ratio (P2) is preferably 0.6 or more, more preferably 0.70 or more, and may be 0.80 or more. The difference (P2-P1) is, for example, 1.5 or less, and may be 1.2 or less, or 0.9 or less.
 本発明の光学積層体の一実施形態(例えば後述の図16及び図17に示す本発明のOLED表示装置における光学積層体)において、前記透明ポリイミド層の本発明のハードコート層とは反対側に粘着剤層をさらに備える構造を有することが好ましい。 In one embodiment of the optical layered body of the present invention (for example, an optical layered body in an OLED display device of the present invention shown in FIGS. 16 and 17 described later), the transparent polyimide layer on the side opposite to the hard coat layer of the present invention It is preferable to have a structure further provided with an adhesive layer.
(光学積層体の製造法)
 本発明の光学積層体の製造法は、特に限定されず、本発明の光学素子を構成する粘着剤層、接着剤層、樹脂層、ガラス層、ハードコート層、反射防止層、防眩層、中間層(相溶層)、衝撃吸収層等を、本発明のOLED表示パネルの視認側に、順次積層することにより製造することができ、また、本発明の光学積層体を構成する積層体を予め作製しておき、本発明のOLED表示パネルの視認側に積層させることにより製造することができる。本発明の光学積層体を構成する積層体をあらかじめ作製する場合、本発明の光学積層体の全体を構成する積層体であってもよく、本発明の光学積層体の一部を構成する積層体を分割して、本発明のOLED表示パネルの視認側に積層してもよい。
(Manufacturing method of optical laminate)
The method for producing the optical laminate of the present invention is not particularly limited, and the adhesive layer, adhesive layer, resin layer, glass layer, hard coat layer, antireflection layer, antiglare layer, An intermediate layer (compatible layer), a shock absorbing layer, etc. can be produced by laminating sequentially on the viewing side of the OLED display panel of the present invention. It can be produced by preparing it in advance and laminating it on the viewing side of the OLED display panel of the present invention. When the laminate constituting the optical laminate of the present invention is prepared in advance, it may be the laminate constituting the entire optical laminate of the present invention, or the laminate constituting a part of the optical laminate of the present invention. may be split and laminated on the viewing side of the OLED display panel of the present invention.
 本発明の光学素子を構成する層、又はその積層体は、使用時までは、はく離ライナー又は表面保護フィルムで保護されていてもよい。 The layers constituting the optical element of the present invention or the laminate thereof may be protected with a release liner or surface protection film until use.
(はく離ライナー)
 本発明の光学素子が粘着剤層を含む場合は、使用時まで、粘着剤層の表面(粘着面)にはく離ライナーが設けられていてもよい。はく離ライナーは粘着剤層の保護材として用いられ、被着体に貼付する際に剥がされる。なお、はく離ライナーは、本発明の光学素子を構成するものではなく、必ずしも設けられなくてもよい。
(Release liner)
When the optical element of the present invention includes an adhesive layer, a release liner may be provided on the surface (adhesive surface) of the adhesive layer until use. A release liner is used as a protective material for the pressure-sensitive adhesive layer, and is peeled off when applied to an adherend. Note that the release liner does not constitute the optical element of the present invention and may not necessarily be provided.
 前記はく離ライナーとしては、慣用の剥離紙などを使用でき、特に限定されないが、例えば、剥離処理層を有する基材、フッ素ポリマーからなる低接着性基材や無極性ポリマーからなる低接着性基材などが挙げられる。前記剥離処理層を有する基材としては、例えば、シリコーン系、長鎖アルキル系、フッ素系、硫化モリブデン等の剥離処理剤により表面処理されたプラスチックフィルムや紙などが挙げられる。前記フッ素ポリマーからなる低接着性基材におけるフッ素系ポリマーとしては、例えば、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリフッ化ビニル、ポリフッ化ビニリデン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、クロロフルオロエチレン-フッ化ビニリデン共重合体などが挙げられる。また、前記無極性ポリマーとしては、例えば、オレフィン系樹脂(例えば、ポリエチレン、ポリプロピレン等)などが挙げられる。なお、剥離ライナーは公知乃至慣用の方法により形成することができる。また、剥離ライナーの厚みも特に限定されない。 As the release liner, a conventional release paper or the like can be used, and is not particularly limited. etc. Examples of the base material having the release treatment layer include plastic films and paper surface-treated with release agents such as silicone, long-chain alkyl, fluorine, and molybdenum sulfide. Examples of the fluorine-based polymer in the low-adhesive substrate made of the fluorine polymer include polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinyl fluoride, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, chloro fluoroethylene-vinylidene fluoride copolymer and the like. Examples of the non-polar polymer include olefin resins (eg, polyethylene, polypropylene, etc.). The release liner can be formed by a known or commonly used method. Also, the thickness of the release liner is not particularly limited.
(表面保護フィルム)
 本発明の光学積層体の最表面(視認側の最表面)は、表面保護フィルムにより保護されていてもよい。表面保護フィルムは、消費者により貼り付けられるものであってもよい。なお、表面保護フィルムは、本発明の光学素子を構成するものではなく、必ずしも設けられなくてもよい。
(Surface protection film)
The outermost surface (the outermost surface on the viewing side) of the optical layered body of the present invention may be protected with a surface protective film. The surface protection film may be applied by the consumer. The surface protective film does not constitute the optical element of the present invention and may not necessarily be provided.
 前記表面保護フィルムとしては、公知乃至慣用の表面保護フィルムを使用することができ、特に限定されないが、例えば、プラスチックフィルムの表面に粘着剤層を有するものが使用できる。前記プラスチックフィルムとしては、例えば、ポリエステル(ポリエチレンテレフタレート、ポリエチレンナフタレート等)、ポリオレフィン(ポリエチレン、ポリプロピレン、環状ポリオレフィン等)、ポリスチレン、アクリル樹脂、ポリカーボネート、エポキシ樹脂、フッ素樹脂、シリコーン樹脂、ジアセテート樹脂、トリアセテート樹脂、ポリアリレート、ポリ塩化ビニル、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルイミド、ポリイミド、ポリアミド等のプラスチック材料より形成されたプラスチックフィルムが挙げられる。前記粘着剤層としては、例えば、アクリル系粘着剤、天然ゴム系粘着剤、合成ゴム系粘着剤、エチレン-酢酸ビニル共重合体系粘着剤、エチレン-(メタ)アクリル酸エステル共重合体系粘着剤、スチレン-イソプレンブロック共重合体系粘着剤、スチレン-ブタジエンブロック共重合体系粘着剤等の公知乃至慣用の粘着剤の1種以上より形成された粘着剤層が挙げられる。前記粘着剤層中には、各種の添加剤(例えば、帯電防止剤、スリップ剤等)が含まれていてもよい。なお、プラスチックフィルム、粘着剤層は、それぞれ単層構成を有していてもよいし、多層(複層)構成を有していてもよい。また、表面保護フィルムの厚みは、特に限定されず、適宜選択することができる。 As the surface protective film, a known or commonly used surface protective film can be used, and although it is not particularly limited, for example, a plastic film having an adhesive layer on its surface can be used. Examples of the plastic film include polyester (polyethylene terephthalate, polyethylene naphthalate, etc.), polyolefin (polyethylene, polypropylene, cyclic polyolefin, etc.), polystyrene, acrylic resin, polycarbonate, epoxy resin, fluororesin, silicone resin, diacetate resin, Examples thereof include plastic films formed from plastic materials such as triacetate resin, polyarylate, polyvinyl chloride, polysulfone, polyethersulfone, polyetheretherimide, polyimide, and polyamide. Examples of the adhesive layer include acrylic adhesives, natural rubber adhesives, synthetic rubber adhesives, ethylene-vinyl acetate copolymer adhesives, ethylene-(meth)acrylic acid ester copolymer adhesives, A pressure-sensitive adhesive layer formed from one or more known or commonly used pressure-sensitive adhesives such as a styrene-isoprene block copolymer-based pressure-sensitive adhesive and a styrene-butadiene block copolymer-based pressure-sensitive adhesive can be used. The pressure-sensitive adhesive layer may contain various additives (eg, antistatic agents, slip agents, etc.). In addition, the plastic film and the pressure-sensitive adhesive layer may each have a single-layer structure, or may have a multi-layer (multilayer) structure. Moreover, the thickness of the surface protective film is not particularly limited, and can be appropriately selected.
(本発明のOLED表示装置)
 以下に、OLED表示パネルの視認側に本発明の光学積層体が積層されたOLED表示装置の一実施形態を、図面を参照して説明するが、本発明は、本実施形態に限定されない。図2は、本発明の光学積層体が積層されたOLED表示装置の基本構成の一実施形態を示す概略断面図である。
(OLED display device of the present invention)
An embodiment of an OLED display device in which the optical layered body of the present invention is laminated on the viewing side of an OLED display panel will be described below with reference to the drawings, but the present invention is not limited to this embodiment. FIG. 2 is a schematic cross-sectional view showing one embodiment of the basic configuration of an OLED display device laminated with the optical laminate of the present invention.
 図2に示すように、OLED表示装置200は、OLED表示パネル100の視認側(図2の上側)に光学積層体20を構成する層が積層されている。OLED表示パネル100は、特に限定されないが、例えば、図1に記載のOLED表示パネル100と同一の構成を採用し得る。 As shown in FIG. 2, in the OLED display device 200, the layers forming the optical laminate 20 are laminated on the visible side of the OLED display panel 100 (upper side in FIG. 2). Although the OLED display panel 100 is not particularly limited, for example, the same configuration as the OLED display panel 100 shown in FIG. 1 can be adopted.
 図2のOLED表示装置200において、21~29は、光学積層体20を構成する層であり、21は粘着剤層又は接着剤層、22は樹脂層、ガラス層又は衝撃吸収層、23はハードコート層又は防眩層、24は粘着剤層又は接着剤層、25は樹脂層、ガラス層又は衝撃吸収層、26は粘着剤層又は接着剤層、27は樹脂層、ガラス層又は衝撃吸収層、28はハードコート層又は防眩層、29は反射防止層を示す。図2に示される光学積層体20の積層構造は、本実施形態に限定されるものではなく、図2に示される光学積層体20の積層構造の任意の層間に本発明の光学素子を構成する他の層が挿入されていてもよく、図2に示される光学積層体20の積層構造の任意の層は存在していなくともよい。 In the OLED display device 200 of FIG. 2, 21 to 29 are layers constituting the optical laminate 20, 21 is an adhesive layer or adhesive layer, 22 is a resin layer, a glass layer or a shock absorbing layer, and 23 is a hard layer. Coat layer or anti-glare layer, 24 adhesive layer or adhesive layer, 25 resin layer, glass layer or shock absorbing layer, 26 adhesive layer or adhesive layer, 27 resin layer, glass layer or shock absorbing layer , 28 denotes a hard coat layer or an antiglare layer, and 29 denotes an antireflection layer. The laminated structure of the optical laminated body 20 shown in FIG. 2 is not limited to this embodiment, and the optical element of the present invention is formed between arbitrary layers of the laminated structure of the optical laminated body 20 shown in FIG. Other layers may be interposed and any layer of the laminate structure of the optical stack 20 shown in FIG. 2 may be absent.
 本発明の好ましい一実施形態としては、図2において、24は粘着剤層又は接着剤層、25は樹脂層、ガラス層又は衝撃吸収層、26は粘着剤層又は接着剤層、27は樹脂層、ガラス層又は衝撃吸収層、28はハードコート層又は防眩層であり、21~23が存在せず、粘着剤層24及び26の少なくとも一つが光散乱特性を有する粘着剤層である。本実施形態に係るOLED表示装置300Aを図3に示す。図3において、34A~38Aは、光学積層体30Aを構成する層であり、34Aは粘着剤層又は接着剤層、35Aはガラス層、36Aは光散乱特性を有する粘着剤層、37Aは樹脂層、38Aはハードコート層である。粘着剤層36Aが光散乱特性を有することにより、OLED表示パネル100に起因するカラーシフトや干渉ムラが抑制され、OLED表示装置300が視認性に優れるものとなる。
 なお、図3に示されるOLED表示装置300Aにおいて、ハードコート層38Aの視認側に反射防止層が存在していてもよい。
As a preferred embodiment of the present invention, in FIG. 2, 24 is an adhesive layer or adhesive layer, 25 is a resin layer, glass layer or impact absorbing layer, 26 is an adhesive layer or adhesive layer, and 27 is a resin layer. , a glass layer or an impact absorbing layer, 28 is a hard coat layer or an antiglare layer, 21 to 23 are absent, and at least one of the adhesive layers 24 and 26 is an adhesive layer having light scattering properties. FIG. 3 shows an OLED display device 300A according to this embodiment. In FIG. 3, 34A to 38A are layers constituting the optical laminate 30A, 34A is an adhesive layer or adhesive layer, 35A is a glass layer, 36A is an adhesive layer having light scattering properties, and 37A is a resin layer. , 38A is a hard coat layer. Since the pressure-sensitive adhesive layer 36A has light scattering properties, color shift and uneven interference caused by the OLED display panel 100 are suppressed, and the OLED display device 300 has excellent visibility.
In addition, in the OLED display device 300A shown in FIG. 3, an antireflection layer may be present on the visible side of the hard coat layer 38A.
 本発明の好ましい一実施形態としては、図2において、21は粘着剤層、22は樹脂層、23はハードコート層、24は粘着剤層、25はガラス層、26は粘着剤層、27は樹脂層、28はハードコート層であり、反射防止層29が存在せず、粘着剤層21、24、26の少なくとも一つが光散乱特性を有する粘着剤層である。本実施形態に係るOLED表示装置300Bを図4に示す。図4において、31B~38Bは、光学積層体30Bを構成する層であり、31Bは粘着剤層、32Bは樹脂層、33Bはハードコート層、34Bは粘着剤層、35Bはガラス層、36Bは光散乱特性を有する粘着剤層、37Bは樹脂層、38Bはハードコート層である。粘着剤層36Bが光散乱特性を有することにより、OLED表示パネル100に起因するカラーシフトや干渉ムラが抑制され、OLED表示装置300Bが視認性に優れるものとなる。
 なお、図4に示されるOLED表示装置300Bにおいて、ハードコート層38Bの視認側に反射防止層が存在していてもよい。
As a preferred embodiment of the present invention, in FIG. 2, 21 is an adhesive layer, 22 is a resin layer, 23 is a hard coat layer, 24 is an adhesive layer, 25 is a glass layer, 26 is an adhesive layer, 27 Resin layer 28 is a hard coat layer, antireflection layer 29 is not present, and at least one of adhesive layers 21, 24, and 26 is an adhesive layer having light scattering properties. FIG. 4 shows an OLED display device 300B according to this embodiment. In FIG. 4, 31B to 38B are layers constituting the optical laminate 30B, 31B is an adhesive layer, 32B is a resin layer, 33B is a hard coat layer, 34B is an adhesive layer, 35B is a glass layer, and 36B is a An adhesive layer having light scattering properties, 37B is a resin layer, and 38B is a hard coat layer. Since the pressure-sensitive adhesive layer 36B has light scattering properties, color shift and uneven interference caused by the OLED display panel 100 are suppressed, and the OLED display device 300B has excellent visibility.
In addition, in the OLED display device 300B shown in FIG. 4, an antireflection layer may exist on the visible side of the hard coat layer 38B.
 本発明の好ましい他の一実施形態としては、図2において、OLED表示パネル100が視認側にカラーフィルタが配置されており、26は光散乱特性を有する粘着剤層、27は樹脂層、28はハードコート層であり、21~25及び29が存在せず、光散乱特性を有する粘着剤層26と、該カラーフィルタとの距離d(μm)が、700μm以下である。光散乱特性を有する粘着剤層と、該カラーフィルタとの距離dが700μm以下であることにより、OLED表示装置300に起因するカラーシフトや、干渉ムラを抑制するために光散乱層を積層しても、画像ボケが生じにくくなり、視認性に優れる。本実施形態に係るOLED表示装置400Aを図5に示す。図5において、46A~48Aは、光学積層体40Aを構成する層であり、46Aは光散乱特性を有する粘着剤層、47Aは樹脂層、48Aはハードコート層である。15Aは、OLED表示パネル400Aの視認側(図5において上側)に配置されたカラーフィルタである。光散乱特性を有する粘着剤層46Aと、カラーフィルタ15Aは直接接しており、すなわち、光散乱特性を有する粘着剤層46Aと、カラーフィルタ15Aとの間の距離は0μmであるため、OLED表示装置400Aに起因するカラーシフトや干渉ムラを最も効率的に抑制することができる。
 なお、図5に示されるOLED表示装置400Aにおいて、ハードコート層48Aの視認側に反射防止層が存在していてもよい。
As another preferred embodiment of the present invention, in FIG. 2, the OLED display panel 100 has a color filter arranged on the viewing side, 26 is an adhesive layer having light scattering properties, 27 is a resin layer, and 28 is The distance d (μm) between the pressure-sensitive adhesive layer 26, which is a hard coat layer, does not include 21 to 25 and 29 and has light scattering properties, and the color filter is 700 μm or less. Since the distance d between the adhesive layer having light scattering properties and the color filter is 700 μm or less, the light scattering layer is laminated to suppress color shift and interference unevenness caused by the OLED display device 300. Also, image blurring is less likely to occur, and visibility is excellent. FIG. 5 shows an OLED display device 400A according to this embodiment. In FIG. 5, 46A to 48A are layers constituting the optical laminate 40A, 46A is an adhesive layer having light scattering properties, 47A is a resin layer, and 48A is a hard coat layer. 15A is a color filter arranged on the viewing side (upper side in FIG. 5) of the OLED display panel 400A. The pressure-sensitive adhesive layer 46A having light scattering properties and the color filter 15A are in direct contact, that is, the distance between the pressure-sensitive adhesive layer 46A having light scattering properties and the color filter 15A is 0 μm. Color shift and interference unevenness due to 400A can be suppressed most efficiently.
In addition, in the OLED display device 400A shown in FIG. 5, an antireflection layer may be present on the visible side of the hard coat layer 48A.
 本発明の好ましい他の一実施形態としては、図2において、OLED表示パネル100が視認側にカラーフィルタが配置されており、24は光散乱特性を有する粘着剤層、25はガラス層、26は粘着剤層又は接着剤層、27は樹脂層、28はハードコート層であり、21~23及び29が存在せず、散乱特性を有する粘着剤層24と、該カラーフィルタとの距離d(μm)が、700μm以下である。光散乱特性を有する粘着剤層と、該カラーフィルタとの距離dが700μm以下であることにより、OLED表示装置300に起因するカラーシフトや、干渉ムラを抑制するために光散乱層を積層しても、画像ボケが生じにくくなり、視認性に優れる。本実施形態に係るOLED表示装置400Bを図6に示す。図6において、44B~48Bは、光学積層体40Bを構成する層であり、44Bは光散乱特性を有する粘着剤層、44Bは光散乱特性を有する粘着剤層、45Bはガラス層、46Bは粘着剤層又は接着剤層、47Bは樹脂層、48Bはハードコート層である。15Bは、OLED表示パネル400Bの視認側(図6において上側)に配置されたカラーフィルタである。光散乱特性を有する粘着剤層44Bと、カラーフィルタ15Bは直接接しており、すなわち、光散乱特性を有する粘着剤層44Bと、カラーフィルタ15Bとの間の距離は0μmであるため、OLED表示装置400Bに起因するカラーシフトや干渉ムラを最も効率的に抑制することができる。
 なお、図6に示されるOLED表示装置400Bにおいて、ハードコート層48Bの視認側に反射防止層が存在していてもよい。
As another preferred embodiment of the present invention, in FIG. 2, the OLED display panel 100 has a color filter arranged on the viewing side, 24 is an adhesive layer having light scattering properties, 25 is a glass layer, and 26 is An adhesive layer or adhesive layer, 27 is a resin layer, 28 is a hard coat layer, 21 to 23 and 29 are absent, and the distance d (μm) between the adhesive layer 24 having scattering properties and the color filter ) is 700 μm or less. Since the distance d between the adhesive layer having light scattering properties and the color filter is 700 μm or less, the light scattering layer is laminated to suppress color shift and interference unevenness caused by the OLED display device 300. Also, image blurring is less likely to occur, and visibility is excellent. FIG. 6 shows an OLED display device 400B according to this embodiment. In FIG. 6, 44B to 48B are layers constituting the optical laminate 40B, 44B is an adhesive layer having light scattering properties, 44B is an adhesive layer having light scattering properties, 45B is a glass layer, and 46B is an adhesive layer. An agent layer or an adhesive layer, 47B a resin layer, and 48B a hard coat layer. 15B is a color filter arranged on the viewing side (upper side in FIG. 6) of the OLED display panel 400B. The pressure-sensitive adhesive layer 44B having light scattering properties and the color filter 15B are in direct contact, that is, the distance between the pressure-sensitive adhesive layer 44B having light scattering properties and the color filter 15B is 0 μm. Color shift and interference unevenness due to 400B can be suppressed most efficiently.
In addition, in the OLED display device 400B shown in FIG. 6, an antireflection layer may exist on the visible side of the hard coat layer 48B.
 本発明の好ましい他の一実施形態としては、図2において、OLED表示パネル100が視認側にカラーフィルタが配置されており、21は粘着剤層、22は樹脂層、23はハードコート層、24は粘着剤層、25はガラス層、26は粘着剤層、27は樹脂層、28はハードコート層であり、反射防止層29が存在せず、粘着剤層21、24、26の少なくとも一つが光散乱特性を有する粘着剤層であり、光散乱特性を有する粘着剤層と、該カラーフィルタとの距離d(μm)が、700μm以下である。光散乱特性を有する粘着剤層と、該カラーフィルタとの距離dが700μm以下であることにより、OLED表示装置300に起因するカラーシフトや、干渉ムラを抑制するために光散乱層を積層しても、画像ボケが生じにくくなり、視認性に優れる。光散乱層を積層することによるOLED表示装置の画像ボケをより効率的に低減する観点から、光散乱特性を有する粘着剤層と、カラーフィルタとの間の距離は600μm以下であることがより好ましく、500μm以下であることがさらに好ましく、光散乱特性を有する粘着剤層と、カラーフィルタとが直接接していることが最も好ましい。本実施形態に係るOLED表示装置400C及び400Dを図7(a)及び(b)にそれぞれ示す。図7(a)において、41C~48Cは、光学積層体40Cを構成する層であり、41Cは粘着剤層、42Cは樹脂層、43Cはハードコート層、44Cは粘着剤層、45Cはガラス層、46Cは光散乱特性を有する粘着剤層、47Cは樹脂層、48Cはハードコート層である。15Cは、OLED表示パネル400Cの視認側(図7(a)において上側)に配置されたカラーフィルタであり、光散乱特性を有する粘着剤層46Dと、該カラーフィルタ15Cとの距離d(μm)は、700μm以下である。図7(b)において、41D~48Dは、光学積層体40Dを構成する層であり、41Dは光散乱特性を有する粘着剤層、42Dは樹脂層、43Dはハードコート層、44Dは粘着剤層、45Dはガラス層、46Dは粘着剤層、47Dは樹脂層、48Dはハードコート層である。15Dは、OLED表示パネル400Dの視認側(図7(b)において上側)に配置されたカラーフィルタである。光散乱特性を有する粘着剤層41Dと、カラーフィルタ15Dは直接接しており、すなわち、光散乱特性を有する粘着剤層41Dと、カラーフィルタ15Dとの間の距離は0μmであるため、OLED表示装置400Dに起因するカラーシフトや干渉ムラを最も効率的に抑制することができる。
 なお、図7(a)及び(b)に示されるOLED表示装置400C及び400Dにおいて、ハードコート層48C及び48Dの視認側に反射防止層が存在していてもよい。
As another preferred embodiment of the present invention, in FIG. is an adhesive layer, 25 is a glass layer, 26 is an adhesive layer, 27 is a resin layer, and 28 is a hard coat layer. The pressure-sensitive adhesive layer has a light-scattering property, and the distance d (μm) between the pressure-sensitive adhesive layer having a light-scattering property and the color filter is 700 μm or less. Since the distance d between the adhesive layer having light scattering properties and the color filter is 700 μm or less, the light scattering layer is laminated to suppress color shift and interference unevenness caused by the OLED display device 300. Also, image blurring is less likely to occur, and visibility is excellent. From the viewpoint of more efficiently reducing image blur in an OLED display device due to lamination of a light scattering layer, the distance between the pressure-sensitive adhesive layer having light scattering properties and the color filter is more preferably 600 μm or less. , 500 μm or less, and most preferably, the pressure-sensitive adhesive layer having light scattering properties and the color filter are in direct contact with each other. OLED display devices 400C and 400D according to this embodiment are shown in FIGS. 7(a) and 7(b), respectively. In FIG. 7A, 41C to 48C are layers constituting the optical laminate 40C, 41C is an adhesive layer, 42C is a resin layer, 43C is a hard coat layer, 44C is an adhesive layer, and 45C is a glass layer. , 46C is an adhesive layer having light scattering properties, 47C is a resin layer, and 48C is a hard coat layer. 15C is a color filter arranged on the viewing side (upper side in FIG. 7A) of the OLED display panel 400C, and the distance d (μm) between the adhesive layer 46D having light scattering properties and the color filter 15C. is 700 μm or less. In FIG. 7B, 41D to 48D are layers constituting the optical laminate 40D, 41D is an adhesive layer having light scattering properties, 42D is a resin layer, 43D is a hard coat layer, and 44D is an adhesive layer. , 45D is a glass layer, 46D is an adhesive layer, 47D is a resin layer, and 48D is a hard coat layer. 15D is a color filter arranged on the viewing side (upper side in FIG. 7B) of the OLED display panel 400D. The pressure-sensitive adhesive layer 41D having light scattering properties and the color filters 15D are in direct contact, that is, the distance between the pressure-sensitive adhesive layer 41D having light scattering properties and the color filters 15D is 0 μm. Color shift and interference unevenness due to 400D can be most efficiently suppressed.
In addition, in the OLED display devices 400C and 400D shown in FIGS. 7A and 7B, an antireflection layer may be present on the viewing side of the hard coat layers 48C and 48D.
 本発明の好ましい他の一実施形態としては、図2において、26は粘着剤層又は接着剤層、27は樹脂層、28は防眩層であり、21~25及び29が存在しない。本実施形態に係るOLED表示装置500Aを図8に示す。図8において、56A~58Aは、光学積層体50Aを構成する層であり、56Aは粘着剤層又は接着剤層、57Aは樹脂層、58Aは防眩層である。光学積層体50Aが防眩層58Aを有することにより、OLED表示パネル100に起因するカラーシフトや干渉ムラが抑制され、OLED表示装置500Aが視認性に優れるものとなる。
 なお、図8に示されるOLED表示装置500Aにおいて、防眩層58Aの視認側に反射防止層が存在していてもよい。
As another preferred embodiment of the present invention, in FIG. 2, 26 is an adhesive layer or adhesive layer, 27 is a resin layer, 28 is an antiglare layer, and 21 to 25 and 29 are absent. FIG. 8 shows an OLED display device 500A according to this embodiment. In FIG. 8, 56A to 58A are layers constituting the optical layered body 50A, 56A is an adhesive layer or adhesive layer, 57A is a resin layer, and 58A is an antiglare layer. Since the optical layered body 50A has the antiglare layer 58A, color shift and interference unevenness caused by the OLED display panel 100 are suppressed, and the OLED display device 500A has excellent visibility.
In addition, in the OLED display device 500A shown in FIG. 8, an antireflection layer may exist on the viewing side of the antiglare layer 58A.
 本発明の好ましい他の一実施形態としては、図2において、24は粘着剤層又は接着剤層、25はガラス層、26は粘着剤層又は接着剤層、27は樹脂層、28は防眩層であり、21~23及び29が存在しない。本実施形態に係るOLED表示装置500Bを図9に示す。図9において、54B~58Bは、光学積層体50Bを構成する層であり、54Bは粘着剤層又は接着剤層、55Bはガラス層、56Bは粘着剤層又は接着剤層、57Bは樹脂層、58Bは防眩層である。光学積層体50Bが防眩層58Bを有することにより、OLED表示パネル100に起因するカラーシフトや干渉ムラが抑制され、OLED表示装置500Bが視認性に優れるものとなる。
 なお、図9に示されるOLED表示装置500Bにおいて、防眩層58Bの視認側に反射防止層が存在していてもよい。
2, 24 is an adhesive layer or adhesive layer, 25 is a glass layer, 26 is an adhesive layer or adhesive layer, 27 is a resin layer, and 28 is an antiglare layer. layer and 21-23 and 29 are absent. FIG. 9 shows an OLED display device 500B according to this embodiment. In FIG. 9, 54B to 58B are layers constituting the optical laminate 50B, 54B is an adhesive layer or adhesive layer, 55B is a glass layer, 56B is an adhesive layer or adhesive layer, 57B is a resin layer, 58B is an antiglare layer. Since the optical layered body 50B has the antiglare layer 58B, color shift and interference unevenness caused by the OLED display panel 100 are suppressed, and the OLED display device 500B has excellent visibility.
In addition, in the OLED display device 500B shown in FIG. 9, an antireflection layer may exist on the viewing side of the antiglare layer 58B.
 本発明の好ましい他の一実施形態としては、図2において、21は粘着剤層、22は樹脂層、23はハードコート層、24は粘着剤層、25はガラス層、26は粘着剤層、27は樹脂層、28は防眩層であり、反射防止層29が存在しない。本実施形態に係るOLED表示装置500Cを図10に示す。図10において、51C~58Cは、光学積層体50Cを構成する層であり、51Cは粘着剤層、52Cは樹脂層、53Cはハードコート層、54Cは粘着剤層、55Cはガラス層、56Cは粘着剤層、57Cは樹脂層、58Cは防眩層である。光学積層体50Cが防眩層58Cを有することにより、OLED表示パネル100に起因するカラーシフトや干渉ムラが抑制され、OLED表示装置500Cが視認性に優れるものとなる。
 なお、図10に示されるOLED表示装置500Cにおいて、防眩層58Cの視認側に反射防止層が存在していてもよい。
As another preferred embodiment of the present invention, in FIG. 2, 21 is an adhesive layer, 22 is a resin layer, 23 is a hard coat layer, 24 is an adhesive layer, 25 is a glass layer, 26 is an adhesive layer, 27 is a resin layer, 28 is an antiglare layer, and the antireflection layer 29 is not present. FIG. 10 shows an OLED display device 500C according to this embodiment. In FIG. 10, 51C to 58C are layers constituting an optical laminate 50C, 51C is an adhesive layer, 52C is a resin layer, 53C is a hard coat layer, 54C is an adhesive layer, 55C is a glass layer, and 56C is a glass layer. An adhesive layer, 57C is a resin layer, and 58C is an antiglare layer. Since the optical layered body 50C has the antiglare layer 58C, color shift and interference unevenness caused by the OLED display panel 100 are suppressed, and the OLED display device 500C has excellent visibility.
In addition, in the OLED display device 500C shown in FIG. 10, an antireflection layer may exist on the viewing side of the antiglare layer 58C.
 本発明の好ましい他の一実施形態としては、図2において、26は粘着剤層又は接着剤層、27は樹脂層、28はハードコート層であり、反射防止層29が存在し、21~25は存在しない。本実施形態に係るOLED表示装置600Aを図11に示す。図11において、61A~69Aは、光学積層体60Aを構成する層であり、66は粘着剤層又は接着剤層、67Aは樹脂層、68Aはハードコート層、69Aは反射防止層である。光学積層体60Aが反射防止層69Aを有することにより、OLED表示パネル100に起因する干渉ムラが抑制され、OLED表示装置600Aが視認性に優れるものとなる。
 図11に示されるOLED表示装置600Aにおいて、68Aは防眩層であってもよいし、ハードコート層68A及び反射防止層69Aの間に防眩層が積層されていてもよい。本実施形態において、防眩層68Aと反射防止層69Aが積層されることにより、反射防止機能はさらに向上する。
As another preferred embodiment of the present invention, in FIG. does not exist. FIG. 11 shows an OLED display device 600A according to this embodiment. In FIG. 11, 61A to 69A are layers constituting an optical laminate 60A, 66 is an adhesive layer or adhesive layer, 67A is a resin layer, 68A is a hard coat layer, and 69A is an antireflection layer. Since the optical laminate 60A has the antireflection layer 69A, interference unevenness caused by the OLED display panel 100 is suppressed, and the OLED display device 600A has excellent visibility.
In the OLED display device 600A shown in FIG. 11, 68A may be an antiglare layer, or an antiglare layer may be laminated between the hard coat layer 68A and the antireflection layer 69A. In this embodiment, the antireflection function is further improved by laminating the antiglare layer 68A and the antireflection layer 69A.
 本発明の好ましい他の一実施形態としては、図2において、24は粘着剤層又は接着剤層、25はガラス層、26は粘着剤層又は接着剤層、27は樹脂層、28はハードコート層であり、反射防止層29が存在し、21~23は存在しない。本実施形態に係るOLED表示装置600Bを図12に示す。図12において、61B~69Bは、光学積層体60Bを構成する層であり、64Bは粘着剤層又は接着剤層、65Bはガラス層、66Bは粘着剤層又は接着剤層、67Bは樹脂層、68Bはハードコート層、69Bは反射防止層である。光学積層体60Bが反射防止層69Bを有することにより、OLED表示パネル100に起因する干渉ムラが抑制され、OLED表示装置600Bが視認性に優れるものとなる。
 図12に示されるOLED表示装置600Bにおいて、68Bは防眩層であってもよいし、ハードコート層68B及び反射防止層69Bの間に防眩層が積層されていてもよい。本実施形態において、防眩層68Bと反射防止層69Bが積層されることにより、反射防止機能はさらに向上する。
As another preferred embodiment of the present invention, in FIG. 2, 24 is an adhesive layer or adhesive layer, 25 is a glass layer, 26 is an adhesive layer or adhesive layer, 27 is a resin layer, and 28 is a hard coat. layer, antireflection layer 29 is present and 21-23 are absent. FIG. 12 shows an OLED display device 600B according to this embodiment. In FIG. 12, 61B to 69B are layers constituting the optical laminate 60B, 64B is an adhesive layer or adhesive layer, 65B is a glass layer, 66B is an adhesive layer or adhesive layer, 67B is a resin layer, 68B is a hard coat layer, and 69B is an antireflection layer. Since the optical layered body 60B has the antireflection layer 69B, interference unevenness caused by the OLED display panel 100 is suppressed, and the OLED display device 600B has excellent visibility.
In the OLED display device 600B shown in FIG. 12, 68B may be an antiglare layer, or an antiglare layer may be laminated between the hard coat layer 68B and the antireflection layer 69B. In this embodiment, the antireflection function is further improved by laminating the antiglare layer 68B and the antireflection layer 69B.
 本発明の好ましい他の一実施形態としては、図2において、21は粘着剤層、22は樹脂層、23はハードコート層、24は粘着剤層、25はガラス層、26は粘着剤層、27は樹脂層、28はハードコート層であり、反射防止層29が存在する。本実施形態に係るOLED表示装置600Cを図13に示す。図13において、61C~69Cは、光学積層体60Cを構成する層であり、61Cは粘着剤層、62Cは樹脂層、63Cはハードコート層、64Cは粘着剤層、65Cはガラス層、66Cは粘着剤層、67Cは樹脂層、68Cはハードコート層、69Cは反射防止層である。光学積層体60Cが反射防止層69Cを有することにより、OLED表示パネル100に起因する干渉ムラが抑制され、OLED表示装置600Cが視認性に優れるものとなる。
 図13に示されるOLED表示装置600Cにおいて、68Cは防眩層であってもよいし、ハードコート層68C及び反射防止層69Cの間に防眩層が積層されていてもよい。本実施形態において、防眩層68Cと反射防止層69Cが積層されることにより、反射防止機能はさらに向上する。
As another preferred embodiment of the present invention, in FIG. 2, 21 is an adhesive layer, 22 is a resin layer, 23 is a hard coat layer, 24 is an adhesive layer, 25 is a glass layer, 26 is an adhesive layer, 27 is a resin layer, 28 is a hard coat layer, and an antireflection layer 29 is present. FIG. 13 shows an OLED display device 600C according to this embodiment. In FIG. 13, 61C to 69C are layers constituting an optical laminate 60C, 61C is an adhesive layer, 62C is a resin layer, 63C is a hard coat layer, 64C is an adhesive layer, 65C is a glass layer, and 66C is a glass layer. An adhesive layer, 67C is a resin layer, 68C is a hard coat layer, and 69C is an antireflection layer. Since the optical layered body 60C has the antireflection layer 69C, interference unevenness caused by the OLED display panel 100 is suppressed, and the OLED display device 600C has excellent visibility.
In the OLED display device 600C shown in FIG. 13, 68C may be an antiglare layer, or an antiglare layer may be laminated between the hard coat layer 68C and the antireflection layer 69C. In this embodiment, the antireflection function is further improved by laminating the antiglare layer 68C and the antireflection layer 69C.
 本発明の好ましい他の一実施形態としては、図2において、21は粘着剤層又は接着剤層、22は樹脂層、23は存在せず、24は接着剤層、25はガラス層であり、26~29は存在しない。本実施形態に係るOLED表示装置700Aを図14に示す。図14において、71A、72A、74A、及び75Aは、光学積層体70Aを構成する層であり、71Aは粘着剤層又は接着剤層、72Aは樹脂層、73Aは存在せず、74Aは接着剤層、75Aはガラス層である。図14において、樹脂層72Aとガラス層75Aと間が接着剤層74Aにより接着されることにより、光学積層体70Aが偏光板を有しない場合であっても、優れた耐衝撃性がそれぞれ付与される。また、ガラス層は耐衝撃性には優れるが、割れやすく屈曲性が低い素材である。ガラス層と樹脂層を接着剤層で接着することにより、可撓性や折り曲げ性が向上し、OLED表示装置700Aはフレキシブルデバイスやフォルダブルデバイスに使用可能である。 As another preferred embodiment of the present invention, in FIG. 2, 21 is a pressure-sensitive adhesive layer or adhesive layer, 22 is a resin layer, 23 is absent, 24 is an adhesive layer, and 25 is a glass layer, 26-29 do not exist. FIG. 14 shows an OLED display device 700A according to this embodiment. In FIG. 14, 71A, 72A, 74A, and 75A are layers constituting the optical laminate 70A, 71A is a pressure-sensitive adhesive layer or adhesive layer, 72A is a resin layer, 73A is absent, and 74A is an adhesive. Layer, 75A, is a glass layer. In FIG. 14, by bonding the resin layer 72A and the glass layer 75A with the adhesive layer 74A, even if the optical layered body 70A does not have a polarizing plate, excellent impact resistance is imparted. be. Also, the glass layer is a material that is easily broken and has low flexibility, although it has excellent impact resistance. By bonding the glass layer and the resin layer with an adhesive layer, flexibility and bendability are improved, and the OLED display device 700A can be used for flexible devices and foldable devices.
 本発明の好ましい他の一実施形態としては、図2において、21は粘着剤層、22は樹脂層、23は存在せず、24は接着剤層、25はガラス層、26は粘着剤層、27は樹脂層、28はハードコート層であり、反射防止層29は存在しない。或いは、図2において、21は粘着剤層、22は樹脂層、23はハードコート層、24は粘着剤層、25はガラス層、26は接着剤層、27は樹脂層、28はハードコート層であり、反射防止層29は存在しない。本実施形態に係るOLED表示装置700B、700Cを図15(a)及び図15(b)にそれぞれ示す。図15(a)において、71B、72B、74B~78Bは、光学積層体70Bを構成する層であり、71Bは粘着剤層、72Bは樹脂層、74Bは接着剤層、75Bはガラス層、76Bは粘着剤層、77Bは樹脂層、78Bはハードコート層である。また、図15(b)において、71C~78Cは、光学積層体70Cを構成する層であり、71Cは粘着剤層、72Cは樹脂層、73Cはハードコート層、74Cは粘着剤層、75Cはガラス層、76Cは接着剤層、77Cは樹脂層、78Cはハードコート層である。図15(a)において、樹脂層72Bとガラス層75Bと間が接着剤層74Bにより接着されることにより、又は、図15(b)において、ガラス層75Cと樹脂層77Cとの間が接着剤層76Cにより接着されることにより、光学積層体70B、70Cが偏光板を有しない場合であっても、優れた耐衝撃性がそれぞれ付与される。また、ガラス層は耐衝撃性には優れるが、割れやすく屈曲性が低い素材である。ガラス層と樹脂層を接着剤層で接着することにより、可撓性や折り曲げ性が向上し、OLED表示装置700B、700Cはフレキシブルデバイスやフォルダブルデバイスに使用可能である。
 なお、図15(a)及び(b)に示されるOLED表示装置700B、700Cにおいて、ハードコート層78B、78Cの視認側に反射防止層が存在していてもよい。
As another preferred embodiment of the present invention, in FIG. 2, 21 is an adhesive layer, 22 is a resin layer, 23 is absent, 24 is an adhesive layer, 25 is a glass layer, 26 is an adhesive layer, 27 is a resin layer, 28 is a hard coat layer, and the antireflection layer 29 is not present. Alternatively, in FIG. 2, 21 is an adhesive layer, 22 is a resin layer, 23 is a hard coat layer, 24 is an adhesive layer, 25 is a glass layer, 26 is an adhesive layer, 27 is a resin layer, and 28 is a hard coat layer. and the antireflection layer 29 does not exist. OLED display devices 700B and 700C according to this embodiment are shown in FIGS. 15(a) and 15(b), respectively. In FIG. 15(a), 71B, 72B, 74B to 78B are layers constituting the optical laminate 70B, 71B is an adhesive layer, 72B is a resin layer, 74B is an adhesive layer, 75B is a glass layer, and 76B. is an adhesive layer, 77B is a resin layer, and 78B is a hard coat layer. Further, in FIG. 15B, 71C to 78C are layers constituting an optical laminate 70C, 71C is an adhesive layer, 72C is a resin layer, 73C is a hard coat layer, 74C is an adhesive layer, and 75C is A glass layer, 76C an adhesive layer, 77C a resin layer, and 78C a hard coat layer. In FIG. 15(a), the resin layer 72B and the glass layer 75B are bonded by the adhesive layer 74B, or in FIG. 15(b), the glass layer 75C and the resin layer 77C are bonded by the adhesive. Bonding by layer 76C imparts excellent impact resistance to each of optical stacks 70B and 70C even if they do not have polarizers. Also, the glass layer is a material that is easily broken and has low flexibility, although it has excellent impact resistance. By bonding the glass layer and the resin layer with an adhesive layer, flexibility and bendability are improved, and the OLED display devices 700B and 700C can be used for flexible devices and foldable devices.
In addition, in the OLED display devices 700B and 700C shown in FIGS. 15A and 15B, an antireflection layer may be present on the visible side of the hard coat layers 78B and 78C.
 本発明の好ましい他の一実施形態としては、図2において、21は粘着剤層、22は樹脂層、23はハードコート層であり、24~29は存在せず、樹脂層22は透明ポリイミド層である。本実施形態に係るOLED表示装置800Aを図16に示す。図16において、81A~83Aは、光学積層体80Aを構成する層であり、81Aは粘着剤層又は接着剤層、82Aは透明ポリイミド層、83Aはハードコート層である。図16において、光学積層体80Aが、透明ポリイミド層82Aとハードコート層83Aを有することにより、光学積層体80Aが偏光板を有しない場合であっても、優れた耐衝撃性が付与される。また、本実施形態において、光学積層体80Aはガラス層を有しない。ガラス層は、高い硬度を示し、耐衝撃性に優れる素材であるが、取扱い性に劣り、PCやタブレット等に使用される大型ディスプレイには使用しづらい。透明ポリイミド層とハードコート層が積層されることにより、ガラス層と同等の高い硬度が達成できると共に、取扱い性にも優れるため、PCやタブレット等に使用される大型ディスプレイにも適用可能である。 As another preferred embodiment of the present invention, in FIG. 2, 21 is an adhesive layer, 22 is a resin layer, 23 is a hard coat layer, 24 to 29 are absent, and the resin layer 22 is a transparent polyimide layer. is. FIG. 16 shows an OLED display device 800A according to this embodiment. In FIG. 16, 81A to 83A are layers constituting an optical laminate 80A, 81A is an adhesive layer or adhesive layer, 82A is a transparent polyimide layer, and 83A is a hard coat layer. In FIG. 16, the optical layered body 80A having the transparent polyimide layer 82A and the hard coat layer 83A provides excellent impact resistance even when the optical layered body 80A does not have a polarizing plate. Also, in this embodiment, the optical layered body 80A does not have a glass layer. The glass layer is a material that exhibits high hardness and excellent impact resistance, but is poor in handleability and is difficult to use for large displays used in PCs, tablets, and the like. By laminating a transparent polyimide layer and a hard coat layer, it is possible to achieve a high hardness equivalent to that of a glass layer, and it is also easy to handle, so it can be applied to large displays used in PCs, tablets, etc.
 本発明の好ましい他の一実施形態としては、図2において、21は粘着剤層、22は樹脂層、23はハードコート層、24は粘着剤層、25、26は存在せず、27は樹脂層、28はハードコート層であり、反射防止層29は存在せず、樹脂層22、27のいずれか一方、又は両方が透明ポリイミド層である。本実施形態に係るOLED表示装置800Bを図17に示す。図17において、81B~84B、87B、88Bは、光学積層体80Bを構成する層であり、81Bは粘着剤層、82Bは透明ポリイミド層、83Bはハードコート層、84Bは粘着剤層、87Bは樹脂層、88Bはハードコート層である。図17において、光学積層体80Bが、透明ポリイミド層82Bとハードコート層83Bを有することにより、光学積層体80Bが偏光板を有しない場合であっても、優れた耐衝撃性が付与される。また、本実施形態において、光学積層体80Bはガラス層を有しない。ガラス層は、高い硬度を示し、耐衝撃性に優れる素材であるが、取扱い性に劣り、PCやタブレット等に使用される大型ディスプレイには使用しづらい。透明ポリイミド層とハードコート層が積層されることにより、ガラス層と同等の高い硬度が達成できると共に、取扱い性にも優れるため、PCやタブレット等に使用される大型ディスプレイにも適用可能である。 As another preferred embodiment of the present invention, in FIG. Layer 28 is a hard coat layer, antireflection layer 29 is absent, and either or both of resin layers 22 and 27 are transparent polyimide layers. FIG. 17 shows an OLED display device 800B according to this embodiment. In FIG. 17, 81B to 84B, 87B, and 88B are layers constituting the optical laminate 80B, 81B is an adhesive layer, 82B is a transparent polyimide layer, 83B is a hard coat layer, 84B is an adhesive layer, and 87B is A resin layer 88B is a hard coat layer. In FIG. 17, the optical layered body 80B having the transparent polyimide layer 82B and the hard coat layer 83B provides excellent impact resistance even when the optical layered body 80B does not have a polarizing plate. Also, in this embodiment, the optical layered body 80B does not have a glass layer. The glass layer is a material that exhibits high hardness and excellent impact resistance, but is poor in handleability and is difficult to use for large displays used in PCs, tablets, and the like. By laminating a transparent polyimide layer and a hard coat layer, it is possible to achieve a high hardness equivalent to that of a glass layer, and it is also easy to handle, so it can be applied to large displays used in PCs, tablets, etc.
 図16及び図17に示される実施形態において、透明ポリイミド層82Aとハードコート層83Aの間、及び、透明ポリイミド層82Bとハードコート層83Bの間に中間層(相溶層)が形成されることが好ましい(図示略)。透明ポリイミド層82A,Bとハードコート層83A,Bの間に中間層(相溶層)が形成されることにより、透明ポリイミド層82A,Bとハードコート層83A,Bの間の密着性が向上する。その場合、透明ポリイミド層82A,Bとハードコート層83A,Bの間のせん断破壊強度は、20MPa以上であることが好ましい。 In the embodiment shown in FIGS. 16 and 17, intermediate layers (compatible layers) are formed between the transparent polyimide layer 82A and the hard coat layer 83A and between the transparent polyimide layer 82B and the hard coat layer 83B. is preferred (not shown). By forming an intermediate layer (compatible layer) between the transparent polyimide layers 82A, B and the hard coat layers 83A, B, adhesion between the transparent polyimide layers 82A, B and the hard coat layers 83A, B is improved. do. In that case, the shear breaking strength between the transparent polyimide layers 82A, B and the hard coat layers 83A, B is preferably 20 MPa or more.
 以下に実施例を挙げて本発明をより詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。 Although the present invention will be described in more detail with reference to examples below, the present invention is not limited by these examples.
 実施例1
<OLED表示装置>
 (株)JOLED製の4K OLEDモニター(モデルナンバー;EPS269Q015A)の視認側に積層されている光学フィルムを剥がしてOLED表示装置を準備した。
Example 1
<OLED display device>
An OLED display device was prepared by peeling off the optical film laminated on the viewing side of a 4K OLED monitor (model number: EPS269Q015A) manufactured by JOLED Corporation.
<ハードコート層の形成>
 固形分換算で100重量部の紫外線硬化型多官能アクリル樹脂組成物(商品名「Z-850-50H-D」、アイカ工業(株)製、固形分濃度:44重量%)と、光重合開始剤(商品名「Omnirad2959」、IGM Resins Italia Srl社製)4重量部と、レベリング剤(商品名「LE-303」、共栄社化学(株)製)0.05重量部とを混合して、混合液を得た。次いで、得られた混合液にメチルイソブチルケトンを添加し、固形分濃度40重量%のハードコート層形成用組成物を得た。次いで、透明フィルム基材としてのPETフィルム(商品名「50U48」、東レ(株)製、厚み:50μm)の一方の面に、前記ハードコート層形成用組成物を塗布し、塗膜を形成した。次に、この塗膜を、温度80℃で60秒間加熱することにより乾燥させた後、紫外線照射により硬化させた。紫外線照射する際は、光源として高圧水銀ランプを使用し、波長365nmの紫外線を用い、積算光量を300mJ/cm2とした。これにより、PETフィルム上に厚み3μmのハードコート層を形成した。
<Formation of hard coat layer>
100 parts by weight of an ultraviolet curable polyfunctional acrylic resin composition in terms of solid content (trade name “Z-850-50H-D”, manufactured by Aica Kogyo Co., Ltd., solid content concentration: 44 wt%), and photopolymerization initiation An agent (trade name “Omnirad2959”, manufactured by IGM Resins Italia Srl) 4 parts by weight and a leveling agent (trade name “LE-303”, manufactured by Kyoeisha Chemical Co., Ltd.) 0.05 parts by weight are mixed and mixed. I got the liquid. Next, methyl isobutyl ketone was added to the resulting mixture to obtain a composition for forming a hard coat layer having a solid concentration of 40% by weight. Next, the composition for forming a hard coat layer was applied to one surface of a PET film (trade name “50U48”, manufactured by Toray Industries, Inc., thickness: 50 μm) as a transparent film substrate to form a coating film. . Next, this coating film was dried by heating at a temperature of 80° C. for 60 seconds, and then cured by ultraviolet irradiation. When irradiating with ultraviolet rays, a high-pressure mercury lamp was used as a light source, ultraviolet rays with a wavelength of 365 nm were used, and the integrated amount of light was set at 300 mJ/cm 2 . As a result, a hard coat layer having a thickness of 3 μm was formed on the PET film.
<ハードコート層の表面処理>
 次いで、ロールトゥロール方式のプラズマ処理装置により、1.0Paの真空雰囲気下、ハードコート層が形成されたPETフィルムを搬送しながら、ハードコート層の表面をプラズマ処理した。プラズマ処理する際は、不活性ガスとしてアルゴンガスを用い、放電電力を150Wとした。これにより、PETフィルムと、プラズマ処理されたハードコート層とを備える光学フィルムを得た。
<Surface treatment of hard coat layer>
Then, the surface of the hard coat layer was plasma-treated in a roll-to-roll type plasma treatment apparatus in a vacuum atmosphere of 1.0 Pa while transporting the PET film on which the hard coat layer was formed. During the plasma treatment, argon gas was used as an inert gas, and the discharge power was set to 150W. As a result, an optical film including a PET film and a plasma-treated hard coat layer was obtained.
<プライマー層の形成>
 次いで、加熱後の前記光学フィルムを、ロールトゥロール方式のスパッタ成膜装置に導入し、成膜室内を1×10-4Paまで減圧した。次いで、光学フィルムを搬送しながら、アルゴンガスと酸素ガスとを100:10の体積比で導入し、成膜ロールの表面温度を-8℃とし、スパッタ法により、ハードコート層上に厚み1.5nmのITO層(プライマー層)を形成した。プライマー層の形成には、ターゲット材料として、酸化インジウムと酸化スズとを90:10の重量比で含有するITOターゲットを用いた。また、スパッタ法により成膜する際は、電源をMFAC電源とし、放電電力を2.5kWとし、成膜室内の圧力を0.2Paとした。
<Formation of primer layer>
Next, the heated optical film was introduced into a roll-to-roll type sputtering film forming apparatus, and the pressure in the film forming chamber was reduced to 1×10 −4 Pa. Next, while conveying the optical film, argon gas and oxygen gas were introduced at a volume ratio of 100:10, the surface temperature of the film-forming roll was set to -8°C, and a thickness of 1.5°C was formed on the hard coat layer by a sputtering method. An ITO layer (primer layer) of 5 nm was formed. An ITO target containing indium oxide and tin oxide at a weight ratio of 90:10 was used as the target material for forming the primer layer. Further, when the film was formed by the sputtering method, the power source was an MFAC power supply, the discharge power was 2.5 kW, and the pressure in the film formation chamber was 0.2 Pa.
<反射防止層の形成>
 プライマー層の形成に続いて、ロールトゥロール方式のスパッタ成膜装置を用いてプライマー層形成後の光学フィルムを搬送しながら、スパッタ法により、プライマー層上に、第1層:厚み12nmのNb25層(屈折率:2.32)、第2層:厚み29nmのSiO2層(屈折率:1.46)、第3層:厚み107nmのNb25層、及び第4層:厚み81nmのSiO2層をこの順に成膜した。これにより、プライマー層上に、4層構成(第1層、第2層、第3層、及び第4層からなる4層構成)の反射防止層を形成した。第1層~第4層の各層の成膜では、いずれも、成膜ロールの表面温度を-8℃とし、電源をMFAC電源とし、成膜室内の圧力を0.7Paとした。また、第1層の成膜では、Nbターゲットを用い、アルゴンガスと酸素ガスとを100:5の体積比で導入し、放電電力を10.5kWとした。第2層の成膜では、Siターゲットを用い、アルゴンガスと酸素ガスとを100:30の体積比で導入し、放電電力を14kWとした。第3層の成膜では、Nbターゲットを用い、アルゴンガスと酸素ガスとを100:13の体積比で導入し、放電電力を22kWとした。第4層の成膜では、Siターゲットを用い、アルゴンガスと酸素ガスとを100:30の体積比で導入し、放電電力を12kWとした。
<Formation of antireflection layer>
Following the formation of the primer layer, while transporting the optical film after the formation of the primer layer using a roll-to-roll type sputtering deposition apparatus, a first layer: Nb 2 having a thickness of 12 nm was formed on the primer layer by a sputtering method. O5 layer (refractive index: 2.32), 2nd layer: 29 nm thick SiO2 layer (refractive index: 1.46), 3rd layer: 107 nm thick Nb2O5 layer, and 4th layer: thick An 81 nm SiO 2 layer was deposited in this order. As a result, an antireflection layer having a four-layer structure (a four-layer structure consisting of a first layer, a second layer, a third layer, and a fourth layer) was formed on the primer layer. In the deposition of each of the first to fourth layers, the surface temperature of the deposition roll was −8° C., the power source was the MFAC power source, and the pressure in the deposition chamber was 0.7 Pa. In the deposition of the first layer, a Nb target was used, argon gas and oxygen gas were introduced at a volume ratio of 100:5, and the discharge power was set to 10.5 kW. In forming the second layer, a Si target was used, argon gas and oxygen gas were introduced at a volume ratio of 100:30, and the discharge power was set to 14 kW. In the deposition of the third layer, a Nb target was used, argon gas and oxygen gas were introduced at a volume ratio of 100:13, and the discharge power was set at 22 kW. In the deposition of the fourth layer, a Si target was used, argon gas and oxygen gas were introduced at a volume ratio of 100:30, and the discharge power was 12 kW.
<防汚層の形成>
 パーフルオロポリエーテル骨格を含有するアルコキシシラン化合物(商品名「SHIN-ETSU SUBELYN KY1903-1」、信越化学工業(株)製)を乾燥して固化したものを蒸着源として用い、蒸着源の加熱温度を260℃にして、真空蒸着法により反射防止層上に厚み12nmの防汚層を形成した。これにより、PETフィルムと、ハードコート層と、プライマー層と、反射防止層と、防汚層とを備える光学積層体を得た。
<Formation of antifouling layer>
An alkoxysilane compound containing a perfluoropolyether skeleton (trade name “SHIN-ETSU SUBELYN KY1903-1”, manufactured by Shin-Etsu Chemical Co., Ltd.) is dried and solidified as a vapor deposition source, and the heating temperature of the vapor deposition source is was set to 260° C., and an antifouling layer having a thickness of 12 nm was formed on the antireflection layer by a vacuum deposition method. As a result, an optical laminate including a PET film, a hard coat layer, a primer layer, an antireflection layer, and an antifouling layer was obtained.
<光学積層体付OLED表示装置の作製>
 前記光学積層体の前記防汚層が視認側になるように、光学積層体を、アクリル粘着剤層を介して前記OLED表示装置に積層し、光学積層体付OLED表示装置を作製した。
<Fabrication of OLED display device with optical laminate>
The optical layered body was laminated on the OLED display device via an acrylic pressure-sensitive adhesive layer such that the antifouling layer of the optical layered body was on the viewing side, to produce an OLED display device with the optical layered body.
 実施例2~4
 反射防止層の形成工程における第1~4層の厚みを表1に示す条件に変更したこと以外は、実施例1と同じ作製方法により、実施例2~4の光学積層体付OLED表示装置を作製した。
Examples 2-4
OLED display devices with optical laminates of Examples 2 to 4 were produced by the same manufacturing method as in Example 1, except that the thicknesses of the first to fourth layers in the step of forming the antireflection layer were changed to the conditions shown in Table 1. made.
 比較例1
 ハードコート層の表面処理、プライマー層の形成、反射防止層の形成、および防汚層の形成を行わなかったこと以外は実施例1と同じ作製方法により、比較例1の光学積層体付OLED表示装置を作製した。
Comparative example 1
OLED display with an optical laminate of Comparative Example 1 by the same manufacturing method as in Example 1 except that the surface treatment of the hard coat layer, the formation of the primer layer, the formation of the antireflection layer, and the formation of the antifouling layer were not performed. A device was fabricated.
<評価>
 実施例および比較例で作製した光学積層体付OLED表示装置等について、以下の評価を行った。結果を表1に示す。
<Evaluation>
The following evaluations were performed on the OLED display devices with optical laminates and the like produced in Examples and Comparative Examples. Table 1 shows the results.
(1)Rf1、Rf2、Rp1、Rp2
 (株)日立ハイテク製分光光度計にて、光学積層体の380~780nmの各波長における反射率を測定した。ついで(株)JOLED製4K OLEDモニター(モデルナンバー;EPS269Q015A)の視認側に積層されている光学フィルムを剥がしたOLED表示装置の、光学フィルムを剥がした面の380~780nmの各波長における反射率を、コニカミノルタ(株)製分光光度計「CM-2600d」で測定し、第一ピーク波長WL1(nm)、第二ピーク波長WL2(nm)を算出した。第一ピークは波長380~455nmにおける最大値であり、第二ピークは波長460~530nmにおける最大値であった。この第一ピーク波長WL1(nm)および第二ピーク波長WL2(nm)における前記OLEDモニターの反射率をそれぞれRp1、Rp2とし、第一ピーク波長WL1(nm)および第二ピーク波長WL2(nm)における前記光学積層体の反射率をそれぞれRf1、Rf2として算出した。なお、実施例1~4における光学積層体の反射率は反射防止層の反射率に相当する。
(1) Rf1, Rf2, Rp1, Rp2
A spectrophotometer manufactured by Hitachi High-Tech Co., Ltd. was used to measure the reflectance of the optical laminate at each wavelength of 380 to 780 nm. Next, the reflectance at each wavelength of 380 to 780 nm of the surface from which the optical film was removed of the OLED display device from which the optical film laminated on the viewing side of the 4K OLED monitor (model number: EPS269Q015A) made by JOLED Co., Ltd. was removed. , a spectrophotometer "CM-2600d" manufactured by Konica Minolta, Inc. to calculate the first peak wavelength WL1 (nm) and the second peak wavelength WL2 (nm). The first peak was the maximum value at a wavelength of 380-455 nm, and the second peak was the maximum value at a wavelength of 460-530 nm. Let Rp1 and Rp2 be the reflectances of the OLED monitor at the first peak wavelength WL1 (nm) and the second peak wavelength WL2 (nm), respectively, and at the first peak wavelength WL1 (nm) and the second peak wavelength WL2 (nm) The reflectances of the optical layered body were calculated as Rf1 and Rf2, respectively. The reflectance of the optical laminate in Examples 1 to 4 corresponds to the reflectance of the antireflection layer.
(2)干渉ムラ
 実施例および比較例で得られた光学積層体付OLED表示装置を非点灯状態とし、三波長の蛍光灯を、光学積層体付OLED表示装置より30cm離して点灯した時の、光学積層体付OLED表示装置表面の干渉ムラを目視で観察し、以下の基準で判定した。
◎;干渉ムラがまったく視認できない
〇;干渉ムラがほとんど視認できない
×;干渉ムラがはっきりと視認できる
(2) Interference unevenness When the OLED display devices with the optical laminate obtained in Examples and Comparative Examples are turned off, and a three-wavelength fluorescent lamp is turned on at a distance of 30 cm from the OLED display device with the optical laminate, Interference unevenness on the surface of the OLED display device with the optical laminate was visually observed and evaluated according to the following criteria.
◎: No interference unevenness is visible at all 〇: Almost no interference unevenness is visible ×: Interference unevenness is clearly visible
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 以下、本開示に係る発明のバリエーションを記載する。
[付記1]OLED素子の視認側に偏光度95%以下の光学素子のみが積層されたOLED表示装置に用いられる光学積層体であって、
 前記光学素子は、少なくとも視認側に反射防止層を有する、OLED表示装置用光学積層体。
[付記2]前記OLED表示装置用光学積層体を積層しない状態の前記OLED表示装置の反射率スペクトルにおいて、波長380~455nmにおける最大値をRp1、前記Rp1における波長での前記反射防止層の反射率をRf1としたとき、[Rf1/Rp1]は0.3以下である、付記1に記載のOLED表示装置用光学積層体。
[付記3]前記OLED表示装置用光学積層体を積層しない状態の前記OLED表示装置の反射率スペクトルにおいて、波長460~530nmにおける最大値をRp2、前記Rp2における波長での前記反射防止層の反射率をRf2としたとき、[Rf2/Rp2]は0.12以下である、付記1または2に記載のOLED表示装置用光学積層体。
[付記4]前記OLED表示装置用光学積層体を積層しない状態の前記OLED表示装置の反射率スペクトルにおいて、波長380~455nmにおける最大値をRp1、前記Rp1における波長での前記反射防止層の反射率をRf1とし、波長460~530nmにおける最大値をRp2、前記Rp2における波長での前記反射防止層の反射率をRf2としたとき、
 [Rf1/Rp1]および[Rf2/Rp2]の合計は0.42以下である付記1~3のいずれか1つに記載のOLED表示装置用光学積層体。
[付記5]前記反射防止層の水接触角は100°以上である付記1~4のいずれか1つに記載のOLED表示装置用光学積層体。
[付記6]前記反射防止層の消しゴム試験後の水接触角は90°以上である付記1~5のいずれか1つに記載のOLED表示装置用光学積層体。
[付記7]前記反射防止層は無機物から構成される付記1~6のいずれか1つに記載のOLED表示装置用光学積層体。
[付記8]前記反射防止層の視認側とは反対側に、ハードコート層、基材層、および粘着剤層を備える、付記1~7のいずれか1つに記載のOLED表示装置用光学積層体。
[付記9]前記粘着剤層のヘイズ値は20~90%である付記8に記載のOLED表示装置用光学積層体。
[付記10]前記ハードコート層の厚みは2~10μmである付記8または9に記載のOLED表示装置用光学積層体。
Variations of the invention according to the present disclosure are described below.
[Appendix 1] An optical laminate used in an OLED display device in which only an optical element having a degree of polarization of 95% or less is laminated on the viewing side of the OLED element,
The optical laminate for an OLED display device, wherein the optical element has an antireflection layer at least on the viewing side.
[Appendix 2] In the reflectance spectrum of the OLED display device without laminating the optical laminate for an OLED display device, Rp1 is the maximum value at a wavelength of 380 to 455 nm, and the reflectance of the antireflection layer at the wavelength at Rp1. The optical laminate for an OLED display device according to Appendix 1, wherein [Rf1/Rp1] is 0.3 or less, where Rf1.
[Appendix 3] In the reflectance spectrum of the OLED display device without laminating the optical laminate for an OLED display device, Rp2 is the maximum value at a wavelength of 460 to 530 nm, and the reflectance of the antireflection layer at the wavelength at Rp2. 3. The optical laminate for an OLED display device according to appendix 1 or 2, wherein [Rf2/Rp2] is 0.12 or less, where Rf2.
[Appendix 4] In the reflectance spectrum of the OLED display device without laminating the optical laminate for an OLED display device, Rp1 is the maximum value at a wavelength of 380 to 455 nm, and the reflectance of the antireflection layer at the wavelength at Rp1. is Rf1, the maximum value at a wavelength of 460 to 530 nm is Rp2, and the reflectance of the antireflection layer at the wavelength in Rp2 is Rf2,
4. The optical laminate for an OLED display device according to any one of Appendices 1 to 3, wherein the sum of [Rf1/Rp1] and [Rf2/Rp2] is 0.42 or less.
[Appendix 5] The optical laminate for an OLED display device according to any one of Appendices 1 to 4, wherein the antireflection layer has a water contact angle of 100° or more.
[Appendix 6] The optical laminate for an OLED display device according to any one of Appendices 1 to 5, wherein the antireflection layer has a water contact angle of 90° or more after an eraser test.
[Appendix 7] The optical laminate for an OLED display device according to any one of Appendices 1 to 6, wherein the antireflection layer is made of an inorganic substance.
[Appendix 8] The optical laminate for an OLED display device according to any one of Appendices 1 to 7, comprising a hard coat layer, a base layer, and an adhesive layer on the side opposite to the viewing side of the antireflection layer. body.
[Appendix 9] The optical laminate for an OLED display device according to Appendix 8, wherein the pressure-sensitive adhesive layer has a haze value of 20 to 90%.
[Appendix 10] The optical laminate for an OLED display device according to Appendix 8 or 9, wherein the hard coat layer has a thickness of 2 to 10 μm.
 100   OLED表示パネル
 10R   赤色OLED層
 10G   緑色OLED層
 10B   青色OLED層
 11a   透明電極(陰極)
 11b   背面電極(陽極)
 12R   赤色OLED素子
 12G   緑色OLED素子
 12B   青色OLED素子
 13    基板
 14    TFT層
 15    カラーフィルタ
 15R   赤色着色層
 15G   緑色着色層
 15B   青色着色層
 16    ブラックマトリックス層
 W     外光
 G     反射光
 C1    第1光路(直接光)
 C2    第2光路(反射光)
 17    接合層
 200   OLED表示装置
 20    光学積層体
 21    粘着剤層又は接着剤層
 22    樹脂層、ガラス層又は衝撃吸収層
 23    ハードコート層又は防眩層
 24    粘着剤層又は接着剤層
 25    樹脂層、ガラス層又は衝撃吸収層
 26    粘着剤層又は接着剤層
 27    樹脂層、ガラス層又は衝撃吸収層
 28    ハードコート層又は防眩層
 29    反射防止層
 300A  OLED表示装置
 30A   光学積層体
 34A   粘着剤層又は接着剤層
 35A   ガラス層
 36A   光散乱特性を有する粘着剤層
 37A   樹脂層
 38A   ハードコート層
 300B  OLED表示装置
 30B   光学積層体
 31B   粘着剤層
 32B   樹脂層
 33B   ハードコート層
 34B   粘着剤層
 35B   ガラス層
 36B   光散乱特性を有する粘着剤層
 37B   樹脂層
 38B   ハードコート層
 400A  OLED表示装置
 40A   光学積層体
 46A   光散乱特性を有する粘着剤層
 47A   樹脂層
 48A   ハードコート層
 15A   カラーフィルタ
 400B  OLED表示装置
 40B   光学積層体
 44B   光散乱特性を有する粘着剤層
 45B   ガラス層
 46B   粘着剤層
 47B   樹脂層
 48B   ハードコート層
 15B   カラーフィルタ
 400C  OLED表示装置
 40C   光学積層体
 41C   粘着剤層
 42C   樹脂層
 43C   ハードコート層
 44C   粘着剤層
 45C   ガラス層
 46C   光散乱特性を有する粘着剤層
 47C   樹脂層
 48C   ハードコート層
 15C   カラーフィルタ
 400D  OLED表示装置
 40D   光学積層体
 41D   光散乱特性を有する粘着剤層
 42D   樹脂層
 43D   ハードコート層
 44D   粘着剤層
 45D   ガラス層
 46D   粘着剤層
 47D   樹脂層
 48D   ハードコート層
 15D   カラーフィルタ
 500A  OLED表示装置
 50A   光学積層体
 56A   粘着剤層又は接着剤層
 57A   樹脂層
 58A   防眩層
 500B  OLED表示装置
 50B   光学積層体
 54B   粘着剤層又は接着剤層
 55B   ガラス層
 56B   粘着剤層又は接着剤層
 57B   樹脂層
 58B   防眩層
 500C  OLED表示装置
 50C   光学積層体
 51C   粘着剤層
 52C   樹脂層
 53C   ハードコート層
 54C   粘着剤層
 55C   ガラス層
 56C   粘着剤層
 57C   樹脂層
 58C   防眩層
 600A  OLED表示装置
 60A   光学積層体
 66A   粘着剤層又は接着剤層
 67A   樹脂層
 68A   ハードコート層
 69A   反射防止層
 600B  OLED表示装置
 60B   光学積層体
 64B   粘着剤層又は接着剤層
 65B   ガラス層
 66B   粘着剤層又は接着剤層
 67B   樹脂層
 68B   ハードコート層
 69B   反射防止層
 600C  OLED表示装置
 60C   光学積層体
 61C   粘着剤層
 62C   樹脂層
 63C   ハードコート層
 64C   粘着剤層
 65C   ガラス層
 66C   粘着剤層
 67C   樹脂層
 68C   ハードコート層
 69C   反射防止層
 700A  OLED表示装置
 70A   光学積層体
 71A   粘着剤層
 72A   樹脂層
 74A   接着剤層
 75A   ガラス層
 700B  OLED表示装置
 70B   光学積層体
 71B   粘着剤層
 72B   樹脂層
 74B   接着剤層
 75B   ガラス層
 76B   粘着剤層
 77B   樹脂層
 78B   ハードコート層
 700C  OLED表示装置
 70C   光学積層体
 71C   粘着剤層
 72C   樹脂層
 73C   ハードコート層
 74C   粘着剤層
 75C   ガラス層
 76C   接着剤層
 77C   樹脂層
 78C   ハードコート層
 800A  OLED表示装置
 80A   光学積層体
 81A   粘着剤層
 82A   透明ポリイミド層
 83A   ハードコート層
 800B  OLED表示装置
 80B   光学積層体
 81B   粘着剤層
 82B   透明ポリイミド層
 83B   ハードコート層
 84B   粘着剤層
 87B   樹脂層
 88B   ハードコート層
100 OLED display panel 10R red OLED layer 10G green OLED layer 10B blue OLED layer 11a transparent electrode (cathode)
11b back electrode (anode)
12R red OLED element 12G green OLED element 12B blue OLED element 13 substrate 14 TFT layer 15 color filter 15R red colored layer 15G green colored layer 15B blue colored layer 16 black matrix layer W external light G reflected light C1 first optical path (direct light)
C2 second optical path (reflected light)
17 Bonding layer 200 OLED display device 20 Optical laminate 21 Adhesive layer or adhesive layer 22 Resin layer, glass layer or shock absorbing layer 23 Hard coat layer or anti-glare layer 24 Adhesive layer or adhesive layer 25 Resin layer, glass Layer or impact absorption layer 26 Adhesive layer or adhesive layer 27 Resin layer, glass layer or impact absorption layer 28 Hard coat layer or antiglare layer 29 Antireflection layer 300A OLED display device 30A Optical laminate 34A Adhesive layer or adhesive Layer 35A Glass layer 36A Adhesive layer having light scattering property 37A Resin layer 38A Hard coat layer 300B OLED display device 30B Optical laminate 31B Adhesive layer 32B Resin layer 33B Hard coat layer 34B Adhesive layer 35B Glass layer 36B Light scattering property 37B resin layer 38B hard coat layer 400A OLED display device 40A optical laminate 46A adhesive layer having light scattering properties 47A resin layer 48A hard coat layer 15A color filter 400B OLED display device 40B optical laminate 44B light scattering Adhesive layer having properties 45B Glass layer 46B Adhesive layer 47B Resin layer 48B Hard coat layer 15B Color filter 400C OLED display device 40C Optical laminate 41C Adhesive layer 42C Resin layer 43C Hard coat layer 44C Adhesive layer 45C Glass layer 46C Adhesive layer having light scattering property 47C Resin layer 48C Hard coat layer 15C Color filter 400D OLED display device 40D Optical laminate 41D Adhesive layer having light scattering property 42D Resin layer 43D Hard coat layer 44D Adhesive layer 45D Glass layer 46D Adhesive layer 47D Resin layer 48D Hard coat layer 15D Color filter 500A OLED display device 50A Optical laminate 56A Adhesive layer or adhesive layer 57A Resin layer 58A Antiglare layer 500B OLED display device 50B Optical laminate 54B Adhesive layer or adhesion Agent layer 55B Glass layer 56B Adhesive layer or adhesive layer 57B Resin layer 58B Antiglare layer 500C OLED display device 50C Optical laminate 51C Adhesive layer 52C Resin layer 53C Hard coat layer 54C Adhesive layer 55C Glass layer 56C Adhesive layer 57C resin layer 58C antiglare layer 600A OLED display device 60A optical laminate 66A adhesive layer or adhesive layer 67A resin layer 68A hard coat layer 69A antireflection layer 600B OLED display device 60B optical laminate 64B adhesive layer or adhesive layer 65B glass layer 66B adhesive layer or adhesive layer 67B resin layer 68B hard coat layer 69B antireflection layer 600C OLED display device 60C optical laminate 61C adhesive layer 62C resin layer 63C hard coat layer 64C adhesive layer 65C glass layer 66C adhesive Agent layer 67C Resin layer 68C Hard coat layer 69C Antireflection layer 700A OLED display device 70A Optical laminate 71A Adhesive layer 72A Resin layer 74A Adhesive layer 75A Glass layer 700B OLED display device 70B Optical laminate 71B Adhesive layer 72B Resin layer 74B Adhesive layer 75B Glass layer 76B Adhesive layer 77B Resin layer 78B Hard coat layer 700C OLED display device 70C Optical laminate 71C Adhesive layer 72C Resin layer 73C Hard coat layer 74C Adhesive layer 75C Glass layer 76C Adhesive layer 77C Resin Layer 78C Hard coat layer 800A OLED display device 80A Optical laminate 81A Adhesive layer 82A Transparent polyimide layer 83A Hard coat layer 800B OLED display device 80B Optical laminate 81B Adhesive layer 82B Transparent polyimide layer 83B Hard coat layer 84B Adhesive layer 87B Resin layer 88B Hard coat layer

Claims (10)

  1.  OLED素子の視認側に偏光度95%以下の光学素子のみが積層されたOLED表示装置に用いられる光学積層体であって、
     前記光学素子は、少なくとも視認側に反射防止層を有する、OLED表示装置用光学積層体。
    An optical laminate used in an OLED display device in which only an optical element having a degree of polarization of 95% or less is laminated on the viewing side of the OLED element,
    The optical laminate for an OLED display device, wherein the optical element has an antireflection layer at least on the viewing side.
  2.  前記OLED表示装置用光学積層体を積層しない状態の前記OLED表示装置の反射率スペクトルにおいて、波長380~455nmにおける最大値をRp1、前記Rp1における波長での前記反射防止層の反射率をRf1としたとき、[Rf1/Rp1]は0.3以下である、請求項1に記載のOLED表示装置用光学積層体。 In the reflectance spectrum of the OLED display device without laminating the optical laminate for an OLED display device, the maximum value at a wavelength of 380 to 455 nm was Rp1, and the reflectance of the antireflection layer at the wavelength in Rp1 was Rf1. 2. The optical laminate for an OLED display device according to claim 1, wherein [Rf1/Rp1] is 0.3 or less.
  3.  前記OLED表示装置用光学積層体を積層しない状態の前記OLED表示装置の反射率スペクトルにおいて、波長460~530nmにおける最大値をRp2、前記Rp2における波長での前記反射防止層の反射率をRf2としたとき、[Rf2/Rp2]は0.12以下である、請求項2に記載のOLED表示装置用光学積層体。 In the reflectance spectrum of the OLED display device without laminating the optical layered body for an OLED display device, the maximum value at a wavelength of 460 to 530 nm was Rp2, and the reflectance of the antireflection layer at the wavelength in Rp2 was Rf2. 3. The optical laminate for an OLED display device according to claim 2, wherein [Rf2/Rp2] is 0.12 or less.
  4.  前記[Rf1/Rp1]および前記[Rf2/Rp2]の合計は0.42以下である請求項3に記載のOLED表示装置用光学積層体。 The optical laminate for an OLED display device according to claim 3, wherein the sum of [Rf1/Rp1] and [Rf2/Rp2] is 0.42 or less.
  5.  前記反射防止層の水接触角は100°以上である請求項1~4のいずれか1項に記載のOLED表示装置用光学積層体。 The optical laminate for an OLED display device according to any one of claims 1 to 4, wherein the antireflection layer has a water contact angle of 100° or more.
  6.  前記反射防止層の消しゴム試験後の水接触角は90°以上である請求項1~4のいずれか1項に記載のOLED表示装置用光学積層体。 The optical laminate for an OLED display device according to any one of claims 1 to 4, wherein the antireflection layer has a water contact angle of 90° or more after an eraser test.
  7.  前記反射防止層は無機物から構成される請求項1~4のいずれか1項に記載のOLED表示装置用光学積層体。 The optical laminate for an OLED display device according to any one of claims 1 to 4, wherein the antireflection layer is composed of an inorganic material.
  8.  前記反射防止層の視認側とは反対側に、ハードコート層、基材層、および粘着剤層を備える、請求項1~4のいずれか1項に記載のOLED表示装置用光学積層体。 The optical laminate for an OLED display device according to any one of claims 1 to 4, comprising a hard coat layer, a substrate layer, and an adhesive layer on the side opposite to the viewing side of the antireflection layer.
  9.  前記粘着剤層のヘイズ値は20~90%である請求項8に記載のOLED表示装置用光学積層体。 The optical laminate for an OLED display device according to claim 8, wherein the pressure-sensitive adhesive layer has a haze value of 20 to 90%.
  10.  前記ハードコート層の厚みは2~10μmである請求項8に記載のOLED表示装置用光学積層体。 The optical laminate for an OLED display device according to claim 8, wherein the hard coat layer has a thickness of 2 to 10 µm.
PCT/JP2023/006941 2022-02-28 2023-02-27 Optical laminate for oled display device WO2023163149A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380023854.9A CN118696622A (en) 2022-02-28 2023-02-27 Optical laminate for OLED display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022030503 2022-02-28
JP2022-030503 2022-02-28
JP2023-026090 2023-02-22
JP2023026090A JP2023126167A (en) 2022-02-28 2023-02-22 Optical laminate for oled display

Publications (1)

Publication Number Publication Date
WO2023163149A1 true WO2023163149A1 (en) 2023-08-31

Family

ID=87766169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006941 WO2023163149A1 (en) 2022-02-28 2023-02-27 Optical laminate for oled display device

Country Status (2)

Country Link
TW (1) TW202349763A (en)
WO (1) WO2023163149A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010078698A (en) * 2008-09-24 2010-04-08 Nof Corp Anti-glare anti-reflection film and image display including the same
JP2018112715A (en) * 2017-01-13 2018-07-19 大日本印刷株式会社 Color filter and display
JP2018523854A (en) * 2016-03-08 2018-08-23 エルジー・ケム・リミテッド Display device
WO2019138751A1 (en) * 2018-01-15 2019-07-18 Agc株式会社 Image display device
WO2020162195A1 (en) * 2019-02-06 2020-08-13 日東電工株式会社 Antireflection film equipped with pressure-sensitive adhesive layer, spontaneous light emission-type display device, and method for manufacturing same
JP2021009244A (en) * 2019-07-02 2021-01-28 株式会社トッパンTomoegawaオプティカルフィルム Display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010078698A (en) * 2008-09-24 2010-04-08 Nof Corp Anti-glare anti-reflection film and image display including the same
JP2018523854A (en) * 2016-03-08 2018-08-23 エルジー・ケム・リミテッド Display device
JP2018112715A (en) * 2017-01-13 2018-07-19 大日本印刷株式会社 Color filter and display
WO2019138751A1 (en) * 2018-01-15 2019-07-18 Agc株式会社 Image display device
WO2020162195A1 (en) * 2019-02-06 2020-08-13 日東電工株式会社 Antireflection film equipped with pressure-sensitive adhesive layer, spontaneous light emission-type display device, and method for manufacturing same
JP2021009244A (en) * 2019-07-02 2021-01-28 株式会社トッパンTomoegawaオプティカルフィルム Display device

Also Published As

Publication number Publication date
TW202349763A (en) 2023-12-16

Similar Documents

Publication Publication Date Title
JP2023126169A (en) Optical laminate for oled display devices
JP2023126168A (en) Optical laminate for oled display devices
WO2023163149A1 (en) Optical laminate for oled display device
WO2023163150A1 (en) Optical laminate for oled display device
WO2023163147A1 (en) Optical laminate for oled display device
WO2023163151A1 (en) Optical laminate for oled display device
WO2023163148A1 (en) Optical laminate for oled display device
WO2023163152A1 (en) Optical laminate for oled display device
WO2023163144A1 (en) Optical laminate for oled display device
WO2023163141A1 (en) Optical laminate for oled display device
WO2023163143A1 (en) Adhesive film for oled display device
WO2023163142A1 (en) Optical laminate for oled display device
WO2023163146A1 (en) Adhesive film for oled display device
WO2023163145A1 (en) Optical laminate for oled display device
JP2023126167A (en) Optical laminate for oled display
JP2023126170A (en) Optical laminate for oled display devices
JP2023126165A (en) Optical laminate for oled display devices
JP2023126166A (en) Optical laminate for oled display devices
JP2024119298A (en) Optical laminate for OLED display device
JP2024119296A (en) Optical laminate for OLED display device
CN118696621A (en) Optical laminate for OLED display device
JP2024119297A (en) Optical laminate for OLED display device
KR20240158260A (en) Optical laminate for OLED display device
KR20240158258A (en) Optical laminate for OLED display device
CN118891972A (en) Optical laminate for OLED display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23760147

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202380023854.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE