WO2023163080A1 - Watering system and control device - Google Patents

Watering system and control device Download PDF

Info

Publication number
WO2023163080A1
WO2023163080A1 PCT/JP2023/006610 JP2023006610W WO2023163080A1 WO 2023163080 A1 WO2023163080 A1 WO 2023163080A1 JP 2023006610 W JP2023006610 W JP 2023006610W WO 2023163080 A1 WO2023163080 A1 WO 2023163080A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
water
water supply
watering
irrigation
Prior art date
Application number
PCT/JP2023/006610
Other languages
French (fr)
Japanese (ja)
Inventor
勇一朗 守谷
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2023163080A1 publication Critical patent/WO2023163080A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/02Watering arrangements located above the soil which make use of perforated pipe-lines or pipe-lines with dispensing fittings, e.g. for drip irrigation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/16Control of watering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/22Improving land use; Improving water use or availability; Controlling erosion

Definitions

  • the disclosure in this specification relates to an irrigation system and control device for controlling the supply of irrigation water to fields.
  • Patent Document 1 discloses an irrigation system.
  • Patent Document 1 the supply and stop of water supply from the drip tube is controlled by opening and closing a valve that permits or blocks the supply of water to the drip tube. In this manner, when the valve is open, water seeps out of the drip tube and can be applied to the soil in the vicinity of the tube. However, it is not possible to irrigate the soil at a desired position away from the drip tube as appropriate. For this reason, the irrigation system of Patent Document 1 has room for improvement in terms of precisely providing irrigation to the required location.
  • An object of the disclosure in this specification is to provide an irrigation system and a control device that can adjust the water spray distance from the distribution tube during irrigation.
  • One of the disclosed irrigation systems includes a distribution tube provided in a field where plants grow and having a plurality of through-holes for spraying irrigation water on the field, and controlling the pressure of the irrigation water flowing down to the distribution tube. and a control device for controlling the opening degree of the water supply valve to control the splashing distance of the sprinkling water discharged from the distribution tube through the through hole.
  • this irrigation system by controlling the valve opening of the water supply valve to control the pressure of the irrigation water, it is possible to control the spray distance of the irrigation water discharged from the distribution tube. Therefore, this irrigation system can carry out accurate irrigation with an adjustable water spray distance from the distribution tube.
  • the irrigation system is capable of spraying water to the soil where it is needed in accordance with the growth of plants, thereby suppressing wasteful irrigation and realizing water saving.
  • One of the disclosed control devices is a control device for controlling the spraying distance of irrigation water supplied from a distribution tube having a plurality of through-holes to a plant-growing field.
  • a calculation unit that determines the opening of the water supply valve that controls the pressure of the water supply, and a control signal that controls the opening of the water supply in order to control the splashing distance of the water that is discharged from the distribution tube through the through hole. an output that outputs to the valve.
  • the calculation unit determines the opening of the valve, and the output unit outputs a control signal for controlling the opening of the valve to the water supply valve in order to control the water spray distance.
  • This makes it possible to control the splash distance of the irrigation water discharged from the distribution tube. Therefore, this control device can carry out accurate irrigation with an adjustable spray distance from the distribution tube.
  • This control device is capable of spraying water to required areas of the soil in accordance with the growth of plants, suppressing wasteful irrigation and realizing water saving.
  • FIG. 3 shows a radio signal; 4 is a flowchart for explaining sensor processing; 4 is a flowchart for explaining update processing; 4 is a flowchart for explaining monitoring processing; 6 is a flowchart for explaining water supply processing; It is a flow chart for explaining irrigation processing.
  • FIG. 8 is a flowchart for explaining user update processing; 4 is a flowchart for explaining forced update processing; It is a cross-sectional view showing a valve device that can be applied as a water supply valve. It is a figure which shows the structure of the drive part with which a valve apparatus is provided. It is a perspective view which shows the valve
  • FIG. 5 is a diagram showing the relationship between the valve opening degree and the splash distance in lamp operation.
  • FIG. 10 is a diagram showing the relationship between the valve opening degree and the splash distance in step operation; It is a figure which shows the positional relationship of a distribution tube, a water supply valve, and a water pressure sensor.
  • 9 is a flow chart showing an example of valve opening degree control in another mode.
  • 9 is a flow chart showing an example of valve opening degree control in another mode.
  • FIG. 30 is a timing chart at the time of valve opening control of FIG. 29;
  • FIG. 9 is a flow chart showing an example of valve opening degree control in another mode.
  • FIG. 32 is a timing chart when controlling the valve opening of FIG. 31;
  • FIG. 1 A first embodiment disclosing an example of an irrigation system will be described with reference to FIGS. 1 to 16.
  • FIG. the three directions that are orthogonal to each other are referred to as x-direction, y-direction, and z-direction.
  • the plane defined by the x-direction and the y-direction is along the horizontal plane in this document.
  • the z-direction is along the vertical direction.
  • description of "direction" is omitted, and x, y, and z are simply described.
  • the irrigation system 10 is applied to an open field 20 cultivated on hills and plains. As shown in FIG. 1, a form in which the irrigation system 10 is applied to a field 20 cultivated in a plain will be described.
  • the area of this field 20 ranges from several tens of square meters to several thousand square kilometers.
  • a field 20 is provided with a plurality of growing places such as ridges extending in the x direction.
  • a plurality of growth sites extending in the x-direction are spaced apart in the y-direction. Seeds and seedlings of the plant 30 are buried in each of these growing places.
  • Plants 30 include, for example, grapes, corn, almonds, raspberries, leafy vegetables, and cotton.
  • a plurality of plants 30 are grown in one growing place.
  • a plurality of plants 30 are aligned in the x-direction to form one row.
  • a plurality of plants 30 arranged in a row in the x direction are hereinafter referred to as a plant group 31 .
  • a plurality of plant groups 31 are lined up with a space in the y direction.
  • the y-direction shortest distance between the plurality of plant groups 31 is longer than the x-direction shortest distance between the plurality of plants 30 included in one plant group 31 .
  • the distance between the plant groups 31 in the y direction can be varied according to the type of growing plants 30 and the undulations and climate of the field 20 .
  • the distance between the plant groups 31 in the y direction is about 1 m to 10 m. Even if the plants 30 are overgrown with foliage in the y direction, at least a width is ensured that allows a person to move between the two plant groups 31 in the x direction.
  • the irrigation system 10 includes a water supply device 100 and a control device 200 .
  • the water supply device 100 supplies irrigation water to the plants 30 in the field 20 .
  • the control device 200 determines the supply time and amount of water to be supplied from the water supply device 100 to the plants 30 during the watering period. Controller 200 determines the irrigation schedule for water supply system 100 .
  • the water supply device 100 has a pump 110 , a water supply pipe 130 and a pipe module 150 .
  • Pump 110 supplies irrigation water to water supply line 130 .
  • the piping module 150 controls the amount of irrigation water supplied to the water supply piping 130 .
  • Pump 110 is always in a driven state. Alternatively, the pump 110 is in a daytime running state.
  • the pump 110 pumps irrigation water stored in a tank or reservoir and supplies it to the water supply pipe 130 .
  • Irrigated water includes well water, river water, rain water, and city water.
  • the water supply pipe 130 is provided with a plurality of water supply valves 152 . When each of the plurality of water supply valves 152 is in a closed state and there is no leakage of sprinkling water from the water supply pipe 130, the water supply pipe 130 is filled with sprinkling water.
  • the water pressure in the water supply pipe 130 becomes a value (also referred to as pump pressure) that depends on the discharge capacity of the pump 110 .
  • pump pressure also referred to as pump pressure
  • irrigation water is discharged from the water supply pipe 130 to the farm field 20 .
  • the water pressure in the water supply pipe 130 becomes a fluid pressure that is lower than the pump pressure.
  • the water supply pipe 130 includes a main pipe 131 and a supply pipe 132 .
  • a main pipe 131 is connected to the pump 110 .
  • the supply pipe 132 is connected to the main pipe 131 .
  • the pump 110 supplies sprinkling water from the main pipe 131 to the supply pipe 132 . Irrigated water is supplied to the field 20 from the supply pipe 132 .
  • the main pipe 131 includes a vertical pipe 133 and a horizontal pipe 134 .
  • the vertical pipe 133 extends in the y direction.
  • the horizontal pipe 134 extends in the x direction.
  • the vertical pipe 133 and the horizontal pipe 134 are connected to each other. Due to such a configuration, water flows in the main pipe 131 in the y-direction and the x-direction.
  • one vertical pipe 133 is connected to one pump 110 .
  • a plurality of horizontal pipes 134 extend in the x direction from the vertical pipes 133 extending in the y direction.
  • the position of the lateral pipe 134 in the z-direction is set to be farther from the ground than the top of the mature plant 30 .
  • the configuration shown in FIG. 1 is only an example.
  • the position of the pipe 133 in the z direction is not particularly limited.
  • a plurality of horizontal pipes 134 are arranged with a space in the y direction.
  • the y-direction shortest distance between the plurality of lateral pipes 134 is equivalent to the y-direction shortest distance between the plurality of plant groups 31 .
  • One of the multiple lateral pipes 134 is provided to one of the multiple plant groups 31 .
  • the horizontal pipe 134 extends along the direction in which the plants 30 included in the plant group 31 are arranged.
  • a supply pipe 132 is connected to the lateral pipe 134 .
  • a plurality of supply pipes 132 are connected to one horizontal pipe 134 .
  • a plurality of supply pipes 132 connected to one horizontal pipe 134 are spaced apart in the x direction and arranged side by side.
  • supply piping 132 includes connecting piping 135 and distribution tube 136 .
  • the connecting pipe 135 hangs down from the horizontal pipe 134 in the z-direction.
  • Two connecting ports opening in the x direction are formed on the tip side of the connecting pipe 135 .
  • a distribution tube 136 is connected to these two connection ports.
  • the distribution tube 136 includes a first distribution tube 136a connected to one of the two connection ports and a second distribution tube 136b connected to the other of the two connection ports.
  • the first distribution tube 136a and the second distribution tube 136b extend in opposite directions in the x-direction from the connection position with the connection pipe 135. As shown in FIG.
  • Each tube of the first distribution tube 136a and the second distribution tube 136b is formed with a plurality of through-holes that communicate the inside and outside of the tube through which sprinkling water flows.
  • a plurality of through-holes are arranged side by side at predetermined intervals in the axial direction of the tube in each tube.
  • the through-holes may be arranged side by side at predetermined intervals in the circumferential direction of the tube.
  • each of the first distribution tube 136a and the second distribution tube 136b has three through holes arranged in the axial direction.
  • the spacing between the plurality of through-holes and the spacing between the plurality of plants 30 may be different.
  • the number of through holes formed in each tube is not limited to three.
  • the sprinkling water supplied to the vertical pipe 133 by the pump 110 flows in the vertical pipe 133 in the y direction.
  • This sprinkling water is supplied to each of the plurality of horizontal pipes 134 connected to the vertical pipes 133 .
  • Sprinkled water flows in the x-direction through each of the plurality of horizontal pipes 134 .
  • the irrigation water flowing in the horizontal pipe 134 flows down to the distribution tube 136 via the connecting pipe 135 .
  • the irrigation water is discharged from each through-hole in each of the first distribution tube 136a and the second distribution tube 136b and supplied to the plants 30 .
  • each of the first distribution tube 136a and the second distribution tube 136b is positioned closer to the ground side of the farm field 20 than to the top side of the plant 30 in the height direction.
  • the irrigation water supplied from the through-holes of the first distribution tube 136a and the second distribution tube 136b is mainly supplied to the trunk of the plant 30 and its roots.
  • the through-hole is provided at a position higher than the portion facing the ground in each tube.
  • the sprinkling water discharged from the through-hole at such a position spreads in a radial direction with respect to the central axis of the tube, and can be sprayed at a position away from the tube.
  • the piping module 150 is provided on the supply piping 132 .
  • the piping module 150 has a storage box 151 , a water supply valve 152 and a water pressure sensor 153 .
  • a water supply valve 152 and a water pressure sensor 153 are housed inside the storage box 151 .
  • the water supply valve 152 is provided in the connecting pipe 135 at a position close to each of the first distribution tube 136a and the second distribution tube 136b. All through-holes are provided between the tip portions of the first distribution tube 136 a and the second distribution tube 136 b respectively, which are separated from the connecting pipe 135 and the water supply valve 152 .
  • the connecting pipe 135 communicates with the through hole. As a result, sprinkling water is discharged from the through holes. Conversely, when the water supply valve 152 is closed, communication between the connecting pipe 135 and the through hole is cut off. This stops sprinkling water from the through holes.
  • the opening degrees of the water supply valve 152 provided on the first distribution tube 136a and the water supply valve 152 provided on the second distribution tube 136b are independently controlled by the control device 200. Such opening degree control independently controls the discharge of sprinkling water from the through hole of the first distribution tube 136a and the discharge of sprinkling water from the through hole of the second distribution tube 136b.
  • the control device 200 arbitrarily controls the opening of the water supply valve 152 from a predetermined opening to full opening.
  • the predetermined opening is set to a value that includes a slightly opened opening or 0% opening, that is, fully closed.
  • the control device 200 controls the discharge flow rate or discharge flow rate per unit time discharged from each through-hole by controlling the valve opening degree of the water supply valve 152 .
  • the controller 200 can control the splash distance, which is the distance at which the sprinkling water discharged from the distribution tube 136 lands away from the distribution tube 136 .
  • the water splashing distance is the distance between the distribution tube 136 and the ground landing point of the water sprayed from the distribution tube 136 through the through-hole. According to this technology for controlling the distance of water splashing, it is possible to efficiently irrigate areas in need of irrigation, which contributes to saving water.
  • the control device 200 determines the watering distance based on the type of the plant 30 to be watered, the range of the soil layer of the field 20, and the like.
  • Control device 200 controls the valve opening degree of water supply valve 152 so that the determined splash distance is obtained.
  • the valve opening degree of the water supply valve 152 is controlled so as to increase the splash distance when the plant 30 has wide roots or when the soil layer is shallow and wide.
  • the valve opening degree of the water supply valve 152 is controlled so as to keep the splashing distance small when the plant 30 has deep roots or when the plowing layer is located near the distribution tube 136 . It can be said that the valve opening at which the determined splash distance is obtained is the target opening of the valve.
  • the splashing distance can be rephrased as the sprinkling distance.
  • the water pressure sensor 153 is provided near a portion of the connecting pipe 135 where the first distribution tube 136a and the second distribution tube 136b are connected. Each water pressure sensor 153 detects the water pressure inside the connecting pipe 135 . The water pressure detected by the water pressure sensor 153 is output to the control device 200 . The water pressure sensor 153 is provided between the connection portion of the first distribution tube 136 a to the connection pipe 135 and the water supply valve 152 and between the connection portion of the second distribution tube 136 b to the connection pipe 135 and the water supply valve 152 . may The water pressure sensor 153 may be provided in the vicinity of the connecting portion of the connecting pipe 135 with the lateral pipe 134 . The water pressure sensor 153 may be located closer to the side pipe 134 than the water supply valve 152 in the water flow path of the supply pipe 132 .
  • the water pressure sensor 153 detects the pump pressure.
  • the water supply valve 152 changes from the closed state to the open state, sprinkling water is discharged from the distribution tube 136 .
  • the water pressure sensor 153 detects the flow pressure.
  • the water supply valve 152 changes from the open state to the closed state, the sprinkling water from the water supply pipe 130 stops.
  • the water pressure in the water supply pipe 130 gradually recovers from fluid pressure to pump pressure.
  • the water pressure sensor 153 detects the transitional water pressure in which the flow pressure gradually recovers to the pump pressure.
  • control device 200 includes monitoring section 300 , integrated communication section 400 , information storage section 500 , and integrated operation section 600 .
  • the integrated communication unit 400 is written as an ICD.
  • the control device 200 has a plurality of monitoring units 300 . Each of the multiple monitoring units 300 corresponds to a predetermined divided area in the agricultural field 20 .
  • One monitoring unit 300 is provided corresponding to, for example, one piping module 150 .
  • the monitoring unit 300 and the piping module 150 are electrically connected.
  • the water pressure detected by the water pressure sensor 153 is input to the monitoring unit 300 .
  • the monitoring unit 300 detects environmental values, which are physical quantities related to the environment of the field 20 .
  • Each of the multiple monitoring units 300 outputs the water pressure and the environmental value to the integrated communication unit 400 by wireless communication.
  • the integrated communication unit 400 outputs the water pressure and environmental value input from each monitoring unit 300 to the information storage unit 500 by wireless communication.
  • the information storage unit 500 stores these water pressure and environmental values.
  • An example of the information storage unit 500 is a so-called cloud.
  • the integrated calculation unit 600 reads various information such as water pressure and environmental values stored in the information storage unit 500 .
  • the integrated calculation unit 600 appropriately processes the read information, and displays the information and processing results on the monitor 700 of the user's smart phone or personal computer.
  • the integrated calculation unit 600 is included in the user's smartphone, personal computer, or the like.
  • the integrated operation unit 600 has an information processing operation device 610 , a memory 620 and a communication device 630 .
  • the information processor 610 is denoted by IPCE, the memory 620 by MM, and the communication device 630 by CD.
  • the information processing computing device 610 includes a processor.
  • the information processing arithmetic device 610 performs arithmetic processing related to sprinkling. Such functions are realized by downloading the watering application program to the information processing device 610 .
  • the memory 620 is a non-transitional physical storage medium that non-temporarily stores various programs and various information that can be read by a computer or processor.
  • Memory 620 includes volatile memory and non-volatile memory.
  • the memory 620 stores various information input to the communication device 630 and processing results of the information processing arithmetic device 610 .
  • the information processing arithmetic device 610 executes various arithmetic processing using information stored in the memory 620 .
  • the communication device 630 has a wireless communication function.
  • the communication device 630 converts the received radio signal into an electrical signal and outputs the electrical signal to the information processing device 610 .
  • the communication device 630 outputs the processing result of the information processing device 610 as a radio signal.
  • FIG. 1 The information processing arithmetic device 610 corresponds to a processing arithmetic section.
  • the user inputs user instructions related to the watering process and watering schedule to the integrated calculation unit 600 using the input device 800 such as a touch panel and keyboard. Based on this user instruction and various information read from the information storage unit 500, the integrated calculation unit 600 outputs a watering treatment command and determines a watering schedule. If there is no instruction from the user, the integrated calculation unit 600 automatically determines the watering schedule based on various information.
  • the integrated calculation unit 600 When the integrated calculation unit 600 detects an irrigation processing command or determines that it is time to start supplying irrigation water in the irrigation schedule, it outputs an instruction signal for controlling the water supply valve 152 to the information storage unit 500 .
  • This instruction signal is input from the information storage section 500 to the monitoring section 300 via the integrated communication section 400 .
  • the monitoring unit 300 controls output and non-output of the water supply signal to the water supply valve 152 based on the instruction signal. Thereby, the open/close state of the water supply valve 152 is controlled. As a result, the supply of irrigation water to the field 20 is controlled. At least one of the instruction signal and the water supply signal corresponds to the control signal.
  • one monitoring unit 300 is provided for one supply pipe 132 .
  • the plurality of monitoring units 300 are arranged in a matrix with the water supply valves 152 and the water pressure sensors 153 of the plurality of piping modules 150 in the field 20 with the x direction as the row direction and the y direction as the column direction. be done.
  • the environment of each of a plurality of divided areas partitioned in the row direction and the column direction is individually monitored by the monitoring unit 300 corresponding to each divided area. Furthermore, the supply of irrigation water in each of the plurality of divided areas is individually controlled by the corresponding monitoring unit 300 and piping module 150 .
  • the monitoring section 300 has an environment sensor 310 and a control section 320 .
  • the water supply valve 152 and the water pressure sensor 153 of the piping module 150 are electrically connected to the controller 320 .
  • the environment sensor 310 is denoted by ES, the water supply valve 152 by WB, and the water pressure sensor 153 by WPS.
  • a plurality of environment sensors 310 are arranged in a matrix in the field 20 together with the piping module 150 .
  • Each environmental sensor 310 detects the environmental value of each of the plurality of divided areas.
  • Each water pressure sensor 153 detects the water pressure of each of the plurality of divided areas. The detected environmental value and water pressure of each of the plurality of divided areas are stored in the information storage unit 500 .
  • the control unit 320 includes a microcomputer 330, a communication unit 340, an RTC 350, and a power generation unit 360.
  • Microcomputer is an abbreviation for microcomputer.
  • RTC is an abbreviation for Real Time Clock.
  • the communication unit 340 is denoted as CDP.
  • Environmental values and water pressure are input to the microcomputer 330.
  • the microcomputer 330 outputs these environmental values and water pressure to the integrated communication section 400 via the communication section 340 .
  • An instruction signal is input to the microcomputer 330 from the integrated communication unit 400 .
  • the microcomputer 330 outputs a water supply signal to the water supply valve 152 based on this instruction signal.
  • the microcomputer 330 corresponds to an arithmetic processing unit.
  • the microcomputer 330 is a control device that controls the operation of the water supply valve 152 .
  • the microcomputer 330 has sleep mode and normal mode as operation modes.
  • the sleep mode is a state in which the microcomputer 330 stops arithmetic processing.
  • the normal mode is a state in which the microcomputer 330 is executing arithmetic processing. Normal mode consumes more power than sleep mode.
  • the communication unit 340 performs wireless communication with the integrated communication unit 400.
  • the communication unit 340 outputs the electrical signal output from the microcomputer 330 to the integrated communication unit 400 as a radio signal.
  • the communication unit 340 receives the radio signal output from the integrated communication unit 400 and converts it into an electrical signal.
  • Communication unit 340 outputs the electrical signal to microcomputer 330 . If the electrical signal contains the instruction signal, the microcomputer 330 switches from sleep mode to normal mode.
  • the RTC 350 has a clock function that keeps time and a timer function that measures time.
  • the RTC 350 outputs a wakeup signal to the microcomputer 330 when a preset time has come or a preset time has elapsed.
  • this wakeup signal is input to the microcomputer 330 in sleep mode, the microcomputer 330 switches from sleep mode to normal mode.
  • the power generation unit 360 converts the light energy obtained by the solar cell into electrical energy.
  • the power generation unit 360 functions as a power supply source for the monitoring unit 300 .
  • Power is continuously supplied from generator 360 to RTC 350 . This prevents the clock function and timer function of the RTC 350 from being impaired.
  • the environment sensor 310 detects the environmental value in the corresponding divided area.
  • the environment sensor 310 includes a soil sensor 311 that detects soil moisture content and the like.
  • a plurality of soil sensors 311 detect the soil moisture content of a plurality of divided areas arranged in the field 20 . In the drawing, the soil sensor 311 is indicated as SMS.
  • each environmental sensor 310 has a solar radiation sensor 312 that detects the amount of solar radiation.
  • a plurality of solar radiation sensors 312 detect the amount of solar radiation in a plurality of divided areas in the agricultural field 20 .
  • the solar radiation sensor 312 is denoted as SRS.
  • the monitor 700 displays a map of the soil moisture content distribution and the solar radiation distribution in the field 20 by arranging the soil moisture content and the solar radiation detected in a plurality of divided areas in a matrix. Similarly, by arranging the water pressure detected by the plurality of water pressure sensors 153 in a matrix on the monitor 700 , the water pressure distribution of the water supply pipe 130 in the field 20 is displayed on the monitor 700 as a map. Such map display processing is performed by the integrated calculation unit 600 .
  • the environmental values in the field 20 include rainfall, temperature, humidity, atmospheric pressure, and wind volume. Sensors that detect these environmental values are a rain sensor 313 , a temperature sensor 314 , a humidity sensor 315 , an air pressure sensor 316 and a wind sensor 317 . These are included in at least one environmental sensor 310 of the plurality of monitoring units 300 .
  • the environment sensor 310 of the monitoring unit 300 includes various sensors that detect environmental values of the entire field 20 .
  • An example of the environment sensor 310 is shown in FIG.
  • the rain sensor 313 is denoted by RS
  • the temperature sensor 314 by TS
  • the humidity sensor 315 by MS
  • the atmospheric pressure sensor 316 by PS
  • the wind sensor 317 by WS.
  • the wind sensor 317 may be configured to detect not only the wind volume but also the wind direction.
  • At least one of the rain sensor 313 , temperature sensor 314 , humidity sensor 315 , atmospheric pressure sensor 316 and wind sensor 317 may be arranged in rows and columns in the field 20 .
  • the amount of rainfall, temperature, humidity, air pressure, and wind volume change greatly for each divided area, for example, because the field 20 is large, the field 20 is rugged, or the climate of the field 20 changes drastically. effective when it is easy to
  • the rainfall amount, temperature, humidity, air pressure, and wind volume detected by these sensors in a matrix, it is possible to display these environmental values on the monitor 700 on a map.
  • Outputs of these sensors are output to the communication unit 340 via the integrated communication unit 400 .
  • the outputs of these sensors are stored in the information storage section 500 via the integrated communication section 400 .
  • the environmental value controlled by the watering system 10 includes the soil water content.
  • the irrigation system 10 controls the supply time and supply amount of irrigation water for each divided area. By doing so, the soil water content for each divided area is individually controlled.
  • the plant 30 is rooted in the soil layer of the field 20.
  • the growth of the plant 30 depends on the amount of water contained in the soil of this plowing layer (also called soil water content). When the soil water content exceeds the growth-inhibiting water point, the plant 30 becomes diseased. If the soil moisture content drops below the permanent wilting point, the plant 30 will not wilt. Although the growth inhibition water point and the permanent wilting point differ depending on the type of plant 30, their values are known. These values are stored in the information storage unit 500 .
  • the current value of the soil moisture content is detected by the soil sensor 311.
  • Physical quantities related to soil water content include soil water content tension (pF value) and soil dielectric constant ( ⁇ ).
  • the soil sensor 311 of this specification detects the pF value.
  • the soil moisture content of the plowing layer increases or decreases due to environmental changes in the field 20 .
  • the soil water content increases.
  • the soil moisture content decreases.
  • the plant 30 absorbs water or water permeates to a lower layer than the plowing layer, the soil water content decreases.
  • a rain sensor 313 detects the amount of rain (rainfall) that falls on the plowed layer.
  • the amount of water that evaporates from the soil layer depends on the amount of solar radiation, temperature, humidity, and airflow. These are detected by solar sensor 312 , temperature sensor 314 , humidity sensor 315 and wind sensor 317 .
  • the amount of water absorbed by the plant 30 per unit time can be estimated in advance depending on the type of the plant 30 .
  • the amount of water permeating into layers below the plowing layer per unit time can be estimated in advance from the water retention capacity of the soil.
  • the environment sensor 310 detects the current value of the soil moisture content of the plowed layer, the predicted value related to the prediction of the increase from the current value of the soil moisture content of the plowed layer due to environmental changes, and the prediction of the decrease. To detect. These are stored in the information storage unit 500 as environment values.
  • the information storage unit 500 stores the growth inhibition water point and permanent wilting point of the plant 30, the amount of water absorbed by the plant 30 per unit time, and the water retention capacity of the soil. Instructions from the user (user instructions) described above are stored in the information storage unit 500 . In this way, the information storage unit 500 stores various information for determining the watering schedule.
  • the microcomputer 330 has an acquisition section 331 , a signal output section 332 , a storage section 333 and a processing section 334 .
  • the acquisition unit 331 is denoted by AD
  • the signal output unit 332 by SOU
  • the storage unit 333 by MU
  • the processing unit 334 by PU.
  • the environmental value detected by the environment sensor 310 is input to the acquisition unit 331 .
  • the water pressure detected by the water pressure sensor 153 is input to the acquisition unit 331 .
  • Acquisition unit 331 and each of environment sensor 310 and water pressure sensor 153 are electrically connected.
  • a wire 160 shown in FIG. 1 is an example of a wire connecting the acquisition unit 331 and the soil sensor 311 and a wire connecting the acquisition unit 331 and the water pressure sensor 153 .
  • the signal output section 332 is electrically connected to the water supply valve 152 .
  • a control signal (water supply signal) for controlling the opening degree of the water supply valve 152 is output from the signal output section 332 to the water supply valve 152 .
  • the water supply valve 152 is closed when the water supply signal is not input.
  • the water supply valve 152 is open when the water supply signal is input.
  • the storage unit 333 is a non-transitional material storage medium that non-temporarily stores programs and data readable by computers and processors.
  • the storage unit 333 has a volatile memory and a nonvolatile memory.
  • the storage unit 333 stores a program for the processing unit 334 to execute arithmetic processing. This program includes at least a portion of the irrigation application program described above.
  • the storage unit 333 temporarily stores data when the processing unit 334 executes arithmetic processing.
  • Storage unit 333 stores various data input to acquisition unit 331 and communication unit 340 and acquisition times of the various data.
  • the processing unit 334 switches from sleep mode to normal mode.
  • the processing unit 334 reads programs and various data stored in the storage unit 333 and executes arithmetic processing. This calculation processing includes calculation of the valve opening necessary for causing the water splashed through the through hole of the distribution tube 136 to reach the desired watering position.
  • the processing unit 334 corresponds to a computing unit.
  • the processing unit 334 reads from the RTC 350 the acquisition times of the various sensor signals input to the acquisition unit 331 and the instruction signal input to the communication unit 340 .
  • the processing unit 334 causes the storage unit 333 to store the instruction signal and the acquisition time.
  • the processing unit 334 stores the environmental value and water pressure input from the environment sensor 310 and the water pressure sensor 153 and their acquisition times in the information storage unit 500 via the communication unit 340 and the integrated communication unit 400 .
  • the processing unit 334 sends a water supply signal to the water supply valve 152 through the signal output unit 332 based on the instruction signal input from the integrated calculation unit 600 through the information storage unit 500, the integrated communication unit 400, and the communication unit 340. Output.
  • the communication unit 340 converts the electrical signal input from the processing unit 334 into a radio signal. Communication unit 340 outputs this radio signal to integrated communication unit 400 . The communication unit 340 converts the radio signal output from the integrated communication unit 400 into an electrical signal. The communication section 340 outputs this electrical signal to the processing section 334 .
  • the radio signal output by the communication unit 340 includes an address 341 and data 342, which are simply shown in FIG. In the drawing, the address 341 is written as ADD, and the data 342 is written as DAT.
  • radio signals are transmitted and received between the plurality of communication units 340 and the integrated communication unit 400 .
  • the address 341 included in the radio signal is an identification code indicating from which one of the plurality of communication units 340 the signal is output.
  • the address included in the radio signal is an identification code indicating from which one of the plurality of processing units 334 the address is output.
  • a unique address 341 is stored in each of the plurality of storage units 333 .
  • the address 341 is also included in the radio signal output from the integrated communication unit 400 .
  • the radio signal data 342 includes the instruction signal.
  • Each of the plurality of communication units 340 receives this radio signal.
  • This radio signal is converted into an electric signal by each of the plurality of communication units 340 .
  • This electrical signal is then input to each of the plurality of processing units 334 .
  • the processing unit 334 having the same address 341 as the address 341 included in the electrical signal executes arithmetic processing based on the electrical signal.
  • the microcomputer 330 intermittently drives the sleep mode and the normal mode alternately. Therefore, wireless communication between the communication unit 340 and the integrated communication unit 400 is not frequently performed.
  • the time interval for wireless communication between the communication unit 340 and the integrated communication unit 400 is lengthened. This makes it possible to increase the amount of data that can be included in the data 342 in one wireless communication.
  • Power generation unit 360 includes solar cell 361 , power storage unit 362 , current sensor 363 , and power sensor 364 .
  • the solar battery 361 is denoted by SB
  • the power storage unit 362 by ESU the power storage unit 362 by ESU
  • the current sensor 363 by CS the power sensor 364 by PS.
  • Solar cell 361 converts light energy into electrical energy.
  • the power storage unit 362 stores the electrical energy (power).
  • the power stored in power storage unit 362 is utilized as driving power for monitoring unit 300 .
  • a current sensor 363 detects the current output from the solar cell 361 to the power storage unit 362 .
  • Power sensor 364 detects power output from power storage unit 362 .
  • the processing unit 334 stores the detected current value and power value in the information storage unit 500 via the communication unit 340 and the integrated communication unit 400 .
  • the driving power of the monitoring section 300 depends on the power generated by the power generation section 360 . Therefore, when the amount of light incident on the power generation section 360 is small, the driving power of the monitoring section 300 may be insufficient. To avoid this, the microcomputer 330 of the monitoring unit 300 is intermittently driven.
  • the RTC 350 outputs a wakeup signal to the microcomputer 330 each time the intermittent drive time interval (driving cycle) elapses.
  • the microcomputer 330 alternately repeats sleep mode and normal mode.
  • the drive cycle described above is determined by the integrated calculation unit 600 according to the amount of electric power stored in the power storage unit 362 (the amount of power stored).
  • the intermittent drive interval is determined by the integrated calculation unit 600 according to the amount of stored electricity.
  • the integrated calculation unit 600 calculates the amount of stored electricity based on the power stored in the information storage unit 500 .
  • the integration calculation unit 600 sets a longer intermittent drive interval as the amount of stored electricity decreases.
  • the integrated calculation unit 600 sets the intermittent drive interval shorter as the amount of stored electricity increases.
  • the integrated calculation unit 600 includes the intermittent drive interval in the instruction signal.
  • the processing unit 334 of the microcomputer 330 acquires this instruction signal, the processing unit 334 adjusts the intermittent drive interval.
  • a processing unit 334 adjusts the drive cycle of the RTC 350 . It is rare for the environment of the field 20 to change drastically in units of seconds. Therefore, the intermittent drive interval is several tens of seconds to several tens of hours. Accordingly, the time interval for performing wireless communication is also in units of several tens of seconds to several tens of hours.
  • cycle tasks and event tasks have processing priorities. When the processing timings of these tasks are the same, the processing of the event task is given priority over the processing of the cycle task.
  • each monitoring unit 300 executes the sensor processing shown in FIG.
  • the integration calculation unit 600 executes the updating process shown in FIG.
  • event tasks each monitoring unit 300 executes the monitoring process shown in FIG. 8 and the water supply process shown in FIG.
  • the integrated calculation unit 600 executes the watering process shown in FIG. 10, the user update process shown in FIG. 11, and the forced update process shown in FIG.
  • step S ⁇ b>10 sensor signals input from various sensors are acquired, and the sensor signal acquisition time is acquired based on the output of the RTC 350 . Further, in step S20, the acquired sensor signal and acquisition time are stored.
  • step S30 the sensor signal as sensor information and the acquisition time are output from the communication section 340 to the integrated communication section 400 by wireless communication.
  • This sensor information is stored in the information storage unit 500 by the integrated communication unit 400 .
  • the microcomputer 330 shifts to sleep mode and terminates sensor processing.
  • the integration calculation unit 600 executes the update process shown in FIG. 7 each time the update period elapses. This update period is approximately the same as the intermittent drive interval of the microcomputer 330 .
  • step S110 various information stored in the information storage unit 500 is read.
  • step S120 the watering schedule for each of the plurality of monitoring units 300 is updated based on the read various information.
  • the integrated calculation unit 600 updates sensor processing in each monitoring unit 300 .
  • the integrated calculation unit 600 updates the intermittent drive interval corresponding to the timing of executing sensor processing.
  • the integrated calculation unit 600 owns the updated watering schedule and the intermittent drive interval, stores them in the information storage unit 500, and ends the update process.
  • the cycle task updates the sensor information, irrigation schedule, and intermittent drive interval.
  • Each of the monitoring process, the water supply process, and the watering process is performed during the daytime in order to avoid depletion of the driving power of the monitoring unit 300 . Whether it is daytime or not can be detected based on the current time and the amount of solar radiation detected by the solar radiation sensor 312 .
  • the microcomputer 330 of each monitoring section 300 is in sleep mode.
  • An instruction signal is input to the microcomputer 330 from the integrated calculation unit 600 by wireless communication.
  • the microcomputer 330 switches from the sleep mode to the normal mode and starts executing the monitoring process shown in FIG.
  • step S210 the input instruction signal and its acquisition time are stored.
  • step S220 it is determined whether or not the instruction signal includes a water supply instruction to open the water supply valve 152 from the closed state. If the water supply instruction is included in the instruction signal, the process proceeds to step S230. If the water supply instruction is not included in the instruction signal, the process proceeds to step S240.
  • step S230 the water supply process shown in FIG. 9 is executed. That is, the microcomputer 330 outputs a water supply signal to the water supply valve 152 in accordance with the water supply instruction in step S231.
  • step S232 the microcomputer 330 determines whether or not the water supply time included in the instruction signal has elapsed. If the water supply time has not elapsed, the output of the water supply signal to the water supply valve 152 is continued. If the water supply time has elapsed, the process proceeds to step S233.
  • step S233 the output of the water supply signal is stopped, and the water supply process ends.
  • step S240 it is determined whether or not the instruction signal includes an instruction to update the intermittent drive interval. If the instruction signal includes an instruction to update the intermittent drive interval, the process proceeds to step S250. If the instruction signal does not include an instruction to update the intermittent drive interval, the process proceeds to step S260.
  • the instruction to update the intermittent drive interval described above is periodically or irregularly output as an instruction signal from the integrated calculation section 600 or the information storage section 500 to each monitoring section 300 .
  • step S250 the processing unit 334 of the microcomputer 330 adjusts the time interval for outputting the wakeup signal of the RTC 350.
  • step S260 the sensor processing described based on FIG. 6 is executed.
  • the environment value after water supply is detected in step S260. If the water supply process of step S230 is not executed, the environment value when water is not being supplied is detected in step S260. This environment value is stored in the information storage unit 500 .
  • the microcomputer 330 shifts to the sleep mode and terminates the monitoring processing.
  • the integrated calculation unit 600 executes the watering process shown in FIG. 10 each time it is time to supply water in the watering schedule of each monitoring unit 300 .
  • the integration calculation unit 600 outputs a water supply signal including a water supply instruction to the monitoring unit 300 of the divided area to which water is to be supplied among the plurality of monitoring units 300 .
  • the water supply instruction includes the start of output of the water supply signal and the output time of the water supply signal (water supply time).
  • the monitoring unit 300 executes the monitoring process described with reference to FIG.
  • step S320 the integrated calculation unit 600 enters a standby state until the monitoring process of the monitoring unit 300 is completed. If the monitoring process has ended, the process proceeds to step S330.
  • a determination as to whether or not the monitoring process has ended is made, for example, based on whether or not a period of time in which the monitoring process is expected to end has elapsed. Whether or not the monitoring process has ended can be determined by inquiring of the monitoring unit 300 .
  • a method for determining the end of the monitoring process is not particularly limited.
  • ⁇ User update process> The integrated calculation unit 600 executes the user update process shown in FIG. 11 when a user instruction related to adjustment of the watering schedule and the intermittent drive interval is input from the input device 800 .
  • Integrated calculation unit 600 stores the input user instruction in information storage unit 500 in step S410.
  • the updating process described with reference to FIG. 7 is executed. As described above, the irrigation schedule and the intermittent drive interval are updated based on the user's instructions.
  • the integrated calculation unit 600 executes the forced update process shown in FIG. 12 when a user instruction regarding update of the watering schedule and the intermittent drive interval is input. Integral calculation unit 600 outputs a request signal including a request instruction requesting execution of sensor processing in step S510. This request signal is output to the monitoring unit 300 by wireless communication. In step S520, a standby state is entered until the sensor processing of the monitoring unit 300 is completed.
  • step S530 A determination as to whether or not the sensor processing has ended can be made, for example, based on whether or not a period of time in which the sensor processing is expected to end has elapsed. Alternatively, it can be performed by inquiring of the monitoring unit 300 whether or not the sensor processing has ended.
  • the method for determining the end of sensor processing is not particularly limited.
  • step S530 the updating process described with reference to FIG. 7 is executed. As described above, the watering schedule and the intermittent drive interval are updated based on various data at the time of the user's update request.
  • the monitoring unit 300 determines whether or not water is coming out from the distribution tube 136 in the water supply process shown in FIG. 9 and the watering process shown in FIG. 10, and performs processing according to the determination result.
  • the monitoring unit 300 determines whether water is being discharged based on the water pressure detected by the water pressure sensor 153 .
  • the monitoring unit 300 determines that the water pressure detected by the water pressure sensor 153 exceeds the abnormal pressure value, the monitoring unit 300 fully closes the water supply valve 152 during watering to stop watering.
  • the abnormal pressure value is set to a pressure value that is impossible when water is being discharged from the distribution tube 136, or a pressure value when water has no place to go and is not discharged to the outside.
  • the abnormal pressure value is stored in the storage unit 333 in advance.
  • the monitoring unit 300 irrigates from the adjacent distribution tube 136 adjacent to the distribution tube 136 for which irrigation has been stopped.
  • the adjacent distribution tube 136 is adjacent to the distribution tube 136 that has ceased irrigation in a direction perpendicular to the axial direction of the tube.
  • the monitoring unit 300 controls the valve opening degree of the water supply valve 152 capable of supplying water to the adjacent distribution tube 136 to a value that allows the water splash distance to reach the targeted target watering position in the stopped watering.
  • the controller controls the pressure of the irrigation water flowing down the adjacent distribution tube 136 adjacent to the distribution tube 136 from which irrigation water is not being discharged. to control the valve opening.
  • the controller controls the splash distance of the irrigation water discharged from the adjacent distribution tube 136 so that the target irrigation position aimed at by the irrigation water not discharged is reached. According to this control, it is possible to provide the irrigation system 10 that can solve problems with irrigation due to clogging of the pipes and distribution tubes 136 and failure of the water supply valve 152 .
  • the integrated calculation unit 600 determines the watering schedule for each of the plurality of divided areas.
  • the integrated calculation unit 600 controls the supply of irrigation water based on each irrigation schedule.
  • a configuration may be adopted in which the water supply based on each watering schedule is individually controlled by each monitoring unit 300.
  • ⁇ Independent update> As a further example, a configuration may be adopted in which the corresponding monitoring unit 300 independently determines the watering schedule for each divided area. In such a configuration, each monitoring unit 300 executes update processing shown in FIG.
  • the information storage unit 500 stores the current value of the soil moisture content, the predicted value of the decreasing change, and the user's instruction.
  • the information storage unit 500 stores the growth inhibition water point and permanent wilting point of the plant 30, the amount of water absorbed by the plant 30 per unit time, and the water retention capacity of the soil.
  • the information storage unit 500 stores the weather forecast for the field 20 output and distributed from the external information source 1000 .
  • the external information source 1000 is indicated as ESI.
  • the integrated calculation unit 600 reads various information including the weather forecast from the information storage unit 500 in step S110 of the update process shown in FIG.
  • the integrated calculation unit 600 determines the watering schedule for each monitoring unit 300 in step S120.
  • the integrated calculation unit 600 calculates a target value and an estimated value of the soil water content when determining the watering schedule.
  • the target value for soil moisture is naturally set to a value between the stunted water point and the permanent wilting point.
  • the target value of the soil moisture content is set to a value that is somewhat distant from the theoretical values of the growth inhibition moisture point and the permanent wilting point.
  • the integrated calculation unit 600 sets the upper limit target value on the growth inhibition moisture point side and the lower limit target value on the permanent wilting point side as the target value of the soil moisture content.
  • the integrated calculation unit 600 determines the watering schedule so that the estimated value of the soil moisture content is between the upper limit target value and the lower limit target value during the watering period of the watering schedule. Even if the estimated soil moisture content is expected to exceed the upper limit target value due to rainfall, the integrated calculation unit 600 determines the watering schedule so that the estimated soil moisture content does not exceed the growth inhibition moisture point.
  • This upper limit deviation width is determined based on the climate of the farm field 20 while considering the healthy growth of the plant 30 described above.
  • the climate of the field 20 includes the expected value of the average amount of rainfall in the field 20 during the irrigation period of the irrigation schedule and the total amount of rainfall predicted by the weather forecast during the irrigation period.
  • the expected value of the average amount of rainfall in the field 20 during the watering period is stored in the information storage unit 500 .
  • This lower limit range of divergence takes into account the healthy growth of the plant 30, and is determined based on the recovery time expected to be restored when a failure occurs in the water supply device 100, the amount of decrease in soil water content per unit time, and the like. .
  • the lower limit deviation width is determined based on a value obtained by multiplying the recovery time by the amount of decrease in the soil moisture content per unit time.
  • the recovery time is stored in the information storage unit 500.
  • the integrated calculation unit 600 determines the watering schedule for one week. During this week, if the weather forecast does not predict any rainfall, the estimated soil moisture content is expected to gradually decrease over time. The amount of decrease per unit time of the estimated soil moisture content is determined based on the predicted value of the decrease change in the soil moisture content of the plow layer. In order to simplify the notation, the estimated value of the soil moisture content will be simply referred to as an estimated value as needed.
  • the watering schedule is determined based on the estimated soil moisture content based on environmental values and the weather forecast. According to this, it is possible to prevent the soil water content in the outdoor divided area from becoming unsuitable for the plants 30 due to weather changes such as rainfall and dryness. In addition, it is possible to prevent the soil moisture content from exceeding the growth inhibition moisture point or falling below the permanent wilting point.
  • the integrated calculation unit 600 determines the target water supply amount so that the estimated soil moisture amount does not exceed the upper limit target value lower than the growth inhibition moisture point during all the watering periods of the watering schedule.
  • the integrated calculation unit 600 determines the deviation range (upper limit deviation range) between the growth inhibition water point and the upper limit target value based on the climate of the field 20 and the like.
  • the climate of the field 20 includes the expected value of the average amount of rainfall in the field 20 during the watering period and the total amount of rainfall predicted by the weather forecast during the watering period.
  • the integrated calculation unit 600 determines the target water supply amount so that the estimated soil moisture amount in the watering schedule does not fall below the lower limit target value higher than the permanent wilting point.
  • the integrated calculation unit 600 determines the deviation range (lower limit deviation range) between the permanent wilting point and the lower limit target value based on the recovery time and the amount of decrease in the soil moisture content per unit time.
  • the integrated calculation unit 600 waters at the time when the estimated value of the soil moisture content in the watering schedule reaches the lower limit target value. As a result, it is possible to prevent the soil water content from falling below the lower limit target value.
  • the integrated calculation unit 600 makes the rain forecast time and the irrigation water supply time different. According to this, even if there is more rainfall than the rainfall forecast, it is possible to suppress excessive increase in soil water content.
  • FIG. This valve device is a so-called rotary valve device.
  • This valve device has one fluid inlet and three fluid outlets.
  • the valve device is mounted to the irrigation system 10 by connecting a supply line 132 to the fluid inlets and a distribution tube 136 to one of the fluid outlets. Further, a closing member may be attached to the fluid outflow portion to which the distribution tube 136 is not connected to close the passage.
  • the valve device includes a housing 9, a valve 90, a drive section 70, a drive section cover 80, etc., as shown in FIG.
  • the valve device is configured as a ball valve that opens and closes the valve device by rotating the valve 90 around the axis of the shaft 92 .
  • the direction along the axis of the shaft 92 will be described as the axial direction DRa
  • the direction perpendicular to the axial direction DRa and extending radially from the axial direction DRa will be described as the radial direction DRr.
  • the housing 9 is an accommodating portion that accommodates the valve 90 .
  • the housing 9 is made of, for example, a resin member.
  • the housing 9 includes a hollow housing main body portion 21 in which the valve 90 is accommodated, a pipe member 50 for discharging cooling water from the housing main body portion 21 , and a partition wall portion 60 attached to the housing main body portion 21 .
  • the housing main body 21 has a substantially rectangular parallelepiped external appearance and is formed in a bottomed shape having an opening on the other side in the axial direction DRa.
  • the housing main body portion 21 has a housing outer wall portion 22 that constitutes the outer peripheral portion of the housing main body portion 21 .
  • the housing outer wall portion 22 forms a cylindrical valve accommodating space 23 having an axis in the axial direction DRa inside the housing main body portion 21 .
  • An inlet port 251 is formed in the outer wall portion 22 of the housing for allowing cooling water to flow into the valve housing space 23 .
  • the inlet port 251 is formed with a circular opening and is connected to the connecting pipe 135 .
  • the inlet port 251 corresponds to the fluid inlet.
  • a pipe member 50 is attached to the housing outer wall portion 22 .
  • the housing outer wall portion 22 has a first outlet port 261, a second outlet port 262, and a third outlet port 263 for causing the cooling water that has flowed into the valve housing space 23 through the inlet port 251 to flow out to the pipe member 50.
  • a partition wall portion 60 is attached to the housing opening surface 24 of the housing outer wall portion 22 .
  • the housing opening surface 24 is arranged on the other side of the housing body portion 21 in the axial direction DRa.
  • the housing opening surface 24 is formed with a housing opening 241 that allows communication between the valve accommodating space 23 and the outside of the housing main body 21 .
  • the housing opening 241 is closed by attaching the partition wall 60 to the housing opening surface 24 .
  • the pipe member 50 includes a first pipe portion 51, a second pipe portion 52, and a third pipe portion 53, each of which is cylindrical.
  • the first pipe portion 51 , the second pipe portion 52 and the third pipe portion 53 are connected by a pipe connection portion 54 .
  • the pipe connecting portion 54 is a portion that connects the first pipe portion 51 , the second pipe portion 52 and the third pipe portion 53 and attaches the pipe member 50 to the housing outer wall portion 22 .
  • the upstream side of the first pipe portion 51 is arranged inside the first outlet port 261 .
  • the second pipe portion 52 is arranged inside the second outlet port 262 on the upstream side.
  • the third pipe portion 53 is arranged inside the third outlet port 263 on the upstream side.
  • the partition wall 60 closes the housing opening 241 and holds the valve 90 housed in the valve housing space 23 .
  • Partition wall portion 60 is disk-shaped with the plate thickness direction in axial direction DRa, and is arranged to fit into housing opening portion 241 from the other side in axial direction DRa toward one side.
  • the outer peripheral portion of the partition 60 abuts against the inner peripheral surface of the housing, thereby closing the housing opening 241 .
  • the driving section cover 80 accommodates the driving section 70 .
  • the drive section cover 80 is made of resin and has a hollow shape, and a drive section space for accommodating the drive section 70 is formed therein.
  • the driving section cover 80 has a connector section 81 for connecting to the microcomputer 330 .
  • the connector portion 81 connects the valve device to the microcomputer 330 and incorporates terminals to which the driving portion 70 and the rotation angle sensor 73 are connected.
  • the drive unit 70 includes a motor 71 that outputs a torque for rotating the valve 90 , a gear unit 72 that transmits the output of the motor 71 to the valve 90 , and a rotation angle sensor 73 that detects the rotation angle of the gear unit 72 .
  • the motor 71 as shown in FIG. 14, includes a motor body, a motor shaft 711, a worm gear 712, and motor-side terminals.
  • the motor 71 is configured such that the motor body can output power when power is supplied to the motor-side terminals.
  • the motor body is formed in a substantially cylindrical shape, and a motor shaft 711 protrudes from the other end of the motor body. Power output from the motor main body is output to the gear portion 72 via the motor shaft 711 and the worm gear 712 .
  • the gear portion 72 is composed of a speed reduction mechanism having a plurality of resin gears, and is configured to be able to transmit the power output from the worm gear 712 to the shaft 92 .
  • the gear portion 72 includes a first gear 721 , a second gear 722 meshing with the first gear 721 , and a third gear 723 meshing with the second gear 722 .
  • a shaft 92 is connected to the third gear 723 .
  • the outer diameter of the second gear 722 is formed larger than the outer diameter of the first gear 721
  • the outer diameter of the third gear 723 is formed larger than the outer diameter of the second gear 722. ing.
  • the first gear 721 , the second gear 722 , and the third gear 723 are arranged so that their axes are orthogonal to the axis of the worm gear 712 .
  • the third gear 723 is arranged so that the axis of the third gear 723 is coaxial with the axis of the shaft 92 .
  • a shaft 92 is connected to the third gear 723 .
  • the drive unit 70 is configured such that the worm gear 712, the first gear 721, the second gear 722, the third gear 723, and the valve 90 rotate integrally, and the respective rotations are correlated with each other.
  • These gears and the shaft 92 have respective rotation angles that are correlated, and are configured so that the rotation angle of any one of the components having the correlation can be calculated from the rotation angles of the other components.
  • a rotation angle sensor 73 for detecting the rotation angle of the third gear 723 is attached to a portion facing the third gear 723 on the inner peripheral portion of the drive section cover 80 .
  • the rotation angle sensor 73 is a Hall sensor incorporating a Hall element, and is configured to detect the rotation angle of the third gear 723 without contact.
  • the rotation angle sensor 73 is connected to the microcomputer 330 via the connector portion 81 .
  • the detected rotation angle of the third gear 723 is transmitted to the microcomputer 330 .
  • the processing unit 334 of the microcomputer 330 is configured to be able to calculate the rotation angle of the valve 90 based on the rotation angle of the third gear 723 transmitted from the rotation angle sensor 73 .
  • the shaft 92 and the valve 90 will be explained with reference to FIGS. 13 and 15.
  • the shaft 92 is configured to be rotatable about its axis by the rotational force output by the driving section 70 .
  • the shaft 92 is connected to the valve 90, and is configured to be able to rotate the valve 90 integrally with the shaft 92 when the shaft 92 rotates.
  • the shaft 92 is formed in a columnar shape extending along the axis, and penetrates from one side of the valve 90 to the other side.
  • One side of the shaft 92 in the axial direction DRa is connected to the shaft support portion of the housing main body portion 21 , and the other side is connected to the gear portion 72 .
  • a valve 90 is fixed to the outer circumference of the shaft.
  • the valve 90 is configured to be able to adjust the flow rate of the output fluid by rotating around its axis.
  • the valve 90 has a shaft 92 inserted therein, and is housed in the valve housing space 23 so as to rotate integrally with the shaft 92 .
  • the valve 90 has a tubular shape having an axis extending along the axial direction DRa.
  • the valve 90 is formed by connecting a first valve 93, a second valve 94, a third valve 95, a cylindrical connecting portion 914, and a cylindrical valve connecting portion 915, each of which is cylindrical.
  • the valve 90 includes a first valve 93, a tubular connecting portion 914, a second valve 94, a tubular valve connecting portion 915, and a third valve 95 arranged from one side toward the other side in the axial direction DRa. are arranged in this order.
  • the first valve 93 and the second valve 94 are connected via a tubular connecting portion 914 .
  • the second valve 94 and the third valve 95 are connected via a tubular valve connection 915 .
  • the second valve 94 and the cylindrical connecting portion 914 of the valve 90 face the inlet port 251 in the radial direction DRr in the valve accommodating space 23 .
  • the valve 90 has a cylindrical shaft connection portion 916 into which the shaft 92 is inserted in the center. Valve 90 is connected to shaft 92 by inserting shaft 92 into shaft connecting portion 916 .
  • a first valve 93, a second valve 94, a third valve 95, a cylindrical connecting portion 914, a cylindrical valve connecting portion 915, and a shaft connecting portion 916 are integrally formed by injection molding.
  • the valve 90 is a valve body for causing the cooling water that has flowed into the valve 90 to flow out to the first outlet port 261 , the second outlet port 262 and the third outlet port 263 .
  • the valves 90 rotate so that the first valve 93 opens and closes the first outlet port 261, the second valve 94 opens and closes the second outlet port 262, and the third valve 95 opens and closes the third outlet port 263. .
  • the first valve 93 , the second valve 94 and the third valve 95 are arranged so that their axes are coaxial with the axis of the shaft 92 .
  • the central portion in the axial direction DRa bulges outward in the radial direction DRr compared to both end sides.
  • Each of the first valve 93, the second valve 94, and the third valve 95 is configured so that fluid can flow inside.
  • the first valve 93 has a first valve outer peripheral portion 931 forming an outer peripheral portion, and a first flow path portion 961 is formed inside the first valve outer peripheral portion 931 .
  • the first valve 93 is formed with a first inner opening 936 that allows fluid to flow into the first channel portion 961 .
  • the fluid that has flowed into the valve housing space 23 flows into the first channel portion 961 through the first inner opening 936 .
  • the first channel portion 961 corresponds to the channel portion in the valve device.
  • the first valve outer peripheral portion 931 has a first outer peripheral portion that communicates the first flow path portion 961 with the first outlet port 261 via the first seal opening portion 581 when the shaft 92 rotates.
  • An opening 934 is formed.
  • the first valve 93 causes the fluid that has flowed into the first flow path portion 961 to flow out from the first outlet port 261 by connecting the first outer peripheral opening 934 to the first outlet port 261 .
  • a first outer peripheral opening 934 formed in the first valve outer peripheral portion 931 corresponds to an outer peripheral opening formed in the valve outer peripheral portion.
  • the first outer peripheral opening 934 is formed in the first valve outer peripheral portion 931 so as to extend along the circumferential direction of the axis of the shaft 92 .
  • the flow rate of fluid exiting the device from the first valve 93 is adjusted according to the area of overlap between the first outer peripheral opening 934 and the first seal opening 581 when the shaft 92 rotates.
  • the first inner opening 936 functions as a communication passage that communicates the outside of the first valve 93 and the first flow path portion 961 .
  • the second valve 94 has, as shown in FIG.
  • the second valve 94 is formed with a second inner opening 946 that allows the fluid to flow into the second flow path portion 962 on one side in the axial direction DRa.
  • the second valve 94 is configured such that the fluid that has flowed into the valve housing space 23 through the inlet port 251 can flow through the second flow path portion 962 through the second inner opening 946 .
  • the second channel portion 962 corresponds to the channel portion in the valve device.
  • the second valve outer peripheral portion 941 has a second outer peripheral portion that communicates the second flow path portion 962 with the second outlet port 262 via the second seal opening 582 when the shaft 92 rotates.
  • An opening 944 is formed.
  • the second valve 94 causes the fluid that has flowed into the second flow path portion 962 to flow out from the second outlet port 262 by communicating the second outer peripheral opening 944 with the second outlet port 262 .
  • a second outer peripheral opening 944 formed in the second valve outer peripheral portion 941 corresponds to an outer peripheral opening formed in the valve outer peripheral portion.
  • the second outer peripheral opening 944 is formed so as to extend in the circumferential direction of the axis of the shaft 92 .
  • the flow rate of fluid flowing out of the device from the second valve 94 is adjusted according to the overlapping area of the second outer peripheral opening 944 and the second seal opening 582 when the shaft 92 rotates.
  • the second inner opening 946 functions as a communication passage that communicates the outside of the second valve 94 and the second flow path portion 962 .
  • the second inner opening 946 faces the first inner opening 936 .
  • the tubular connecting portion 914 is for connecting the first valve 93 and the second valve 94 .
  • the cylindrical connecting portion 914 forms a first inter-valve space 97 between the outer peripheral portion of the cylindrical connecting portion 914 and the inner peripheral surface of the housing.
  • the first channel portion 961 and the second channel portion 962 communicate with each other via the first inter-valve space 97 .
  • the second valve 94 has a shaft connecting portion 916 that covers the outer peripheral portion of the shaft 92 at substantially the center of the inside.
  • the second valve 94 has a cylindrical valve connecting portion 915 connected to the other side of the second valve outer peripheral portion 941 in the axial direction DRa.
  • the second valve 94 is configured to allow the fluid that has flowed into the second flow path portion 962 to flow into the third valve 95 via the cylindrical valve connecting portion 915 .
  • a second inter-valve space 98 is formed inside the tubular valve connecting portion 915 .
  • the second inter-valve space 98 communicates with the second channel portion 962 and the third channel portion 963 .
  • the cylindrical valve connecting portion 915 has an outer diameter on one side in the axial direction DRa that is the same as the outer diameter of a portion on the other side in the axial direction DRa of the second valve 94 .
  • the cylindrical valve connecting portion 915 has the same outer diameter on the other side in the axial direction DRa as the outer diameter of the portion on the one side in the axial direction DRa of the third valve 95 .
  • the tubular valve connecting portion 915 is formed so as to continue to the second valve outer peripheral portion 941 and the third valve outer peripheral portion 951 .
  • the third valve 95 has a third valve outer peripheral portion 951 that forms the outer peripheral portion of the third valve 95, and a third flow path portion 963 is formed inside the third valve outer peripheral portion 951. It is The third valve 95 is connected to the cylindrical valve connecting portion 915 on one side of the third valve outer peripheral portion 951 in the axial direction DRa. The third valve 95 allows the fluid that has flowed into the second flow path portion 962 to flow into the third flow path portion 963 via the space 98 between the second valves.
  • the third channel portion 963 corresponds to the channel portion in the valve device.
  • the third valve outer peripheral portion 951 has a third outer peripheral portion that communicates the third flow path portion 963 with the third outlet port 263 via the third seal opening portion 583 when the shaft 92 rotates.
  • An opening 954 is formed.
  • the third valve 95 causes the fluid that has flowed into the third channel portion 963 to flow out of the device through the third outlet port 263 by communicating the third outer peripheral opening 954 with the third outlet port 263 .
  • a third outer peripheral opening 954 formed in the third valve outer peripheral portion 951 corresponds to an outer peripheral opening formed in the valve outer peripheral portion.
  • the third outer peripheral opening 954 is formed in the third valve outer peripheral portion 951 so as to extend along the circumferential direction of the axis.
  • the flow rate of the fluid flowing out of the device from the third valve 95 is adjusted according to the overlapping area of the third outer peripheral opening 954 and the third seal opening 583 when the shaft 92 rotates.
  • the shaft connecting portion 916 has a cylindrical shape, and connects the valve 90 and the shaft 92 by fixing the inserted shaft 92 .
  • the shaft connecting portion 916 transmits the rotational force of the shaft 92 to the valve 90 via the shaft connecting portion 916 when the shaft 92 rotates.
  • the shaft connecting portion 916 is formed extending from the second valve 94 to the third valve 95 toward the other side in the axial direction DRa.
  • the microcomputer 330 calculates the rotation angle of the valve 90 for supplying the distribution tube 136 with the required flow rate, that is, the rotation angle of the motor 71 .
  • the microcomputer 330 transmits information on the calculated rotation angle of the motor 71 to the water supply valve 152 .
  • the two fluid outlets that are not connected to the distribution tube 136 are fitted with blocking members.
  • the water supply valve 152 rotates the motor 71 based on the rotation angle information received from the microcomputer 330 .
  • the water supply valve 152 rotates the valve 90 via the gear portion 72 and the shaft 92 by rotating the motor 71 , and the necessary water is supplied from the first outer peripheral opening 934 , the second outer peripheral opening 944 , and the third outer peripheral opening 954 . flow of fluid.
  • the water supply valve 152 rotates the valve 90 to allow the first outer peripheral opening 934 of the first valve 93 to communicate with the first outlet port 261 .
  • the water supply valve 152 adjusts the overlapping area of the first outer peripheral opening 934 and the first seal opening 581 by adjusting the rotational position of the valve 90 .
  • the water supply valve 152 causes the fluid that has flowed into the valve housing space 23 from the inlet port 251 to flow into the first flow path portion 961 through the first inner opening portion 936, and then flows from the first outer peripheral opening portion 934 to the first outlet port 261. let it flow.
  • the microcomputer 330 controls the opening of the valve, which is the overlapping area of the first outer peripheral opening 934 and the first seal opening 581, thereby controlling the splashing distance of sprinkling water and supplying sprinkling water to the required position.
  • the water supply valve 152 connects the second outer peripheral opening 944 of the second valve 94 to the second outlet port 262 by rotating the valve 90 .
  • the water supply valve 152 adjusts the overlapping area of the second outer peripheral opening 944 and the second seal opening 582 by adjusting the rotational position of the valve 90 .
  • the water supply valve 152 causes the fluid that has flowed into the valve housing space 23 from the inlet port 251 to flow into the second flow path portion 962 via the second inner opening 946, and flows from the second outer peripheral opening 944 to the second outlet port 262. let it flow.
  • the microcomputer 330 controls the opening of the valve, which is the overlapping area of the second outer peripheral opening 944 and the second seal opening 582, thereby controlling the splashing distance of sprinkling water and supplying sprinkling water to the required position.
  • the water supply valve 152 rotates the valve 90 to allow the third outer peripheral opening 954 of the third valve 95 to communicate with the third outlet port 263 .
  • the water supply valve 152 adjusts the overlapping area of the third outer peripheral opening 954 and the third seal opening 583 by adjusting the rotational position of the valve 90 .
  • the water supply valve 152 causes the fluid that has flowed into the valve housing space 23 from the inlet port 251 to flow into the third flow path portion 963 via the second flow path portion 962 of the second valve 94, and flows from the third outer peripheral opening 954 to the third flow path portion 963. 3 to exit port 263 .
  • the microcomputer 330 controls the opening of the valve, which is the overlapping area of the third outer peripheral opening 954 and the third seal opening 583, thereby controlling the splashing distance of sprinkling water and supplying sprinkling water to the required position.
  • the water supply valve 152 adjusts the rotation angle of the motor 71 by detecting the rotation angle of the third gear 723 with the rotation angle sensor 73 and feeding back the detected rotation angle information to the microcomputer 330 .
  • the horizontal axis represents the rotation angle RA of the motor 71
  • the vertical axis represents the flow rate FR of the fluid flowing out of the valve device.
  • FO1 is the first valve 93
  • FO2 is the second valve 94
  • FO3 is the third valve 95.
  • FS indicates that the valve opening is fully open
  • FC indicates that the valve opening is fully closed
  • MO indicates that the valve opening is intermediate.
  • the intermediate degree of opening is the degree of opening between the fully closed state and the fully opened state.
  • a solid line graph in FIG. 16 indicates the relationship between the flow rate of the fluid flowing out from the third valve 95 and the rotation angle.
  • a dashed line graph in FIG. 16 indicates the relationship between the flow rate of the fluid flowing out of the second valve 94 and the rotation angle.
  • a dashed-dotted line graph in FIG. 16 shows the relationship between the flow rate of the fluid flowing out from the first valve 93 and the rotation angle.
  • the third valve 95 is fully open, the other valves are fully closed, and the fluid flows out of the device only through the third valve 95 .
  • the third valve 95 shifts to an intermediate opening, and when the rotation angle is further increased, all three valves are fully closed.
  • Each water supply valve 152 in the irrigation system 10 is configured to supply fluid from only one of the three valves, thereby controlling the splash distance and water supply amount to the field 20 according to the rotation angle.
  • the irrigation system 10 comprises a distribution tube 136 for applying irrigation water to the field 20 and a water supply valve 152 for controlling the pressure of the irrigation water flowing down the distribution tube 136 .
  • the irrigation system 10 includes a control device that controls the valve opening of the water supply valve 152 to control the splash distance of the irrigation water discharged from the distribution tube 136 through the through-hole.
  • the irrigation system 10 by controlling the valve opening of the water supply valve 152 to control the pressure of the irrigation water, the splash distance of the irrigation water discharged from the distribution tube 136 can be controlled. Therefore, the irrigation system 10 can perform accurate irrigation with an adjustable distance from the distribution tube 136 . For example, excessive watering to the vicinity of the distribution tube 136 and wasteful use of liquid fertilizer can be suppressed. In addition, since one distribution tube 136 has a large irrigable range, the number of distribution tubes 136 to be installed in the field 20 can be reduced.
  • the irrigation system 10 is capable of spraying water to the necessary places of the soil according to the growth of plants, and can suppress wasteful irrigation and realize water saving, so that irrigation cost can be suppressed.
  • the control device of the irrigation system 10 controls the splashing distance of the irrigation water supplied from the distribution tube 136 having a plurality of through holes to the field 20 where the plants 30 are grown.
  • the computing portion of the controller determines the opening of the water supply valve 152 that controls the pressure of the irrigation water flowing down the distribution tube 136 .
  • the output section of the controller outputs a control signal to the water supply valve to control the valve opening in order to control the splash distance of the sprinkling water discharged from the distribution tube 136 through the through hole.
  • the calculation unit determines the valve opening degree, and the output unit outputs a control signal for controlling the valve opening degree to the water supply valve 152 in order to control the splashing distance of sprinkling water.
  • the splash distance of the irrigation water discharged from the distribution tube 136 can be controlled.
  • This controller can provide precise irrigation with adjustable distance from the distribution tube 136 .
  • This control device is capable of spraying water to the necessary places in the soil in accordance with the growth of plants, and can also suppress wasteful irrigation and realize water saving, so that irrigation costs can be suppressed.
  • FIG. 17 A second embodiment will be described with reference to FIGS. 17 to 19.
  • FIG. 18 The irrigation system 10 of the second embodiment executes control processing of the water supply valve 152 according to FIG. 18 .
  • Configurations, actions, and effects that are not specifically described in the second embodiment are the same as those in the above-described embodiment, and only different points will be described below.
  • the control process for the water supply valve 152 shown in FIG. 18 is executed in the water supply process shown in FIG. 9 and the watering process shown in FIG.
  • Integrated calculation unit 600 and microcomputer 330 of monitoring unit 300 that receives the water supply signal output from integrated calculation unit 600 execute water supply processing shown in FIG.
  • step S600 the integrated calculation unit 600 outputs the longest watering distance to the monitoring unit 300 corresponding to the divided area to be watered.
  • the degree of root spread of the plant 30 in the field 20 changes depending on the growth state. Therefore, the longest rooting distance, corresponding to the distance between the distribution tube 136 and the end of the root that spreads the most, varies depending on the growing conditions.
  • the longest watering distance corresponds to the longest rooting distance of the relevant plant 30 .
  • the control device 200 controls the irrigation distance in water supply treatment and irrigation treatment from the vicinity of the distribution tube 136 including the distance 0 to the maximum irrigation distance.
  • the maximum sprinkling distance is the splashing distance at which sprinkling water can land farthest from the distribution tube 136 .
  • the integrated calculation unit 600 estimates the rooting distance of the plant 30 using the image captured by the camera 318 shown in FIG. 17, and determines the longest watering distance based on this rooting distance. In the drawing, the camera 318 is denoted as IS.
  • the integrated calculation unit 600 determines the branching distance of the plant 30 from the image of the plant 30 captured by the camera 318, and estimates the rooting distance from the branching distance. This estimation utilizes the fact that the branching distance is proportional to the rooting distance.
  • the integrated calculation unit 600 uses the estimated rooting distance to determine the maximum irrigation distance, which is the jumping distance that allows water to be supplied to the furthest root position from the distribution tube 136 . Thereby, the irrigation system 10 can perform appropriate irrigation at any time according to the degree of growth of the plants 30 .
  • step S610 the microcomputer 330 corresponding to the divided area to be watered determines whether divided watering or continuous watering is set.
  • Divided watering is a form in which water is sequentially watered for each of a plurality of different watering distances from the distribution tube 136 .
  • the continuous irrigation is controlled by continuously changing the opening of the water supply valve 152 so that the splashing distance changes smoothly from the vicinity of the distribution tube 136 to the maximum irrigation distance.
  • the setting of divided irrigation or continuous irrigation may be set in advance by the integrated calculation unit 600, or may be set by the user's operation on the input device 800, for example.
  • step S610 The processing after step S610 is mainly executed by the microcomputer 330 of each monitoring unit 300. If it is determined in step S610 that split watering is performed, the number of watering positions is set in step S620.
  • the irrigation position is also referred to as a division position of irrigation.
  • the number of watering positions corresponds to the number of soil sensors 311 located at different distances from the distribution tube 136 in the vertical direction to the distribution tube 136 within the longest watering distance.
  • step S630 a target irrigation amount, which is the target water supply amount supplied from the water supply valve 152, is set for each irrigation position.
  • FIG. 19 shows an example in which three watering positions located close to the distribution tube 136 are set in order of the first watering distance D1, the second watering distance D2, and the third watering distance D3.
  • the target water supply amount which is the target water supply amount supplied from the water supply valve 152, is set for each of the first water supply distance D1, the second water supply distance D2, and the third water supply distance D3.
  • step S640 the microcomputer 330 controls the valve opening of the water supply valve 152 so that the water splash distance reaches the watering position for watering among the plurality of watering positions, and watering is performed.
  • step S650 the water pressure sensor 153 and the soil sensor 311 measure the water flow rate during watering. This irrigation operation continues until the detected irrigation flow rate reaches the target irrigation amount in step S660.
  • step S670 the microcomputer 330 controls the water supply valve 152 to the fully closed state to end watering at this watering position.
  • next step S680 it is determined whether or not watering has been completed at all watering positions set in step S620. If watering at all watering positions has not ended, the process returns to step S640.
  • step S640 the microcomputer 330 controls the valve opening of the water supply valve 152 so that the water splash distance reaches the next watering position, and watering is performed. Watering at the next watering position continues until the detected watering flow rate reaches the target watering rate in step S660. If it is determined in step S680 that watering at all watering positions has been completed, water supply valve 152 is controlled to be fully closed in step S690 to end watering.
  • step S610 the integrated calculation unit 600 outputs the shortest watering position at the shortest distance from the distribution tube 136 in step S720.
  • the processing after step S730 is mainly executed by the microcomputer 330 of each monitoring unit 300.
  • FIG. The degree of root spread of the plant 30 changes depending on the growth state. Therefore, the shortest root-spreading distance corresponding to the distance from the distribution tube 136 to the nearest root changes depending on the growth state.
  • the shortest watering distance corresponds to the shortest rooting distance of the relevant plant 30 .
  • the control device 200 controls the irrigation distance in water supply processing and irrigation processing from the shortest irrigation distance to the maximum irrigation distance.
  • the shortest sprinkling distance may be the jumping distance at which sprinkling water can land closest to the distribution tube 136, or the distance at which the sprinkling water seeps out of the distribution tube 136 when the splashing distance is zero.
  • the integrated calculation unit 600 estimates the rooting distance of the plant 30 using the image captured by the camera 318, and determines the shortest watering distance based on this rooting distance.
  • the integrated calculation unit 600 uses the estimated rooting distance to determine the shortest irrigation distance, which is the jumping distance that water can be supplied from the distribution tube 136 to the closest root position.
  • a target irrigation amount which is the target water supply amount supplied from the water supply valve 152, is set over the shortest irrigation distance to the longest irrigation distance.
  • This target watering amount is also the average target watering amount from the shortest watering distance to the longest watering distance.
  • the first watering distance D1 corresponds to the shortest watering distance
  • the third watering distance D3 corresponds to the longest watering distance.
  • step S740 the microcomputer 330 controls the valve opening of the water supply valve 152 so that water is continuously sprayed from the shortest watering distance to the longest watering distance, thereby watering.
  • step S740 the microcomputer 330 controls energization of the water supply valve 152 by, for example, lamp operation shown in FIG. 25 and step operation shown in FIG. With such energization control, the valve opening degree of the water supply valve 152 changes finely and continuously. According to the control in step S740, it is possible to provide an even amount of watering, in which flying water lands on the entire soil in the range from the shortest watering distance to the longest watering distance, and the water is spread all over the soil.
  • step S750 the water pressure sensor 153 and the soil sensor 311 measure the water flow rate during watering. This irrigation operation continues until the detected irrigation flow rate reaches the target irrigation amount in step S760.
  • the microcomputer 330 executes the process of step S770.
  • step S770 the microcomputer 330 controls the water supply valve 152 to the fully closed state to end the continuous irrigation.
  • the control device changes and controls the valve opening of the water supply valve 152 so that the splashing water distance is continuously changed between the shortest watering position and the longest watering position with respect to the distribution tube 136 .
  • the opening of the valve is always controlled to change the water splash distance over a wide range between the shortest watering position and the longest watering position. This wide-area, continuous watering can provide a near-uniform and even amount of water to the soil areas where the plants require watering.
  • the control device controls the valve opening of the water supply valve 152 so that the watering distance reaching the longest watering distance determined based on the photographed image of the plant 30 is obtained.
  • the size of the plant detected from the photographed image of the plant for example, the rooting range can be obtained according to the branching range, and the maximum watering distance can be determined with high accuracy. For this reason, it is possible to carry out precise watering to a necessary range suitable for the growing state of the plant.
  • the control device controls the valve opening of the water supply valve 152 to control the water splash distance so as to provide concentrated watering for each watering position for multiple watering positions at different distances from the distribution tube 136. . According to this control, it is possible to control the opening degree of the valve so as to supply the target watering amount to each of the plurality of watering positions when watering is performed.
  • This intensive split irrigation can provide the required amount of water to the entire soil where the plants need to be irrigated, by setting appropriate irrigation positions.
  • the control device controls the valve opening of the water supply valve 152 when the target watering amount is reached for the watering position where intensive watering is being carried out, changes the water splashing distance, and intensively waters the next watering position. I will provide a.
  • the valve opening degree is sequentially controlled so that the target watering amount is supplied to each of the plurality of watering positions and this is performed sequentially. This sequential control of the valve opening makes it possible to efficiently provide the required amount of water to the entire soil where the plants require watering.
  • a plurality of soil sensors 311 can detect soil information, and are provided in the field 20 at different distances from the distribution tube 136 . Based on the information detected by the plurality of soil sensors 311, the control device measures the splashing distance in watering. According to this, it becomes possible to detect the soil water content and the watering position at the same time, which contributes to more accurate watering.
  • a third embodiment will be described with reference to FIG.
  • the irrigation system 10 of 3rd Embodiment performs the control process of the water supply valve 152 according to FIG. Configurations, functions, and effects that are not specifically described in the third embodiment are the same as those in the above-described embodiment, and only different points will be described below.
  • the opening of the water supply valve 152 is changed by using the flow rate as a trigger, whereas in the third embodiment, the watering time is used as a trigger to change the opening of the water supply valve 152 .
  • microcomputer 330 sets a target water supply time, which is a target water supply time during which water is supplied from water supply valve 152, for each water supply position in step S630A.
  • the target watering time is set to a value that satisfies the target watering amount that can be supplied to the soil at each watering position when divided watering is performed for each watering position set in step S620.
  • Microcomputer 330 continues until the watering time started to measure in step S650A reaches the target watering time in step S660A.
  • the microcomputer 330 determines that the detected watering time has reached the target watering time, the microcomputer 330 sequentially executes processing thereafter, and executes processing for ending watering in step S690.
  • the microcomputer 330 sets the target watering time in step S730A.
  • the target irrigation time is set to a value that satisfies the target irrigation amount that can be supplied to the soil in the irrigation range when water is continuously irrigated over the range from the shortest irrigation distance to the maximum irrigation distance.
  • Microcomputer 330 continues until the watering time started to measure in step S750A reaches the target watering time in step S760A.
  • the microcomputer 330 executes a process of ending watering in step S770.
  • the control device controls the valve opening of the water supply valve 152 to change the water splashing distance, and intensively waters the next watering position. I will provide a.
  • the opening degree of the valve is sequentially controlled so that the amount of water corresponding to the target watering time is supplied to each of the plurality of watering positions and this is performed sequentially. Sequential control of the valve opening degree based on the target watering time can efficiently provide the required amount of water to the entire soil where plants need watering.
  • a fourth embodiment will be described with reference to FIG.
  • the irrigation system 10 of the fourth embodiment executes control processing of the water supply valve 152 according to FIG. 21 .
  • Configurations, actions, and effects that are not specifically described in the fourth embodiment are the same as those in the above-described embodiments, and only different points will be described below.
  • step S632 an allowable value for the wind speed is set for each watering position. This permissible value is set to a value at which it can be estimated that, if this value is exceeded, water sprayed from the distribution tube 136 will not reach the target watering position. This allowable value is stored in the storage unit 333, for example.
  • step S654 After detecting the water flow rate during watering in step S650, the current wind speed detected by the wind sensor 317 or the like is acquired in step S652. In step S654, it is determined whether or not the current wind speed during watering is equal to or less than the allowable value.
  • step S654 If it is determined in step S654 that the current wind speed is equal to or less than the allowable value, then the target watering position has been watered, so the process proceeds to step S660 to continue watering. If it is determined in step S654 that the current wind speed exceeds the allowable value, it can be estimated that the target watering position has not been watered. Therefore, in step S656, the water supply valve 152 is controlled to be fully closed to stop watering at the current position. Further, in step S656, the amount of watering performed so far is calculated and stored in the storage unit 333, and the process proceeds to step S640 to perform watering at the next watering position.
  • step S640 when it can be estimated that water cannot be sprayed to a desired watering position due to the current wind speed state, wasteful watering can be suppressed. In this way, watering can be performed again in step S640 after a determination of NO is made in step S680 for the watering position once treated as non-performing watering.
  • step S752 After detecting the irrigation flow rate during irrigation in step S750, the current wind speed detected by the wind sensor 317 or the like is acquired in step S751.
  • step S752 similarly to step S654, it is determined whether or not the current wind speed during watering is below the allowable value. If it is determined in step S752 that the current wind speed is equal to or less than the allowable value, watering can be performed at the target watering position in continuous watering, so the process proceeds to step S760 to continue watering. If it is determined in step S752 that the current wind speed exceeds the allowable value, it can be estimated that water cannot be applied to the target watering position in continuous watering. Therefore, in step S753, the water supply valve 152 is controlled to be fully closed to stop continuous watering. Further, in step S753, the amount of watering performed so far is calculated and stored in the storage unit 333, and the process proceeds to step S753, in which watering is stopped until the current wind speed becomes equal to or less than the allowable value.
  • step S752 When it is determined in step S752 that the current wind speed is equal to or less than the allowable value, continuous watering is resumed, and in step S760 continuous watering is continued until the watering amount reaches the target watering amount.
  • the amount of watering to be determined in step S760 the sum of the amounts of watering stored in the storage unit 333 in step S753 is used. As described above, when it can be estimated that a situation has occurred in which water cannot be splashed to a desired watering position due to the current wind speed, watering can be immediately stopped to suppress unnecessary continuous watering.
  • the control device stops controlling the splash distance of watering when the wind speed of the field 20 exceeds the allowable value. According to this control, it is possible to prevent watering that does not reach the desired splash distance due to the influence of the wind. Therefore, wasteful watering can be suppressed, watering costs can be reduced, and accurate watering that contributes to the growth of the plants 30 can be provided.
  • the control device stops controlling the watering distance when the wind speed in the field 20 exceeds the allowable value.
  • the controller controls the valve opening of the water supply valve 152 to control the splash distance so as to provide concentrated irrigation to the next irrigation position. According to this control, when the desired flying distance cannot be reached due to the influence of the wind, water is applied to the next watering position to efficiently use water. Therefore, it is possible to reduce watering costs by suppressing wasteful watering, and to try watering again when the situation becomes less susceptible to wind.
  • FIG. 22 A fifth embodiment will be described with reference to FIGS. 22 and 23.
  • FIG. The irrigation system 10 of the fifth embodiment executes control processing of the water supply valve 152 according to FIG. 22 .
  • Configurations, actions, and effects that are not specifically described in the fifth embodiment are the same as those in the above-described embodiments, and only different points will be described below.
  • each monitoring unit 300 performs processing for controlling watering by increasing or decreasing the amount of watering according to the detection information of the soil sensor 311 .
  • the control processing of the water supply valve 152 shown in FIG. 22 is executed in the water supply processing shown in FIG. 9 and the watering processing shown in FIG.
  • the microcomputer 330 of the monitoring unit 300 that has received the water supply signal output from the integrated calculation unit 600 mainly executes the water supply process shown in FIG.
  • the microcomputer 330 corresponding to the divided area to be watered sets the position of the soil sensor 311 installed in the field 20 in step S800.
  • the soil sensor 311 is installed in each divided area in advance, and its position is stored in the storage unit 333 .
  • a target sensor value is set for each soil sensor 311 that has been set.
  • FIG. 23 shows an example in which the soil sensors 311 are set at three positions close to the distribution tube 136 in order of the first watering distance D1, the second watering distance D2, and the third watering distance D3.
  • a target watering amount which is a target sensor value supplied from the water supply valve 152, is set for each of the first watering distance D1, the second watering distance D2, and the third watering distance D3.
  • the target sensor value is a value related to the target watering amount required for the watering position corresponding to the position of the soil sensor 311 .
  • the soil sensor 311 is a device capable of detecting various types of soil information contained in soil.
  • the irrigation system 10 sets the target sensor value to the target irrigation amount required for the plants 30 to grow properly. In this case, a watering process is required to replenish the amount of moisture that is insufficient with respect to the target sensor value.
  • the soil sensor 311 detects the soil temperature
  • the ease of absorbing water in the soil can be calculated from the current soil temperature, for example. Based on this data on the ease of absorbing water, it is possible to obtain the target sensor value of how much target irrigation water should be supplied to the soil to reach the water supply required for growth.
  • a target watering amount corresponding to the water potential value is set as the target sensor value.
  • the irrigation system 10 is set to suppress the target irrigation amount, which is the target sensor value. If the detected osmotic pressure is less than the set value, the water absorption is not good, so the irrigation system 10 sets the target irrigation amount, which is the target sensor value, to be higher than in the former case.
  • the target sensor value is set to the target watering amount according to the electrical conductivity.
  • the irrigation system 10 is set to suppress the target irrigation amount, which is the target sensor value, if the detected electrical conductivity is greater than the set value.
  • the irrigation system 10 sets the target irrigation amount, which is the target sensor value, to be larger than in the former case if the detected electrical conductivity value is equal to or less than the set value.
  • step S820 the microcomputer 330 controls the valve opening of the water supply valve 152 so that the water splash distance reaches the watering position for watering among a plurality of watering positions corresponding to the position of the soil sensor 311. Carry out irrigation.
  • step S830 the sensor value during watering is detected using the measured value by the soil sensor 311. FIG. This irrigation practice continues until the detected sensor value reaches the target sensor value in step S840.
  • the microcomputer 330 controls the water supply valve 152 to the fully closed state in step S850 to end watering at this watering position.
  • step S860 it is determined whether or not watering at all the watering positions set in step S800 has ended. If watering has not been completed at all watering positions, the process returns to step S820. In step S820, microcomputer 330 controls the degree of opening of water supply valve 152 so that the water splash distance reaches the next watering position, and watering is performed. Irrigation at the next irrigation position continues until the detected sensor value reaches the target sensor value in step S840. If it is determined in step S860 that watering at all watering positions has been completed, water supply valve 152 is controlled to be fully closed in step S870 to end watering.
  • Steps S630, S650, and S660 described using FIG. 21 may be replaced with S630A, S650A, and S660A in FIG. 21, respectively.
  • steps S730, S750 and S760 in FIG. 21 can be replaced with S730A, S750A and S760A in FIG. 21, respectively.
  • the storage unit 333 may store the watering time so far.
  • FIG. 24 is an example showing the relationship between the valve opening degree of the water supply valve 152 and the soil water content AW during watering.
  • the horizontal axis is time and the vertical axis is valve opening and soil moisture content.
  • the soil moisture content at each location can be detected by a corresponding soil sensor 311 .
  • the valve opening degree is controlled in three stages with a relationship of VO1 ⁇ VO2 ⁇ VO3.
  • FIG. 24 shows changes in soil water content at watering positions of the first watering distance D1, the second watering distance D2, and the third watering distance D3.
  • the microcomputer 330 energizes the motor 71 at time T1 and time T2 in FIG.
  • the energization at time T1 increases the valve opening from VO1 to VO2.
  • the energization at time T2 increases the valve opening from VO2 to VO3.
  • Data relating to the valve opening degree and the watering distance as described above are stored in the storage unit 333 .
  • the processing unit 334 determines the necessary valve opening degree by calculation using the data stored in the storage unit 333 .
  • the signal output unit 332 outputs a control signal for controlling the opening of the valve to the water supply valve 152 .
  • the monitoring unit 300 executes such energization control related to the valve opening degree control with a predetermined time as a trigger.
  • the monitoring unit 300 measures the splashing distance from the distribution tube 136 based on the detection values of a plurality of soil sensors 311 installed in advance.
  • FIG. 25 is an example showing the relationship between the valve opening degree of the water supply valve 152 and the splashing distance during watering. Since the valve opening is proportional to the value of the current applied to the motor 71, FIG. 25 plots time on the horizontal axis and the current value and the water splash distance on the vertical axis.
  • a solid line graph in FIG. 25 indicates a current value or a valve opening indicating lamp operation.
  • FIG. 25 shows the relationship between the valve opening degree and the splash distance in lamp operation. The dashed line graph in FIG. 25 indicates the splash distance.
  • the microcomputer 330 energizes the motor 71 by operating the lamp indicated by the solid line in FIG.
  • the microcomputer 330 repeats and continues the energization of a current waveform whose start and end times are zero and whose median value is the maximum current value mCV at times 0 to T1, times T1 to T2, and times T2 to T3, respectively.
  • a current waveform is also called lamp operation.
  • the splashing distance with respect to the distribution tube 136 is controlled so that it is zero at the start and end, and the median value is the maximum opening mFD.
  • Data relating to the energization data due to lamp operation and the splashing distance is stored in the storage unit 333 .
  • the processing unit 334 determines the necessary valve opening for lamp operation by calculation using the data stored in the storage unit 333 .
  • the signal output unit 332 outputs a control signal to the water supply valve 152 for controlling the opening degree of the valve.
  • the output section of the control device outputs to the water supply valve 152 a control signal for energizing the lamp to control the water splash distance. According to this energization control, it is possible to evenly supply water over a wide area around the distribution tube 136 .
  • FIG. 26 is an example showing the relationship between the valve opening degree of the water supply valve 152 and the splashing distance during watering.
  • the horizontal axis represents the time and the vertical axis represents the valve opening degree and the splash distance.
  • a graph indicated by a solid line in FIG. 26 indicates the valve opening.
  • the dashed line graph in FIG. 26 indicates the splash distance.
  • FIG. 26 shows the relationship between the valve opening degree and the splash distance due to the step operation.
  • the microcomputer 330 energizes the motor 71 by the step operation indicated by the solid line in FIG. 26 to control the valve opening of the water supply valve 152 .
  • the microcomputer 330 energizes the motor 71 at times T1, T2, and T3 in FIG. 26, and controls the valve opening of the water supply valve 152 to increase stepwise.
  • the microcomputer 330 energizes the motor 71 at times T4, T5, and T6 in a direction opposite to that at time T1, and controls the valve opening of the water supply valve 152 to decrease stepwise.
  • the valve opening is set to the first opening during times T1 to T2 and T5 to T6, and is set to the second opening during times T2 to T3 and T4 to T5. .
  • the valve opening degree is set to the third opening degree, which is the largest opening degree between times T3 and T4.
  • the splashing water distance from the distribution tube 136 reaches the first watering distance D1 at times T1 to T2 and times T5 to T6, for example.
  • the splash distance from the distribution tube 136 reaches the second irrigation distance D2, for example, at times T2-T3 and T4-T5.
  • the splashed water distance from the distribution tube 136 reaches the third irrigation distance D3, for example, between times T3 and T4.
  • the monitoring unit 300 executes energization control related to this valve opening degree control with a predetermined time as a trigger.
  • the output section of the control device outputs to the water supply valve 152 a control signal for executing the step operation energization in order to control the splashing distance of the water.
  • this energization control it is possible to suppress the energization time for controlling the splashing distance of the sprinkling water discharged from the distribution tube 136, so that the sprinkling can be carried out in a power-saving manner.
  • FIG. 27 shows an example showing the positional relationship among the distribution tube 136, the water supply valve 152 and the water pressure sensor 153.
  • Vertical pipe 133 is connected to a plurality of passages leading to a plurality of distribution tubes 136 .
  • Each of the plurality of passages is a passage that connects distribution tube 136 and vertical pipe 133 .
  • a water supply valve 152 and a water pressure sensor 153a or a flow rate sensor 154a are provided in the passage between each distribution tube 136 and the vertical pipe 133 .
  • the water pressure sensor 153 a or the flow rate sensor 154 a is provided downstream of the water supply valve 152 .
  • the vertical pipe 133 is connected to a passage leading to the inlet port 251 of each water supply valve 152 .
  • Each distribution tube 136 is connected to a passage leading to the first pipe portion 51 which is one of the fluid outflow portions of each water supply valve 152 .
  • the second pipe portion 52 and the third pipe portion 53 which are other fluid outflow portions, are closed by the closing member.
  • the water pressure sensor 153b or the flow rate sensor 154b may be provided downstream of the most downstream through-hole in the distribution tube 136 .
  • the distribution tube 136 included in the irrigation system 10 may be configured to expand and contract according to the water pressure circulating therein.
  • the distribution tube 136 is formed with a material and hardness that can be elastically deformed according to water pressure, for example.
  • the water pressure detected by the water pressure sensor 153a and the water pressure sensor 153b which are pressure sensors capable of detecting the pressure value in the distribution tube 136, is output to the microcomputer 330.
  • the microcomputer 330 uses the water pressure detected by the water pressure sensor 153a and the water pressure sensor 153b to feedback-control the valve opening of each water supply valve 152 to the target opening.
  • the flow rate sensor 154 a and the flow rate sensor 154 b are flow rate sensors capable of detecting the flow rate value in the distribution tube 136 .
  • the microcomputer 330 uses the flow rates detected by the flow rate sensors 154a and 154b to feedback-control the opening degrees of the water supply valves 152 to the target opening degrees.
  • the microcomputer 330 can control the flow rate and pressure of each distribution tube due to changes in the height difference of the field 20, fluctuations in the pressure of the water supply source, fluctuations in the amount of water distributed from the vertical pipe 133 to the distribution tubes, and the like. , it is possible to perform sprinkling that satisfies the target discharge amount.
  • valve opening degree control in the water supply valve 152 will be described with reference to FIG.
  • the amount of water applied to field 20 via distribution tube 136 depends on the characteristics of the tube. Therefore, there may be a difference in the amount of irrigation water between the vicinity of the water supply valve 152 and the end of the tube due to the time lag until the irrigation water spreads.
  • the control process for the water supply valve 152 shown in FIG. 28 is executed in the water supply process shown in FIG. 9 and the watering process shown in FIG.
  • Integrated calculation unit 600 and microcomputer 330 of monitoring unit 300 that receives the water supply signal output from integrated calculation unit 600 execute the control shown in FIG.
  • the integrated calculation unit 600 instructs the valve opening threshold of the water supply valve 152 when watering is started.
  • the integrated calculation unit 600 executes processing for instructing the valve opening degree threshold value stored in the storage unit 333 .
  • step S910 the integrated calculation unit 600 instructs the target filling time required for the water supply to fill up to the end of the distribution tube 136 when watering is started.
  • the target fill time is an estimate of the amount of time it will take for feed water to begin flowing into distribution tube 136 when water valve 152 is open and fill to the end.
  • the target filling time it can be estimated that the water supply has evenly spread to the through hole at the end of the distribution tube 136 .
  • the distal end of distribution tube 136 corresponds to the most downstream through-hole in distribution tube 136 .
  • the processing unit 334 determines that the filling condition is met when the target filling time is reached after the valve opening of the water supply valve 152 is controlled to be equal to or less than the valve opening threshold.
  • the processing unit 334 uses Equation 1 stored in the storage unit 333 to calculate the target filling time CT.
  • the tube flow coefficient is a coefficient determined by the distribution tube 136 material, coefficient of friction, water spray characteristics, and the like.
  • L is the length (mm) from the upstream end of the tube to the terminal end.
  • D is the inner diameter (mm) of the tube.
  • Q is the pressure loss characteristic value (mm 3 /sec) of the opening degree of the water supply valve 152 .
  • the target filling time CT is an estimated value that can be calculated according to the pressure upstream of the valve, the pressure loss characteristic value of the valve opening, the length of the tube, and the inner diameter of the tube.
  • step S920 the microcomputer 330 controls the valve opening degree of the water supply valve 152 to be equal to or less than the valve opening threshold value instructed in step S900 to perform watering.
  • step S ⁇ b>920 the signal output unit 332 outputs to the water supply valve 152 a control signal for controlling the valve opening to be equal to or less than the valve opening threshold.
  • step S930 the elapsed time after the valve opening is controlled to be equal to or less than the valve opening threshold is measured. The irrigation controlled below the valve opening threshold is continued until the measured elapsed time reaches the target filling time CT in step S940.
  • the microcomputer 330 increases the opening of the water supply valve 152 to the target opening in step S950. In this way, since the elapsed time of execution of the throttle opening satisfies the filling condition, the throttle valve opening at the beginning of watering is shifted to the normal watering mode.
  • the target opening is an opening that is greater than the valve opening threshold, and is a valve opening that satisfies a target amount of water required for watering or a target flying distance.
  • step S950 the signal output unit 332 outputs to the water supply valve 152 a control signal for controlling the valve opening to the target opening.
  • a control signal for controlling the valve opening to the target opening.
  • the normal irrigation mode transitioned in the flow chart of FIG. 28 is the irrigation implementation described in the previous embodiments.
  • the valve opening control described with reference to FIG. 28 provides even irrigation all the way to the end of the tube without requiring watering information at the end of the tube.
  • valve opening degree control in the water supply valve 152 will be described with reference to FIGS. 29 and 30.
  • FIG. The valve opening degree control according to FIG. 29 differs from the control described in FIG. 28 in steps S910A, S930A, and S940A, and the other steps are the same.
  • the control processing of the water supply valve 152 shown in FIGS. 29 and 30 is executed in the water supply processing shown in FIG. 9 and the watering processing shown in FIG.
  • Integrated calculation unit 600 and microcomputer 330 of monitoring unit 300 that receives the water supply signal output from integrated calculation unit 600 execute the control shown in FIG. Only different points of the control shown in FIG. 29 will be described below.
  • the integrated calculation unit 600 indicates a set pressure value SP that can be estimated to fill the distribution tube 136 with water to the end when watering is started.
  • the set pressure value SP is a pressure value at the end that can be estimated to fill the end after the water supply valve 152 is opened and water starts to flow into the distribution tube 136 .
  • the set pressure value SP is stored in the storage section 333 .
  • the processing unit 334 uses the water pressure value detected by the water pressure sensor 153b shown in FIG. 27 as the tube end pressure value.
  • step S930A after controlling the valve opening to be equal to or less than the valve opening threshold, the water pressure sensor 153b measures the pressure value at the end of the tube.
  • the irrigation controlled below the valve opening threshold is continued until the measured pressure value reaches the set pressure value SP in step S940A.
  • the microcomputer 330 raises the valve opening degree of the water supply valve 152 to the target opening degree and controls it in step S950. Since the pressure value at the end of the tube satisfies the filling condition in this manner, the opening of the throttle valve at the beginning of watering is shifted to the normal watering mode.
  • FIG. 30 shows a timing chart for the control shown in FIG.
  • the valve opening VO in FIG. 30 is controlled below the valve opening threshold from time T1 to time T2, and is controlled to the target opening when the water pressure sensor value PV reaches the set pressure value SP.
  • the reaching distance AD of water in the tube gradually increases from time T1 to time T2, and reaches the end of the tube near time T2.
  • water starts to be discharged from the most upstream through hole of the tube, and at time T2, water starts to be discharged from the through hole at the end of the tube.
  • the water sprinkling amount UIV at the tube inlet is constant from time T1 to time T2, increases at time T2, and thereafter becomes a large value.
  • the spray amount EIV at the tube end is zero from time T1 to time T2, and after increasing at time T2, it becomes a value equivalent to the spray amount UIV at the tube upstream.
  • the signal output unit 332 controls the opening of the water supply valve to the target opening. According to the control described in FIG. 29 above, it is possible to shift to the normal irrigation mode after the water reaches the end of the tube. According to the control of FIG. 29, it is possible to provide irrigation that can suppress variations in the irrigation amount between the vicinity of the water supply valve 152 and the end of the tube.
  • the normal irrigation mode transitioned in the flow chart of FIG. 29 is the irrigation implementation described in the previous embodiments. According to the valve opening degree control described with reference to FIGS. 29 and 30, it is possible to detect with high accuracy that water has spread to the end of the tube, and wasteful watering time can be reduced.
  • valve opening degree control in the water supply valve 152 will be described with reference to FIGS. 31 and 32.
  • FIG. The valve opening degree control according to FIG. 31 differs from the control described in FIG. 28 in steps S910B, S930B, and S940B, and the other steps are the same.
  • the control processing of the water supply valve 152 shown in FIGS. 31 and 32 is executed in the water supply processing shown in FIG. 9 and the watering processing shown in FIG.
  • Integrated calculation unit 600 and microcomputer 330 of monitoring unit 300 that receives the water supply signal output from integrated calculation unit 600 execute the control shown in FIG. Only the points of difference in the control shown in FIG. 31 will be described below.
  • the integrated calculation unit 600 indicates an estimated set flow rate value SF at which the water supply is filled up to the end of the distribution tube 136 when watering is started.
  • the set flow rate value SF is a flow rate value at the end where it can be estimated that the end is filled after the water supply valve 152 is opened and feed water begins to flow into the distribution tube 136 .
  • the set flow rate value SF is stored in the storage section 333 . When the flow rate value at the end of the tube reaches the set flow rate value SF, it can be estimated that the water supply has evenly spread to the through hole at the end of the distribution tube 136 .
  • the processing unit 334 uses the flow rate value detected by the flow rate sensor 154b shown in FIG. 27 as the flow rate value at the end of the tube.
  • step S930B after controlling the valve opening to be equal to or less than the valve opening threshold, the flow sensor 154b measures the flow rate at the end of the tube.
  • the watering that is controlled below the valve opening threshold is continued until the measured flow rate value reaches the set flow rate value SF in step S940B.
  • the microcomputer 330 increases the valve opening degree of the water supply valve 152 to the target opening degree in step S950 and controls it. Since the flow rate value at the end of the tube satisfies the filling condition in this manner, the opening of the throttle valve at the beginning of watering is shifted to the normal watering mode.
  • FIG. 32 shows a timing chart for the control shown in FIG.
  • the valve opening VO in FIG. 32 is controlled below the valve opening threshold from time T1 to time T2, and is controlled to the target opening when the flow rate sensor value FV reaches the set flow rate value SF.
  • the reachable distance AD of water in the tube gradually increases from time T1 to time T2, and reaches the end of the tube near time T2.
  • the spray amount UIV at the tube inlet is constant from time T1 to time T2, increases at time T2, and then becomes a large value.
  • the spray amount EIV at the tube end is zero from time T1 to time T2, and after increasing at time T2, it becomes a value equivalent to the spray amount UIV at the tube upstream.
  • the signal output unit 332 controls the valve opening degree of the water supply valve to the target opening degree.
  • the valve opening degree control described with reference to FIGS. 28 to 32 controls the valve opening degree of the water supply valve to be less than the valve opening threshold value, which is a value smaller than the target opening degree, when watering is started.
  • the processing unit 334 determines that a filling condition that can be estimated that water has filled up to the end of the distribution tube is satisfied
  • the signal output unit 332 controls the valve opening degree of the water supply valve to the target opening degree. According to this, it is possible to avoid a situation in which a large amount of water is sprayed from the upstream side before water is sprayed from the terminal side of the distribution tube during watering, and it is possible to provide uniform water supply to the terminal end of the tube.
  • a distribution tube (136) provided in a field (20) for growing plants (30) and having a plurality of through-holes for watering the field; a water valve (152) for controlling the pressure of irrigation water flowing down the distribution tube; a control device (330) for controlling the opening degree of the water supply valve to control the splashing distance of the sprinkling water discharged from the distribution tube through the through-hole; Irrigation system with
  • the control device changes and controls the valve opening of the water supply valve so that the water spray distance continuously changes between the shortest watering position and the longest watering position with respect to the distribution tube.
  • the control device controls the valve opening of the water supply valve so as to provide intensive watering to each watering position for a plurality of watering positions having different distances from the distribution tube.
  • the controller controls the water supply valve so as to stop controlling the water splash distance when the wind speed of the field exceeds an allowable value and provide concentrated watering to the next watering position.
  • the irrigation system according to any one of technical ideas 4 to 6, wherein the water splash distance is controlled by controlling the opening of the valve.
  • the control device controls the valve opening of the water supply valve to a valve opening threshold, which is a value smaller than the target opening, when starting the watering, and presumes that the end of the distribution tube is filled with water.
  • a valve opening threshold which is a value smaller than the target opening, when starting the watering, and presumes that the end of the distribution tube is filled with water.
  • the irrigation system according to any one of technical ideas 1 to 9, wherein the valve opening degree of the water supply valve is controlled to a target opening degree when a filling condition is satisfied.
  • a pressure sensor for detecting a pressure value at the end of the distribution tube;
  • the control device controls the valve opening degree of the water supply valve to be equal to or less than the valve opening threshold value, and then, when the filling condition is satisfied based on the pressure value detected by the pressure sensor, the valve opening of the water supply valve.
  • the irrigation system according to technical idea 11, which controls the degree of opening to the target degree of opening.
  • a flow sensor for detecting a flow rate value at the end of the distribution tube;
  • the control device controls the valve opening degree of the water supply valve to be equal to or less than the valve opening threshold value, and then, when the filling condition is satisfied based on the flow rate value detected by the flow sensor, the valve opening of the water supply valve.
  • the irrigation system according to technical idea 11, which controls the degree of opening to the target degree of opening.
  • a control device comprising:
  • the output unit outputs a control signal to the water supply valve to change the opening of the valve so that the water spray distance continuously changes between the shortest watering position and the longest watering position with respect to the distribution tube. 17.
  • the control device according to any one of technical ideas 15 to 17.
  • the computing unit determines the opening degree of the valve for providing concentrated watering for each watering position with respect to a plurality of watering positions having different distances from the distribution tube, 17.
  • the control device according to any one of technical ideas 15 to 17, wherein the output unit outputs a control signal for controlling the opening of the valve to the water supply valve.
  • the output unit outputs to the water supply valve a control signal for controlling the valve opening to be equal to or less than a valve opening threshold, which is a value smaller than the target opening, when the watering is started;
  • a valve opening threshold which is a value smaller than the target opening, when the watering is started;
  • the output unit controls the valve opening degree of the water supply valve to a target opening degree when the calculating unit determines that a filling condition that can be estimated that the water is filled to the end of the distribution tube is established.
  • the control device according to any one of 15 to 19.
  • the calculation unit After controlling the valve opening degree of the water supply valve to be equal to or less than the valve opening threshold value, the calculation unit detects the pressure value detected by the pressure sensor (153b) that detects the pressure value at the end of the distribution tube. 21. The control device according to technical idea 20, wherein the output unit controls the valve opening of the water supply valve to the target opening when it is determined that the filling condition is satisfied.
  • the calculation unit After controlling the valve opening degree of the water supply valve to be equal to or less than the valve opening threshold value, the calculation unit detects the flow rate value detected by a flow rate sensor (154b) that detects the flow rate value at the end of the distribution tube. 21.
  • the control device according to technical idea 20 wherein the output unit controls the valve opening of the water supply valve to the target opening when it is determined that the filling condition is satisfied.

Abstract

A watering system (10) individually monitors the respective environments of a plurality of divided areas in a field (20), with monitoring units (300) corresponding to each divided area. The supply of water in each divided area is controlled individually by a corresponding monitoring unit (300) and water supply valve (152). The watering system (10) is provided with a plurality of distribution tubes (136) which are provided in the field (20) where plants are grown, and in which are formed a plurality of through-holes for sprinkling water on the field (20). The watering system (10) is provided with water supply valves (152) that control the pressure of water which flows downstream to distribution tubes (136). Microcomputers (330) of the monitoring units (300) control the degree of opening of the water supply valves (152) and thereby control the water discharge distance of water discharged from the distribution tubes (136) via the through-holes.

Description

潅水システムおよび制御装置Irrigation system and controller 関連出願の相互参照Cross-reference to related applications
 この出願は、2022年2月28日に日本に出願された特許出願第2022-029005号を基礎としており、基礎の出願の内容を、全体的に、参照により援用している。 This application is based on Patent Application No. 2022-029005 filed in Japan on February 28, 2022, and the content of the underlying application is incorporated by reference in its entirety.
 この明細書における開示は、圃場への潅水の供給を制御する潅水システムおよび制御装置に関するものである。 The disclosure in this specification relates to an irrigation system and control device for controlling the supply of irrigation water to fields.
 特許文献1は、潅水システムを開示している。 Patent Document 1 discloses an irrigation system.
国際公開第2019/016684号WO2019/016684
 特許文献1によれば、点滴チューブに対する水の供給を許可または遮断するバルブを開閉することにより、点滴チューブからの潅水の供給と停止を制御する。このようにバルブ開状態では点滴チューブから水が浸み出してチューブ近傍の土壌に潅水できる。しかしながら、適宜、点滴チューブから離れた所望位置の土壌に水を飛ばして潅水することができない。このため、特許文献1の潅水システムでは、必要とする場所に的確に潅水を提供する点において改善の余地がある。 According to Patent Document 1, the supply and stop of water supply from the drip tube is controlled by opening and closing a valve that permits or blocks the supply of water to the drip tube. In this manner, when the valve is open, water seeps out of the drip tube and can be applied to the soil in the vicinity of the tube. However, it is not possible to irrigate the soil at a desired position away from the drip tube as appropriate. For this reason, the irrigation system of Patent Document 1 has room for improvement in terms of precisely providing irrigation to the required location.
 この明細書における開示の目的は、潅水時に分配チューブからの飛水距離を調整可能な潅水システムおよび制御装置を提供することである。 An object of the disclosure in this specification is to provide an irrigation system and a control device that can adjust the water spray distance from the distribution tube during irrigation.
 この明細書に開示された複数の態様は、それぞれの目的を達成するために、互いに異なる技術的手段を採用する。また、特許請求の範囲に記載した括弧内の符号は、一つの態様として後述する実施形態に記載の具体的手段との対応関係を示す一例であって、技術的範囲を限定するものではない。 The multiple aspects disclosed in this specification employ different technical means to achieve their respective objectives. In addition, the symbols in parentheses described in the claims are an example showing the corresponding relationship with the specific means described in the embodiment described later as one aspect, and do not limit the technical scope.
 開示された潅水システムの一つは、植物を生育する圃場に設けられて、圃場に潅水を散水するための複数の貫通孔が形成された分配チューブと、分配チューブへ流下する潅水の圧力を制御する給水弁と、給水弁のバルブ開度を制御して、分配チューブから貫通孔を介して放出される潅水の飛水距離を制御する制御装置と、を備える。 One of the disclosed irrigation systems includes a distribution tube provided in a field where plants grow and having a plurality of through-holes for spraying irrigation water on the field, and controlling the pressure of the irrigation water flowing down to the distribution tube. and a control device for controlling the opening degree of the water supply valve to control the splashing distance of the sprinkling water discharged from the distribution tube through the through hole.
 この潅水システムによれば、給水弁のバルブ開度を制御して潅水の圧力を制御することにより、分配チューブから放出される潅水の飛水距離を制御することができる。このため、この潅水システムは、分配チューブからの飛水距離を調整可能な的確な潅水を実施できる。潅水システムは、植物の生育に合わせて、土壌の必要な場所に水を飛ばすことが可能であり、無駄な潅水を抑制でき、節水を実現できる。 According to this irrigation system, by controlling the valve opening of the water supply valve to control the pressure of the irrigation water, it is possible to control the spray distance of the irrigation water discharged from the distribution tube. Therefore, this irrigation system can carry out accurate irrigation with an adjustable water spray distance from the distribution tube. The irrigation system is capable of spraying water to the soil where it is needed in accordance with the growth of plants, thereby suppressing wasteful irrigation and realizing water saving.
 開示された制御装置の一つは、複数の貫通孔が形成された分配チューブから、植物を生育する圃場に供給する潅水の飛水距離を制御する制御装置であって、分配チューブへ流下する潅水の圧力を制御する給水弁についてバルブ開度を決定する演算部と、分配チューブから貫通孔を介して放出される潅水の飛水距離を制御するために、バルブ開度に制御する制御信号を給水弁に出力する出力部と、を備える。 One of the disclosed control devices is a control device for controlling the spraying distance of irrigation water supplied from a distribution tube having a plurality of through-holes to a plant-growing field. A calculation unit that determines the opening of the water supply valve that controls the pressure of the water supply, and a control signal that controls the opening of the water supply in order to control the splashing distance of the water that is discharged from the distribution tube through the through hole. an output that outputs to the valve.
 この制御装置によれば、演算部によりバルブ開度を決定し、潅水の飛水距離を制御するために出力部がバルブ開度に制御する制御信号を給水弁に出力する。これにより、分配チューブから放出される潅水の飛水距離を制御することができる。したがって、この制御装置は、分配チューブからの飛水距離を調整可能な的確な潅水を実施できる。この制御装置は、植物の生育に合わせて、土壌の必要な場所に水を飛ばすことが可能であり、無駄な潅水を抑制でき、節水を実現できる。 According to this control device, the calculation unit determines the opening of the valve, and the output unit outputs a control signal for controlling the opening of the valve to the water supply valve in order to control the water spray distance. This makes it possible to control the splash distance of the irrigation water discharged from the distribution tube. Therefore, this control device can carry out accurate irrigation with an adjustable spray distance from the distribution tube. This control device is capable of spraying water to required areas of the soil in accordance with the growth of plants, suppressing wasteful irrigation and realizing water saving.
圃場に設けられた第1実施形態の潅水システムを示す概念図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a conceptual diagram which shows the watering system of 1st Embodiment provided in the field. 給水配管と配管モジュールを示す部分図である。It is a partial view showing a water supply pipe and a pipe module. 潅水システムの構成図である。It is a lineblock diagram of an irrigation system. 監視部を示すブロック図である。It is a block diagram which shows a monitoring part. 無線信号を示す図である。FIG. 3 shows a radio signal; センサ処理を説明するためのフローチャートである。4 is a flowchart for explaining sensor processing; 更新処理を説明するためのフローチャートである。4 is a flowchart for explaining update processing; 監視処理を説明するためのフローチャートである。4 is a flowchart for explaining monitoring processing; 給水処理を説明するためのフローチャートである。6 is a flowchart for explaining water supply processing; 潅水処理を説明するためのフローチャートである。It is a flow chart for explaining irrigation processing. ユーザ更新処理を説明するためのフローチャートである。8 is a flowchart for explaining user update processing; 強制更新処理を説明するためのフローチャートである。4 is a flowchart for explaining forced update processing; 給水弁として適用可能なバルブ装置を示す断面図である。It is a cross-sectional view showing a valve device that can be applied as a water supply valve. バルブ装置が備える駆動部の構成を示す図である。It is a figure which shows the structure of the drive part with which a valve apparatus is provided. バルブ装置が備えるバルブを示す斜視図である。It is a perspective view which shows the valve|bulb with which a valve apparatus is equipped. バルブ装置における回転角度と流量との関係を示すグラフである。It is a graph which shows the relationship between the rotation angle and flow volume in a valve apparatus. 第2実施形態に係る監視部を示すブロック図である。It is a block diagram which shows the monitoring part which concerns on 2nd Embodiment. 第2実施形態に係る給水弁の作動を示すフローチャートである。It is a flowchart which shows the operation|movement of the water supply valve which concerns on 2nd Embodiment. 第2実施形態に係る潅水の一例を説明するための図である。It is a figure for demonstrating an example of watering which concerns on 2nd Embodiment. 第3実施形態に係る給水弁の作動を示すフローチャートである。It is a flowchart which shows the operation|movement of the water supply valve which concerns on 3rd Embodiment. 第4実施形態に係る給水弁の作動を示すフローチャートである。It is a flowchart which shows the operation|movement of the water supply valve which concerns on 4th Embodiment. 第5実施形態に係る給水弁の作動を示すフローチャートである。It is a flow chart which shows the operation of the water supply valve concerning a 5th embodiment. 第5実施形態に係る潅水を説明するための図である。It is a figure for demonstrating watering which concerns on 5th Embodiment. バルブ開度と土壌水分量との関係を示す図である。It is a figure which shows the relationship between a valve|bulb opening degree and a soil water content. ランプ作動におけるバルブ開度と飛水距離との関係を示す図である。FIG. 5 is a diagram showing the relationship between the valve opening degree and the splash distance in lamp operation. ステップ作動におけるバルブ開度と飛水距離との関係を示す図である。FIG. 10 is a diagram showing the relationship between the valve opening degree and the splash distance in step operation; 分配チューブと給水弁と水圧センサとの位置関係を示す図である。It is a figure which shows the positional relationship of a distribution tube, a water supply valve, and a water pressure sensor. 他の形態におけるバルブの開度制御の一例を示すフローチャートである。9 is a flow chart showing an example of valve opening degree control in another mode. 他の形態におけるバルブの開度制御の一例を示すフローチャートである。9 is a flow chart showing an example of valve opening degree control in another mode. 図29のバルブの開度制御時のタイミングチャートである。FIG. 30 is a timing chart at the time of valve opening control of FIG. 29; FIG. 他の形態におけるバルブの開度制御の一例を示すフローチャートである。9 is a flow chart showing an example of valve opening degree control in another mode. 図31のバルブの開度制御時のタイミングチャートである。FIG. 32 is a timing chart when controlling the valve opening of FIG. 31; FIG.
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組み合わせが可能であることを明示している部分同士の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても実施形態同士を部分的に組み合せることも可能である。 A plurality of modes for carrying out the present disclosure will be described below with reference to the drawings. In each form, the same reference numerals may be given to the parts corresponding to the matters described in the preceding form, and overlapping explanations may be omitted. When only a part of the configuration is described in each form, the previously described other forms can be applied to other parts of the configuration. Not only combinations of parts that are explicitly stated that combinations are possible in each embodiment, but also partial combinations of embodiments even if they are not explicitly stated unless there is a particular problem with the combination. is also possible.
 <第1実施形態>
 潅水システムの一例を開示する第1実施形態について図1~図16を参照しながら説明する。以下においては互いに直交の関係にある3方向を、x方向、y方向、z方向と示す。この明細書ではx方向とy方向とによって規定される平面が水平面に沿っている。z方向が鉛直方向に沿っている。図面においては「方向」の記載を省略して、単に、x、y、zと表記している。
<First embodiment>
A first embodiment disclosing an example of an irrigation system will be described with reference to FIGS. 1 to 16. FIG. In the following, the three directions that are orthogonal to each other are referred to as x-direction, y-direction, and z-direction. The plane defined by the x-direction and the y-direction is along the horizontal plane in this document. The z-direction is along the vertical direction. In the drawings, description of "direction" is omitted, and x, y, and z are simply described.
 <圃場>
 潅水システム10は丘や平野に開墾された野外の圃場20に適用される。図1に示すように、潅水システム10が平野に開墾された圃場20に適用された形態を説明する。この圃場20の広さは数10平方メートル~数1000平方キロメートルになっている。圃場20にはx方向に延びる畝などの生育場所が複数設けられている。これらx方向に延びる複数の生育場所がy方向で離間して並んでいる。これら複数の生育場所それぞれに植物30の種や苗が埋められる。この植物30としては、例えば、葡萄、トウモロコシ、アーモンド、ラズベリー、葉菜、綿などがある。
<field>
The irrigation system 10 is applied to an open field 20 cultivated on hills and plains. As shown in FIG. 1, a form in which the irrigation system 10 is applied to a field 20 cultivated in a plain will be described. The area of this field 20 ranges from several tens of square meters to several thousand square kilometers. A field 20 is provided with a plurality of growing places such as ridges extending in the x direction. A plurality of growth sites extending in the x-direction are spaced apart in the y-direction. Seeds and seedlings of the plant 30 are buried in each of these growing places. Plants 30 include, for example, grapes, corn, almonds, raspberries, leafy vegetables, and cotton.
 1つの生育場所で複数の植物30が生育される。複数の植物30はx方向で並んで1つの列を成している。以下においてはこのx方向で列を成して並ぶ複数の植物30を植物群31と示す。圃場20では複数の植物群31がy方向で離間して並んでいる。複数の植物群31のy方向の最短離間距離は、1つの植物群31に含まれる複数の植物30のx方向の最短離間距離よりも長くなっている。植物群31のy方向の離間間隔は生育する植物30の種類や圃場20の起伏と気候に応じて種々変更される。植物群31のy方向の離間間隔は1m~10mほどである。たとえ植物30の枝葉がy方向に生い茂ったとしても、少なくとも人が2つの植物群31の間をx方向に移動できる程度の幅が確保されている。 A plurality of plants 30 are grown in one growing place. A plurality of plants 30 are aligned in the x-direction to form one row. A plurality of plants 30 arranged in a row in the x direction are hereinafter referred to as a plant group 31 . In the field 20, a plurality of plant groups 31 are lined up with a space in the y direction. The y-direction shortest distance between the plurality of plant groups 31 is longer than the x-direction shortest distance between the plurality of plants 30 included in one plant group 31 . The distance between the plant groups 31 in the y direction can be varied according to the type of growing plants 30 and the undulations and climate of the field 20 . The distance between the plant groups 31 in the y direction is about 1 m to 10 m. Even if the plants 30 are overgrown with foliage in the y direction, at least a width is ensured that allows a person to move between the two plant groups 31 in the x direction.
 <潅水システム>
 潅水システム10は給水装置100と制御装置200を備えている。給水装置100は潅水を圃場20の植物30に供給する。制御装置200は潅水期間において給水装置100から植物30に供給される潅水の供給時刻と量を決定する。制御装置200は給水装置100の潅水スケジュールを決定する。
<Irrigation system>
The irrigation system 10 includes a water supply device 100 and a control device 200 . The water supply device 100 supplies irrigation water to the plants 30 in the field 20 . The control device 200 determines the supply time and amount of water to be supplied from the water supply device 100 to the plants 30 during the watering period. Controller 200 determines the irrigation schedule for water supply system 100 .
 <給水装置>
 給水装置100は、ポンプ110、給水配管130、および配管モジュール150を有する。ポンプ110は潅水を給水配管130に供給する。配管モジュール150は給水配管130に供給された潅水の吐出量を制御する。
<Water supply device>
The water supply device 100 has a pump 110 , a water supply pipe 130 and a pipe module 150 . Pump 110 supplies irrigation water to water supply line 130 . The piping module 150 controls the amount of irrigation water supplied to the water supply piping 130 .
 <ポンプ>
 ポンプ110は常時駆動状態になっている。あるいは、ポンプ110は昼間駆動状態になっている。ポンプ110はタンクやため池に貯水されている潅水を汲み出し、それを給水配管130に供給する。潅水は井戸水、河川水、雨水、市水などである。後述するように給水配管130には複数の給水弁152が設けられている。これら複数の給水弁152それぞれが閉状態であり、なおかつ、給水配管130からの潅水の漏れが生じていない場合、給水配管130は潅水で満たされる。この際、給水配管130内の水圧は、ポンプ110の吐出能力に依存した値(ポンプ圧ともいう)になる。給水弁152が閉状態から開状態になると、給水配管130から圃場20に潅水が吐出される。潅水の吐出量が時間平均的に安定すると、給水配管130内の水圧は、ポンプ圧よりも水圧の低い流動圧になる。
<Pump>
Pump 110 is always in a driven state. Alternatively, the pump 110 is in a daytime running state. The pump 110 pumps irrigation water stored in a tank or reservoir and supplies it to the water supply pipe 130 . Irrigated water includes well water, river water, rain water, and city water. As will be described later, the water supply pipe 130 is provided with a plurality of water supply valves 152 . When each of the plurality of water supply valves 152 is in a closed state and there is no leakage of sprinkling water from the water supply pipe 130, the water supply pipe 130 is filled with sprinkling water. At this time, the water pressure in the water supply pipe 130 becomes a value (also referred to as pump pressure) that depends on the discharge capacity of the pump 110 . When the water supply valve 152 changes from the closed state to the open state, irrigation water is discharged from the water supply pipe 130 to the farm field 20 . When the discharge amount of sprinkling water is stabilized on average over time, the water pressure in the water supply pipe 130 becomes a fluid pressure that is lower than the pump pressure.
 <給水配管>
 給水配管130は主配管131と供給用配管132を含む。主配管131はポンプ110に連結されている。供給用配管132は主配管131に連結されている。ポンプ110は、主配管131から供給用配管132に潅水を供給する。潅水は供給用配管132から圃場20に供給される。
<Water supply piping>
The water supply pipe 130 includes a main pipe 131 and a supply pipe 132 . A main pipe 131 is connected to the pump 110 . The supply pipe 132 is connected to the main pipe 131 . The pump 110 supplies sprinkling water from the main pipe 131 to the supply pipe 132 . Irrigated water is supplied to the field 20 from the supply pipe 132 .
 <主配管>
 主配管131は、縦配管133と横配管134を含む。縦配管133はy方向に延びている。横配管134はx方向に延びている。縦配管133と横配管134は互いに連結されている。係る構成のために潅水は主配管131内をy方向およびx方向に流れる。図1に示す一例では、1つのポンプ110に1つの縦配管133が連結されている。このy方向に延びる縦配管133から複数の横配管134がx方向に延びている。横配管134のz方向の位置は成熟した植物30の頂点よりも地面から離間するように設定されている。
<Main pipe>
The main pipe 131 includes a vertical pipe 133 and a horizontal pipe 134 . The vertical pipe 133 extends in the y direction. The horizontal pipe 134 extends in the x direction. The vertical pipe 133 and the horizontal pipe 134 are connected to each other. Due to such a configuration, water flows in the main pipe 131 in the y-direction and the x-direction. In the example shown in FIG. 1, one vertical pipe 133 is connected to one pump 110 . A plurality of horizontal pipes 134 extend in the x direction from the vertical pipes 133 extending in the y direction. The position of the lateral pipe 134 in the z-direction is set to be farther from the ground than the top of the mature plant 30 .
 図1に示す構成は一例に過ぎない。圃場20に設けられるポンプ110と縦配管133の数、1つのポンプ110に連結される縦配管133の数、1つの横配管134に連結される縦配管133の数、および、横配管134と縦配管133のz方向の位置は特に限定されない。 The configuration shown in FIG. 1 is only an example. The number of pumps 110 and vertical pipes 133 provided in the field 20, the number of vertical pipes 133 connected to one pump 110, the number of vertical pipes 133 connected to one horizontal pipe 134, and the number of horizontal pipes 134 and vertical pipes 133 The position of the pipe 133 in the z direction is not particularly limited.
 複数の横配管134はy方向で離間して並んでいる。複数の横配管134のy方向の最短離間距離は、複数の植物群31のy方向の最短離間距離と同等になっている。複数の横配管134の1つが複数の植物群31の1つに設けられている。横配管134は植物群31に含まれる複数の植物30の並ぶ方向に沿って延びている。この横配管134に供給用配管132が連結されている。 A plurality of horizontal pipes 134 are arranged with a space in the y direction. The y-direction shortest distance between the plurality of lateral pipes 134 is equivalent to the y-direction shortest distance between the plurality of plant groups 31 . One of the multiple lateral pipes 134 is provided to one of the multiple plant groups 31 . The horizontal pipe 134 extends along the direction in which the plants 30 included in the plant group 31 are arranged. A supply pipe 132 is connected to the lateral pipe 134 .
 <供給用配管>
 供給用配管132は1つの横配管134に複数連結されている。1つの横配管134に連結される複数の供給用配管132はx方向で離間して並んでいる。図2に示すように供給用配管132は、連結配管135と分配チューブ136を含む。連結配管135は横配管134からz方向に垂れ下がって延びている。連結配管135の先端側にはx方向に開口する2つの連結口が形成されている。これら2つの連結口に分配チューブ136が連結されている。
<Supply piping>
A plurality of supply pipes 132 are connected to one horizontal pipe 134 . A plurality of supply pipes 132 connected to one horizontal pipe 134 are spaced apart in the x direction and arranged side by side. As shown in FIG. 2, supply piping 132 includes connecting piping 135 and distribution tube 136 . The connecting pipe 135 hangs down from the horizontal pipe 134 in the z-direction. Two connecting ports opening in the x direction are formed on the tip side of the connecting pipe 135 . A distribution tube 136 is connected to these two connection ports.
 分配チューブ136は、2つの連結口の一方に連結される第1分配チューブ136aと、2つの連結口の他方に連結される第2分配チューブ136bとを含む。第1分配チューブ136aと第2分配チューブ136bは連結配管135との連結位置からx方向において互いに逆向きに延びている。 The distribution tube 136 includes a first distribution tube 136a connected to one of the two connection ports and a second distribution tube 136b connected to the other of the two connection ports. The first distribution tube 136a and the second distribution tube 136b extend in opposite directions in the x-direction from the connection position with the connection pipe 135. As shown in FIG.
 第1分配チューブ136aと第2分配チューブ136bの各チューブには、潅水が流動するチューブ内部と外部とを連通する複数の貫通孔が形成されている。複数の貫通孔は、各チューブにおいて、チューブの軸方向に所定間隔をあけて並んで設けられている。また、貫通孔は、各チューブにおいて、チューブの周方向に所定間隔をあけて並んで設けられている構成でもよい。 Each tube of the first distribution tube 136a and the second distribution tube 136b is formed with a plurality of through-holes that communicate the inside and outside of the tube through which sprinkling water flows. A plurality of through-holes are arranged side by side at predetermined intervals in the axial direction of the tube in each tube. Moreover, in each tube, the through-holes may be arranged side by side at predetermined intervals in the circumferential direction of the tube.
 複数の貫通孔の軸方向(例えばx方向)における離間間隔は、複数の植物30のx方向における離間間隔と同等になっている。図2に示す一例では、第1分配チューブ136aと第2分配チューブ136bそれぞれには、貫通孔が軸方向に3個並んでいる。また、複数の貫通孔の離間間隔と複数の植物30の離間間隔は異なっていてもよい。各チューブに形成されている貫通孔の数は、3個に限定されない。 The distance between the plurality of through-holes in the axial direction (eg, x direction) is the same as the distance between the plurality of plants 30 in the x direction. In the example shown in FIG. 2, each of the first distribution tube 136a and the second distribution tube 136b has three through holes arranged in the axial direction. Moreover, the spacing between the plurality of through-holes and the spacing between the plurality of plants 30 may be different. The number of through holes formed in each tube is not limited to three.
 <潅水の流動>
 ポンプ110によって縦配管133に供給された潅水は、縦配管133内をy方向に流れる。この潅水は、縦配管133に連結された複数の横配管134それぞれに供給される。潅水は複数の横配管134内のそれぞれをx方向に流れる。横配管134内を流れる潅水は、連結配管135を介して分配チューブ136に流下する。潅水は、第1分配チューブ136aと第2分配チューブ136bそれぞれにおける各貫通孔から吐出されて、植物30に供給される。
<Irrigation flow>
The sprinkling water supplied to the vertical pipe 133 by the pump 110 flows in the vertical pipe 133 in the y direction. This sprinkling water is supplied to each of the plurality of horizontal pipes 134 connected to the vertical pipes 133 . Sprinkled water flows in the x-direction through each of the plurality of horizontal pipes 134 . The irrigation water flowing in the horizontal pipe 134 flows down to the distribution tube 136 via the connecting pipe 135 . The irrigation water is discharged from each through-hole in each of the first distribution tube 136a and the second distribution tube 136b and supplied to the plants 30 .
 図1に示す一例では、第1分配チューブ136aと第2分配チューブ136bそれぞれは、高さ方向において植物30の頂点側よりも圃場20の地面側に位置している。第1分配チューブ136aと第2分配チューブ136bそれぞれの貫通孔から供給された潅水は主として植物30の幹やその根本に供給される。 In the example shown in FIG. 1, each of the first distribution tube 136a and the second distribution tube 136b is positioned closer to the ground side of the farm field 20 than to the top side of the plant 30 in the height direction. The irrigation water supplied from the through-holes of the first distribution tube 136a and the second distribution tube 136b is mainly supplied to the trunk of the plant 30 and its roots.
 貫通孔は、各チューブにおいて地面と面している部分よりも高い位置に設けられていることが好ましい。このような位置の貫通孔から吐出された潅水は、チューブの中心軸に対して放射する方向に広がり、チューブから離れた位置に散水することができる。 It is preferable that the through-hole is provided at a position higher than the portion facing the ground in each tube. The sprinkling water discharged from the through-hole at such a position spreads in a radial direction with respect to the central axis of the tube, and can be sprayed at a position away from the tube.
 <配管モジュール>
 図2に示すように、配管モジュール150は供給用配管132に設けられている。配管モジュール150は収納箱151、給水弁152、および水圧センサ153を有する。収納箱151の内部には給水弁152と水圧センサ153が収納されている。
<Piping module>
As shown in FIG. 2, the piping module 150 is provided on the supply piping 132 . The piping module 150 has a storage box 151 , a water supply valve 152 and a water pressure sensor 153 . A water supply valve 152 and a water pressure sensor 153 are housed inside the storage box 151 .
 <給水弁>、
 給水弁152は、連結配管135において、第1分配チューブ136aと第2分配チューブ136bそれぞれとの近接位置に設けられている。全ての貫通孔は、第1分配チューブ136aと第2分配チューブ136bそれぞれにおいて連結配管135から離間した先端部分と給水弁152との間に設けられている。
<Water supply valve>,
The water supply valve 152 is provided in the connecting pipe 135 at a position close to each of the first distribution tube 136a and the second distribution tube 136b. All through-holes are provided between the tip portions of the first distribution tube 136 a and the second distribution tube 136 b respectively, which are separated from the connecting pipe 135 and the water supply valve 152 .
 給水弁152が開状態になると、連結配管135と貫通孔が連通する。これにより貫通孔から潅水が吐出される。逆に、給水弁152が閉状態になると、連結配管135と貫通孔との連通が遮断される。これにより貫通孔からの潅水の吐出が止まる。 When the water supply valve 152 is opened, the connecting pipe 135 communicates with the through hole. As a result, sprinkling water is discharged from the through holes. Conversely, when the water supply valve 152 is closed, communication between the connecting pipe 135 and the through hole is cut off. This stops sprinkling water from the through holes.
 第1分配チューブ136aに設けられた給水弁152と第2分配チューブ136bに設けられた給水弁152は、制御装置200によって独立して開度制御される。係る開度制御により、第1分配チューブ136aの貫通孔からの潅水の吐出と、第2分配チューブ136bの貫通孔からの潅水の吐出とが独立して制御される。 The opening degrees of the water supply valve 152 provided on the first distribution tube 136a and the water supply valve 152 provided on the second distribution tube 136b are independently controlled by the control device 200. Such opening degree control independently controls the discharge of sprinkling water from the through hole of the first distribution tube 136a and the discharge of sprinkling water from the through hole of the second distribution tube 136b.
 制御装置200は、給水弁152のバルブ開度を所定の開度から全開の間にわたって任意に制御する。所定の開度は、少し開いた開度、または開度0%、つまり全閉を含む値に設定される。制御装置200は、給水弁152のバルブ開度を制御することにより、各貫通孔から吐出される単位時間当たりの吐出流量、または吐出流速を制御する。この制御により、制御装置200は、分配チューブ136から吐出される潅水が分配チューブ136から離間して着地する距離である飛水距離を制御することができる。飛水距離は、貫通孔を通じて分配チューブ136から飛び出した潅水の土壌着地点と分配チューブ136との距離である。この飛水距離を制御する技術によれば、潅水を必要としている場所への効率的な潅水を実施でき、節水にも寄与する。 The control device 200 arbitrarily controls the opening of the water supply valve 152 from a predetermined opening to full opening. The predetermined opening is set to a value that includes a slightly opened opening or 0% opening, that is, fully closed. The control device 200 controls the discharge flow rate or discharge flow rate per unit time discharged from each through-hole by controlling the valve opening degree of the water supply valve 152 . With this control, the controller 200 can control the splash distance, which is the distance at which the sprinkling water discharged from the distribution tube 136 lands away from the distribution tube 136 . The water splashing distance is the distance between the distribution tube 136 and the ground landing point of the water sprayed from the distribution tube 136 through the through-hole. According to this technology for controlling the distance of water splashing, it is possible to efficiently irrigate areas in need of irrigation, which contributes to saving water.
 制御装置200は、潅水を供給する植物30の種類、圃場20の作土層の範囲などに基づいて潅水の飛水距離を決定する。制御装置200は、決定した飛水距離が得られるように給水弁152のバルブ開度を制御する。例えば、給水弁152のバルブ開度は、植物30が根を広く張ったり、作土層が浅く広範囲であったりする場合に、飛水距離を大きくするように制御される。また、給水弁152のバルブ開度は、植物30が根を深く張ったり、作土層が分配チューブ136の近くに位置したりする場合に、飛水距離を小さく抑えるように制御される。決定した飛水距離が得られるバルブ開度は、バルブの目標開度であると言い換えることができる。飛水距離は潅水距離と言い換えることができる。 The control device 200 determines the watering distance based on the type of the plant 30 to be watered, the range of the soil layer of the field 20, and the like. Control device 200 controls the valve opening degree of water supply valve 152 so that the determined splash distance is obtained. For example, the valve opening degree of the water supply valve 152 is controlled so as to increase the splash distance when the plant 30 has wide roots or when the soil layer is shallow and wide. Also, the valve opening degree of the water supply valve 152 is controlled so as to keep the splashing distance small when the plant 30 has deep roots or when the plowing layer is located near the distribution tube 136 . It can be said that the valve opening at which the determined splash distance is obtained is the target opening of the valve. The splashing distance can be rephrased as the sprinkling distance.
 <水圧センサ>
 水圧センサ153は、連結配管135において第1分配チューブ136aと第2分配チューブ136bのそれぞれが連結されている部位の近傍に設けられている。各水圧センサ153は、連結配管135内の水圧を検出する。水圧センサ153で検出された水圧は制御装置200に出力される。水圧センサ153は、第1分配チューブ136aにおける連結配管135との連結部位と給水弁152との間や、第2分配チューブ136bにおける連結配管135との連結部位と給水弁152との間に設けられてもよい。水圧センサ153は、連結配管135における横配管134との連結部位近傍に設けられてもよい。水圧センサ153は、供給用配管132の潅水の流動経路における、給水弁152よりも横配管134側であればよい。
<Water pressure sensor>
The water pressure sensor 153 is provided near a portion of the connecting pipe 135 where the first distribution tube 136a and the second distribution tube 136b are connected. Each water pressure sensor 153 detects the water pressure inside the connecting pipe 135 . The water pressure detected by the water pressure sensor 153 is output to the control device 200 . The water pressure sensor 153 is provided between the connection portion of the first distribution tube 136 a to the connection pipe 135 and the water supply valve 152 and between the connection portion of the second distribution tube 136 b to the connection pipe 135 and the water supply valve 152 . may The water pressure sensor 153 may be provided in the vicinity of the connecting portion of the connecting pipe 135 with the lateral pipe 134 . The water pressure sensor 153 may be located closer to the side pipe 134 than the water supply valve 152 in the water flow path of the supply pipe 132 .
 給水弁152が閉状態になり、連結配管135が潅水で満たされると、水圧センサ153でポンプ圧が検出される。給水弁152が閉状態から開状態になると、分配チューブ136から潅水が吐出される。潅水の吐出量が時間平均的に安定すると、水圧センサ153で流動圧が検出される。給水弁152が開状態から閉状態になると、給水配管130からの潅水の吐出が止まる。給水配管130内の水圧は流動圧からポンプ圧へと徐々に回復する。水圧センサ153ではこの流動圧からポンプ圧へと徐々に回復する過渡期の水圧が検出される。 When the water supply valve 152 is closed and the connecting pipe 135 is filled with sprinkling water, the water pressure sensor 153 detects the pump pressure. When the water supply valve 152 changes from the closed state to the open state, sprinkling water is discharged from the distribution tube 136 . When the amount of sprinkling water is stabilized on average over time, the water pressure sensor 153 detects the flow pressure. When the water supply valve 152 changes from the open state to the closed state, the sprinkling water from the water supply pipe 130 stops. The water pressure in the water supply pipe 130 gradually recovers from fluid pressure to pump pressure. The water pressure sensor 153 detects the transitional water pressure in which the flow pressure gradually recovers to the pump pressure.
 給水配管130や給水弁152に破損が生じ、その破損個所から潅水が漏れている場合、水圧センサ153で検出される水圧が減少する。これによって破損が生じているか否かを検出することができる。この破損の検出処理は制御装置200で実行される。 When the water supply pipe 130 or the water supply valve 152 is damaged and sprinkling water is leaking from the damaged area, the water pressure detected by the water pressure sensor 153 decreases. This makes it possible to detect whether damage has occurred. This damage detection processing is executed by the control device 200 .
 <制御装置>
 図1および図3に示すように制御装置200は、監視部300、統合通信部400、情報格納部500、および統合演算部600を含む。図面では統合通信部400をICDと表記している。制御装置200は監視部300を複数有する。複数の監視部300のそれぞれは、圃場20における所定の分割エリアに対応している。監視部300は、例えば1個の配管モジュール150に対応して1個設けられている。監視部300と配管モジュール150とは電気的に接続されている。
<Control device>
As shown in FIGS. 1 and 3 , control device 200 includes monitoring section 300 , integrated communication section 400 , information storage section 500 , and integrated operation section 600 . In the drawing, the integrated communication unit 400 is written as an ICD. The control device 200 has a plurality of monitoring units 300 . Each of the multiple monitoring units 300 corresponds to a predetermined divided area in the agricultural field 20 . One monitoring unit 300 is provided corresponding to, for example, one piping module 150 . The monitoring unit 300 and the piping module 150 are electrically connected.
 監視部300には水圧センサ153で検出された水圧が入力される。監視部300は、圃場20の環境に関わる物理量である環境値を検出している。複数の監視部300それぞれは、水圧と環境値とを統合通信部400に無線通信によって出力している。 The water pressure detected by the water pressure sensor 153 is input to the monitoring unit 300 . The monitoring unit 300 detects environmental values, which are physical quantities related to the environment of the field 20 . Each of the multiple monitoring units 300 outputs the water pressure and the environmental value to the integrated communication unit 400 by wireless communication.
 統合通信部400は各監視部300から入力された水圧と環境値を情報格納部500に無線通信によって出力する。情報格納部500はこれら水圧と環境値とを格納する。情報格納部500の一例は、いわゆるクラウドである。統合演算部600は情報格納部500に格納された水圧と環境値などの諸情報を読み出す。統合演算部600は読み出した諸情報を適宜処理し、諸情報や処理結果をユーザのスマートフォンやパソコンのモニタ700に表示する。 The integrated communication unit 400 outputs the water pressure and environmental value input from each monitoring unit 300 to the information storage unit 500 by wireless communication. The information storage unit 500 stores these water pressure and environmental values. An example of the information storage unit 500 is a so-called cloud. The integrated calculation unit 600 reads various information such as water pressure and environmental values stored in the information storage unit 500 . The integrated calculation unit 600 appropriately processes the read information, and displays the information and processing results on the monitor 700 of the user's smart phone or personal computer.
 統合演算部600はユーザのスマートフォンやパソコンなどに含まれている。統合演算部600は情報処理演算機器610、メモリ620、および通信装置630を有する。図面では情報処理演算機器610をIPCE、メモリ620をMM、通信装置630をCDと表記している。情報処理演算機器610にはプロセッサが含まれている。情報処理演算機器610は潅水処理に関わる演算処理を行う。係る機能は情報処理演算機器610に潅水アプリケーションプログラムがダウンロードされることで実現される。 The integrated calculation unit 600 is included in the user's smartphone, personal computer, or the like. The integrated operation unit 600 has an information processing operation device 610 , a memory 620 and a communication device 630 . In the drawing, the information processor 610 is denoted by IPCE, the memory 620 by MM, and the communication device 630 by CD. The information processing computing device 610 includes a processor. The information processing arithmetic device 610 performs arithmetic processing related to sprinkling. Such functions are realized by downloading the watering application program to the information processing device 610 .
 メモリ620はコンピュータやプロセッサによって読み取り可能な各種プログラムと各種情報を非一時的に格納する非遷移的実体的記憶媒体である。メモリ620は揮発性メモリと不揮発性メモリとを有している。メモリ620は通信装置630に入力された諸情報や情報処理演算機器610の処理結果を記憶する。情報処理演算機器610は、メモリ620に記憶された情報を用いて各種演算処理を実行する。 The memory 620 is a non-transitional physical storage medium that non-temporarily stores various programs and various information that can be read by a computer or processor. Memory 620 includes volatile memory and non-volatile memory. The memory 620 stores various information input to the communication device 630 and processing results of the information processing arithmetic device 610 . The information processing arithmetic device 610 executes various arithmetic processing using information stored in the memory 620 .
 通信装置630は無線通信機能を備えている。通信装置630は受信した無線信号を電気信号に変換して情報処理演算機器610に出力する。通信装置630は情報処理演算機器610の処理結果を無線信号として出力する。以下、情報処理演算機器610、メモリ620、通信装置630を特に区別して表記せずに、総称とする統合演算部600を用いて本実施形態の技術内容を説明する。情報処理演算機器610は処理演算部に相当する。 The communication device 630 has a wireless communication function. The communication device 630 converts the received radio signal into an electrical signal and outputs the electrical signal to the information processing device 610 . The communication device 630 outputs the processing result of the information processing device 610 as a radio signal. Hereinafter, the technical content of the present embodiment will be described using an integrated computing unit 600 as a generic term without distinguishing between the information processing computing device 610, the memory 620, and the communication device 630. FIG. The information processing arithmetic device 610 corresponds to a processing arithmetic section.
 ユーザは、潅水処理や潅水スケジュールに関わるユーザ指示を、タッチパネルやキーボードなどの入力機器800を用いて統合演算部600に入力する。統合演算部600は、このユーザ指示、情報格納部500から読み出した諸情報に基づいて、潅水処理指令を出力したり潅水スケジュールを決定したりする。ユーザからの指示がない場合、統合演算部600は諸情報に基づいて潅水スケジュールを自動的に決定する。 The user inputs user instructions related to the watering process and watering schedule to the integrated calculation unit 600 using the input device 800 such as a touch panel and keyboard. Based on this user instruction and various information read from the information storage unit 500, the integrated calculation unit 600 outputs a watering treatment command and determines a watering schedule. If there is no instruction from the user, the integrated calculation unit 600 automatically determines the watering schedule based on various information.
 統合演算部600は、潅水処理指令を検出したり、潅水スケジュールにおいて潅水の供給開始時刻であると判定したりすると、給水弁152を制御する指示信号を情報格納部500に出力する。この指示信号は情報格納部500から統合通信部400を介して監視部300に入力される。監視部300は指示信号に基づいて給水弁152への給水信号の出力と非出力を制御する。これにより給水弁152の開閉状態が制御される。この結果、圃場20への潅水の供給が制御される。指示信号と給水信号のうちの少なくとも一方が制御信号に相当する。 When the integrated calculation unit 600 detects an irrigation processing command or determines that it is time to start supplying irrigation water in the irrigation schedule, it outputs an instruction signal for controlling the water supply valve 152 to the information storage unit 500 . This instruction signal is input from the information storage section 500 to the monitoring section 300 via the integrated communication section 400 . The monitoring unit 300 controls output and non-output of the water supply signal to the water supply valve 152 based on the instruction signal. Thereby, the open/close state of the water supply valve 152 is controlled. As a result, the supply of irrigation water to the field 20 is controlled. At least one of the instruction signal and the water supply signal corresponds to the control signal.
 <分割エリア>
 図1に示すように監視部300は、1個の供給用配管132につき1個設けられている。一例として図3に示すように、複数の監視部300は、複数の配管モジュール150の備える給水弁152および水圧センサ153とともに、圃場20においてx方向を行方向、y方向を列方向として、行列配置される。
<divided area>
As shown in FIG. 1, one monitoring unit 300 is provided for one supply pipe 132 . As shown in FIG. 3 as an example, the plurality of monitoring units 300 are arranged in a matrix with the water supply valves 152 and the water pressure sensors 153 of the plurality of piping modules 150 in the field 20 with the x direction as the row direction and the y direction as the column direction. be done.
 係る構成により、行方向と列方向とによって区切られる複数の分割エリアそれぞれの環境が、各分割エリアに対応する監視部300によって個別に監視される。さらに、複数の分割エリアそれぞれにおける潅水の供給は、対応する監視部300と配管モジュール150によって個別に制御される。 With such a configuration, the environment of each of a plurality of divided areas partitioned in the row direction and the column direction is individually monitored by the monitoring unit 300 corresponding to each divided area. Furthermore, the supply of irrigation water in each of the plurality of divided areas is individually controlled by the corresponding monitoring unit 300 and piping module 150 .
 <監視部>
 図3、図4に示すように監視部300は、環境センサ310と制御部320を有する。配管モジュール150の給水弁152と水圧センサ153は、制御部320に電気的に接続されている。図面では環境センサ310をES、給水弁152をWB、水圧センサ153をWPSと表記している。
<Monitoring part>
As shown in FIGS. 3 and 4, the monitoring section 300 has an environment sensor 310 and a control section 320 . The water supply valve 152 and the water pressure sensor 153 of the piping module 150 are electrically connected to the controller 320 . In the drawing, the environment sensor 310 is denoted by ES, the water supply valve 152 by WB, and the water pressure sensor 153 by WPS.
 複数の環境センサ310は配管モジュール150とともに圃場20で行列配置される。各環境センサ310によって複数の分割エリアそれぞれの環境値が検出される。各水圧センサ153によって複数の分割エリアそれぞれの水圧が検出される。検出された複数の分割エリアそれぞれの環境値および水圧は、情報格納部500に格納される。 A plurality of environment sensors 310 are arranged in a matrix in the field 20 together with the piping module 150 . Each environmental sensor 310 detects the environmental value of each of the plurality of divided areas. Each water pressure sensor 153 detects the water pressure of each of the plurality of divided areas. The detected environmental value and water pressure of each of the plurality of divided areas are stored in the information storage unit 500 .
 図4に示すように制御部320は、マイコン330、通信部340、RTC350、および発電部360を含む。マイコンはマイクロコンピュータの略である。RTCはReal Time Clockの略である。図面では通信部340をCDPと表記している。 As shown in FIG. 4, the control unit 320 includes a microcomputer 330, a communication unit 340, an RTC 350, and a power generation unit 360. Microcomputer is an abbreviation for microcomputer. RTC is an abbreviation for Real Time Clock. In the drawing, the communication unit 340 is denoted as CDP.
 マイコン330には環境値と水圧が入力される。マイコン330はこれら環境値と水圧を、通信部340を介して統合通信部400に出力する。マイコン330には統合通信部400から指示信号が入力される。マイコン330はこの指示信号に基づいて給水信号を給水弁152に出力する。マイコン330が演算処理部に相当する。マイコン330は、給水弁152の作動を制御する制御装置である。 Environmental values and water pressure are input to the microcomputer 330. The microcomputer 330 outputs these environmental values and water pressure to the integrated communication section 400 via the communication section 340 . An instruction signal is input to the microcomputer 330 from the integrated communication unit 400 . The microcomputer 330 outputs a water supply signal to the water supply valve 152 based on this instruction signal. The microcomputer 330 corresponds to an arithmetic processing unit. The microcomputer 330 is a control device that controls the operation of the water supply valve 152 .
 マイコン330は動作モードとしてスリープモードと通常モードを有する。スリープモードはマイコン330が演算処理を停止している状態である。通常モードはマイコン330が演算処理を実行している状態である。通常モードはスリープモードよりも消費電力が多くなっている。 The microcomputer 330 has sleep mode and normal mode as operation modes. The sleep mode is a state in which the microcomputer 330 stops arithmetic processing. The normal mode is a state in which the microcomputer 330 is executing arithmetic processing. Normal mode consumes more power than sleep mode.
 通信部340は統合通信部400と無線通信を行っている。通信部340はマイコン330から出力された電気信号を無線信号として統合通信部400に出力する。それとともに通信部340は統合通信部400から出力された無線信号を受信して電気信号に変換する。通信部340はその電気信号をマイコン330に出力する。電気信号に指示信号が含まれている場合、マイコン330はスリープモードから通常モードに切り換わる。 The communication unit 340 performs wireless communication with the integrated communication unit 400. The communication unit 340 outputs the electrical signal output from the microcomputer 330 to the integrated communication unit 400 as a radio signal. In addition, the communication unit 340 receives the radio signal output from the integrated communication unit 400 and converts it into an electrical signal. Communication unit 340 outputs the electrical signal to microcomputer 330 . If the electrical signal contains the instruction signal, the microcomputer 330 switches from sleep mode to normal mode.
 RTC350は、時を刻む時計機能と時間を計測するタイマー機能を有する。RTC350は予め設定された時刻になった場合、または予め設定された時間が経過した場合、マイコン330にウェイクアップ信号を出力する。このウェイクアップ信号がスリープモードのマイコン330に入力されると、マイコン330はスリープモードから通常モードに切り換わる。 The RTC 350 has a clock function that keeps time and a timer function that measures time. The RTC 350 outputs a wakeup signal to the microcomputer 330 when a preset time has come or a preset time has elapsed. When this wakeup signal is input to the microcomputer 330 in sleep mode, the microcomputer 330 switches from sleep mode to normal mode.
 発電部360は、太陽電池によって取得した光エネルギーを電気エネルギーに変換している。発電部360は監視部300の電力供給源として機能している。電力供給は、発電部360からRTC350に絶えず行われている。これによりRTC350の時計機能とタイマー機能が損なわれることが抑制されている。 The power generation unit 360 converts the light energy obtained by the solar cell into electrical energy. The power generation unit 360 functions as a power supply source for the monitoring unit 300 . Power is continuously supplied from generator 360 to RTC 350 . This prevents the clock function and timer function of the RTC 350 from being impaired.
 <環境センサ>
 圃場20の分割エリア毎に異なることが想定される環境値の一つとしては土壌水分量がある。環境センサ310は、対応する分割エリアにおける環境値を検出する。環境センサ310は、土壌水分量等を検出する土壌センサ311を含んでいる。複数の土壌センサ311は、圃場20に配置された複数の分割エリアの土壌水分量を検出する。図面では土壌センサ311をSMSと表記している。
<Environmental sensor>
One of the environmental values assumed to be different for each divided area of the field 20 is the soil water content. Environment sensor 310 detects the environmental value in the corresponding divided area. The environment sensor 310 includes a soil sensor 311 that detects soil moisture content and the like. A plurality of soil sensors 311 detect the soil moisture content of a plurality of divided areas arranged in the field 20 . In the drawing, the soil sensor 311 is indicated as SMS.
 圃場20の起伏や植物30の育成状況によっては、分割エリア毎に異なることが想定される環境値の一つとして日射量がある。この明細書では、各環境センサ310は日射量を検出する日射センサ312を備えている。複数の日射センサ312は、圃場20における複数の分割エリアの日射量を検出する。図面では日射センサ312をSRSと表記している。 Depending on the undulations of the field 20 and the growing conditions of the plants 30, the amount of solar radiation is one of the environmental values that are assumed to differ for each divided area. In this specification, each environmental sensor 310 has a solar radiation sensor 312 that detects the amount of solar radiation. A plurality of solar radiation sensors 312 detect the amount of solar radiation in a plurality of divided areas in the agricultural field 20 . In the drawings, the solar radiation sensor 312 is denoted as SRS.
 モニタ700には、複数の分割エリアにおいて検出された土壌水分量と日射量を行列配置することによって、圃場20における土壌水分量分布と日射量分布がマップ表示される。同様にモニタ700には、複数の水圧センサ153で検出された水圧を行列配置することで、圃場20における給水配管130の水圧分布がモニタ700にマップ表示される。係るマップ表示処理は統合演算部600で行われる。 The monitor 700 displays a map of the soil moisture content distribution and the solar radiation distribution in the field 20 by arranging the soil moisture content and the solar radiation detected in a plurality of divided areas in a matrix. Similarly, by arranging the water pressure detected by the plurality of water pressure sensors 153 in a matrix on the monitor 700 , the water pressure distribution of the water supply pipe 130 in the field 20 is displayed on the monitor 700 as a map. Such map display processing is performed by the integrated calculation unit 600 .
 圃場20における環境値には、降雨量、温度、湿度、気圧、および風量が含まれる。これらの環境値を検出するセンサは、レインセンサ313、温度センサ314、湿度センサ315、気圧センサ316、および風センサ317である。これらは複数の監視部300のうちの少なくとも1つの環境センサ310に含まれている。 The environmental values in the field 20 include rainfall, temperature, humidity, atmospheric pressure, and wind volume. Sensors that detect these environmental values are a rain sensor 313 , a temperature sensor 314 , a humidity sensor 315 , an air pressure sensor 316 and a wind sensor 317 . These are included in at least one environmental sensor 310 of the plurality of monitoring units 300 .
 監視部300の環境センサ310には、これら圃場20全体の環境値を検出する各種センサが含まれている。図4に環境センサ310の一例を示す。図面ではレインセンサ313をRS、温度センサ314をTS、湿度センサ315をMS、気圧センサ316をPS、風センサ317をWSと表記している。風センサ317は風量だけではなく風向も検出する構成でもよい。これらレインセンサ313、温度センサ314、湿度センサ315、気圧センサ316、および風センサ317のうちの少なくとも1つが、圃場20で行列配置された構成を採用することもできる。 The environment sensor 310 of the monitoring unit 300 includes various sensors that detect environmental values of the entire field 20 . An example of the environment sensor 310 is shown in FIG. In the drawing, the rain sensor 313 is denoted by RS, the temperature sensor 314 by TS, the humidity sensor 315 by MS, the atmospheric pressure sensor 316 by PS, and the wind sensor 317 by WS. The wind sensor 317 may be configured to detect not only the wind volume but also the wind direction. At least one of the rain sensor 313 , temperature sensor 314 , humidity sensor 315 , atmospheric pressure sensor 316 and wind sensor 317 may be arranged in rows and columns in the field 20 .
 係る構成は、例えば、圃場20が広かったり、圃場20の起伏が激しかったり、圃場20の気候変化が激しかったりするために、分割エリア毎に降雨量、温度、湿度、気圧、および風量が大きく変化しやすい場合に有効である。これらセンサで検出された降雨量、温度、湿度、気圧、および風量を行列配置することにより、これら環境値をモニタ700にマップ表示することが可能になる。これらセンサの出力は統合通信部400を介して通信部340に出力される。それとともに、これらセンサの出力は統合通信部400を介して情報格納部500に格納される。 In such a configuration, the amount of rainfall, temperature, humidity, air pressure, and wind volume change greatly for each divided area, for example, because the field 20 is large, the field 20 is rugged, or the climate of the field 20 changes drastically. effective when it is easy to By arranging the rainfall amount, temperature, humidity, air pressure, and wind volume detected by these sensors in a matrix, it is possible to display these environmental values on the monitor 700 on a map. Outputs of these sensors are output to the communication unit 340 via the integrated communication unit 400 . Along with this, the outputs of these sensors are stored in the information storage section 500 via the integrated communication section 400 .
 <土壌水分量>
 これまでに説明した各種環境値のうち、潅水システム10が制御する環境値には、土壌水分量が含まれる。潅水システム10は分割エリア毎に潅水の供給時刻と供給量を制御する。こうすることで分割エリア毎の土壌水分量が個別に制御される。
<Soil water content>
Among the various environmental values described so far, the environmental value controlled by the watering system 10 includes the soil water content. The irrigation system 10 controls the supply time and supply amount of irrigation water for each divided area. By doing so, the soil water content for each divided area is individually controlled.
 植物30は圃場20の作土層に根を張っている。植物30の生育はこの作土層の土壌に含まれる水分量(土壌水分量ともいう)に依存している。土壌水分量が成長阻害水分点を上回ると植物30に病害が発生する。土壌水分量が永久しおれ点を下回ると植物30のしおれが回復しなくなる。これら成長阻害水分点と永久しおれ点とは植物30の種類に応じて異なるものの、その値は既知である。これらの値は情報格納部500に記憶されている。 The plant 30 is rooted in the soil layer of the field 20. The growth of the plant 30 depends on the amount of water contained in the soil of this plowing layer (also called soil water content). When the soil water content exceeds the growth-inhibiting water point, the plant 30 becomes diseased. If the soil moisture content drops below the permanent wilting point, the plant 30 will not wilt. Although the growth inhibition water point and the permanent wilting point differ depending on the type of plant 30, their values are known. These values are stored in the information storage unit 500 .
 土壌水分量の現在値は土壌センサ311で検出される。土壌水分量に関わりのある物理量としては、土壌水分量張力(pF値)や土壌誘電率(ε)がある。この明細書の土壌センサ311はpF値を検出している。 The current value of the soil moisture content is detected by the soil sensor 311. Physical quantities related to soil water content include soil water content tension (pF value) and soil dielectric constant (ε). The soil sensor 311 of this specification detects the pF value.
 作土層の土壌水分量は圃場20の環境変化によって増減する。圃場20に雨が降ると土壌水分量が増大する。作土層から水が蒸発すると土壌水分量が減少する。また、植物30が水分を吸収したり、作土層よりも下層へ水が浸透したりすると土壌水分量が減少する。作土層に降り注がれる雨の量(降雨量)はレインセンサ313によって検出される。作土層から蒸発する水分量(蒸発量)は、日射量、温度、湿度、および風量に依存する。これらは、日射センサ312、温度センサ314、湿度センサ315、および風センサ317によって検出される。 The soil moisture content of the plowing layer increases or decreases due to environmental changes in the field 20 . When it rains on the field 20, the soil water content increases. As water evaporates from the topsoil layer, the soil moisture content decreases. Also, when the plant 30 absorbs water or water permeates to a lower layer than the plowing layer, the soil water content decreases. A rain sensor 313 detects the amount of rain (rainfall) that falls on the plowed layer. The amount of water that evaporates from the soil layer (evaporation) depends on the amount of solar radiation, temperature, humidity, and airflow. These are detected by solar sensor 312 , temperature sensor 314 , humidity sensor 315 and wind sensor 317 .
 植物30が単位時間あたりに水分を吸収する吸水量は、植物30の種類によって予め推定することができる。単位時間あたりに作土層よりも下層に浸透する水分量は、土壌の水分保持能力によって予め推定することができる。これら推定値は情報格納部500に記憶されている。 The amount of water absorbed by the plant 30 per unit time can be estimated in advance depending on the type of the plant 30 . The amount of water permeating into layers below the plowing layer per unit time can be estimated in advance from the water retention capacity of the soil. These estimated values are stored in the information storage unit 500 .
 以上に示したように、環境センサ310は、作土層の土壌水分量の現在値、環境変化による作土層の土壌水分量の現在値からの増加、および減少予測に関わる予測値のそれぞれを検出する。これらが環境値として情報格納部500に格納される。情報格納部500には、植物30の成長阻害水分点と永久しおれ点、および植物30が単位時間あたりに水分を吸収する吸水量と土壌の水分保持能力が格納されている。上記したユーザからの指示(ユーザ指示)は情報格納部500に格納される。このように、情報格納部500には潅水スケジュールを決定するための諸情報が格納される。 As described above, the environment sensor 310 detects the current value of the soil moisture content of the plowed layer, the predicted value related to the prediction of the increase from the current value of the soil moisture content of the plowed layer due to environmental changes, and the prediction of the decrease. To detect. These are stored in the information storage unit 500 as environment values. The information storage unit 500 stores the growth inhibition water point and permanent wilting point of the plant 30, the amount of water absorbed by the plant 30 per unit time, and the water retention capacity of the soil. Instructions from the user (user instructions) described above are stored in the information storage unit 500 . In this way, the information storage unit 500 stores various information for determining the watering schedule.
 <マイコン>
 図4に示すようにマイコン330は、取得部331、信号出力部332、記憶部333、および処理部334を備えている。図面では取得部331をAD、信号出力部332をSOU、記憶部333をMU、処理部334をPUと表記している。
<Microcomputer>
As shown in FIG. 4 , the microcomputer 330 has an acquisition section 331 , a signal output section 332 , a storage section 333 and a processing section 334 . In the drawing, the acquisition unit 331 is denoted by AD, the signal output unit 332 by SOU, the storage unit 333 by MU, and the processing unit 334 by PU.
 取得部331には環境センサ310で検出された環境値が入力される。取得部331には水圧センサ153で検出された水圧が入力される。取得部331とこれら環境センサ310および水圧センサ153のそれぞれとは、電気的に接続されている。図1に示すワイヤ160は、取得部331と土壌センサ311とを接続するワイヤ、取得部331と水圧センサ153とを接続するワイヤの一例である。 The environmental value detected by the environment sensor 310 is input to the acquisition unit 331 . The water pressure detected by the water pressure sensor 153 is input to the acquisition unit 331 . Acquisition unit 331 and each of environment sensor 310 and water pressure sensor 153 are electrically connected. A wire 160 shown in FIG. 1 is an example of a wire connecting the acquisition unit 331 and the soil sensor 311 and a wire connecting the acquisition unit 331 and the water pressure sensor 153 .
 信号出力部332は給水弁152と電気的に接続されている。給水弁152のバルブ開度を制御するための制御信号(給水信号)は、信号出力部332から給水弁152に出力される。給水信号の未入力時に給水弁152は閉状態になっている。給水信号の入力時に給水弁152は開状態になっている。 The signal output section 332 is electrically connected to the water supply valve 152 . A control signal (water supply signal) for controlling the opening degree of the water supply valve 152 is output from the signal output section 332 to the water supply valve 152 . The water supply valve 152 is closed when the water supply signal is not input. The water supply valve 152 is open when the water supply signal is input.
 記憶部333はコンピュータやプロセッサによって読み取り可能なプログラムとデータを非一時的に格納する非遷移的実体的記憶媒体である。記憶部333は揮発性メモリと不揮発性メモリとを有している。記憶部333には処理部334が演算処理を実行するためのプログラムが記憶されている。このプログラムには上記した潅水アプリケーションプログラムの少なくとも一部が含まれている。記憶部333には処理部334が演算処理を実行する際のデータが一時的に記憶される。記憶部333には、取得部331および通信部340のそれぞれに入力される各種データと、その各種データの取得時刻とが記憶される。 The storage unit 333 is a non-transitional material storage medium that non-temporarily stores programs and data readable by computers and processors. The storage unit 333 has a volatile memory and a nonvolatile memory. The storage unit 333 stores a program for the processing unit 334 to execute arithmetic processing. This program includes at least a portion of the irrigation application program described above. The storage unit 333 temporarily stores data when the processing unit 334 executes arithmetic processing. Storage unit 333 stores various data input to acquisition unit 331 and communication unit 340 and acquisition times of the various data.
 処理部334はRTC350からウェイクアップ信号が入力されるとスリープモードから通常モードになる。通常モードにおいて処理部334は、記憶部333に記憶されているプログラムと各種データとを読み込んで演算処理を実行する。この演算処理は、分配チューブ136の貫通孔を通じて飛水した水を所望の潅水位置に到達させるために必要なバルブ開度の演算を含む。処理部334は演算部に相当する。 When the wakeup signal is input from the RTC 350, the processing unit 334 switches from sleep mode to normal mode. In the normal mode, the processing unit 334 reads programs and various data stored in the storage unit 333 and executes arithmetic processing. This calculation processing includes calculation of the valve opening necessary for causing the water splashed through the through hole of the distribution tube 136 to reach the desired watering position. The processing unit 334 corresponds to a computing unit.
 処理部334は取得部331に入力された各種センサ信号、通信部340に入力された指示信号の取得時刻をRTC350から読み出している。処理部334は指示信号と取得時刻とを記憶部333に記憶させる。 The processing unit 334 reads from the RTC 350 the acquisition times of the various sensor signals input to the acquisition unit 331 and the instruction signal input to the communication unit 340 . The processing unit 334 causes the storage unit 333 to store the instruction signal and the acquisition time.
 処理部334は、環境センサ310と水圧センサ153から入力された環境値と水圧、およびそれらの取得時刻を通信部340と統合通信部400とを介して情報格納部500に格納する。処理部334は、情報格納部500、統合通信部400、および通信部340を介して統合演算部600から入力された指示信号に基づいて、信号出力部332を介して給水弁152に給水信号を出力する。 The processing unit 334 stores the environmental value and water pressure input from the environment sensor 310 and the water pressure sensor 153 and their acquisition times in the information storage unit 500 via the communication unit 340 and the integrated communication unit 400 . The processing unit 334 sends a water supply signal to the water supply valve 152 through the signal output unit 332 based on the instruction signal input from the integrated calculation unit 600 through the information storage unit 500, the integrated communication unit 400, and the communication unit 340. Output.
 <通信部>
 通信部340は処理部334から入力された電気信号を無線信号に変換する。通信部340はこの無線信号を統合通信部400に出力する。通信部340は統合通信部400から出力された無線信号を電気信号に変換する。通信部340はこの電気信号を処理部334に出力する。
<Communication part>
The communication unit 340 converts the electrical signal input from the processing unit 334 into a radio signal. Communication unit 340 outputs this radio signal to integrated communication unit 400 . The communication unit 340 converts the radio signal output from the integrated communication unit 400 into an electrical signal. The communication section 340 outputs this electrical signal to the processing section 334 .
 通信部340が出力する無線信号には、図5に簡易的に示すアドレス341とデータ342とが含まれている。図面においてアドレス341をADD、データ342をDATと表記している。 The radio signal output by the communication unit 340 includes an address 341 and data 342, which are simply shown in FIG. In the drawing, the address 341 is written as ADD, and the data 342 is written as DAT.
 図3に示すように複数の通信部340と統合通信部400との間で無線信号の送受信が行われる。無線信号に含まれるアドレス341は、複数の通信部340のうちのいずれから出力されたかを示す識別コードである。換言すれば、無線信号に含まれるアドレスは、複数の処理部334のうちのいずれから出力されたかを示す識別コードである。複数の記憶部333それぞれに固有のアドレス341が保存されている。 As shown in FIG. 3, radio signals are transmitted and received between the plurality of communication units 340 and the integrated communication unit 400 . The address 341 included in the radio signal is an identification code indicating from which one of the plurality of communication units 340 the signal is output. In other words, the address included in the radio signal is an identification code indicating from which one of the plurality of processing units 334 the address is output. A unique address 341 is stored in each of the plurality of storage units 333 .
 統合通信部400から出力される無線信号にもアドレス341が含まれている。そしてこの無線信号のデータ342には指示信号が含まれている。この無線信号を複数の通信部340それぞれが受信する。この無線信号は複数の通信部340それぞれで電気信号に変換される。そしてこの電気信号は複数の処理部334それぞれに入力される。複数の処理部334のうち、その電気信号に含まれるアドレス341と同一のアドレス341を保有する処理部334のみが、その電気信号に基づく演算処理を実行する。 The address 341 is also included in the radio signal output from the integrated communication unit 400 . The radio signal data 342 includes the instruction signal. Each of the plurality of communication units 340 receives this radio signal. This radio signal is converted into an electric signal by each of the plurality of communication units 340 . This electrical signal is then input to each of the plurality of processing units 334 . Among the plurality of processing units 334, only the processing unit 334 having the same address 341 as the address 341 included in the electrical signal executes arithmetic processing based on the electrical signal.
 後述するようにマイコン330はスリープモードと通常モードとを交互に繰り返す間欠駆動をする。そのために通信部340と統合通信部400との間での無線通信は頻繁には行われない。通信部340と統合通信部400との間で無線通信を行う時間間隔が長くなっている。これにより、1回の無線通信でデータ342に含めることのできるデータ量を多くすることが可能になっている。 As will be described later, the microcomputer 330 intermittently drives the sleep mode and the normal mode alternately. Therefore, wireless communication between the communication unit 340 and the integrated communication unit 400 is not frequently performed. The time interval for wireless communication between the communication unit 340 and the integrated communication unit 400 is lengthened. This makes it possible to increase the amount of data that can be included in the data 342 in one wireless communication.
 <発電部>
 発電部360は太陽電池361、蓄電部362、電流センサ363、および電力センサ364を含む。図面では太陽電池361をSB、蓄電部362をESU、電流センサ363をCS、電力センサ364をPSと表記している。太陽電池361は光エネルギーを電気エネルギーに変換する。蓄電部362はその電気エネルギー(電力)を蓄電する。蓄電部362に蓄電された電力は、監視部300の駆動電力として活用される。
<Power Generation Department>
Power generation unit 360 includes solar cell 361 , power storage unit 362 , current sensor 363 , and power sensor 364 . In the drawing, the solar battery 361 is denoted by SB, the power storage unit 362 by ESU, the current sensor 363 by CS, and the power sensor 364 by PS. Solar cell 361 converts light energy into electrical energy. The power storage unit 362 stores the electrical energy (power). The power stored in power storage unit 362 is utilized as driving power for monitoring unit 300 .
 電流センサ363は太陽電池361から蓄電部362に出力される電流を検出する。電力センサ364は蓄電部362から出力される電力を検出する。処理部334は、検出された電流値と電力値を、通信部340と統合通信部400を介して情報格納部500に格納している。監視部300の駆動電力は発電部360で発電された電力に依存している。このため、発電部360に入射する光量が少ないと、監視部300の駆動電力が不足することがある。これを避けるために監視部300のマイコン330は間欠駆動を行っている。 A current sensor 363 detects the current output from the solar cell 361 to the power storage unit 362 . Power sensor 364 detects power output from power storage unit 362 . The processing unit 334 stores the detected current value and power value in the information storage unit 500 via the communication unit 340 and the integrated communication unit 400 . The driving power of the monitoring section 300 depends on the power generated by the power generation section 360 . Therefore, when the amount of light incident on the power generation section 360 is small, the driving power of the monitoring section 300 may be insufficient. To avoid this, the microcomputer 330 of the monitoring unit 300 is intermittently driven.
 <RTC>
 RTC350は、上記した間欠駆動の時間間隔(駆動周期)が経過するごとにウェイクアップ信号をマイコン330に出力している。これによりマイコン330はスリープモードと通常モードとを交互に繰り返している。上記の駆動周期は、蓄電部362に蓄電された電力量(蓄電量)に応じて統合演算部600によって決定される。換言すれば、間欠駆動間隔は、蓄電量に応じて統合演算部600によって決定される。
<RTC>
The RTC 350 outputs a wakeup signal to the microcomputer 330 each time the intermittent drive time interval (driving cycle) elapses. As a result, the microcomputer 330 alternately repeats sleep mode and normal mode. The drive cycle described above is determined by the integrated calculation unit 600 according to the amount of electric power stored in the power storage unit 362 (the amount of power stored). In other words, the intermittent drive interval is determined by the integrated calculation unit 600 according to the amount of stored electricity.
 統合演算部600は情報格納部500に格納された電力に基づいて蓄電量を算出する。統合演算部600は蓄電量が少ないほどに間欠駆動間隔を長く設定する。統合演算部600は蓄電量が多いほどに間欠駆動間隔を短く設定する。統合演算部600は間欠駆動間隔を指示信号に含ませる。この指示信号をマイコン330の処理部334が取得すると、処理部334は間欠駆動間隔を調整する。処理部334はRTC350の駆動周期を調整する。圃場20の環境が数秒単位で極端に変化することはまれである。そのために間欠駆動間隔は数十秒~数十時間単位になっている。これに応じて、無線通信を行う時間間隔も数十秒~数十時間単位になっている。 The integrated calculation unit 600 calculates the amount of stored electricity based on the power stored in the information storage unit 500 . The integration calculation unit 600 sets a longer intermittent drive interval as the amount of stored electricity decreases. The integrated calculation unit 600 sets the intermittent drive interval shorter as the amount of stored electricity increases. The integrated calculation unit 600 includes the intermittent drive interval in the instruction signal. When the processing unit 334 of the microcomputer 330 acquires this instruction signal, the processing unit 334 adjusts the intermittent drive interval. A processing unit 334 adjusts the drive cycle of the RTC 350 . It is rare for the environment of the field 20 to change drastically in units of seconds. Therefore, the intermittent drive interval is several tens of seconds to several tens of hours. Accordingly, the time interval for performing wireless communication is also in units of several tens of seconds to several tens of hours.
 <潅水システムの駆動>
 潅水システム10では、複数の監視部300と統合演算部600との間での信号の送受信、および情報格納部500への各種データの保存が行われている。複数の監視部300と統合演算部600のそれぞれは、駆動周期毎に処理するサイクルタスクと、突発的に処理するイベントタスクとを実行する。
<Driving the irrigation system>
In the irrigation system 10 , signals are transmitted and received between the multiple monitoring units 300 and the integrated calculation unit 600 and various data are stored in the information storage unit 500 . Each of the plurality of monitoring units 300 and the integrated calculation unit 600 executes a cycle task processed every drive cycle and an event task processed suddenly.
 これらサイクルタスクとイベントタスクとには処理の優先順位がある。これらタスクの処理タイミングが同一になった場合、サイクルタスクよりもイベントタスクの処理が優先される。サイクルタスクとして、各監視部300は図6に示すセンサ処理を実行する。統合演算部600は図7に示す更新処理を実行する。イベントタスクとして、各監視部300は、図8に示す監視処理と図9に示す給水処理を実行する。統合演算部600は、図10に示す潅水処理、図11に示すユーザ更新処理、および図12に示す強制更新処理を実行する。 These cycle tasks and event tasks have processing priorities. When the processing timings of these tasks are the same, the processing of the event task is given priority over the processing of the cycle task. As a cycle task, each monitoring unit 300 executes the sensor processing shown in FIG. The integration calculation unit 600 executes the updating process shown in FIG. As event tasks, each monitoring unit 300 executes the monitoring process shown in FIG. 8 and the water supply process shown in FIG. The integrated calculation unit 600 executes the watering process shown in FIG. 10, the user update process shown in FIG. 11, and the forced update process shown in FIG.
 以下、図6と図7に基づいて、サイクルタスクとしてのセンサ処理と更新処理を説明する。フローチャートを示す各図面においては、スタートをS、エンドをEで表記している。 The sensor processing and update processing as cycle tasks will be described below based on FIGS. In each drawing showing a flow chart, S indicates the start and E indicates the end.
 <センサ処理>
 図6に示すスタートの前において、監視部300のマイコン330はスリープモードになっており、このマイコン330にRTC350からウェイクアップ信号が入力される。これによりマイコン330はスリープモードから通常モードに切り換わる。それとともに、マイコン330は図6に示すセンサ処理を実行し始める。このセンサ処理はマイコン330の間欠駆動間隔で実行される。ステップS10では、各種センサから入力されるセンサ信号を取得し、さらにRTC350の出力に基づいてセンサ信号の取得時刻を取得する。さらにステップS20では、取得したセンサ信号と取得時刻それぞれを記憶する。ステップS30では、センサ情報としてのセンサ信号と取得時刻を無線通信によって通信部340から統合通信部400に出力する。このセンサ情報は、統合通信部400によって情報格納部500に格納される。マイコン330はスリープモードに移行し、センサ処理を終了する。
<Sensor processing>
Before the start shown in FIG. 6, the microcomputer 330 of the monitoring unit 300 is in sleep mode, and a wakeup signal is input from the RTC 350 to this microcomputer 330 . As a result, the microcomputer 330 switches from the sleep mode to the normal mode. At the same time, the microcomputer 330 starts executing the sensor processing shown in FIG. This sensor processing is executed at intermittent drive intervals of the microcomputer 330 . In step S<b>10 , sensor signals input from various sensors are acquired, and the sensor signal acquisition time is acquired based on the output of the RTC 350 . Further, in step S20, the acquired sensor signal and acquisition time are stored. In step S30, the sensor signal as sensor information and the acquisition time are output from the communication section 340 to the integrated communication section 400 by wireless communication. This sensor information is stored in the information storage unit 500 by the integrated communication unit 400 . The microcomputer 330 shifts to sleep mode and terminates sensor processing.
 <更新処理>
 統合演算部600は、図7に示す更新処理を更新周期が経過するごとに実行する。この更新周期はマイコン330の間欠駆動間隔と同程度になっている。ステップS110では、情報格納部500に格納されている諸情報を読み出す。次のステップS120では、読み込んだ諸情報に基づいて、複数の監視部300のそれぞれの潅水スケジュールを更新する。また統合演算部600は各監視部300においてセンサ処理を更新する。統合演算部600はセンサ処理を実行するタイミングに相当する、間欠駆動間隔を更新する。統合演算部600は、その更新した潅水スケジュールと間欠駆動間隔を自身が保有するとともに、情報格納部500に格納し、更新処理を終了する。以上に示したように、サイクルタスクによって、センサ情報、潅水スケジュール、および、間欠駆動間隔が更新される。
<Update process>
The integration calculation unit 600 executes the update process shown in FIG. 7 each time the update period elapses. This update period is approximately the same as the intermittent drive interval of the microcomputer 330 . In step S110, various information stored in the information storage unit 500 is read. In the next step S120, the watering schedule for each of the plurality of monitoring units 300 is updated based on the read various information. Also, the integrated calculation unit 600 updates sensor processing in each monitoring unit 300 . The integrated calculation unit 600 updates the intermittent drive interval corresponding to the timing of executing sensor processing. The integrated calculation unit 600 owns the updated watering schedule and the intermittent drive interval, stores them in the information storage unit 500, and ends the update process. As indicated above, the cycle task updates the sensor information, irrigation schedule, and intermittent drive interval.
 次に図8~図12を参照して、イベントタスクとしての監視処理、給水処理、潅水処理、ユーザ更新処理、および強制更新処理を説明する。監視処理、給水処理、および潅水処理のそれぞれは、監視部300の駆動電力の枯渇を避けるために、昼間に実行される。昼間か否かの判定は、現在時刻と日射センサ312で検出される日射量などによって検出することができる。 Next, monitoring processing, water supply processing, sprinkling processing, user update processing, and forced update processing as event tasks will be described with reference to FIGS. 8 to 12. FIG. Each of the monitoring process, the water supply process, and the watering process is performed during the daytime in order to avoid depletion of the driving power of the monitoring unit 300 . Whether it is daytime or not can be detected based on the current time and the amount of solar radiation detected by the solar radiation sensor 312 .
 <監視処理>
 図8に示すスタートの前において、各監視部300のマイコン330はスリープモードになっている。マイコン330には、無線通信によって統合演算部600から指示信号が入力される。この結果、マイコン330は、スリープモードから通常モードに切り換わり、図8に示す監視処理を実行し始める。
<Monitoring process>
Before the start shown in FIG. 8, the microcomputer 330 of each monitoring section 300 is in sleep mode. An instruction signal is input to the microcomputer 330 from the integrated calculation unit 600 by wireless communication. As a result, the microcomputer 330 switches from the sleep mode to the normal mode and starts executing the monitoring process shown in FIG.
 ステップS210では、入力された指示信号とそれの取得時刻を記憶する。次のステップS220では、指示信号に給水弁152を閉状態から開状態にする給水指示が含まれているか否かを判定する。給水指示が指示信号に含まれている場合、ステップS230へ進む。給水指示が指示信号に含まれていない場合、ステップS240へ進む。 In step S210, the input instruction signal and its acquisition time are stored. In the next step S220, it is determined whether or not the instruction signal includes a water supply instruction to open the water supply valve 152 from the closed state. If the water supply instruction is included in the instruction signal, the process proceeds to step S230. If the water supply instruction is not included in the instruction signal, the process proceeds to step S240.
 ステップS230では、図9に示す給水処理を実行する。すなわちマイコン330は、ステップS231において、給水指示にしたがって、給水弁152に給水信号を出力する。ステップS232でマイコン330は、指示信号に含まれている給水時間が経過したか否かを判定する。給水時間が経過していない場合、給水弁152に対する給水信号の出力を継続する。給水時間が経過した場合、ステップS233へ進む。 In step S230, the water supply process shown in FIG. 9 is executed. That is, the microcomputer 330 outputs a water supply signal to the water supply valve 152 in accordance with the water supply instruction in step S231. In step S232, the microcomputer 330 determines whether or not the water supply time included in the instruction signal has elapsed. If the water supply time has not elapsed, the output of the water supply signal to the water supply valve 152 is continued. If the water supply time has elapsed, the process proceeds to step S233.
 ステップS233では、給水信号の出力を停止して給水処理を終了する。次のステップS240では、指示信号に間欠駆動間隔の更新指示が含まれているか否かを判定する。間欠駆動間隔の更新指示が指示信号に含まれている場合、ステップS250へ進む。間欠駆動間隔の更新指示が指示信号に含まれていない場合、ステップS260へ進む。上記した間欠駆動間隔の更新指示は、統合演算部600若しくは情報格納部500から各監視部300に指示信号として定期的若しくは不定期的に出力されている。 At step S233, the output of the water supply signal is stopped, and the water supply process ends. In the next step S240, it is determined whether or not the instruction signal includes an instruction to update the intermittent drive interval. If the instruction signal includes an instruction to update the intermittent drive interval, the process proceeds to step S250. If the instruction signal does not include an instruction to update the intermittent drive interval, the process proceeds to step S260. The instruction to update the intermittent drive interval described above is periodically or irregularly output as an instruction signal from the integrated calculation section 600 or the information storage section 500 to each monitoring section 300 .
 ステップS250でマイコン330の処理部334は、RTC350のウェイクアップ信号を出力する時間間隔を調整する。次のステップS260では、図6に基づいて説明したセンサ処理を実行する。ステップS230の給水処理を実行した場合、ステップS260において潅水供給後の環境値が検出される。ステップS230の給水処理を実行しなかった場合、ステップS260において潅水が供給されていないときの環境値が検出される。この環境値は情報格納部500に格納される。センサ処理を実行し終えるとマイコン330はスリープモードに移行し、監視処理を終了する。 At step S250, the processing unit 334 of the microcomputer 330 adjusts the time interval for outputting the wakeup signal of the RTC 350. In the next step S260, the sensor processing described based on FIG. 6 is executed. When the water supply process of step S230 is performed, the environment value after water supply is detected in step S260. If the water supply process of step S230 is not executed, the environment value when water is not being supplied is detected in step S260. This environment value is stored in the information storage unit 500 . After completing the sensor processing, the microcomputer 330 shifts to the sleep mode and terminates the monitoring processing.
 <潅水処理>
 統合演算部600は、図10に示す潅水処理を、各監視部300の潅水スケジュールにおいて、潅水を供給するタイミングになるごとに実行する。統合演算部600は、ステップS310で複数の監視部300のうち、潅水を供給する予定である分割エリアの監視部300に向けて、給水指示を含む給水信号を出力する。次のステップS320では、給水指示には、給水信号の出力開始と給水信号の出力時間(給水時間)とが含まれている。この給水指示を受信した監視部300は、図8に基づいて説明した監視処理を実行する。
<Irrigation treatment>
The integrated calculation unit 600 executes the watering process shown in FIG. 10 each time it is time to supply water in the watering schedule of each monitoring unit 300 . In step S310, the integration calculation unit 600 outputs a water supply signal including a water supply instruction to the monitoring unit 300 of the divided area to which water is to be supplied among the plurality of monitoring units 300 . In the next step S320, the water supply instruction includes the start of output of the water supply signal and the output time of the water supply signal (water supply time). Upon receiving this water supply instruction, the monitoring unit 300 executes the monitoring process described with reference to FIG.
 ステップS320へ進むと統合演算部600は、監視部300の監視処理が終了するまで待機状態になる。監視処理が終了した場合、ステップS330へ進む。監視処理が終了したか否かの判断は、例えば、監視処理が終了することが見込まれる時間だけ経過したか否かに基づいて行う。監視処理が終了したか否かの判断は、監視部300に対して問い合わせることによって行うことができる。監視処理の終了判断方法については特に限定されない。 When proceeding to step S320, the integrated calculation unit 600 enters a standby state until the monitoring process of the monitoring unit 300 is completed. If the monitoring process has ended, the process proceeds to step S330. A determination as to whether or not the monitoring process has ended is made, for example, based on whether or not a period of time in which the monitoring process is expected to end has elapsed. Whether or not the monitoring process has ended can be determined by inquiring of the monitoring unit 300 . A method for determining the end of the monitoring process is not particularly limited.
 <ユーザ更新処理>
 統合演算部600は、図11に示すユーザ更新処理を、潅水スケジュールや間欠駆動間隔の調整に関わるユーザ指示が入力機器800から入力された際に実行する。統合演算部600は、ステップS410において、入力されたユーザ指示を情報格納部500に格納する。次のステップS420では、図7に基づいて説明した更新処理を実行する。以上により、ユーザ指示に基づいて、潅水スケジュールや間欠駆動間隔が更新される。
<User update process>
The integrated calculation unit 600 executes the user update process shown in FIG. 11 when a user instruction related to adjustment of the watering schedule and the intermittent drive interval is input from the input device 800 . Integrated calculation unit 600 stores the input user instruction in information storage unit 500 in step S410. In the next step S420, the updating process described with reference to FIG. 7 is executed. As described above, the irrigation schedule and the intermittent drive interval are updated based on the user's instructions.
 <強制更新処理>
 統合演算部600は、図12に示す強制更新処理を、潅水スケジュールと間欠駆動間隔の更新に関わるユーザ指示が入力された際に実行する。統合演算部600は、ステップS510においてセンサ処理の実行を要求する要求指示を含む要求信号を出力する。この要求信号は無線通信によって監視部300に出力される。ステップS520では、監視部300のセンサ処理が終了するまで待機状態になる。
<Forced update process>
The integrated calculation unit 600 executes the forced update process shown in FIG. 12 when a user instruction regarding update of the watering schedule and the intermittent drive interval is input. Integral calculation unit 600 outputs a request signal including a request instruction requesting execution of sensor processing in step S510. This request signal is output to the monitoring unit 300 by wireless communication. In step S520, a standby state is entered until the sensor processing of the monitoring unit 300 is completed.
 センサ処理が終了した場合、ステップS530へ進む。センサ処理が終了したか否かの判断は、例えば、センサ処理が終了することが見込まれる時間だけ経過したか否かに基づいて行うことができる。また、センサ処理が終了したか否かを監視部300に対して問い合わせることによって行うことができる。センサ処理の終了判断方法については特に限定されない。ステップS530では、図7に基づいて説明した更新処理を実行する。以上により、潅水スケジュールと間欠駆動間隔は、ユーザの更新要求時の各種データに基づいて更新される。 When the sensor processing has ended, the process proceeds to step S530. A determination as to whether or not the sensor processing has ended can be made, for example, based on whether or not a period of time in which the sensor processing is expected to end has elapsed. Alternatively, it can be performed by inquiring of the monitoring unit 300 whether or not the sensor processing has ended. The method for determining the end of sensor processing is not particularly limited. In step S530, the updating process described with reference to FIG. 7 is executed. As described above, the watering schedule and the intermittent drive interval are updated based on various data at the time of the user's update request.
 監視部300は、図9に示す給水処理や図10に示す潅水処理において、分配チューブ136から水が出ているか否かを判定し、判定結果に応じた処理を実施する。監視部300は、水圧センサ153によって検出された水圧に基づいて吐水か否かを判定する。監視部300は、水圧センサ153によって検出された水圧が異常圧力値を超えていると判定した場合は、潅水実施中である給水弁152を全閉し潅水を中止する。異常圧力値は、分配チューブ136から吐水できている場合にはありえない圧力値や、水が行き場を失って外部に放出されない場合の圧力値に設定される。異常圧力値は、あらかじめ記憶部333に記憶されている。 The monitoring unit 300 determines whether or not water is coming out from the distribution tube 136 in the water supply process shown in FIG. 9 and the watering process shown in FIG. 10, and performs processing according to the determination result. The monitoring unit 300 determines whether water is being discharged based on the water pressure detected by the water pressure sensor 153 . When the monitoring unit 300 determines that the water pressure detected by the water pressure sensor 153 exceeds the abnormal pressure value, the monitoring unit 300 fully closes the water supply valve 152 during watering to stop watering. The abnormal pressure value is set to a pressure value that is impossible when water is being discharged from the distribution tube 136, or a pressure value when water has no place to go and is not discharged to the outside. The abnormal pressure value is stored in the storage unit 333 in advance.
 監視部300は、水圧が異常圧力値を超えている場合には、さらに潅水を中止した分配チューブ136に隣接する隣の分配チューブ136から潅水を実施する。例えば隣の分配チューブ136は、潅水を中止した分配チューブ136に対して、チューブの軸方向に直交する方向に隣接している。監視部300は、隣の分配チューブ136に給水可能な給水弁152のバルブ開度を、中止した潅水において狙っていた目標潅水位置まで届く飛水距離が得られる値に制御する。 When the water pressure exceeds the abnormal pressure value, the monitoring unit 300 irrigates from the adjacent distribution tube 136 adjacent to the distribution tube 136 for which irrigation has been stopped. For example, the adjacent distribution tube 136 is adjacent to the distribution tube 136 that has ceased irrigation in a direction perpendicular to the axial direction of the tube. The monitoring unit 300 controls the valve opening degree of the water supply valve 152 capable of supplying water to the adjacent distribution tube 136 to a value that allows the water splash distance to reach the targeted target watering position in the stopped watering.
 このように制御装置は、潅水が分配チューブ136から放出されていない場合には、潅水が放出されていない分配チューブ136に隣接する隣の分配チューブ136へ流下する潅水の圧力を制御する給水弁152についてバルブ開度を制御する。制御装置は、バルブ開度の制御により、放出されなかった潅水において狙っていた目標潅水位置に届くように、隣の分配チューブ136から放出される潅水の飛水距離を制御する。この制御によれば、配管や分配チューブ136の目詰まりや、給水弁152の故障による潅水の不具合を解消できる潅水システム10を提供できる。 Thus, the controller controls the pressure of the irrigation water flowing down the adjacent distribution tube 136 adjacent to the distribution tube 136 from which irrigation water is not being discharged. to control the valve opening. By controlling the opening of the valve, the controller controls the splash distance of the irrigation water discharged from the adjacent distribution tube 136 so that the target irrigation position aimed at by the irrigation water not discharged is reached. According to this control, it is possible to provide the irrigation system 10 that can solve problems with irrigation due to clogging of the pipes and distribution tubes 136 and failure of the water supply valve 152 .
 <個別潅水処理>
 以上、図6~図12に基づいて説明したように、統合演算部600は、複数の分割エリアそれぞれにおいて潅水スケジュールを決定する。統合演算部600は、各潅水スケジュールに基づく潅水の供給を制御する。また、複数の分割エリアそれぞれでの潅水スケジュールが統合演算部600によって決定されるものの、各潅水スケジュールに基づく潅水の供給を各監視部300によって個別に制御する構成を採用してもよい。
<Individual irrigation treatment>
As described above with reference to FIGS. 6 to 12, the integrated calculation unit 600 determines the watering schedule for each of the plurality of divided areas. The integrated calculation unit 600 controls the supply of irrigation water based on each irrigation schedule. Moreover, although the watering schedule for each of the plurality of divided areas is determined by the integrated calculation unit 600, a configuration may be adopted in which the water supply based on each watering schedule is individually controlled by each monitoring unit 300.
 <独立更新>
 さらに例示すると、各分割エリアにおける潅水スケジュールを、対応する監視部300が独立して決定する構成を採用してもよい。係る構成においては、各監視部300は図7に示す更新処理を実行する。
<Independent update>
As a further example, a configuration may be adopted in which the corresponding monitoring unit 300 independently determines the watering schedule for each divided area. In such a configuration, each monitoring unit 300 executes update processing shown in FIG.
 <天気予報と潅水スケジュール>
 情報格納部500には、土壌水分量の現在値と減少変化の予測値、およびユーザ指示が格納される。情報格納部500には植物30の成長阻害水分点と永久しおれ点、植物30が単位時間あたりに水分を吸収する吸水量と土壌の水分保持能力が格納されている。これらの他に、情報格納部500には外部情報源1000から出力配信される圃場20の天気予報が格納される。図面においては外部情報源1000をESIと表記している。
<Weather forecast and irrigation schedule>
The information storage unit 500 stores the current value of the soil moisture content, the predicted value of the decreasing change, and the user's instruction. The information storage unit 500 stores the growth inhibition water point and permanent wilting point of the plant 30, the amount of water absorbed by the plant 30 per unit time, and the water retention capacity of the soil. In addition to these, the information storage unit 500 stores the weather forecast for the field 20 output and distributed from the external information source 1000 . In the drawing, the external information source 1000 is indicated as ESI.
 統合演算部600は、図7に示す更新処理のステップS110において、この天気予報を含む諸情報を情報格納部500から読み出す。統合演算部600はステップS120において各監視部300における潅水スケジュールを決定する。 The integrated calculation unit 600 reads various information including the weather forecast from the information storage unit 500 in step S110 of the update process shown in FIG. The integrated calculation unit 600 determines the watering schedule for each monitoring unit 300 in step S120.
 <目標値と推定値>
 統合演算部600は、潅水スケジュールを決定するにあたって、土壌水分量の目標値と推定値を算出する。土壌水分量の目標値は、当然ながらにして、成長阻害水分点と永久しおれ点との間の値に設定される。植物30の健全な育成を試みるために、土壌水分量の目標値は、理論値である成長阻害水分点と永久しおれ点それぞれからある程度離れた値に設定される。
<Target value and estimated value>
The integrated calculation unit 600 calculates a target value and an estimated value of the soil water content when determining the watering schedule. The target value for soil moisture is naturally set to a value between the stunted water point and the permanent wilting point. In order to attempt healthy growth of the plant 30, the target value of the soil moisture content is set to a value that is somewhat distant from the theoretical values of the growth inhibition moisture point and the permanent wilting point.
 統合演算部600は、この土壌水分量の目標値として、成長阻害水分点側の上限目標値と、永久しおれ点側の下限目標値とを設定する。統合演算部600は、潅水スケジュールの潅水期間においては、土壌水分量の推定値が上限目標値と下限目標値との間になるように、潅水スケジュールを決定する。降雨によって土壌水分量の推定値が上限目標値を上回ることが予想された場合でも、統合演算部600は土壌水分量の推定値が成長阻害水分点を超えないように潅水スケジュールを決定する。 The integrated calculation unit 600 sets the upper limit target value on the growth inhibition moisture point side and the lower limit target value on the permanent wilting point side as the target value of the soil moisture content. The integrated calculation unit 600 determines the watering schedule so that the estimated value of the soil moisture content is between the upper limit target value and the lower limit target value during the watering period of the watering schedule. Even if the estimated soil moisture content is expected to exceed the upper limit target value due to rainfall, the integrated calculation unit 600 determines the watering schedule so that the estimated soil moisture content does not exceed the growth inhibition moisture point.
 成長阻害水分点と上限目標値との間には乖離がある。この上限乖離幅は、上記した植物30の健全な育成を加味するとともに、圃場20の気候に基づいて決定される。圃場20の気候には、潅水スケジュールの潅水期間での圃場20の平均的な降雨量の期待値や、潅水期間での天気予報によって予測される総降雨量が含まれている。潅水期間での圃場20の平均的な降雨量の期待値は情報格納部500に格納されている。 There is a discrepancy between the growth inhibition water point and the upper target value. This upper limit deviation width is determined based on the climate of the farm field 20 while considering the healthy growth of the plant 30 described above. The climate of the field 20 includes the expected value of the average amount of rainfall in the field 20 during the irrigation period of the irrigation schedule and the total amount of rainfall predicted by the weather forecast during the irrigation period. The expected value of the average amount of rainfall in the field 20 during the watering period is stored in the information storage unit 500 .
 永久しおれ点と下限目標値との間には乖離がある。この下限乖離幅は、植物30の健全な育成を加味するとともに、給水装置100で故障が起きた時に復旧の見込まれる復旧時間や土壌水分量の単位時間あたりの減少量などに基づいて決定される。例えば、下限乖離幅は復旧時間と土壌水分量の単位時間あたりの減少量とを乗算した値に基づいて決定される。復旧時間は情報格納部500に格納されている。 There is a gap between the permanent wilting point and the lower target value. This lower limit range of divergence takes into account the healthy growth of the plant 30, and is determined based on the recovery time expected to be restored when a failure occurs in the water supply device 100, the amount of decrease in soil water content per unit time, and the like. . For example, the lower limit deviation width is determined based on a value obtained by multiplying the recovery time by the amount of decrease in the soil moisture content per unit time. The recovery time is stored in the information storage unit 500. FIG.
 例えば外部情報源1000から1週間分の天気予報が情報格納部500に格納される場合、統合演算部600は1週間分の潅水スケジュールを決定する。この1週間の間において、天気予報によって何ら降雨予報がない場合、土壌水分量の推定値は時間経過とともに漸次低下することが予想される。この土壌水分量の推定値の単位時間あたりの減少量は、作土層の土壌水分量の減少変化の予測値に基づいて決定される。以下、表記を簡便とするため、必要に応じて、土壌水分量の推定値を、単に推定値と表記する。 For example, when the weather forecast for one week is stored in the information storage unit 500 from the external information source 1000, the integrated calculation unit 600 determines the watering schedule for one week. During this week, if the weather forecast does not predict any rainfall, the estimated soil moisture content is expected to gradually decrease over time. The amount of decrease per unit time of the estimated soil moisture content is determined based on the predicted value of the decrease change in the soil moisture content of the plow layer. In order to simplify the notation, the estimated value of the soil moisture content will be simply referred to as an estimated value as needed.
 上記のように、潅水スケジュールは、環境値などに基づく土壌水分量の推定値と天気予報とに基づいて決定される。これによれば、降雨や乾燥などの天候変化によって野外の分割エリアの土壌水分量が植物30にとって不適になることを抑制できる。また、土壌水分量が成長阻害水分点を上回ったり、永久しおれ点を下回ったりすることを抑制できる。 As described above, the watering schedule is determined based on the estimated soil moisture content based on environmental values and the weather forecast. According to this, it is possible to prevent the soil water content in the outdoor divided area from becoming unsuitable for the plants 30 due to weather changes such as rainfall and dryness. In addition, it is possible to prevent the soil moisture content from exceeding the growth inhibition moisture point or falling below the permanent wilting point.
 統合演算部600は、潅水スケジュールの潅水期間の全てにおいて、土壌水分量の推定値が成長阻害水分点よりも低い上限目標値を上回ることがないように目標給水量を決定している。統合演算部600は、成長阻害水分点と上限目標値との乖離幅(上限乖離幅)を、圃場20の気候などに基づいて決定している。圃場20の気候には、潅水期間での圃場20の平均的な降雨量の期待値や、潅水期間での天気予報によって予測される総降雨量が含まれている。このように上限乖離幅を設定することで、潅水の供給によって土壌水分量を上限目標値に近づけた後、天気予報よりも多めの降雨があったとしても、土壌水分量が成長阻害水分点に到達することが抑制される。 The integrated calculation unit 600 determines the target water supply amount so that the estimated soil moisture amount does not exceed the upper limit target value lower than the growth inhibition moisture point during all the watering periods of the watering schedule. The integrated calculation unit 600 determines the deviation range (upper limit deviation range) between the growth inhibition water point and the upper limit target value based on the climate of the field 20 and the like. The climate of the field 20 includes the expected value of the average amount of rainfall in the field 20 during the watering period and the total amount of rainfall predicted by the weather forecast during the watering period. By setting the upper limit deviation range in this way, even if there is more rainfall than the weather forecast after the soil moisture content approaches the upper target value by supplying water, the soil moisture content will not reach the growth inhibition moisture point. Reaching is suppressed.
 統合演算部600は、潅水スケジュールにおける土壌水分量の推定値が永久しおれ点よりも高い下限目標値を下回ることがないように目標給水量を決定している。統合演算部600は、永久しおれ点と下限目標値との乖離幅(下限乖離幅)を、復旧時間と土壌水分量の単位時間あたりの減少量などに基づいて決定している。このように下限乖離幅を設定することで、例え土壌水分量が下限目標値に近い際に、給水弁152の故障などによって潅水の供給ができなくなったとしても、その故障が復旧されるまでに、土壌水分量が永久しおれ点に到達することを抑制できる。 The integrated calculation unit 600 determines the target water supply amount so that the estimated soil moisture amount in the watering schedule does not fall below the lower limit target value higher than the permanent wilting point. The integrated calculation unit 600 determines the deviation range (lower limit deviation range) between the permanent wilting point and the lower limit target value based on the recovery time and the amount of decrease in the soil moisture content per unit time. By setting the lower limit divergence width in this way, even if the water supply becomes impossible due to a failure of the water supply valve 152 or the like when the soil moisture content is close to the lower target value, , it can suppress the soil moisture content from reaching the permanent wilting point.
 統合演算部600は、潅水スケジュールにおける土壌水分量の推定値が下限目標値に達する時刻に給水を行う。これにより土壌水分量が下限目標値を下回ることを抑制できる。統合演算部600は、降雨予報時刻と潅漑水の供給時刻とを異ならせる。これによれば、降雨予報よりも降雨量が多かったとしても、土壌水分量が過剰に増大することを抑制できる。 The integrated calculation unit 600 waters at the time when the estimated value of the soil moisture content in the watering schedule reaches the lower limit target value. As a result, it is possible to prevent the soil water content from falling below the lower limit target value. The integrated calculation unit 600 makes the rain forecast time and the irrigation water supply time different. According to this, even if there is more rainfall than the rainfall forecast, it is possible to suppress excessive increase in soil water content.
 図13~図15を参照して、給水弁152に適用可能なバルブ装置の一例について以下に説明する。このバルブ装置は、いわゆるロータリ式のバルブ装置である。このバルブ装置は、1個の流体流入部と3個の流体流出部を備えている。流体流入部に供給用配管132を接続し、いずれか1個の流体流出部に分配チューブ136を接続することにより、このバルブ装置は潅水システム10に搭載される。さらに分配チューブ136を接続しない流体流出部には閉塞部材を装着することにより、通路を塞ぐように構成すればよい。 An example of a valve device applicable to the water supply valve 152 will be described below with reference to FIGS. 13 to 15. FIG. This valve device is a so-called rotary valve device. This valve device has one fluid inlet and three fluid outlets. The valve device is mounted to the irrigation system 10 by connecting a supply line 132 to the fluid inlets and a distribution tube 136 to one of the fluid outlets. Further, a closing member may be attached to the fluid outflow portion to which the distribution tube 136 is not connected to close the passage.
 バルブ装置は、図13に示すように、ハウジング9、バルブ90、駆動部70、駆動部カバー80等を備えている。バルブ装置は、バルブ90がシャフト92の軸心を中心に回転することにより、バルブ装置の開閉動作を行うボールバルブとして構成されている。この明細書では、シャフト92の軸心に沿う方向を軸心方向DRa、軸心方向DRaに直交するとともに軸心方向DRaから放射状に延びる方向を径方向DRrとして説明する。 The valve device includes a housing 9, a valve 90, a drive section 70, a drive section cover 80, etc., as shown in FIG. The valve device is configured as a ball valve that opens and closes the valve device by rotating the valve 90 around the axis of the shaft 92 . In this specification, the direction along the axis of the shaft 92 will be described as the axial direction DRa, and the direction perpendicular to the axial direction DRa and extending radially from the axial direction DRa will be described as the radial direction DRr.
 ハウジング9はバルブ90を収容する収容部である。ハウジング9は、例えば樹脂部材によって形成されている。ハウジング9は、バルブ90が収容される中空形状のハウジング本体部21と、ハウジング本体部21から冷却水を流出させるパイプ部材50と、ハウジング本体部21に取り付けられる隔壁部60とを含んでいる。ハウジング本体部21は、外観が略直方体形状であって、軸心方向DRaの他方側に開口部を有する有底形状に形成されている。ハウジング本体部21は、ハウジング本体部21の外周部分を構成するハウジング外壁部22を有している。ハウジング外壁部22は、ハウジング本体部21の内部に、軸心方向DRaの軸心を有する円柱状のバルブ収容空間23を形成している。 The housing 9 is an accommodating portion that accommodates the valve 90 . The housing 9 is made of, for example, a resin member. The housing 9 includes a hollow housing main body portion 21 in which the valve 90 is accommodated, a pipe member 50 for discharging cooling water from the housing main body portion 21 , and a partition wall portion 60 attached to the housing main body portion 21 . The housing main body 21 has a substantially rectangular parallelepiped external appearance and is formed in a bottomed shape having an opening on the other side in the axial direction DRa. The housing main body portion 21 has a housing outer wall portion 22 that constitutes the outer peripheral portion of the housing main body portion 21 . The housing outer wall portion 22 forms a cylindrical valve accommodating space 23 having an axis in the axial direction DRa inside the housing main body portion 21 .
 ハウジング外壁部22には、バルブ収容空間23に冷却水を流入させるための入口ポート251が形成されている。入口ポート251は、円形状に開口して形成され、連結配管135に接続されている。入口ポート251は、流体流入部に相当する。 An inlet port 251 is formed in the outer wall portion 22 of the housing for allowing cooling water to flow into the valve housing space 23 . The inlet port 251 is formed with a circular opening and is connected to the connecting pipe 135 . The inlet port 251 corresponds to the fluid inlet.
 ハウジング外壁部22は、パイプ部材50が取り付けられている。ハウジング外壁部22は、入口ポート251を介してバルブ収容空間23に流入した冷却水をパイプ部材50に流出させるための第1出口ポート261と、第2出口ポート262と、第3出口ポート263とを有する。第1出口ポート261、第2出口ポート262、第3出口ポート263は、流体流出部に相当する。 A pipe member 50 is attached to the housing outer wall portion 22 . The housing outer wall portion 22 has a first outlet port 261, a second outlet port 262, and a third outlet port 263 for causing the cooling water that has flowed into the valve housing space 23 through the inlet port 251 to flow out to the pipe member 50. have The first outlet port 261, the second outlet port 262, and the third outlet port 263 correspond to fluid outlets.
 ハウジング外壁部22におけるハウジング開口面24は、隔壁部60が取り付けられている。ハウジング開口面24は、ハウジング本体部21において、軸心方向DRaの他方側に配置されている。ハウジング開口面24は、バルブ収容空間23とハウジング本体部21の外部とを連通させるハウジング開口部241が形成されている。ハウジング開口部241は、ハウジング開口面24に隔壁部60が取り付けられることによって閉塞される。 A partition wall portion 60 is attached to the housing opening surface 24 of the housing outer wall portion 22 . The housing opening surface 24 is arranged on the other side of the housing body portion 21 in the axial direction DRa. The housing opening surface 24 is formed with a housing opening 241 that allows communication between the valve accommodating space 23 and the outside of the housing main body 21 . The housing opening 241 is closed by attaching the partition wall 60 to the housing opening surface 24 .
 パイプ部材50は、それぞれが円筒状に形成された第1パイプ部51と、第2パイプ部52と、第3パイプ部53とを含んでいる。第1パイプ部51と第2パイプ部52と第3パイプ部53とは、パイプ連結部54によって連結されている。パイプ連結部54は、第1パイプ部51と第2パイプ部52と第3パイプ部53とを連結させ、パイプ部材50をハウジング外壁部22に取り付ける部分である。第1パイプ部51は、上流側が第1出口ポート261の内側に配置されている。第2パイプ部52は、上流側が第2出口ポート262の内側に配置されている。第3パイプ部53は、上流側が第3出口ポート263の内側に配置されている。 The pipe member 50 includes a first pipe portion 51, a second pipe portion 52, and a third pipe portion 53, each of which is cylindrical. The first pipe portion 51 , the second pipe portion 52 and the third pipe portion 53 are connected by a pipe connection portion 54 . The pipe connecting portion 54 is a portion that connects the first pipe portion 51 , the second pipe portion 52 and the third pipe portion 53 and attaches the pipe member 50 to the housing outer wall portion 22 . The upstream side of the first pipe portion 51 is arranged inside the first outlet port 261 . The second pipe portion 52 is arranged inside the second outlet port 262 on the upstream side. The third pipe portion 53 is arranged inside the third outlet port 263 on the upstream side.
 隔壁部60は、ハウジング開口部241を閉塞するとともに、バルブ収容空間23に収容されたバルブ90を保持する。隔壁部60は、軸心方向DRaが板厚方向である円盤状であって、ハウジング開口部241に対して軸心方向DRaの他方側から一方側に向かって嵌め込まれるように配置されている。隔壁部60は、ハウジング開口部241に嵌め込まれた際に、隔壁部60の外周部がハウジング内周面に当接することによって、ハウジング開口部241を閉塞する。 The partition wall 60 closes the housing opening 241 and holds the valve 90 housed in the valve housing space 23 . Partition wall portion 60 is disk-shaped with the plate thickness direction in axial direction DRa, and is arranged to fit into housing opening portion 241 from the other side in axial direction DRa toward one side. When the partition 60 is fitted into the housing opening 241 , the outer peripheral portion of the partition 60 abuts against the inner peripheral surface of the housing, thereby closing the housing opening 241 .
 駆動部カバー80は駆動部70を収容する。駆動部カバー80は、樹脂製の中空形状であって、内部に駆動部70を収容する駆動部空間が形成されている。駆動部カバー80は、マイコン330に接続するためのコネクタ部81を有している。コネクタ部81は、バルブ装置をマイコン330に接続させるものであって、駆動部70および回転角センサ73が接続される端子が内蔵している。 The driving section cover 80 accommodates the driving section 70 . The drive section cover 80 is made of resin and has a hollow shape, and a drive section space for accommodating the drive section 70 is formed therein. The driving section cover 80 has a connector section 81 for connecting to the microcomputer 330 . The connector portion 81 connects the valve device to the microcomputer 330 and incorporates terminals to which the driving portion 70 and the rotation angle sensor 73 are connected.
 駆動部70は、バルブ90を回転させるための回転力を出力するモータ71と、モータ71の出力をバルブ90に伝動するギア部72と、ギア部72の回転角度を検出する回転角センサ73を含んでいる。モータ71は、図14に示すように、モータ本体とモータシャフト711とウォームギア712とモータ側端子とを備えている。モータ71は、モータ側端子に電力が供給されることでモータ本体が動力を出力可能に構成されている。モータ本体は、略円筒状に形成され、モータ本体の他方側の端部からモータシャフト711が突出している。モータ本体から出力した動力は、モータシャフト711およびウォームギア712を介してギア部72に出力される。 The drive unit 70 includes a motor 71 that outputs a torque for rotating the valve 90 , a gear unit 72 that transmits the output of the motor 71 to the valve 90 , and a rotation angle sensor 73 that detects the rotation angle of the gear unit 72 . contains. The motor 71, as shown in FIG. 14, includes a motor body, a motor shaft 711, a worm gear 712, and motor-side terminals. The motor 71 is configured such that the motor body can output power when power is supplied to the motor-side terminals. The motor body is formed in a substantially cylindrical shape, and a motor shaft 711 protrudes from the other end of the motor body. Power output from the motor main body is output to the gear portion 72 via the motor shaft 711 and the worm gear 712 .
 ギア部72は、複数の樹脂製の歯車を有する減速機構で構成されており、ウォームギア712から出力された動力をシャフト92に伝動可能に構成されている。ギア部72は、第1ギア721と、第1ギア721と噛み合う第2ギア722と、第2ギア722と噛み合う第3ギア723とを含んでいる。第3ギア723にシャフト92が接続されている。ギア部72は、第1ギア721の外径に比較して第2ギア722の外径が大きく形成され、第2ギア722の外径に比較して第3ギア723の外径が大きく形成されている。 The gear portion 72 is composed of a speed reduction mechanism having a plurality of resin gears, and is configured to be able to transmit the power output from the worm gear 712 to the shaft 92 . The gear portion 72 includes a first gear 721 , a second gear 722 meshing with the first gear 721 , and a third gear 723 meshing with the second gear 722 . A shaft 92 is connected to the third gear 723 . In the gear portion 72, the outer diameter of the second gear 722 is formed larger than the outer diameter of the first gear 721, and the outer diameter of the third gear 723 is formed larger than the outer diameter of the second gear 722. ing.
 第1ギア721、第2ギア722、第3ギア723は、それぞれの軸心がウォームギア712の軸心に対して直交するように配置されている。第3ギア723は、第3ギア723の軸心がシャフト92の軸心と同一軸心上になるように配置されている。第3ギア723はシャフト92が接続されている。駆動部70は、ウォームギア712と第1ギア721、第2ギア722および第3ギア723とバルブ90とが一体に回転するように構成されており、それぞれの回転が互いに相関関係を有する。これらのギアとシャフト92とは、それぞれの回転角度が相関関係を有しており、相関関係を有するいずれか1つの構成品の回転角度を他の構成品の回転角度から算出可能に構成されている。 The first gear 721 , the second gear 722 , and the third gear 723 are arranged so that their axes are orthogonal to the axis of the worm gear 712 . The third gear 723 is arranged so that the axis of the third gear 723 is coaxial with the axis of the shaft 92 . A shaft 92 is connected to the third gear 723 . The drive unit 70 is configured such that the worm gear 712, the first gear 721, the second gear 722, the third gear 723, and the valve 90 rotate integrally, and the respective rotations are correlated with each other. These gears and the shaft 92 have respective rotation angles that are correlated, and are configured so that the rotation angle of any one of the components having the correlation can be calculated from the rotation angles of the other components. there is
 駆動部カバー80の内周部において、第3ギア723に対向する部位には、第3ギア723の回転角度を検出する回転角センサ73が取り付けられている。回転角センサ73は、ホール素子を内蔵したホール式センサであって、第3ギア723の回転角度を非接触で検出可能に構成されている。回転角センサ73は、コネクタ部81を介してマイコン330に接続されている。検出された第3ギア723の回転角度は、マイコン330に送信される。マイコン330の処理部334は、回転角センサ73から送信された第3ギア723の回転角度に基づいて、バルブ90の回転角度を算出可能に構成されている。 A rotation angle sensor 73 for detecting the rotation angle of the third gear 723 is attached to a portion facing the third gear 723 on the inner peripheral portion of the drive section cover 80 . The rotation angle sensor 73 is a Hall sensor incorporating a Hall element, and is configured to detect the rotation angle of the third gear 723 without contact. The rotation angle sensor 73 is connected to the microcomputer 330 via the connector portion 81 . The detected rotation angle of the third gear 723 is transmitted to the microcomputer 330 . The processing unit 334 of the microcomputer 330 is configured to be able to calculate the rotation angle of the valve 90 based on the rotation angle of the third gear 723 transmitted from the rotation angle sensor 73 .
 シャフト92およびバルブ90について図13および図15を参照して説明する。シャフト92は、駆動部70が出力する回転力によって、軸心を中心に回転可能に構成されている。シャフト92は、バルブ90が接続されており、シャフト92が回転する際にバルブ90をシャフト92と一体に回転させることが可能に構成されている。シャフト92は、軸心に沿って円柱状に延びて形成されており、バルブ90の一方側から他方側まで貫通している。シャフト92は、軸心方向DRaの一方側がハウジング本体部21のシャフト支持部に接続され、他方側がギア部72に接続されている。シャフト外周部には、バルブ90が固定されている。 The shaft 92 and the valve 90 will be explained with reference to FIGS. 13 and 15. FIG. The shaft 92 is configured to be rotatable about its axis by the rotational force output by the driving section 70 . The shaft 92 is connected to the valve 90, and is configured to be able to rotate the valve 90 integrally with the shaft 92 when the shaft 92 rotates. The shaft 92 is formed in a columnar shape extending along the axis, and penetrates from one side of the valve 90 to the other side. One side of the shaft 92 in the axial direction DRa is connected to the shaft support portion of the housing main body portion 21 , and the other side is connected to the gear portion 72 . A valve 90 is fixed to the outer circumference of the shaft.
 バルブ90は、軸心を中心に回転することにより、出力する流体の流量を調整可能に構成されている。バルブ90は、内部にシャフト92が挿入されており、バルブ収容空間23においてシャフト92と一体に回転可能に収容されている。バルブ90は、軸心方向DRaに沿って延びる軸心を有する筒状である。バルブ90は、それぞれが筒状の第1バルブ93と第2バルブ94と第3バルブ95と、筒状接続部914と、筒状バルブ接続部915とが連なって形成されている。バルブ90は、第1バルブ93と、筒状接続部914と、第2バルブ94と、筒状バルブ接続部915と、第3バルブ95とが軸心方向DRaの一方側から他方側に向かって、この順に並んで配置されている。第1バルブ93および第2バルブ94は、筒状接続部914を介して接続されている。第2バルブ94および第3バルブ95は、筒状バルブ接続部915を介して接続されている。 The valve 90 is configured to be able to adjust the flow rate of the output fluid by rotating around its axis. The valve 90 has a shaft 92 inserted therein, and is housed in the valve housing space 23 so as to rotate integrally with the shaft 92 . The valve 90 has a tubular shape having an axis extending along the axial direction DRa. The valve 90 is formed by connecting a first valve 93, a second valve 94, a third valve 95, a cylindrical connecting portion 914, and a cylindrical valve connecting portion 915, each of which is cylindrical. The valve 90 includes a first valve 93, a tubular connecting portion 914, a second valve 94, a tubular valve connecting portion 915, and a third valve 95 arranged from one side toward the other side in the axial direction DRa. are arranged in this order. The first valve 93 and the second valve 94 are connected via a tubular connecting portion 914 . The second valve 94 and the third valve 95 are connected via a tubular valve connection 915 .
 バルブ90は、バルブ収容空間23において、第2バルブ94および筒状接続部914が径方向DRrにおいて、入口ポート251に対向している。バルブ90は、中央にシャフト92が挿入される円筒状のシャフト接続部916を有する。バルブ90は、シャフト接続部916にシャフト92が挿入されることによって、シャフト92に接続される。バルブ90は、例えば、第1バルブ93と第2バルブ94と第3バルブ95と筒状接続部914と筒状バルブ接続部915とシャフト接続部916とが射出成形によって一体成形されている。 The second valve 94 and the cylindrical connecting portion 914 of the valve 90 face the inlet port 251 in the radial direction DRr in the valve accommodating space 23 . The valve 90 has a cylindrical shaft connection portion 916 into which the shaft 92 is inserted in the center. Valve 90 is connected to shaft 92 by inserting shaft 92 into shaft connecting portion 916 . In the valve 90, for example, a first valve 93, a second valve 94, a third valve 95, a cylindrical connecting portion 914, a cylindrical valve connecting portion 915, and a shaft connecting portion 916 are integrally formed by injection molding.
 バルブ90は、バルブ90に流入された冷却水を第1出口ポート261、第2出口ポート262、第3出口ポート263に流出させるための弁体である。バルブ90は、回転することで、第1バルブ93が第1出口ポート261を開閉し、第2バルブ94が第2出口ポート262を開閉し、第3バルブ95が第3出口ポート263を開閉する。 The valve 90 is a valve body for causing the cooling water that has flowed into the valve 90 to flow out to the first outlet port 261 , the second outlet port 262 and the third outlet port 263 . The valves 90 rotate so that the first valve 93 opens and closes the first outlet port 261, the second valve 94 opens and closes the second outlet port 262, and the third valve 95 opens and closes the third outlet port 263. .
 第1バルブ93、第2バルブ94および第3バルブ95は、それぞれの軸心がシャフト92の軸心と同一軸心上に配置されている。第1バルブ93、第2バルブ94、第3バルブ95のそれぞれは、軸心方向DRaにおける中央部分が両端側に比較して径方向DRrの外側に膨らんでいる。第1バルブ93、第2バルブ94、第3バルブ95のそれぞれは、内側を流体が流通可能に構成されている。 The first valve 93 , the second valve 94 and the third valve 95 are arranged so that their axes are coaxial with the axis of the shaft 92 . In each of the first valve 93, the second valve 94, and the third valve 95, the central portion in the axial direction DRa bulges outward in the radial direction DRr compared to both end sides. Each of the first valve 93, the second valve 94, and the third valve 95 is configured so that fluid can flow inside.
 第1バルブ93は、図15に示すように、外周部を形成する第1バルブ外周部931を有し、第1バルブ外周部931の内側に第1流路部961が形成されている。第1バルブ93には、流体を第1流路部961に流入させる第1内側開口部936が形成されている。第1バルブ93は、バルブ収容空間23に流入された流体が、第1内側開口部936を介して第1流路部961に流入する。第1流路部961は、バルブ装置における流路部に相当する。 As shown in FIG. 15, the first valve 93 has a first valve outer peripheral portion 931 forming an outer peripheral portion, and a first flow path portion 961 is formed inside the first valve outer peripheral portion 931 . The first valve 93 is formed with a first inner opening 936 that allows fluid to flow into the first channel portion 961 . In the first valve 93 , the fluid that has flowed into the valve housing space 23 flows into the first channel portion 961 through the first inner opening 936 . The first channel portion 961 corresponds to the channel portion in the valve device.
 第1バルブ外周部931には、図15に示すように、シャフト92が回転した際に第1シール開口部581を介して第1流路部961を第1出口ポート261に連通させる第1外周開口部934が形成されている。第1バルブ93は、第1外周開口部934が第1出口ポート261に連通することによって、第1流路部961に流入した流体を第1出口ポート261から流出させる。第1バルブ外周部931に形成される第1外周開口部934は、バルブ外周部に形成される外周開口部に相当する。第1外周開口部934は、第1バルブ外周部931において、シャフト92の軸心の周方向に沿って延びて形成されている。第1バルブ93から装置の流出する流体の流量は、シャフト92が回転した際における第1外周開口部934と第1シール開口部581とが重なる面積に応じて調整される。第1内側開口部936は、第1バルブ93の外部と第1流路部961とを連通させる連通路として機能する。 As shown in FIG. 15, the first valve outer peripheral portion 931 has a first outer peripheral portion that communicates the first flow path portion 961 with the first outlet port 261 via the first seal opening portion 581 when the shaft 92 rotates. An opening 934 is formed. The first valve 93 causes the fluid that has flowed into the first flow path portion 961 to flow out from the first outlet port 261 by connecting the first outer peripheral opening 934 to the first outlet port 261 . A first outer peripheral opening 934 formed in the first valve outer peripheral portion 931 corresponds to an outer peripheral opening formed in the valve outer peripheral portion. The first outer peripheral opening 934 is formed in the first valve outer peripheral portion 931 so as to extend along the circumferential direction of the axis of the shaft 92 . The flow rate of fluid exiting the device from the first valve 93 is adjusted according to the area of overlap between the first outer peripheral opening 934 and the first seal opening 581 when the shaft 92 rotates. The first inner opening 936 functions as a communication passage that communicates the outside of the first valve 93 and the first flow path portion 961 .
 第2バルブ94は、図15に示すように、外周部を形成する第2バルブ外周部941を有し、第2バルブ外周部941の内側に第2流路部962が形成されている。第2バルブ94には、軸心方向DRaの一方側に、流体を第2流路部962に流入させる第2内側開口部946が形成されている。第2バルブ94は、入口ポート251を介してバルブ収容空間23に流入された流体が第2内側開口部946を介して第2流路部962を流通可能に構成されている。第2流路部962は、バルブ装置における流路部に相当する。 The second valve 94 has, as shown in FIG. The second valve 94 is formed with a second inner opening 946 that allows the fluid to flow into the second flow path portion 962 on one side in the axial direction DRa. The second valve 94 is configured such that the fluid that has flowed into the valve housing space 23 through the inlet port 251 can flow through the second flow path portion 962 through the second inner opening 946 . The second channel portion 962 corresponds to the channel portion in the valve device.
 第2バルブ外周部941には、図15に示すように、シャフト92が回転した際に第2シール開口部582を介して第2流路部962を第2出口ポート262に連通させる第2外周開口部944が形成されている。第2バルブ94は、第2外周開口部944が第2出口ポート262と連通することによって、第2流路部962に流入した流体を第2出口ポート262から流出させる。第2バルブ外周部941に形成される第2外周開口部944は、バルブ外周部に形成される外周開口部に相当する。 As shown in FIG. 15, the second valve outer peripheral portion 941 has a second outer peripheral portion that communicates the second flow path portion 962 with the second outlet port 262 via the second seal opening 582 when the shaft 92 rotates. An opening 944 is formed. The second valve 94 causes the fluid that has flowed into the second flow path portion 962 to flow out from the second outlet port 262 by communicating the second outer peripheral opening 944 with the second outlet port 262 . A second outer peripheral opening 944 formed in the second valve outer peripheral portion 941 corresponds to an outer peripheral opening formed in the valve outer peripheral portion.
 第2外周開口部944は、シャフト92の軸心の周方向に延びるように形成されている。第2バルブ94から装置の外部へ流出する流体の流量は、シャフト92が回転した際における第2外周開口部944と第2シール開口部582とが重なる面積に応じて調整される。第2内側開口部946は、第2バルブ94の外部と第2流路部962とを連通させる連通路として機能する。第2内側開口部946は、第1内側開口部936に対向している。筒状接続部914は、第1バルブ93および第2バルブ94を接続するためのものである。筒状接続部914は、筒状接続部914の外周部とハウジング内周面との間に第1バルブ間空間97を形成している。第1流路部961および第2流路部962は、第1バルブ間空間97を介して連通している。 The second outer peripheral opening 944 is formed so as to extend in the circumferential direction of the axis of the shaft 92 . The flow rate of fluid flowing out of the device from the second valve 94 is adjusted according to the overlapping area of the second outer peripheral opening 944 and the second seal opening 582 when the shaft 92 rotates. The second inner opening 946 functions as a communication passage that communicates the outside of the second valve 94 and the second flow path portion 962 . The second inner opening 946 faces the first inner opening 936 . The tubular connecting portion 914 is for connecting the first valve 93 and the second valve 94 . The cylindrical connecting portion 914 forms a first inter-valve space 97 between the outer peripheral portion of the cylindrical connecting portion 914 and the inner peripheral surface of the housing. The first channel portion 961 and the second channel portion 962 communicate with each other via the first inter-valve space 97 .
 第2バルブ94は、内部の略中央にシャフト92の外周部を覆うシャフト接続部916が配置されている。第2バルブ94は、第2バルブ外周部941の軸心方向DRaの他方側に筒状バルブ接続部915が接続されている。第2バルブ94は、第2流路部962に流入された流体を筒状バルブ接続部915を介して第3バルブ95に流入可能に構成されている。 The second valve 94 has a shaft connecting portion 916 that covers the outer peripheral portion of the shaft 92 at substantially the center of the inside. The second valve 94 has a cylindrical valve connecting portion 915 connected to the other side of the second valve outer peripheral portion 941 in the axial direction DRa. The second valve 94 is configured to allow the fluid that has flowed into the second flow path portion 962 to flow into the third valve 95 via the cylindrical valve connecting portion 915 .
 筒状バルブ接続部915は、内側に第2バルブ間空間98が形成されている。第2バルブ間空間98は、第2流路部962および第3流路部963に連通している。筒状バルブ接続部915は、軸心方向DRaの一方側の外径が第2バルブ94の軸心方向DRaの他方側の部位の外径と同じ大きさである。筒状バルブ接続部915は、軸心方向DRaの他方側の外径が第3バルブ95の軸心方向DRaの一方側の部位の外径と同じ大きさである。筒状バルブ接続部915は、第2バルブ外周部941および第3バルブ外周部951に連なって形成されている。 A second inter-valve space 98 is formed inside the tubular valve connecting portion 915 . The second inter-valve space 98 communicates with the second channel portion 962 and the third channel portion 963 . The cylindrical valve connecting portion 915 has an outer diameter on one side in the axial direction DRa that is the same as the outer diameter of a portion on the other side in the axial direction DRa of the second valve 94 . The cylindrical valve connecting portion 915 has the same outer diameter on the other side in the axial direction DRa as the outer diameter of the portion on the one side in the axial direction DRa of the third valve 95 . The tubular valve connecting portion 915 is formed so as to continue to the second valve outer peripheral portion 941 and the third valve outer peripheral portion 951 .
 第3バルブ95は、図15に示すように、第3バルブ95の外周部を形成する第3バルブ外周部951を有し、第3バルブ外周部951の内側に第3流路部963が形成されている。第3バルブ95は、第3バルブ外周部951における軸心方向DRaの一方側が筒状バルブ接続部915に接続されている。第3バルブ95は、第2流路部962に流入された流体が第2バルブ間空間98を介して第3流路部963に流入する。第3流路部963は、バルブ装置における流路部に相当する。 As shown in FIG. 15, the third valve 95 has a third valve outer peripheral portion 951 that forms the outer peripheral portion of the third valve 95, and a third flow path portion 963 is formed inside the third valve outer peripheral portion 951. It is The third valve 95 is connected to the cylindrical valve connecting portion 915 on one side of the third valve outer peripheral portion 951 in the axial direction DRa. The third valve 95 allows the fluid that has flowed into the second flow path portion 962 to flow into the third flow path portion 963 via the space 98 between the second valves. The third channel portion 963 corresponds to the channel portion in the valve device.
 第3バルブ外周部951には、図15に示すように、シャフト92が回転した際に第3シール開口部583を介して第3流路部963を第3出口ポート263に連通させる第3外周開口部954が形成されている。第3バルブ95は、第3外周開口部954が第3出口ポート263に連通することによって、第3流路部963に流入した流体を第3出口ポート263から装置の外部に流出させる。第3バルブ外周部951に形成される第3外周開口部954は、バルブ外周部に形成される外周開口部に相当する。 As shown in FIG. 15, the third valve outer peripheral portion 951 has a third outer peripheral portion that communicates the third flow path portion 963 with the third outlet port 263 via the third seal opening portion 583 when the shaft 92 rotates. An opening 954 is formed. The third valve 95 causes the fluid that has flowed into the third channel portion 963 to flow out of the device through the third outlet port 263 by communicating the third outer peripheral opening 954 with the third outlet port 263 . A third outer peripheral opening 954 formed in the third valve outer peripheral portion 951 corresponds to an outer peripheral opening formed in the valve outer peripheral portion.
 第3外周開口部954は、第3バルブ外周部951において、軸心の周方向に沿って延びて形成されている。第3バルブ95から装置の外部へ流出する流体の流量は、シャフト92が回転した際における第3外周開口部954と第3シール開口部583とが重なる面積に応じて、調整される。シャフト接続部916は、筒状であって、挿入されたシャフト92が固定されることによりバルブ90とシャフト92とを接続している。シャフト接続部916は、シャフト92が回転した際に、シャフト92の回転力をシャフト接続部916を介してバルブ90に伝動する。シャフト接続部916は、第2バルブ94から第3バルブ95まで軸心方向DRaの他方側に向かって延びて形成されている。 The third outer peripheral opening 954 is formed in the third valve outer peripheral portion 951 so as to extend along the circumferential direction of the axis. The flow rate of the fluid flowing out of the device from the third valve 95 is adjusted according to the overlapping area of the third outer peripheral opening 954 and the third seal opening 583 when the shaft 92 rotates. The shaft connecting portion 916 has a cylindrical shape, and connects the valve 90 and the shaft 92 by fixing the inserted shaft 92 . The shaft connecting portion 916 transmits the rotational force of the shaft 92 to the valve 90 via the shaft connecting portion 916 when the shaft 92 rotates. The shaft connecting portion 916 is formed extending from the second valve 94 to the third valve 95 toward the other side in the axial direction DRa.
 給水弁152の作動について説明する。マイコン330は、分配チューブ136に対して必要な流量を給水するためのバルブ90の回転角度、すなわちモータ71の回転角度を算出する。マイコン330は、算出したモータ71の回転角度の情報を給水弁152に送信する。このとき、分配チューブ136に接続しない2個の流体流出部には閉塞部材を装着している。 The operation of the water supply valve 152 will be explained. The microcomputer 330 calculates the rotation angle of the valve 90 for supplying the distribution tube 136 with the required flow rate, that is, the rotation angle of the motor 71 . The microcomputer 330 transmits information on the calculated rotation angle of the motor 71 to the water supply valve 152 . At this time, the two fluid outlets that are not connected to the distribution tube 136 are fitted with blocking members.
 給水弁152は、マイコン330から受信した回転角度の情報に基づいて、モータ71を回転させる。給水弁152は、モータ71を回転させることで、ギア部72およびシャフト92を介してバルブ90を回転させ、第1外周開口部934、第2外周開口部944、第3外周開口部954から必要な流量の流体を流出させる。 The water supply valve 152 rotates the motor 71 based on the rotation angle information received from the microcomputer 330 . The water supply valve 152 rotates the valve 90 via the gear portion 72 and the shaft 92 by rotating the motor 71 , and the necessary water is supplied from the first outer peripheral opening 934 , the second outer peripheral opening 944 , and the third outer peripheral opening 954 . flow of fluid.
 例えば、分配チューブ136に連通させる流体流出部として第1出口ポート261を採用した場合について説明する。給水弁152は、バルブ90を回転させることで、第1バルブ93の第1外周開口部934を第1出口ポート261に連通させる。給水弁152は、バルブ90の回転位置を調整することによって、第1外周開口部934と第1シール開口部581との重なる面積を調整する。給水弁152は、入口ポート251からバルブ収容空間23に流入した流体を第1内側開口部936を介して第1流路部961に流入させ、第1外周開口部934から第1出口ポート261へ流出させる。マイコン330は、第1外周開口部934と第1シール開口部581との重なり面積であるバルブ開度を制御することにより潅水の飛水距離を制御して、必要な位置に潅水を供給する。 For example, a case in which the first outlet port 261 is employed as the fluid outlet that communicates with the distribution tube 136 will be described. The water supply valve 152 rotates the valve 90 to allow the first outer peripheral opening 934 of the first valve 93 to communicate with the first outlet port 261 . The water supply valve 152 adjusts the overlapping area of the first outer peripheral opening 934 and the first seal opening 581 by adjusting the rotational position of the valve 90 . The water supply valve 152 causes the fluid that has flowed into the valve housing space 23 from the inlet port 251 to flow into the first flow path portion 961 through the first inner opening portion 936, and then flows from the first outer peripheral opening portion 934 to the first outlet port 261. let it flow. The microcomputer 330 controls the opening of the valve, which is the overlapping area of the first outer peripheral opening 934 and the first seal opening 581, thereby controlling the splashing distance of sprinkling water and supplying sprinkling water to the required position.
 例えば、分配チューブ136に連通させる流体流出部として第2出口ポート262を採用した場合について説明する。給水弁152は、バルブ90を回転させることで、第2バルブ94の第2外周開口部944を第2出口ポート262に連通させる。給水弁152は、バルブ90の回転位置を調整することによって、第2外周開口部944と第2シール開口部582との重なる面積を調整する。給水弁152は、入口ポート251からバルブ収容空間23に流入した流体を第2内側開口部946を介して第2流路部962に流入させ、第2外周開口部944から第2出口ポート262へ流出させる。マイコン330は、第2外周開口部944と第2シール開口部582との重なり面積であるバルブ開度を制御することにより潅水の飛水距離を制御して、必要な位置に潅水を供給する。 For example, a case where the second outlet port 262 is adopted as the fluid outlet port communicating with the distribution tube 136 will be described. The water supply valve 152 connects the second outer peripheral opening 944 of the second valve 94 to the second outlet port 262 by rotating the valve 90 . The water supply valve 152 adjusts the overlapping area of the second outer peripheral opening 944 and the second seal opening 582 by adjusting the rotational position of the valve 90 . The water supply valve 152 causes the fluid that has flowed into the valve housing space 23 from the inlet port 251 to flow into the second flow path portion 962 via the second inner opening 946, and flows from the second outer peripheral opening 944 to the second outlet port 262. let it flow. The microcomputer 330 controls the opening of the valve, which is the overlapping area of the second outer peripheral opening 944 and the second seal opening 582, thereby controlling the splashing distance of sprinkling water and supplying sprinkling water to the required position.
 例えば、分配チューブ136に連通させる流体流出部として第3出口ポート263を採用した場合について説明する。給水弁152は、バルブ90を回転させることで、第3バルブ95の第3外周開口部954を第3出口ポート263に連通させる。給水弁152は、バルブ90の回転位置を調整することによって、第3外周開口部954と第3シール開口部583との重なる面積を調整する。給水弁152は、入口ポート251からバルブ収容空間23に流入した流体を第2バルブ94の第2流路部962を介して第3流路部963に流入させ、第3外周開口部954から第3出口ポート263へ流出させる。マイコン330は、第3外周開口部954と第3シール開口部583との重なり面積であるバルブ開度を制御することにより潅水の飛水距離を制御して、必要な位置に潅水を供給する。 For example, a case where the third outlet port 263 is employed as a fluid outlet portion that communicates with the distribution tube 136 will be described. The water supply valve 152 rotates the valve 90 to allow the third outer peripheral opening 954 of the third valve 95 to communicate with the third outlet port 263 . The water supply valve 152 adjusts the overlapping area of the third outer peripheral opening 954 and the third seal opening 583 by adjusting the rotational position of the valve 90 . The water supply valve 152 causes the fluid that has flowed into the valve housing space 23 from the inlet port 251 to flow into the third flow path portion 963 via the second flow path portion 962 of the second valve 94, and flows from the third outer peripheral opening 954 to the third flow path portion 963. 3 to exit port 263 . The microcomputer 330 controls the opening of the valve, which is the overlapping area of the third outer peripheral opening 954 and the third seal opening 583, thereby controlling the splashing distance of sprinkling water and supplying sprinkling water to the required position.
 給水弁152は、回転角センサ73が第3ギア723の回転角度を検出し、検出した回転角度の情報をマイコン330にフィードバックすることによって、モータ71の回転角度を調整する。 The water supply valve 152 adjusts the rotation angle of the motor 71 by detecting the rotation angle of the third gear 723 with the rotation angle sensor 73 and feeding back the detected rotation angle information to the microcomputer 330 .
 図16のグラフを参照して、シャフト92の回転角度とバルブ装置の流量との関係を説明する。図16は、モータ71の回転角度RAを横軸とし、バルブ装置から流出する流体の流量FRを縦軸としている。図16において、FO1は第1バルブ93であり、FO2は第2バルブ94であり、FO3は第3バルブ95である。図16において、FSはバルブ開度が全開状態であることを示し、FCはバルブ開度が全閉状態であることを示し、MOはバルブ開度が中間開度であることを示している。中間開度は、全閉状態と全開状態の間の開度である。図16における実線のグラフは、第3バルブ95から流出する流体の流量と回転角度との関係を示している。図16における破線のグラフは、第2バルブ94から流出する流体の流量と回転角度との関係を示している。図16における一点鎖線のグラフは、第1バルブ93から流出する流体の流量と回転角度との関係を示している。 The relationship between the rotation angle of the shaft 92 and the flow rate of the valve device will be described with reference to the graph of FIG. In FIG. 16, the horizontal axis represents the rotation angle RA of the motor 71, and the vertical axis represents the flow rate FR of the fluid flowing out of the valve device. 16, FO1 is the first valve 93, FO2 is the second valve 94, and FO3 is the third valve 95. In FIG. In FIG. 16, FS indicates that the valve opening is fully open, FC indicates that the valve opening is fully closed, and MO indicates that the valve opening is intermediate. The intermediate degree of opening is the degree of opening between the fully closed state and the fully opened state. A solid line graph in FIG. 16 indicates the relationship between the flow rate of the fluid flowing out from the third valve 95 and the rotation angle. A dashed line graph in FIG. 16 indicates the relationship between the flow rate of the fluid flowing out of the second valve 94 and the rotation angle. A dashed-dotted line graph in FIG. 16 shows the relationship between the flow rate of the fluid flowing out from the first valve 93 and the rotation angle.
 図16に示すように、回転角度0度付近では第3バルブ95が全開状態で、他のバルブは全閉状態であり、第3バルブ95のみを通じて流体が装置外部へ流出する。この状態から回転角度を大きくしていくと第3バルブ95が中間開度に移行し、さらに回転角度を大きくすると3個のバルブすべてが全閉状態になる。 As shown in FIG. 16, near the rotation angle of 0 degrees, the third valve 95 is fully open, the other valves are fully closed, and the fluid flows out of the device only through the third valve 95 . When the rotation angle is increased from this state, the third valve 95 shifts to an intermediate opening, and when the rotation angle is further increased, all three valves are fully closed.
 3個のバルブすべてが全閉状態から回転角度を大きくしていくと、第2バルブ94のみが中間開度を介して全開状態に移行する。さらに回転角度を大きくすると、第1バルブ93が中間開度を介して全開状態に移行して、第1バルブ93と第2バルブ94が全開状態になる。この状態から回転角度を大きくすると、第2バルブ94が中間開度を介して全閉状態に移行して、第2バルブ94と第3バルブ95が全閉状態になる。さらに回転角度を大きくしていくと、第1バルブ93が中間開度を介して全閉状態に移行して、すべてのバルブが全閉状態になる。 When the rotation angle of all three valves is increased from the fully closed state, only the second valve 94 shifts to the fully opened state via an intermediate degree of opening. When the rotation angle is further increased, the first valve 93 shifts to the fully open state via the intermediate opening degree, and the first valve 93 and the second valve 94 are fully opened. When the rotation angle is increased from this state, the second valve 94 shifts to the fully closed state via the intermediate opening degree, and the second valve 94 and the third valve 95 are fully closed. As the rotation angle is further increased, the first valve 93 shifts to the fully closed state via the intermediate opening, and all the valves are fully closed.
 以上のように、回転角度に応じて、各バルブの開度が変移して各バルブから流出する流体流量が変化するようになる。潅水システム10における各給水弁152は、3個のバルブのうちの一つのみから流体を供給する構成により、回転角度に応じて圃場20への飛水距離および給水量を制御する。 As described above, the opening degree of each valve changes according to the rotation angle, and the flow rate of the fluid flowing out from each valve changes. Each water supply valve 152 in the irrigation system 10 is configured to supply fluid from only one of the three valves, thereby controlling the splash distance and water supply amount to the field 20 according to the rotation angle.
 第1実施形態の潅水システム10がもたらす作用効果について説明する。潅水システム10は、圃場20に潅水を散水するための分配チューブ136と、分配チューブ136へ流下する潅水の圧力を制御する給水弁152とを備える。潅水システム10は、給水弁152のバルブ開度を制御して、分配チューブ136から貫通孔を介して放出される潅水の飛水距離を制御する制御装置を備える。 A description will be given of the effects of the irrigation system 10 of the first embodiment. The irrigation system 10 comprises a distribution tube 136 for applying irrigation water to the field 20 and a water supply valve 152 for controlling the pressure of the irrigation water flowing down the distribution tube 136 . The irrigation system 10 includes a control device that controls the valve opening of the water supply valve 152 to control the splash distance of the irrigation water discharged from the distribution tube 136 through the through-hole.
 この潅水システム10によれば、給水弁152のバルブ開度を制御して潅水の圧力を制御することで分配チューブ136から放出される潅水の飛水距離を制御できる。このため、潅水システム10は、分配チューブ136からの飛水距離を調整可能な的確な潅水を実施できる。例えば、分配チューブ136近傍に対する過剰な潅水や、液肥の無駄遣いを抑えることができる。また、1本の分配チューブ136は、潅水可能範囲が大きくなるため、圃場20に設置すべき分配チューブ136の本数を低減できる。潅水システム10は、植物の生育に合わせて土壌の必要な場所に水を飛ばすことが可能であり、無駄な潅水を抑制でき節水を実現できるので、潅水コストを抑制できる。 According to this irrigation system 10, by controlling the valve opening of the water supply valve 152 to control the pressure of the irrigation water, the splash distance of the irrigation water discharged from the distribution tube 136 can be controlled. Therefore, the irrigation system 10 can perform accurate irrigation with an adjustable distance from the distribution tube 136 . For example, excessive watering to the vicinity of the distribution tube 136 and wasteful use of liquid fertilizer can be suppressed. In addition, since one distribution tube 136 has a large irrigable range, the number of distribution tubes 136 to be installed in the field 20 can be reduced. The irrigation system 10 is capable of spraying water to the necessary places of the soil according to the growth of plants, and can suppress wasteful irrigation and realize water saving, so that irrigation cost can be suppressed.
 潅水システム10の制御装置は、複数の貫通孔が形成された分配チューブ136から、植物30を生育する圃場20に供給する潅水の飛水距離を制御する。制御装置の演算部は、分配チューブ136へ流下する潅水の圧力を制御する給水弁152についてバルブ開度を決定する。制御装置の出力部は、分配チューブ136から貫通孔を介して放出される潅水の飛水距離を制御するために、バルブ開度に制御する制御信号を給水弁に出力する。 The control device of the irrigation system 10 controls the splashing distance of the irrigation water supplied from the distribution tube 136 having a plurality of through holes to the field 20 where the plants 30 are grown. The computing portion of the controller determines the opening of the water supply valve 152 that controls the pressure of the irrigation water flowing down the distribution tube 136 . The output section of the controller outputs a control signal to the water supply valve to control the valve opening in order to control the splash distance of the sprinkling water discharged from the distribution tube 136 through the through hole.
 この制御装置によれば、演算部がバルブ開度を決定し、潅水の飛水距離を制御するために出力部がバルブ開度に制御する制御信号を給水弁152に出力する。これにより、分配チューブ136から放出される潅水の飛水距離を制御できる。この制御装置は、分配チューブ136からの飛水距離を調整可能な的確な潅水を実施できる。この制御装置は、植物の生育に合わせて土壌の必要な場所に水を飛ばすことが可能であるとともに、無駄な潅水を抑制でき節水を実現できるので、潅水コストを抑制できる。 According to this control device, the calculation unit determines the valve opening degree, and the output unit outputs a control signal for controlling the valve opening degree to the water supply valve 152 in order to control the splashing distance of sprinkling water. Thereby, the splash distance of the irrigation water discharged from the distribution tube 136 can be controlled. This controller can provide precise irrigation with adjustable distance from the distribution tube 136 . This control device is capable of spraying water to the necessary places in the soil in accordance with the growth of plants, and can also suppress wasteful irrigation and realize water saving, so that irrigation costs can be suppressed.
 <第2実施形態>
 第2実施形態について図17~図19を参照して説明する。第2実施形態の潅水システム10は、給水弁152の制御処理を図18にしたがって実行する。第2実施形態で特に説明しない構成、作用、効果については、前述の実施形態と同様であり、以下、異なる点についてのみ説明する。
<Second embodiment>
A second embodiment will be described with reference to FIGS. 17 to 19. FIG. The irrigation system 10 of the second embodiment executes control processing of the water supply valve 152 according to FIG. 18 . Configurations, actions, and effects that are not specifically described in the second embodiment are the same as those in the above-described embodiment, and only different points will be described below.
 図18に示す給水弁152の制御処理は、図9に示す給水処理や図10に示す潅水処理において実行される。統合演算部600、および統合演算部600から出力された給水信号を受信した監視部300のマイコン330は、図18に示す給水処理を実行する。統合演算部600は、ステップS600において、潅水を実施する分割エリアに対応する監視部300に対して最長潅水距離を出力する。 The control process for the water supply valve 152 shown in FIG. 18 is executed in the water supply process shown in FIG. 9 and the watering process shown in FIG. Integrated calculation unit 600 and microcomputer 330 of monitoring unit 300 that receives the water supply signal output from integrated calculation unit 600 execute water supply processing shown in FIG. In step S600, the integrated calculation unit 600 outputs the longest watering distance to the monitoring unit 300 corresponding to the divided area to be watered.
 圃場20の植物30は、生育状態によって根の広がり度合いが変化する。このため、分配チューブ136と最も広がった根の端部との距離に相当する最長の根張り距離は、生育状態に応じて変化する。最長潅水距離は、該当する植物30の最長の根張り距離に相当する。制御装置200は、給水処理や潅水処理における潅水距離を、距離0を含む分配チューブ136の近傍から最大潅水距離までにわたって制御する。 The degree of root spread of the plant 30 in the field 20 changes depending on the growth state. Therefore, the longest rooting distance, corresponding to the distance between the distribution tube 136 and the end of the root that spreads the most, varies depending on the growing conditions. The longest watering distance corresponds to the longest rooting distance of the relevant plant 30 . The control device 200 controls the irrigation distance in water supply treatment and irrigation treatment from the vicinity of the distribution tube 136 including the distance 0 to the maximum irrigation distance.
 最長潅水距離は、潅水が分配チューブ136から最も離れて着地可能な飛水距離のことである。統合演算部600は、図17に示すカメラ318によって撮像した画像を用いて植物30の根張り距離を推定し、この根張り距離に基づいて最長潅水距離を決定する。図面ではカメラ318をISと表記している。統合演算部600は、カメラ318によって撮像した植物30の画像から植物30の枝張り距離を決定し、この枝張り距離から根張り距離を推定する。この推定は、枝張り距離が根張り距離に比例する関係にあることを活用したものである。統合演算部600は、推定した根張り距離を用いて、分配チューブ136から最も離れた根の位置まで給水できる飛水距離である最長潅水距離を決定する。これにより、潅水システム10は、植物30の生育度合に合わせて、随時適切な潅水を実施することができる。 The maximum sprinkling distance is the splashing distance at which sprinkling water can land farthest from the distribution tube 136 . The integrated calculation unit 600 estimates the rooting distance of the plant 30 using the image captured by the camera 318 shown in FIG. 17, and determines the longest watering distance based on this rooting distance. In the drawing, the camera 318 is denoted as IS. The integrated calculation unit 600 determines the branching distance of the plant 30 from the image of the plant 30 captured by the camera 318, and estimates the rooting distance from the branching distance. This estimation utilizes the fact that the branching distance is proportional to the rooting distance. The integrated calculation unit 600 uses the estimated rooting distance to determine the maximum irrigation distance, which is the jumping distance that allows water to be supplied to the furthest root position from the distribution tube 136 . Thereby, the irrigation system 10 can perform appropriate irrigation at any time according to the degree of growth of the plants 30 .
 潅水を実施する分割エリアに対応するマイコン330は、ステップS610において、分割潅水か連続潅水のいずれが設定されているかを判定する。分割潅水は、分配チューブ136からの距離が異なる複数の潅水距離毎に順次潅水する形態である。連続潅水は、分配チューブ136の近傍から最大潅水距離までにわたって飛水距離が滑らかに変化するように給水弁152の開度を連続的に変化させて制御する形態である。分割潅水か連続潅水かの設定は、例えば、統合演算部600によってあらかじめ設定されてもよいし、ユーザの入力機器800への操作によって設定される構成でもよい。 In step S610, the microcomputer 330 corresponding to the divided area to be watered determines whether divided watering or continuous watering is set. Divided watering is a form in which water is sequentially watered for each of a plurality of different watering distances from the distribution tube 136 . The continuous irrigation is controlled by continuously changing the opening of the water supply valve 152 so that the splashing distance changes smoothly from the vicinity of the distribution tube 136 to the maximum irrigation distance. The setting of divided irrigation or continuous irrigation may be set in advance by the integrated calculation unit 600, or may be set by the user's operation on the input device 800, for example.
 ステップS610以降の処理は、各監視部300のマイコン330が主に実行する。ステップS610において分割潅水であると判定すると、ステップS620において潅水位置の個数を設定する。潅水位置は、潅水の分割位置ともいう。潅水位置の個数は、最長潅水距離内で、分配チューブ136に対して垂直方向に分配チューブ136からの距離が異なる位置に設けられた土壌センサ311の個数に対応する。ステップS630では、このような潅水位置毎に、給水弁152から供給する目標給水量である目標潅水量を設定する。図19には、第1潅水距離D1、第2潅水距離D2、第3潅水距離D3の順に分配チューブ136に近い距離にある3個の潅水位置が設定された一例を示す。ステップS630では、第1潅水距離D1、第2潅水距離D2、第3潅水距離D3のそれぞれについて、給水弁152から供給する目標給水量である目標潅水量を設定する。 The processing after step S610 is mainly executed by the microcomputer 330 of each monitoring unit 300. If it is determined in step S610 that split watering is performed, the number of watering positions is set in step S620. The irrigation position is also referred to as a division position of irrigation. The number of watering positions corresponds to the number of soil sensors 311 located at different distances from the distribution tube 136 in the vertical direction to the distribution tube 136 within the longest watering distance. In step S630, a target irrigation amount, which is the target water supply amount supplied from the water supply valve 152, is set for each irrigation position. FIG. 19 shows an example in which three watering positions located close to the distribution tube 136 are set in order of the first watering distance D1, the second watering distance D2, and the third watering distance D3. In step S630, the target water supply amount, which is the target water supply amount supplied from the water supply valve 152, is set for each of the first water supply distance D1, the second water supply distance D2, and the third water supply distance D3.
 マイコン330は、ステップS640で複数の潅水位置のうち、潅水を行う潅水位置に到達する飛水距離になるように給水弁152のバルブ開度を制御して、潅水を実施する。ステップS650では、水圧センサ153や土壌センサ311による測定値を用いて潅水実施中の潅水流量を検出する。この潅水実施は、ステップS660で、検出した潅水流量が目標潅水量に到達するまで継続する。マイコン330はステップS660で潅水流量が目標潅水量に到達した場合、ステップS670の処理を実行する。マイコン330は、ステップS670では給水弁152を全閉状態に制御してこの潅水位置での潅水を終了する。 In step S640, the microcomputer 330 controls the valve opening of the water supply valve 152 so that the water splash distance reaches the watering position for watering among the plurality of watering positions, and watering is performed. In step S650, the water pressure sensor 153 and the soil sensor 311 measure the water flow rate during watering. This irrigation operation continues until the detected irrigation flow rate reaches the target irrigation amount in step S660. When the watering flow rate reaches the target watering amount in step S660, the microcomputer 330 executes the process of step S670. In step S670, the microcomputer 330 controls the water supply valve 152 to the fully closed state to end watering at this watering position.
 次のステップS680では、ステップS620で設定したすべての潅水位置での潅水が終了したか否かを判定する。すべての潅水位置での潅水が終了していない場合はステップS640に戻る。マイコン330は、ステップS640で次の潅水位置に到達する飛水距離になるように給水弁152のバルブ開度を制御して、潅水を実施する。次の潅水位置での潅水実施は、ステップS660で、検出した潅水流量が目標潅水量に到達するまで継続する。ステップS680ですべての潅水位置での潅水が終了したと判定した場合はステップS690で給水弁152のバルブを全閉状態に制御して潅水を終了する。 In the next step S680, it is determined whether or not watering has been completed at all watering positions set in step S620. If watering at all watering positions has not ended, the process returns to step S640. In step S640, the microcomputer 330 controls the valve opening of the water supply valve 152 so that the water splash distance reaches the next watering position, and watering is performed. Watering at the next watering position continues until the detected watering flow rate reaches the target watering rate in step S660. If it is determined in step S680 that watering at all watering positions has been completed, water supply valve 152 is controlled to be fully closed in step S690 to end watering.
 ステップS610において連続潅水であると判定すると、統合演算部600はステップS720において分配チューブ136からの距離が最短である最短潅水位置を出力する。ステップS730以降の処理は、各監視部300のマイコン330が主に実行する。植物30は生育状態によって根の広がり度合いが変化する。このため、分配チューブ136から最も近い位置にある根までの距離に相当する最短の根張り距離は生育状態に応じて変化する。最短潅水距離は、該当する植物30の最短の根張り距離に相当する。制御装置200は、給水処理や潅水処理における潅水距離を、最短潅水距離から最大潅水距離までにわたって制御する。 If continuous watering is determined in step S610, the integrated calculation unit 600 outputs the shortest watering position at the shortest distance from the distribution tube 136 in step S720. The processing after step S730 is mainly executed by the microcomputer 330 of each monitoring unit 300. FIG. The degree of root spread of the plant 30 changes depending on the growth state. Therefore, the shortest root-spreading distance corresponding to the distance from the distribution tube 136 to the nearest root changes depending on the growth state. The shortest watering distance corresponds to the shortest rooting distance of the relevant plant 30 . The control device 200 controls the irrigation distance in water supply processing and irrigation processing from the shortest irrigation distance to the maximum irrigation distance.
 最短潅水距離は、潅水が分配チューブ136から最も接近して着地可能な飛水距離でもあるし、飛水距離がゼロで潅水が分配チューブ136から浸み出す距離でもよい。統合演算部600は、カメラ318によって撮像した画像を用いて植物30の根張り距離を推定し、この根張り距離に基づいて最短潅水距離を決定する。統合演算部600は、推定した根張り距離を用いて、分配チューブ136から最も接近した根の位置に給水できる飛水距離である最短潅水距離を決定する。ステップS730では、最短潅水距離から最長潅水距離にわたって、給水弁152から供給する目標給水量である目標潅水量を設定する。この目標潅水量は最短潅水距離から最長潅水距離にわたる平均的な目標給水量でもある。図19に示す一例の場合、第1潅水距離D1が最短潅水距離に相当し、第3潅水距離D3が最長潅水距離に相当する。 The shortest sprinkling distance may be the jumping distance at which sprinkling water can land closest to the distribution tube 136, or the distance at which the sprinkling water seeps out of the distribution tube 136 when the splashing distance is zero. The integrated calculation unit 600 estimates the rooting distance of the plant 30 using the image captured by the camera 318, and determines the shortest watering distance based on this rooting distance. The integrated calculation unit 600 uses the estimated rooting distance to determine the shortest irrigation distance, which is the jumping distance that water can be supplied from the distribution tube 136 to the closest root position. In step S730, a target irrigation amount, which is the target water supply amount supplied from the water supply valve 152, is set over the shortest irrigation distance to the longest irrigation distance. This target watering amount is also the average target watering amount from the shortest watering distance to the longest watering distance. In the example shown in FIG. 19, the first watering distance D1 corresponds to the shortest watering distance, and the third watering distance D3 corresponds to the longest watering distance.
 マイコン330は、ステップS740において最短潅水距離から最長潅水距離にわたって連続的に飛水が行われるように給水弁152のバルブ開度を制御して潅水を実施する。マイコン330は、ステップS740において、給水弁152に対する通電を、一例として図25に示すランプ作動や図26に示すステップ作動によって制御する。このような通電制御により、給水弁152のバルブ開度は細やかにかつ連続的に変化する。ステップS740の制御によれば、最短潅水距離から最長潅水距離にわたる範囲の土壌全体に飛水が着地して潅水が行き渡る均等な潅水量を提供できる。ステップS750では、水圧センサ153や土壌センサ311による測定値を用いて潅水実施中の潅水流量を検出する。この潅水実施は、ステップS760で、検出した潅水流量が目標潅水量に到達するまで継続する。マイコン330はステップS760で検出した潅水流量が目標潅水量に到達した場合、ステップS770の処理を実行する。マイコン330は、ステップS770において給水弁152を全閉状態に制御して連続潅水を終了する。 In step S740, the microcomputer 330 controls the valve opening of the water supply valve 152 so that water is continuously sprayed from the shortest watering distance to the longest watering distance, thereby watering. In step S740, the microcomputer 330 controls energization of the water supply valve 152 by, for example, lamp operation shown in FIG. 25 and step operation shown in FIG. With such energization control, the valve opening degree of the water supply valve 152 changes finely and continuously. According to the control in step S740, it is possible to provide an even amount of watering, in which flying water lands on the entire soil in the range from the shortest watering distance to the longest watering distance, and the water is spread all over the soil. In step S750, the water pressure sensor 153 and the soil sensor 311 measure the water flow rate during watering. This irrigation operation continues until the detected irrigation flow rate reaches the target irrigation amount in step S760. When the watering flow rate detected in step S760 reaches the target watering amount, the microcomputer 330 executes the process of step S770. In step S770, the microcomputer 330 controls the water supply valve 152 to the fully closed state to end the continuous irrigation.
 第2実施形態の潅水システム10がもたらす作用効果について説明する。制御装置は、分配チューブ136に対する最短潅水位置と最長潅水位置との間にわたって飛水距離が連続的に変化するように、給水弁152のバルブ開度を変化させて制御する。この制御によれば、潅水実施時に、最短潅水位置と最長潅水位置との間の広範囲にわたって飛水距離を変化させるバルブ開度に常時制御する。この広範囲にわたる連続的散水によれば、植物が潅水を必要とする土壌エリアに、偏りの少ない均等に近い水分量を提供できる。 A description will be given of the effects of the irrigation system 10 of the second embodiment. The control device changes and controls the valve opening of the water supply valve 152 so that the splashing water distance is continuously changed between the shortest watering position and the longest watering position with respect to the distribution tube 136 . According to this control, when watering is performed, the opening of the valve is always controlled to change the water splash distance over a wide range between the shortest watering position and the longest watering position. This wide-area, continuous watering can provide a near-uniform and even amount of water to the soil areas where the plants require watering.
 制御装置は、植物30の撮影画像に基づいて決定した最長潅水距離に到達する飛水距離が得られるように、給水弁152のバルブ開度を制御する。これによれば、植物の撮影画像から検出した植物のサイズ、例えば枝張り範囲に応じて根張り範囲を求めることができ、最長潅水距離を高い精度で決定できる。このため、植物の生育状態に適合した必要な範囲に対して的確な潅水を実施できる。 The control device controls the valve opening of the water supply valve 152 so that the watering distance reaching the longest watering distance determined based on the photographed image of the plant 30 is obtained. According to this, the size of the plant detected from the photographed image of the plant, for example, the rooting range can be obtained according to the branching range, and the maximum watering distance can be determined with high accuracy. For this reason, it is possible to carry out precise watering to a necessary range suitable for the growing state of the plant.
 制御装置は、分配チューブ136からの距離が異なる複数の潅水位置に対して潅水位置毎に集中的な潅水を提供するように、給水弁152のバルブ開度を制御して飛水距離を制御する。この制御によれば、潅水実施時に、複数の潅水位置のそれぞれに対して目標潅水量を供給するようにバルブ開度を制御できる。この集中的な分割潅水によれば、適切な潅水位置の設定により、植物が潅水を必要とする土壌全体に対して必要な水分量を提供できる。 The control device controls the valve opening of the water supply valve 152 to control the water splash distance so as to provide concentrated watering for each watering position for multiple watering positions at different distances from the distribution tube 136. . According to this control, it is possible to control the opening degree of the valve so as to supply the target watering amount to each of the plurality of watering positions when watering is performed. This intensive split irrigation can provide the required amount of water to the entire soil where the plants need to be irrigated, by setting appropriate irrigation positions.
 制御装置は、集中的な潅水を実施中である潅水位置について目標潅水量に到達すると給水弁152のバルブ開度を制御して飛水距離を変更して、次の潅水位置に集中的な潅水を提供する。この制御によれば、潅水実施時に、複数の潅水位置のそれぞれに対して目標潅水量を供給しこれを順次実施するように、バルブ開度を順次制御する。このバルブ開度の順次制御により、植物が潅水を必要とする土壌全体に対して必要な水分量を効率的に提供できる。 The control device controls the valve opening of the water supply valve 152 when the target watering amount is reached for the watering position where intensive watering is being carried out, changes the water splashing distance, and intensively waters the next watering position. I will provide a. According to this control, when watering is performed, the valve opening degree is sequentially controlled so that the target watering amount is supplied to each of the plurality of watering positions and this is performed sequentially. This sequential control of the valve opening makes it possible to efficiently provide the required amount of water to the entire soil where the plants require watering.
 複数の土壌センサ311は、土壌情報を検出可能であり、分配チューブ136からの距離が異なる位置に圃場20に設けられている。制御装置は、複数の土壌センサ311による検出情報に基づいて、潅水における飛水距離を測定する。これによれば、土壌水分量と潅水位置とを同時に検出可能になるため、より正確に潅水を実施することに寄与する。 A plurality of soil sensors 311 can detect soil information, and are provided in the field 20 at different distances from the distribution tube 136 . Based on the information detected by the plurality of soil sensors 311, the control device measures the splashing distance in watering. According to this, it becomes possible to detect the soil water content and the watering position at the same time, which contributes to more accurate watering.
 <第3実施形態>
 第3実施形態について図20を参照して説明する。第3実施形態の潅水システム10は、給水弁152の制御処理を図20にしたがって実行する。第3実施形態で特に説明しない構成、作用、効果については、前述の実施形態と同様であり、以下、異なる点についてのみ説明する。図18に示すフローチャートでは流量をトリガにして給水弁152の開度を変化させるのに対し、第3実施形態では潅水時間をトリガにして給水弁152の開度を変化させる。
<Third Embodiment>
A third embodiment will be described with reference to FIG. The irrigation system 10 of 3rd Embodiment performs the control process of the water supply valve 152 according to FIG. Configurations, functions, and effects that are not specifically described in the third embodiment are the same as those in the above-described embodiment, and only different points will be described below. In the flowchart shown in FIG. 18, the opening of the water supply valve 152 is changed by using the flow rate as a trigger, whereas in the third embodiment, the watering time is used as a trigger to change the opening of the water supply valve 152 .
 図20のフローチャートにおいて図18と同一のステップ符号は、第2実施形態において説明した処理と同一であり、以下にその処理の説明を省略する。以下に、第2実施形態のフローチャートに対して異なる処理ステップを説明する。 In the flowchart of FIG. 20, the same step symbols as in FIG. 18 are the same as the processing described in the second embodiment, and the description of the processing will be omitted below. In the following, processing steps that are different from the flow chart of the second embodiment will be described.
 ステップS610~S690の処理、ステップS730A~S770の処理は、各監視部300のマイコン330が主に実行する。マイコン330は、ステップS630Aにおいて潅水位置毎に、給水弁152から潅水を供給する目標給水時間である目標潅水時間を設定する。目標潅水時間は、ステップS620で設定された潅水位置毎に分割潅水を行った場合に各潅水位置の土壌に供給できる目標潅水量を満たす値に設定される。マイコン330は、ステップS650Aで測定開始した潅水時間がステップS660Aで目標潅水時間に到達するまで継続する。マイコン330は、検出した潅水時間が目標潅水時間に到達したと判定すると、以降処理を順次実行していき、ステップS690で潅水を終了する処理を実行する。 The processing of steps S610 to S690 and the processing of steps S730A to S770 are mainly executed by the microcomputer 330 of each monitoring unit 300. Microcomputer 330 sets a target water supply time, which is a target water supply time during which water is supplied from water supply valve 152, for each water supply position in step S630A. The target watering time is set to a value that satisfies the target watering amount that can be supplied to the soil at each watering position when divided watering is performed for each watering position set in step S620. Microcomputer 330 continues until the watering time started to measure in step S650A reaches the target watering time in step S660A. When the microcomputer 330 determines that the detected watering time has reached the target watering time, the microcomputer 330 sequentially executes processing thereafter, and executes processing for ending watering in step S690.
 統合演算部600がステップS720で最短潅水位置を出力した後、マイコン330は、ステップS730Aにおいて目標潅水時間を設定する。目標潅水時間は、最短潅水距離から最長潅水距離にわたる範囲に連続潅水を行った場合に潅水範囲の土壌に供給できる目標潅水量を満たす値に設定される。マイコン330は、ステップS750Aで測定開始した潅水時間がステップS760Aで目標潅水時間に到達するまで継続する。マイコン330は、検出した潅水時間が目標潅水時間に到達したと判定すると、ステップS770で潅水を終了する処理を実行する。 After the integrated calculation unit 600 outputs the shortest watering position in step S720, the microcomputer 330 sets the target watering time in step S730A. The target irrigation time is set to a value that satisfies the target irrigation amount that can be supplied to the soil in the irrigation range when water is continuously irrigated over the range from the shortest irrigation distance to the maximum irrigation distance. Microcomputer 330 continues until the watering time started to measure in step S750A reaches the target watering time in step S760A. When the microcomputer 330 determines that the detected watering time has reached the target watering time, the microcomputer 330 executes a process of ending watering in step S770.
 第3実施形態の潅水システム10がもたらす作用効果について説明する。制御装置は、集中的な潅水を実施中である潅水位置について目標潅水時間に到達すると給水弁152のバルブ開度を制御して飛水距離を変更して、次の潅水位置に集中的な潅水を提供する。この制御によれば、潅水実施時に、複数の潅水位置のそれぞれに対して目標潅水時間に相当する水分量を供給しこれを順次実施するように、バルブ開度を順次制御する。目標潅水時間に基づくバルブ開度の順次制御により、植物が潅水を必要とする土壌全体に対して必要な水分量を効率的に提供できる。 A description will be given of the effects of the irrigation system 10 of the third embodiment. When the target watering time is reached for the watering position where concentrated watering is being performed, the control device controls the valve opening of the water supply valve 152 to change the water splashing distance, and intensively waters the next watering position. I will provide a. According to this control, when watering is performed, the opening degree of the valve is sequentially controlled so that the amount of water corresponding to the target watering time is supplied to each of the plurality of watering positions and this is performed sequentially. Sequential control of the valve opening degree based on the target watering time can efficiently provide the required amount of water to the entire soil where plants need watering.
 <第4実施形態>
 第4実施形態について図21を参照して説明する。第4実施形態の潅水システム10は、給水弁152の制御処理を図21にしたがって実行する。第4実施形態で特に説明しない構成、作用、効果については、前述の実施形態と同様であり、以下、異なる点についてのみ説明する。図21に示すフローチャートでは、風速に応じて、潅水が目標の飛水距離に届くか否かを判定し、判定結果に応じて、潅水量が適切に得られるように改善する処理を実施する。
<Fourth Embodiment>
A fourth embodiment will be described with reference to FIG. The irrigation system 10 of the fourth embodiment executes control processing of the water supply valve 152 according to FIG. 21 . Configurations, actions, and effects that are not specifically described in the fourth embodiment are the same as those in the above-described embodiments, and only different points will be described below. In the flowchart shown in FIG. 21, it is determined whether or not the watering reaches the target flying distance according to the wind speed.
 図21のフローチャートにおいて図18と同一のステップ符号は、第2実施形態において説明した処理と同一であり、以下にその処理の説明を省略する。図21のフローチャートにおいて、第2実施形態のフローチャートに対して異なる処理ステップを説明する。図21のフローチャートは、第2実施形態や第3実施形態で説明したフローチャートに対してステップS652~S656、S751~S753が相違する。 In the flowchart of FIG. 21, the same step symbols as in FIG. 18 are the same as the processing described in the second embodiment, and the description of the processing will be omitted below. In the flow chart of FIG. 21, different processing steps are described with respect to the flow chart of the second embodiment. The flowchart of FIG. 21 differs from the flowcharts described in the second and third embodiments in steps S652 to S656 and S751 to S753.
 ステップS632、S652~S656の処理、S751~S753の処理は、各分割エリアに対応する監視部300が主に実行する。ステップS632では、潅水位置毎に、風速に関する許容値を設定する。この許容値は、この値を超えると分配チューブ136から飛水された潅水が狙いとする潅水位置まで到達しないと推定できる値に設定されている。この許容値は、例えば記憶部333に保存されている。ステップS650で潅水実施中の潅水流量を検出した後、ステップS652において風センサ317などによって検出した現在の風速を取得する。ステップS654では、潅水実施中である現在の風速が許容値以下であるか否かを判定する。 The processing of steps S632, S652 to S656, and the processing of S751 to S753 are mainly executed by the monitoring unit 300 corresponding to each divided area. In step S632, an allowable value for the wind speed is set for each watering position. This permissible value is set to a value at which it can be estimated that, if this value is exceeded, water sprayed from the distribution tube 136 will not reach the target watering position. This allowable value is stored in the storage unit 333, for example. After detecting the water flow rate during watering in step S650, the current wind speed detected by the wind sensor 317 or the like is acquired in step S652. In step S654, it is determined whether or not the current wind speed during watering is equal to or less than the allowable value.
 ステップS654で現在の風速が許容値以下であると判定した場合には、狙いとする潅水位置に潅水が実施できているため、ステップS660に進み、潅水を継続する。ステップS654で現在の風速が許容値を超えている判定した場合には、狙いとする潅水位置に潅水が実施できていないと推定できる。このためステップS656で給水弁152を全閉状態に制御して現在位置での潅水を停止する。さらにステップS656では、これまで実施した潅水量を演算して記憶部333に記憶し、ステップS640に進み、次の潅水位置での潅水を実施する。以上の処理により、現在の風速状態によって所望の潅水位置に飛水ができないと推定できる場合には、無駄な潅水を抑えることができる。このように一旦は潅水不実施として取り扱われた潅水位置については、ステップS680でNOと判定されてからステップS640において再度潅水を実施することができる。 If it is determined in step S654 that the current wind speed is equal to or less than the allowable value, then the target watering position has been watered, so the process proceeds to step S660 to continue watering. If it is determined in step S654 that the current wind speed exceeds the allowable value, it can be estimated that the target watering position has not been watered. Therefore, in step S656, the water supply valve 152 is controlled to be fully closed to stop watering at the current position. Further, in step S656, the amount of watering performed so far is calculated and stored in the storage unit 333, and the process proceeds to step S640 to perform watering at the next watering position. Through the above processing, when it can be estimated that water cannot be sprayed to a desired watering position due to the current wind speed state, wasteful watering can be suppressed. In this way, watering can be performed again in step S640 after a determination of NO is made in step S680 for the watering position once treated as non-performing watering.
 ステップS750で潅水実施中の潅水流量を検出した後、ステップS751において風センサ317などによって検出した現在の風速を取得する。ステップS752では、ステップS654と同様に潅水実施中である現在の風速が許容値以下であるか否かを判定する。ステップS752で現在の風速が許容値以下であると判定した場合には、連続潅水において、狙いとする潅水位置に潅水が実施できているため、ステップS760に進み、潅水を継続する。ステップS752で現在の風速が許容値を超えている判定した場合には、連続潅水において狙いとする潅水位置に潅水が実施できていないと推定できる。このためステップS753で給水弁152を全閉状態に制御して連続潅水を停止する。さらにステップS753では、これまで実施した潅水量を演算して記憶部333に記憶し、ステップS753に進み、ステップS753で現在の風速が許容値以下になるまで潅水を停止する。 After detecting the irrigation flow rate during irrigation in step S750, the current wind speed detected by the wind sensor 317 or the like is acquired in step S751. In step S752, similarly to step S654, it is determined whether or not the current wind speed during watering is below the allowable value. If it is determined in step S752 that the current wind speed is equal to or less than the allowable value, watering can be performed at the target watering position in continuous watering, so the process proceeds to step S760 to continue watering. If it is determined in step S752 that the current wind speed exceeds the allowable value, it can be estimated that water cannot be applied to the target watering position in continuous watering. Therefore, in step S753, the water supply valve 152 is controlled to be fully closed to stop continuous watering. Further, in step S753, the amount of watering performed so far is calculated and stored in the storage unit 333, and the process proceeds to step S753, in which watering is stopped until the current wind speed becomes equal to or less than the allowable value.
 ステップS752で現在の風速が許容値以下になると判定すると、連続潅水を再開し、ステップS760で潅水量が目標潅水量に到達するまで連続潅水を継続する。ステップS760で判定処理する潅水量は、ステップS753において記憶部333に記憶した潅水量を合算した値を用いる。以上により、現在の風速状態によって所望の潅水位置に飛水ができないような状況が発生したと推定できる場合には、即座に潅水停止して無駄な連続潅水を抑えることができる。 When it is determined in step S752 that the current wind speed is equal to or less than the allowable value, continuous watering is resumed, and in step S760 continuous watering is continued until the watering amount reaches the target watering amount. As the amount of watering to be determined in step S760, the sum of the amounts of watering stored in the storage unit 333 in step S753 is used. As described above, when it can be estimated that a situation has occurred in which water cannot be splashed to a desired watering position due to the current wind speed, watering can be immediately stopped to suppress unnecessary continuous watering.
 第4実施形態の潅水システム10がもたらす作用効果について説明する。制御装置は圃場20の風速が許容値を超える場合には潅水の飛水距離を制御することを中止する。この制御によれば、風の影響により、所望の飛水距離に届かない潅水を実施してしまうことを抑制できる。このため、無駄な潅水を抑制して潅水コストの低減を図り、植物30の生育に寄与する的確な潅水を提供できる。 A description will be given of the effects of the irrigation system 10 of the fourth embodiment. The control device stops controlling the splash distance of watering when the wind speed of the field 20 exceeds the allowable value. According to this control, it is possible to prevent watering that does not reach the desired splash distance due to the influence of the wind. Therefore, wasteful watering can be suppressed, watering costs can be reduced, and accurate watering that contributes to the growth of the plants 30 can be provided.
 制御装置は、圃場20の風速が許容値を超える場合には潅水の飛水距離を制御することを中止する。さらに制御装置は、次の潅水位置に集中的な潅水を提供するように、給水弁152のバルブ開度を制御して飛水距離を制御する。この制御によれば、風の影響によって所望の飛水距離に届かない状況である場合に、次の潅水位置への潅水を実施して効率的な水使用を実施する。このため、無駄な潅水を抑制して潅水コストの低減を図り、風の影響を受けにくい状況になったときに潅水のやり直しをトライできる。 The control device stops controlling the watering distance when the wind speed in the field 20 exceeds the allowable value. In addition, the controller controls the valve opening of the water supply valve 152 to control the splash distance so as to provide concentrated irrigation to the next irrigation position. According to this control, when the desired flying distance cannot be reached due to the influence of the wind, water is applied to the next watering position to efficiently use water. Therefore, it is possible to reduce watering costs by suppressing wasteful watering, and to try watering again when the situation becomes less susceptible to wind.
 <第5実施形態>
 第5実施形態について図22、図23を参照して説明する。第5実施形態の潅水システム10は、給水弁152の制御処理を図22にしたがって実行する。第5実施形態で特に説明しない構成、作用、効果については、前述の実施形態と同様であり、以下、異なる点についてのみ説明する。図22に示すフローチャートでは、各監視部300は、土壌センサ311の検出情報に応じて潅水量を増減させて潅水を制御する処理を実施する。
<Fifth Embodiment>
A fifth embodiment will be described with reference to FIGS. 22 and 23. FIG. The irrigation system 10 of the fifth embodiment executes control processing of the water supply valve 152 according to FIG. 22 . Configurations, actions, and effects that are not specifically described in the fifth embodiment are the same as those in the above-described embodiments, and only different points will be described below. In the flowchart shown in FIG. 22 , each monitoring unit 300 performs processing for controlling watering by increasing or decreasing the amount of watering according to the detection information of the soil sensor 311 .
 図22に示す給水弁152の制御処理は、図9に示す給水処理や図10に示す潅水処理において実行される。統合演算部600から出力された給水信号を受信した監視部300のマイコン330は、図22に示す給水処理を主に実行する。 The control processing of the water supply valve 152 shown in FIG. 22 is executed in the water supply processing shown in FIG. 9 and the watering processing shown in FIG. The microcomputer 330 of the monitoring unit 300 that has received the water supply signal output from the integrated calculation unit 600 mainly executes the water supply process shown in FIG.
 潅水を実施する分割エリアに対応するマイコン330は、ステップS800において、圃場20に設置されている土壌センサ311の位置を設定する。土壌センサ311は、あらかじめ分割エリア毎に設置されており、記憶部333にその位置が記憶されている。次にステップS810では、設定された土壌センサ311毎に目標センサ値を設定する。図23には、第1潅水距離D1、第2潅水距離D2、第3潅水距離D3の順に分配チューブ136に近い距離にある3箇所に土壌センサ311が設定された一例を示す。ステップS810では、第1潅水距離D1、第2潅水距離D2、第3潅水距離D3のそれぞれについて、給水弁152から供給する目標センサ値である目標潅水量を設定する。 The microcomputer 330 corresponding to the divided area to be watered sets the position of the soil sensor 311 installed in the field 20 in step S800. The soil sensor 311 is installed in each divided area in advance, and its position is stored in the storage unit 333 . Next, in step S810, a target sensor value is set for each soil sensor 311 that has been set. FIG. 23 shows an example in which the soil sensors 311 are set at three positions close to the distribution tube 136 in order of the first watering distance D1, the second watering distance D2, and the third watering distance D3. In step S810, a target watering amount, which is a target sensor value supplied from the water supply valve 152, is set for each of the first watering distance D1, the second watering distance D2, and the third watering distance D3.
 目標センサ値は、土壌センサ311の位置に対応する潅水位置に対して必要とする目標潅水量に関係する値である。土壌センサ311は、土壌に含まれる種々の土壌情報を検出できる装置である。 The target sensor value is a value related to the target watering amount required for the watering position corresponding to the position of the soil sensor 311 . The soil sensor 311 is a device capable of detecting various types of soil information contained in soil.
 例えば、土壌センサ311が現在の土壌水分量を検出する場合には、潅水システム10は、植物30が適正に生育するために必要な目標潅水量を目標センサ値に設定する。この場合、目標センサ値に対して不足する水分量を補充する潅水処理が必要になる。また、土壌センサ311が土壌温度を検出する場合には、例えば現在の土壌温度から土壌における水分の吸収しやすさを算出できる。この水分の吸収しやすさというデータに基づいて、目標センサ値としてどの程度の目標潅水量を土壌に供給すれば生育に必要な給水量に到達するかを求めることができる。 For example, when the soil sensor 311 detects the current soil moisture content, the irrigation system 10 sets the target sensor value to the target irrigation amount required for the plants 30 to grow properly. In this case, a watering process is required to replenish the amount of moisture that is insufficient with respect to the target sensor value. Also, when the soil sensor 311 detects the soil temperature, the ease of absorbing water in the soil can be calculated from the current soil temperature, for example. Based on this data on the ease of absorbing water, it is possible to obtain the target sensor value of how much target irrigation water should be supplied to the soil to reach the water supply required for growth.
 土壌センサ311が根による吸水しやすさ度合に関係する水ポテンシャル値を検出する場合には、水ポテンシャル値に応じた目標潅水量を目標センサ値に設定することになる。水ポテンシャル値として土壌の浸透圧を検出する場合、検出された浸透圧が設定値より大きければ吸水性が良いことになる。このため、潅水システム10は目標センサ値である目標潅水量を抑えるように設定する。検出された浸透圧が設定値以下であれば吸水性が良くないため、潅水システム10は目標センサ値である目標潅水量を前者の場合によりも増加するように設定する。 When the soil sensor 311 detects a water potential value related to the degree of ease of water absorption by roots, a target watering amount corresponding to the water potential value is set as the target sensor value. When the osmotic pressure of the soil is detected as the water potential value, if the detected osmotic pressure is greater than the set value, the water absorption is good. Therefore, the irrigation system 10 is set to suppress the target irrigation amount, which is the target sensor value. If the detected osmotic pressure is less than the set value, the water absorption is not good, so the irrigation system 10 sets the target irrigation amount, which is the target sensor value, to be higher than in the former case.
 土壌センサ311が、土壌の肥料量に関係する電気伝導度を検出する場合には、電気伝導度に応じた目標潅水量を目標センサ値に設定することになる。潅水システム10は、検出された電気伝導度が設定値より大きければ、目標センサ値である目標潅水量を抑えるように設定する。潅水システム10は、検出された電気伝導度の検出値が設定値以下であれば、目標センサ値である目標潅水量を前者の場合によりも増加するように設定する。 When the soil sensor 311 detects the electrical conductivity related to the fertilizer amount of the soil, the target sensor value is set to the target watering amount according to the electrical conductivity. The irrigation system 10 is set to suppress the target irrigation amount, which is the target sensor value, if the detected electrical conductivity is greater than the set value. The irrigation system 10 sets the target irrigation amount, which is the target sensor value, to be larger than in the former case if the detected electrical conductivity value is equal to or less than the set value.
 マイコン330は、ステップS820で、土壌センサ311の位置に対応する複数の潅水位置のうち、潅水を行う潅水位置に到達する飛水距離になるように給水弁152のバルブ開度を制御して、潅水を実施する。ステップS830では、土壌センサ311による測定値を用いて潅水実施中のセンサ値を検出する。この潅水実施は、ステップS840で、検出したセンサ値が目標センサ値に到達するまで継続する。マイコン330はステップS840のセンサ値が目標センサ値に到達した場合、ステップS850で給水弁152を全閉状態に制御してこの潅水位置での潅水を終了する。 In step S820, the microcomputer 330 controls the valve opening of the water supply valve 152 so that the water splash distance reaches the watering position for watering among a plurality of watering positions corresponding to the position of the soil sensor 311. Carry out irrigation. In step S830, the sensor value during watering is detected using the measured value by the soil sensor 311. FIG. This irrigation practice continues until the detected sensor value reaches the target sensor value in step S840. When the sensor value in step S840 reaches the target sensor value, the microcomputer 330 controls the water supply valve 152 to the fully closed state in step S850 to end watering at this watering position.
 次のステップS860では、ステップS800で設定したすべての潅水位置での潅水が終了したか否かを判定する。すべての潅水位置での潅水が終了していない場合はステップS820に戻る。マイコン330は、ステップS820において次の潅水位置に到達する飛水距離になるように給水弁152の開度を制御して、潅水を実施する。次の潅水位置での潅水実施は、ステップS840で、検出したセンサ値が目標センサ値に到達するまで継続する。ステップS860ですべての潅水位置での潅水が終了したと判定した場合はステップS870で給水弁152のバルブを全閉状態に制御して潅水を終了する。 In the next step S860, it is determined whether or not watering at all the watering positions set in step S800 has ended. If watering has not been completed at all watering positions, the process returns to step S820. In step S820, microcomputer 330 controls the degree of opening of water supply valve 152 so that the water splash distance reaches the next watering position, and watering is performed. Irrigation at the next irrigation position continues until the detected sensor value reaches the target sensor value in step S840. If it is determined in step S860 that watering at all watering positions has been completed, water supply valve 152 is controlled to be fully closed in step S870 to end watering.
 <他の実施形態>
 この明細書の開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。例えば、開示は、実施形態において示された部品、要素の組み合わせに限定されず、種々変形して実施することが可能である。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品、要素が省略されたものを包含する。開示は、一つの実施形態と他の実施形態との間における部品、要素の置き換え、または組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示される技術的範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内での全ての変更を含むものと解されるべきである。
<Other embodiments>
The disclosure in this specification is not limited to the illustrated embodiments. The disclosure encompasses the illustrated embodiments and variations thereon by those skilled in the art. For example, the disclosure is not limited to the combination of parts and elements shown in the embodiments, and various modifications can be made. The disclosure can be implemented in various combinations. The disclosure can have additional parts that can be added to the embodiments. The disclosure encompasses abbreviations of parts and elements of the embodiments. The disclosure encompasses the permutations, or combinations of parts, elements between one embodiment and another. The disclosed technical scope is not limited to the description of the embodiments. The disclosed technical scope is indicated by the description of the claims, and should be understood to include all modifications within the meaning and range of equivalents to the description of the claims.
 図21を用いて説明したステップS630、S650、S660は、それぞれ図21のS630A、S650A、S660Aに置き換えてもよい。また、図21のステップS730、S750、S760は、それぞれ図21のS730A、S750A、S760Aに置き換えることができる。この場合、ステップS656、S753では、記憶部333にこれまでの潅水時間を記憶する処理としてもよい。 Steps S630, S650, and S660 described using FIG. 21 may be replaced with S630A, S650A, and S660A in FIG. 21, respectively. Also, steps S730, S750 and S760 in FIG. 21 can be replaced with S730A, S750A and S760A in FIG. 21, respectively. In this case, in steps S<b>656 and S<b>753 , the storage unit 333 may store the watering time so far.
 給水弁152におけるバルブの開度制御の一例について図24を参照して説明する。図24は、潅水実施時における、給水弁152のバルブ開度と土壌水分量AWとの関係を示す一例である。図24は、時間を横軸としバルブ開度や土壌の水分量を縦軸としている。各位置の土壌の水分量は、対応する土壌センサ311によって検出することができる。バルブ開度はVO1<VO2<VO3の関係である3段階に制御される。図24は、第1潅水距離D1、第2潅水距離D2、第3潅水距離D3のそれぞれの潅水位置における土壌水分量の変化を示している。マイコン330は、モータ71に対して図24の時刻T1、時刻T2に通電を行い、給水弁152のバルブ開度を段階的に拡大するように制御する。時刻T1での通電は、VO1からVO2にバルブ開度を増加させる。時刻T2での通電は、VO2からVO3にバルブ開度を増加させる。説明したようなバルブ開度と潅水距離とに関わるデータは、記憶部333に記憶されている。処理部334は、記憶部333に記憶されたデータを用いた演算により必要なバルブ開度を決定する。信号出力部332は、バルブ開度を制御する制御信号を給水弁152に出力する。 An example of valve opening degree control in the water supply valve 152 will be described with reference to FIG. FIG. 24 is an example showing the relationship between the valve opening degree of the water supply valve 152 and the soil water content AW during watering. In FIG. 24, the horizontal axis is time and the vertical axis is valve opening and soil moisture content. The soil moisture content at each location can be detected by a corresponding soil sensor 311 . The valve opening degree is controlled in three stages with a relationship of VO1<VO2<VO3. FIG. 24 shows changes in soil water content at watering positions of the first watering distance D1, the second watering distance D2, and the third watering distance D3. The microcomputer 330 energizes the motor 71 at time T1 and time T2 in FIG. 24, and controls the valve opening of the water supply valve 152 to increase stepwise. The energization at time T1 increases the valve opening from VO1 to VO2. The energization at time T2 increases the valve opening from VO2 to VO3. Data relating to the valve opening degree and the watering distance as described above are stored in the storage unit 333 . The processing unit 334 determines the necessary valve opening degree by calculation using the data stored in the storage unit 333 . The signal output unit 332 outputs a control signal for controlling the opening of the valve to the water supply valve 152 .
 この制御により、時刻T1までは、分配チューブ136からの飛水距離が第1潅水距離D1に相当し、第1潅水距離D1における水分量が増加し続ける。時刻T1~T2では、飛水距離が第2潅水距離D2に到達し、第1潅水距離D1の水分量が一定になり、第2潅水距離D2における水分量が増加し続ける。時刻T2以後は、飛水距離が第3潅水距離D3に到達し、第1潅水距離D1および第2潅水距離D2の水分量がそれぞれ一定になり、第3潅水距離D3の水分量が増加し続けるようになる。監視部300は、このようなバルブ開度制御に係る通電制御を、あらかじめ定めた時刻をトリガにして実行する。監視部300は、分配チューブ136からの飛水距離を、あらかじめ設置されている複数の土壌センサ311の検出値に基づいて計測する。 Due to this control, until time T1, the water splashing distance from the distribution tube 136 corresponds to the first watering distance D1, and the amount of water in the first watering distance D1 continues to increase. From time T1 to T2, the flying water distance reaches the second watering distance D2, the water content in the first watering distance D1 becomes constant, and the water content in the second watering distance D2 continues to increase. After time T2, the flying water distance reaches the third watering distance D3, the water contents of the first watering distance D1 and the second watering distance D2 become constant, and the water content of the third watering distance D3 continues to increase. become. The monitoring unit 300 executes such energization control related to the valve opening degree control with a predetermined time as a trigger. The monitoring unit 300 measures the splashing distance from the distribution tube 136 based on the detection values of a plurality of soil sensors 311 installed in advance.
 <ランプ作動通電>
 給水弁152におけるバルブの開度制御の一例について図25を参照して説明する。図25は、潅水実施時における、給水弁152のバルブ開度と飛水距離との関係を示す一例である。バルブ開度はモータ71に通電する電流値に比例するため、図25は、時間を横軸とし電流値や飛水距離を縦軸としている。図25の実線グラフは、ランプ作動を示す電流値またはバルブ開度を示している。図25は、ランプ作動におけるバルブ開度と飛水距離との関係を示している。図25の破線グラフは飛水距離を示している。
<Lamp operation energization>
An example of valve opening degree control in the water supply valve 152 will be described with reference to FIG. 25 . FIG. 25 is an example showing the relationship between the valve opening degree of the water supply valve 152 and the splashing distance during watering. Since the valve opening is proportional to the value of the current applied to the motor 71, FIG. 25 plots time on the horizontal axis and the current value and the water splash distance on the vertical axis. A solid line graph in FIG. 25 indicates a current value or a valve opening indicating lamp operation. FIG. 25 shows the relationship between the valve opening degree and the splash distance in lamp operation. The dashed line graph in FIG. 25 indicates the splash distance.
 マイコン330は、モータ71に対して図25の実線で示すランプ作動による通電を行い、給水弁152のバルブ開度を制御する。マイコン330は、時刻0~T1、時刻T1~T2、時刻T2~T3のそれぞれで開始時と終了時がゼロで中央値が最大電流値mCVとなる電流波形の通電を反復継続する。このような電流波形はランプ作動ともいう。このとき分配チューブ136に対する飛水距離は、開始時と終了時がゼロで中央値が最大開度mFDとなるように制御される。ランプ作動による通電データと飛水距離とに関わるデータは、記憶部333に記憶されている。処理部334は、記憶部333に記憶されたデータを用いた演算により、ランプ作動による必要なバルブ開度を決定する。信号出力部332は、このバルブ開度に制御するための制御信号を給水弁152に出力する。 The microcomputer 330 energizes the motor 71 by operating the lamp indicated by the solid line in FIG. The microcomputer 330 repeats and continues the energization of a current waveform whose start and end times are zero and whose median value is the maximum current value mCV at times 0 to T1, times T1 to T2, and times T2 to T3, respectively. Such a current waveform is also called lamp operation. At this time, the splashing distance with respect to the distribution tube 136 is controlled so that it is zero at the start and end, and the median value is the maximum opening mFD. Data relating to the energization data due to lamp operation and the splashing distance is stored in the storage unit 333 . The processing unit 334 determines the necessary valve opening for lamp operation by calculation using the data stored in the storage unit 333 . The signal output unit 332 outputs a control signal to the water supply valve 152 for controlling the opening degree of the valve.
 このように制御装置の出力部は、潅水の飛水距離を制御するためにランプ作動通電を実行する制御信号を給水弁152に出力する。この通電制御によれば、分配チューブ136の周辺において広範囲にわたって満遍なく給水可能な潅水を実施できる。 Thus, the output section of the control device outputs to the water supply valve 152 a control signal for energizing the lamp to control the water splash distance. According to this energization control, it is possible to evenly supply water over a wide area around the distribution tube 136 .
 <ステップ作動通電>
 給水弁152におけるバルブの開度制御の一例について図26を参照して説明する。図26は、潅水実施時における、給水弁152のバルブ開度と飛水距離との関係を示す一例である。図26は、時間を横軸としバルブ開度や飛水距離を縦軸としている。図26の実線で示すグラフは、バルブ開度を示している。図26の破線で示すグラフは、飛水距離を示している。図26は、ステップ作動によるバルブ開度と飛水距離との関係を示している。
<Electricity for step operation>
An example of valve opening degree control in the water supply valve 152 will be described with reference to FIG. 26 . FIG. 26 is an example showing the relationship between the valve opening degree of the water supply valve 152 and the splashing distance during watering. In FIG. 26, the horizontal axis represents the time and the vertical axis represents the valve opening degree and the splash distance. A graph indicated by a solid line in FIG. 26 indicates the valve opening. The dashed line graph in FIG. 26 indicates the splash distance. FIG. 26 shows the relationship between the valve opening degree and the splash distance due to the step operation.
 マイコン330は、モータ71に対して図26の実線で示すステップ作動による通電を行い、給水弁152のバルブ開度を制御する。マイコン330は、モータ71に対して図26の時刻T1、T2、T3に通電を行い、給水弁152のバルブ開度を段階的に拡大するように制御する。マイコン330は、モータ71に対して時刻T4、T5、T6に時刻T1などとは逆向きの電流を通電し、給水弁152のバルブ開度を段階的に縮小するように制御する。図26に示す通電制御の場合、バルブ開度は、時刻T1~T2および時刻T5~T6が第1開度に設定され、時刻T2~T3および時刻T4~T5が第2開度に設定される。そしてバルブ開度は、時刻T3~T4が最も開度が大きい第3開度に設定される。 The microcomputer 330 energizes the motor 71 by the step operation indicated by the solid line in FIG. 26 to control the valve opening of the water supply valve 152 . The microcomputer 330 energizes the motor 71 at times T1, T2, and T3 in FIG. 26, and controls the valve opening of the water supply valve 152 to increase stepwise. The microcomputer 330 energizes the motor 71 at times T4, T5, and T6 in a direction opposite to that at time T1, and controls the valve opening of the water supply valve 152 to decrease stepwise. In the case of the energization control shown in FIG. 26, the valve opening is set to the first opening during times T1 to T2 and T5 to T6, and is set to the second opening during times T2 to T3 and T4 to T5. . Then, the valve opening degree is set to the third opening degree, which is the largest opening degree between times T3 and T4.
 この制御により、分配チューブ136からの飛水距離は、例えば時刻T1~T2と時刻T5~T6とにおいて第1潅水距離D1に到達する。分配チューブ136からの飛水距離は、例えば時刻T2~T3と時刻T4~T5とにおいて第2潅水距離D2に到達する。分配チューブ136からの飛水距離は、例えば時刻T3~T4において第3潅水距離D3に到達する。監視部300は、このバルブ開度制御に係る通電制御を、あらかじめ定めた時刻をトリガにして実行する。 By this control, the splashing water distance from the distribution tube 136 reaches the first watering distance D1 at times T1 to T2 and times T5 to T6, for example. The splash distance from the distribution tube 136 reaches the second irrigation distance D2, for example, at times T2-T3 and T4-T5. The splashed water distance from the distribution tube 136 reaches the third irrigation distance D3, for example, between times T3 and T4. The monitoring unit 300 executes energization control related to this valve opening degree control with a predetermined time as a trigger.
 このように制御装置の出力部は、水の飛水距離を制御するためにステップ作動通電を実行する制御信号を給水弁152に出力する。この通電制御によれば、分配チューブ136から放出される潅水の飛水距離を制御するための通電時間を抑えことができ、節電が図れる潅水を実施できる。 Thus, the output section of the control device outputs to the water supply valve 152 a control signal for executing the step operation energization in order to control the splashing distance of the water. According to this energization control, it is possible to suppress the energization time for controlling the splashing distance of the sprinkling water discharged from the distribution tube 136, so that the sprinkling can be carried out in a power-saving manner.
 潅水システム10が備える通路構成と給水制御に関係する構成部品とに係る一例について、図27を用いて説明する。図27は、分配チューブ136と給水弁152と水圧センサ153との位置関係を示す一例を示している。縦配管133は、複数の分配チューブ136に至る複数の通路に接続されている。複数の通路のそれぞれは、分配チューブ136と縦配管133とを連結する通路である。各分配チューブ136と縦配管133との間の通路には、給水弁152と、水圧センサ153aまたは流量センサ154aとが設けられている。水圧センサ153aまたは流量センサ154aは、給水弁152よりも下流に設けられている。 An example of the passage configuration provided in the irrigation system 10 and components related to water supply control will be described with reference to FIG. 27 . FIG. 27 shows an example showing the positional relationship among the distribution tube 136, the water supply valve 152 and the water pressure sensor 153. As shown in FIG. Vertical pipe 133 is connected to a plurality of passages leading to a plurality of distribution tubes 136 . Each of the plurality of passages is a passage that connects distribution tube 136 and vertical pipe 133 . A water supply valve 152 and a water pressure sensor 153a or a flow rate sensor 154a are provided in the passage between each distribution tube 136 and the vertical pipe 133 . The water pressure sensor 153 a or the flow rate sensor 154 a is provided downstream of the water supply valve 152 .
 縦配管133は、各給水弁152の入口ポート251に至る通路に連結されている。各分配チューブ136は、各給水弁152における流体流出部の一つである第1パイプ部51に至る通路に連結されている。この場合、他の流体流出部である第2パイプ部52と第3パイプ部53は、閉塞部材によって閉塞されている。また、水圧センサ153bまたは流量センサ154bは、分配チューブ136において最下流に位置する貫通孔よりもさらに下流に設けられている構成でもよい。潅水システム10が備える分配チューブ136は、内部を流通する水圧に応じて伸縮する構成でもよい。この場合、分配チューブ136は、例えば水圧に応じて弾性変形可能な材質や硬度を有して形成されている。 The vertical pipe 133 is connected to a passage leading to the inlet port 251 of each water supply valve 152 . Each distribution tube 136 is connected to a passage leading to the first pipe portion 51 which is one of the fluid outflow portions of each water supply valve 152 . In this case, the second pipe portion 52 and the third pipe portion 53, which are other fluid outflow portions, are closed by the closing member. Further, the water pressure sensor 153b or the flow rate sensor 154b may be provided downstream of the most downstream through-hole in the distribution tube 136 . The distribution tube 136 included in the irrigation system 10 may be configured to expand and contract according to the water pressure circulating therein. In this case, the distribution tube 136 is formed with a material and hardness that can be elastically deformed according to water pressure, for example.
 マイコン330には、分配チューブ136における圧力値を検出可能な圧力センサである水圧センサ153aや水圧センサ153bで検出された水圧が出力される。マイコン330は、水圧センサ153aや水圧センサ153bによって検出された水圧を用いて、各給水弁152のバルブ開度をフィードバック制御して目標開度に制御する。流量センサ154aや流量センサ154bは、分配チューブ136における流量値を検出可能な流量センサである。マイコン330は、流量センサ154aや流量センサ154bによって検出された流量を用いて、各給水弁152のバルブ開度をフィードバック制御して目標開度に制御する。このような制御により、マイコン330は、圃場20の高低差、給水源圧力の変動、縦配管133から分配チューブへの潅水分配量の変動などによって、各分配チューブの流量や圧力が変化しても、狙いとする吐水量を満足する潅水を実施できる。 The water pressure detected by the water pressure sensor 153a and the water pressure sensor 153b, which are pressure sensors capable of detecting the pressure value in the distribution tube 136, is output to the microcomputer 330. The microcomputer 330 uses the water pressure detected by the water pressure sensor 153a and the water pressure sensor 153b to feedback-control the valve opening of each water supply valve 152 to the target opening. The flow rate sensor 154 a and the flow rate sensor 154 b are flow rate sensors capable of detecting the flow rate value in the distribution tube 136 . The microcomputer 330 uses the flow rates detected by the flow rate sensors 154a and 154b to feedback-control the opening degrees of the water supply valves 152 to the target opening degrees. With such control, the microcomputer 330 can control the flow rate and pressure of each distribution tube due to changes in the height difference of the field 20, fluctuations in the pressure of the water supply source, fluctuations in the amount of water distributed from the vertical pipe 133 to the distribution tubes, and the like. , it is possible to perform sprinkling that satisfies the target discharge amount.
 給水弁152におけるバルブの開度制御の一例について図28を参照して説明する。分配チューブ136を介した圃場20への潅水量は、チューブの特性に依存する。したがって、給水弁152の近傍とチューブの末端とでは、潅水が行き渡るまでのタイムラグにより、潅水量に差が生じ得る。この不具合を改善するために、図28に示す給水弁152の制御処理は、図9に示す給水処理や図10に示す潅水処理において実行される。統合演算部600、および統合演算部600から出力された給水信号を受信した監視部300のマイコン330は、図28に示す制御を実行する。統合演算部600は、ステップS900で、潅水を開始する際の給水弁152におけるバルブ開度閾値を指示する。統合演算部600は、記憶部333に記憶されたバルブ開度閾値を指示する処理を実行する。 An example of valve opening degree control in the water supply valve 152 will be described with reference to FIG. The amount of water applied to field 20 via distribution tube 136 depends on the characteristics of the tube. Therefore, there may be a difference in the amount of irrigation water between the vicinity of the water supply valve 152 and the end of the tube due to the time lag until the irrigation water spreads. In order to remedy this problem, the control process for the water supply valve 152 shown in FIG. 28 is executed in the water supply process shown in FIG. 9 and the watering process shown in FIG. Integrated calculation unit 600 and microcomputer 330 of monitoring unit 300 that receives the water supply signal output from integrated calculation unit 600 execute the control shown in FIG. In step S900, the integrated calculation unit 600 instructs the valve opening threshold of the water supply valve 152 when watering is started. The integrated calculation unit 600 executes processing for instructing the valve opening degree threshold value stored in the storage unit 333 .
 統合演算部600は、ステップS910で、潅水を開始する際に給水が分配チューブ136の末端まで充満するまでに要する目標充満時間を指示する。目標充満時間は、給水弁152が開状態になって給水が分配チューブ136に流入し始めてから末端に充満するまでに要する時間の推定値である。目標充満時間に到達すれば、分配チューブ136の末端の貫通穴にまで給水が均等に行き渡ったことを推定できる。分配チューブ136の末端は、分配チューブ136における最下流の貫通穴に相当する。処理部334は、給水弁152のバルブ開度をバルブ開度閾値以下に制御してから目標充満時間に到達した場合、充満条件が成立したと判断する。 In step S910, the integrated calculation unit 600 instructs the target filling time required for the water supply to fill up to the end of the distribution tube 136 when watering is started. The target fill time is an estimate of the amount of time it will take for feed water to begin flowing into distribution tube 136 when water valve 152 is open and fill to the end. When the target filling time is reached, it can be estimated that the water supply has evenly spread to the through hole at the end of the distribution tube 136 . The distal end of distribution tube 136 corresponds to the most downstream through-hole in distribution tube 136 . The processing unit 334 determines that the filling condition is met when the target filling time is reached after the valve opening of the water supply valve 152 is controlled to be equal to or less than the valve opening threshold.
 処理部334は、記憶部333に記憶された数式1を用いて目標充満時間CTを算出する。 The processing unit 334 uses Equation 1 stored in the storage unit 333 to calculate the target filling time CT.
 (数式1) CT=k×L×D×π÷4÷Q
kは、チューブ流量係数である。チューブ流量係数は、分配チューブ136の材質、摩擦係数、散水特性等によって定まる係数である。Lは、チューブの上流端から末端までの長さ(mm)である。Dは、チューブの内径(mm)である。Qは、給水弁152に関するバルブ開度の圧損特性値(mm/sec)である。目標充満時間CTは、バルブ上流における圧力、バルブ開度の圧損特性値、チューブ長さ、チューブ内径に応じて算出可能な推定値である。
(Formula 1) CT=k×L×D 2 ×π÷4÷Q
k is the tube flow coefficient. The tube flow coefficient is a coefficient determined by the distribution tube 136 material, coefficient of friction, water spray characteristics, and the like. L is the length (mm) from the upstream end of the tube to the terminal end. D is the inner diameter (mm) of the tube. Q is the pressure loss characteristic value (mm 3 /sec) of the opening degree of the water supply valve 152 . The target filling time CT is an estimated value that can be calculated according to the pressure upstream of the valve, the pressure loss characteristic value of the valve opening, the length of the tube, and the inner diameter of the tube.
 ステップS920においてマイコン330は、ステップS900で指示されたバルブ開度閾値以下に給水弁152のバルブ開度を制御して、潅水を実施する。ステップS920において信号出力部332は、バルブ開度をバルブ開度閾値以下に制御する制御信号を給水弁152に出力する。ステップS930では、バルブ開度をバルブ開度閾値以下に制御してからの経過時間を計測する。バルブ開度閾値以下に制御する潅水は、ステップS940において、計測した経過時間が目標充満時間CTに到達するまで継続する。マイコン330は、ステップS940の経過時間が目標充満時間に到達した場合、ステップS950で給水弁152のバルブ開度を目標開度に上げて制御する。このように絞り開度実施の経過時間が充満条件を満たすため、潅水当初の絞りバルブ開度から通常の潅水モードに移行する。目標開度は、バルブ開度閾値よりも大きい開度であり、潅水に必要な目標潅水量または目標とする飛水距離を満たすためのバルブ開度である。 In step S920, the microcomputer 330 controls the valve opening degree of the water supply valve 152 to be equal to or less than the valve opening threshold value instructed in step S900 to perform watering. In step S<b>920 , the signal output unit 332 outputs to the water supply valve 152 a control signal for controlling the valve opening to be equal to or less than the valve opening threshold. In step S930, the elapsed time after the valve opening is controlled to be equal to or less than the valve opening threshold is measured. The irrigation controlled below the valve opening threshold is continued until the measured elapsed time reaches the target filling time CT in step S940. When the elapsed time in step S940 reaches the target filling time, the microcomputer 330 increases the opening of the water supply valve 152 to the target opening in step S950. In this way, since the elapsed time of execution of the throttle opening satisfies the filling condition, the throttle valve opening at the beginning of watering is shifted to the normal watering mode. The target opening is an opening that is greater than the valve opening threshold, and is a valve opening that satisfies a target amount of water required for watering or a target flying distance.
 ステップS950では、信号出力部332は、バルブ開度を目標開度に制御する制御信号を給水弁152に出力する。以上の図28に記載した制御によれば、チューブの末端まで水が行き渡ってから、通常の潅水モードに移行することができる。図28の制御によれば、給水弁152の近傍とチューブの末端とについて潅水量のばらつきを抑制できる潅水実施を提供できる。図28のフローチャートにおいて移行する通常の潅水モードは、前述の実施形態において説明した潅水の実施である。図28を参照して説明したバルブの開度制御によれば、チューブの末端における給水情報を必要とすることなく、チューブの末端に至るまで均等な潅水を提供できる。 In step S950, the signal output unit 332 outputs to the water supply valve 152 a control signal for controlling the valve opening to the target opening. According to the control described in FIG. 28 above, it is possible to shift to the normal irrigation mode after the water reaches the end of the tube. According to the control of FIG. 28, it is possible to provide irrigation that can suppress variations in the irrigation amount between the vicinity of the water supply valve 152 and the end of the tube. The normal irrigation mode transitioned in the flow chart of FIG. 28 is the irrigation implementation described in the previous embodiments. The valve opening control described with reference to FIG. 28 provides even irrigation all the way to the end of the tube without requiring watering information at the end of the tube.
 給水弁152におけるバルブの開度制御の一例について図29、図30を参照して説明する。図29にしたがうバルブの開度制御は、図28に記載した制御に対してステップS910A、S930A、S940Aが相違し、他のステップは同様である。図29、図30に示す給水弁152の制御処理は、図9に示す給水処理や図10に示す潅水処理において実行される。統合演算部600、および統合演算部600から出力された給水信号を受信した監視部300のマイコン330は、図29に示す制御を実行する。以下、図29に示す制御について相違点のみ説明する。 An example of valve opening degree control in the water supply valve 152 will be described with reference to FIGS. 29 and 30. FIG. The valve opening degree control according to FIG. 29 differs from the control described in FIG. 28 in steps S910A, S930A, and S940A, and the other steps are the same. The control processing of the water supply valve 152 shown in FIGS. 29 and 30 is executed in the water supply processing shown in FIG. 9 and the watering processing shown in FIG. Integrated calculation unit 600 and microcomputer 330 of monitoring unit 300 that receives the water supply signal output from integrated calculation unit 600 execute the control shown in FIG. Only different points of the control shown in FIG. 29 will be described below.
 統合演算部600は、ステップS910Aで、潅水を開始する際に給水が分配チューブ136の末端まで充満したと推定できる設定圧力値SPを指示する。設定圧力値SPは、給水弁152が開状態になって給水が分配チューブ136に流入し始めてから末端に充満したと推定可能な末端の圧力値である。設定圧力値SPは、記憶部333に記憶されている。チューブ末端の圧力値が設定圧力値SPに到達すれば、分配チューブ136の末端の貫通穴にまで給水が均等に行き渡ったことを推定できる。処理部334は、チューブ末端の圧力値として、図27に記載した水圧センサ153bによって検出された水圧値を用いる。 In step S910A, the integrated calculation unit 600 indicates a set pressure value SP that can be estimated to fill the distribution tube 136 with water to the end when watering is started. The set pressure value SP is a pressure value at the end that can be estimated to fill the end after the water supply valve 152 is opened and water starts to flow into the distribution tube 136 . The set pressure value SP is stored in the storage section 333 . When the pressure value at the end of the tube reaches the set pressure value SP, it can be estimated that the water supply has evenly spread to the through hole at the end of the distribution tube 136 . The processing unit 334 uses the water pressure value detected by the water pressure sensor 153b shown in FIG. 27 as the tube end pressure value.
 ステップS930Aでは、バルブ開度をバルブ開度閾値以下に制御して以降、水圧センサ153bによってチューブ末端の圧力値を計測する。バルブ開度閾値以下に制御する潅水は、ステップS940Aにおいて、計測した圧力値が設定圧力値SPに到達するまで継続する。チューブ末端の圧力値が設定圧力値SPに到達した場合、マイコン330は、ステップS950で給水弁152のバルブ開度を目標開度に上げて制御する。このようにチューブ末端の圧力値が充満条件を満たすため、潅水当初の絞りバルブ開度から通常の潅水モードに移行する。 In step S930A, after controlling the valve opening to be equal to or less than the valve opening threshold, the water pressure sensor 153b measures the pressure value at the end of the tube. The irrigation controlled below the valve opening threshold is continued until the measured pressure value reaches the set pressure value SP in step S940A. When the pressure value at the end of the tube reaches the set pressure value SP, the microcomputer 330 raises the valve opening degree of the water supply valve 152 to the target opening degree and controls it in step S950. Since the pressure value at the end of the tube satisfies the filling condition in this manner, the opening of the throttle valve at the beginning of watering is shifted to the normal watering mode.
 図30は、図29に示す制御におけるタイミングチャートを示している。図30のバルブ開度VOは、時間T1から時間T2までバルブ開度閾値以下に制御され、水圧センサ値PVが設定圧力値SPに到達すると目標開度に制御される。チューブ内における水の到達距離ADは、時間T1から時間T2まで徐々に上昇して、時間T2付近でチューブ末端まで達する。時間T1でチューブ最上流の貫通穴から吐水し始め、時間T2でチューブ末端の貫通穴から吐水し始める。チューブ入口部における散水量UIVは、時間T1から時間T2まで一定であり、時間T2で上昇して以降大きな値になる。チューブ末端における散水量EIVは、時間T1から時間T2までゼロであり、時間T2で上昇して以降、チューブ上流における散水量UIVと同等の値になる。 FIG. 30 shows a timing chart for the control shown in FIG. The valve opening VO in FIG. 30 is controlled below the valve opening threshold from time T1 to time T2, and is controlled to the target opening when the water pressure sensor value PV reaches the set pressure value SP. The reaching distance AD of water in the tube gradually increases from time T1 to time T2, and reaches the end of the tube near time T2. At time T1, water starts to be discharged from the most upstream through hole of the tube, and at time T2, water starts to be discharged from the through hole at the end of the tube. The water sprinkling amount UIV at the tube inlet is constant from time T1 to time T2, increases at time T2, and thereafter becomes a large value. The spray amount EIV at the tube end is zero from time T1 to time T2, and after increasing at time T2, it becomes a value equivalent to the spray amount UIV at the tube upstream.
 処理部334が、水圧センサ153bで検出した圧力値に基づいて充満条件が成立したと判定すると、信号出力部332は給水弁のバルブ開度を目標開度に制御する。以上の図29に記載した制御によれば、チューブの末端まで水が行き渡ってから、通常の潅水モードに移行することができる。図29の制御によれば、給水弁152の近傍とチューブの末端とについて潅水量のばらつきを抑制できる潅水実施を提供できる。図29のフローチャートにおいて移行する通常の潅水モードは、前述の実施形態において説明した潅水の実施である。図29、図30を参照して説明したバルブの開度制御によれば、チューブの末端まで水が行き渡ったことを高い精度で検出でき、潅水時間の無駄を低減できる。 When the processing unit 334 determines that the filling condition is satisfied based on the pressure value detected by the water pressure sensor 153b, the signal output unit 332 controls the opening of the water supply valve to the target opening. According to the control described in FIG. 29 above, it is possible to shift to the normal irrigation mode after the water reaches the end of the tube. According to the control of FIG. 29, it is possible to provide irrigation that can suppress variations in the irrigation amount between the vicinity of the water supply valve 152 and the end of the tube. The normal irrigation mode transitioned in the flow chart of FIG. 29 is the irrigation implementation described in the previous embodiments. According to the valve opening degree control described with reference to FIGS. 29 and 30, it is possible to detect with high accuracy that water has spread to the end of the tube, and wasteful watering time can be reduced.
 給水弁152におけるバルブの開度制御の一例について図31、図32を参照して説明する。図31にしたがうバルブの開度制御は、図28に記載した制御に対してステップS910B、S930B、S940Bが相違し、他のステップは同様である。図31、図32に示す給水弁152の制御処理は、図9に示す給水処理や図10に示す潅水処理において実行される。統合演算部600、および統合演算部600から出力された給水信号を受信した監視部300のマイコン330は、図31に示す制御を実行する。以下、図31に示す制御について相違点のみ説明する。 An example of valve opening degree control in the water supply valve 152 will be described with reference to FIGS. 31 and 32. FIG. The valve opening degree control according to FIG. 31 differs from the control described in FIG. 28 in steps S910B, S930B, and S940B, and the other steps are the same. The control processing of the water supply valve 152 shown in FIGS. 31 and 32 is executed in the water supply processing shown in FIG. 9 and the watering processing shown in FIG. Integrated calculation unit 600 and microcomputer 330 of monitoring unit 300 that receives the water supply signal output from integrated calculation unit 600 execute the control shown in FIG. Only the points of difference in the control shown in FIG. 31 will be described below.
 統合演算部600は、ステップS910Bで、潅水を開始する際に給水が分配チューブ136の末端まで充満した推定できる設定流量値SFを指示する。設定流量値SFは、給水弁152が開状態になって給水が分配チューブ136に流入し始めてから末端に充満したと推定可能な末端の流量値である。設定流量値SFは、記憶部333に記憶されている。チューブ末端の流量値が設定流量値SFに到達すれば、分配チューブ136の末端の貫通穴にまで給水が均等に行き渡ったことを推定できる。処理部334は、チューブ末端の流量値として、図27に記載した流量センサ154bによって検出された流量値を用いる。 In step S910B, the integrated calculation unit 600 indicates an estimated set flow rate value SF at which the water supply is filled up to the end of the distribution tube 136 when watering is started. The set flow rate value SF is a flow rate value at the end where it can be estimated that the end is filled after the water supply valve 152 is opened and feed water begins to flow into the distribution tube 136 . The set flow rate value SF is stored in the storage section 333 . When the flow rate value at the end of the tube reaches the set flow rate value SF, it can be estimated that the water supply has evenly spread to the through hole at the end of the distribution tube 136 . The processing unit 334 uses the flow rate value detected by the flow rate sensor 154b shown in FIG. 27 as the flow rate value at the end of the tube.
 ステップS930Bでは、バルブ開度をバルブ開度閾値以下に制御して以降、流量センサ154bによってチューブ末端の流量値を計測する。バルブ開度閾値以下に制御する潅水は、ステップS940Bにおいて、計測した流量値が設定流量値SFに到達するまで継続する。マイコン330は、チューブ末端の流量値が設定流量値SFに到達した場合、ステップS950で給水弁152のバルブ開度を目標開度に上げて制御する。このようにチューブ末端の流量値が充満条件を満たすため、潅水当初の絞りバルブ開度から通常の潅水モードに移行する。 In step S930B, after controlling the valve opening to be equal to or less than the valve opening threshold, the flow sensor 154b measures the flow rate at the end of the tube. The watering that is controlled below the valve opening threshold is continued until the measured flow rate value reaches the set flow rate value SF in step S940B. When the flow rate value at the end of the tube reaches the set flow rate value SF, the microcomputer 330 increases the valve opening degree of the water supply valve 152 to the target opening degree in step S950 and controls it. Since the flow rate value at the end of the tube satisfies the filling condition in this manner, the opening of the throttle valve at the beginning of watering is shifted to the normal watering mode.
 図32は、図31に示す制御におけるタイミングチャートを示している。図32のバルブ開度VOは、時間T1から時間T2までバルブ開度閾値以下に制御され、流量センサ値FVが設定流量値SFに到達すると目標開度に制御される。チューブ内における水の到達距離ADは、図30と同様に、時間T1から時間T2まで徐々に上昇して、時間T2付近でチューブ末端まで達する。チューブ入口部の散水量UIVは、図30と同様に、時間T1から時間T2まで一定であり、時間T2で上昇して以降大きな値になる。チューブ末端の散水量EIVは、図30と同様に、時間T1から時間T2までゼロであり、時間T2で上昇して以降、チューブ上流における散水量UIVと同等の値になる。処理部334が、流量センサ154bで検出した流量値に基づいて充満条件が成立したと判定すると、信号出力部332は給水弁のバルブ開度を目標開度に制御する。 FIG. 32 shows a timing chart for the control shown in FIG. The valve opening VO in FIG. 32 is controlled below the valve opening threshold from time T1 to time T2, and is controlled to the target opening when the flow rate sensor value FV reaches the set flow rate value SF. As in FIG. 30, the reachable distance AD of water in the tube gradually increases from time T1 to time T2, and reaches the end of the tube near time T2. As in FIG. 30, the spray amount UIV at the tube inlet is constant from time T1 to time T2, increases at time T2, and then becomes a large value. As in FIG. 30, the spray amount EIV at the tube end is zero from time T1 to time T2, and after increasing at time T2, it becomes a value equivalent to the spray amount UIV at the tube upstream. When the processing unit 334 determines that the filling condition is satisfied based on the flow rate value detected by the flow sensor 154b, the signal output unit 332 controls the valve opening degree of the water supply valve to the target opening degree.
 以上の図31に記載した制御によれば、チューブの末端まで水が行き渡ってから、通常の潅水モードに移行することができる。図31の制御によれば、給水弁152の近傍とチューブの末端とについて潅水量のばらつきを抑制できる潅水実施を提供できる。図31のフローチャートにおいて移行する通常の潅水モードは、前述の実施形態において説明した潅水の実施である。図31、図32を参照して説明したバルブの開度制御によれば、チューブの末端まで水が行き渡ったことを高い精度で検出でき、潅水時間の無駄を低減できる。 According to the control described in FIG. 31 above, it is possible to shift to the normal irrigation mode after the water reaches the end of the tube. According to the control of FIG. 31, it is possible to provide irrigation that can suppress variations in the irrigation amount between the vicinity of the water supply valve 152 and the end of the tube. The normal irrigation mode transitioned in the flow chart of FIG. 31 is the irrigation implementation described in the previous embodiments. According to the valve opening degree control described with reference to FIGS. 31 and 32, it is possible to detect with high accuracy that water has spread to the end of the tube, and wasteful watering time can be reduced.
 図28~図32を参照して説明したバルブの開度制御は、潅水を開始する際に給水弁のバルブ開度を目標開度よりも小さい値であるバルブ開度閾値以下に制御する。処理部334が、分配チューブの末端まで水が充満したと推定できる充満条件が成立したと判定した場合に、信号出力部332は給水弁のバルブ開度を目標開度に制御する。これによれば、潅水時に分配チューブの末端側から潅水する前に上流側から多く潅水してしまう事態を回避でき、チューブの末端まで均等な潅水を提供できる。 The valve opening degree control described with reference to FIGS. 28 to 32 controls the valve opening degree of the water supply valve to be less than the valve opening threshold value, which is a value smaller than the target opening degree, when watering is started. When the processing unit 334 determines that a filling condition that can be estimated that water has filled up to the end of the distribution tube is satisfied, the signal output unit 332 controls the valve opening degree of the water supply valve to the target opening degree. According to this, it is possible to avoid a situation in which a large amount of water is sprayed from the upstream side before water is sprayed from the terminal side of the distribution tube during watering, and it is possible to provide uniform water supply to the terminal end of the tube.
 (技術的思想の開示)
 この明細書は、以下に列挙する複数の項に記載された複数の技術的思想を開示している。いくつかの項は、後続の項において先行する項を択一的に引用する多項従属形式(a multiple dependent form)により記載されている場合がある。さらに、いくつかの項は、他の多項従属形式の項を引用する多項従属形式(a multiple dependent form referring to another multiple dependent form)により記載されている場合がある。これらの多項従属形式で記載された項は、複数の技術的思想を定義している。
(Disclosure of technical ideas)
This specification discloses a plurality of technical ideas described in a plurality of sections listed below. Some paragraphs may be presented in a multiple dependent form in which subsequent paragraphs refer to the preceding paragraphs alternatively. Moreover, some terms may be written in a multiple dependent form referring to another multiple dependent form. These clauses written in multiple dependent form define multiple technical ideas.
 (技術的思想1)
 植物(30)を生育する圃場(20)に設けられて、前記圃場に潅水を散水するための複数の貫通孔が形成された分配チューブ(136)と、
 前記分配チューブへ流下する潅水の圧力を制御する給水弁(152)と、
 前記給水弁のバルブ開度を制御して、前記分配チューブから前記貫通孔を介して放出される潅水の飛水距離を制御する制御装置(330)と、
 を備える潅水システム。
(Technical idea 1)
a distribution tube (136) provided in a field (20) for growing plants (30) and having a plurality of through-holes for watering the field;
a water valve (152) for controlling the pressure of irrigation water flowing down the distribution tube;
a control device (330) for controlling the opening degree of the water supply valve to control the splashing distance of the sprinkling water discharged from the distribution tube through the through-hole;
Irrigation system with
 (技術的思想2)
 前記制御装置は、前記分配チューブに対する最短潅水位置と最長潅水位置との間にわたって前記飛水距離が連続的に変化するように、前記給水弁のバルブ開度を変化させて制御する技術的思想1に記載の潅水システム。
(Technical idea 2)
Technical Idea 1: The control device changes and controls the valve opening of the water supply valve so that the water spray distance continuously changes between the shortest watering position and the longest watering position with respect to the distribution tube. The irrigation system described in .
 (技術的思想3)
 前記制御装置は、植物の撮影画像に基づいて決定した最長潅水距離に到達する前記飛水距離が得られるように、前記給水弁のバルブ開度を制御する技術的思想2に記載の潅水システム。
(Technical idea 3)
The irrigation system according to technical idea 2, wherein the control device controls the valve opening of the water supply valve so that the watering distance reaching the longest irrigation distance determined based on the photographed image of the plant is obtained.
 (技術的思想4)
 前記制御装置は、前記分配チューブからの距離が異なる複数の潅水位置に対して前記潅水位置毎に集中的な潅水を提供するように、前記給水弁のバルブ開度を制御して前記飛水距離を制御する技術的思想1に記載の潅水システム。
(Technical idea 4)
The control device controls the valve opening of the water supply valve so as to provide intensive watering to each watering position for a plurality of watering positions having different distances from the distribution tube. The irrigation system according to technical idea 1 for controlling the
 (技術的思想5)
 前記制御装置は、前記集中的な潅水を実施中である前記潅水位置について目標潅水量に到達すると、前記給水弁のバルブ開度を制御して前記飛水距離を変更して、次の潅水位置に集中的な潅水を提供する技術的思想4に記載の潅水システム。
(Technical idea 5)
When the target irrigation amount is reached for the irrigation position at which the concentrated irrigation is being performed, the control device controls the valve opening of the water supply valve to change the water splash distance, and moves to the next irrigation position. The irrigation system according to Technical Thought 4, which provides intensive irrigation to .
 (技術的思想6)
 前記制御装置は、前記集中的な潅水を実施中である前記潅水位置について目標潅水時間に到達すると、前記給水弁のバルブ開度を制御して前記飛水距離を変更して、次の潅水位置に集中的な潅水を提供する技術的思想4に記載の潅水システム。
(Technical idea 6)
When the target watering time is reached for the watering position where the concentrated watering is being performed, the control device controls the valve opening degree of the water supply valve to change the water splash distance, and moves to the next watering position. The irrigation system according to Technical Thought 4, which provides intensive irrigation to .
 (技術的思想7)
 前記制御装置は、前記圃場の風速が許容値を超える場合には前記潅水の飛水距離を制御することを中止する技術的思想1から技術的思想6のいずれか一項に記載の潅水システム。
(Technical idea 7)
The irrigation system according to any one of technical ideas 1 to 6, wherein the control device stops controlling the splashing distance of the irrigation water when the wind speed of the farm field exceeds an allowable value.
 (技術的思想8)
 前記制御装置は、前記圃場の風速が許容値を超える場合には前記潅水の飛水距離を制御することを中止し、次の潅水位置に集中的な潅水を提供するように、前記給水弁のバルブ開度を制御して前記飛水距離を制御する技術的思想4から技術的思想6のいずれか一項に記載の潅水システム。
(Technical idea 8)
The controller controls the water supply valve so as to stop controlling the water splash distance when the wind speed of the field exceeds an allowable value and provide concentrated watering to the next watering position. The irrigation system according to any one of technical ideas 4 to 6, wherein the water splash distance is controlled by controlling the opening of the valve.
 (技術的思想9)
 前記分配チューブからの距離が異なる位置に前記圃場に設けられて、土壌情報を検出可能な複数の土壌センサ(311)を備え、
 前記制御装置は、複数の前記土壌センサによる検出情報に基づいて、前記潅水における飛水距離を測定する技術的思想1から技術的思想8のいずれか一項に記載の潅水システム。
(Technical idea 9)
A plurality of soil sensors (311) provided in the field at different distances from the distribution tube and capable of detecting soil information,
The irrigation system according to any one of technical ideas 1 to 8, wherein the control device measures a splashing distance in the irrigation based on information detected by a plurality of the soil sensors.
 (技術的思想10)
 前記圃場に潅水を散水するための複数の貫通孔がそれぞれ形成されて、前記圃場に間隔をあけて並べられた複数の分配チューブ(136)を含み、
 前記制御装置は、潅水が前記分配チューブから放出されていない場合には、潅水が放出されていない前記分配チューブに隣接する隣の分配チューブへ流下する潅水の圧力を制御する給水弁(152)についてバルブ開度を制御して、放出されなかった前記潅水において狙っていた目標潅水位置に届くように、前記隣の分配チューブから放出される潅水の飛水距離を制御する技術的思想1から技術的思想9のいずれか一項に記載の潅水システム。
(Technical idea 10)
comprising a plurality of distribution tubes (136) arranged at intervals in the field, each having a plurality of through-holes for watering the field with irrigation water;
Said controller controls the pressure of irrigation water flowing down to an adjacent distribution tube adjacent said distribution tube from which irrigation water is not being discharged, when irrigation water is not being discharged from said distribution tube. Technical idea 1 to control the splashing distance of the sprinkling water discharged from the adjacent distribution tube so that the target sprinkling position aimed at the sprinkling water that has not been discharged is reached by controlling the valve opening Irrigation system according to any one of Thought 9.
 (技術的思想11)
 前記制御装置は、前記潅水を開始する際に前記給水弁のバルブ開度を目標開度よりも小さい値であるバルブ開度閾値以下に制御し、前記分配チューブの末端まで水が充満したと推定できる充満条件が成立した場合、前記給水弁のバルブ開度を目標開度に制御する技術的思想1から技術的思想9のいずれか一項に記載の潅水システム。
(Technical idea 11)
The control device controls the valve opening of the water supply valve to a valve opening threshold, which is a value smaller than the target opening, when starting the watering, and presumes that the end of the distribution tube is filled with water. The irrigation system according to any one of technical ideas 1 to 9, wherein the valve opening degree of the water supply valve is controlled to a target opening degree when a filling condition is satisfied.
 (技術的思想12)
 前記制御装置は、前記給水弁のバルブ開度を前記バルブ開度閾値以下に制御してから目標充満時間に到達した場合、前記充満条件が成立したと判断する技術的思想11に記載の潅水システム。
(Technical idea 12)
Technical idea 11. Irrigation system according to technical idea 11, wherein the control device determines that the filling condition is satisfied when the target filling time is reached after controlling the valve opening of the water supply valve to be equal to or less than the valve opening threshold. .
 (技術的思想13)
 前記分配チューブにおける末端の圧力値を検出する圧力センサ(153b)を備え、
 前記制御装置は、前記給水弁のバルブ開度を前記バルブ開度閾値以下に制御してから、前記圧力センサによって検出した圧力値に基づいて前記充満条件が成立した場合、前記給水弁のバルブ開度を前記目標開度に制御する技術的思想11に記載の潅水システム。
(Technical idea 13)
a pressure sensor (153b) for detecting a pressure value at the end of the distribution tube;
The control device controls the valve opening degree of the water supply valve to be equal to or less than the valve opening threshold value, and then, when the filling condition is satisfied based on the pressure value detected by the pressure sensor, the valve opening of the water supply valve. The irrigation system according to technical idea 11, which controls the degree of opening to the target degree of opening.
 (技術的思想14)
 前記分配チューブにおける末端の流量値を検出する流量センサ(154b)を備え、
 前記制御装置は、前記給水弁のバルブ開度を前記バルブ開度閾値以下に制御してから、前記流量センサによって検出した流量値に基づいて前記充満条件が成立した場合、前記給水弁のバルブ開度を前記目標開度に制御する技術的思想11に記載の潅水システム。
(Technical idea 14)
a flow sensor (154b) for detecting a flow rate value at the end of the distribution tube;
The control device controls the valve opening degree of the water supply valve to be equal to or less than the valve opening threshold value, and then, when the filling condition is satisfied based on the flow rate value detected by the flow sensor, the valve opening of the water supply valve. The irrigation system according to technical idea 11, which controls the degree of opening to the target degree of opening.
 (技術的思想15)
 複数の貫通孔が形成された分配チューブ(136)から、植物(30)を生育する圃場(20)に供給する潅水の飛水距離を制御する制御装置であって、
 前記分配チューブへ流下する潅水の圧力を制御する給水弁(152)についてバルブ開度を決定する演算部(334)と、
 前記分配チューブから前記貫通孔を介して放出される潅水の飛水距離を制御するために、前記バルブ開度に制御する制御信号を前記給水弁に出力する出力部(332)と、
 を備える制御装置。
(Technical idea 15)
A control device for controlling the splashing distance of irrigation water supplied from a distribution tube (136) having a plurality of through holes to a field (20) where plants (30) are grown,
a calculation unit (334) that determines the valve opening degree of the water supply valve (152) that controls the pressure of the irrigation water flowing down to the distribution tube;
an output unit (332) for outputting a control signal for controlling the opening of the valve to the water supply valve in order to control the splashing distance of the water discharged from the distribution tube through the through hole;
A control device comprising:
 (技術的思想16)
 前記出力部は、前記潅水の飛水距離を制御するためにランプ作動通電を実行する制御信号を前記給水弁に出力する技術的思想15に記載の制御装置。
(Technical idea 16)
16. The control device according to technical idea 15, wherein the output unit outputs a control signal for energizing the lamp to control the splashing distance of the sprinkling water to the water supply valve.
 (技術的思想17)
 前記出力部は、前記潅水の飛水距離を制御するためにステップ作動通電を実行する制御信号を前記給水弁に出力する技術的思想15に記載の制御装置。
(Technical Thought 17)
16. The control device according to technical idea 15, wherein the output unit outputs a control signal for executing step operation energization to the water supply valve in order to control the splashing distance of the sprinkling water.
 (技術的思想18)
 前記出力部は、前記分配チューブに対する最短潅水位置と最長潅水位置との間にわたって前記飛水距離が連続的に変化するように、前記バルブ開度を変化させる制御信号を前記給水弁に出力する技術的思想15から技術的思想17のいずれか一項に記載の制御装置。
(Technical idea 18)
The output unit outputs a control signal to the water supply valve to change the opening of the valve so that the water spray distance continuously changes between the shortest watering position and the longest watering position with respect to the distribution tube. 17. The control device according to any one of technical ideas 15 to 17.
 (技術的思想19)
 前記演算部は、前記分配チューブからの距離が異なる複数の潅水位置に対して前記潅水位置毎に集中的な潅水を提供するための前記バルブ開度を決定し、
 前記出力部は、前記バルブ開度に制御する制御信号を前記給水弁に出力する技術的思想15から技術的思想17のいずれか一項に記載の制御装置。
(Technical Thought 19)
The computing unit determines the opening degree of the valve for providing concentrated watering for each watering position with respect to a plurality of watering positions having different distances from the distribution tube,
17. The control device according to any one of technical ideas 15 to 17, wherein the output unit outputs a control signal for controlling the opening of the valve to the water supply valve.
 (技術的思想20)
 前記出力部は、前記潅水を開始する際にバルブ開度を目標開度よりも小さい値であるバルブ開度閾値以下に制御する制御信号を前記給水弁に出力し、
 前記演算部が、前記分配チューブの末端まで水が充満したと推定できる充満条件が成立したと判定した場合に、前記出力部は前記給水弁のバルブ開度を目標開度に制御する技術的思想15から技術的思想19のいずれか一項に記載の制御装置。
(Technical idea 20)
The output unit outputs to the water supply valve a control signal for controlling the valve opening to be equal to or less than a valve opening threshold, which is a value smaller than the target opening, when the watering is started;
Technical idea that the output unit controls the valve opening degree of the water supply valve to a target opening degree when the calculating unit determines that a filling condition that can be estimated that the water is filled to the end of the distribution tube is established. 19. The control device according to any one of 15 to 19.
 (技術的思想21)
 前記演算部は、前記給水弁のバルブ開度を前記バルブ開度閾値以下に制御してから目標充満時間に到達した場合、前記充満条件が成立したと判断する技術的思想20に記載の制御装置。
(Technical idea 21)
Technical idea 20. The control device according to technical idea 20, wherein the calculation unit determines that the filling condition is satisfied when the target filling time is reached after the valve opening of the water supply valve is controlled to be equal to or less than the valve opening threshold. .
 (技術的思想22)
 前記給水弁のバルブ開度を前記バルブ開度閾値以下に制御してから、前記演算部が、前記分配チューブにおける末端の圧力値を検出する圧力センサ(153b)によって検出した圧力値に基づいて前記充満条件が成立したと判定すると、前記出力部は前記給水弁のバルブ開度を前記目標開度に制御する技術的思想20に記載の制御装置。
(Technical Thought 22)
After controlling the valve opening degree of the water supply valve to be equal to or less than the valve opening threshold value, the calculation unit detects the pressure value detected by the pressure sensor (153b) that detects the pressure value at the end of the distribution tube. 21. The control device according to technical idea 20, wherein the output unit controls the valve opening of the water supply valve to the target opening when it is determined that the filling condition is satisfied.
 (技術的思想23)
 前記給水弁のバルブ開度を前記バルブ開度閾値以下に制御してから、前記演算部が、前記分配チューブにおける末端の流量値を検出する流量センサ(154b)によって検出した流量値に基づいて前記充満条件が成立したと判定すると、前記出力部は前記給水弁のバルブ開度を前記目標開度に制御する技術的思想20に記載の制御装置。
(Technical idea 23)
After controlling the valve opening degree of the water supply valve to be equal to or less than the valve opening threshold value, the calculation unit detects the flow rate value detected by a flow rate sensor (154b) that detects the flow rate value at the end of the distribution tube. 21. The control device according to technical idea 20, wherein the output unit controls the valve opening of the water supply valve to the target opening when it is determined that the filling condition is satisfied.

Claims (23)

  1.  植物(30)を生育する圃場(20)に設けられて、前記圃場に潅水を散水するための複数の貫通孔が形成された分配チューブ(136)と、
     前記分配チューブへ流下する潅水の圧力を制御する給水弁(152)と、
     前記給水弁のバルブ開度を制御して、前記分配チューブから前記貫通孔を介して放出される潅水の飛水距離を制御する制御装置(330)と、
     を備える潅水システム。
    a distribution tube (136) provided in a field (20) where a plant (30) is grown and having a plurality of through-holes for watering the field;
    a water valve (152) for controlling the pressure of irrigation water flowing down the distribution tube;
    a control device (330) for controlling the opening degree of the water supply valve to control the splashing distance of the sprinkling water discharged from the distribution tube through the through-hole;
    Irrigation system with
  2.  前記制御装置は、前記分配チューブに対する最短潅水位置と最長潅水位置との間にわたって前記飛水距離が連続的に変化するように、前記給水弁のバルブ開度を変化させて制御する請求項1に記載の潅水システム。 2. The control device according to claim 1, wherein the control device changes the valve opening of the water supply valve so as to continuously change the splashing distance between the shortest watering position and the longest watering position with respect to the distribution tube. Irrigation system as described.
  3.  前記制御装置は、植物の撮影画像に基づいて決定した最長潅水距離に到達する前記飛水距離が得られるように、前記給水弁のバルブ開度を制御する請求項2に記載の潅水システム。 The irrigation system according to claim 2, wherein the control device controls the valve opening of the water supply valve so that the water splash distance reaches the longest irrigation distance determined based on the photographed image of the plant.
  4.  前記制御装置は、前記分配チューブからの距離が異なる複数の潅水位置に対して前記潅水位置毎に集中的な潅水を提供するように、前記給水弁のバルブ開度を制御して前記飛水距離を制御する請求項1に記載の潅水システム。 The control device controls the valve opening of the water supply valve so as to provide intensive watering to each watering position for a plurality of watering positions having different distances from the distribution tube. The irrigation system of claim 1, wherein the irrigation system controls
  5.  前記制御装置は、前記集中的な潅水を実施中である前記潅水位置について目標潅水量に到達すると、前記給水弁のバルブ開度を制御して前記飛水距離を変更して、次の潅水位置に集中的な潅水を提供する請求項4に記載の潅水システム。 When the target irrigation amount is reached for the irrigation position at which the concentrated irrigation is being performed, the control device controls the valve opening of the water supply valve to change the water splash distance, and moves to the next irrigation position. 5. The irrigation system of claim 4, which provides intensive irrigation to the.
  6.  前記制御装置は、前記集中的な潅水を実施中である前記潅水位置について目標潅水時間に到達すると、前記給水弁のバルブ開度を制御して前記飛水距離を変更して、次の潅水位置に集中的な潅水を提供する請求項4に記載の潅水システム。 When the target watering time is reached for the watering position where the concentrated watering is being performed, the control device controls the valve opening degree of the water supply valve to change the water splash distance, and moves to the next watering position. 5. The irrigation system of claim 4, which provides intensive irrigation to the.
  7.  前記制御装置は、前記圃場の風速が許容値を超える場合には前記潅水の飛水距離を制御することを中止する請求項1から請求項6のいずれか一項に記載の潅水システム。 The irrigation system according to any one of claims 1 to 6, wherein the control device stops controlling the splashing distance of the irrigation water when the wind speed of the farm field exceeds an allowable value.
  8.  前記制御装置は、前記圃場の風速が許容値を超える場合には前記潅水の飛水距離を制御することを中止し、次の潅水位置に集中的な潅水を提供するように、前記給水弁のバルブ開度を制御して前記飛水距離を制御する請求項4から請求項6のいずれか一項に記載の潅水システム。 The controller controls the water supply valve so as to stop controlling the water splash distance when the wind speed of the field exceeds an allowable value and provide concentrated watering to the next watering position. The irrigation system according to any one of claims 4 to 6, wherein the water spray distance is controlled by controlling a valve opening degree.
  9.  前記分配チューブからの距離が異なる位置に前記圃場に設けられて、土壌情報を検出可能な複数の土壌センサ(311)を備え、
     前記制御装置は、複数の前記土壌センサによる検出情報に基づいて、前記潅水における飛水距離を測定する請求項1から請求項6のいずれか一項に記載の潅水システム。
    A plurality of soil sensors (311) provided in the field at different distances from the distribution tube and capable of detecting soil information,
    The irrigation system according to any one of claims 1 to 6, wherein the control device measures a splashing distance in the irrigation based on information detected by the plurality of soil sensors.
  10.  前記圃場に潅水を散水するための複数の貫通孔がそれぞれ形成されて、前記圃場に間隔をあけて並べられた複数の分配チューブ(136)を含み、
     前記制御装置は、潅水が前記分配チューブから放出されていない場合には、潅水が放出されていない前記分配チューブに隣接する隣の分配チューブへ流下する潅水の圧力を制御する給水弁(152)についてバルブ開度を制御して、放出されなかった前記潅水において狙っていた目標潅水位置に届くように、前記隣の分配チューブから放出される潅水の飛水距離を制御する請求項1から請求項6のいずれか一項に記載の潅水システム。
    comprising a plurality of distribution tubes (136) arranged at intervals in the field, each having a plurality of through-holes for watering the field with irrigation water;
    Said controller controls the pressure of irrigation water flowing down to an adjacent distribution tube adjacent said distribution tube from which irrigation water is not being discharged, when irrigation water is not being discharged from said distribution tube. Claims 1 to 6, wherein the valve opening degree is controlled to control the flying distance of the sprinkling water discharged from the adjacent distribution tube so that the sprinkling water that has not been discharged reaches the targeted target sprinkling position. The irrigation system according to any one of Claims 1 to 3.
  11.  前記制御装置は、前記潅水を開始する際に前記給水弁のバルブ開度を目標開度よりも小さい値であるバルブ開度閾値以下に制御し、前記分配チューブの末端まで水が充満したと推定できる充満条件が成立した場合、前記給水弁のバルブ開度を目標開度に制御する請求項1から請求項6のいずれか一項に記載の潅水システム。 The control device controls the valve opening of the water supply valve to a valve opening threshold, which is a value smaller than the target opening, when starting the watering, and presumes that the end of the distribution tube is filled with water. The irrigation system according to any one of claims 1 to 6, wherein the valve opening of the water supply valve is controlled to a target opening when a possible filling condition is satisfied.
  12.  前記制御装置は、前記給水弁のバルブ開度を前記バルブ開度閾値以下に制御してから目標充満時間に到達した場合、前記充満条件が成立したと判断する請求項11に記載の潅水システム。 The irrigation system according to claim 11, wherein the control device determines that the filling condition is established when the target filling time is reached after the valve opening of the water supply valve is controlled to be equal to or less than the valve opening threshold.
  13.  前記分配チューブにおける末端の圧力値を検出する圧力センサ(153b)を備え、
     前記制御装置は、前記給水弁のバルブ開度を前記バルブ開度閾値以下に制御してから、前記圧力センサによって検出した圧力値に基づいて前記充満条件が成立した場合、前記給水弁のバルブ開度を前記目標開度に制御する請求項11に記載の潅水システム。
    a pressure sensor (153b) for detecting a pressure value at the end of the distribution tube;
    The control device controls the valve opening degree of the water supply valve to be equal to or less than the valve opening threshold value, and then, when the filling condition is satisfied based on the pressure value detected by the pressure sensor, the valve opening of the water supply valve. 12. The irrigation system according to claim 11, wherein the opening degree is controlled to the target opening degree.
  14.  前記分配チューブにおける末端の流量値を検出する流量センサ(154b)を備え、
     前記制御装置は、前記給水弁のバルブ開度を前記バルブ開度閾値以下に制御してから、前記流量センサによって検出した流量値に基づいて前記充満条件が成立した場合、前記給水弁のバルブ開度を前記目標開度に制御する請求項11に記載の潅水システム。
    a flow sensor (154b) for detecting a flow rate value at the end of the distribution tube;
    The control device controls the valve opening degree of the water supply valve to be equal to or less than the valve opening threshold value, and then, when the filling condition is satisfied based on the flow rate value detected by the flow sensor, the valve opening of the water supply valve. 12. The irrigation system according to claim 11, wherein the opening degree is controlled to the target opening degree.
  15.  複数の貫通孔が形成された分配チューブ(136)から、植物(30)を生育する圃場(20)に供給する潅水の飛水距離を制御する制御装置であって、
     前記分配チューブへ流下する潅水の圧力を制御する給水弁(152)についてバルブ開度を決定する演算部(334)と、
     前記分配チューブから前記貫通孔を介して放出される潅水の飛水距離を制御するために、前記バルブ開度に制御する制御信号を前記給水弁に出力する出力部(332)と、
     を備える制御装置。
    A control device for controlling the splashing distance of irrigation water supplied from a distribution tube (136) having a plurality of through holes to a field (20) where plants (30) are grown,
    a calculation unit (334) that determines the valve opening degree of the water supply valve (152) that controls the pressure of the irrigation water flowing down to the distribution tube;
    an output unit (332) for outputting a control signal for controlling the opening of the valve to the water supply valve in order to control the splashing distance of the water discharged from the distribution tube through the through hole;
    A control device comprising:
  16.  前記出力部は、前記潅水の飛水距離を制御するためにランプ作動通電を実行する制御信号を前記給水弁に出力する請求項15に記載の制御装置。 16. The control device according to claim 15, wherein the output unit outputs a control signal for energizing the lamp to control the splashing distance of the sprinkling water to the water supply valve.
  17.  前記出力部は、前記潅水の飛水距離を制御するためにステップ作動通電を実行する制御信号を前記給水弁に出力する請求項15に記載の制御装置。 16. The control device according to claim 15, wherein the output unit outputs a control signal for executing step-actuation energization to the water supply valve in order to control the splashing distance of the sprinkling water.
  18.  前記出力部は、前記分配チューブに対する最短潅水位置と最長潅水位置との間にわたって前記飛水距離が連続的に変化するように、前記バルブ開度を変化させる制御信号を前記給水弁に出力する請求項15から請求項17のいずれか一項に記載の制御装置。 The output unit outputs a control signal to the water supply valve to change the opening degree of the valve so that the splashing distance continuously changes between the shortest watering position and the longest watering position with respect to the distribution tube. 18. A control device as claimed in any one of claims 15 to 17.
  19.  前記演算部は、前記分配チューブからの距離が異なる複数の潅水位置に対して前記潅水位置毎に集中的な潅水を提供するための前記バルブ開度を決定し、
     前記出力部は、前記バルブ開度に制御する制御信号を前記給水弁に出力する請求項15から請求項17のいずれか一項に記載の制御装置。
    The computing unit determines the opening degree of the valve for providing concentrated watering for each watering position with respect to a plurality of watering positions having different distances from the distribution tube,
    The control device according to any one of claims 15 to 17, wherein the output unit outputs a control signal for controlling the opening of the valve to the water supply valve.
  20.  前記出力部は、前記潅水を開始する際にバルブ開度を目標開度よりも小さい値であるバルブ開度閾値以下に制御する制御信号を前記給水弁に出力し、
     前記演算部が、前記分配チューブの末端まで水が充満したと推定できる充満条件が成立したと判定した場合に、前記出力部は前記給水弁のバルブ開度を目標開度に制御する請求項15から請求項17のいずれか一項に記載の制御装置。
    The output unit outputs to the water supply valve a control signal for controlling the valve opening to be equal to or less than a valve opening threshold, which is a value smaller than the target opening, when the watering is started;
    15. The output unit controls the opening of the water supply valve to a target opening when the computing unit determines that a filling condition has been established for estimating that the water has filled up to the end of the distribution tube. 18. A controller according to any one of claims 17 to 17.
  21.  前記演算部は、前記給水弁のバルブ開度を前記バルブ開度閾値以下に制御してから目標充満時間に到達した場合、前記充満条件が成立したと判断する請求項20に記載の制御装置。 The control device according to claim 20, wherein the calculation unit determines that the filling condition is met when the target filling time is reached after controlling the valve opening of the water supply valve to be equal to or less than the valve opening threshold.
  22.  前記給水弁のバルブ開度を前記バルブ開度閾値以下に制御してから、前記演算部が、前記分配チューブにおける末端の圧力値を検出する圧力センサ(153b)によって検出した圧力値に基づいて前記充満条件が成立したと判定すると、前記出力部は前記給水弁のバルブ開度を前記目標開度に制御する請求項20に記載の制御装置。 After controlling the valve opening degree of the water supply valve to be equal to or less than the valve opening threshold value, the calculation unit detects the pressure value detected by the pressure sensor (153b) that detects the pressure value at the end of the distribution tube. 21. The control device according to claim 20, wherein said output unit controls the valve opening of said water supply valve to said target opening when it is determined that the filling condition is satisfied.
  23.  前記給水弁のバルブ開度を前記バルブ開度閾値以下に制御してから、前記演算部が、前記分配チューブにおける末端の流量値を検出する流量センサ(154b)によって検出した流量値に基づいて前記充満条件が成立したと判定すると、前記出力部は前記給水弁のバルブ開度を前記目標開度に制御する請求項20に記載の制御装置。 After controlling the valve opening degree of the water supply valve to be equal to or less than the valve opening threshold value, the calculation unit detects the flow rate value detected by a flow rate sensor (154b) that detects the flow rate value at the end of the distribution tube. 21. The control device according to claim 20, wherein said output unit controls the valve opening of said water supply valve to said target opening when it is determined that the filling condition is satisfied.
PCT/JP2023/006610 2022-02-28 2023-02-23 Watering system and control device WO2023163080A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022029005 2022-02-28
JP2022-029005 2022-02-28

Publications (1)

Publication Number Publication Date
WO2023163080A1 true WO2023163080A1 (en) 2023-08-31

Family

ID=87766031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006610 WO2023163080A1 (en) 2022-02-28 2023-02-23 Watering system and control device

Country Status (1)

Country Link
WO (1) WO2023163080A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60215908A (en) * 1984-03-09 1985-10-29 Kubota Ltd Design aiding device for water supply and distribution system
US20050135880A1 (en) * 2003-12-17 2005-06-23 Stark William R. Root zone injection surface irrigation system
JP2005341839A (en) * 2004-06-01 2005-12-15 Mkv Platech Co Ltd Sprinkling-width automatically variable controller, and sprinkling system using the same
JP2006275615A (en) * 2005-03-28 2006-10-12 Toyohashi Univ Of Technology Water measuring instrument and soil irrigation control system equipped with the water measuring instrument
JP2007166996A (en) * 2005-12-22 2007-07-05 Chugoku Electric Power Co Inc:The Water-spraying system and water-spraying method
JP2013192532A (en) * 2012-03-22 2013-09-30 Earth Conscious Kk Irrigation monitoring apparatus and irrigation monitoring system
JP2014057568A (en) * 2012-08-22 2014-04-03 Panasonic Corp Water spraying system, and agricultural house using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60215908A (en) * 1984-03-09 1985-10-29 Kubota Ltd Design aiding device for water supply and distribution system
US20050135880A1 (en) * 2003-12-17 2005-06-23 Stark William R. Root zone injection surface irrigation system
JP2005341839A (en) * 2004-06-01 2005-12-15 Mkv Platech Co Ltd Sprinkling-width automatically variable controller, and sprinkling system using the same
JP2006275615A (en) * 2005-03-28 2006-10-12 Toyohashi Univ Of Technology Water measuring instrument and soil irrigation control system equipped with the water measuring instrument
JP2007166996A (en) * 2005-12-22 2007-07-05 Chugoku Electric Power Co Inc:The Water-spraying system and water-spraying method
JP2013192532A (en) * 2012-03-22 2013-09-30 Earth Conscious Kk Irrigation monitoring apparatus and irrigation monitoring system
JP2014057568A (en) * 2012-08-22 2014-04-03 Panasonic Corp Water spraying system, and agricultural house using the same

Similar Documents

Publication Publication Date Title
US11013190B2 (en) Irrigation method and device based on water usage characteristics and real-time weather condition during different crop growth stages
US8457799B2 (en) Automatic gated pipe actuator
US20100324744A1 (en) Automatic gated pipe actuator
US20110313577A1 (en) System and method for irrigation using atmospheric water
US20050211791A1 (en) Water irrigation system with moisture gauge and method of controlling irrigation
KR101882934B1 (en) Smart Soil Moisture Control Method for Multipurpose farmland
US20050216130A1 (en) Water irrigation system with wireless communication and method of controlling irrigation
KR101882933B1 (en) Smart Soil Moisture Control Device for Multipurpose farmland
US9459628B1 (en) System and method for moving spans of an irrigation system
US20210059136A1 (en) Systems and methods of irrigation need assessment
Abdurrahman et al. Sensor based automatic irrigation management system
US20230225266A1 (en) Control device and non-transitory computer readable medium
US20170172078A1 (en) Remote controlled electrically independent irrigation system
CN213127465U (en) Watering device is used in gardens construction
WO2023163080A1 (en) Watering system and control device
CN114467714A (en) Remote intelligent variable irrigation device of photovoltaic drive translation type sprinkler
US10048663B2 (en) Method to maintain base speed of an irrigation system over time
WO2023163081A1 (en) Irrigation system and control device
WO2023163079A1 (en) Irrigation system and control device
WO2023248984A1 (en) Watering system and control device
WO2023223999A1 (en) Watering system and control device
CN114757405B (en) Water resource balance optimization configuration method for irrigation area
CN215012296U (en) Water-saving irrigation system for agriculture and forestry
JP2024000135A (en) Irrigation system and controller
US20230228646A1 (en) Inspection device and non-transitory computer readable medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23760079

Country of ref document: EP

Kind code of ref document: A1