WO2023163051A1 - Oral-cavity cleaning device, control device, oral-cavity cleaning method, and program - Google Patents

Oral-cavity cleaning device, control device, oral-cavity cleaning method, and program Download PDF

Info

Publication number
WO2023163051A1
WO2023163051A1 PCT/JP2023/006498 JP2023006498W WO2023163051A1 WO 2023163051 A1 WO2023163051 A1 WO 2023163051A1 JP 2023006498 W JP2023006498 W JP 2023006498W WO 2023163051 A1 WO2023163051 A1 WO 2023163051A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
detection
unit
light
tooth
Prior art date
Application number
PCT/JP2023/006498
Other languages
French (fr)
Japanese (ja)
Inventor
泰雄 大塚
岳史 浜崎
祥光 浅井
俊幸 中嶋
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023163051A1 publication Critical patent/WO2023163051A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C17/00Devices for cleaning, polishing, rinsing or drying teeth, teeth cavities or prostheses; Saliva removers; Dental appliances for receiving spittle
    • A61C17/02Rinsing or air-blowing devices, e.g. using fluid jets or comprising liquid medication
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C19/00Dental auxiliary appliances
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/56Extraction of image or video features relating to colour

Definitions

  • the present disclosure relates to an oral cleaning device, a control device, an oral cleaning method, and a program.
  • Patent Document 1 discloses that a liquid having fine bubbles is supplied into the oral cavity, and the steps of brushing and rinsing the teeth are integrated, thereby cleaning the oral cavity.
  • a cleaning device is disclosed that can simultaneously clean and clean the tooth surface.
  • the present disclosure provides an oral cavity cleaning device and the like that can appropriately control cleaning power.
  • An oral cavity cleaning device for cleaning teeth, comprising: a cleaning control unit that controls a cleaning force acting on teeth via a tooth cleaning unit; and a cleaning effect by the tooth cleaning unit.
  • a light irradiation unit that irradiates irradiation light onto an irradiation region that includes a cleaning effective region; and a light detection unit that detects within the detection area, wherein the cleaning control unit estimates the plaque portion within the detection area based on the detection result of the light detection unit, and estimates the plaque portion. Based on, the control amount of the cleaning power is determined, and the tooth cleaning unit is controlled so that the cleaning power of the tooth cleaning unit becomes the determined control amount.
  • a control device for an oral cavity cleaning device that cleans teeth with a tooth cleaning unit, comprising: a cleaning control unit that controls a cleaning force that the tooth cleaning unit acts on the teeth; A two-dimensional detection area that includes the effective cleaning area and is included in the irradiation area includes the detection light emitted in response to the irradiation light applied to the irradiation area that includes the effective cleaning area that has the cleaning effect of the tooth cleaning unit. and an acquisition unit configured to acquire detection results detected within the detection area, wherein the cleaning control unit estimates a plaque portion within the detection region based on the acquired detection results, and estimates the plaque portion. Based on, the control amount of the cleaning power acting on the teeth via the tooth cleaning unit is determined, and the cleaning power is controlled so as to be the determined control amount.
  • a program according to an aspect of the present disclosure is a program for causing a computer to execute a control method for an oral cavity cleaning device that cleans teeth with a tooth cleaning unit, and in the control method, the cleaning effect of the tooth cleaning unit is A detection result obtained by detecting, in a two-dimensional detection area including the effective cleaning area and included in the irradiation area, the detection light emitted in response to the irradiation light irradiated to the irradiation area including the effective cleaning area. and estimating the plaque portion within the detection area based on the acquired detection result, and controlling the cleaning force acting on the tooth via the tooth cleaning unit based on the estimation result of the plaque portion. The amount is determined, and the detergency is controlled so as to be the determined control amount.
  • An oral cavity cleaning method is an oral cavity cleaning method using an oral cavity cleaning apparatus that cleans teeth with a tooth cleaning unit, wherein an irradiation area includes a cleaning effective area having a cleaning effect by the tooth cleaning unit.
  • a detection result obtained by detecting the detection light emitted in accordance with the irradiation light applied to the area within a two-dimensional detection area that includes the effective cleaning area and is included in the irradiation area, and the obtained detection result is Based on the result of estimating the dental plaque portion within the detection area, determining a control amount of the cleaning power acting on the tooth via the tooth cleaning unit based on the estimation result of the dental plaque portion, and determining the cleaning power , is controlled to be the determined control amount.
  • the oral cavity cleaning device and the like of the present disclosure the oral cavity can be cleaned with appropriately controlled cleaning power.
  • FIG. 1 is a diagram showing a usage example of an oral cavity cleaning device, etc., according to an embodiment.
  • FIG. 2 is a block diagram showing the functional configuration of the oral cavity cleaning device etc. according to the embodiment.
  • FIG. 3 is a flow chart showing an operation example of the mouthwash device according to the embodiment.
  • FIG. 4 is a flowchart showing an operation example in the plaque detection injection mode of the oral cavity cleaning apparatus according to the embodiment.
  • FIG. 5 is a graph showing the relationship between the detection result and the control amount in the mouthwash device according to the embodiment.
  • FIG. 6 is another graph showing the relationship between the detection result and the control amount in the mouthwash device according to the embodiment.
  • FIG. 7 is a block diagram showing the functional configuration of an oral cavity cleaning device and the like according to Modification 1 of the embodiment.
  • FIG. 1 is a diagram showing a usage example of an oral cavity cleaning device, etc., according to an embodiment.
  • FIG. 2 is a block diagram showing the functional configuration of the oral cavity cleaning device etc. according to
  • FIG. 8 is a flowchart showing an operation example of the mouthwash apparatus according to Modification 1 of the embodiment.
  • FIG. 9 is a flowchart showing an operation example in the plaque detection injection mode and the malfunction detection injection mode of the oral cavity cleaning apparatus according to Modification 1 of the embodiment.
  • FIG. 10 is a block diagram showing the functional configuration of an oral cavity cleaning device etc. according to Modification 2 of the embodiment.
  • 11A is a perspective view of an intraoral camera in the intraoral camera system according to the embodiment;
  • FIG. 11B is a cross-sectional view schematically showing an imaging optical system incorporated in the intraoral camera in the intraoral camera system according to the embodiment;
  • FIG. 12 is a schematic configuration diagram of an intraoral camera system according to an embodiment.
  • FIG. 13 is a diagram showing the flow of intraoral imaging operation in the intraoral camera system according to the embodiment.
  • FIG. 14 is a functional block diagram of the mobile terminal according to the embodiment;
  • FIG. 15 is a diagram showing a state in which a user is photographing using the intraoral camera system according to the embodiment.
  • FIG. 16A is a diagram showing an example of a first RGB image of the front tooth photographed in the state shown in FIG. 15;
  • FIG. 16B is a diagram showing an example of color difference data between a plaque region and a tooth region when the tooth is irradiated with light including a blue light wavelength region without a blue light cut filter.
  • FIG. 16C is a diagram showing an example of color difference data between a plaque region and a tooth region when the tooth is irradiated with light including a blue light wavelength region using a blue light cut filter.
  • FIG. 16D is a diagram showing an example of color difference data between a plaque region and a tooth region when the tooth is irradiated with light including a wavelength range of blue light and white light without a blue light cut filter.
  • FIG. 17A is a diagram showing an example of a second RGB image of front teeth captured in the state shown in FIG.
  • FIG. 17B shows the difference between the plaque region and the tooth region after performing the exposure control processing and the white balance adjustment processing when the teeth are irradiated with light including the wavelength range of blue light without a blue light cut filter.
  • FIG. 17C shows the color difference between the dental plaque region and the tooth region after performing the exposure control processing and the white balance adjustment processing when the tooth is irradiated with light including the blue light wavelength region using the blue light cut filter. It is a figure which shows an example of data.
  • FIG. 17D shows the plaque region and the tooth after exposure control processing and white balance adjustment processing when the tooth is irradiated with light including the wavelength range of blue light and white light without a blue light cut filter.
  • 2 is a diagram showing an example of color difference data of an area of .
  • FIG. 18 is a diagram showing an example of the fourth RGB image of the front teeth photographed in the state shown in FIG.
  • FIG. 19 is a diagram showing another example of the fourth RGB image of the front teeth photographed in the state shown in FIG.
  • FIG. 20 is a flowchart of image processing in the mobile terminal 1070.
  • An oral cavity cleaning device for cleaning teeth, comprising: a cleaning control unit for controlling cleaning force acting on the teeth via the tooth cleaning unit; and a cleaning effect by the tooth cleaning unit.
  • a light irradiator that irradiates an irradiation area that includes an effective cleaning area with irradiation light, and a detection light emitted in response to the irradiation light is emitted in a two-dimensional detection area that includes the effective cleaning area and is included in the irradiation area.
  • the cleaning control unit estimates the plaque portion within the detection area based on the detection result of the light detection unit, and determines the cleaning power based on the estimation result of the plaque portion.
  • a control amount is determined, and the tooth cleaning unit is controlled so that the detergency of the tooth cleaning unit becomes the determined control amount.
  • the cleaning power can be a control amount determined based on the estimated result of the plaque portion.
  • the estimation result of the dental plaque portion is estimated by detecting the detection light emitted in accordance with the irradiation light in a two-dimensional detection area when the irradiation light is irradiated.
  • the irradiation light is light capable of selectively coloring dental plaque
  • detecting the light generated by the coloring of dental plaque as the detection light increases the detection accuracy of the dental plaque portion. be able to.
  • the oral cavity cleaning apparatus can clean the oral cavity with the appropriately controlled contact amount and contact pressure of the cleaning material.
  • an oral cavity cleaning device is the oral cavity cleaning device according to the first aspect, wherein the tooth cleaning unit is a brush, and the cleaning control unit is a brush as a cleaning power of the brush. and a drive control unit that controls the drive mode of.
  • the drive amount of the brush can be a control amount determined based on the estimated result of the dental plaque portion.
  • the estimation result of the dental plaque portion is estimated by detecting the detection light emitted in accordance with the irradiation light in a two-dimensional detection area when the irradiation light is irradiated.
  • the irradiation light is light capable of selectively coloring dental plaque
  • detecting the light generated by the coloring of dental plaque as the detection light increases the detection accuracy of the dental plaque portion. be able to.
  • the oral cavity can be cleaned by appropriately controlling the driving amount of the brush.
  • the oral cavity cleaning device is the oral cavity cleaning device according to the first aspect, wherein the tooth cleaning unit causes the cleaning liquid ejected from the ejection port toward the teeth to collide with the teeth.
  • the washing controller functions as an injection controller that controls at least one of the flow rate of the washing liquid as the washing power of the washing liquid injection section, the washing liquid, and the injection pressure of the injection frequency.
  • At least one of the flow rate of the cleaning liquid ejected from the ejection port, the cleaning liquid, and the ejection frequency can be set as a control amount determined based on the estimation result of the dental plaque portion.
  • the estimation result of the dental plaque portion is estimated by detecting the detection light emitted in accordance with the irradiation light in a two-dimensional detection area when the irradiation light is irradiated. For example, if the irradiation light is light capable of selectively coloring dental plaque, detecting the light generated by the coloring of dental plaque as the detection light increases the detection accuracy of the dental plaque portion. be able to.
  • the oral cavity cleaning apparatus can be done. Therefore, in the oral cavity cleaning apparatus, the oral cavity can be cleaned by appropriately controlling the flow rate of the cleaning liquid, the cleaning liquid, and the ejection frequency.
  • the injection frequency by setting an appropriate injection frequency according to the state of the gingiva, in other words, by performing an appropriate intermittent injection according to the state of the gingiva, it is possible to reduce the gingival It has the effect of suppressing damage that would further aggravate the condition.
  • the oral cavity cleaning device is the oral cavity cleaning device according to the third aspect, in which the injection control unit determines, based on the detection result, the area of the plaque portion within the detection region is calculated from the area of the portion where the detection light is detected in the detection area, and the control amount of at least one of the flow rate and injection pressure of the cleaning liquid injected from the injection port is determined so that the larger the calculated area, the larger the control amount. do.
  • the plaque portion within the detection region is appropriately estimated as the calculated area, and the control amount of at least one of the flow rate and the injection pressure corresponding to the estimated area of the plaque portion for the detection region. can be determined. Therefore, the oral cavity cleaning apparatus can clean the oral cavity with the appropriately controlled flow rate and injection pressure of the cleaning liquid.
  • the oral cavity cleaning device is the oral cavity cleaning device according to the third aspect, in which the injection control unit determines, based on the detection result, The amount is calculated from the luminance value of the detected light within the detection area, and the control amount of at least one of the flow rate and the injection pressure of the cleaning liquid injected from the injection port is determined so that the larger the calculated adhesion amount, the larger the amount.
  • the plaque portion in the detection area is appropriately estimated as the amount of adhesion calculated from the luminance value of the detection light, and the flow rate and the amount corresponding to the estimated amount of plaque adhesion to the detection area Control variables for at least one of the injection pressures can be determined. Therefore, the oral cavity cleaning apparatus can clean the oral cavity with the appropriately controlled flow rate and injection pressure of the cleaning liquid.
  • an oral cavity cleaning device is the oral cavity cleaning device according to any one of the third to fifth aspects, wherein the irradiation light kills bacteria contained in dental plaque.
  • the wavelength of light that excites the metabolite is included, and the detected light is the fluorescence emitted by the excited metabolite.
  • the irradiated light excites the metabolites of bacteria contained in the dental plaque, and the fluorescence emitted by the excited metabolites can be detected as the detection light, so that the light selectively emitted by the dental plaque can be detected. can improve the detection accuracy of the plaque portion.
  • an oral cavity cleaning device is the oral cavity cleaning device according to any one of the third to sixth aspects, wherein the injection control unit is configured such that the light detection unit emits the detection light. Injection of the cleaning liquid from the injection port is prohibited during a prohibition period that at least partially overlaps with a detection period from the start to the end of detection.
  • the sprayed cleaning liquid is likely to scatter as droplets, which may affect detection. can be created to detect the detected light.
  • an oral cavity cleaning device is the oral cavity cleaning device according to any one of the first to seventh aspects, wherein the brightness of the detected light is a predetermined value or less. If there is a shield that blocks at least one of (i) the detection light between the detection region and the light detection unit, or (ii) the irradiation light between the light irradiation unit and the irradiation region, when it continues for a period of time or longer. It further includes a determination unit that makes determinations and an output unit that outputs determination results of the determination unit.
  • the detection light between the detection region and the light detection unit or (ii) the presence of a shield that blocks at least one of the irradiation light between the light irradiation unit and the irradiation region is detected. It is possible to determine whether or not the state in which the brightness of the light is equal to or less than a predetermined value has continued for a predetermined time or longer, and output the determination result.
  • an oral cavity cleaning device is the oral cavity cleaning device according to any one of the first to eighth aspects, wherein the cleaning control unit detects Based on this, the dental plaque portion is estimated in a cleaning effective region which is a partial region within the detection region and has a cleaning effect by the tooth cleaning section, and based on the estimation result of the dental plaque portion, the control amount of cleaning power is determined. decide.
  • a control device for an oral cavity cleaning device that cleans teeth by a tooth cleaning unit, and includes a cleaning control unit that controls the cleaning force that the tooth cleaning unit acts on the teeth. , the detection light emitted in response to the irradiation light irradiated to the irradiation area including the effective cleaning area having the cleaning effect by the tooth cleaning unit is detected within the two-dimensional detection area including the effective cleaning area and included in the irradiation area.
  • an acquisition unit for acquiring the detection result detected by the cleaning control unit, based on the acquired detection result, estimates the plaque portion within the detection region, and based on the estimation result of the plaque portion, A control amount of the cleaning power acting on the tooth through the cleaning unit is determined, and the cleaning power is controlled to be the determined control amount.
  • Such a control device can make the mouthwash device using the control device have the same effect as the mouthwash device described above.
  • a program according to an eleventh aspect of the present disclosure is a program for causing a computer to execute a control method for an oral cavity cleaning apparatus that cleans teeth by a tooth cleaning unit, wherein the control method includes the cleaning effect of the tooth cleaning unit Acquisition of the detection result obtained by detecting the detection light emitted in response to the irradiation light irradiated to the irradiation area that includes the effective cleaning area and detecting it in the two-dimensional detection area that includes the effective cleaning area and is included in the irradiation area. estimating the plaque portion within the detection area based on the acquired detection result, determining a control amount of the cleaning force acting on the tooth via the tooth cleaning unit based on the estimation result of the plaque portion, The detergency is controlled so as to be the determined control amount.
  • Such a program can use a computer to achieve the same effects as the control device described above.
  • an oral cavity cleaning method is an oral cavity cleaning method using an oral cavity cleaning device that cleans teeth with a tooth cleaning unit, and includes a cleaning effective area having a cleaning effect by the tooth cleaning unit.
  • a detection result obtained by detecting the detection light emitted in accordance with the irradiation light applied to the irradiation region in a two-dimensional detection region that includes the effective cleaning region and is included in the irradiation region, and based on the obtained detection result
  • the control amount of the cleaning force acting on the tooth via the tooth cleaning unit is determined, and the cleaning force is determined by the determined control amount.
  • an oral cavity cleaning apparatus that cleans teeth by causing the ejected cleaning liquid to collide with the teeth, wherein the cleaning liquid is ejected from the ejection port in a predetermined direction.
  • an injection control unit that controls at least one of the flow rate and injection pressure of the cleaning liquid injected from the injection port; and a detection area that includes a predetermined point on an extension line extending in a predetermined direction from the injection port, a light detection unit that detects an image in a detection area that extends two-dimensionally across the line, and the ejection control unit detects the image based on the detected image when the detected image includes the gingiva portion.
  • At least one of the flow rate and the ejection pressure of the cleaning liquid ejected from the ejection port can be a control amount determined based on the estimated state of the gingival portion.
  • This estimation result of the state of the gingiva is estimated based on the detected image when the gingiva is included in the image detected in the two-dimensional detection area. In this way, it is possible to appropriately estimate the state of the gingival portion within the detection region and determine the control amount of at least one of the flow rate and the injection pressure for the detection region according to the estimated state of the gingival portion. can. Therefore, the oral cavity cleaning apparatus can clean the oral cavity with the appropriately controlled flow rate and injection pressure of the cleaning liquid.
  • the estimation result indicates the presence or absence of at least one of swelling and bleeding in the gingival portion
  • the ejection control unit if the estimation result indicates that there is at least one of swelling and bleeding in the gingival portion, The amount of control of at least one of the flow rate and injection pressure of the cleaning liquid injected from the injection port may be determined so as to be smaller than when it is indicated that there is no swelling or bleeding in the part.
  • the presence or absence of at least one of swelling and bleeding in the gingival portion is estimated as the estimated state of the gingival portion, and when the estimation result indicates that there is at least one of swelling and bleeding in the gingival portion.
  • the amount of control of at least one of the flow rate and injection pressure of the cleaning liquid injected from the injection port can be determined so as to be smaller than when it is shown that there is no swelling or bleeding in the gingival region. Therefore, the oral cavity cleaning apparatus can clean the oral cavity with the appropriately controlled flow rate and injection pressure of the cleaning liquid.
  • the injection control unit inhibits injection of the cleaning liquid from the injection port during a prohibition period that at least partially overlaps with the detection period from when the light detection unit starts detecting the detection light until it ends. good too.
  • the sprayed cleaning liquid is likely to scatter as droplets, which may affect detection. can be created to detect the detected light.
  • a control device for an oral cavity cleaning device for cleaning teeth by causing jetted cleaning liquid to collide with teeth, wherein the cleaning liquid is directed in a predetermined direction and jetted. and a detection area including a predetermined point on an extension line extending in a predetermined direction from the injection port, the extension line and an acquisition unit that acquires an image detected in a detection area that extends two-dimensionally by intersecting the , estimating the state of the gingiva, determining the control amount of at least one of the flow rate and the injection pressure based on the estimation result of the state of the gingiva, and making at least one of the flow rate and the injection pressure equal to the determined control amount. to spray the cleaning liquid from the injection port.
  • Such a control device can cause the mouthwash device in which the control device is used to have the same effect as the other mouthwash device described above.
  • a program is a program for causing a computer to execute a control method for an oral cavity cleaning device for washing teeth by colliding the jetted cleaning liquid against the teeth, the control method comprising: A detection area that includes a predetermined point on an extension line extending in a predetermined direction from an injection port for injecting cleaning liquid in a predetermined direction, and detected in a detection area that extends two-dimensionally across the extension line. An image is acquired, and if the acquired image includes a gingival portion, the state of the gingival portion is estimated based on the acquired image, and at least one of the flow rate and the injection pressure is calculated based on the estimation result of the state of the gingival portion. is determined, and the cleaning liquid is jetted from the injection port so that at least one of the flow rate and the injection pressure of the cleaning liquid becomes the determined control amount.
  • Such a program can use a computer to achieve the same effect as the other control device described above.
  • an oral cavity cleaning method for cleaning teeth by causing a jetted cleaning liquid to collide with teeth, wherein the cleaning liquid is jetted in a predetermined direction.
  • An irradiation area that includes a predetermined point on an extension line extending from the mouth in a predetermined direction, and that is an irradiation area that spreads across the extension line is irradiated with irradiation light, and according to the irradiated irradiation light, the plaque is removed.
  • the emitted detection light is detected in a two-dimensional detection area including at least a part of the irradiation area, and based on the detection result of the detection light, at least one of the flow rate and injection pressure of the cleaning liquid injected from the injection port is controlled.
  • the amount of the cleaning liquid is determined, and the cleaning liquid is jetted from the injection port so that at least one of the flow rate and the jet pressure of the cleaning liquid becomes the determined control amount.
  • each figure is a schematic diagram and is not necessarily strictly illustrated. Therefore, for example, scales and the like do not necessarily match in each drawing. Moreover, in each figure, the same code
  • FIG. 1 An oral cavity cleaning device according to the present embodiment will be described below with reference to FIGS. 1 to 6.
  • FIG. 1 An oral cavity cleaning device according to the present embodiment will be described below with reference to FIGS. 1 to 6.
  • FIG. 1 is a diagram showing an example of use of an oral cavity cleaning device, etc., according to the present embodiment.
  • FIG. 1 shows the oral cavity cleaning apparatus 100 in use, and (b) shows the state of the terminal device 200 connected at that time.
  • FIG. 1 shows an oral cavity cleaning device 100c according to another example of the present embodiment.
  • FIG. 1C for the purpose of making it easier to see the configuration of the portion that overlaps the brush 103b, illustration of some tufts that constitute the brush 103b is omitted.
  • FIG. 2 is a block diagram showing the functional configuration of the oral cavity cleaning device etc. according to the embodiment.
  • the oral cavity cleaning apparatus 100 ejects cleaning liquid toward the user's oral cavity from a cleaning liquid ejection section 103 as an example of a tooth cleaning section, thereby cleaning the teeth 99 of the user. It is a water-jet cleaning device that cleanses the oral cavity by removing deposits attached to the mouth.
  • the oral cavity cleaning device 100c can be realized as an electrically driven toothbrush device in which a brush 103b as an example of a tooth cleaning section is arranged. The user holds the holding part (not shown in FIGS. 1(a) and 1(c)) and moves the holding hand to spray the cleaning liquid.
  • the jetted cleaning liquid is made to collide with or contact the brush 103b at an arbitrary position in the oral cavity (for example, the tooth 99).
  • the colliding cleaning liquid can remove deposits adhering to the colliding portion by the impact.
  • the contacting brush 103b can be driven to reciprocate in a fixed direction along the tooth surface, thereby removing deposits adhering to the track of the brush.
  • adhering substances include plaque 99a and calculus, which consist of food debris, bacteria grown in the food debris, and the like.
  • the oral cavity cleaning device 100 is configured so that the position where the cleaning liquid collides can be visually recognized.
  • the oral cavity cleaning device 100 is provided with a camera unit 101, and an image captured by detecting intraoral light in this camera unit is captured by, for example, the terminal device 200 owned by the user. It is displayed on the display unit 203 .
  • the user can clean the oral cavity while visually confirming to which position the injection port 103a currently faces and to which cleaning liquid is being injected.
  • the oral cavity cleaning apparatus 100 of the present embodiment by selectively coloring the plaque 99a, the color of the plaque 99a can be distinguished from the color of the tooth 99 as shown in FIG. 1(b). Generate the image as displayed. Furthermore, by analyzing this image, the oral cavity cleaning apparatus 100 can determine the strength of the cleaning liquid jetting (the flow rate, jetting pressure, and jetting frequency of the cleaning liquid) when the plaque 99a is located in the region facing the jetting port 103a. at least one of them) can be changed to appropriately clean the oral cavity by jetting the cleansing liquid with appropriate strength (in other words, cleansing power).
  • the cleaning liquid jetting the flow rate, jetting pressure, and jetting frequency of the cleaning liquid
  • setting the strength of the detergency as described above corresponds to selecting the driving mode of the brush 103b.
  • Drive modes of the brush 103b include a horizontal brushing mode in which the brush 103b is driven along the direction in which the tooth and another adjacent tooth are arranged, and a brushing mode between the tooth and another adjacent tooth (that is, between the teeth). ) in which the brush 103b is driven along the gap, there are several drive modes corresponding to set values such as drive period and drive torque.
  • the driving modes of the respective brushes 103b have different strengths in the horizontal polishing mode and the strength in the horizontal polishing mode.
  • the oral cavity cleaning device 100 includes a camera section 101 , an LED lighting section 102 , a cleaning liquid injection section 103 , an input section 104 and a control device 150 .
  • the camera unit 101, the LED illumination unit 102, the cleaning fluid injection unit 103, and the input unit 104 are hardware portions in the oral cavity cleaning device 100, and are sometimes called hardware units.
  • the control device 150 is a functional part that generates and outputs various control signals for controlling the operation of the hardware section and acquires information obtained as a result of the operation of the hardware section.
  • Control device 150 is realized by executing a predetermined program using a computer or the like, more specifically, a processor and memory. Therefore, it can be said that the main function of the control device 150 is the program executed using the processor and the memory.
  • control device 150 can be built in the terminal device 200, or can be built in a server device (not shown) such as an edge server or a cloud server.
  • a server device such as an edge server or a cloud server.
  • the hardware unit and the control device 150 are connected via a network such as a wide area communication network or a local communication network, and the hardware unit connected via the network It is implemented as an oral cavity cleaning system in combination with the control device 150 .
  • the control device 150 includes a camera control unit 151 connected to the camera unit 101, an LED lighting control unit 152 connected to the LED lighting unit 102, an injection control unit 153 connected to the cleaning liquid injection unit 103, and an input unit 104. It has a memory unit 154 connected thereto. In addition, the control device 150 has an image processing section 155 and a plaque adhesion amount detection section 156 operating therein.
  • the camera unit 101 is an example of a light detection unit. As shown in FIG. 1, a plurality of pixels for detecting the brightness of each point in the detection area 101a are arranged in a matrix in correspondence with the detection area 101a extending two-dimensionally. It is a camera realized by combining an image pickup device lined up in a camera with various optical elements such as a lens, an aperture, and a filter.
  • the camera unit 101 receives a shooting start signal from the camera control unit 151 to start shooting, and receives a shooting end signal from the camera control unit 151 to finish shooting.
  • the camera unit 101 then transmits the captured image to the camera control unit 151 .
  • the image here shows luminance values of red, green, and blue detected at each point of the detection area 101a.
  • the detection area 101a includes a predetermined point on an extension line extending from the injection port 103a in the injection direction (or the predetermined direction), which is the direction in which the cleaning liquid is injected.
  • the predetermined point corresponds to the distance between the injection port 103a and the tooth 99 when an appropriate distance to the tooth 99 is maintained when using the oral cavity cleaning device 100 .
  • the image captured in the detection area 101a shows the surface of the tooth 99 or the like that the cleaning liquid collides with.
  • a thick dashed arrow extending in a predetermined direction from the injection port 103a penetrates the detection region 101a.
  • the detection area 101a has a thickness in a direction intersecting the surface on which the area extends. This thickness corresponds to the direction in which the camera unit 101 receives light (thin dashed line arrow in the figure), and covers unevenness such as a recess between two teeth 99 within the detection area 101a.
  • the camera control unit 151 controls image capturing by the camera unit 101 and acquires the resulting image by receiving it from the camera unit 101 . That is, the camera control unit 151 is also an example of an acquisition unit. The camera control section 151 then outputs the acquired image to the image processing section 155 .
  • the LED illumination unit 102 is an example of a light irradiation unit. As shown in FIG. 1, an irradiation area ( A fan-shaped region extending between two dashed lines in the figure) is irradiated with irradiation light.
  • the LED illumination unit 102 is implemented by an LED light source, a lens, a power conversion unit for driving the LED light source, and the like.
  • the LED lighting unit 102 receives an irradiation start signal from the LED lighting control unit 152 to start light irradiation, and receives an irradiation end signal from the LED lighting control unit 152 to end light irradiation.
  • the light (irradiation light) emitted from the LED illumination unit 102 includes light that enables the terminal device 200 to visually recognize the contours of the teeth 99 and gums 98, and excitation light that selectively colors the dental plaque 99a. It is a synthetic light containing
  • the dental plaque 99a is composed of a mass of bacteria adhering to the teeth 99 and their metabolites, and is also called plaque.
  • These metabolites include a class of substances that fluoresce when excited by light of a particular wavelength. Therefore, in the present embodiment, the irradiation light contains light of the excitation wavelength for exciting such metabolites, and does not contain part of the light of the wavelength-shifted fluorescence wavelength. . Therefore, the LED illumination unit 102 includes an optical element such as a bandpass filter that can select wavelengths.
  • Porphyrin which is a substance produced by bacteria contained in dental plaque 99a, emits reddish purple to orange light around 660 nm when irradiated with blue light around 405 nm. Since such fluorescent emission cannot be obtained from the enamel on the surface of the tooth 99, it is possible to selectively color the dental plaque 99a.
  • this example of porphyrin is only an example, and any substance that is a metabolite of bacteria contained in dental plaque 99a and whose excitation wavelength and fluorescence wavelength are sufficiently separated may be used. Since the wavelengths of the excitation light and the fluorescence are different in this way, it is possible to distinguish the light from the reflected light simply reflected on the surface.
  • the camera unit 101 is preferably configured to detect fluorescence wavelengths of fluorescence emitted from such metabolites.
  • the LED lighting unit 102 is configured to prohibit light irradiation under specific conditions. This prevents unnecessary power consumption such as light being emitted outside the oral cavity due to unnecessary light irradiation, suppresses the adverse effects of the irradiated light on external objects, and prevents images from being captured. This is a function to ensure that the image is stabilized.
  • the above specific conditions may be as follows.
  • the camera unit 101 When it is determined that the image captured by the camera unit 101 includes a person's face and eyes. In a mode in which the camera unit 101 captures a still image as an image, such as a still image capturing mode, a certain period of time (this In this case, it may also have a function of notifying that shooting has not started). In a state connected to the terminal device 200, within a certain period of time from when the shutter button of the mouthwash device 100 is turned on from the application on the terminal device 200 until the posture of the mouthwash device 100 stabilizes (similarly, it also has a notification function) may be present).
  • the light irradiation is linked with the shooting start button and the shooting end button.
  • the shooting end button ON When the shooting end button ON is detected, the light irradiation ends immediately;
  • shooting within a certain period of time from the shooting start button ON. automatically terminate the light irradiation.
  • the application on the terminal device 200 is activated, and the shooting start button is turned on, light is emitted after a certain period of time has passed (similarly, it may also have a notification function).
  • light irradiation ends automatically after a certain period of time has passed since light irradiation.
  • the cleaning liquid injection unit 103 is composed of an actuator for injecting the cleaning liquid from the injection port 103a, a tank for storing the cleaning liquid, and the like.
  • the cleaning liquid injection unit 103 injects the cleaning liquid from the injection port 103 a at the flow rate and injection pressure of the cleaning liquid determined by the injection control unit 153 . Therefore, the cleaning liquid injection unit 103 receives a control signal designating the flow rate and the injection pressure from the injection control unit 153, and injects the cleaning liquid according to the received control signal.
  • the flow rate and injection pressure of the cleaning liquid jetted from the cleaning liquid jetting section 103 change according to the image of the detection area 101a captured by the camera section 101, the cleaning liquid jetting section 103 is controlled by the injection control section 153 each time.
  • a control signal is received that specifies flow rate and injection pressure.
  • the cleaning liquid injected by the cleaning liquid injection unit 103 may be simply tap water or the like, or may be a chemical liquid for improving the cleaning effect, or a slurry liquid containing fine granules for polishing off plaque 99a. may
  • the input unit 104 is a functional unit provided in a grip unit (not shown in FIG. 1) for performing input from the user, and includes various sensors such as a physical switch and a touch panel that can detect user input. realized by The input unit 104 is used, for example, by the user himself/herself to input the set values of the flow rate and the injection pressure of the cleaning liquid that are suitable for the user. These input setting values are stored via the memory unit 154 .
  • the memory unit 154 is a controller that stores information in a storage device such as a semiconductor memory (not shown) and reads the information as needed. Therefore, the memory unit 154 has a function of accessing the storage device to store information and referring to and reading out the stored information.
  • the terminal device 200 can also be provided with the same function as the input unit 104. Specifically, similarly to the input unit 104, the terminal input unit 202 is used by the user himself/herself to input the set values of the flow rate and the injection pressure of the cleaning liquid that are suitable for the user, for example. These input setting values are stored via the communication unit 201 and the memory unit 154 .
  • the image processing unit 155 converts the image output from the camera control unit 151, thereby improving the accuracy of estimating the amount of plaque 99a in the plaque amount detection unit 156, which will be described later. Specifically, the image processing unit 155 performs processing for emphasizing the brightness near the fluorescence wavelength of the target metabolite in the image output from the camera control unit 151 . As a result, it is possible to easily estimate the dental plaque portion in the image to which the dental plaque 99a adheres based on the difference in brightness value. The image processing unit 155 outputs the converted image to the plaque amount detection unit 156 . For details, refer to [5.
  • the image processing unit 155 may output an image after conversion using a technique such as this image processing method. Further, the camera unit 101 may also be realized with a configuration adapted to the technology such as this image processing method.
  • the plaque adhesion amount detection unit 156 estimates the adhesion amount of plaque 99a in the detection area 101a shown in the image.
  • the amount of plaque 99a estimated by the plaque amount detection unit 156 is output to the injection control unit 153 and used to determine the flow rate and injection pressure of the cleaning liquid. In this way, the amount of plaque 99a adhering to the tooth 99 is estimated from the detected fluorescence, that is, the photographed image. A cleaning liquid can be injected.
  • the image processing unit 155 and the plaque adhesion amount detection unit 156 may be included in the injection control unit 153 as part of their functions. That is, the injection control unit 153 may directly determine the flow rate and injection pressure of the cleaning liquid from the image.
  • the plaque adhesion amount detection unit 156 calculates the area ratio of the portion where plaque adheres to the entire detection region 101a, and the area ratio is determined in advance. If it is equal to or higher than the threshold value, the cleaning liquid may be jetted at the flow rate and jetting pressure when plaque is attached. Describe detection. Since the injection-type mouthwash device 100 injects the cleaning liquid in a predetermined direction, the cleaning liquid collides with a predetermined point on the extension line.
  • the effective cleaning area 101aa corresponds to a portion of the toothbrush device that is held at a fixed position and is in contact with the brush in the trajectory of the driven brush 103b when the brush 103b is driven. do.
  • the detection itself is performed before the brush comes into contact with the teeth, and the toothbrush device is moved from the position where the detection is made in the direction in which the brush extends (that is, when the toothbrush is moved toward the teeth). It is assumed that the device is held at a fixed position.
  • plaque adhesion amount detection unit 156 calculates the area ratio of the portion where plaque adheres to the entire cleaning effective area 101aa, and the area ratio is determined in advance. If it is equal to or higher than the threshold value, control is performed so that the cleaning liquid is jetted at the flow rate and jetting pressure for when plaque is attached. Therefore, the plaque adhesion amount detection unit 156 or the image processing unit 155 has a function of trimming the image within the cleaning effective area 101aa from the detection area 101a.
  • the terminal device 200 is an information processing device such as a smartphone, a tablet terminal, or a PC owned by the user of the oral cavity cleaning device 100, and can communicate with the oral cavity cleaning device 100 via the communication unit 201.
  • the terminal device 200 includes a communication section 201 , a terminal input section 202 and a terminal display section 203 . Since the functions of these configurations are as described above, descriptions thereof are omitted here.
  • FIG. 3 is a flow chart showing an operation example of the mouthwash device according to the embodiment.
  • FIG. 4 is a flow chart showing an operation example in the plaque detection injection mode of the oral cavity cleaning apparatus according to the embodiment.
  • the injection control unit 153 reads the normal injection intensity of the cleaning liquid preset by the user (S101). For example, the injection control unit 153 makes an inquiry to the memory unit 154 to read the normal injection intensity stored as the set value in the storage device. The injection control unit 153 then reads the normal injection intensity via the memory unit 154 .
  • the normal injection intensity includes the flow rate and injection pressure of the cleaning liquid, and is a value used as a default value when plaque 99a does not adhere. If the set value of the normal injection intensity is not stored in the storage device, the initial value of the normal injection intensity is read, or the user is notified to input the set value of the normal injection intensity. Output.
  • the input unit 104 accepts ON/OFF switching input for turning on the plaque detection injection mode from the user (S102).
  • the cleaning liquid is always injected at the normal injection strength (S104, also called normal injection mode).
  • S104 also called normal injection mode
  • the input unit 104 receives an input from the user for turning on the plaque detection injection mode, that is, when it is determined that the plaque detection injection mode is ON (Yes in S103), The washing liquid is injected in the plaque detection injection mode (S105), and the process ends.
  • step S105 will be explained in detail in FIG.
  • the injection control unit 153 reads the plaque detection injection strength of the cleaning liquid preset by the user ( S201). For example, the injection control unit 153 makes an inquiry to the memory unit 154 to read the plaque detection injection intensity stored as the set value in the storage device. The injection control unit 153 then reads the plaque detection injection intensity via the memory unit 154 .
  • the plaque detection injection strength includes the flow rate and injection pressure of the cleaning liquid, and is a value used when plaque 99a adheres. If the set value of the plaque detection jet strength is not stored in the storage device, the initial value of the plaque detection jet strength is read, or the user inputs the set value of the plaque detection jet strength. Output a notification prompting you to do so.
  • FIG. 5 is a graph showing the relationship between the detection result and the control amount in the mouthwash device according to the embodiment.
  • the control amount in this case, including both the flow rate and the injection pressure of the cleaning liquid
  • the larger the area and the amount of adhesion of the plaque 99a the greater the control amount, which is set with respect to the area and the amount of adhesion of the plaque 99a.
  • the washing liquid is jetted at a plaque detection jetting intensity of .
  • the area and amount of adhered dental plaque 99a will be described.
  • the area of the plaque portion to which the plaque 99a adheres within the detection region 101a is used as the amount of plaque 99a. If this area is large, it can be estimated that a large amount of dental plaque 99a is adhered within the detection area.
  • plaque 99a adheres or not is determined by whether or not the brightness of the color corresponding to the fluorescence wavelength exceeds the brightness threshold in each pixel of the captured image. Then, if the number of pixels exceeding the luminance threshold exceeds the numerical value corresponding to the threshold in FIG. 5, injection is performed at the flow rate and injection pressure of the cleaning liquid at the plaque removal injection altitude. It should be noted that the brightness threshold is also affected by conditions such as pigmentation, and is therefore preferably set for each user.
  • the amount of plaque 99a adhered within the detection area 101a is calculated from the total value of the brightness of the color corresponding to the fluorescence wavelength of each pixel within the detection area 101a. can also be estimated. Since the brightness of the color corresponding to the fluorescence wavelength in each pixel corresponds to the accumulated amount of metabolites at the position of the actual tooth 99 surface corresponding to that pixel, the entire detection region 101a of the brightness of the color corresponding to the fluorescence wavelength is considered to be correlated with the amount of plaque 99a adhered, the amount of plaque 99a may be calculated by such a method. In this case, if the total luminance value exceeds the numerical value corresponding to the threshold value in FIG. 5, injection is performed at the flow rate and injection pressure of the cleaning liquid at the plaque removal injection altitude. Further, the injection intensity control amount may be determined by using each of the area and the luminance total value in parallel.
  • FIG. 6 is another graph showing the relationship between the detection result and the control amount in the mouthwash device according to the embodiment.
  • the example of FIG. 5 shows a relationship in which the injection intensity changes abruptly when the total area and luminance values exceed the threshold values, for example, as shown in FIG. may be a function that changes continuously.
  • the injection intensity is rapidly increased in sections where the area and the total brightness value are relatively small, and the injection strength is increased gently in the section where the area and the total brightness value are relatively large.
  • a logarithmic function-like relationship such as Alternatively, for example, as shown in FIG.
  • a proportional function relationship may be applied that similarly increases the injection intensity in both sections where the area and total luminance value are relatively small and sections where the total luminance value is relatively large. good. Further, for example, as shown in FIG. 6C, the injection intensity is gradually increased in sections where the area and total luminance value are relatively small, and the injection intensity is rapidly increased in sections where the area and total luminance value are relatively large. An ascending exponential-like relationship may be applied.
  • the LED lighting unit 102 irradiates the irradiation region with irradiation light containing light having a wavelength that excites metabolites (S202). Then, in the irradiated area, the dental plaque portion to which the dental plaque 99a adheres emits fluorescent light when the excited metabolite returns to the ground state, resulting in a selectively colored state.
  • the camera unit 101 detects this fluorescence as detection light on an extension line extending in a predetermined direction from the injection port 103a, that is, within a detection area 101a including a position corresponding to the surface of the tooth 99 in the direction in which the cleaning liquid is injected. do. That is, an image containing fluorescence is captured (S203). Since the detection here is performed in the two-dimensional detection area 101a, it is possible to obtain an image that can be comprehensively evaluated within the detection area 101a, such as the area and the total brightness value as described above. can. Note that the operation of the cleaning liquid injection unit 103 is prohibited so that the cleaning liquid is not injected during a prohibited period that at least partially overlaps with the detection period from when the camera unit 101 starts capturing an image until it ends. may When the cleansing liquid is sprayed, droplets of the cleansing liquid scatter in the oral cavity, which may cause optical effects. Therefore, it is effective to prohibit the operation of the cleaning liquid injection unit 103 so that the cleaning liquid is not injected during the prohibition period as described above.
  • the cleaning liquid is jetted to the detection region 101a at normal jetting strength (S205). If the area and brightness values are equal to or greater than the threshold values (Yes in S204), the cleaning liquid is jetted onto the detection area 101a with the plaque detection jetting strength (that is, strong jetting strength) (S206). After steps S205 and S206, the user moves his or her hand while holding oral cavity cleaning device 100 to perform the same operation on another detection region 101a. Therefore, it is determined whether or not the user has finished cleaning (S207), and if it is determined that the user has finished cleaning, for example, by pressing an end button (not shown) (Yes in S207). , terminate the process. If the user continues washing as it is (No in S207), the process returns to step S202 and repeats the same process.
  • the plaque detection jetting strength that is, strong jetting strength
  • the metabolites of the bacteria contained in the dental plaque 99a are selectively colored by fluorescence emission, thereby selectively detecting the attachment sites where the dental plaque 99a is attached. This is done for a two-dimensionally spreading area.
  • the cleaning liquid can be jetted at a high jetting strength (flow rate and jetting) to a region where a large amount of dental plaque 99a is adhered, it is possible to appropriately control the jetting strength from the viewpoint of removing the dental plaque 99a. becomes. By repeatedly performing such cleaning and detection while changing the position, it is possible to obtain a high cleaning effect over a wide range of teeth.
  • FIG. 7 is a block diagram showing the functional configuration of an oral cavity cleaning device etc. according to Modification 1 of the embodiment. As shown in FIG. 7, Modification 1 differs from the embodiment in that oral cavity cleaning device 100a includes malfunction detection section 157 .
  • the malfunction detection unit 157 estimates the state of the gingiva and controls the jetting of the washing liquid so that the jetting intensity is in accordance with the state of the gingiva.
  • the disorder detection unit 157 is connected to the image processing unit 155, acquires the converted image, and estimates the state of the gingiva based on this image. Note that the malfunction detection unit 157 may acquire the pre-conversion image from the camera control unit 151 .
  • the disorder detection unit 157 has a pre-learned machine learning model in which the correlation between the gingival part shown in the image and the presence or absence of a disorder of the gingival part is learned. By inputting the acquired image into the machine learning model, the disorder detection unit 157 can obtain the presence or absence of the disorder of the gum part as an output when the gum part is shown in the image.
  • the gingival condition is, for example, at least one of swelling and bleeding in the gingiva.
  • the state of the gingival portion that is clinically regarded as unsatisfactory may also be included as the unsatisfactory condition.
  • a machine learning model may be trained using an image showing the affected gingiva and correct data indicating that the problem exists as training data.
  • the oral cavity cleaning device 100a operates as follows.
  • FIG. 8 is a flow chart showing an operation example of the oral cavity cleaning device according to Modification 1 of the embodiment.
  • FIG. 9 is a flowchart showing an operation example in the plaque detection injection mode and the malfunction detection injection mode of the mouthwash apparatus according to Modification 1 of the embodiment.
  • steps S301 and S302 correspond to steps S101 and S102 in FIG. 3, so description thereof will be omitted here.
  • the input unit 104 further receives an ON/OFF switching input for turning on the malfunction detection injection mode from the user (S303). Since step S304 corresponds to step S103 in FIG. 3, description thereof is omitted here. If No in step S304, the process proceeds to step S305, and if Yes in step S304, the process proceeds to step S308, in which it is determined whether or not there is an input for turning on the malfunction detection injection mode.
  • step S305 If No in step S305, both the plaque detection injection mode and the malfunction detection injection mode are OFF, so the washing liquid is always injected at the normal injection strength (S306, also referred to as the normal injection mode). The process is then terminated. If Yes in step S305, since the plaque detection injection mode is OFF and the malfunction detection injection mode is ON, cleaning liquid is injected in the malfunction detection injection mode (S307), and the process ends.
  • step S308 If No in step S308, since the plaque detection injection mode is ON and the malfunction detection injection mode is OFF, cleaning liquid is injected in the plaque detection injection mode (S309), and the process ends. If Yes in step S308, both the plaque detection injection mode and the malfunction detection injection mode are ON, so cleaning liquid is injected in both the plaque detection injection mode and the malfunction detection injection mode (S310), and the process ends.
  • step S310 will be explained in detail in FIG.
  • the injection control unit 153 controls the plaque detection injection of the washing liquid preset by the user.
  • the intensity and malfunction detection injection intensity are read (S201a).
  • the ejection control unit 153 makes an inquiry to the memory unit 154 to read the plaque detection ejection intensity and the malfunction detection ejection intensity stored as set values in the storage device.
  • the injection control unit 153 then reads the plaque detection injection strength and the malfunction detection injection strength via the memory unit 154 .
  • the malfunction detection injection strength includes the injection frequency in addition to the flow rate and injection pressure of the cleaning liquid, and is a value used when there is a malfunction in the gingiva portion within the detection region 101a.
  • the frequency of injection by setting the injection frequency appropriately according to the condition of the gingiva, in other words, by performing an appropriate intermittent injection according to the condition of the gingiva, it is possible to , It has the effect of suppressing the damage that would further aggravate the condition. If the set value of the malfunction detection injection intensity is not stored in the storage device, the initial value of the malfunction detection injection intensity is read, or the user is prompted to input the set value of the malfunction detection injection intensity. Output a prompting notification.
  • the LED lighting unit 102 irradiates the irradiation region with irradiation light containing light having a wavelength that excites metabolites (S202a).
  • the irradiation light here includes white light, and it is possible to take not only fluorescence images but also normal images.
  • the plaque portion is selectively colored, and when the gingival portion is captured in the detection area 101a, the gingival portion is detected. An image can be obtained from which the state can be estimated.
  • step S204 of FIG. 4 determines whether a malfunction has been detected in the gingival portion has been detected in the gingival portion. If Yes in step S204, the process proceeds to step S402. be.
  • the cleaning liquid is jetted onto the detection area 101a at the malfunction detection jetting intensity (S403).
  • step S402 may not be executed, and if Yes in step S204, the process may proceed to step S206.
  • Step S204, S402, and S206 of are omitted. Therefore, after step S203a, the process proceeds to step S401, where it is determined whether or not a malfunction has been detected in the gingival portion. Then, depending on the determination result, the cleaning liquid is jetted at either the normal jetting strength or the malfunction detection jetting strength.
  • Modification 2 of oral cavity cleaning device Next, an oral cavity cleaning device according to Modification 2 will be described with reference to FIG. 10 . It should be noted that in Modification 2 described below, differences from Modification 1 of the above-described embodiment will be described, and descriptions of substantially the same points as Modification 1 of the embodiment will be omitted.
  • FIG. 10 is a block diagram showing the functional configuration of an oral cavity cleaning device etc. according to Modification 2 of the embodiment.
  • the mouthwash device 100b according to Modification 2 differs from the mouthwash device 100a according to Modification 1 above in that the mouthwash device 100b includes a determination unit 158 and an output unit 159 .
  • the determination unit 158 and the output unit 159 determine whether or not the light necessary for generating an image for determining the ejection intensity of the cleaning liquid is properly reaching. It is a functional unit for notifying that. More specifically, the determination unit 158 obtains an image after conversion from the image processing unit, and determines whether the state in which the overall luminance of the image has decreased for a certain period of time or more (brightness of detected light is a predetermined value or less for a predetermined time or longer), (i) detected light between the detection region 101a and the camera unit 101, or (ii) illumination between the LED illumination unit 102 and the irradiation region It is determined that there is a shield that blocks at least one of the lights.
  • Such shields include, for example, oral structures such as lips, teeth, and gums, as well as dust, foreign matter, and the like. In the presence of such a shield, neither plaque detection nor gingival malformation can be accurately detected.
  • the output unit 159 outputs the determination result indicating the existence of the shield, and for example, the terminal display unit 203 of the terminal device 200 displays it as an image to notify the user. .
  • the user can change the posture of the oral cavity cleaning device 100b, remove the shield, etc., so that various detections can be performed normally.
  • a dental plaque area which is an area where dental plaque adheres, in a tooth image.
  • the following provides an image processing method that can easily identify the plaque area in the image of the tooth.
  • the image processing method acquires a first RGB image obtained by photographing the tooth and dental plaque that undergo fluorescence reaction by irradiating the tooth with light including a wavelength range of blue light. and generating a second RGB image by performing image processing including first image processing on the first RGB image, wherein the first image processing is performed on a plurality of regions of the tooth in the RGB image to be processed.
  • a process of adjusting the gains of at least two of the red, green, and blue components of the RGB image to be processed so that the first blue pixel average value of the plurality of blue pixel values is equal. is.
  • these general or specific aspects may be realized by a system, device, integrated circuit, computer program, or a recording medium such as a computer-readable CD-ROM. and any combination of recording media.
  • the recording medium may be a non-temporary recording medium.
  • the first RGB obtained by photographing the tooth and dental plaque undergoing fluorescence reaction by irradiating the tooth with light including the wavelength region of blue light an image is acquired, and image processing including first image processing is performed on the first RGB image to generate a second RGB image, and the first image processing is performed on the tooth region in the RGB image to be processed.
  • the first image processing by performing the first image processing, it is possible to adjust the white balance of the first RGB image in which the fluorescently reacting tooth is captured. Therefore, it is possible to generate a second RGB image that makes it easy to distinguish the plaque region, which is the region of the tooth to which dental plaque adheres. Therefore, it is possible to easily identify the plaque region in the image of the tooth. As a result, for example, by taking an image of the tooth after brushing and specifying the plaque area, it is possible to present the user with the area left unbrushed.
  • An image processing method is the image processing method according to the first aspect, further comprising generating an HSV image by converting the color space of the second RGB image into the HSV space. , one or more of a plurality of fourth pixels of the HSV image that satisfy at least one of a saturation within a first predetermined range, a hue within a second predetermined range, and a lightness within a third predetermined range
  • a fourth RGB image is generated by specifying a specific pixel region in which the fourth pixel of is located, and performing saturation enhancement processing on the specific pixel region in the second RGB image.
  • the specific pixel region as the dental plaque region is specified in the second RGB image and the saturation enhancement processing is performed on the specific pixel region, the third RGB image is further generated in which the plaque region can be easily distinguished. be able to. Therefore, it is possible to easily identify the plaque region in the image of the tooth.
  • An image processing method is the image processing method according to the first aspect, further comprising generating an HSV image by converting the color space of the second RGB image into the HSV space. , one or more of a plurality of fourth pixels of the HSV image that satisfy at least one of a saturation within a first predetermined range, a hue within a second predetermined range, and a lightness within a third predetermined range
  • a fourth RGB image is generated by specifying a specific pixel region in which the fourth pixel of is located and replacing the specific pixel region in the second RGB image with a predetermined pattern.
  • the specific pixel area as the dental plaque area is specified in the second RGB image and the specific pixel area is replaced with the predetermined pattern, it is possible to further generate the fourth RGB image in which the dental plaque area can be easily distinguished. Therefore, it is possible to easily identify the plaque region in the image of the tooth.
  • An image processing method is an image processing method according to any one aspect of the first aspect to the third aspect, wherein the image processing further includes a second image processing wherein the second image processing includes gain so that an average value of a plurality of index values calculated from a plurality of second pixel values respectively possessed by a plurality of second pixels included in the RGB image to be processed becomes a predetermined value is determined and the determined gain is applied to the RGB image to be processed to generate a third RGB image, and the first image processing is a process to process the third RGB image.
  • the exposure control processing is performed by adjusting the gain of the luminance values of the plurality of second pixels, the conditions of the plurality of luminance values can be kept constant even if the shooting conditions vary. That is, since the condition of the luminance distribution of the third RGB image to be processed for the first image processing can be made constant regardless of the photographing conditions, the first image processing can be performed more effectively.
  • An image processing method is the image processing method according to the fourth aspect, wherein the average value of the plurality of index values is the red component, the green component, and the , is the mean value of the color component with the largest mean value among the blue components.
  • An image processing method is the image processing method according to the fourth aspect, wherein the plurality of index values are the second pixel values for each of the plurality of second pixel values. It is obtained by calculation based on the red pixel value, green pixel value, and blue pixel value included in the value.
  • An image processing method is the image processing method according to the fourth aspect, wherein the plurality of second pixels are the plurality of third pixels forming the first RGB image. , the pixel value of the maximum color component is less than the first threshold and the pixel value of the minimum color component is less than or equal to the second threshold.
  • An image processing method is an image processing method according to any one aspect of the first aspect to the third aspect, and further comprises an oral cavity in which the first RGB image is taken. An intraoral position is detected, and the intraoral position and the second RGB image are associated and stored.
  • An image processing apparatus is provided by irradiating a tooth with light including a wavelength region of blue light, and photographing the tooth and dental plaque undergoing a fluorescence reaction to obtain first RGB an acquisition unit that acquires an image; and a generation unit that generates a second RGB image by performing image processing including first image processing on the first RGB image, wherein the first image processing is performed on an object to be processed.
  • the red, green, and blue components of the RGB image to be processed are adjusted such that the pixel average value is equal to the first blue pixel average value of the plurality of blue pixel values of the plurality of first pixels. This is processing for adjusting the gains of at least two of the color components.
  • the first image processing by performing the first image processing, it is possible to adjust the white balance of the first RGB image in which the fluorescently reacting tooth is captured. Therefore, it is possible to generate a second RGB image that makes it easy to distinguish the plaque region, which is the region of the tooth to which dental plaque adheres. Therefore, it is possible to easily identify the plaque region in the image of the tooth. As a result, for example, by taking an image of the tooth after brushing and specifying the plaque area, it is possible to present the user with the area left unbrushed.
  • a program according to a tenth aspect described below is a program for causing a computer to execute the image processing method according to any one of the first to eighth aspects.
  • FIG. 11A is a perspective view of an intraoral camera in an intraoral camera system according to the present description;
  • the intraoral camera 1010 has a toothbrush-like housing that can be handled with one hand. It includes a gripping handle portion 1010b and a neck portion 1010c connecting the head portion 1010a and the handle portion 1010b.
  • the imaging optical system 1012 is incorporated in the head portion 1010a and the neck portion 1010c.
  • the imaging optical system 1012 includes an imaging element 1014 and a lens arranged on its optical axis LA.
  • the imaging optical system 1012 of the intraoral camera 1010 is incorporated in the head portion 1010a and the neck portion 1010c.
  • the imaging optical system 1012 includes an imaging element 1014 and a lens 1016 arranged on its optical axis LA.
  • the imaging element 1014 is a photographing device such as a C-MOS sensor or a CCD element, and an image of the tooth D is formed by a lens 1016 .
  • the imaging element 1014 outputs a signal (image data) corresponding to the formed image to the outside.
  • the lens 1016 is, for example, a condensing lens, and forms an incident image of the tooth D on the imaging device 1014 .
  • the lens 1016 may be one lens, or may be a lens group composed of a plurality of lenses.
  • the imaging optical system 1012 further includes a mirror 1018 that reflects the image of the tooth D toward the lens 1016, a blue light cut filter (blue blocking element) 1020 arranged between the mirror 1018 and the lens 1016, It includes an aperture 1024 positioned between the lens 1016 and the image sensor 1014 .
  • a blue light cut filter blue blocking element
  • a mirror 1018 is arranged on the optical axis LA of the imaging optical system 1012 so as to reflect the image of the tooth D that has passed through the entrance 1012 a of the imaging optical system 1012 toward the lens 1016 .
  • the blue light cut filter 1020 is a filter that cuts the blue wavelength light component contained in the light incident on the imaging device 1014 .
  • the blue light cut filter 1020 cuts the light including the blue light wavelength region from the light before entering the image sensor 1014 .
  • the diaphragm 1024 is a plate-like member having a through hole on the optical axis LA of the imaging optical system 1012, and achieves a deep depth of focus. As a result, the depth direction of the oral cavity can be focused, and a row-of-teeth image with a clear outline can be obtained.
  • the intraoral camera 1010 is equipped with a plurality of first to fourth LEDs 1026A to 1026D as lighting devices for irradiating light onto the tooth D to be imaged during imaging.
  • the first to fourth LEDs 1026A-1026D are, for example, blue LEDs.
  • first to fourth LEDs 1026A-1026D are arranged to surround entrance 1012a.
  • a light-transmitting cover 1028 covering the first to fourth LEDs 1026A to 1026D and the entrance 1012a is provided so that the gums G and the like do not come into contact with the first to fourth LEDs 1026A to 1026D and the illumination light is not insufficient. It is provided in the head portion 1010a.
  • a part of the first to fourth LEDs 1026A to 1026D may be white LEDs.
  • white LEDs for some of the first through fourth LEDs 1026A-1026D, the first RGB image can be made brighter and the balance of blue pixel values to red and green pixel values can be improved.
  • the intraoral camera 1010 has a composition adjustment mechanism 1030 and a focus adjustment mechanism 1032, as shown in FIG. 11B.
  • the composition adjustment mechanism 1030 is composed of a housing 1034 that holds the imaging element 1014 and the lens 1016, and an actuator 1036 that moves the housing 1034 in the extending direction of the optical axis LA.
  • the angle of view is adjusted, that is, the size of the row of teeth imaged on the imaging device 1014 is adjusted.
  • the composition adjustment mechanism 1030 automatically adjusts the position of the housing 1034 so that, for example, one entire tooth appears in the photographed image.
  • the composition adjustment mechanism 1030 adjusts the position of the housing 1034 based on the user's operation so that the angle of view desired by the user is obtained.
  • the focus adjustment mechanism 1032 is held within the housing 1034 of the composition adjustment mechanism 1030 and is composed of a lens holder 1038 that holds the lens 1016 and an actuator 1040 that moves the lens holder 1038 in the extending direction of the optical axis LA.
  • the actuator 1040 adjusts the relative position of the lens holder 1038 with respect to the imaging element 1014 to adjust the focus, ie focus.
  • the focus adjustment mechanism 1032 automatically adjusts the position of the lens holder 1038 so that, for example, the tooth located in the center of the photographed image is in focus.
  • the focus adjustment mechanism 1032 adjusts the position of the lens holder 1038 based on the user's operation.
  • the components of the imaging optical system 1012 excluding the mirror 1018 may be provided on the handle portion 1010b of the intraoral camera 1010.
  • the imaging element 1014 is a photographing device such as a C-MOS sensor or a CCD element, and a tooth image is formed by a lens.
  • the imaging element 1014 outputs a signal (image data) corresponding to the formed image to the outside.
  • the image output by the imaging device 1014 is an RGB image in which each of a plurality of pixels forming the image has RGB sub-pixels.
  • the intraoral camera 1010 is equipped with a plurality of first to fourth LEDs 1026A to 1026D as illumination devices for irradiating light onto the tooth to be imaged during imaging.
  • the first to fourth LEDs 1026A to 1026D are, for example, blue LEDs that emit blue light having a peak wavelength of 405 nm.
  • the first to fourth LEDs 1026A to 1026D are not limited to blue LEDs as long as they are light sources that emit light including the wavelength range of blue light.
  • FIG. 12 is a schematic configuration diagram of the intraoral camera system according to this description. As shown in FIG. 12, the intraoral camera system according to the present description is generally configured to photograph a row of teeth using an intraoral camera 1010 and to perform image processing on the photographed image. ing.
  • the intraoral camera system includes an intraoral camera 1010, a mobile terminal 1070, and a cloud server 1080.
  • the mobile terminal 1070 is, for example, a smart phone or a tablet terminal capable of wireless communication.
  • the mobile terminal 1070 includes, as an input device and an output device, a touch screen 1072 capable of displaying a row-of-teeth image, for example.
  • the mobile terminal 1070 functions as a user interface of the intraoral camera system.
  • the cloud server 1080 is a server that can communicate with the mobile terminal 1070 via the Internet or the like, and provides the mobile terminal 1070 with an application for using the intraoral camera 1010 .
  • a user downloads an application from the cloud server 1080 and installs it on the mobile terminal 1070 .
  • the cloud server 1080 also acquires the row-of-teeth image captured by the intraoral camera 1010 via the mobile terminal 1070 .
  • the intraoral camera system controls a central control unit 1050 as the main parts that control the system, an LED control unit 1054 that controls a plurality of LEDs 1026A to 1026D, an actuator 1036 for the composition adjustment mechanism, and an actuator 1040 for the focus adjustment mechanism.
  • a lens driver 1056 and a position sensor 1090 are included.
  • the intraoral camera system also has a wireless communication module 1058 that wirelessly communicates with the mobile terminal 1070, and a power control unit 1060 that supplies power to the central control unit 1050 and the like.
  • the central control section 1050 of the intraoral camera system is mounted on the handle section 1010b of the intraoral camera 1010, for example.
  • the central control unit 1050 also includes a controller 1062 such as a CPU or MPU that executes various processes described later, and a memory 1064 such as RAM or ROM that stores programs for causing the controller 1062 to execute various processes. contains.
  • the memory 1064 stores a row-of-teeth image (image data) captured by the imaging device 1014, various setting data, and the like.
  • the row-of-teeth image captured by the imaging device 1014 is an example of the first RGB image.
  • the controller 1062 transmits the row of teeth image output from the imaging device 1014 to the mobile terminal 1070 via the wireless communication module 1058 .
  • Portable terminal 1070 displays the transmitted row-of-teeth image on touch screen 1072, thereby presenting the row-of-teeth image to the user.
  • the LED control unit 1054 is mounted, for example, on the handle portion 1010b of the intraoral camera 1010, and performs lighting and extinguishing of the first to fourth LEDs 1026A to 1026D based on control signals from the controller 1062.
  • the LED control unit 1054 is configured by, for example, a circuit. For example, when the user performs an operation on the touch screen 1072 of the mobile device 1070 to activate the intraoral camera 1010 , a corresponding signal is sent from the mobile device 1070 to the controller 1062 via the wireless communication module 1058 . Controller 1062 transmits a control signal to LED control section 1054 to light first to fourth LEDs 1026A to 1026D based on the received signal.
  • the lens driver 1056 is mounted, for example, on the handle portion 1010b of the intraoral camera 1010, and controls the actuator 1036 of the composition adjustment mechanism and the actuator 1040 of the focus adjustment mechanism based on control signals from the controller 1062 of the central control unit 1050. .
  • the lens driver 1056 is configured by, for example, a circuit. For example, when the user performs an operation related to composition adjustment or focus adjustment on the touch screen 1072 of the mobile terminal 1070 , a corresponding signal is transmitted from the mobile terminal 1070 to the central control unit 1050 via the wireless communication module 1058 . Controller 1062 of central control unit 1050 transmits a control signal to lens driver 1056 so as to execute composition adjustment and focus adjustment based on the received signal.
  • the controller 1062 calculates control amounts for the actuators 1036 and 1040 necessary for composition adjustment and focus adjustment based on the row-of-teeth image from the imaging element 1014, and the control signals corresponding to the calculated control amounts are output to the lens driver. 1056.
  • the wireless communication module 1058 is mounted on the handle portion 1010b of the intraoral camera 1010, for example, and performs wireless communication with the mobile terminal 1070 based on the control signal from the controller 1062.
  • the wireless communication module 1058 performs wireless communication with the mobile terminal 1070 in compliance with existing communication standards such as WiFi (registered trademark) and Bluetooth (registered trademark).
  • a row-of-teeth image showing teeth D is transmitted from the intraoral camera 1010 to the mobile terminal 1070 via the wireless communication module 1058 , and an operation signal is transmitted from the mobile terminal 1070 to the intraoral camera 1010 .
  • the power control unit 1060 is mounted on the handle portion 1010b of the intraoral camera 1010 in this description, and distributes the power of the battery 1066 to the central control unit 1050, the LED control unit 1054, the lens driver 1056, and the wireless communication module 1058. do.
  • the power control unit 1060 is configured by, for example, a circuit.
  • the battery 1066 is a rechargeable secondary battery that is wirelessly charged by an external charger 1069 connected to a commercial power source via a coil 1068 mounted on the intraoral camera 1010. be.
  • the position sensor 1090 is a sensor for detecting the orientation and position of the intraoral camera 1010, and is, for example, a multi-axis (three axes x, y, and z here) acceleration sensor.
  • position sensor 1090 may be a six-axis sensor having a three-axis acceleration sensor and a three-axis gyro sensor.
  • the z-axis coincides with the optical axis LA.
  • the y-axis is parallel to the imaging plane and extends longitudinally of the intraoral camera 1010 .
  • the x-axis is parallel to the imaging plane and orthogonal to the y-axis.
  • the output of each axis of position sensor 1090 may be transmitted to mobile terminal 1070 via central controller 1050 and wireless communication module 1058 .
  • a piezoresistive type, capacitance type, or thermal detection type MEMS sensor may be used as the position sensor 1090. Further, although not shown, it is preferable to provide a correction circuit for correcting the sensitivity balance of the sensors on each axis, temperature characteristics of sensitivity, temperature drift, and the like. Also, a band-pass filter (low-pass filter) for removing dynamic acceleration components and noise may be provided. Further, noise may be reduced by smoothing the output waveform of the acceleration sensor.
  • FIG. 13 is a diagram showing the flow of intraoral imaging operation in the intraoral camera system. Note that the processing shown in FIG. 13 is, for example, processing performed in real time, and is performed each time image data of one frame or a plurality of frames is obtained.
  • the user uses the intraoral camera 1010 to photograph the teeth and gums in his/her own oral cavity, thereby generating image data (S1101).
  • the intraoral camera 1010 transmits the captured image data to the mobile terminal 1070 (S1102).
  • the image data may be a moving image or one or a plurality of still images.
  • the sensor data may be transmitted for each frame of the moving image or for each still image. Note that when the image data is a moving image, the sensor data may be transmitted every multiple frames.
  • the transmission of image data may be performed in real time, or may be transmitted collectively after a series of images (for example, images of all teeth in the oral cavity) are performed.
  • the mobile terminal 1070 performs image processing on the received image data (first RGB image) (S1103), and displays the image data after image processing (S1104).
  • the user can capture an image of the user's own intraoral cavity with the intraoral camera 1010 and check the intraoral condition displayed on the mobile terminal 1070 . This allows the user to easily check the health condition of his/her teeth.
  • the mobile terminal 1070 may generate, for example, a three-dimensional model of a plurality of intraoral teeth from a plurality of photographed image data. Also, the mobile terminal 1070 may display an image based on the generated three-dimensional model.
  • the mobile terminal 1070 performs image processing of the tooth image
  • the intraoral camera 1010 may perform part or all of this processing.
  • the mobile terminal 1070 is an example of an image processing device.
  • FIG. 14 is a functional block diagram of the mobile terminal 1070.
  • FIG. Portable terminal 1070 includes acquisition unit 10101 , generation unit 10102 , and display unit 10103 .
  • the acquisition unit 10101 acquires image data (first RGB image) transmitted from the intraoral camera 1010 .
  • the acquisition unit 10101 may acquire sensor data in addition to image data from the intraoral camera 1010 .
  • the first RGB image is an image obtained by irradiating the tooth with light including the wavelength region of blue light by the intraoral camera 1010 and photographing the tooth undergoing fluorescence reaction.
  • the generation unit 10102 performs exposure control processing (second image processing) on the first RGB image to generate a third RGB image, and performs white balance adjustment processing (first image processing) on the third RGB image. may generate a second RGB image.
  • the generation unit 10102 first extracts a plurality of pixels whose RGB values satisfy the following formulas 1 and 2 from among a plurality of first RGB pixels (third pixels) forming the first RGB image. do.
  • min(R, G, B) indicates the minimum value among the pixel values of the three RGB sub-pixels (that is, the red pixel value, the green pixel value, and the blue pixel value) of the first RGB pixel.
  • Ths is a threshold for excluding areas (for example, glossy areas) that are strongly affected by the reflection of the illuminating light in the first RGB image. Ths is, for example, 900 in 10-bit representation.
  • maximum(R, G, B) indicates the maximum value among the pixel values of the three RGB sub-pixels (that is, the red pixel value, the green pixel value, and the blue pixel value) of the first RGB pixel.
  • Thmax indicates the maximum value that the pixel value can take. Thmax is represented by 1023 in 10-bit representation, for example. Thmax is an example of the first threshold.
  • Gmax is the maximum value of a plurality of green pixel values in the first RGB image. That is, it is the pixel value of the green pixel having the maximum pixel value among the green pixels of the plurality of first RGB pixels forming the first RGB image.
  • Thb is a threshold for extracting the green pixel of the second pixel from the first RGB pixels. If the value of Thb is increased, the image becomes too bright, so for example, it is set to a value of 10 or less in 10-bit representation.
  • the glossy area is excluded by Equation 1, and the tooth area in the first RGB image is extracted by Equation 2. That is, the plurality of pixels extracted by Equations 1 and 2 are the plurality of second pixels forming the tooth region. In this way, the plurality of second pixels are such that the pixel value max (R, G, B) of the maximum color component among the plurality of first RGB pixels (third pixels) forming the first RGB image is the first threshold value ( Thmax) and the pixel value min(R, G, B) of the minimum color component is equal to or smaller than the second threshold (Ths).
  • the generation unit 10102 calculates the average value of the green pixels of the plurality of second pixels, and determines the gain by which the pixel values of the three sub-pixels of RGB are multiplied according to the calculated average value of the green pixels.
  • the generation unit 10102 determines the gain by which the pixel values of the three sub-pixels of RGB are multiplied, for example, using Equation 3 below.
  • the gain is obtained by dividing the target pixel value by the average value of the green pixels.
  • the generating unit 10102 generates the third RGB image by multiplying each of the plurality of first RGB pixels forming the first RGB image by the determined gain.
  • the generation unit 10102 generates the third RGB image by multiplying the pixel values of the three sub-pixels of each of the plurality of first RGB pixels by the determined gain.
  • the pixel values of the plurality of third RGB pixels forming the third RGB image are pixel values calculated by multiplying the pixel values of the plurality of first RGB pixels forming the first RGB image by the determined gain. If the pixel value exceeds the maximum value (1023 in the case of 10-bit representation) by multiplying by the gain, the generating unit 10102 replaces the pixel value with 1023.
  • the average value of the green pixels of the plurality of second pixels extracted from the first RGB pixels is calculated by Equation 2, and the pixel values of the three sub-pixels of RGB are calculated according to the calculated average value of the green pixels.
  • the gain to be multiplied is determined, it is not limited to this.
  • An average value of the red pixels of the plurality of second pixels extracted from the first RGB pixels is calculated, and a gain to be multiplied by the pixel values of the three sub-pixels of RGB is determined according to the calculated average value of the red pixels. good.
  • the average value of the blue pixels of the plurality of second pixels extracted from the first RGB pixels is calculated, and the gain to be multiplied by the pixel values of the three sub-pixels of RGB is determined according to the calculated average value of the blue pixels. You may
  • the exposure control process is performed based on the plurality of second pixel values of the plurality of second pixels (pixels corresponding to the tooth region) included in the RGB image to be processed (here, the first RGB image). determining gains for the plurality of second pixel values so that the average value of the calculated plurality of index values becomes a predetermined value, and determining the gains for the plurality of first RGB pixel values of the plurality of first RGB pixels included in the first RGB image; is applied to generate a third RGB image.
  • the index value may be a value calculated from pixel values of three sub-pixels of RGB forming one pixel, or may be a pixel value of any one of the three sub-pixels.
  • the average value of the plurality of index values is the average value of the color component having the maximum pixel value among the red, green and blue components of the first RGB image.
  • the color component having the maximum average value is the first red pixel average value of the plurality of red pixel values of the plurality of first pixels forming the first RGB image, and the plurality of green pixel values of the plurality of first pixels. and the first blue pixel average value of the plurality of blue pixel values of the plurality of first pixels.
  • the color component having the maximum average value may be fixed to the green component without calculating and comparing the first red pixel average value, the first green pixel average value, and the first blue pixel average value. may have been determined.
  • the generation unit 10102 calculates the average value of the green pixels of the plurality of second pixels and determines the gain according to the calculated average value of the green pixels in determining the gain, but the present invention is not limited to this.
  • the generation unit 10102 may calculate the average value of the luminance values of the plurality of second pixels as the average value of the plurality of index values, and determine the gain according to the calculated average value of the luminance values.
  • the index value may be the pixel value of any one of the three sub-pixels of RGB forming one pixel, or a value calculated from the pixel values of the three sub-pixels. good too.
  • the generation unit 10102 calculates the luminance value of each of the plurality of second pixels using the sub-pixel values of the three sub-pixels of the second pixel. For example, the generation unit 10102 calculates the luminance value using Equation 3 below.
  • Equation 3 Y is the luminance value, R is the red pixel value, G is the green pixel value, and B is the blue pixel value.
  • the plurality of luminance values may be obtained by calculating each of the plurality of pixel values based on the red pixel value, green pixel value, and blue pixel value included in the pixel value.
  • the generation unit 10102 extracts a plurality of pixels whose RGB values satisfy Expression 1 and Expression 4 below, among the plurality of third RGB pixels forming the third RGB image to be processed.
  • Thl is a threshold value indicating the lower limit value of the tooth region
  • Thu is a threshold value indicating the upper limit value of the tooth region.
  • the tooth region in the third RGB image is extracted by Equation 4. That is, the plurality of pixels extracted by Equations 1 and 4 are the plurality of second pixels forming the tooth region.
  • the generation unit 10102 generates a first red pixel average value Rave that is the average value of the plurality of red pixel values in the tooth region that satisfies Equations 1 and 4, and the average value of the plurality of green pixel values in the tooth region. and a first blue pixel average value Bave that is the average value of a plurality of blue pixel values in the tooth region. Then, the generation unit 10102 generates the red component and the green component of the RGB image to be processed so that the first red pixel average value Rave, the first green pixel average value Gave, and the first blue pixel average value Bave are equal to each other. , and adjusting the gain of at least two color components of the blue component.
  • the generation unit 10102 calculates the gain of the plurality of red pixel values (red pixel gain) by dividing the first green pixel average value Gave by the first red pixel average value Rave.
  • the generating unit 10102 also calculates gains of a plurality of blue pixel values (blue pixel gains) by dividing the first green pixel average value Gave by the first blue pixel average value Bave.
  • the generation unit 10102 multiplies each red pixel of the plurality of third RGB pixels forming the third RGB image by the red pixel gain, and multiplies each of the plurality of third RGB pixels of the blue pixel by the blue pixel gain.
  • a second RGB image is generated.
  • the pixel values of the plurality of second RGB pixels forming the second RGB image are obtained by multiplying the red pixel values of the plurality of third RGB pixels forming the third RGB image by the red pixel gain and It is a pixel value calculated by multiplying a blue pixel value by a blue pixel gain.
  • the generation unit 10102 performs white balance adjustment by calculating the red pixel gain and the blue pixel gain based on the green pixel average value and multiplying the pixel value of the corresponding color component by each gain.
  • the green pixel gain and the blue pixel gain may be calculated using the red pixel average value as a reference, or the red pixel gain and the green pixel gain may be calculated using the blue pixel average value as a reference. You may
  • the generation unit 10102 replaces the pixel value with 1023 when the pixel value exceeds the maximum value (1023 in the case of 10-bit representation) by multiplying by the gain.
  • the generation unit 10102 may also perform the following third image processing on the second RGB image to emphasize the plaque area within the tooth area in the second RGB image. Specifically, the generation unit 10102 generates the HSV image by converting the color space of the second RGB image into the HSV space. Then, the generation unit 10102 determines that the saturation is within a first predetermined range (for example, 30 or more and 80 or less in 8-bit expression) and the hue is within a second predetermined range (for example, 8-bit) among the plurality of fourth pixels of the HSV image. 140 or more and 170 or less in expression), and one or more fourth pixels whose brightness satisfies at least one of a third predetermined range (for example, 100 or more and 180 or less in 8-bit expression).
  • a first predetermined range for example, 30 or more and 80 or less in 8-bit expression
  • the hue is within a second predetermined range (for example, 8-bit) among the plurality of fourth pixels of the HSV image. 140 or more and 170 or less in expression
  • the first predetermined range, the second predetermined range, and the third predetermined range may be specified by comparing the actual plaque region, the tooth region, and the HSV image. It is not limited.
  • the generation unit 10102 generates a fourth RGB image by performing saturation enhancement processing on the dental plaque region in the second RGB image. Note that the generation unit 10102 may generate the fourth RGB image by replacing the plaque region with a predetermined pattern instead of performing the saturation enhancement process.
  • the predetermined pattern may be, for example, graphics having constant pixel values or graphics including a specific pattern.
  • a display unit 10103 is a display device included in the mobile terminal 1070 and displays an image after image processing has been performed by the generation unit 10102 .
  • the display unit 10103 may display the second RGB image or may display the fourth RGB image.
  • FIG. 16A is a diagram showing an example of a first RGB image of anterior teeth photographed in the state shown in FIG. 15 by irradiating the oral cavity with blue light (peak wavelength: 405 nm).
  • FIG. 16B is a diagram showing an example of color difference data between the plaque area 10201 detected in FIG. 16A and the tooth area.
  • FIG. 11B shows the color difference data of the plaque region 10201 and the tooth region detected from the first RGB image captured without the blue light cut filter 1020 shown in 11B.
  • the average color difference coordinates of the hue of the plaque region were (0.16, 0.06)
  • the average color difference coordinates of the hue of the tooth region were (0.25, ⁇ 0.02).
  • the color difference average coordinates of these hues are reference values, and are values that may change under the influence of the intensity of blue light and the sensitivity of the camera.
  • a blue light cut filter is effective as a method for reducing noise.
  • the blue light cut filter 1020 can cut light including the blue light wavelength region from the light before being reflected from the tooth and entering the imaging element 1014 .
  • FIG. 16C is a diagram showing an example of color difference data between the plaque region 10201 and the tooth region detected from the first RGB image of the front tooth photographed with the blue light cut filter 1020 cutting the light including the wavelength region of blue light.
  • the average color difference coordinates of the hue of the plaque area were (0.058, 0.068), and the average color difference coordinates of the hue of the tooth area were (0.050, ⁇ 0.004).
  • the color difference average coordinates of these hues are reference values, and are values that may change under the influence of the intensity of blue light and the sensitivity of the camera.
  • part of the first to fourth LEDs 1026A to 1026D in FIG. 11 may be replaced with white LEDs.
  • FIG. 16D is a diagram showing an example of color difference data between the plaque region 10201 and the tooth region detected from the first RGB image of the front teeth captured by irradiating the oral cavity with blue light (peak wavelength: 405 nm) and white light. .
  • Fig. 16D shows the color difference data of the plaque region 10201 and the tooth region detected from the first RGB image captured without the blue light cut filter 1020 shown in FIG. 11B.
  • the average color difference coordinates of the hue of the plaque area were (0.089, 0.041), and the average color difference coordinates of the hue of the tooth area were (0.15, ⁇ 0.013).
  • the color difference average coordinates of these hues are reference values, and are values that may change under the influence of the intensity of blue light and white light and the sensitivity of the camera.
  • the tooth region can be specified by using the color difference data of the tooth region stored according to the lighting conditions for irradiating the tooth. Further, a region having a high luminance and a hue within a predetermined range can be extracted as a tooth region from within a white-hued region surrounded by a red-hued region. As described above, according to the method of detecting a white-hue region surrounded by a red-hue region, a red-hue value close to the color of the lips and gums and a white-hue value of the teeth are detected. It can be roughly detected.
  • the mobile terminal 1070 can generate a second RGB image 10210 in which the plaque region 10211 can be easily distinguished as shown in FIG. 17A.
  • the image processing substantially decolorizes the tooth region, making it easier to distinguish the plaque region 10211 .
  • FIG. 17B shows the difference between the plaque region and the tooth region after performing the exposure control processing and the white balance adjustment processing when the teeth are irradiated with light including the wavelength range of blue light without a blue light cut filter. It is a figure which shows an example of color difference data. Tooth regions are considered substantially white.
  • the color difference average coordinates of the hue of the plaque region in FIG. 17B were (0.033, 0.071). The color difference average coordinates of these hues are reference values, and are values that may change under the influence of the intensity of blue light and the sensitivity of the camera.
  • FIG. 17C shows the difference between the plaque region and the tooth after performing exposure control processing and white balance adjustment processing when the tooth is irradiated with light including the wavelength range of blue light using a blue light cut filter.
  • FIG. 4 is a diagram showing an example of color difference data of regions; Tooth regions are considered substantially white.
  • the color difference average coordinates of the hue of the plaque region in FIG. 17C were (0.033, 0.071).
  • the color difference average coordinates of these hues are reference values, and are values that may change under the influence of the intensity of blue light and the sensitivity of the camera.
  • FIG. 17D shows, without a blue light cut filter, when the teeth are irradiated with light including a wavelength range of blue light and white light, and after performing exposure control processing and white balance adjustment processing, plaque FIG. 10 is a diagram showing an example of color difference data between a region and a tooth region; Tooth regions are considered substantially white.
  • the color difference average coordinates of the hue of the plaque area in FIG. 17D were (0.014, 0.048).
  • the color difference average coordinates of these hues are reference values, and are values that may change under the influence of the intensity of blue light and white light and the sensitivity of the camera.
  • FIG. 18 is a diagram showing an example of the fourth RGB image of the front teeth photographed in the state shown in FIG.
  • FIG. 19 is a diagram showing another example of the fourth RGB image of the front teeth photographed in the state shown in FIG.
  • the mobile terminal 1070 acquires the first RGB image 10200 from the intraoral camera 10 as shown in FIG. 16A.
  • the portable terminal 1070 further performs saturation enhancement processing on the plaque region 10211 of the second RGB image 10210 to generate a fourth RGB image 10220 in which the plaque region 10221 can be easily distinguished as shown in FIG. can do.
  • portable terminal 1070 further replaces plaque region 10211 of second RGB image 10210 with a predetermined pattern, thereby generating fourth RGB image 10230 in which plaque region 10231 is replaced with a predetermined pattern as shown in FIG. can do.
  • FIG. 20 is a flowchart of image processing in the mobile terminal 1070.
  • FIG. 20 is a flowchart of image processing in the mobile terminal 1070.
  • the mobile terminal 1070 acquires the first RGB image from the intraoral camera 1010 (S1111).
  • the mobile terminal 1070 generates a third RGB image by performing exposure control processing on the first RGB image (S1112).
  • the mobile terminal 1070 generates a second RGB image by performing white balance adjustment processing on the third RGB image (S1113).
  • the mobile terminal 1070 identifies the plaque area in the second RGB image (S1114).
  • the mobile terminal 1070 generates a fourth RGB image by performing saturation enhancement processing on the plaque area of the second RGB image or by replacing the plaque area with a predetermined pattern (S1115).
  • the image processing apparatus (for example, the mobile terminal 1070) according to the above description includes an acquisition unit 10101 and a generation unit 10102.
  • the acquisition unit 10101 acquires a first RGB image obtained by photographing a tooth that reacts with fluorescence by irradiating the tooth with light including a wavelength range of blue light.
  • the generation unit 10102 generates a second RGB image by performing image processing including the first image processing on the first RGB image.
  • the first image processing by performing the first image processing, it is possible to adjust the white balance of the first RGB image in which the fluorescently reacting tooth is captured. Therefore, it is possible to generate a second RGB image that makes it easy to distinguish the plaque region, which is the region of the tooth to which dental plaque adheres. Therefore, it is possible to easily identify the plaque region in the image of the tooth. As a result, for example, by taking an image of the tooth after brushing and specifying the plaque area, it is possible to present the user with the area left unbrushed.
  • the HSV image is generated by further converting the color space of the second RGB image into the HSV space, and the plurality of fourth pixels of the HSV image are generated.
  • a fourth RGB image is generated by specifying and performing saturation enhancement processing on a specified pixel region in the second RGB image.
  • the specific pixel region as the dental plaque region is specified in the second RGB image and the saturation enhancement processing is performed on the specific pixel region, the third RGB image is further generated in which the plaque region can be easily distinguished. be able to. Therefore, it is possible to easily identify the plaque region in the image of the tooth.
  • the HSV image is generated by further converting the color space of the second RGB image into the HSV space, and the plurality of fourth pixels of the HSV image are generated.
  • a fourth RGB image is generated by identifying and replacing the specific pixel area in the second RGB image with a predetermined pattern.
  • the specific pixel area as the dental plaque area is specified in the second RGB image and the specific pixel area is replaced with the predetermined pattern, it is possible to further generate the fourth RGB image in which the dental plaque area can be easily distinguished. Therefore, it is possible to easily identify the plaque region in the image of the tooth.
  • the image processing further includes a second image processing.
  • a gain is determined so that an average value of a plurality of luminance values calculated from a plurality of second pixel values of a plurality of second pixels included in an RGB image to be processed becomes a predetermined value, This is a process of generating a third RGB image by applying the determined gain to the RGB image to be processed.
  • the first image processing is processing for processing the third RGB image.
  • the exposure control processing is performed by adjusting the gain of the luminance values of the plurality of second pixels, the conditions of the plurality of luminance values can be kept constant even if the shooting conditions vary. That is, since the condition of the luminance distribution of the third RGB image to be processed for the first image processing can be made constant regardless of the photographing conditions, the first image processing can be performed more effectively.
  • the average value of the plurality of luminance values is the maximum average value among the red, green, and blue components of the first RGB image. It is the average value of the color components.
  • the plurality of luminance values are obtained by determining, for each of the plurality of pixel values, the red pixel value, the green pixel value, and the blue pixel value included in the pixel value. It is obtained by calculation based on the pixel value.
  • the plurality of second pixels has the pixel value of the largest color component among the plurality of third pixels forming the first RGB image. It is a pixel that satisfies that the pixel value of the minimum color component is smaller than the threshold and is equal to or less than the second threshold.
  • the generation unit 10102 performs exposure control processing on the first RGB image and performs white balance adjustment processing on the third RGB image generated by the exposure control processing.
  • exposure control processing may not be performed.
  • exposure control processing may not be performed as long as the first RGB image is obtained in which variations in luminance distribution are reduced.
  • variations in the brightness distribution of the obtained first RGB image may be reduced.
  • the display unit 10103 of the mobile terminal 1070 may display guidance for designating the intraoral position to be imaged.
  • Guidance may be output by voice from a speaker (not shown) of mobile terminal 1070 . Accordingly, the user can follow the guidance to move the intraoral camera 1010 to the specified intraoral position so that the image is captured at the specified intraoral position.
  • the intraoral position is the position of the front teeth, the position of the back teeth, and the like.
  • the portable terminal 1070 generates a second RGB image generated by image processing performed on the intraoral position indicated by the guidance and the first RGB image acquired while the intraoral position is indicated. Alternatively, it may be stored in association with the fourth RGB image.
  • the intraoral camera 1010 transmits the first RGB image to the mobile terminal 1070, and the mobile terminal 1070 performs image processing on the first RGB image.
  • the image may be transmitted to the cloud server 1080 , the cloud server 1080 may perform the above image processing, and the second RGB image or the fourth RGB image of the image processing result may be transmitted to the mobile terminal 1070 .
  • the first RGB image may be transmitted from intraoral camera 1010 to cloud server 1080 without going through mobile terminal 1070, or may be transmitted from intraoral camera 1010 to cloud server 1080 through mobile terminal 1070.
  • the intraoral camera system according to the present image processing method and the like has been described above, the present image processing method and the like are not limited to this form.
  • the intraoral camera 1010 may be an intraoral care device equipped with a camera.
  • intraoral camera 1010 may be an intraoral cleaner or the like that includes a camera.
  • each processing unit included in the intraoral camera system is typically realized as an LSI, which is an integrated circuit. These may be made into one chip individually, or may be made into one chip so as to include part or all of them.
  • circuit integration is not limited to LSIs, and may be realized with dedicated circuits or general-purpose processors.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connections and settings of the circuit cells inside the LSI may be used.
  • each component may be implemented by dedicated hardware or by executing a software program suitable for each component.
  • Each component may be realized by reading and executing a software program recorded in a recording medium such as a hard disk or a semiconductor memory by a program execution unit such as a CPU or processor.
  • this image processing method and the like may be realized as an image display method and the like executed by an intraoral camera system. Also, the present image processing method and the like may be implemented as an intraoral camera, a mobile terminal, or a cloud server included in an intraoral camera system.
  • the division of functional blocks in the block diagram is an example, and a plurality of functional blocks can be realized as one functional block, one functional block can be divided into a plurality of functional blocks, and some functions can be moved to other functional blocks.
  • single hardware or software may process the functions of a plurality of functional blocks having similar functions in parallel or in a time-sharing manner.
  • each step in the flow chart is executed is for illustrative purposes in order to specifically describe the image processing method, etc., and orders other than the above may be used. Also, some of the above steps may be executed concurrently (in parallel) with other steps.
  • the present image processing method and the like are not limited to this aspect. As long as it does not deviate from the gist of the description regarding this image processing method, etc., various modifications that a person skilled in the art can think of, or a form constructed by combining the constituent elements of different forms, are also part of one or more aspects. may be included within the scope.
  • This image processing method and the like can be applied to an intraoral camera system.
  • each processing unit provided in the oral cavity cleaning apparatus is typically implemented as an LSI, which is an integrated circuit. These may be made into one chip individually, or may be made into one chip so as to include part or all of them.
  • circuit integration is not limited to LSIs, and may be realized with dedicated circuits or general-purpose processors.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connections and settings of the circuit cells inside the LSI may be used.
  • each component may be configured with dedicated hardware or realized by executing a software program suitable for each component.
  • Each component may be realized by reading and executing a software program recorded in a recording medium such as a hard disk or a semiconductor memory by a program execution unit such as a CPU or processor.
  • one aspect of the present disclosure may be implemented as a mouthwash method executed by a mouthwash device, a control method of a mouthwash device, or the like.
  • one aspect of the present disclosure may be a computer program that causes a computer to execute each characteristic step included in the oral cavity cleaning method or the control method.
  • the oral cavity cleaning device may be implemented as a single device, or may be implemented as a plurality of devices.
  • each component of the oral cavity cleaning device may be distributed to the plurality of devices in any way.
  • the control device may be included in the mobile terminal.
  • at least one of the functional configurations of the control device may be implemented by a mobile terminal or a server (for example, a cloud server) capable of communicating with the mobile terminal.
  • the communication method between the plurality of devices is not particularly limited, and may be wireless communication or wired communication. Also, wireless and wired communications may be combined between devices.
  • the cloud server is a server that can communicate with the mobile terminal via the Internet or the like, and may provide the mobile terminal with an application for using the intraoral camera. For example, a user downloads an application from a cloud server and installs it on a mobile terminal. Also, the cloud server may acquire the image captured by the oral cavity cleaning device via the mobile terminal.
  • the division of functional blocks in the block diagram is an example, and a plurality of functional blocks can be realized as one functional block, one functional block can be divided into a plurality of functional blocks, and some functions can be moved to other functional blocks.
  • single hardware or software may process the functions of a plurality of functional blocks having similar functions in parallel or in a time-sharing manner.
  • each step in the flowchart is executed is for illustrative purposes in order to specifically describe the present disclosure, and orders other than the above may be used. Also, some of the above steps may be executed concurrently (in parallel) with other steps.
  • the present disclosure can be applied to oral cleaning devices.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Dentistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)

Abstract

An oral-cavity cleaning device (100) cleans teeth by causing a sprayed cleaning solution to collide with the teeth, the oral-cavity cleaning device (100) comprising: a cleaning solution spraying unit (103) that sprays the cleaning solution in a prescribed direction from a spray port (103a); a spray controller (153) that controls a flow rate and/or a spray pressure of the cleaning solution; a light projection unit (LED illumination unit (102)) that projects projection light in a projection region that encompasses a prescribed point and that extends across a line of extension; and a light detection unit (camera unit (101)) that encompasses a prescribed point and that performs detection in a two-dimensional detection region (101a) contained in the projection region. The spray controller (153) estimates a dental plaque portion in the detection region (101a) on the basis of a detection result of the camera unit (101), determines a control amount on the basis of the dental plaque portion estimation result, and sprays the cleaning solution from the spray port (103a) so as to achieve the determined control amount.

Description

口腔洗浄装置、制御装置、口腔洗浄方法、及び、プログラムMOUTH CLEANING DEVICE, CONTROL DEVICE, MOUTH CLEANING METHOD, AND PROGRAM
 本開示は、口腔洗浄装置、制御装置、口腔洗浄方法、及び、プログラムに関する。 The present disclosure relates to an oral cleaning device, a control device, an oral cleaning method, and a program.
 洗浄液のような液体を用いる口腔洗浄装置として、特許文献1には、口腔内にファインバブルを有する液体を供給して、歯牙を磨く工程と漱ぎの工程とを一体化させることで、口腔内の洗浄と歯牙表面の洗浄とを一斉に行える洗浄装置が開示されている。 As an oral cavity cleaning device using a liquid such as a cleaning liquid, Patent Document 1 discloses that a liquid having fine bubbles is supplied into the oral cavity, and the steps of brushing and rinsing the teeth are integrated, thereby cleaning the oral cavity. A cleaning device is disclosed that can simultaneously clean and clean the tooth surface.
特開2017-118940号公報JP 2017-118940 A 特開2019-141582号公報JP 2019-141582 A
 ところで、洗浄液のような液体を用いる口腔洗浄装置では、洗浄力の制御が重要となる。本開示は、洗浄力を適切に制御できる口腔洗浄装置等を提供する。 By the way, it is important to control the detergency in an oral cleaning device that uses a liquid such as a cleaning liquid. The present disclosure provides an oral cavity cleaning device and the like that can appropriately control cleaning power.
 本開示の一態様に係る口腔洗浄装置は、歯牙を洗浄する口腔洗浄装置であって、歯牙洗浄部を介して歯牙に作用する洗浄力を制御する洗浄制御部と、前記歯牙洗浄部による洗浄効果がある洗浄有効領域を内包する照射領域に照射光を照射する光照射部と、前記照射光に応じて発光した検出光を、前記洗浄有効領域を内包し前記照射領域に含まれる二次元状の検出領域内で検出する光検出部と、を備え、前記洗浄制御部は、前記光検出部の検出結果に基づいて、前記検出領域内の歯垢部分を推定し、前記歯垢部分の推定結果に基づいて、前記洗浄力の制御量を決定し、前記歯牙洗浄部の洗浄力が決定した制御量となるように前記歯牙洗浄部を制御する。 An oral cavity cleaning device according to an aspect of the present disclosure is an oral cavity cleaning device for cleaning teeth, comprising: a cleaning control unit that controls a cleaning force acting on teeth via a tooth cleaning unit; and a cleaning effect by the tooth cleaning unit. a light irradiation unit that irradiates irradiation light onto an irradiation region that includes a cleaning effective region; and a light detection unit that detects within the detection area, wherein the cleaning control unit estimates the plaque portion within the detection area based on the detection result of the light detection unit, and estimates the plaque portion. Based on, the control amount of the cleaning power is determined, and the tooth cleaning unit is controlled so that the cleaning power of the tooth cleaning unit becomes the determined control amount.
 本開示の一態様に係る制御装置は、歯牙洗浄部により歯牙を洗浄する口腔洗浄装置用の制御装置であって、前記歯牙洗浄部が歯牙に作用する洗浄力を制御する洗浄制御部と、前記歯牙洗浄部による洗浄効果がある洗浄有効領域を内包する照射領域に照射された照射光に応じて発光した検出光を、前記洗浄有効領域を内包し前記照射領域に含まれる二次元状の検出領域内で検出した検出結果を取得する取得部と、を備え、前記洗浄制御部は、取得した前記検出結果に基づいて、前記検出領域内の歯垢部分を推定し、前記歯垢部分の推定結果に基づいて、前記歯牙洗浄部を介して歯牙に作用する洗浄力の制御量を決定し、前記洗浄力が、決定した制御量となるように制御する。 A control device according to an aspect of the present disclosure is a control device for an oral cavity cleaning device that cleans teeth with a tooth cleaning unit, comprising: a cleaning control unit that controls a cleaning force that the tooth cleaning unit acts on the teeth; A two-dimensional detection area that includes the effective cleaning area and is included in the irradiation area includes the detection light emitted in response to the irradiation light applied to the irradiation area that includes the effective cleaning area that has the cleaning effect of the tooth cleaning unit. and an acquisition unit configured to acquire detection results detected within the detection area, wherein the cleaning control unit estimates a plaque portion within the detection region based on the acquired detection results, and estimates the plaque portion. Based on, the control amount of the cleaning power acting on the teeth via the tooth cleaning unit is determined, and the cleaning power is controlled so as to be the determined control amount.
 本開示の一態様に係るプログラムは、歯牙洗浄部により歯牙を洗浄する口腔洗浄装置用の制御方法をコンピュータに実行させるためのプログラムであって、前記制御方法では、前記歯牙洗浄部による洗浄効果がある洗浄有効領域を内包する照射領域に照射された照射光に応じて発光した検出光を、前記洗浄有効領域を内包し前記照射領域に含まれる二次元状の検出領域内で検出した検出結果を取得し、取得した前記検出結果に基づいて、前記検出領域内の歯垢部分を推定し、前記歯垢部分の推定結果に基づいて、前記歯牙洗浄部を介して歯牙に作用する洗浄力の制御量を決定し、前記洗浄力が、決定した制御量となるように制御する。 A program according to an aspect of the present disclosure is a program for causing a computer to execute a control method for an oral cavity cleaning device that cleans teeth with a tooth cleaning unit, and in the control method, the cleaning effect of the tooth cleaning unit is A detection result obtained by detecting, in a two-dimensional detection area including the effective cleaning area and included in the irradiation area, the detection light emitted in response to the irradiation light irradiated to the irradiation area including the effective cleaning area. and estimating the plaque portion within the detection area based on the acquired detection result, and controlling the cleaning force acting on the tooth via the tooth cleaning unit based on the estimation result of the plaque portion. The amount is determined, and the detergency is controlled so as to be the determined control amount.
 本開示の一態様に係る口腔洗浄方法は、歯牙洗浄部により歯牙を洗浄する口腔洗浄装置を用いた口腔洗浄方法であって、前記歯牙洗浄部による洗浄効果がある洗浄有効領域を内包する照射領域に照射された照射光に応じて発光した検出光を、前記洗浄有効領域を内包し前記照射領域に含まれる二次元状の検出領域内で検出した検出結果を取得し、取得した前記検出結果に基づいて、前記検出領域内の歯垢部分を推定し、前記歯垢部分の推定結果に基づいて、前記歯牙洗浄部を介して歯牙に作用する洗浄力の制御量を決定し、前記洗浄力が、決定した制御量となるように制御する。 An oral cavity cleaning method according to an aspect of the present disclosure is an oral cavity cleaning method using an oral cavity cleaning apparatus that cleans teeth with a tooth cleaning unit, wherein an irradiation area includes a cleaning effective area having a cleaning effect by the tooth cleaning unit. a detection result obtained by detecting the detection light emitted in accordance with the irradiation light applied to the area within a two-dimensional detection area that includes the effective cleaning area and is included in the irradiation area, and the obtained detection result is Based on the result of estimating the dental plaque portion within the detection area, determining a control amount of the cleaning power acting on the tooth via the tooth cleaning unit based on the estimation result of the dental plaque portion, and determining the cleaning power , is controlled to be the determined control amount.
 本開示の口腔洗浄装置等によれば、適切に制御された洗浄力によって、口腔内の洗浄を行うことができる。 According to the oral cavity cleaning device and the like of the present disclosure, the oral cavity can be cleaned with appropriately controlled cleaning power.
図1は、実施の形態に係る口腔洗浄装置等の使用例を示す図である。FIG. 1 is a diagram showing a usage example of an oral cavity cleaning device, etc., according to an embodiment. 図2は、実施の形態に係る口腔洗浄装置等の機能構成を示すブロック図である。FIG. 2 is a block diagram showing the functional configuration of the oral cavity cleaning device etc. according to the embodiment. 図3は、実施の形態に係る口腔洗浄装置の動作例を示すフローチャートである。FIG. 3 is a flow chart showing an operation example of the mouthwash device according to the embodiment. 図4は、実施の形態に係る口腔洗浄装置の歯垢検出噴射モードでの動作例を示すフローチャートである。FIG. 4 is a flowchart showing an operation example in the plaque detection injection mode of the oral cavity cleaning apparatus according to the embodiment. 図5は、実施の形態に係る口腔洗浄装置での検出結果と制御量との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the detection result and the control amount in the mouthwash device according to the embodiment. 図6は、実施の形態に係る口腔洗浄装置での検出結果と制御量との関係を示す別のグラフである。FIG. 6 is another graph showing the relationship between the detection result and the control amount in the mouthwash device according to the embodiment. 図7は、実施の形態の変形例1に係る口腔洗浄装置等の機能構成を示すブロック図である。FIG. 7 is a block diagram showing the functional configuration of an oral cavity cleaning device and the like according to Modification 1 of the embodiment. 図8は、実施の形態の変形例1に係る口腔洗浄装置の動作例を示すフローチャートである。FIG. 8 is a flowchart showing an operation example of the mouthwash apparatus according to Modification 1 of the embodiment. 図9は、実施の形態の変形例1に係る口腔洗浄装置の歯垢検出噴射モードかつ不調検出噴射モードでの動作例を示すフローチャートである。FIG. 9 is a flowchart showing an operation example in the plaque detection injection mode and the malfunction detection injection mode of the oral cavity cleaning apparatus according to Modification 1 of the embodiment. 図10は、実施の形態の変形例2に係る口腔洗浄装置等の機能構成を示すブロック図である。FIG. 10 is a block diagram showing the functional configuration of an oral cavity cleaning device etc. according to Modification 2 of the embodiment. 図11Aは、実施の形態に係る口腔内カメラシステムにおける口腔内カメラの斜視図である。11A is a perspective view of an intraoral camera in the intraoral camera system according to the embodiment; FIG. 図11Bは、実施の形態に係る口腔内カメラシステムにおける口腔内カメラに組み込まれた撮影光学系を概略的に示す断面図である。FIG. 11B is a cross-sectional view schematically showing an imaging optical system incorporated in the intraoral camera in the intraoral camera system according to the embodiment; 図12は、実施の形態に係る口腔内カメラシステムの概略的構成図である。FIG. 12 is a schematic configuration diagram of an intraoral camera system according to an embodiment. 図13は、実施の形態に係る口腔内カメラシステムにおける口腔内撮影動作の流れを示す図である。FIG. 13 is a diagram showing the flow of intraoral imaging operation in the intraoral camera system according to the embodiment. 図14は、実施の形態に係る携帯端末の機能ブロック図である。FIG. 14 is a functional block diagram of the mobile terminal according to the embodiment; 図15は、実施の形態に係る口腔内カメラシステムを用いてユーザが撮影している状態を示す図である。FIG. 15 is a diagram showing a state in which a user is photographing using the intraoral camera system according to the embodiment. 図16Aは、図15に示した状態で撮影した前歯の第1RGB画像の一例を示す図である。FIG. 16A is a diagram showing an example of a first RGB image of the front tooth photographed in the state shown in FIG. 15; 図16Bは、青色光カットフィルタがない状態で、青色光の波長域を含む光を歯牙に照射したときの、歯垢領域と歯牙の領域の色差データの一例を示す図である。FIG. 16B is a diagram showing an example of color difference data between a plaque region and a tooth region when the tooth is irradiated with light including a blue light wavelength region without a blue light cut filter. 図16Cは、青色光カットフィルタを用いて、青色光の波長域を含む光を歯牙に照射したときの、歯垢領域と歯牙の領域の色差データの一例を示す図である。FIG. 16C is a diagram showing an example of color difference data between a plaque region and a tooth region when the tooth is irradiated with light including a blue light wavelength region using a blue light cut filter. 図16Dは、青色光カットフィルタがない状態で、青色光の波長域を含む光と白色光を歯牙に照射したときの、歯垢領域と歯牙の領域の色差データの一例を示す図である。FIG. 16D is a diagram showing an example of color difference data between a plaque region and a tooth region when the tooth is irradiated with light including a wavelength range of blue light and white light without a blue light cut filter. 図17Aは、図15に示した状態で撮影した前歯の第2RGB画像の一例を示す図である。FIG. 17A is a diagram showing an example of a second RGB image of front teeth captured in the state shown in FIG. 図17Bは、青色光カットフィルタがない状態で、青色光の波長域を含む光を歯牙に照射したとき、露出制御処理及びホワイトバランス調整処理を行った後の、歯垢領域と歯牙の領域の色差データの一例を示す図である。FIG. 17B shows the difference between the plaque region and the tooth region after performing the exposure control processing and the white balance adjustment processing when the teeth are irradiated with light including the wavelength range of blue light without a blue light cut filter. It is a figure which shows an example of color difference data. 図17Cは、青色光カットフィルタを用いて、青色光の波長域を含む光を歯牙に照射したとき、露出制御処理及びホワイトバランス調整処理を行った後の、歯垢領域と歯牙の領域の色差データの一例を示す図である。FIG. 17C shows the color difference between the dental plaque region and the tooth region after performing the exposure control processing and the white balance adjustment processing when the tooth is irradiated with light including the blue light wavelength region using the blue light cut filter. It is a figure which shows an example of data. 図17Dは、青色光カットフィルタがない状態で、青色光の波長域を含む光と白色光を歯牙に照射したとき、露出制御処理及びホワイトバランス調整処理を行った後の、歯垢領域と歯牙の領域の色差データの一例を示す図である。FIG. 17D shows the plaque region and the tooth after exposure control processing and white balance adjustment processing when the tooth is irradiated with light including the wavelength range of blue light and white light without a blue light cut filter. 2 is a diagram showing an example of color difference data of an area of . 図18は、図15に示した状態で撮影した前歯の第4RGB画像の一例を示す図である。FIG. 18 is a diagram showing an example of the fourth RGB image of the front teeth photographed in the state shown in FIG. 図19は、図15に示した状態で撮影した前歯の第4RGB画像の他の一例を示す図である。FIG. 19 is a diagram showing another example of the fourth RGB image of the front teeth photographed in the state shown in FIG. 図20は、携帯端末1070における画像処理のフローチャートである。FIG. 20 is a flowchart of image processing in the mobile terminal 1070. FIG.
 本開示の第1態様に係る口腔洗浄装置は、歯牙を洗浄する口腔洗浄装置であって、歯牙洗浄部を介して歯牙に作用する洗浄力を制御する洗浄制御部と、歯牙洗浄部による洗浄効果がある洗浄有効領域を内包する照射領域に照射光を照射する光照射部と、照射光に応じて発光した検出光を、洗浄有効領域を内包し照射領域に含まれる二次元状の検出領域内で検出する光検出部と、を備え、洗浄制御部は、光検出部の検出結果に基づいて、検出領域内の歯垢部分を推定し、歯垢部分の推定結果に基づいて、洗浄力の制御量を決定し、歯牙洗浄部の洗浄力が決定した制御量となるように歯牙洗浄部を制御する。 An oral cavity cleaning device according to a first aspect of the present disclosure is an oral cavity cleaning device for cleaning teeth, comprising: a cleaning control unit for controlling cleaning force acting on the teeth via the tooth cleaning unit; and a cleaning effect by the tooth cleaning unit. A light irradiator that irradiates an irradiation area that includes an effective cleaning area with irradiation light, and a detection light emitted in response to the irradiation light is emitted in a two-dimensional detection area that includes the effective cleaning area and is included in the irradiation area. and a light detection unit that detects with the light detection unit, the cleaning control unit estimates the plaque portion within the detection area based on the detection result of the light detection unit, and determines the cleaning power based on the estimation result of the plaque portion. A control amount is determined, and the tooth cleaning unit is controlled so that the detergency of the tooth cleaning unit becomes the determined control amount.
 このような口腔洗浄装置は、洗浄力を、歯垢部分の推定結果に基づいて決定した制御量とすることができる。この歯垢部分の推定結果は、照射光が照射された際に、その照射光に応じて発光した検出光を二次元状の検出領域で検出することで推定されている。例えば、照射光が歯垢を選択的に発色させることができる光であれば、検出光として、歯垢が発色されて生じた光を検出するようにすれば、歯垢部分の検出精度を高めることができる。このようにして、検出領域内の歯垢部分を適切に推定して、その検出領域に対する、推定された歯垢部分に応じた接触量及び接触圧の少なくとも一方の制御量を決定することができる。よって、口腔内洗浄装置では、適切に制御された洗浄材の接触量及び接触圧によって、口腔内の洗浄を行うことができる。 In such an oral cavity cleaning device, the cleaning power can be a control amount determined based on the estimated result of the plaque portion. The estimation result of the dental plaque portion is estimated by detecting the detection light emitted in accordance with the irradiation light in a two-dimensional detection area when the irradiation light is irradiated. For example, if the irradiation light is light capable of selectively coloring dental plaque, detecting the light generated by the coloring of dental plaque as the detection light increases the detection accuracy of the dental plaque portion. be able to. In this way, it is possible to appropriately estimate the plaque portion within the detection area and determine the control amount of at least one of the contact amount and the contact pressure for the detection area according to the estimated plaque portion. . Therefore, the oral cavity cleaning apparatus can clean the oral cavity with the appropriately controlled contact amount and contact pressure of the cleaning material.
 また、例えば、本開示の第2態様に係る口腔洗浄装置は、第1態様に記載の口腔洗浄装置であって、歯牙洗浄部はブラシであり、洗浄制御部は、ブラシの洗浄力としてのブラシの駆動モードを制御する駆動制御部を備える。 Further, for example, an oral cavity cleaning device according to a second aspect of the present disclosure is the oral cavity cleaning device according to the first aspect, wherein the tooth cleaning unit is a brush, and the cleaning control unit is a brush as a cleaning power of the brush. and a drive control unit that controls the drive mode of.
 このような口腔洗浄装置は、ブラシの駆動量を、歯垢部分の推定結果に基づいて決定した制御量とすることができる。この歯垢部分の推定結果は、照射光が照射された際に、その照射光に応じて発光した検出光を二次元状の検出領域で検出することで推定されている。例えば、照射光が歯垢を選択的に発色させることができる光であれば、検出光として、歯垢が発色されて生じた光を検出するようにすれば、歯垢部分の検出精度を高めることができる。このようにして、検出領域内の歯垢部分を適切に推定して、その検出領域に対する、推定された歯垢部分に応じた駆動量の制御量を決定することができる。よって、口腔内洗浄装置では、適切に制御されたブラシの駆動量によって、口腔内の洗浄を行うことができる。 In such an oral cavity cleaning device, the drive amount of the brush can be a control amount determined based on the estimated result of the dental plaque portion. The estimation result of the dental plaque portion is estimated by detecting the detection light emitted in accordance with the irradiation light in a two-dimensional detection area when the irradiation light is irradiated. For example, if the irradiation light is light capable of selectively coloring dental plaque, detecting the light generated by the coloring of dental plaque as the detection light increases the detection accuracy of the dental plaque portion. be able to. In this way, it is possible to appropriately estimate the plaque portion within the detection region and determine the control amount of the drive amount for the detection region according to the estimated plaque portion. Therefore, in the oral cavity cleaning apparatus, the oral cavity can be cleaned by appropriately controlling the driving amount of the brush.
 また、例えば、本開示の第3態様に係る口腔洗浄装置は、第1態様に記載の口腔洗浄装置であって、歯牙洗浄部は、噴射口から歯牙に向けて噴射した洗浄液を歯牙に衝突させる水流式の洗浄液噴射部であり、洗浄制御部は、洗浄液噴射部の洗浄力としての洗浄液の流量、洗浄液及び噴射頻度の噴射圧の少なくとも一方を制御する噴射制御部として機能する。 Further, for example, the oral cavity cleaning device according to the third aspect of the present disclosure is the oral cavity cleaning device according to the first aspect, wherein the tooth cleaning unit causes the cleaning liquid ejected from the ejection port toward the teeth to collide with the teeth. The washing controller functions as an injection controller that controls at least one of the flow rate of the washing liquid as the washing power of the washing liquid injection section, the washing liquid, and the injection pressure of the injection frequency.
 このような口腔洗浄装置は、噴射口から噴射される洗浄液の流量、洗浄液及び噴射頻度の少なくともいずれかを、歯垢部分の推定結果に基づいて決定した制御量とすることができる。この歯垢部分の推定結果は、照射光が照射された際に、その照射光に応じて発光した検出光を二次元状の検出領域で検出することで推定されている。例えば、照射光が歯垢を選択的に発色させることができる光であれば、検出光として、歯垢が発色されて生じた光を検出するようにすれば、歯垢部分の検出精度を高めることができる。このようにして、検出領域内の歯垢部分を適切に推定して、その検出領域に対する、推定された歯垢部分に応じた流量、洗浄液及び噴射頻度の少なくともいずれかの制御量を決定することができる。よって、口腔内洗浄装置では、適切に制御された洗浄液の流量、洗浄液及び噴射頻度によって、口腔内の洗浄を行うことができる。また、噴射頻度については、歯肉部分の状態に応じた適切な噴射頻度とすることにより、言い換えると、歯肉部分の状態に応じた適切な間欠噴射を行うことにより、不調をきたしている場合の歯肉部分に、更に状態を悪化させるようなダメージを与えることを抑制できる効果がある。 In such an oral cavity cleaning device, at least one of the flow rate of the cleaning liquid ejected from the ejection port, the cleaning liquid, and the ejection frequency can be set as a control amount determined based on the estimation result of the dental plaque portion. The estimation result of the dental plaque portion is estimated by detecting the detection light emitted in accordance with the irradiation light in a two-dimensional detection area when the irradiation light is irradiated. For example, if the irradiation light is light capable of selectively coloring dental plaque, detecting the light generated by the coloring of dental plaque as the detection light increases the detection accuracy of the dental plaque portion. be able to. Thus, appropriately estimating the dental plaque portion within the detection area and determining the control amount of at least one of the flow rate, the washing liquid, and the injection frequency corresponding to the estimated dental plaque portion for the detection area. can be done. Therefore, in the oral cavity cleaning apparatus, the oral cavity can be cleaned by appropriately controlling the flow rate of the cleaning liquid, the cleaning liquid, and the ejection frequency. In addition, as for the injection frequency, by setting an appropriate injection frequency according to the state of the gingiva, in other words, by performing an appropriate intermittent injection according to the state of the gingiva, it is possible to reduce the gingival It has the effect of suppressing damage that would further aggravate the condition.
 また、例えば、本開示の第4態様に係る口腔洗浄装置は、第3態様に記載の口腔洗浄装置であって、噴射制御部は、検出結果に基づいて、検出領域内の歯垢部分の面積を検出領域内における、検出光が検出された部分の面積によって算出し、算出した面積が大きいほど大きくなるように、噴射口から噴射される洗浄液の流量及び噴射圧の少なくとも一方の制御量を決定する。 Further, for example, the oral cavity cleaning device according to the fourth aspect of the present disclosure is the oral cavity cleaning device according to the third aspect, in which the injection control unit determines, based on the detection result, the area of the plaque portion within the detection region is calculated from the area of the portion where the detection light is detected in the detection area, and the control amount of at least one of the flow rate and injection pressure of the cleaning liquid injected from the injection port is determined so that the larger the calculated area, the larger the control amount. do.
 これによれば、検出領域内の歯垢部分を、算出した面積として適切に推定して、その検出領域に対する、推定された歯垢部分の面積に応じた流量及び噴射圧の少なくとも一方の制御量を決定することができる。よって、口腔内洗浄装置では、適切に制御された洗浄液の流量及び噴射圧によって、口腔内の洗浄を行うことができる。 According to this, the plaque portion within the detection region is appropriately estimated as the calculated area, and the control amount of at least one of the flow rate and the injection pressure corresponding to the estimated area of the plaque portion for the detection region. can be determined. Therefore, the oral cavity cleaning apparatus can clean the oral cavity with the appropriately controlled flow rate and injection pressure of the cleaning liquid.
 また、例えば、本開示の第5態様に係る口腔洗浄装置は、第3態様に記載の口腔洗浄装置であって、噴射制御部は、検出結果に基づいて、検出領域内の歯垢部分の付着量を検出領域内における、検出光の輝度値によって算出し、算出した付着量が大きいほど大きくなるように、噴射口から噴射される洗浄液の流量及び噴射圧の少なくとも一方の制御量を決定する。 Further, for example, the oral cavity cleaning device according to the fifth aspect of the present disclosure is the oral cavity cleaning device according to the third aspect, in which the injection control unit determines, based on the detection result, The amount is calculated from the luminance value of the detected light within the detection area, and the control amount of at least one of the flow rate and the injection pressure of the cleaning liquid injected from the injection port is determined so that the larger the calculated adhesion amount, the larger the amount.
 これによれば、検出領域内の歯垢部分を、検出光の輝度値によって算出した付着量として適切に推定して、その検出領域に対する、推定された歯垢部分の付着量に応じた流量及び噴射圧の少なくとも一方の制御量を決定することができる。よって、口腔内洗浄装置では、適切に制御された洗浄液の流量及び噴射圧によって、口腔内の洗浄を行うことができる。 According to this, the plaque portion in the detection area is appropriately estimated as the amount of adhesion calculated from the luminance value of the detection light, and the flow rate and the amount corresponding to the estimated amount of plaque adhesion to the detection area Control variables for at least one of the injection pressures can be determined. Therefore, the oral cavity cleaning apparatus can clean the oral cavity with the appropriately controlled flow rate and injection pressure of the cleaning liquid.
 また、例えば、本開示の第6態様に係る口腔洗浄装置は、第3~第5態様のいずれか1態様に記載の口腔洗浄装置であって、照射光は、歯垢部分に含まれる細菌の代謝産物を励起させる波長の光を含み、検出光は、励起された代謝産物が発する蛍光である。 Further, for example, an oral cavity cleaning device according to a sixth aspect of the present disclosure is the oral cavity cleaning device according to any one of the third to fifth aspects, wherein the irradiation light kills bacteria contained in dental plaque. The wavelength of light that excites the metabolite is included, and the detected light is the fluorescence emitted by the excited metabolite.
 これによれば、照射光が歯垢部分に含まれる細菌の代謝産物を励起させ、励起された代謝産物が発する蛍光を検出光として検出できるので、歯垢が選択的に発した光を検出して歯垢部分の検出精度を高めることができる。 According to this, the irradiated light excites the metabolites of bacteria contained in the dental plaque, and the fluorescence emitted by the excited metabolites can be detected as the detection light, so that the light selectively emitted by the dental plaque can be detected. can improve the detection accuracy of the plaque portion.
 また、例えば、本開示の第7態様に係る口腔洗浄装置は、第3~第6態様のいずれか1態様に記載の口腔洗浄装置であって、噴射制御部は、光検出部が検出光の検出を開始してから終了するまでの検出期間と少なくとも一部が重複する禁止期間において、噴射口からの洗浄液の噴射を禁止する。 Further, for example, an oral cavity cleaning device according to a seventh aspect of the present disclosure is the oral cavity cleaning device according to any one of the third to sixth aspects, wherein the injection control unit is configured such that the light detection unit emits the detection light. Injection of the cleaning liquid from the injection port is prohibited during a prohibition period that at least partially overlaps with a detection period from the start to the end of detection.
 これによれば、噴射された洗浄液は飛沫として飛散しやすいため、検出に影響を及ぼす可能性があるが、洗浄液の噴射を禁止する禁止期間を設けて、その期間内で洗浄液が飛散しにくい状況を作り出して検出光の検出を行うことができる。 According to this, the sprayed cleaning liquid is likely to scatter as droplets, which may affect detection. can be created to detect the detected light.
 また、例えば、本開示の第8態様に係る口腔洗浄装置は、第1~第7態様のいずれか1態様に記載の口腔洗浄装置であって、検出光の明度が所定値以下の状態が所定時間以上継続した場合に、(i)検出領域と光検出部との間における検出光、又は、(ii)光照射部と照射領域との間における照射光の少なくとも一方を遮る遮蔽物が存在すると判定する判定部と、判定部の判定結果を出力する出力部と、をさらに備える。 Further, for example, an oral cavity cleaning device according to an eighth aspect of the present disclosure is the oral cavity cleaning device according to any one of the first to seventh aspects, wherein the brightness of the detected light is a predetermined value or less. If there is a shield that blocks at least one of (i) the detection light between the detection region and the light detection unit, or (ii) the irradiation light between the light irradiation unit and the irradiation region, when it continues for a period of time or longer. It further includes a determination unit that makes determinations and an output unit that outputs determination results of the determination unit.
 これによれば、(i)検出領域と光検出部との間における検出光、又は、(ii)光照射部と照射領域との間における照射光の少なくとも一方を遮る遮蔽物の存在を、検出光の明度が所定値以下の状態が所定時間以上継続したか否かによって判定して、判定結果を出力できる。 According to this, (i) the detection light between the detection region and the light detection unit, or (ii) the presence of a shield that blocks at least one of the irradiation light between the light irradiation unit and the irradiation region is detected. It is possible to determine whether or not the state in which the brightness of the light is equal to or less than a predetermined value has continued for a predetermined time or longer, and output the determination result.
 また、例えば、本開示の第9態様に係る口腔洗浄装置は、第1~第8態様のいずれか1態様に記載の口腔洗浄装置であって、洗浄制御部は、光検出部の検出結果に基づいて、検出領域内の一部の領域であって、歯牙洗浄部による洗浄効果がある洗浄有効領域において歯垢部分を推定し、歯垢部分の推定結果に基づいて、洗浄力の制御量を決定する。 Further, for example, an oral cavity cleaning device according to a ninth aspect of the present disclosure is the oral cavity cleaning device according to any one of the first to eighth aspects, wherein the cleaning control unit detects Based on this, the dental plaque portion is estimated in a cleaning effective region which is a partial region within the detection region and has a cleaning effect by the tooth cleaning section, and based on the estimation result of the dental plaque portion, the control amount of cleaning power is determined. decide.
 また、本開示の第10態様に係る制御装置は、歯牙洗浄部により歯牙を洗浄する口腔洗浄装置用の制御装置であって、歯牙洗浄部が歯牙に作用する洗浄力を制御する洗浄制御部と、歯牙洗浄部による洗浄効果がある洗浄有効領域を内包する照射領域に照射された照射光に応じて発光した検出光を、洗浄有効領域を内包し照射領域に含まれる二次元状の検出領域内で検出した検出結果を取得する取得部と、を備え、洗浄制御部は、取得した検出結果に基づいて、検出領域内の歯垢部分を推定し、歯垢部分の推定結果に基づいて、歯牙洗浄部を介して歯牙に作用する洗浄力の制御量を決定し、洗浄力が、決定した制御量となるように制御する。 Further, a control device according to a tenth aspect of the present disclosure is a control device for an oral cavity cleaning device that cleans teeth by a tooth cleaning unit, and includes a cleaning control unit that controls the cleaning force that the tooth cleaning unit acts on the teeth. , the detection light emitted in response to the irradiation light irradiated to the irradiation area including the effective cleaning area having the cleaning effect by the tooth cleaning unit is detected within the two-dimensional detection area including the effective cleaning area and included in the irradiation area. and an acquisition unit for acquiring the detection result detected by the cleaning control unit, based on the acquired detection result, estimates the plaque portion within the detection region, and based on the estimation result of the plaque portion, A control amount of the cleaning power acting on the tooth through the cleaning unit is determined, and the cleaning power is controlled to be the determined control amount.
 このような制御装置は、制御装置が用いられる口腔洗浄装置に、上記に記載の口腔洗浄装置と同様の効果を奏させることができる。 Such a control device can make the mouthwash device using the control device have the same effect as the mouthwash device described above.
 また、本開示の第11態様に係るプログラムは、歯牙洗浄部により歯牙を洗浄する口腔洗浄装置用の制御方法をコンピュータに実行させるためのプログラムであって、制御方法では、歯牙洗浄部による洗浄効果がある洗浄有効領域を内包する照射領域に照射された照射光に応じて発光した検出光を、洗浄有効領域を内包し照射領域に含まれる二次元状の検出領域内で検出した検出結果を取得し、取得した検出結果に基づいて、検出領域内の歯垢部分を推定し、歯垢部分の推定結果に基づいて、歯牙洗浄部を介して歯牙に作用する洗浄力の制御量を決定し、洗浄力が、決定した制御量となるように制御する。 Further, a program according to an eleventh aspect of the present disclosure is a program for causing a computer to execute a control method for an oral cavity cleaning apparatus that cleans teeth by a tooth cleaning unit, wherein the control method includes the cleaning effect of the tooth cleaning unit Acquisition of the detection result obtained by detecting the detection light emitted in response to the irradiation light irradiated to the irradiation area that includes the effective cleaning area and detecting it in the two-dimensional detection area that includes the effective cleaning area and is included in the irradiation area. estimating the plaque portion within the detection area based on the acquired detection result, determining a control amount of the cleaning force acting on the tooth via the tooth cleaning unit based on the estimation result of the plaque portion, The detergency is controlled so as to be the determined control amount.
 このようなプログラムは、コンピュータを用いて、上記に記載の制御装置と同様の効果を奏することができる。 Such a program can use a computer to achieve the same effects as the control device described above.
 また、本開示の第12態様に係る口腔洗浄方法は、歯牙洗浄部により歯牙を洗浄する口腔洗浄装置を用いた口腔洗浄方法であって、歯牙洗浄部による洗浄効果がある洗浄有効領域を内包する照射領域に照射された照射光に応じて発光した検出光を、洗浄有効領域を内包し照射領域に含まれる二次元状の検出領域内で検出した検出結果を取得し、取得した検出結果に基づいて、検出領域内の歯垢部分を推定し、歯垢部分の推定結果に基づいて、歯牙洗浄部を介して歯牙に作用する洗浄力の制御量を決定し、洗浄力が、決定した制御量となるように制御する。 In addition, an oral cavity cleaning method according to a twelfth aspect of the present disclosure is an oral cavity cleaning method using an oral cavity cleaning device that cleans teeth with a tooth cleaning unit, and includes a cleaning effective area having a cleaning effect by the tooth cleaning unit. A detection result obtained by detecting the detection light emitted in accordance with the irradiation light applied to the irradiation region in a two-dimensional detection region that includes the effective cleaning region and is included in the irradiation region, and based on the obtained detection result Based on the result of estimating the plaque portion, the control amount of the cleaning force acting on the tooth via the tooth cleaning unit is determined, and the cleaning force is determined by the determined control amount. Control so that
 このような口腔洗浄方法では、上記に記載の口腔洗浄装置と同様の効果を奏することができる。 With such an oral cavity cleaning method, it is possible to achieve the same effect as the oral cavity cleaning device described above.
 また、本開示の別の一態様に係る口腔洗浄装置は、噴射した洗浄液を歯牙に衝突させて歯牙を洗浄する口腔洗浄装置であって、洗浄液を噴射口から所定方向に向けて噴射する洗浄液噴射部と、噴射口から噴射される洗浄液の流量及び噴射圧の少なくとも一方を制御する噴射制御部と、噴射口から所定方向に延長された延長線上の所定点を内包する検出領域であって、延長線に交差して二次元状に広がる検出領域で画像を検出する光検出部と、を備え、噴射制御部は、検出された画像に歯肉部分が含まれる場合に、検出された画像に基づいて、歯肉部分の状態を推定し、歯肉部分の状態の推定結果に基づいて、流量及び噴射圧の少なくとも一方の制御量を決定し、流量及び噴射圧の少なくとも一方が、決定した制御量となるように噴射口から洗浄液を噴射させる。 Further, an oral cavity cleaning apparatus according to another aspect of the present disclosure is an oral cavity cleaning apparatus that cleans teeth by causing the ejected cleaning liquid to collide with the teeth, wherein the cleaning liquid is ejected from the ejection port in a predetermined direction. an injection control unit that controls at least one of the flow rate and injection pressure of the cleaning liquid injected from the injection port; and a detection area that includes a predetermined point on an extension line extending in a predetermined direction from the injection port, a light detection unit that detects an image in a detection area that extends two-dimensionally across the line, and the ejection control unit detects the image based on the detected image when the detected image includes the gingiva portion. , estimating the state of the gingiva, determining the control amount of at least one of the flow rate and the injection pressure based on the estimation result of the state of the gingiva, and making at least one of the flow rate and the injection pressure equal to the determined control amount. to spray the cleaning liquid from the injection port.
 このような口腔洗浄装置は、噴射口から噴射される洗浄液の流量及び噴射圧の少なくとも一方を、歯肉部分の状態の推定結果に基づいて決定した制御量とすることができる。この歯肉部分の状態の推定結果は、二次元状に広がる検出領域で検出された画像に歯肉部分が含まれる場合に、その検出された画像に基づいて推定されている。このようにして、検出領域内の歯肉部分の状態を適切に推定して、その検出領域に対する、推定された歯肉部分の状態に応じた流量及び噴射圧の少なくとも一方の制御量を決定することができる。よって、口腔内洗浄装置では、適切に制御された洗浄液の流量及び噴射圧によって、口腔内の洗浄を行うことができる。 In such an oral cavity cleaning device, at least one of the flow rate and the ejection pressure of the cleaning liquid ejected from the ejection port can be a control amount determined based on the estimated state of the gingival portion. This estimation result of the state of the gingiva is estimated based on the detected image when the gingiva is included in the image detected in the two-dimensional detection area. In this way, it is possible to appropriately estimate the state of the gingival portion within the detection region and determine the control amount of at least one of the flow rate and the injection pressure for the detection region according to the estimated state of the gingival portion. can. Therefore, the oral cavity cleaning apparatus can clean the oral cavity with the appropriately controlled flow rate and injection pressure of the cleaning liquid.
 また、例えば、推定結果は、歯肉部分に腫れ及び出血の少なくとも一方の有無を示し、噴射制御部は、推定結果によって、歯肉部分に腫れ及び出血の少なくとも一方があることが示される場合に、歯肉部分に腫れ及び出血がないことが示される場合に比べて小さくなるように、噴射口から噴射される洗浄液の流量及び噴射圧の少なくとも一方の制御量を決定してもよい。 Also, for example, the estimation result indicates the presence or absence of at least one of swelling and bleeding in the gingival portion, and the ejection control unit, if the estimation result indicates that there is at least one of swelling and bleeding in the gingival portion, The amount of control of at least one of the flow rate and injection pressure of the cleaning liquid injected from the injection port may be determined so as to be smaller than when it is indicated that there is no swelling or bleeding in the part.
 これによれば、推定された歯肉部分の状態として、歯肉部分に腫れ及び出血の少なくとも一方の有無を推定し、推定結果によって、歯肉部分に腫れ及び出血の少なくとも一方があることが示される場合に、歯肉部分に腫れ及び出血がないことが示される場合に比べて小さくなるように、噴射口から噴射される洗浄液の流量及び噴射圧の少なくとも一方の制御量を決定することができる。よって、口腔内洗浄装置では、適切に制御された洗浄液の流量及び噴射圧によって、口腔内の洗浄を行うことができる。 According to this, the presence or absence of at least one of swelling and bleeding in the gingival portion is estimated as the estimated state of the gingival portion, and when the estimation result indicates that there is at least one of swelling and bleeding in the gingival portion. , the amount of control of at least one of the flow rate and injection pressure of the cleaning liquid injected from the injection port can be determined so as to be smaller than when it is shown that there is no swelling or bleeding in the gingival region. Therefore, the oral cavity cleaning apparatus can clean the oral cavity with the appropriately controlled flow rate and injection pressure of the cleaning liquid.
 また、例えば、噴射制御部は、光検出部が検出光の検出を開始してから終了するまでの検出期間と少なくとも一部が重複する禁止期間において、噴射口からの洗浄液の噴射を禁止してもよい。 Further, for example, the injection control unit inhibits injection of the cleaning liquid from the injection port during a prohibition period that at least partially overlaps with the detection period from when the light detection unit starts detecting the detection light until it ends. good too.
 これによれば、噴射された洗浄液は飛沫として飛散しやすいため、検出に影響を及ぼす可能性があるが、洗浄液の噴射を禁止する禁止期間を設けて、その期間内で洗浄液が飛散しにくい状況を作り出して検出光の検出を行うことができる。 According to this, the sprayed cleaning liquid is likely to scatter as droplets, which may affect detection. can be created to detect the detected light.
 また、本開示の別の一態様に係る制御装置は、噴射した洗浄液を歯牙に衝突させて歯牙を洗浄するための口腔洗浄装置用の制御装置であって、洗浄液を所定方向に向けて噴射するための噴射口から噴射される洗浄液の流量及び噴射圧の少なくとも一方を制御する噴射制御部と、噴射口から所定方向に延長された延長線上の所定点を内包する検出領域であって、延長線に交差して二次元状に広がる検出領域で検出した画像を取得する取得部と、を備え、噴射制御部は、取得された画像に歯肉部分が含まれる場合に、取得された画像に基づいて、歯肉部分の状態を推定し、歯肉部分の状態の推定結果に基づいて、流量及び噴射圧の少なくとも一方の制御量を決定し、流量及び噴射圧の少なくとも一方が、決定した制御量となるように噴射口から洗浄液を噴射させる。 In addition, a control device according to another aspect of the present disclosure is a control device for an oral cavity cleaning device for cleaning teeth by causing jetted cleaning liquid to collide with teeth, wherein the cleaning liquid is directed in a predetermined direction and jetted. and a detection area including a predetermined point on an extension line extending in a predetermined direction from the injection port, the extension line and an acquisition unit that acquires an image detected in a detection area that extends two-dimensionally by intersecting the , estimating the state of the gingiva, determining the control amount of at least one of the flow rate and the injection pressure based on the estimation result of the state of the gingiva, and making at least one of the flow rate and the injection pressure equal to the determined control amount. to spray the cleaning liquid from the injection port.
 このような制御装置は、制御装置が用いられる口腔洗浄装置に、上記に記載の別の口腔洗浄装置と同様の効果を奏させることができる。 Such a control device can cause the mouthwash device in which the control device is used to have the same effect as the other mouthwash device described above.
 また、本開示の一態様に係るプログラムは、噴射した洗浄液を歯牙に衝突させて歯牙を洗浄するための口腔洗浄装置用の制御方法をコンピュータに実行させるためのプログラムであって、制御方法では、洗浄液を所定方向に向けて噴射するための噴射口から所定方向に延長された延長線上の所定点を内包する検出領域であって、延長線に交差して二次元状に広がる検出領域で検出した画像を取得し、取得した画像に歯肉部分が含まれる場合に、取得した画像に基づいて、歯肉部分の状態を推定し、歯肉部分の状態の推定結果に基づいて、流量及び噴射圧の少なくとも一方の制御量を決定し、洗浄液の流量及び噴射圧の少なくとも一方が、決定した制御量となるように噴射口から洗浄液を噴射させる。 Further, a program according to an aspect of the present disclosure is a program for causing a computer to execute a control method for an oral cavity cleaning device for washing teeth by colliding the jetted cleaning liquid against the teeth, the control method comprising: A detection area that includes a predetermined point on an extension line extending in a predetermined direction from an injection port for injecting cleaning liquid in a predetermined direction, and detected in a detection area that extends two-dimensionally across the extension line. An image is acquired, and if the acquired image includes a gingival portion, the state of the gingival portion is estimated based on the acquired image, and at least one of the flow rate and the injection pressure is calculated based on the estimation result of the state of the gingival portion. is determined, and the cleaning liquid is jetted from the injection port so that at least one of the flow rate and the injection pressure of the cleaning liquid becomes the determined control amount.
 このようなプログラムは、コンピュータを用いて、上記に記載の別の制御装置と同様の効果を奏することができる。 Such a program can use a computer to achieve the same effect as the other control device described above.
 また、本開示の別の一態様に係る口腔洗浄方法は、噴射した洗浄液を歯牙に衝突させて歯牙を洗浄するための口腔洗浄方法であって、洗浄液を所定方向に向けて噴射するための噴射口から所定方向に延長された延長線上の所定点を内包する照射領域であって、延長線に交差して広がる照射領域に照射光を照射し、照射された照射光に応じて歯垢部分から発光した検出光を、照射領域の少なくとも一部を含む二次元状の検出領域で検出し、検出光の検出結果に基づいて、噴射口から噴射される洗浄液の流量及び噴射圧の少なくとも一方の制御量を決定し、洗浄液の流量及び噴射圧の少なくとも一方が、決定した制御量となるように噴射口から洗浄液を噴射させる。 Further, an oral cavity cleaning method according to another aspect of the present disclosure is an oral cavity cleaning method for cleaning teeth by causing a jetted cleaning liquid to collide with teeth, wherein the cleaning liquid is jetted in a predetermined direction. An irradiation area that includes a predetermined point on an extension line extending from the mouth in a predetermined direction, and that is an irradiation area that spreads across the extension line is irradiated with irradiation light, and according to the irradiated irradiation light, the plaque is removed. The emitted detection light is detected in a two-dimensional detection area including at least a part of the irradiation area, and based on the detection result of the detection light, at least one of the flow rate and injection pressure of the cleaning liquid injected from the injection port is controlled. The amount of the cleaning liquid is determined, and the cleaning liquid is jetted from the injection port so that at least one of the flow rate and the jet pressure of the cleaning liquid becomes the determined control amount.
 このような口腔洗浄方法では、上記に記載の別の口腔洗浄装置と同様の効果を奏することができる。 With such an oral cavity cleaning method, it is possible to achieve the same effect as the other oral cavity cleaning device described above.
 なお、これらの包括的又は具体的な態様は、システム、方法、集積回路、コンピュータプログラム又はコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。 In addition, these general or specific aspects may be realized by a system, method, integrated circuit, computer program, or a recording medium such as a computer-readable CD-ROM. and any combination of recording media.
 なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 It should be noted that the embodiments described below are all comprehensive or specific examples. Numerical values, shapes, components, arrangement positions and connection forms of components, steps, order of steps, and the like shown in the following embodiments are examples, and are not intended to limit the present disclosure. Further, among the constituent elements in the following embodiments, constituent elements not described in independent claims will be described as optional constituent elements.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺などは必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略又は簡略化する。 In addition, each figure is a schematic diagram and is not necessarily strictly illustrated. Therefore, for example, scales and the like do not necessarily match in each drawing. Moreover, in each figure, the same code|symbol is attached|subjected about the substantially same structure, and the overlapping description is abbreviate|omitted or simplified.
 また、本明細書において、平行、一致、直交などの要素間の関係性を示す用語、及び、リング状などの要素の形状を示す用語、並びに、数値、及び、数値範囲は、厳格な意味のみを表す表現ではなく、実質的に同等な範囲、例えば数%程度(例えば、10%程度)の差異をも含むことを意味する表現である。 Also, in this specification, terms that indicate the relationship between elements such as parallel, coincident, and orthogonal, terms that indicate the shape of elements such as ring-shaped, and numerical values and numerical ranges are strictly meaning only is not an expression that represents a substantially equivalent range, for example, a difference of about several percent (for example, about 10%).
 (実施の形態)
 以下、本実施の形態に係る口腔洗浄装置について、図1~図6を参照しながら説明する。
(Embodiment)
An oral cavity cleaning device according to the present embodiment will be described below with reference to FIGS. 1 to 6. FIG.
 [1.口腔洗浄装置の構成]
 まず、本実施の形態に係る口腔洗浄装置の構成について、図1及び図2を参照しながら説明する。図1は、本実施の形態に係る口腔洗浄装置等の使用例を示す図である。なお、図1では、(a)に使用中の口腔洗浄装置100を示し、(b)にその際に接続されている端末装置200の様子を示している。また、図1の(c)は、本実施の形態の別例に係る口腔洗浄装置100cを示している。図1の(c)では、ブラシ103bに重なる部分の構成を見やすくする目的で、ブラシ103bを構成する一部の毛束の図示を省略している。また、図2は、実施の形態に係る口腔洗浄装置等の機能構成を示すブロック図である。
[1. Configuration of oral cavity cleaning device]
First, the configuration of an oral cavity cleaning apparatus according to this embodiment will be described with reference to FIGS. 1 and 2. FIG. FIG. 1 is a diagram showing an example of use of an oral cavity cleaning device, etc., according to the present embodiment. In addition, in FIG. 1, (a) shows the oral cavity cleaning apparatus 100 in use, and (b) shows the state of the terminal device 200 connected at that time. Moreover, (c) of FIG. 1 shows an oral cavity cleaning device 100c according to another example of the present embodiment. In FIG. 1C, for the purpose of making it easier to see the configuration of the portion that overlaps the brush 103b, illustration of some tufts that constitute the brush 103b is omitted. Moreover, FIG. 2 is a block diagram showing the functional configuration of the oral cavity cleaning device etc. according to the embodiment.
 図1の(a)に示すように、口腔洗浄装置100は、歯牙洗浄部の一例としての洗浄液噴射部103により、使用者の口腔内に向けて洗浄液を噴射することで、使用者の歯牙99に付着した付着物の除去を行うことで、口腔内を洗浄する水流式の洗浄装置である。あるいは、図1の(c)に示すように、口腔洗浄装置100cは、歯牙洗浄部の一例としてのブラシ103bが配置された電動駆動式の歯ブラシ装置として実現することもできる。使用者は、図1の(a)及び図1の(c)では図示が省略されている把持部を把持した状態で、その把持している手を移動させて、洗浄液を噴射するための噴射口103a、又は、歯牙表面で駆動させるブラシ103bの位置及び姿勢を変化させながら、口腔内の任意の位置(例えば、歯牙99)に噴射された洗浄液を衝突させる又はブラシ103bを接触させる。衝突した洗浄液は、その衝撃によって、衝突箇所に付着している付着物を取り除くことができる。また、接触したブラシ103bは、その周辺を歯牙表面に沿う一定の方向に往復駆動することによって、ブラシの軌道上に付着している付着物を取り除くことができる。このような付着物としては、摂食物の食べかす、その食べかすなどを媒体に増殖した細菌からなる歯垢99a及び歯石などが含まれる。以下、特に断りのない限り口腔洗浄装置として、洗浄液を噴射する水流式の口腔洗浄装置100の例を説明する。 As shown in (a) of FIG. 1 , the oral cavity cleaning apparatus 100 ejects cleaning liquid toward the user's oral cavity from a cleaning liquid ejection section 103 as an example of a tooth cleaning section, thereby cleaning the teeth 99 of the user. It is a water-jet cleaning device that cleanses the oral cavity by removing deposits attached to the mouth. Alternatively, as shown in (c) of FIG. 1, the oral cavity cleaning device 100c can be realized as an electrically driven toothbrush device in which a brush 103b as an example of a tooth cleaning section is arranged. The user holds the holding part (not shown in FIGS. 1(a) and 1(c)) and moves the holding hand to spray the cleaning liquid. While changing the position and attitude of the mouth 103a or the brush 103b driven on the tooth surface, the jetted cleaning liquid is made to collide with or contact the brush 103b at an arbitrary position in the oral cavity (for example, the tooth 99). The colliding cleaning liquid can remove deposits adhering to the colliding portion by the impact. In addition, the contacting brush 103b can be driven to reciprocate in a fixed direction along the tooth surface, thereby removing deposits adhering to the track of the brush. Such adhering substances include plaque 99a and calculus, which consist of food debris, bacteria grown in the food debris, and the like. In the following, unless otherwise specified, an example of a water jet type oral cavity cleaning device 100 that injects cleaning liquid will be described as the oral cavity cleaning device.
 本実施の形態では、口腔洗浄装置100は、洗浄液が衝突する位置を視認可能なように構成されている。具体的には、口腔洗浄装置100には、カメラ部101が備えられ、このカメラ部において口腔内の光を検出することで撮影された画像が、例えば、使用者が所有する端末装置200の端末表示部203に表示される。これにより、使用者は、今現在どの位置に向けて噴射口103aが対向しており、洗浄液を噴射しているのかを視認しながら口腔内の洗浄を行うことができる。 In the present embodiment, the oral cavity cleaning device 100 is configured so that the position where the cleaning liquid collides can be visually recognized. Specifically, the oral cavity cleaning device 100 is provided with a camera unit 101, and an image captured by detecting intraoral light in this camera unit is captured by, for example, the terminal device 200 owned by the user. It is displayed on the display unit 203 . As a result, the user can clean the oral cavity while visually confirming to which position the injection port 103a currently faces and to which cleaning liquid is being injected.
 ところで、付着物のうちの歯垢99aの色は、歯牙99の色(白色~ベージュなどの淡白色)に類似しているので、通常のカメラを利用しただけでは、視認することが困難である。そこで、本実施の形態の口腔洗浄装置100では、歯垢99aを選択的に発色させることで図1の(b)に示すように歯牙99の色と区別可能な態様で歯垢99aの色が表示されるような画像を生成する。さらに、口腔洗浄装置100では、この画像を解析することによって、歯垢99aが噴射口103aの対向領域に位置しているときの洗浄液の噴射の強さ(洗浄液の流量、噴射圧及び噴射頻度の少なくともいずれか)を変化させて、適切な強さの洗浄液の噴射(言い換えると洗浄力)によって適切な口腔内の洗浄を行うことができる。 By the way, since the color of the plaque 99a among the deposits is similar to the color of the tooth 99 (white to light white such as beige), it is difficult to visually recognize it only by using a normal camera. . Therefore, in the oral cavity cleaning apparatus 100 of the present embodiment, by selectively coloring the plaque 99a, the color of the plaque 99a can be distinguished from the color of the tooth 99 as shown in FIG. 1(b). Generate the image as displayed. Furthermore, by analyzing this image, the oral cavity cleaning apparatus 100 can determine the strength of the cleaning liquid jetting (the flow rate, jetting pressure, and jetting frequency of the cleaning liquid) when the plaque 99a is located in the region facing the jetting port 103a. at least one of them) can be changed to appropriately clean the oral cavity by jetting the cleansing liquid with appropriate strength (in other words, cleansing power).
 このような洗浄力の強さの設定は、口腔洗浄装置100cの例では、ブラシ103bの駆動モードの選択に相当する。ブラシ103bの駆動モードには、歯牙と、隣り合う別の歯牙との並び方向に沿ってブラシ103bが駆動するヨコ磨きモード、及び、歯牙と、隣り合う別の歯牙との間(すなわち、歯間)のすき間に沿ってブラシ103bが駆動するタタキ磨きモードのそれぞれに対する駆動周期及び駆動トルク等の設定値に応じたいくつかの駆動モードがある。つまり、それぞれのブラシ103bの駆動モードでは、ヨコ磨きモードの強さ及びタタキ磨きモードの強さが異なっており、歯垢99aが付着している位置及び量に応じた適切な強さの駆動モードによって適切な口腔内の洗浄を行うことができる。このような駆動モードの中には、ヨコ磨きモードの強さが0のタタキ磨きのみの駆動モード、及び、タタキ磨きモードの強さが0のヨコ磨きのみの駆動モードも含まれる。 In the example of the oral cavity cleaning device 100c, setting the strength of the detergency as described above corresponds to selecting the driving mode of the brush 103b. Drive modes of the brush 103b include a horizontal brushing mode in which the brush 103b is driven along the direction in which the tooth and another adjacent tooth are arranged, and a brushing mode between the tooth and another adjacent tooth (that is, between the teeth). ) in which the brush 103b is driven along the gap, there are several drive modes corresponding to set values such as drive period and drive torque. In other words, the driving modes of the respective brushes 103b have different strengths in the horizontal polishing mode and the strength in the horizontal polishing mode. It is possible to perform appropriate cleaning of the oral cavity by Among such drive modes, there is also a drive mode for only horizontal polishing in which the strength of the horizontal polishing mode is 0, and a drive mode for only horizontal polishing in which the strength of the horizontal polishing mode is 0.
 以下、引き続き図1及び図2を参照しながら口腔洗浄装置100、及び、口腔洗浄装置100と組み合わせて使用される端末装置200の詳細な構成について説明する。 Hereinafter, detailed configurations of the oral cavity cleaning device 100 and the terminal device 200 used in combination with the oral cavity cleaning device 100 will be described with continued reference to FIGS.
 図2に示すように、口腔洗浄装置100は、カメラ部101、LED照明部102、洗浄液噴射部103、入力部104、及び、制御装置150を備える。カメラ部101、LED照明部102、洗浄液噴射部103、入力部104は、口腔洗浄装置100におけるハードウェア部分であり、ハード部とも呼ばれる場合がある。一方で、制御装置150は、ハード部の動作を制御するための各種制御信号を生成して出力したり、ハード部の動作の結果得られた情報を取得したりする機能部分である。制御装置150は、コンピュータなど、より詳しくは、プロセッサとメモリとを用いて、所定のプログラムを実行することで実現される。そのため、制御装置150の機能主体は、プロセッサとメモリとを用いて実行されるプログラムにあるともいえる。 As shown in FIG. 2 , the oral cavity cleaning device 100 includes a camera section 101 , an LED lighting section 102 , a cleaning liquid injection section 103 , an input section 104 and a control device 150 . The camera unit 101, the LED illumination unit 102, the cleaning fluid injection unit 103, and the input unit 104 are hardware portions in the oral cavity cleaning device 100, and are sometimes called hardware units. On the other hand, the control device 150 is a functional part that generates and outputs various control signals for controlling the operation of the hardware section and acquires information obtained as a result of the operation of the hardware section. Control device 150 is realized by executing a predetermined program using a computer or the like, more specifically, a processor and memory. Therefore, it can be said that the main function of the control device 150 is the program executed using the processor and the memory.
 なお、以下の説明では、図2に示すように、制御装置150を口腔洗浄装置100の内部に備える例について説明するが、ハード部と通信可能に構成されていれば、制御装置150をどのように配置してもよい。例えば、制御装置150は、端末装置200に内蔵することもできるし、エッジサーバ又はクラウドサーバ等のサーバ装置(不図示)に内蔵することもできる。このようなサーバ装置に制御装置150を内蔵する場合には、ハード部と、制御装置150とが広域通信網又は局所通信網などのネットワークを介して接続され、ネットワーク越しに接続されたハード部と制御装置150とを組み合わせた口腔洗浄システムとして実現される。 In the following description, as shown in FIG. 2, an example in which the control device 150 is provided inside the oral cavity cleaning device 100 will be described. can be placed in For example, the control device 150 can be built in the terminal device 200, or can be built in a server device (not shown) such as an edge server or a cloud server. When the control device 150 is incorporated in such a server device, the hardware unit and the control device 150 are connected via a network such as a wide area communication network or a local communication network, and the hardware unit connected via the network It is implemented as an oral cavity cleaning system in combination with the control device 150 .
 制御装置150は、カメラ部101に接続されたカメラ制御部151、LED照明部102に接続されたLED照明制御部152、洗浄液噴射部103に接続された噴射制御部153、及び、入力部104に接続されたメモリ部154を有する。この他、制御装置150は、その内部で動作する画像処理部155、歯垢付着量検出部156を有する。 The control device 150 includes a camera control unit 151 connected to the camera unit 101, an LED lighting control unit 152 connected to the LED lighting unit 102, an injection control unit 153 connected to the cleaning liquid injection unit 103, and an input unit 104. It has a memory unit 154 connected thereto. In addition, the control device 150 has an image processing section 155 and a plaque adhesion amount detection section 156 operating therein.
 カメラ部101は、光検出部の一例であり、図1に示すように、二次元状に広がる検出領域101aに対応して、検出領域101aの各点の輝度を検出する複数の画素がマトリクス状に並ぶ撮像素子と、レンズ、絞り、フィルタなど各種の光学素子とを組み合わせて実現されるカメラである。カメラ部101は、カメラ制御部151から撮影開始信号を受信して撮影を開始し、カメラ制御部151から撮影終了信号を受信して撮影を終了する。そして、カメラ部101は、撮影後の画像をカメラ制御部151へと送信する。ここでの画像は、検出領域101aの各点のそれぞれにおいて検出された赤色、緑色及び青色のそれぞれ輝度値を示している。 The camera unit 101 is an example of a light detection unit. As shown in FIG. 1, a plurality of pixels for detecting the brightness of each point in the detection area 101a are arranged in a matrix in correspondence with the detection area 101a extending two-dimensionally. It is a camera realized by combining an image pickup device lined up in a camera with various optical elements such as a lens, an aperture, and a filter. The camera unit 101 receives a shooting start signal from the camera control unit 151 to start shooting, and receives a shooting end signal from the camera control unit 151 to finish shooting. The camera unit 101 then transmits the captured image to the camera control unit 151 . The image here shows luminance values of red, green, and blue detected at each point of the detection area 101a.
 また、検出領域101aは、噴射口103aから、洗浄液が噴射される方向である噴射方向(又は所定方向ともいう)に延長した延長線上の所定点を内包している。そして、所定点は、口腔洗浄装置100を使用するときの適切な歯牙99との距離を保った場合における噴射口103aと歯牙99のとの距離に対応している。これにより、検出領域101aで撮影された画像には、洗浄液が衝突する歯牙99の表面などの箇所が写る。例えば、図中では、噴射口103aから所定方向に延びる太破線矢印が、検出領域101aを貫いている。さらに、検出領域101aは、その領域が広がる面に交差する方向に厚みを有している。この厚みは、カメラ部101が光を受光する方向(図中の細破線矢印)に対応しており、検出領域101a内での2つの歯牙99間の窪みなどの凹凸をカバーするようになっている。 Further, the detection area 101a includes a predetermined point on an extension line extending from the injection port 103a in the injection direction (or the predetermined direction), which is the direction in which the cleaning liquid is injected. The predetermined point corresponds to the distance between the injection port 103a and the tooth 99 when an appropriate distance to the tooth 99 is maintained when using the oral cavity cleaning device 100 . As a result, the image captured in the detection area 101a shows the surface of the tooth 99 or the like that the cleaning liquid collides with. For example, in the drawing, a thick dashed arrow extending in a predetermined direction from the injection port 103a penetrates the detection region 101a. Furthermore, the detection area 101a has a thickness in a direction intersecting the surface on which the area extends. This thickness corresponds to the direction in which the camera unit 101 receives light (thin dashed line arrow in the figure), and covers unevenness such as a recess between two teeth 99 within the detection area 101a. there is
 カメラ制御部151は、カメラ部101による画像の撮影を制御し、その結果得られた画像を、カメラ部101から受信することで取得する。つまり、カメラ制御部151は、取得部の一例でもある。そして、カメラ制御部151は、取得した画像を画像処理部155へと出力する。 The camera control unit 151 controls image capturing by the camera unit 101 and acquires the resulting image by receiving it from the camera unit 101 . That is, the camera control unit 151 is also an example of an acquisition unit. The camera control section 151 then outputs the acquired image to the image processing section 155 .
 LED照明部102は、光照射部の一例であり、図1に示すように、噴射口103aから、噴射方向に延長した延長線上の所定点を内包し、延長線に交差して広がる照射領域(図中の2本の一点鎖線の間に広がる扇状の領域)に照射光を照射する。LED照明部102は、LED光源、レンズ、及びLED光源を駆動するための電力変換部等によって実現される。LED照明部102は、LED照明制御部152から照射開始信号を受信して光の照射を開始し、LED照明制御部152から照射終了信号を受信して光の照射を終了する。LED照明部102から照射される光(照射光)は、端末装置200で歯牙99や歯肉98などの輪郭を視認可能にする光と、歯垢99aを選択的に発色させるための励起光とを含む合成光である。 The LED illumination unit 102 is an example of a light irradiation unit. As shown in FIG. 1, an irradiation area ( A fan-shaped region extending between two dashed lines in the figure) is irradiated with irradiation light. The LED illumination unit 102 is implemented by an LED light source, a lens, a power conversion unit for driving the LED light source, and the like. The LED lighting unit 102 receives an irradiation start signal from the LED lighting control unit 152 to start light irradiation, and receives an irradiation end signal from the LED lighting control unit 152 to end light irradiation. The light (irradiation light) emitted from the LED illumination unit 102 includes light that enables the terminal device 200 to visually recognize the contours of the teeth 99 and gums 98, and excitation light that selectively colors the dental plaque 99a. It is a synthetic light containing
 ここで、歯垢99aは、歯牙99に付着する細菌とその代謝産物との塊として構成され、プラークとも呼ばれる。この代謝産物の中には、特定の波長の光で励起されて蛍光を発する種類の物質が含まれる。そこで本実施の形態では、照射光は、このような代謝産物を励起させるための励起波長の光を含んでおり、かつ、波長シフトした蛍光波長の光の一部を含まないようになっている。そのため、LED照明部102には、バンドパスフィルタなどの波長選択が可能な光学素子が含まれている。 Here, the dental plaque 99a is composed of a mass of bacteria adhering to the teeth 99 and their metabolites, and is also called plaque. These metabolites include a class of substances that fluoresce when excited by light of a particular wavelength. Therefore, in the present embodiment, the irradiation light contains light of the excitation wavelength for exciting such metabolites, and does not contain part of the light of the wavelength-shifted fluorescence wavelength. . Therefore, the LED illumination unit 102 includes an optical element such as a bandpass filter that can select wavelengths.
 上記の代謝産物の一例としては、ポルフィリンが挙げられる。歯垢99aに含まれる細菌が産生する物質であるポルフィリンは、405nm付近の青色光を照射したときに、660nm付近の赤紫~オレンジ色光を発する。このような蛍光発光は、歯牙99の表面のエナメル質では得られないので、歯垢99aを選択的に発色させることが可能となる。なお、このポルフィリンの例は一例であり、歯垢99aに含まれる細菌の代謝産物の中で、励起波長と蛍光波長とが十分に離れている物質であればよい。このように、励起光と蛍光との波長が異なっていることで、単に表面で反射された反射光と区別ができるため、上記と同様に歯垢99aの選択的な発色が可能となる。 An example of the above metabolites is porphyrin. Porphyrin, which is a substance produced by bacteria contained in dental plaque 99a, emits reddish purple to orange light around 660 nm when irradiated with blue light around 405 nm. Since such fluorescent emission cannot be obtained from the enamel on the surface of the tooth 99, it is possible to selectively color the dental plaque 99a. Note that this example of porphyrin is only an example, and any substance that is a metabolite of bacteria contained in dental plaque 99a and whose excitation wavelength and fluorescence wavelength are sufficiently separated may be used. Since the wavelengths of the excitation light and the fluorescence are different in this way, it is possible to distinguish the light from the reflected light simply reflected on the surface.
 なお、ポルフィリンは、細菌の繁殖期間に応じて蓄積されていくため、付着している歯垢99aがどの程度の期間にわたって存在しているかを測る指標としても利用できる。カメラ部101は、このような代謝産物から発光される蛍光の蛍光波長を検出可能なように構成されているとよい。 In addition, since porphyrin accumulates according to the breeding period of bacteria, it can also be used as an index for measuring how long the adhering dental plaque 99a has been present. The camera unit 101 is preferably configured to detect fluorescence wavelengths of fluorescence emitted from such metabolites.
 一方、LED照明部102は、特定の条件においては光の照射を禁止するように構成されている。これは、不必要な光の照射によって、光が口腔内以外に照射される等、不要な電力消費が生じたり、照射光が外部の物体に悪影響を及ぼしたりすることを抑制したり、撮像される画像が安定されるようにするための機能である。上記の特定の条件とは、以下のような場合がある。 On the other hand, the LED lighting unit 102 is configured to prohibit light irradiation under specific conditions. This prevents unnecessary power consumption such as light being emitted outside the oral cavity due to unnecessary light irradiation, suppresses the adverse effects of the irradiated light on external objects, and prevents images from being captured. This is a function to ensure that the image is stabilized. The above specific conditions may be as follows.
 カメラ部101による画像に人の顔及び人の眼等が映り込んだと判定された場合。静止画撮影モードなど、カメラ部101が画像として静止画を撮像するモードにおいて、画像撮像のトリガとなるシャッタボタンをONされてから、口腔洗浄装置100の姿勢が安定するまでの一定時間内(この場合、撮影が開始されていない状態であることを通知する機能を併せ持っていてもよい)。端末装置200と接続された状態で、端末装置200上のアプリケーションから口腔洗浄装置100のシャッタボタンをONされてから口腔洗浄装置100の姿勢が安定するまでの一定時間内(同様に通知機能を併せ持っていてもよい)。動画撮影モードなど、カメラ部101が画像として静止画を撮像するモードにおいて、光照射が撮影開始ボタン、撮影終了ボタンと連動しており、(a)撮影開始ボタンONを検知して一定時間経過後に光を照射する(同様に通知機能を併せ持っていてもよい)、(b)撮影終了ボタンONを検知した場合、直ちに光照射を終了する、(c)撮影開始ボタンONから一定時間内で撮影し、自動的に光照射を終了。端末装置200と接続され、端末装置200上のアプリケーションが起動され、かつ、撮影開始ボタンがONされた場合のみ、さらに一定時間経過後に光を照射(同様に通知機能を併せ持っていてもよい)。または、光照射から、一定時間が経過後に自動的に光照射を終了。 When it is determined that the image captured by the camera unit 101 includes a person's face and eyes. In a mode in which the camera unit 101 captures a still image as an image, such as a still image capturing mode, a certain period of time (this In this case, it may also have a function of notifying that shooting has not started). In a state connected to the terminal device 200, within a certain period of time from when the shutter button of the mouthwash device 100 is turned on from the application on the terminal device 200 until the posture of the mouthwash device 100 stabilizes (similarly, it also has a notification function) may be present). In a mode in which the camera unit 101 takes a still image as an image, such as a moving image shooting mode, the light irradiation is linked with the shooting start button and the shooting end button. (b) When the shooting end button ON is detected, the light irradiation ends immediately; (c) shooting within a certain period of time from the shooting start button ON. , automatically terminate the light irradiation. Only when it is connected to the terminal device 200, the application on the terminal device 200 is activated, and the shooting start button is turned on, light is emitted after a certain period of time has passed (similarly, it may also have a notification function). Alternatively, light irradiation ends automatically after a certain period of time has passed since light irradiation.
 洗浄液噴射部103は、噴射口103aから洗浄液を噴射させるためのアクチュエータと、洗浄液を貯留するためのタンク等で構成される。洗浄液噴射部103は、噴射制御部153によって決定された洗浄液の流量及び噴射圧で噴射口103aから洗浄液を噴射する。そのため、洗浄液噴射部103は、噴射制御部153から流量及び噴射圧を指定する制御信号を受信し、受信した制御信号に従って洗浄液を噴射する。ただし、洗浄液噴射部103から噴射される洗浄液の流量及び噴射圧は、カメラ部101で撮影した検出領域101aの画像に応じて変化するので、洗浄液噴射部103は、その都度、噴射制御部153から流量及び噴射圧を指定する制御信号を受信する。 The cleaning liquid injection unit 103 is composed of an actuator for injecting the cleaning liquid from the injection port 103a, a tank for storing the cleaning liquid, and the like. The cleaning liquid injection unit 103 injects the cleaning liquid from the injection port 103 a at the flow rate and injection pressure of the cleaning liquid determined by the injection control unit 153 . Therefore, the cleaning liquid injection unit 103 receives a control signal designating the flow rate and the injection pressure from the injection control unit 153, and injects the cleaning liquid according to the received control signal. However, since the flow rate and injection pressure of the cleaning liquid jetted from the cleaning liquid jetting section 103 change according to the image of the detection area 101a captured by the camera section 101, the cleaning liquid jetting section 103 is controlled by the injection control section 153 each time. A control signal is received that specifies flow rate and injection pressure.
 洗浄液噴射部103によって噴射される洗浄液は、単に水道水などであってもよいし、洗浄効果を向上するための薬液や、歯垢99aを磨き落とす微細な顆粒などが含まれたスラリー液であってもよい。 The cleaning liquid injected by the cleaning liquid injection unit 103 may be simply tap water or the like, or may be a chemical liquid for improving the cleaning effect, or a slurry liquid containing fine granules for polishing off plaque 99a. may
 入力部104は、図1では図示しない把持部などに備えられた、使用者からの入力を行うための機能部であり、物理スイッチ、タッチパネルなど、使用者が入力したことを検知できる各種のセンサによって実現される。入力部104は、例えば、使用者に合わせた洗浄液の流量及び噴射圧の設定値を使用者自身で入力するために用いられる。そして、入力されたこれらの設定値は、メモリ部154を介して記憶される。 The input unit 104 is a functional unit provided in a grip unit (not shown in FIG. 1) for performing input from the user, and includes various sensors such as a physical switch and a touch panel that can detect user input. realized by The input unit 104 is used, for example, by the user himself/herself to input the set values of the flow rate and the injection pressure of the cleaning liquid that are suitable for the user. These input setting values are stored via the memory unit 154 .
 メモリ部154は、図示しない、半導体メモリなどの記憶デバイスに対して、情報を記憶させ、必要に応じて読み出しをするコントローラである。そのため、メモリ部154は、記憶デバイスにアクセスして情報を記憶したり、記憶された情報を参照して読み出したりする機能を有する。 The memory unit 154 is a controller that stores information in a storage device such as a semiconductor memory (not shown) and reads the information as needed. Therefore, the memory unit 154 has a function of accessing the storage device to store information and referring to and reading out the stored information.
 なお、入力部104と同様の機能を端末装置200にも備えることができる。具体的には、端末入力部202は、入力部104と同様に、例えば、使用者に合わせた洗浄液の流量及び噴射圧の設定値を使用者自身で入力するために用いられる。そして、入力されたこれらの設定値は、通信部201及びメモリ部154を介して記憶される。 Note that the terminal device 200 can also be provided with the same function as the input unit 104. Specifically, similarly to the input unit 104, the terminal input unit 202 is used by the user himself/herself to input the set values of the flow rate and the injection pressure of the cleaning liquid that are suitable for the user, for example. These input setting values are stored via the communication unit 201 and the memory unit 154 .
 画像処理部155は、カメラ制御部151から出力された画像を変換することで、後述する歯垢付着量検出部156での歯垢99aの付着量の推定の精度を向上する。具体的には、画像処理部155は、カメラ制御部151から出力された画像において、対象とする代謝産物の蛍光波長付近の輝度を強調させる処理を行う。これにより、輝度値の大小の差によって画像内の歯垢99aが付着している歯垢部分を容易に推定することが可能となる。画像処理部155は、変換後の画像を歯垢付着量検出部156へと出力する。詳細は、[5.画像処理方法、画像処理装置、及び、画像処理方法に関するプログラム]において後述するが、画像処理部155は、この画像処理方法等の技術を利用して変換後の画像を出力してもよい。また、カメラ部101も、この画像処理方法等の技術に合わせた構成で実現されてもよい。 The image processing unit 155 converts the image output from the camera control unit 151, thereby improving the accuracy of estimating the amount of plaque 99a in the plaque amount detection unit 156, which will be described later. Specifically, the image processing unit 155 performs processing for emphasizing the brightness near the fluorescence wavelength of the target metabolite in the image output from the camera control unit 151 . As a result, it is possible to easily estimate the dental plaque portion in the image to which the dental plaque 99a adheres based on the difference in brightness value. The image processing unit 155 outputs the converted image to the plaque amount detection unit 156 . For details, refer to [5. Image Processing Method, Image Processing Apparatus, and Program Related to Image Processing Method], the image processing unit 155 may output an image after conversion using a technique such as this image processing method. Further, the camera unit 101 may also be realized with a configuration adapted to the technology such as this image processing method.
 歯垢付着量検出部156は、画像に写る検出領域101aの歯垢99aの付着量を推定する。そして、歯垢付着量検出部156によって推定された歯垢99aの付着量は、噴射制御部153へと出力されて、洗浄液の流量及び噴射圧の決定に利用される。このようにして、検出された蛍光、すなわち、撮影された画像によって、歯牙99に付着した歯垢99aの付着量を推定し、その歯垢99aの付着量に応じた適切な流量及び噴射圧で洗浄液を噴射することができる。なお、画像処理部155、及び、歯垢付着量検出部156は機能の一部として噴射制御部153に含まれてもよい。つまり、噴射制御部153は、画像から直接的に洗浄液の流量及び噴射圧を決定してもよい。 The plaque adhesion amount detection unit 156 estimates the adhesion amount of plaque 99a in the detection area 101a shown in the image. The amount of plaque 99a estimated by the plaque amount detection unit 156 is output to the injection control unit 153 and used to determine the flow rate and injection pressure of the cleaning liquid. In this way, the amount of plaque 99a adhering to the tooth 99 is estimated from the detected fluorescence, that is, the photographed image. A cleaning liquid can be injected. Note that the image processing unit 155 and the plaque adhesion amount detection unit 156 may be included in the injection control unit 153 as part of their functions. That is, the injection control unit 153 may directly determine the flow rate and injection pressure of the cleaning liquid from the image.
 歯垢付着量検出部156は、歯垢99aの付着量を検出する際、検出領域101a全体に対して歯垢が付着している部分の面積比を算出して、その面積比があらかじめ定められた閾値以上であれば、歯垢が付着している場合の流量及び噴射圧で洗浄液を噴射させてもよいが、ここでは、さらに噴射式の口腔洗浄装置100に特化した歯垢の付着量検出について説明する。噴射式の口腔洗浄装置100では、洗浄液を所定方向に噴射するので、その延長線上の所定点を中心に洗浄液が衝突する。 When detecting the amount of plaque 99a, the plaque adhesion amount detection unit 156 calculates the area ratio of the portion where plaque adheres to the entire detection region 101a, and the area ratio is determined in advance. If it is equal to or higher than the threshold value, the cleaning liquid may be jetted at the flow rate and jetting pressure when plaque is attached. Describe detection. Since the injection-type mouthwash device 100 injects the cleaning liquid in a predetermined direction, the cleaning liquid collides with a predetermined point on the extension line.
 そうすると、検出領域101aよりも狭い洗浄液の衝突によって洗浄効果が一定以上見込まれる(又は、単に洗浄効果がある)洗浄有効領域101aaを設定することができる。歯ブラシ装置で実現する場合は、洗浄有効領域101aaは、ブラシ103bが駆動したときに、一定位置に把持された歯ブラシ装置において、ブラシ103bが駆動した軌跡の中で、ブラシが接触される部分に相当する。ただし、検出自体はブラシが歯牙に接触するよりも前に行われ、その検出がされた位置から、歯ブラシ装置をそのままの姿勢で、ブラシの延びる方向に(つまり歯牙に向かって移動させたところで歯ブラシ装置を一定位置に把持した場合を想定している。 Then, it is possible to set a cleaning effective area 101aa narrower than the detection area 101a, in which a certain or more cleaning effect can be expected (or simply having a cleaning effect) due to the collision of the cleaning liquid. In the case of a toothbrush device, the effective cleaning area 101aa corresponds to a portion of the toothbrush device that is held at a fixed position and is in contact with the brush in the trajectory of the driven brush 103b when the brush 103b is driven. do. However, the detection itself is performed before the brush comes into contact with the teeth, and the toothbrush device is moved from the position where the detection is made in the direction in which the brush extends (that is, when the toothbrush is moved toward the teeth). It is assumed that the device is held at a fixed position.
 本実施の形態では、歯垢付着量検出部156は、洗浄有効領域101aa内において、その全体に対して歯垢が付着している部分の面積比を算出して、その面積比があらかじめ定められた閾値以上であれば、歯垢が付着している場合の流量及び噴射圧で洗浄液を噴射させる制御が行われる。そのため、歯垢付着量検出部156又は画像処理部155には、検出領域101aから洗浄有効領域101aa内の分の画像をトリミングするなどの機能が備えられている。 In the present embodiment, plaque adhesion amount detection unit 156 calculates the area ratio of the portion where plaque adheres to the entire cleaning effective area 101aa, and the area ratio is determined in advance. If it is equal to or higher than the threshold value, control is performed so that the cleaning liquid is jetted at the flow rate and jetting pressure for when plaque is attached. Therefore, the plaque adhesion amount detection unit 156 or the image processing unit 155 has a function of trimming the image within the cleaning effective area 101aa from the detection area 101a.
 端末装置200は、上記したように、口腔洗浄装置100の使用者が所有するスマートフォン、タブレット端末、PCなどの情報処理装置であり、通信部201を介して口腔洗浄装置100と通信することができる。端末装置200は、通信部201、端末入力部202、及び端末表示部203を備える。これらの構成の機能は、上記に説明した通りのため、ここでの説明を省略する。 As described above, the terminal device 200 is an information processing device such as a smartphone, a tablet terminal, or a PC owned by the user of the oral cavity cleaning device 100, and can communicate with the oral cavity cleaning device 100 via the communication unit 201. . The terminal device 200 includes a communication section 201 , a terminal input section 202 and a terminal display section 203 . Since the functions of these configurations are as described above, descriptions thereof are omitted here.
 [2.口腔洗浄装置の動作]
 次に、上記のように構成される口腔洗浄装置100の動作(口腔洗浄方法)について、図3~図6を参照しながら説明する。図3は、実施の形態に係る口腔洗浄装置の動作例を示すフローチャートである。また、図4は、実施の形態に係る口腔洗浄装置の歯垢検出噴射モードでの動作例を示すフローチャートである。
[2. Operation of Oral Cleaning Device]
Next, the operation (oral cleaning method) of the oral cavity cleaning apparatus 100 configured as described above will be described with reference to FIGS. 3 to 6. FIG. FIG. 3 is a flow chart showing an operation example of the mouthwash device according to the embodiment. FIG. 4 is a flow chart showing an operation example in the plaque detection injection mode of the oral cavity cleaning apparatus according to the embodiment.
 まず、口腔洗浄装置100の動作が開始されると、噴射制御部153は、使用者によってあらかじめ設定された洗浄液の通常噴射強度を読み込む(S101)。例えば、噴射制御部153は、メモリ部154に問い合わせすることで、記憶デバイスに設定値として記憶された通常噴射強度の読み込みをさせる。そして、噴射制御部153は、メモリ部154経由で通常噴射強度を読み込む。なお、通常噴射強度とは、洗浄液の流量及び噴射圧を含んでおり、歯垢99aの付着がない場合などにデフォルト値として用いられる値である。なお、記憶デバイスに通常噴射強度の設定値が記憶されていない場合、初期値の通常噴射強度が読み込まれる、又は、使用者に対して、通常噴射強度の設定値を入力するように促す通知を出力する。 First, when the operation of the oral cavity cleaning device 100 is started, the injection control unit 153 reads the normal injection intensity of the cleaning liquid preset by the user (S101). For example, the injection control unit 153 makes an inquiry to the memory unit 154 to read the normal injection intensity stored as the set value in the storage device. The injection control unit 153 then reads the normal injection intensity via the memory unit 154 . The normal injection intensity includes the flow rate and injection pressure of the cleaning liquid, and is a value used as a default value when plaque 99a does not adhere. If the set value of the normal injection intensity is not stored in the storage device, the initial value of the normal injection intensity is read, or the user is notified to input the set value of the normal injection intensity. Output.
 次に、入力部104は、使用者からの歯垢検出噴射モードをONにするための、ON/OFF切り替えの入力を受け付ける(S102)。そして、入力がなかった場合、すなわち、歯垢検出噴射モードがONではないと判定された場合(S103でNo)、常時、通常噴射強度にて洗浄液が噴射される(S104、通常噴射モードともいう)。そして処理が終了される。 Next, the input unit 104 accepts ON/OFF switching input for turning on the plaque detection injection mode from the user (S102). When there is no input, that is, when it is determined that the plaque detection injection mode is not ON (No in S103), the cleaning liquid is always injected at the normal injection strength (S104, also called normal injection mode). ). The process is then terminated.
 一方で、入力部104が使用者からの歯垢検出噴射モードをONにするための入力を受け付けた場合、すなわち、歯垢検出噴射モードがONであると判定された場合(S103でYes)、歯垢検出噴射モードで洗浄液の噴射を行い(S105)、処理を終了する。 On the other hand, when the input unit 104 receives an input from the user for turning on the plaque detection injection mode, that is, when it is determined that the plaque detection injection mode is ON (Yes in S103), The washing liquid is injected in the plaque detection injection mode (S105), and the process ends.
 上記のステップS105について、図4に詳しく説明する。図4に示すように、ステップS103でYesとなり、歯垢検出噴射モードでの噴射が開始されると、噴射制御部153は、使用者によってあらかじめ設定された洗浄液の歯垢検出噴射強度を読み込む(S201)。例えば、噴射制御部153は、メモリ部154に問い合わせすることで、記憶デバイスに設定値として記憶された歯垢検出噴射強度の読み込みをさせる。そして、噴射制御部153は、メモリ部154経由で歯垢検出噴射強度を読み込む。なお、歯垢検出噴射強度とは、洗浄液の流量及び噴射圧を含んでおり、歯垢99aの付着がある場合などに用いられる値である。なお、記憶デバイスに歯垢検出噴射強度の設定値が記憶されていない場合、初期値の歯垢検出噴射強度が読み込まれる、又は、使用者に対して、歯垢検出噴射強度の設定値を入力するように促す通知を出力する。 The above step S105 will be explained in detail in FIG. As shown in FIG. 4, when the result of step S103 is Yes and injection in the plaque detection injection mode is started, the injection control unit 153 reads the plaque detection injection strength of the cleaning liquid preset by the user ( S201). For example, the injection control unit 153 makes an inquiry to the memory unit 154 to read the plaque detection injection intensity stored as the set value in the storage device. The injection control unit 153 then reads the plaque detection injection intensity via the memory unit 154 . The plaque detection injection strength includes the flow rate and injection pressure of the cleaning liquid, and is a value used when plaque 99a adheres. If the set value of the plaque detection jet strength is not stored in the storage device, the initial value of the plaque detection jet strength is read, or the user inputs the set value of the plaque detection jet strength. Output a notification prompting you to do so.
 ここで、図5を参照して、通常噴射強度と歯垢検出噴射強度とについて説明する。図5は、実施の形態に係る口腔洗浄装置での検出結果と制御量との関係を示すグラフである。図5に示すように、通常噴射強度に比べて、歯垢検出噴射強度は、制御量(この場合、洗浄液の流量及び噴射圧のいずれも含む)が大きい。そして、このような噴射強度の切り替えは、付着している歯垢99aの面積及び付着量に対して設定された閾値を境に歯垢99aの面積及び付着量が大きいほど、大きい方の制御量である歯垢検出噴射強度で洗浄液が噴射されるようになっている。 Here, the normal injection intensity and the plaque detection injection intensity will be described with reference to FIG. FIG. 5 is a graph showing the relationship between the detection result and the control amount in the mouthwash device according to the embodiment. As shown in FIG. 5, the control amount (in this case, including both the flow rate and the injection pressure of the cleaning liquid) is larger in the plaque detection injection intensity than in the normal injection intensity. In such a switching of the injection intensity, the larger the area and the amount of adhesion of the plaque 99a, the greater the control amount, which is set with respect to the area and the amount of adhesion of the plaque 99a. The washing liquid is jetted at a plaque detection jetting intensity of .
 つまり、歯垢99aの付着量が多いほど噴射強度を大きくして重点的に洗浄を行うことができるようになっている。ここで、付着している歯垢99aの面積及び付着量について説明する。本実施の形態では、歯垢99aの付着量として、検出領域101a内における歯垢99aが付着している歯垢部分の面積を用いる。この面積が大きければ、その検出領域内で歯垢99aが多く付着していると推定できる。 In other words, the greater the amount of plaque 99a adhered, the greater the jetting intensity, so that cleaning can be performed intensively. Here, the area and amount of adhered dental plaque 99a will be described. In the present embodiment, the area of the plaque portion to which the plaque 99a adheres within the detection region 101a is used as the amount of plaque 99a. If this area is large, it can be estimated that a large amount of dental plaque 99a is adhered within the detection area.
 そして、この比較的多く付着した歯垢99aを取り除くべく、より強い噴射強度で洗浄液を噴射するようにすれば、歯垢99aの除去効率の観点で噴射強度を適切にすることが可能となる。なお、歯垢99aが付着しているか否かは、撮影された画像の各画素において、蛍光波長に対応する色の輝度が輝度閾値を超えているか否かによって判断される。そして、輝度閾値を超えている画素数が図5の閾値に対応する数値を超えていれば歯垢除去噴射高度での洗浄液の流量及び噴射圧で噴射が行われる。なお、輝度閾値は、色素沈着などの状況にも影響されるため、使用者ごとに設定されることが好ましい。 Then, in order to remove the plaque 99a that has adhered to a relatively large amount, if the cleaning liquid is jetted with a stronger jetting strength, it becomes possible to make the jetting strength appropriate from the viewpoint of the removal efficiency of the dental plaque 99a. Whether plaque 99a adheres or not is determined by whether or not the brightness of the color corresponding to the fluorescence wavelength exceeds the brightness threshold in each pixel of the captured image. Then, if the number of pixels exceeding the luminance threshold exceeds the numerical value corresponding to the threshold in FIG. 5, injection is performed at the flow rate and injection pressure of the cleaning liquid at the plaque removal injection altitude. It should be noted that the brightness threshold is also affected by conditions such as pigmentation, and is therefore preferably set for each user.
 また、別の歯垢99aの付着量の算出方法として、検出領域101a内における、各画素の蛍光波長に対応する色の輝度の合計値によって、その検出領域101a内における歯垢99aの付着量を推定することもできる。各画素における蛍光波長に対応する色の輝度は、その画素に対応する実際の歯牙99表面の位置での代謝産物の蓄積量に対応するので、蛍光波長に対応する色の輝度の検出領域101a全体での合計値は、歯垢99aの付着量と相関すると考えられるので、このような方法で、歯垢99aの付着量を算出してもよい。この場合には、輝度の合計値が図5の閾値に対応する数値を超えていれば歯垢除去噴射高度での洗浄液の流量及び噴射圧で噴射が行われる。また、上記の面積及び輝度合計値のそれぞれを並列に用いて噴射強度の制御量を決定してもよい。 As another method for calculating the amount of plaque 99a adhered, the amount of plaque 99a adhered within the detection area 101a is calculated from the total value of the brightness of the color corresponding to the fluorescence wavelength of each pixel within the detection area 101a. can also be estimated. Since the brightness of the color corresponding to the fluorescence wavelength in each pixel corresponds to the accumulated amount of metabolites at the position of the actual tooth 99 surface corresponding to that pixel, the entire detection region 101a of the brightness of the color corresponding to the fluorescence wavelength is considered to be correlated with the amount of plaque 99a adhered, the amount of plaque 99a may be calculated by such a method. In this case, if the total luminance value exceeds the numerical value corresponding to the threshold value in FIG. 5, injection is performed at the flow rate and injection pressure of the cleaning liquid at the plaque removal injection altitude. Further, the injection intensity control amount may be determined by using each of the area and the luminance total value in parallel.
 図6は、実施の形態に係る口腔洗浄装置での検出結果と制御量との関係を示す別のグラフである。図5の例では、面積及び輝度合計値が閾値を超えた場合に噴射強度が急激に変化する関係を示したが、例えば、図6に示すように、面積及び輝度合計値と、噴射強度との関係を連続的に変化する関数としてもよい。例えば、図6の(a)に示すように、面積及び輝度合計値が比較的小さい区間では急激に噴射強度を上昇させ、面積及び輝度合計値が比較的大きい区間では緩やかに噴射強度を上昇させるような対数関数様の関係を適用してもよい。また、例えば、図6の(b)に示すように、面積及び輝度合計値が比較的小さい区間でも比較的大きい区間でも同じように噴射強度を上昇させるような比例関数の関係を適用してもよい。また、例えば、図6の(c)に示すように、面積及び輝度合計値が比較的小さい区間では緩やかに噴射強度を上昇させ、面積及び輝度合計値が比較的大きい区間では急激に噴射強度を上昇させるような指数関数様の関係を適用してもよい。 FIG. 6 is another graph showing the relationship between the detection result and the control amount in the mouthwash device according to the embodiment. Although the example of FIG. 5 shows a relationship in which the injection intensity changes abruptly when the total area and luminance values exceed the threshold values, for example, as shown in FIG. may be a function that changes continuously. For example, as shown in (a) of FIG. 6, the injection intensity is rapidly increased in sections where the area and the total brightness value are relatively small, and the injection strength is increased gently in the section where the area and the total brightness value are relatively large. A logarithmic function-like relationship such as Alternatively, for example, as shown in FIG. 6(b), a proportional function relationship may be applied that similarly increases the injection intensity in both sections where the area and total luminance value are relatively small and sections where the total luminance value is relatively large. good. Further, for example, as shown in FIG. 6C, the injection intensity is gradually increased in sections where the area and total luminance value are relatively small, and the injection intensity is rapidly increased in sections where the area and total luminance value are relatively large. An ascending exponential-like relationship may be applied.
 再び図4を参照して、ステップS201の後に、LED照明部102が、代謝産物を励起させる波長の光を含む照射光を照射領域に照射する(S202)。すると、照射領域のうち、歯垢99aが付着している歯垢部分からは、励起された代謝産物が基底状態に戻るときに蛍光発光が生じて、選択的に発色された状態になる。 Referring to FIG. 4 again, after step S201, the LED lighting unit 102 irradiates the irradiation region with irradiation light containing light having a wavelength that excites metabolites (S202). Then, in the irradiated area, the dental plaque portion to which the dental plaque 99a adheres emits fluorescent light when the excited metabolite returns to the ground state, resulting in a selectively colored state.
 カメラ部101は、この蛍光を検出光として、噴射口103aから所定方向に延長された延長線上、すなわち、洗浄液が噴射される方向の歯牙99表面に対応する位置を内包する検出領域101a内で検出する。つまり、蛍光を含む画像を撮影する(S203)。ここでの検出が、二次元的な検出領域101aにおいて行われるので、上記したような、面積及び輝度合計値のように、検出領域101a内での総合的な評価が可能な画像を得ることができる。なお、カメラ部101が画像の撮影を開始してから終了するまでの検出期間と少なくとも一部が重複する禁止期間において、洗浄液の噴射が行われないように、洗浄液噴射部103の動作を禁止してもよい。洗浄液の噴射が行われているときは、洗浄液の飛沫が口腔内で飛散するため、光学的な影響が発生する可能性がある。このため、上記のように禁止期間において、洗浄液の噴射が行われないように、洗浄液噴射部103の動作を禁止することは有効である。 The camera unit 101 detects this fluorescence as detection light on an extension line extending in a predetermined direction from the injection port 103a, that is, within a detection area 101a including a position corresponding to the surface of the tooth 99 in the direction in which the cleaning liquid is injected. do. That is, an image containing fluorescence is captured (S203). Since the detection here is performed in the two-dimensional detection area 101a, it is possible to obtain an image that can be comprehensively evaluated within the detection area 101a, such as the area and the total brightness value as described above. can. Note that the operation of the cleaning liquid injection unit 103 is prohibited so that the cleaning liquid is not injected during a prohibited period that at least partially overlaps with the detection period from when the camera unit 101 starts capturing an image until it ends. may When the cleansing liquid is sprayed, droplets of the cleansing liquid scatter in the oral cavity, which may cause optical effects. Therefore, it is effective to prohibit the operation of the cleaning liquid injection unit 103 so that the cleaning liquid is not injected during the prohibition period as described above.
 面積及び輝度値が閾値未満である場合(S204でNo)、この検出領域101aには、通常噴射強度で洗浄液を噴射する(S205)。また、面積及び輝度値が閾値以上である場合(S204でYes)、この検出領域101aには、歯垢検出噴射強度(つまり強い噴射強度)で洗浄液を噴射する(S206)。ステップS205及びステップS206の後に、さらに、使用者が口腔洗浄装置100を把持したまま手を移動させて、別の検出領域101aについて同じ操作を行っていく。そのために、使用者が洗浄を終了したか否かを判定し(S207)、使用者が、例えば、終了ボタン(不図示)を押下したなど、洗浄を終了させたと判定した場合(S207でYes)、処理を終了する。使用者がそのまま洗浄を継続している場合(S207でNo)、ステップS202に戻り、同じ処理を繰り返す。 If the area and brightness values are less than the threshold (No in S204), the cleaning liquid is jetted to the detection region 101a at normal jetting strength (S205). If the area and brightness values are equal to or greater than the threshold values (Yes in S204), the cleaning liquid is jetted onto the detection area 101a with the plaque detection jetting strength (that is, strong jetting strength) (S206). After steps S205 and S206, the user moves his or her hand while holding oral cavity cleaning device 100 to perform the same operation on another detection region 101a. Therefore, it is determined whether or not the user has finished cleaning (S207), and if it is determined that the user has finished cleaning, for example, by pressing an end button (not shown) (Yes in S207). , terminate the process. If the user continues washing as it is (No in S207), the process returns to step S202 and repeats the same process.
 このようにして、歯垢99aに含まれる細菌の代謝産物を蛍光発光によって選択的に発色させることで、歯垢99aの付着している付着箇所を選択的に検出し、この検出を検出領域101aという二次元的に広がっている領域に対して行う。この結果、領域として歯垢99aが多く付着している部分に強い噴射強度(流量及び噴射)で洗浄液を噴射できるため、歯垢99aを除去する観点で適切な噴射強度の制御を行うことが可能となる。そして、このような洗浄と検出とを、位置を変えながら繰り返し行うことで、広い範囲の歯牙にわたって、高い洗浄効果を得ることが可能となる。 In this way, the metabolites of the bacteria contained in the dental plaque 99a are selectively colored by fluorescence emission, thereby selectively detecting the attachment sites where the dental plaque 99a is attached. This is done for a two-dimensionally spreading area. As a result, since the cleaning liquid can be jetted at a high jetting strength (flow rate and jetting) to a region where a large amount of dental plaque 99a is adhered, it is possible to appropriately control the jetting strength from the viewpoint of removing the dental plaque 99a. becomes. By repeatedly performing such cleaning and detection while changing the position, it is possible to obtain a high cleaning effect over a wide range of teeth.
 [3.口腔洗浄装置の変形例1]
 次に、図7~図9を用いて、変形例1に係る口腔洗浄装置について説明する。なお、以下説明する変形例1では、上記した実施の形態と比較して異なる点について述べ、実施の形態と実質的に同等な点については説明を省略する。
[3. Modification 1 of oral cavity cleaning device]
Next, an oral cavity cleaning device according to Modification 1 will be described with reference to FIGS. 7 to 9. FIG. In Modification 1 described below, differences from the above-described embodiment will be described, and descriptions of substantially the same points as the embodiment will be omitted.
 図7は、実施の形態の変形例1に係る口腔洗浄装置等の機能構成を示すブロック図である。図7に示すように、本変形例1では、実施の形態と比べて、口腔洗浄装置100aが不調検出部157を備える点で異なっている。 FIG. 7 is a block diagram showing the functional configuration of an oral cavity cleaning device etc. according to Modification 1 of the embodiment. As shown in FIG. 7, Modification 1 differs from the embodiment in that oral cavity cleaning device 100a includes malfunction detection section 157 .
 不調検出部157は、歯肉部分の状態を推定して、歯肉部分の状態に応じた噴射強度となるように、洗浄液が噴射されるよう制御する。不調検出部157は、画像処理部155に接続され、変換後の画像を取得して、この画像に基づき歯肉部分の状態を推定する。なお、不調検出部157は、変換前の画像を、カメラ制御部151から取得してもよい。 The malfunction detection unit 157 estimates the state of the gingiva and controls the jetting of the washing liquid so that the jetting intensity is in accordance with the state of the gingiva. The disorder detection unit 157 is connected to the image processing unit 155, acquires the converted image, and estimates the state of the gingiva based on this image. Note that the malfunction detection unit 157 may acquire the pre-conversion image from the camera control unit 151 .
 不調検出部157は、あらかじめ学習済みの機械学習モデルであって、画像内に写る歯肉部分と、その歯肉部分の不調の有無との相関関係が学習された機械学習モデルを有する。不調検出部157は、取得した画像を機械学習モデルに入力することで、その画像に歯肉部分が写る場合に、歯肉部分の不調の有無を出力として得ることができる。ここでの歯肉部分の不調とは、例えば、歯肉部分に腫れ及び出血の少なくとも一方が生じていることである。また、その他、臨床的に不調とされる歯肉部分の状態が、ここでの不調として含まれてもよい。その場合は、当該不調をきたしている歯肉部分が写った画像と、その不調があるという正解データとを教師データとして、機械学習モデルを学習させればよい。 The disorder detection unit 157 has a pre-learned machine learning model in which the correlation between the gingival part shown in the image and the presence or absence of a disorder of the gingival part is learned. By inputting the acquired image into the machine learning model, the disorder detection unit 157 can obtain the presence or absence of the disorder of the gum part as an output when the gum part is shown in the image. Here, the gingival condition is, for example, at least one of swelling and bleeding in the gingiva. In addition, the state of the gingival portion that is clinically regarded as unsatisfactory may also be included as the unsatisfactory condition. In that case, a machine learning model may be trained using an image showing the affected gingiva and correct data indicating that the problem exists as training data.
 そしてこのような不調をきたしている歯肉部分が含まれた検出領域101aに対しては、強い噴射強度で洗浄液を噴射すれば、歯肉部分の不調が悪化する可能性がある。このため、本変形例1では、歯肉部分に不調が検出された場合に、その検出領域101aに対する洗浄液の噴射強度を弱くする(例えば、通常噴射強度よりも弱い噴射強度)ことで、歯肉部分の不調の悪化を抑制することが可能となる。具体的には、口腔洗浄装置100aは、以下のように動作する。 Then, if the cleaning liquid is jetted with a high injection intensity to the detection region 101a including the gingiva causing such a malfunction, the malfunction of the gingiva may be exacerbated. Therefore, in Modification 1, when a malfunction is detected in the gingiva, the jetting strength of the cleaning liquid to the detection region 101a is weakened (for example, the jetting strength is weaker than the normal jetting strength). It is possible to suppress the deterioration of the disorder. Specifically, the oral cavity cleaning device 100a operates as follows.
 図8は、実施の形態の変形例1に係る口腔洗浄装置の動作例を示すフローチャートである。また、図9は、実施の形態の変形例1に係る口腔洗浄装置の歯垢検出噴射モードかつ不調検出噴射モードでの動作例を示すフローチャートである。 FIG. 8 is a flow chart showing an operation example of the oral cavity cleaning device according to Modification 1 of the embodiment. FIG. 9 is a flowchart showing an operation example in the plaque detection injection mode and the malfunction detection injection mode of the mouthwash apparatus according to Modification 1 of the embodiment.
 図8に示すように、ステップS301及びステップS302は、図3のステップS101及びステップS102に対応するので、ここでの説明を省略する。ステップS302の後に、さらに、入力部104は、使用者からの不調検出噴射モードをONにするための、ON/OFF切り替えの入力を受け付ける(S303)。ステップS304は、図3のステップS103に対応するので、ここでの説明を省略する。ステップS304でNoの場合、ステップS305に進み、ステップS304でYesの場合、ステップS308に進んで、いずれも、不調検出噴射モードをONにするための入力があったか否かが判定される。 As shown in FIG. 8, steps S301 and S302 correspond to steps S101 and S102 in FIG. 3, so description thereof will be omitted here. After step S302, the input unit 104 further receives an ON/OFF switching input for turning on the malfunction detection injection mode from the user (S303). Since step S304 corresponds to step S103 in FIG. 3, description thereof is omitted here. If No in step S304, the process proceeds to step S305, and if Yes in step S304, the process proceeds to step S308, in which it is determined whether or not there is an input for turning on the malfunction detection injection mode.
 ステップS305でNoの場合、歯垢検出噴射モード及び不調検出噴射モードのどちらもOFFであるため、常時、通常噴射強度にて洗浄液が噴射される(S306、通常噴射モードともいう)。そして処理が終了される。ステップS305でYesの場合、歯垢検出噴射モードがOFFで不調検出噴射モードがONであるため、不調検出噴射モードで洗浄液の噴射を行い(S307)、処理を終了する。 If No in step S305, both the plaque detection injection mode and the malfunction detection injection mode are OFF, so the washing liquid is always injected at the normal injection strength (S306, also referred to as the normal injection mode). The process is then terminated. If Yes in step S305, since the plaque detection injection mode is OFF and the malfunction detection injection mode is ON, cleaning liquid is injected in the malfunction detection injection mode (S307), and the process ends.
 ステップS308でNoの場合、歯垢検出噴射モードがONで不調検出噴射モードがOFFであるため、歯垢検出噴射モードで洗浄液の噴射を行い(S309)、処理を終了する。ステップS308でYesの場合、歯垢検出噴射モード及び不調検出噴射モードのどちらもONであるため、歯垢検出噴射モードかつ不調検出噴射モードで洗浄液の噴射を行い(S310)、処理を終了する。 If No in step S308, since the plaque detection injection mode is ON and the malfunction detection injection mode is OFF, cleaning liquid is injected in the plaque detection injection mode (S309), and the process ends. If Yes in step S308, both the plaque detection injection mode and the malfunction detection injection mode are ON, so cleaning liquid is injected in both the plaque detection injection mode and the malfunction detection injection mode (S310), and the process ends.
 上記のステップS310について、図9に詳しく説明する。図9に示すように、ステップS308でYesとなり、歯垢検出噴射モードかつ不調検出モードでの噴射が開始されると、噴射制御部153は、使用者によってあらかじめ設定された洗浄液の歯垢検出噴射強度及び不調検出噴射強度を読み込む(S201a)。例えば、噴射制御部153は、メモリ部154に問い合わせすることで、記憶デバイスに設定値として記憶された歯垢検出噴射強度及び不調検出噴射強度の読み込みをさせる。そして、噴射制御部153は、メモリ部154経由で歯垢検出噴射強度及び不調検出噴射強度を読み込む。なお、不調検出噴射強度は、洗浄液の流量及び噴射圧に加えて噴射頻度を含んでおり、検出領域101a内の歯肉部分に不調がある場合などに用いられる値である。噴射頻度については、歯肉部分の状態に応じた適切な噴射頻度とすることにより、言い換えると、歯肉部分の状態に応じた適切な間欠噴射を行うことにより、不調をきたしている場合の歯肉部分に、更に状態を悪化させるようなダメージを与えることを抑制できる効果がある。なお、記憶デバイスに不調検出噴射強度の設定値が記憶されていない場合、初期値の不調検出噴射強度が読み込まれる、又は、使用者に対して、不調検出噴射強度の設定値を入力するように促す通知を出力する。 The above step S310 will be explained in detail in FIG. As shown in FIG. 9, when the result of step S308 is YES and the injection in the plaque detection injection mode and malfunction detection mode is started, the injection control unit 153 controls the plaque detection injection of the washing liquid preset by the user. The intensity and malfunction detection injection intensity are read (S201a). For example, the ejection control unit 153 makes an inquiry to the memory unit 154 to read the plaque detection ejection intensity and the malfunction detection ejection intensity stored as set values in the storage device. The injection control unit 153 then reads the plaque detection injection strength and the malfunction detection injection strength via the memory unit 154 . The malfunction detection injection strength includes the injection frequency in addition to the flow rate and injection pressure of the cleaning liquid, and is a value used when there is a malfunction in the gingiva portion within the detection region 101a. As for the frequency of injection, by setting the injection frequency appropriately according to the condition of the gingiva, in other words, by performing an appropriate intermittent injection according to the condition of the gingiva, it is possible to , It has the effect of suppressing the damage that would further aggravate the condition. If the set value of the malfunction detection injection intensity is not stored in the storage device, the initial value of the malfunction detection injection intensity is read, or the user is prompted to input the set value of the malfunction detection injection intensity. Output a prompting notification.
 そして、図4のステップS202と同様に、LED照明部102が、代謝産物を励起させる波長の光を含む照射光を照射領域に照射する(S202a)。ここでの照射光には、白色光が含まれ、蛍光の画像だけでなく通常の画像撮影も可能である。すると、検出光を含めて口腔内を撮影することで(S203a)、歯垢部分が選択的に発色された状態になるとともに、検出領域101a内に歯肉部分が写る場合には、その歯肉部分の状態を推定することが可能な画像を得ることができる。 Then, similarly to step S202 in FIG. 4, the LED lighting unit 102 irradiates the irradiation region with irradiation light containing light having a wavelength that excites metabolites (S202a). The irradiation light here includes white light, and it is possible to take not only fluorescence images but also normal images. Then, by photographing the inside of the oral cavity including the detection light (S203a), the plaque portion is selectively colored, and when the gingival portion is captured in the detection area 101a, the gingival portion is detected. An image can be obtained from which the state can be estimated.
 そして、図4のステップS204の判定が行われる。ステップS204でNoの場合、ステップS401に進み、ステップS204でYesの場合、ステップS402に進んで、いずれも、推定した歯肉部分の状態において、当該歯肉部分に不調を検出したか否かが判定される。歯肉部分に不調を検出したと判定した場合(S401又はS402でYes)、この検出領域101aには、不調検出噴射強度で洗浄液を噴射する(S403)。 Then, the determination in step S204 of FIG. 4 is performed. If No in step S204, the process proceeds to step S401. If Yes in step S204, the process proceeds to step S402. be. When it is determined that a malfunction has been detected in the gingival portion (Yes in S401 or S402), the cleaning liquid is jetted onto the detection area 101a at the malfunction detection jetting intensity (S403).
 その他は、図4のステップS205~ステップS207と同様であるため、説明を省略する。ここでは、歯肉部分に不調が検出されれば、歯垢99aの付着量、すなわち、面積及び輝度合計値が閾値以上であっても不調検出噴射強度で噴射が行われる例を説明した。この場合は、不調検出噴射モードが歯垢検出噴射モードよりも優先されるといえる。例えば、歯垢検出噴射モードを優先する場合、ステップS402を実行せずに、ステップS204でYesとなればステップS206に進むようにすればよい。 Others are the same as steps S205 to S207 in FIG. 4, so the description is omitted. Here, an example has been described in which, if a malfunction is detected in the gingival portion, injection is performed at the malfunction detection injection strength even if the amount of plaque 99a adhered, that is, the sum of the area and brightness is greater than or equal to the threshold value. In this case, it can be said that the malfunction detection injection mode has priority over the plaque detection injection mode. For example, if priority is given to the plaque detection injection mode, step S402 may not be executed, and if Yes in step S204, the process may proceed to step S206.
 また、上記では、歯垢検出噴射モード及び不調検出噴射モードのいずれもONである場合の動作を説明したが、歯垢検出噴射モードがOFFで不調検出噴射モードがONである場合は、図9のステップS204、ステップS402、及びステップS206が省略される。そのため、ステップS203aの後にステップS401に進み、歯肉部分に不調が検出されたか否かの判定が行われる。そして、判定結果に応じて、通常噴射強度又は不調検出噴射強度のいずれかで洗浄液の噴射が行われる。 In the above description, the operation when both the plaque detection injection mode and the malfunction detection injection mode are ON has been described. Steps S204, S402, and S206 of are omitted. Therefore, after step S203a, the process proceeds to step S401, where it is determined whether or not a malfunction has been detected in the gingival portion. Then, depending on the determination result, the cleaning liquid is jetted at either the normal jetting strength or the malfunction detection jetting strength.
 [4.口腔洗浄装置の変形例2]
 次に、図10を用いて、変形例2に係る口腔洗浄装置について説明する。なお、以下説明する変形例2では、上記した実施の形態の変形例1と比較して異なる点について述べ、実施の形態の変形例1と実質的に同等な点については説明を省略する。
[4. Modification 2 of oral cavity cleaning device]
Next, an oral cavity cleaning device according to Modification 2 will be described with reference to FIG. 10 . It should be noted that in Modification 2 described below, differences from Modification 1 of the above-described embodiment will be described, and descriptions of substantially the same points as Modification 1 of the embodiment will be omitted.
 図10は、実施の形態の変形例2に係る口腔洗浄装置等の機能構成を示すブロック図である。本変形例2に係る口腔洗浄装置100bは、上記の変形例1に係る口腔洗浄装置100aと比べて、口腔洗浄装置100bが判定部158及び出力部159を備える点で異なっている。 FIG. 10 is a block diagram showing the functional configuration of an oral cavity cleaning device etc. according to Modification 2 of the embodiment. The mouthwash device 100b according to Modification 2 differs from the mouthwash device 100a according to Modification 1 above in that the mouthwash device 100b includes a determination unit 158 and an output unit 159 .
 判定部158及び出力部159は、洗浄液の噴射強度を決定するための画像を生成するのに必要な光が適切に届いているか否かを判定し、光が届かないような不具合があればその旨を通知するための機能部である。より具体的には、判定部158は、画像処理部から変換後の画像を取得してその画像の全体輝度が低下している状態が一定期間以上継続しているような場合(検出光の明度が所定値以下の状態が所定時間以上継続した場合)に、(i)検出領域101aとカメラ部101との間における検出光、又は、(ii)LED照明部102と照射領域との間における照射光の少なくとも一方を遮る遮蔽物が存在すると判定する。このような遮蔽物として、例えば、口唇、歯牙、歯肉のような口腔構造、及び、塵埃、異物などが挙げられる。このような遮蔽物が存在する場合、歯垢の検出も歯肉部分の不調の検出も正確に行えない可能性がある。本変形例に係る口腔洗浄装置100bでは、この遮蔽物の存在を示す判定結果を出力部159によって出力し、例えば、端末装置200の端末表示部203に画像として表示させることで使用者に通知する。 The determination unit 158 and the output unit 159 determine whether or not the light necessary for generating an image for determining the ejection intensity of the cleaning liquid is properly reaching. It is a functional unit for notifying that. More specifically, the determination unit 158 obtains an image after conversion from the image processing unit, and determines whether the state in which the overall luminance of the image has decreased for a certain period of time or more (brightness of detected light is a predetermined value or less for a predetermined time or longer), (i) detected light between the detection region 101a and the camera unit 101, or (ii) illumination between the LED illumination unit 102 and the irradiation region It is determined that there is a shield that blocks at least one of the lights. Such shields include, for example, oral structures such as lips, teeth, and gums, as well as dust, foreign matter, and the like. In the presence of such a shield, neither plaque detection nor gingival malformation can be accurately detected. In the oral cavity cleaning device 100b according to this modified example, the output unit 159 outputs the determination result indicating the existence of the shield, and for example, the terminal display unit 203 of the terminal device 200 displays it as an image to notify the user. .
 この通知をみて、使用者は、口腔洗浄装置100bの姿勢を変更したり、遮蔽物を除去するなどして、各種の検出が正常に行えるようにするための対処をすることが可能となる。 Upon seeing this notification, the user can change the posture of the oral cavity cleaning device 100b, remove the shield, etc., so that various detections can be performed normally.
 [5.画像処理方法、画像処理装置、及び、画像処理方法に関するプログラム]
 [5-1.背景技術及び課題]
 口腔内の歯牙の画像を撮影する口腔内カメラシステムが特許文献2に開示されている。
[5. Image processing method, image processing apparatus, and program for image processing method]
[5-1. Background technology and problems]
Japanese Patent Application Laid-Open No. 2002-300002 discloses an intraoral camera system that captures images of teeth in the oral cavity.
 このような、口腔内カメラシステムでは、歯牙の画像において歯垢が付着している領域である歯垢領域を容易に特定できることが望まれている。 With such an intraoral camera system, it is desired to be able to easily identify a dental plaque area, which is an area where dental plaque adheres, in a tooth image.
 そこで、以下では、歯牙の画像における歯垢領域を容易に特定できる画像処理方法などを提供する。 Therefore, the following provides an image processing method that can easily identify the plaque area in the image of the tooth.
 [5-2.手段]
 以下の一態様に係る画像処理方法は、青色光の波長域を含む光を歯牙に照射することで蛍光反応している前記歯牙および歯垢を撮影することで得られた第1RGB画像を取得し、前記第1RGB画像に対して第1画像処理を含む画像処理を行うことで第2RGB画像を生成し、前記第1画像処理は、処理対象のRGB画像のうちの前記歯牙の領域を構成する複数の第1画素が有する複数の赤画素値の第1赤画素平均値と、前記複数の第1画素が有する複数の緑画素値の第1緑画素平均値と、前記複数の第1画素が有する複数の青画素値の第1青画素平均値とが等しくなるように、前記処理対象のRGB画像の赤成分、緑成分、及び、青成分のうちの少なくとも2つの色成分のゲインを調整する処理である。
[5-2. means]
The image processing method according to the following aspect acquires a first RGB image obtained by photographing the tooth and dental plaque that undergo fluorescence reaction by irradiating the tooth with light including a wavelength range of blue light. and generating a second RGB image by performing image processing including first image processing on the first RGB image, wherein the first image processing is performed on a plurality of regions of the tooth in the RGB image to be processed. a first red pixel average value of a plurality of red pixel values possessed by the first pixels of, a first green pixel average value of a plurality of green pixel values possessed by the plurality of first pixels, and a first green pixel average value of the plurality of green pixel values possessed by the plurality of first pixels A process of adjusting the gains of at least two of the red, green, and blue components of the RGB image to be processed so that the first blue pixel average value of the plurality of blue pixel values is equal. is.
 なお、これらの包括的または具体的な態様は、システム、装置、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、装置、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。また、記録媒体は、非一時的な記録媒体であってもよい。 In addition, these general or specific aspects may be realized by a system, device, integrated circuit, computer program, or a recording medium such as a computer-readable CD-ROM. and any combination of recording media. Also, the recording medium may be a non-temporary recording medium.
 [5-3.効果]
 以下の説明に係る画像処理方法などは、歯牙の画像における歯垢領域を容易に特定できる。
[5-3. effect]
The image processing method and the like described below can easily identify the plaque region in the image of the tooth.
 [5-4.実施するための形態]
 以下に説明する第1の態様に係る画像処理方法は、青色光の波長域を含む光を歯牙に照射することで蛍光反応している前記歯牙および歯垢を撮影することで得られた第1RGB画像を取得し、前記第1RGB画像に対して第1画像処理を含む画像処理を行うことで第2RGB画像を生成し、前記第1画像処理は、処理対象のRGB画像のうちの前記歯牙の領域を構成する複数の第1画素が有する複数の赤画素値の第1赤画素平均値と、前記複数の第1画素が有する複数の緑画素値の第1緑画素平均値と、前記複数の第1画素が有する複数の青画素値の第1青画素平均値とが等しくなるように、前記処理対象のRGB画像の赤成分、緑成分、及び、青成分のうちの少なくとも2つの色成分のゲインを調整する処理である。
[5-4. Form for implementation]
In the image processing method according to the first aspect described below, the first RGB obtained by photographing the tooth and dental plaque undergoing fluorescence reaction by irradiating the tooth with light including the wavelength region of blue light an image is acquired, and image processing including first image processing is performed on the first RGB image to generate a second RGB image, and the first image processing is performed on the tooth region in the RGB image to be processed. a first red pixel average value of a plurality of red pixel values possessed by the plurality of first pixels constituting the first pixels, a first green pixel average value of a plurality of green pixel values possessed by the plurality of first pixels, and the plurality of first A gain of at least two color components out of the red, green, and blue components of the RGB image to be processed so that the first blue pixel average value of the plurality of blue pixel values of one pixel is equal to the first blue pixel average value. This is the process of adjusting the
 これによれば、第1画像処理を行うことで、蛍光反応している歯牙が撮影されている第1RGB画像のホワイトバランスを調整することができる。このため、歯牙において歯垢が付着している領域である歯垢領域を区別しやすい第2RGB画像を生成することができる。よって、歯牙の画像における歯垢領域を容易に特定することができる。これにより、例えば、歯磨き後の歯牙の画像を撮影し、歯垢領域を特定することで、磨き残しの領域をユーザに提示することができる。 According to this, by performing the first image processing, it is possible to adjust the white balance of the first RGB image in which the fluorescently reacting tooth is captured. Therefore, it is possible to generate a second RGB image that makes it easy to distinguish the plaque region, which is the region of the tooth to which dental plaque adheres. Therefore, it is possible to easily identify the plaque region in the image of the tooth. As a result, for example, by taking an image of the tooth after brushing and specifying the plaque area, it is possible to present the user with the area left unbrushed.
 以下に説明する第2の態様に係る画像処理方法は、第1の態様に係る画像処理方法であって、さらに、前記第2RGB画像の色空間をHSV空間に変換することでHSV画像を生成し、前記HSV画像が有する複数の第4画素のうち彩度が第1の所定範囲内、色相が第2の所定範囲内、及び、明度が第3の所定範囲内の少なくとも1つを満たす1以上の第4画素が位置する特定画素領域を特定し、前記第2RGB画像における前記特定画素領域に対して彩度強調処理を行うことで第4RGB画像を生成する。 An image processing method according to a second aspect described below is the image processing method according to the first aspect, further comprising generating an HSV image by converting the color space of the second RGB image into the HSV space. , one or more of a plurality of fourth pixels of the HSV image that satisfy at least one of a saturation within a first predetermined range, a hue within a second predetermined range, and a lightness within a third predetermined range A fourth RGB image is generated by specifying a specific pixel region in which the fourth pixel of is located, and performing saturation enhancement processing on the specific pixel region in the second RGB image.
 これによれば、第2RGB画像において歯垢領域としての特定画素領域を特定し、特定画素領域に対して彩度強調処理を行うため、さらに、歯垢領域を区別しやすい第3RGB画像を生成することができる。よって、歯牙の画像における歯垢領域を容易に特定することができる。 According to this, since the specific pixel region as the dental plaque region is specified in the second RGB image and the saturation enhancement processing is performed on the specific pixel region, the third RGB image is further generated in which the plaque region can be easily distinguished. be able to. Therefore, it is possible to easily identify the plaque region in the image of the tooth.
 以下に説明する第3の態様に係る画像処理方法は、第1の態様に係る画像処理方法であって、さらに、前記第2RGB画像の色空間をHSV空間に変換することでHSV画像を生成し、前記HSV画像が有する複数の第4画素のうち彩度が第1の所定範囲内、色相が第2の所定範囲内、及び、明度が第3の所定範囲内の少なくとも1つを満たす1以上の第4画素が位置する特定画素領域を特定し、前記第2RGB画像における前記特定画素領域を所定パターンで置き換えることで第4RGB画像を生成する。 An image processing method according to a third aspect described below is the image processing method according to the first aspect, further comprising generating an HSV image by converting the color space of the second RGB image into the HSV space. , one or more of a plurality of fourth pixels of the HSV image that satisfy at least one of a saturation within a first predetermined range, a hue within a second predetermined range, and a lightness within a third predetermined range A fourth RGB image is generated by specifying a specific pixel region in which the fourth pixel of is located and replacing the specific pixel region in the second RGB image with a predetermined pattern.
 これによれば、第2RGB画像において歯垢領域としての特定画素領域を特定し、特定画素領域を所定パターンで置き換えるため、さらに、歯垢領域を区別しやすい第4RGB画像を生成することができる。よって、歯牙の画像における歯垢領域を容易に特定することができる。 According to this, since the specific pixel area as the dental plaque area is specified in the second RGB image and the specific pixel area is replaced with the predetermined pattern, it is possible to further generate the fourth RGB image in which the dental plaque area can be easily distinguished. Therefore, it is possible to easily identify the plaque region in the image of the tooth.
 以下に説明する第4の態様に係る画像処理方法は、第1の態様から第3の態様のいずれか1つの態様に係る画像処理方法であって、前記画像処理は、さらに、第2画像処理を含み、前記第2画像処理は、処理対象のRGB画像に含まれる複数の第2画素がそれぞれ有する複数の第2画素値から算出した複数の指標値の平均値が所定値になるようにゲインを決定し、決定した前記ゲインを前記処理対象のRGB画像に適用することで第3RGB画像を生成する処理であり、前記第1画像処理は、前記第3RGB画像を処理対象とする処理である。 An image processing method according to a fourth aspect described below is an image processing method according to any one aspect of the first aspect to the third aspect, wherein the image processing further includes a second image processing wherein the second image processing includes gain so that an average value of a plurality of index values calculated from a plurality of second pixel values respectively possessed by a plurality of second pixels included in the RGB image to be processed becomes a predetermined value is determined and the determined gain is applied to the RGB image to be processed to generate a third RGB image, and the first image processing is a process to process the third RGB image.
 これによれば、複数の第2画素の輝度値のゲインを調整することで露出制御処理を行うため、撮影条件にバラツキがあっても複数の輝度値の条件を一定にすることができる。つまり、第1画像処理を行う処理対象の第3RGB画像の輝度分布の条件を撮影条件によらず一定にすることができるため、より効果的に第1画像処理を行うことができる。 According to this, since the exposure control processing is performed by adjusting the gain of the luminance values of the plurality of second pixels, the conditions of the plurality of luminance values can be kept constant even if the shooting conditions vary. That is, since the condition of the luminance distribution of the third RGB image to be processed for the first image processing can be made constant regardless of the photographing conditions, the first image processing can be performed more effectively.
 以下に説明する第5の態様に係る画像処理方法は、第4の態様に係る画像処理方法であって、前記複数の指標値の平均値は、前記第1RGB画像の赤成分、緑成分、及び、青成分のうちの最大平均値を有する色成分の平均値である。 An image processing method according to a fifth aspect described below is the image processing method according to the fourth aspect, wherein the average value of the plurality of index values is the red component, the green component, and the , is the mean value of the color component with the largest mean value among the blue components.
 以下に説明する第6の態様に係る画像処理方法は、第4の態様に係る画像処理方法であって、前記複数の指標値は、前記複数の第2画素値のそれぞれについて、当該第2画素値に含まれる赤画素値、緑画素値、及び、青画素値に基づいて算出することで得られる。 An image processing method according to a sixth aspect, which will be described below, is the image processing method according to the fourth aspect, wherein the plurality of index values are the second pixel values for each of the plurality of second pixel values. It is obtained by calculation based on the red pixel value, green pixel value, and blue pixel value included in the value.
 以下に説明する第7の態様に係る画像処理方法は、第4の態様に係る画像処理方法であって、前記複数の第2画素は、前記第1RGB画像を構成する複数の第3画素のうち、最大の色成分の画素値が第1閾値より小さく、かつ、最小の色成分の画素値が第2閾値以下であることを満たす画素である。 An image processing method according to a seventh aspect described below is the image processing method according to the fourth aspect, wherein the plurality of second pixels are the plurality of third pixels forming the first RGB image. , the pixel value of the maximum color component is less than the first threshold and the pixel value of the minimum color component is less than or equal to the second threshold.
 このため、第1RGB画像において照射している光による反射の影響を強く受けている領域を除外して、第2画像処理を行うことができる。 Therefore, it is possible to perform the second image processing by excluding areas strongly affected by the reflection of the irradiated light in the first RGB image.
 以下に説明する第8の態様に係る画像処理方法は、第1の態様から第3の態様のいずれか1つの態様に係る画像処理方法であって、さらに、前記第1RGB画像が撮影された口腔内位置を検出し、前記口腔内位置と、前記第2RGB画像とを対応付けて記憶する。 An image processing method according to an eighth aspect described below is an image processing method according to any one aspect of the first aspect to the third aspect, and further comprises an oral cavity in which the first RGB image is taken. An intraoral position is detected, and the intraoral position and the second RGB image are associated and stored.
 このため、第2RGB画像または第4RGB画像に含まれる歯牙の口腔内位置を容易に特定することができる。 Therefore, it is possible to easily identify the intraoral position of the tooth included in the second RGB image or the fourth RGB image.
 以下に説明する第9の態様に係る画像処理装置は、青色光の波長域を含む光を歯牙に照射することで蛍光反応している前記歯牙及び歯垢を撮影することで得られた第1RGB画像を取得する取得部と、前記第1RGB画像に対して第1画像処理を含む画像処理を行うことで第2RGB画像を生成する生成部と、を備え、前記第1画像処理は、処理対象のRGB画像のうちの前記歯牙の領域を構成する複数の第1画素が有する複数の赤画素値の第1赤画素平均値と、前記複数の第1画素が有する複数の緑画素値の第1緑画素平均値と、前記複数の第1画素が有する複数の青画素値の第1青画素平均値とが等しくなるように、前記処理対象のRGB画像の赤成分、緑成分、及び、青成分のうちの少なくとも2つの色成分のゲインを調整する処理である。 An image processing apparatus according to a ninth aspect described below is provided by irradiating a tooth with light including a wavelength region of blue light, and photographing the tooth and dental plaque undergoing a fluorescence reaction to obtain first RGB an acquisition unit that acquires an image; and a generation unit that generates a second RGB image by performing image processing including first image processing on the first RGB image, wherein the first image processing is performed on an object to be processed. A first red pixel average value of a plurality of red pixel values of the plurality of first pixels constituting the tooth region in the RGB image, and a first green of a plurality of green pixel values of the plurality of first pixels. The red, green, and blue components of the RGB image to be processed are adjusted such that the pixel average value is equal to the first blue pixel average value of the plurality of blue pixel values of the plurality of first pixels. This is processing for adjusting the gains of at least two of the color components.
 これによれば、第1画像処理を行うことで、蛍光反応している歯牙が撮影されている第1RGB画像のホワイトバランスを調整することができる。このため、歯牙において歯垢が付着している領域である歯垢領域を区別しやすい第2RGB画像を生成することができる。よって、歯牙の画像における歯垢領域を容易に特定することができる。これにより、例えば、歯磨き後の歯牙の画像を撮影し、歯垢領域を特定することで、磨き残しの領域をユーザに提示することができる。 According to this, by performing the first image processing, it is possible to adjust the white balance of the first RGB image in which the fluorescently reacting tooth is captured. Therefore, it is possible to generate a second RGB image that makes it easy to distinguish the plaque region, which is the region of the tooth to which dental plaque adheres. Therefore, it is possible to easily identify the plaque region in the image of the tooth. As a result, for example, by taking an image of the tooth after brushing and specifying the plaque area, it is possible to present the user with the area left unbrushed.
 以下に説明する第10の態様に係るプログラムは、第1の態様から第8の態様のいずれか1つの態様に係る画像処理方法をコンピュータに実行させるためのプログラムである。 A program according to a tenth aspect described below is a program for causing a computer to execute the image processing method according to any one of the first to eighth aspects.
 なお、これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。 In addition, these generic or specific aspects may be realized by a system, method, integrated circuit, computer program, or a recording medium such as a computer-readable CD-ROM. and any combination of recording media.
 以下、適宜図面を参照しながら、その形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。 The form will be described in detail below with reference to the drawings as appropriate. However, more detailed description than necessary may be omitted. For example, detailed descriptions of well-known matters and redundant descriptions of substantially the same configurations may be omitted. This is to avoid unnecessary verbosity in the following description and to facilitate understanding by those skilled in the art.
 なお、発明者らは、当業者が以下の説明を十分に理解するために添付図面及び以下の説明を提供するものであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。 It should be noted that the inventors provide the accompanying drawings and the following description for the full understanding of those skilled in the art and are intended to limit the subject matter of the claims. not a thing
 [5-5.形態の説明]
 図11Aは、本説明に係る口腔内カメラシステムにおける口腔内カメラの斜視図である。図11Aに示すように、口腔内カメラ1010は、片手で取り扱うことが可能な歯ブラシ状の筺体を備え、その筺体は、歯列撮影時にユーザの口腔内に配置されるヘッド部1010aと、ユーザが把持するハンドル部1010bと、ヘッド部1010aとハンドル部1010bとを接続するネック部1010cとを含んでいる。
[5-5. Description of form]
FIG. 11A is a perspective view of an intraoral camera in an intraoral camera system according to the present description; As shown in FIG. 11A, the intraoral camera 1010 has a toothbrush-like housing that can be handled with one hand. It includes a gripping handle portion 1010b and a neck portion 1010c connecting the head portion 1010a and the handle portion 1010b.
 撮影光学系1012は、ヘッド部1010aとネック部1010cとに組み込まれている。撮影光学系1012は、その光軸LA上に配置された撮像素子1014とレンズとを含んでいる。 The imaging optical system 1012 is incorporated in the head portion 1010a and the neck portion 1010c. The imaging optical system 1012 includes an imaging element 1014 and a lens arranged on its optical axis LA.
 図11Bに示すように、本説明の場合、口腔内カメラ1010の撮影光学系1012は、ヘッド部1010aとネック部1010cとに組み込まれている。撮影光学系1012は、その光軸LA上に配置された撮像素子1014とレンズ1016とを含んでいる。 As shown in FIG. 11B, in this description, the imaging optical system 1012 of the intraoral camera 1010 is incorporated in the head portion 1010a and the neck portion 1010c. The imaging optical system 1012 includes an imaging element 1014 and a lens 1016 arranged on its optical axis LA.
 撮像素子1014は、例えばC-MOSセンサまたはCCD素子などの撮影デバイスであって、レンズ1016によって歯牙Dの像が結像される。その結像した像に対応する信号(画像データ)を、撮像素子1014は外部に出力する。 The imaging element 1014 is a photographing device such as a C-MOS sensor or a CCD element, and an image of the tooth D is formed by a lens 1016 . The imaging element 1014 outputs a signal (image data) corresponding to the formed image to the outside.
 レンズ1016は、例えば集光レンズであって、入射した歯牙Dの像を撮像素子1014に結像する。なお、レンズ1016は、1つのレンズであってもよいし、複数のレンズから構成されるレンズ群であってもよい。 The lens 1016 is, for example, a condensing lens, and forms an incident image of the tooth D on the imaging device 1014 . Note that the lens 1016 may be one lens, or may be a lens group composed of a plurality of lenses.
 ここでは、撮影光学系1012はさらに、歯牙Dの像をレンズ1016に向かって反射するミラー1018と、ミラー1018とレンズ1016との間に配置された青色光カットフィルタ(青色遮断要素)1020と、レンズ1016と撮像素子1014との間に配置された絞り1024とを含んでいる。 Here, the imaging optical system 1012 further includes a mirror 1018 that reflects the image of the tooth D toward the lens 1016, a blue light cut filter (blue blocking element) 1020 arranged between the mirror 1018 and the lens 1016, It includes an aperture 1024 positioned between the lens 1016 and the image sensor 1014 .
 ミラー1018は、撮影光学系1012の入射口1012aを通過した歯牙Dの像をレンズ1016に向かって反射するように、撮影光学系1012の光軸LA上に配置されている。 A mirror 1018 is arranged on the optical axis LA of the imaging optical system 1012 so as to reflect the image of the tooth D that has passed through the entrance 1012 a of the imaging optical system 1012 toward the lens 1016 .
 青色光カットフィルタ1020は、撮像素子1014に入射する光に含まれる青色波長の光成分をカットするフィルタである。青色光の波長域を含む光を歯牙に照射し、歯垢を検出する場合、歯垢の励起蛍光を強くするため青色光の波長域を含む光を強くすると第1RGB画像の全体が青色を帯びる。この状態は、青画素値が赤画素値及び緑画素値に比べて支配的になるため、後述する画像処理(露出制御処理及びホワイトバランス調整処理)を行うことで歯垢領域を区別しやすくできる効果が小さくなる場合がある。この対処として、青色光カットフィルタ1020が撮像素子1014に入射する前の光から青色光の波長域を含む光をカットする。 The blue light cut filter 1020 is a filter that cuts the blue wavelength light component contained in the light incident on the imaging device 1014 . In the case of detecting dental plaque by irradiating a tooth with light including a wavelength range of blue light, if the light including a wavelength range of blue light is increased in order to intensify excitation fluorescence of dental plaque, the entire first RGB image will be tinged with blue. . In this state, the blue pixel value becomes dominant over the red pixel value and the green pixel value, so the plaque area can be easily distinguished by performing image processing (exposure control processing and white balance adjustment processing) to be described later. The effect may become smaller. As a countermeasure, the blue light cut filter 1020 cuts the light including the blue light wavelength region from the light before entering the image sensor 1014 .
 絞り1024は、撮影光学系1012の光軸LA上に貫通穴を備える板状部材であって、深い焦点深度を実現する。これにより、口腔内の奥行方向についてピントを合わせることができ、輪郭が明瞭な歯列画像を得ることができる。 The diaphragm 1024 is a plate-like member having a through hole on the optical axis LA of the imaging optical system 1012, and achieves a deep depth of focus. As a result, the depth direction of the oral cavity can be focused, and a row-of-teeth image with a clear outline can be obtained.
 また、口腔内カメラ1010は、撮影時に撮影対象の歯牙Dに対して光を照射する照明デバイスとして、複数の第1~第4のLED1026A~1026Dを搭載している。第1~第4のLED1026A~1026Dは、例えば青色LEDである。また、図11Aに示すように、ここでは、第1~第4のLED1026A~1026Dが、入射口1012aを囲むように配置されている。なお、歯茎Gなどが第1~第4のLED1026A~1026Dに当接して照明光が不足しないように、第1~第4のLED1026A~1026Dと入射口1012aとを覆う透光性のカバー1028がヘッド部1010aに設けられている。なお、第1~第4のLED1026A~1026Dの一部を白色LEDとしてもよい。第1~第4のLED1026A~1026Dの一部を白色LEDとすることで、第1RGB画像を明るくすることができ、青画素値の赤画素値及び緑画素値に対するバランスを改善することができる。 In addition, the intraoral camera 1010 is equipped with a plurality of first to fourth LEDs 1026A to 1026D as lighting devices for irradiating light onto the tooth D to be imaged during imaging. The first to fourth LEDs 1026A-1026D are, for example, blue LEDs. Also, as shown in FIG. 11A, here, first to fourth LEDs 1026A-1026D are arranged to surround entrance 1012a. A light-transmitting cover 1028 covering the first to fourth LEDs 1026A to 1026D and the entrance 1012a is provided so that the gums G and the like do not come into contact with the first to fourth LEDs 1026A to 1026D and the illumination light is not insufficient. It is provided in the head portion 1010a. A part of the first to fourth LEDs 1026A to 1026D may be white LEDs. By using white LEDs for some of the first through fourth LEDs 1026A-1026D, the first RGB image can be made brighter and the balance of blue pixel values to red and green pixel values can be improved.
 さらに、本説明の場合、口腔内カメラ1010は、図11Bに示すように、構図調節機構1030と焦点調節機構1032とを有する。 Furthermore, in the case of this description, the intraoral camera 1010 has a composition adjustment mechanism 1030 and a focus adjustment mechanism 1032, as shown in FIG. 11B.
 構図調節機構1030は、撮像素子1014とレンズ1016とを保持する筺体1034と、筺体1034を光軸LAの延在方向に移動させるアクチュエータ1036とから構成される。アクチュエータ1036が筺体1034の位置を調節することにより、画角が調節される、すなわち撮像素子1014に結像する歯列の大きさが調節される。なお、構図調節機構1030は、例えば1つの歯牙全体が撮影画像に写るように筺体1034の位置を自動的に調節する。また、構図調節機構1030は、ユーザの操作に基づいて、ユーザが所望する画角になるように筺体1034の位置を調節する。 The composition adjustment mechanism 1030 is composed of a housing 1034 that holds the imaging element 1014 and the lens 1016, and an actuator 1036 that moves the housing 1034 in the extending direction of the optical axis LA. By adjusting the position of the housing 1034 with the actuator 1036, the angle of view is adjusted, that is, the size of the row of teeth imaged on the imaging device 1014 is adjusted. Note that the composition adjustment mechanism 1030 automatically adjusts the position of the housing 1034 so that, for example, one entire tooth appears in the photographed image. Also, the composition adjustment mechanism 1030 adjusts the position of the housing 1034 based on the user's operation so that the angle of view desired by the user is obtained.
 焦点調節機構1032は、構図調節機構1030の筺体1034内に保持され、レンズ1016を保持するレンズホルダ1038と、レンズホルダ1038を光軸LAの延在方向に移動させるアクチュエータ1040とから構成される。アクチュエータ1040が撮像素子1014に対するレンズホルダ1038の相対位置を調節することにより、焦点が調節される、すなわちピントが調節される。なお、焦点調節機構1032は、例えば撮影画像の中央に位置する歯牙にピントが合うようにレンズホルダ1038の位置を自動的に調節する。また、焦点調節機構1032は、ユーザの操作に基づいて、レンズホルダ1038の位置を調節する。 The focus adjustment mechanism 1032 is held within the housing 1034 of the composition adjustment mechanism 1030 and is composed of a lens holder 1038 that holds the lens 1016 and an actuator 1040 that moves the lens holder 1038 in the extending direction of the optical axis LA. The actuator 1040 adjusts the relative position of the lens holder 1038 with respect to the imaging element 1014 to adjust the focus, ie focus. Note that the focus adjustment mechanism 1032 automatically adjusts the position of the lens holder 1038 so that, for example, the tooth located in the center of the photographed image is in focus. Also, the focus adjustment mechanism 1032 adjusts the position of the lens holder 1038 based on the user's operation.
 なお、ミラー1018を除く撮影光学系1012の構成要素は、口腔内カメラ1010のハンドル部1010bに設けられてもよい。 Note that the components of the imaging optical system 1012 excluding the mirror 1018 may be provided on the handle portion 1010b of the intraoral camera 1010.
 撮像素子1014は、例えばC-MOSセンサまたはCCD素子などの撮影デバイスであって、レンズによって歯牙の像が結像される。その結像した像に対応する信号(画像データ)を、撮像素子1014は外部に出力する。撮像素子1014により出力される画像は、当該画像を構成する複数の画素のそれぞれがRGBのサブ画素を有するRGB画像である。 The imaging element 1014 is a photographing device such as a C-MOS sensor or a CCD element, and a tooth image is formed by a lens. The imaging element 1014 outputs a signal (image data) corresponding to the formed image to the outside. The image output by the imaging device 1014 is an RGB image in which each of a plurality of pixels forming the image has RGB sub-pixels.
 また、口腔内カメラ1010は、撮影時に撮影対象の歯牙に対して光を照射する照明デバイスとして、複数の第1~第4のLED1026A~1026Dを搭載している。第1~第4のLED1026A~1026Dは、例えば、405nmをピークとする波長を有する青色光を照射する青色LEDである。なお、第1~第4のLED1026A~1026Dは、青色光の波長域を含む光を照射する光源であればよく、青色LEDに限るものではない。 In addition, the intraoral camera 1010 is equipped with a plurality of first to fourth LEDs 1026A to 1026D as illumination devices for irradiating light onto the tooth to be imaged during imaging. The first to fourth LEDs 1026A to 1026D are, for example, blue LEDs that emit blue light having a peak wavelength of 405 nm. The first to fourth LEDs 1026A to 1026D are not limited to blue LEDs as long as they are light sources that emit light including the wavelength range of blue light.
 図12は、本説明に係る口腔内カメラシステムの概略的構成図である。図12に示すように、本説明に係る口腔内カメラシステムは、概略的には、口腔内カメラ1010を用いて歯列を撮影し、その撮影画像に対して画像処理を実行するように構成されている。 FIG. 12 is a schematic configuration diagram of the intraoral camera system according to this description. As shown in FIG. 12, the intraoral camera system according to the present description is generally configured to photograph a row of teeth using an intraoral camera 1010 and to perform image processing on the photographed image. ing.
 図12に示すように、口腔内カメラシステムは、口腔内カメラ1010と、携帯端末1070と、クラウドサーバ1080とを含んでいる。携帯端末1070は、例えば、無線通信可能なスマートフォン又はタブレット端末等である。携帯端末1070は、入力デバイス及び出力デバイスとして、例えば歯列画像を表示可能なタッチスクリーン1072を備える。携帯端末1070は、口腔内カメラシステムのユーザインタフェースとして機能する。 As shown in FIG. 12, the intraoral camera system includes an intraoral camera 1010, a mobile terminal 1070, and a cloud server 1080. The mobile terminal 1070 is, for example, a smart phone or a tablet terminal capable of wireless communication. The mobile terminal 1070 includes, as an input device and an output device, a touch screen 1072 capable of displaying a row-of-teeth image, for example. The mobile terminal 1070 functions as a user interface of the intraoral camera system.
 クラウドサーバ1080は、携帯端末1070に対してインターネットなどを介して通信可能なサーバであって、携帯端末1070に口腔内カメラ1010を使用するためのアプリケーションを提供する。例えば、ユーザがアプリケーションをクラウドサーバ1080からダウンロードして携帯端末1070にインストールする。また、クラウドサーバ1080は、口腔内カメラ1010によって撮影された歯列画像を、携帯端末1070を介して取得する。 The cloud server 1080 is a server that can communicate with the mobile terminal 1070 via the Internet or the like, and provides the mobile terminal 1070 with an application for using the intraoral camera 1010 . For example, a user downloads an application from the cloud server 1080 and installs it on the mobile terminal 1070 . The cloud server 1080 also acquires the row-of-teeth image captured by the intraoral camera 1010 via the mobile terminal 1070 .
 口腔内カメラシステムは、システムの制御を行う主要部分として中央制御部1050と、複数のLED1026A~1026Dを制御するLED制御部1054と、構図調節機構のアクチュエータ1036と焦点調節機構のアクチュエータ1040を制御するレンズドライバ1056と、位置センサ1090とを含んでいる。 The intraoral camera system controls a central control unit 1050 as the main parts that control the system, an LED control unit 1054 that controls a plurality of LEDs 1026A to 1026D, an actuator 1036 for the composition adjustment mechanism, and an actuator 1040 for the focus adjustment mechanism. A lens driver 1056 and a position sensor 1090 are included.
 また、口腔内カメラシステムは、携帯端末1070と無線通信を行う無線通信モジュール1058と、中央制御部1050などに電力供給を行う電源制御部1060とを有する。 The intraoral camera system also has a wireless communication module 1058 that wirelessly communicates with the mobile terminal 1070, and a power control unit 1060 that supplies power to the central control unit 1050 and the like.
 口腔内カメラシステムの中央制御部1050は、例えば、口腔内カメラ1010のハンドル部1010bに搭載されている。例えば、また、中央制御部1050は、後述する様々な処理を実行するCPUやMPUなどのコントローラ1062と、コントローラ1062に様々な処理を実行させるためのプログラムを記憶するRAMやROMなどのメモリ1064とを含んでいる。なお、メモリ1064には、プログラム以外に、撮像素子1014によって撮影された歯列画像(画像データ)や種々の設定データなどが記憶される。撮像素子1014によって撮影された歯列画像は、第1RGB画像の一例である。 The central control section 1050 of the intraoral camera system is mounted on the handle section 1010b of the intraoral camera 1010, for example. For example, the central control unit 1050 also includes a controller 1062 such as a CPU or MPU that executes various processes described later, and a memory 1064 such as RAM or ROM that stores programs for causing the controller 1062 to execute various processes. contains. In addition to the programs, the memory 1064 stores a row-of-teeth image (image data) captured by the imaging device 1014, various setting data, and the like. The row-of-teeth image captured by the imaging device 1014 is an example of the first RGB image.
 コントローラ1062は、撮像素子1014から出力された歯列画像を、無線通信モジュール1058を介して携帯端末1070に送信する。携帯端末1070は、その送信された歯列画像をタッチスクリーン1072に表示し、それによりユーザに歯列画像を提示する。 The controller 1062 transmits the row of teeth image output from the imaging device 1014 to the mobile terminal 1070 via the wireless communication module 1058 . Portable terminal 1070 displays the transmitted row-of-teeth image on touch screen 1072, thereby presenting the row-of-teeth image to the user.
 LED制御部1054は、例えば、口腔内カメラ1010のハンドル部1010bに搭載され、コントローラ1062からの制御信号に基づいて、第1~第4のLED1026A~1026Dの点灯および消灯を実行する。LED制御部1054は、例えば回路で構成される。例えば、ユーザが携帯端末1070のタッチスクリーン1072に対して口腔内カメラ1010を起動させる操作を実行すると、携帯端末1070から対応する信号が無線通信モジュール1058を介してコントローラ1062に送信される。コントローラ1062は、受信した信号に基づいて、第1~第4のLED1026A~1026Dを点灯させるようにLED制御部1054に制御信号を送信する。 The LED control unit 1054 is mounted, for example, on the handle portion 1010b of the intraoral camera 1010, and performs lighting and extinguishing of the first to fourth LEDs 1026A to 1026D based on control signals from the controller 1062. The LED control unit 1054 is configured by, for example, a circuit. For example, when the user performs an operation on the touch screen 1072 of the mobile device 1070 to activate the intraoral camera 1010 , a corresponding signal is sent from the mobile device 1070 to the controller 1062 via the wireless communication module 1058 . Controller 1062 transmits a control signal to LED control section 1054 to light first to fourth LEDs 1026A to 1026D based on the received signal.
 レンズドライバ1056は、例えば、口腔内カメラ1010のハンドル部1010bに搭載され、中央制御部1050のコントローラ1062からの制御信号に基づいて、構図調節機構のアクチュエータ1036と焦点調節機構のアクチュエータ1040を制御する。レンズドライバ1056は、例えば回路で構成される。例えば、ユーザが携帯端末1070のタッチスクリーン1072に対して構図調節やピント調節に関する操作を実行すると、携帯端末1070から対応する信号が無線通信モジュール1058を介して中央制御部1050に送信される。中央制御部1050のコントローラ1062は、受信した信号に基づいて、構図調節やピント調節を実行するようにレンズドライバ1056に制御信号を送信する。また例えば、コントローラ1062が撮像素子1014からの歯列画像に基づいて構図調節やピント調節に必要なアクチュエータ1036、1040の制御量を演算し、その演算された制御量に対応する制御信号がレンズドライバ1056に送信される。 The lens driver 1056 is mounted, for example, on the handle portion 1010b of the intraoral camera 1010, and controls the actuator 1036 of the composition adjustment mechanism and the actuator 1040 of the focus adjustment mechanism based on control signals from the controller 1062 of the central control unit 1050. . The lens driver 1056 is configured by, for example, a circuit. For example, when the user performs an operation related to composition adjustment or focus adjustment on the touch screen 1072 of the mobile terminal 1070 , a corresponding signal is transmitted from the mobile terminal 1070 to the central control unit 1050 via the wireless communication module 1058 . Controller 1062 of central control unit 1050 transmits a control signal to lens driver 1056 so as to execute composition adjustment and focus adjustment based on the received signal. Further, for example, the controller 1062 calculates control amounts for the actuators 1036 and 1040 necessary for composition adjustment and focus adjustment based on the row-of-teeth image from the imaging element 1014, and the control signals corresponding to the calculated control amounts are output to the lens driver. 1056.
 無線通信モジュール1058は、例えば、口腔内カメラ1010のハンドル部1010bに搭載され、コントローラ1062からの制御信号に基づいて、携帯端末1070と無線通信を行う。無線通信モジュール1058は、例えばWiFi(登録商標)やBluetooth(登録商標)などの既存の通信規格に準拠した無線通信を携帯端末1070との間で実行する。無線通信モジュール1058を介して、口腔内カメラ1010から歯牙Dが写る歯列画像が携帯端末1070に送信されたり、携帯端末1070から口腔内カメラ1010に操作信号が送信される。 The wireless communication module 1058 is mounted on the handle portion 1010b of the intraoral camera 1010, for example, and performs wireless communication with the mobile terminal 1070 based on the control signal from the controller 1062. The wireless communication module 1058 performs wireless communication with the mobile terminal 1070 in compliance with existing communication standards such as WiFi (registered trademark) and Bluetooth (registered trademark). A row-of-teeth image showing teeth D is transmitted from the intraoral camera 1010 to the mobile terminal 1070 via the wireless communication module 1058 , and an operation signal is transmitted from the mobile terminal 1070 to the intraoral camera 1010 .
 電源制御部1060は、本説明の場合、口腔内カメラ1010のハンドル部1010bに搭載され、中央制御部1050、LED制御部1054、レンズドライバ1056、および無線通信モジュール1058に、電池1066の電力を分配する。電源制御部1060は、例えば回路で構成される。なお、本説明の場合、電池1066は、充電可能な二次電池であって、口腔内カメラ1010に搭載されたコイル1068を介して、商用電源に接続された外部の充電器1069によってワイヤレス充電される。 The power control unit 1060 is mounted on the handle portion 1010b of the intraoral camera 1010 in this description, and distributes the power of the battery 1066 to the central control unit 1050, the LED control unit 1054, the lens driver 1056, and the wireless communication module 1058. do. The power control unit 1060 is configured by, for example, a circuit. In the case of this description, the battery 1066 is a rechargeable secondary battery that is wirelessly charged by an external charger 1069 connected to a commercial power source via a coil 1068 mounted on the intraoral camera 1010. be.
 位置センサ1090は、口腔内カメラ1010の姿勢及び位置を検出するためのセンサであり、例えば、多軸(ここではx,y,zの三軸)の加速度センサである。例えば、位置センサ1090は、三軸の加速度センサと三軸のジャイロセンサとを有する六軸センサであってもよい。例えば、図11Aに示すように、z軸は光軸LAに一致する。y軸は、撮像面と平行であり、かつ口腔内カメラ1010の長手方向に延びる。また、x軸は、撮像面と平行であり、y軸と直交する。位置センサ1090の各軸の出力は、中央制御部1050及び無線通信モジュール1058を介して、携帯端末1070に送信されてもよい。 The position sensor 1090 is a sensor for detecting the orientation and position of the intraoral camera 1010, and is, for example, a multi-axis (three axes x, y, and z here) acceleration sensor. For example, position sensor 1090 may be a six-axis sensor having a three-axis acceleration sensor and a three-axis gyro sensor. For example, as shown in FIG. 11A, the z-axis coincides with the optical axis LA. The y-axis is parallel to the imaging plane and extends longitudinally of the intraoral camera 1010 . Also, the x-axis is parallel to the imaging plane and orthogonal to the y-axis. The output of each axis of position sensor 1090 may be transmitted to mobile terminal 1070 via central controller 1050 and wireless communication module 1058 .
 位置センサ1090としては、ピエゾ抵抗タイプ、静電容量タイプ、もしくは熱検知タイプのMEMSセンサが用いられてもよい。また特に図示しないが、各軸のセンサの感度のバランス、感度の温度特性、温度ドリフトなどを補正するための補正回路を設けるとよい。また、動加速度成分やノイズを除去するためのバンドパスフィルタ(ローパスフィルタ)を設けてもよい。また、加速度センサの出力波形を平滑化することによりノイズを低減してもよい。 As the position sensor 1090, a piezoresistive type, capacitance type, or thermal detection type MEMS sensor may be used. Further, although not shown, it is preferable to provide a correction circuit for correcting the sensitivity balance of the sensors on each axis, temperature characteristics of sensitivity, temperature drift, and the like. Also, a band-pass filter (low-pass filter) for removing dynamic acceleration components and noise may be provided. Further, noise may be reduced by smoothing the output waveform of the acceleration sensor.
 次に、口腔内カメラシステムにおける口腔内撮影動作について説明する。図13は、口腔内カメラシステムにおける口腔内撮影動作の流れを示す図である。なお、図13に示す処理は、例えば、リアルタイムに行われる処理であり、1フレーム又は複数フレームの画像データが得られる毎に行われる。 Next, the intraoral imaging operation of the intraoral camera system will be explained. FIG. 13 is a diagram showing the flow of intraoral imaging operation in the intraoral camera system. Note that the processing shown in FIG. 13 is, for example, processing performed in real time, and is performed each time image data of one frame or a plurality of frames is obtained.
 ユーザが口腔内カメラ1010を用いて、自身の口腔内の歯牙及び歯茎を撮影することで画像データが生成される(S1101)。次に、口腔内カメラ1010は、撮影された画像データを携帯端末1070に送信する(S1102)。なお、ここで、画像データは、動画であってもよいし、1又は複数の静止画であってもよい。また、画像データが動画又は複数の静止画である場合には、動画のフレーム毎、又は静止画毎に、センサデータが送信されてもよい。なお、画像データが動画である場合において複数フレーム毎にセンサデータが送信されてもよい。 The user uses the intraoral camera 1010 to photograph the teeth and gums in his/her own oral cavity, thereby generating image data (S1101). Next, the intraoral camera 1010 transmits the captured image data to the mobile terminal 1070 (S1102). Note that the image data may be a moving image or one or a plurality of still images. Moreover, when the image data is a moving image or a plurality of still images, the sensor data may be transmitted for each frame of the moving image or for each still image. Note that when the image data is a moving image, the sensor data may be transmitted every multiple frames.
 また、画像データの送信は、リアルタイムで行われてもよいし、一連の撮影(例えば口腔内の全ての歯牙の撮影)が行われた後にまとめて送信されてもよい。 Also, the transmission of image data may be performed in real time, or may be transmitted collectively after a series of images (for example, images of all teeth in the oral cavity) are performed.
 携帯端末1070は、受信した画像データ(第1RGB画像)に対して画像処理し(S1103)、画像処理後の画像データを表示する(S1104)。 The mobile terminal 1070 performs image processing on the received image data (first RGB image) (S1103), and displays the image data after image processing (S1104).
 このような、口腔内カメラシステムを用いることで、ユーザは、口腔内カメラ1010でユーザ自身の口腔内の画像を撮影し、携帯端末1070に表示された口腔内の状態を確認できる。これにより、ユーザは自身の歯牙の健康状態の確認などを容易に行うことができる。 By using such an intraoral camera system, the user can capture an image of the user's own intraoral cavity with the intraoral camera 1010 and check the intraoral condition displayed on the mobile terminal 1070 . This allows the user to easily check the health condition of his/her teeth.
 また、携帯端末1070は、例えば、撮影された複数の画像データから、口腔内の複数の歯牙の三次元モデルを生成してもよい。また、携帯端末1070は、生成された三次元モデルに基づく画像を表示してもよい。 Also, the mobile terminal 1070 may generate, for example, a three-dimensional model of a plurality of intraoral teeth from a plurality of photographed image data. Also, the mobile terminal 1070 may display an image based on the generated three-dimensional model.
 なお、ここでは、携帯端末1070が歯牙の画像の画像処理を行う例を述べるが、この処理の一部又は全てを口腔内カメラ1010が行ってもよい。携帯端末1070は、画像処理装置の一例である。 Here, an example in which the mobile terminal 1070 performs image processing of the tooth image will be described, but the intraoral camera 1010 may perform part or all of this processing. The mobile terminal 1070 is an example of an image processing device.
 図14は、携帯端末1070の機能ブロック図である。携帯端末1070は、取得部10101と、生成部10102と、表示部10103とを備える。 FIG. 14 is a functional block diagram of the mobile terminal 1070. FIG. Portable terminal 1070 includes acquisition unit 10101 , generation unit 10102 , and display unit 10103 .
 取得部10101は、口腔内カメラ1010から送信された画像データ(第1RGB画像)を取得する。取得部10101は、口腔内カメラ1010から、画像データの他にセンサデータを取得してもよい。第1RGB画像は、口腔内カメラ1010が青色光の波長域を含む光を歯牙に照射することで蛍光反応している歯牙を撮影することで得られた画像である。 The acquisition unit 10101 acquires image data (first RGB image) transmitted from the intraoral camera 1010 . The acquisition unit 10101 may acquire sensor data in addition to image data from the intraoral camera 1010 . The first RGB image is an image obtained by irradiating the tooth with light including the wavelength region of blue light by the intraoral camera 1010 and photographing the tooth undergoing fluorescence reaction.
 生成部10102は、第1RGB画像に対して、露出制御処理(第2画像処理)を行うことで第3RGB画像を生成し、第3RGB画像に対してホワイトバランス調整処理(第1画像処理)を行うことで第2RGB画像を生成してもよい。 The generation unit 10102 performs exposure control processing (second image processing) on the first RGB image to generate a third RGB image, and performs white balance adjustment processing (first image processing) on the third RGB image. may generate a second RGB image.
 (露出制御処理)
 露出制御処理では、生成部10102は、まず、第1RGB画像を構成する複数の第1RGB画素(第3画素)のうちで、RGBの値が下記の式1及び式2を満たす複数の画素を抽出する。
(Exposure control processing)
In the exposure control process, the generation unit 10102 first extracts a plurality of pixels whose RGB values satisfy the following formulas 1 and 2 from among a plurality of first RGB pixels (third pixels) forming the first RGB image. do.
 min(R,G,B)≦Ths、and、max(R,G,B)<Thmax                            (式1)
 Gmax - G ≦ Thb               (式2)
min (R, G, B) ≤ Ths, and, max (R, G, B) < Thmax (Formula 1)
Gmax−G≦Thb (Formula 2)
 min(R,G,B)は、第1RGB画素が有するRGBそれぞれの3つのサブピクセルの画素値(つまり、赤画素値、緑画素値、及び、青画素値)のうちの最小値を示す。 min(R, G, B) indicates the minimum value among the pixel values of the three RGB sub-pixels (that is, the red pixel value, the green pixel value, and the blue pixel value) of the first RGB pixel.
 Thsは、第1RGB画像において照射している光による反射の影響を強く受けている領域(例えば、光沢領域)を除外するための閾値である。Thsは、例えば、10bit表現において900である。 Ths is a threshold for excluding areas (for example, glossy areas) that are strongly affected by the reflection of the illuminating light in the first RGB image. Ths is, for example, 900 in 10-bit representation.
 max(R,G,B)は、第1RGB画素が有するRGBの3つのサブピクセルの画素値(つまり、赤画素値、緑画素値、及び、青画素値)のうちの最大値を示す。 "max(R, G, B)" indicates the maximum value among the pixel values of the three RGB sub-pixels (that is, the red pixel value, the green pixel value, and the blue pixel value) of the first RGB pixel.
 Thmaxは、画素値が取り得る最大値を示す。Thmaxは、例えば、10bit表現において1023で表される。Thmaxは、第1閾値の一例である。  Thmax indicates the maximum value that the pixel value can take. Thmax is represented by 1023 in 10-bit representation, for example. Thmax is an example of the first threshold.
 Gmaxは、第1RGB画像中の複数の緑画素値の最大値である。つまり、第1RGB画像を構成する複数の第1RGB画素の緑画素のうち、最大の画素値を有する緑画素の画素値である。Thbは、第1RGB画素中から第2画素の緑画素を抽出するための閾値である。Thbの値を大きくすると画像が明るくなり過ぎるため、例えば、10bit表現において10以下の値に設定される。  Gmax is the maximum value of a plurality of green pixel values in the first RGB image. That is, it is the pixel value of the green pixel having the maximum pixel value among the green pixels of the plurality of first RGB pixels forming the first RGB image. Thb is a threshold for extracting the green pixel of the second pixel from the first RGB pixels. If the value of Thb is increased, the image becomes too bright, so for example, it is set to a value of 10 or less in 10-bit representation.
 式1により、光沢領域が除外され、式2により、第1RGB画像中の歯牙の領域が抽出される。つまり、式1及び式2により抽出される複数の画素は、歯牙の領域を構成する複数の第2画素である。このように、複数の第2画素は、第1RGB画像を構成する複数の第1RGB画素(第3画素)のうち、最大の色成分の画素値max(R,G,B)が第1閾値(Thmax)より小さく、かつ、最小の色成分の画素値min(R,G,B)が第2閾値(Ths)以下であることを満たす画素である。 The glossy area is excluded by Equation 1, and the tooth area in the first RGB image is extracted by Equation 2. That is, the plurality of pixels extracted by Equations 1 and 2 are the plurality of second pixels forming the tooth region. In this way, the plurality of second pixels are such that the pixel value max (R, G, B) of the maximum color component among the plurality of first RGB pixels (third pixels) forming the first RGB image is the first threshold value ( Thmax) and the pixel value min(R, G, B) of the minimum color component is equal to or smaller than the second threshold (Ths).
 生成部10102は、複数の第2画素の緑画素の平均値を算出し、算出した緑画素の平均値に応じて、RGBの3つのサブピクセルの画素値に乗ずるゲインを決定する。生成部10102は、例えば、下記の式3を用いて、RGBの3つのサブピクセルの画素値に乗ずるゲインを決定する。ゲインは、目標画素値を緑画素の平均値で除算することで得られる。生成部10102は、第1RGB画像を構成する複数の第1RGB画素のそれぞれに決定したゲインを乗じることで、第3RGB画像を生成する。より具体的には、生成部10102は、複数の第1RGB画素のそれぞれについて、当該第1RGB画素が有する3つのサブピクセルの画素値に、決定したゲインを乗じることで、第3RGB画像を生成する。言い換えると、第3RGB画像を構成する複数の第3RGB画素の画素値は、第1RGB画像を構成する複数の第1RGB画素の画素値に、決定したゲインを乗じて算出された画素値である。なお、生成部10102は、ゲインを乗じることで画素値が最大値(10bit表現の場合は1023)を超える場合、当該画素値を1023に置き換える。 The generation unit 10102 calculates the average value of the green pixels of the plurality of second pixels, and determines the gain by which the pixel values of the three sub-pixels of RGB are multiplied according to the calculated average value of the green pixels. The generation unit 10102 determines the gain by which the pixel values of the three sub-pixels of RGB are multiplied, for example, using Equation 3 below. The gain is obtained by dividing the target pixel value by the average value of the green pixels. The generating unit 10102 generates the third RGB image by multiplying each of the plurality of first RGB pixels forming the first RGB image by the determined gain. More specifically, the generation unit 10102 generates the third RGB image by multiplying the pixel values of the three sub-pixels of each of the plurality of first RGB pixels by the determined gain. In other words, the pixel values of the plurality of third RGB pixels forming the third RGB image are pixel values calculated by multiplying the pixel values of the plurality of first RGB pixels forming the first RGB image by the determined gain. If the pixel value exceeds the maximum value (1023 in the case of 10-bit representation) by multiplying by the gain, the generating unit 10102 replaces the pixel value with 1023.
 上記説明では、式2で第1RGB画素中から抽出した複数の第2画素の緑画素の平均値を算出し、算出した緑画素の平均値に応じて、RGBの3つのサブピクセルの画素値に乗ずるゲインを決定したが、これに限定されない。第1RGB画素中から抽出した複数の第2画素の赤画素の平均値を算出し、算出した赤画素の平均値に応じて、RGBの3つのサブピクセルの画素値に乗ずるゲインを決定してもよい。同様に、第1RGB画素中から抽出した複数の第2画素の青画素の平均値を算出し、算出した青画素の平均値に応じて、RGBの3つのサブピクセルの画素値に乗ずるゲインを決定してもよい。 In the above description, the average value of the green pixels of the plurality of second pixels extracted from the first RGB pixels is calculated by Equation 2, and the pixel values of the three sub-pixels of RGB are calculated according to the calculated average value of the green pixels. Although the gain to be multiplied is determined, it is not limited to this. An average value of the red pixels of the plurality of second pixels extracted from the first RGB pixels is calculated, and a gain to be multiplied by the pixel values of the three sub-pixels of RGB is determined according to the calculated average value of the red pixels. good. Similarly, the average value of the blue pixels of the plurality of second pixels extracted from the first RGB pixels is calculated, and the gain to be multiplied by the pixel values of the three sub-pixels of RGB is determined according to the calculated average value of the blue pixels. You may
 以上のように、露出制御処理は、処理対象のRGB画像(ここでは、第1RGB画像)に含まれる複数の第2画素(歯牙の領域に対応する画素)がそれぞれ有する複数の第2画素値から算出した複数の指標値の平均値が所定値になるように複数の第2画素値に対するゲインを決定し、決定したゲインを第1RGB画像が備える複数の第1RGB画素が有する複数の第1RGB画素値に適用することで、第3RGB画像を生成する処理である。なお、指標値は、1つの画素を構成するRGBの3つのサブピクセルの画素値から算出された値であってもよいし、3つのサブピクセルのいずれか1つの画素値であってもよい。ここで、複数の指標値の平均値は、第1RGB画像の赤成分、緑成分、及び、青成分のうちの最大画素値を有する色成分の平均値である。また、最大平均値を有する色成分は、第1RGB画像を構成する複数の第1画素が有する複数の赤画素値の第1赤画素平均値と、複数の第1画素が有する複数の緑画素値の第1緑画素平均値と、複数の第1画素が有する複数の青画素値の第1青画素平均値との3つの平均値のうちで最大の平均値を有する色成分である。なお、最大平均値を有する色成分は、第1赤画素平均値と、第1緑画素平均値と、第1青画素平均値とを算出して比較しなくてもよく、緑成分に固定で決定されていてもよい。 As described above, the exposure control process is performed based on the plurality of second pixel values of the plurality of second pixels (pixels corresponding to the tooth region) included in the RGB image to be processed (here, the first RGB image). determining gains for the plurality of second pixel values so that the average value of the calculated plurality of index values becomes a predetermined value, and determining the gains for the plurality of first RGB pixel values of the plurality of first RGB pixels included in the first RGB image; is applied to generate a third RGB image. Note that the index value may be a value calculated from pixel values of three sub-pixels of RGB forming one pixel, or may be a pixel value of any one of the three sub-pixels. Here, the average value of the plurality of index values is the average value of the color component having the maximum pixel value among the red, green and blue components of the first RGB image. Further, the color component having the maximum average value is the first red pixel average value of the plurality of red pixel values of the plurality of first pixels forming the first RGB image, and the plurality of green pixel values of the plurality of first pixels. and the first blue pixel average value of the plurality of blue pixel values of the plurality of first pixels. Note that the color component having the maximum average value may be fixed to the green component without calculating and comparing the first red pixel average value, the first green pixel average value, and the first blue pixel average value. may have been determined.
 なお、生成部10102は、ゲインの決定において、複数の第2画素の緑画素の平均値を算出し、算出した緑画素の平均値に応じてゲインを決定するとしたが、これに限らない。生成部10102は、複数の第2画素の輝度値の平均値を複数の指標値の平均値として算出し、算出した輝度値の平均値に応じてゲインを決定してもよい。このように、指標値は、1つの画素を構成するRGBの3つのサブピクセルのいずれか1つの画素値であってもよいし、当該3つのサブピクセルの画素値から算出された値であってもよい。具体的には、生成部10102は、複数の第2画素のそれぞれについて、当該第2画素が有する3つのサブピクセルのサブ画素値を用いて当該第2画素の輝度値を算出する。例えば、生成部10102は、下記の式3を用いて輝度値を算出する。 Note that the generation unit 10102 calculates the average value of the green pixels of the plurality of second pixels and determines the gain according to the calculated average value of the green pixels in determining the gain, but the present invention is not limited to this. The generation unit 10102 may calculate the average value of the luminance values of the plurality of second pixels as the average value of the plurality of index values, and determine the gain according to the calculated average value of the luminance values. Thus, the index value may be the pixel value of any one of the three sub-pixels of RGB forming one pixel, or a value calculated from the pixel values of the three sub-pixels. good too. Specifically, the generation unit 10102 calculates the luminance value of each of the plurality of second pixels using the sub-pixel values of the three sub-pixels of the second pixel. For example, the generation unit 10102 calculates the luminance value using Equation 3 below.
 Y=0.21*R+0.72*G+0.07*B     (式3)  Y=0.21*R+0.72*G+0.07*B (Formula 3)
 式3においてYは輝度値であり、Rは赤画素値であり、Gは緑画素値であり、Bは青画素値である。 In Equation 3, Y is the luminance value, R is the red pixel value, G is the green pixel value, and B is the blue pixel value.
 このように、複数の輝度値は、複数の画素値のそれぞれについて、当該画素値に含まれる赤画素値、緑画素値、及び、青画素値に基づいて算出することで得られてもよい。 In this way, the plurality of luminance values may be obtained by calculating each of the plurality of pixel values based on the red pixel value, green pixel value, and blue pixel value included in the pixel value.
 (ホワイトバランス調整処理)
 ホワイトバランス調整処理では、生成部10102は、処理対象の第3RGB画像を構成する複数の第3RGB画素の内で、RGBの値が式1及び下記の式4を満たす複数の画素を抽出する。
(White balance adjustment processing)
In the white balance adjustment process, the generation unit 10102 extracts a plurality of pixels whose RGB values satisfy Expression 1 and Expression 4 below, among the plurality of third RGB pixels forming the third RGB image to be processed.
 Thl≦Y≦Thu                   (式4)  Thl ≤ Y ≤ Thu (Formula 4)
 式4においてThlは歯牙の領域の下限値を示す閾値であり、Thuは歯牙の領域の上限値を示す閾値である。 In Expression 4, Thl is a threshold value indicating the lower limit value of the tooth region, and Thu is a threshold value indicating the upper limit value of the tooth region.
 式4により、第3RGB画像中の歯牙の領域が抽出される。つまり、式1及び式4により抽出される複数の画素は、歯牙の領域を構成する複数の第2画素である。 The tooth region in the third RGB image is extracted by Equation 4. That is, the plurality of pixels extracted by Equations 1 and 4 are the plurality of second pixels forming the tooth region.
 そして、生成部10102は、式1及び式4を満たす歯牙の領域における複数の赤画素値の平均値である第1赤画素平均値Raveと、当該歯牙の領域における複数の緑画素値の平均値である第1緑画素平均値Gaveと、当該歯牙の領域における複数の青画素値の平均値である第1青画素平均値Baveとを算出する。そして、生成部10102は、第1赤画素平均値Raveと、第1緑画素平均値Gaveと、第1青画素平均値Baveとが等しくなるように、処理対象のRGB画像の赤成分、緑成分、及び、青成分の少なくとも2つの色成分のゲインを調整する。 Then, the generation unit 10102 generates a first red pixel average value Rave that is the average value of the plurality of red pixel values in the tooth region that satisfies Equations 1 and 4, and the average value of the plurality of green pixel values in the tooth region. and a first blue pixel average value Bave that is the average value of a plurality of blue pixel values in the tooth region. Then, the generation unit 10102 generates the red component and the green component of the RGB image to be processed so that the first red pixel average value Rave, the first green pixel average value Gave, and the first blue pixel average value Bave are equal to each other. , and adjusting the gain of at least two color components of the blue component.
 具体的には、生成部10102は、複数の赤画素値のゲイン(赤画素用ゲイン)を、第1緑画素平均値Gaveを第1赤画素平均値Raveで除すことで算出する。また、生成部10102は、複数の青画素値のゲイン(青画素用ゲイン)を、第1緑画素平均値Gaveを第1青画素平均値Baveで除すことで算出する。そして、生成部10102は、第3RGB画像を構成する複数の第3RGB画素のそれぞれの赤画素に赤画素用ゲインを乗じ、かつ、複数の第3RGB画素のそれぞれの青画素に青画素用ゲインを乗じることで、第2RGB画像を生成する。言い換えると、第2RGB画像を構成する複数の第2RGB画素の画素値は、第3RGB画像を構成する複数の第3RGB画素の赤画素値に赤画素用ゲインを乗じ、かつ、複数の第3RGB画素の青画素値に青画素用ゲインを乗じて算出された画素値である。なお、生成部10102は、緑画素平均値を基準として、赤画素用ゲイン及び青画素用ゲインを算出し各ゲインを対応する色成分の画素値に乗算することでホワイトバランス調整を行うとしたがこれに限らずに、赤画素平均値を基準として、緑画素用ゲイン及び青画素用ゲインを算出してもよいし、青画素平均値を基準として、赤画素用ゲイン及び緑が素養ゲインを算出してもよい。 Specifically, the generation unit 10102 calculates the gain of the plurality of red pixel values (red pixel gain) by dividing the first green pixel average value Gave by the first red pixel average value Rave. The generating unit 10102 also calculates gains of a plurality of blue pixel values (blue pixel gains) by dividing the first green pixel average value Gave by the first blue pixel average value Bave. Then, the generation unit 10102 multiplies each red pixel of the plurality of third RGB pixels forming the third RGB image by the red pixel gain, and multiplies each of the plurality of third RGB pixels of the blue pixel by the blue pixel gain. Thus, a second RGB image is generated. In other words, the pixel values of the plurality of second RGB pixels forming the second RGB image are obtained by multiplying the red pixel values of the plurality of third RGB pixels forming the third RGB image by the red pixel gain and It is a pixel value calculated by multiplying a blue pixel value by a blue pixel gain. Note that the generation unit 10102 performs white balance adjustment by calculating the red pixel gain and the blue pixel gain based on the green pixel average value and multiplying the pixel value of the corresponding color component by each gain. Without being limited to this, the green pixel gain and the blue pixel gain may be calculated using the red pixel average value as a reference, or the red pixel gain and the green pixel gain may be calculated using the blue pixel average value as a reference. You may
 なお、生成部10102は、ゲインを乗じることで画素値が最大値(10bit表現の場合は1023)を超える場合、当該画素値を1023に置き換える。 Note that the generation unit 10102 replaces the pixel value with 1023 when the pixel value exceeds the maximum value (1023 in the case of 10-bit representation) by multiplying by the gain.
 また、生成部10102は、以下のような第3画像処理を第2RGB画像に対して行うことで、第2RGB画像における歯牙の領域内の歯垢領域を強調してもよい。具体的には、生成部10102は、第2RGB画像の色空間をHSV空間に変換することでHSV画像を生成する。そして、生成部10102は、HSV画像が有する複数の第4画素のうち彩度が第1の所定範囲(例えば、8bit表現で30以上80以下)内、色相が第2の所定範囲(例えば、8bit表現で140以上170以下)内、及び、明度が第3の所定範囲(例えば、8bit表現で100以上180以下)内の少なくとも1つを満たす1以上の第4画素が位置する特定画素領域を歯垢領域として特定する。なお、第1の所定範囲、第2の所定範囲及び第3の所定範囲は、実際の歯垢領域と歯牙の領域とHSV画像とを比較することで特定されればよく、上記の数値範囲に限るものではない。生成部10102は、第2RGB画像における歯垢領域に対して彩度強調処理を行うことで第4RGB画像を生成する。なお、生成部10102は、彩度強調処理を行う代わりに、歯垢領域を所定パターンに置き換えることで第4RGB画像を生成してもよい。所定パターンは、例えば、一定の画素値を有するグラフィックスであってもよいし、特定の模様を含むグラフィックスであってもよい。 The generation unit 10102 may also perform the following third image processing on the second RGB image to emphasize the plaque area within the tooth area in the second RGB image. Specifically, the generation unit 10102 generates the HSV image by converting the color space of the second RGB image into the HSV space. Then, the generation unit 10102 determines that the saturation is within a first predetermined range (for example, 30 or more and 80 or less in 8-bit expression) and the hue is within a second predetermined range (for example, 8-bit) among the plurality of fourth pixels of the HSV image. 140 or more and 170 or less in expression), and one or more fourth pixels whose brightness satisfies at least one of a third predetermined range (for example, 100 or more and 180 or less in 8-bit expression). Identify it as a dirt area. The first predetermined range, the second predetermined range, and the third predetermined range may be specified by comparing the actual plaque region, the tooth region, and the HSV image. It is not limited. The generation unit 10102 generates a fourth RGB image by performing saturation enhancement processing on the dental plaque region in the second RGB image. Note that the generation unit 10102 may generate the fourth RGB image by replacing the plaque region with a predetermined pattern instead of performing the saturation enhancement process. The predetermined pattern may be, for example, graphics having constant pixel values or graphics including a specific pattern.
 表示部10103は、携帯端末1070が備える表示デバイスであり、生成部10102により画像処理が行われた後の画像を表示する。表示部10103は、第2RGB画像を表示してもよいし、第4RGB画像を表示してもよい。 A display unit 10103 is a display device included in the mobile terminal 1070 and displays an image after image processing has been performed by the generation unit 10102 . The display unit 10103 may display the second RGB image or may display the fourth RGB image.
 (各種照射光での第1RGB画像から検出した歯垢領域と歯牙領域の色差データ比較)
 (1)口腔内を青色光(ピーク波長は405nm)のみで照射した場合
 図15は、ユーザが口腔内カメラ1010を垂直に把持した状態で上顎の前歯を頬側(唇側)から撮影している状態を示す図である。図16Aは口腔内を青色光(ピーク波長は405nm)で照射し、図15に示した状態で撮影した前歯の第1RGB画像の一例を示す図である。
(Comparison of color difference data between the plaque region and the tooth region detected from the first RGB image under various irradiation lights)
(1) When the oral cavity is irradiated only with blue light (peak wavelength is 405 nm) FIG. It is a figure which shows the state which is. FIG. 16A is a diagram showing an example of a first RGB image of anterior teeth photographed in the state shown in FIG. 15 by irradiating the oral cavity with blue light (peak wavelength: 405 nm).
 また、図16Bは図16Aで検出した歯垢領域10201と歯牙の領域の色差データの一例を示す図である。なお、後述の青色光カットフィルタにより青色光の波長域を含む光をカットして撮影した前歯の第1RGB画像から検出した歯垢領域10201ならびに歯牙領域の色差データと比較するため、図16Bは図11Bに示した青色光カットフィルタ1020がない状態で撮影した第1RGB画像から検出した歯垢領域10201と歯牙の領域の色差データを示している。参考として、図16Bにおいて歯垢領域の色相の色差平均座標は(0.16、0.06)、歯牙領域の色相の色差平均座標は(0.25、-0.02)であった。なお、これらの色相の色差平均座標は参考値であり、青色光の強度やカメラの感度の影響で変わり得る値である。 FIG. 16B is a diagram showing an example of color difference data between the plaque area 10201 detected in FIG. 16A and the tooth area. In order to compare with the color difference data of the dental plaque region 10201 and the tooth region detected from the first RGB image of the front teeth photographed by cutting the light including the wavelength region of blue light by a blue light cut filter described later, FIG. 11B shows the color difference data of the plaque region 10201 and the tooth region detected from the first RGB image captured without the blue light cut filter 1020 shown in 11B. For reference, in FIG. 16B, the average color difference coordinates of the hue of the plaque region were (0.16, 0.06), and the average color difference coordinates of the hue of the tooth region were (0.25, −0.02). The color difference average coordinates of these hues are reference values, and are values that may change under the influence of the intensity of blue light and the sensitivity of the camera.
 定量的可視光誘起蛍光法(QLF法)でも知られているように、青色光が照射されると歯垢内のバクテリアが赤みを帯びたピンク色に蛍光することが知られている。また、青色光の波長域を含む光を歯牙に照射すると、象牙質から励起蛍光が発せられ、エナメル層を透過して緑色に発光することが知られている。一方で、唇や歯茎は青みを帯びるので、歯牙や歯垢は唇や歯茎と識別が容易である。 As is also known from the quantitative visible light-induced fluorescence method (QLF method), it is known that bacteria in dental plaque fluoresce reddish pink when blue light is irradiated. Further, it is known that when a tooth is irradiated with light including a blue light wavelength region, excitation fluorescence is emitted from the dentin, which passes through the enamel layer and emits green light. On the other hand, since lips and gums are bluish, teeth and plaque can be easily distinguished from lips and gums.
 (2)青色光カットフィルタで青色光の波長域を含む光をカットした場合
 ノイズを低減する方法として、青色光カットフィルタが有効である。図11Bに示したように、歯牙から反射して撮像素子1014に入射する前の光から青色光カットフィルタ1020により青色光の波長域を含む光をカットすることができる。
(2) When light including the blue light wavelength region is cut by a blue light cut filter A blue light cut filter is effective as a method for reducing noise. As shown in FIG. 11B , the blue light cut filter 1020 can cut light including the blue light wavelength region from the light before being reflected from the tooth and entering the imaging element 1014 .
 図16Cは、青色光カットフィルタ1020により青色光の波長域を含む光をカットして撮影した前歯の第1RGB画像から検出した歯垢領域10201と歯牙の領域の色差データの一例を示す図である。参考として、図16Cにおいて歯垢領域の色相の色差平均座標は(0.058、0.068)、歯牙領域の色相の色差平均座標は(0.050、-0.004)であった。なお、これらの色相の色差平均座標は参考値であり、青色光の強度やカメラの感度の影響で変わり得る値である。 FIG. 16C is a diagram showing an example of color difference data between the plaque region 10201 and the tooth region detected from the first RGB image of the front tooth photographed with the blue light cut filter 1020 cutting the light including the wavelength region of blue light. . For reference, in FIG. 16C, the average color difference coordinates of the hue of the plaque area were (0.058, 0.068), and the average color difference coordinates of the hue of the tooth area were (0.050, −0.004). The color difference average coordinates of these hues are reference values, and are values that may change under the influence of the intensity of blue light and the sensitivity of the camera.
 図16Bと図16Cを比較すると、青色光カットフィルタにより青色光の波長域を含む光をカットすることで、青色の彩度が低く(色が薄く)なる。歯垢領域は赤みを帯びたピンク色に蛍光するので、歯垢領域の明度を維持した状態で、歯牙領域の明度を抑えることができる。これにより、青画素値を低減させ、赤画素値、緑画素値との差を小さくすることで、赤画素値、緑画素値に乗算されるホワイトバランスゲインを小さくでき、ノイズを抑制する効果が得られる。 Comparing FIG. 16B and FIG. 16C, by cutting light including the wavelength range of blue light with a blue light cut filter, the saturation of blue is lowered (the color is lighter). Since the plaque region fluoresces reddish pink, the brightness of the tooth region can be suppressed while maintaining the brightness of the plaque region. As a result, by reducing the blue pixel value and reducing the difference between the red pixel value and the green pixel value, the white balance gain multiplied by the red pixel value and the green pixel value can be reduced, thereby suppressing noise. can get.
 (3)口腔内を青色光(ピーク波長は405nm)と白色光で照射した場合
 白色光を加えることで、第1RGB画像における歯牙領域の赤画素値、緑画素値の値を大きくし、青色光のみで口腔内を照射した場合よりも露出補正ゲインを小さく抑えることができる。ただし、白色光の強度を上げていくと、歯垢領域の色相と歯茎や唇の色相との差が小さくなっていくため、歯茎や唇を歯垢と判断する誤検出を招きやすくなる。そのため、青色光の波長域を含む光の強度と白色光の強度の比率は、誤検出を避けるため、予め最適化しておく必要がある。
(3) When the oral cavity is irradiated with blue light (peak wavelength is 405 nm) and white light By adding white light, the red pixel value and green pixel value of the tooth region in the first RGB image are increased, and the blue light The exposure correction gain can be kept smaller than in the case of irradiating the oral cavity with only one. However, as the intensity of the white light is increased, the difference between the hue of the plaque region and the hue of the gums and lips becomes smaller, which tends to cause false detection of the gums and lips as plaque. Therefore, the ratio of the intensity of light including the wavelength range of blue light and the intensity of white light must be optimized in advance in order to avoid erroneous detection.
 なお、口腔内を青色光と白色光で照射するには、図11において第1~第4のLED1026A~1026Dの一部を白色LEDとすればよい。 In order to irradiate the oral cavity with blue light and white light, part of the first to fourth LEDs 1026A to 1026D in FIG. 11 may be replaced with white LEDs.
 図16Dは、口腔内を青色光(ピーク波長は405nm)と白色光で照射して撮影した前歯の第1RGB画像から検出した歯垢領域10201と歯牙の領域の色差データの一例を示す図である。前述した青色光カットフィルタにより青色光の波長域を含む光をカットして撮影した前歯の第1RGB画像から検出した歯垢領域10201ならびに歯牙領域の色差データ(図16C)と比較するため、図16Dは図11Bに示した青色光カットフィルタ1020がない状態で撮影した第1RGB画像から検出した歯垢領域10201と歯牙の領域の色差データを示している。参考として、図16Dにおいて歯垢領域の色相の色差平均座標は(0.089、0.041)、歯牙領域の色相の色差平均座標は(0.15、-0.013)であった。なお、これらの色相の色差平均座標は参考値であり、青色光、白色光の強度やカメラの感度の影響で変わり得る値である。 FIG. 16D is a diagram showing an example of color difference data between the plaque region 10201 and the tooth region detected from the first RGB image of the front teeth captured by irradiating the oral cavity with blue light (peak wavelength: 405 nm) and white light. . In order to compare with the plaque region 10201 detected from the first RGB image of the front tooth photographed by cutting the light including the wavelength region of blue light by the blue light cut filter described above and the color difference data of the tooth region (Fig. 16C), Fig. 16D shows the color difference data of the plaque region 10201 and the tooth region detected from the first RGB image captured without the blue light cut filter 1020 shown in FIG. 11B. For reference, in FIG. 16D, the average color difference coordinates of the hue of the plaque area were (0.089, 0.041), and the average color difference coordinates of the hue of the tooth area were (0.15, −0.013). The color difference average coordinates of these hues are reference values, and are values that may change under the influence of the intensity of blue light and white light and the sensitivity of the camera.
 図16Bと図16Dを比較すると、口腔内に青色光に加えて白色光を照射することで、歯垢領域の明度を維持した状態で、青みを帯びた歯牙領域の明度を抑える効果が確認できる。これにより、青画素値を低減させ、赤画素値、緑画素値との差を小さくすることで、赤画素値、緑画素値に乗算されるホワイトバランスゲインを小さくでき、ノイズを小さくする効果が得られる。 Comparing FIG. 16B and FIG. 16D, it can be confirmed that by irradiating the oral cavity with white light in addition to blue light, the brightness of the bluish tooth region is suppressed while maintaining the brightness of the plaque region. . As a result, by reducing the blue pixel value and reducing the difference between the red pixel value and the green pixel value, the white balance gain multiplied by the red pixel value and the green pixel value can be reduced, thereby reducing noise. can get.
 ここで、歯牙領域は、歯牙を照射する照明条件に応じて記憶した歯牙領域の色差データを用いることで特定できる。また、赤系の色相の領域で囲まれた白系の色相からなる領域内で、輝度が高く、色相が所定の範囲に入っている領域を歯牙領域として抽出できる。このように、赤系の色相の領域で囲まれた白系の色相からなる領域を検出する方法によれば、唇や歯茎の色に近い赤系の色相値と歯牙の白系に近い色相値とを大まかに検出できる。 Here, the tooth region can be specified by using the color difference data of the tooth region stored according to the lighting conditions for irradiating the tooth. Further, a region having a high luminance and a hue within a predetermined range can be extracted as a tooth region from within a white-hued region surrounded by a red-hued region. As described above, according to the method of detecting a white-hue region surrounded by a red-hue region, a red-hue value close to the color of the lips and gums and a white-hue value of the teeth are detected. It can be roughly detected.
 (ホワイトバランス処理)
 携帯端末1070は、画像処理(露出制御処理及びホワイトバランス調整処理)を行うことで図17Aに示されるように歯垢領域10211を区別しやすい第2RGB画像10210を生成することができる。画像処理により、実質的に歯牙の領域が無色化されることで、歯垢領域10211が区別しやすくなる。
(White balance processing)
By performing image processing (exposure control processing and white balance adjustment processing), the mobile terminal 1070 can generate a second RGB image 10210 in which the plaque region 10211 can be easily distinguished as shown in FIG. 17A. The image processing substantially decolorizes the tooth region, making it easier to distinguish the plaque region 10211 .
 図17Bは、青色光カットフィルタがない状態で、青色光の波長域を含む光を歯牙に照射したとき、露出制御処理及びホワイトバランス調整処理を行った後の、歯垢領域と歯牙の領域の色差データの一例を示す図である。歯牙領域は実質的に白色と見なしている。参考として、図17Bにおいて歯垢領域の色相の色差平均座標は(0.033、0.071)であった。なお、これらの色相の色差平均座標は参考値であり、青色光の強度やカメラの感度の影響で変わり得る値である。 FIG. 17B shows the difference between the plaque region and the tooth region after performing the exposure control processing and the white balance adjustment processing when the teeth are irradiated with light including the wavelength range of blue light without a blue light cut filter. It is a figure which shows an example of color difference data. Tooth regions are considered substantially white. For reference, the color difference average coordinates of the hue of the plaque region in FIG. 17B were (0.033, 0.071). The color difference average coordinates of these hues are reference values, and are values that may change under the influence of the intensity of blue light and the sensitivity of the camera.
 同様に、図17Cは、青色光カットフィルタを用いて、青色光の波長域を含む光を歯牙に照射したとき、露出制御処理及びホワイトバランス調整処理を行った後の、歯垢領域と歯牙の領域の色差データの一例を示す図である。歯牙領域は実質的に白色と見なしている。参考として、図17Cにおいて歯垢領域の色相の色差平均座標は(0.033、0.071)であった。なお、これらの色相の色差平均座標は参考値であり、青色光の強度やカメラの感度の影響で変わり得る値である。 Similarly, FIG. 17C shows the difference between the plaque region and the tooth after performing exposure control processing and white balance adjustment processing when the tooth is irradiated with light including the wavelength range of blue light using a blue light cut filter. FIG. 4 is a diagram showing an example of color difference data of regions; Tooth regions are considered substantially white. For reference, the color difference average coordinates of the hue of the plaque region in FIG. 17C were (0.033, 0.071). The color difference average coordinates of these hues are reference values, and are values that may change under the influence of the intensity of blue light and the sensitivity of the camera.
 同様に、図17Dは、青色光カットフィルタがない状態で、青色光の波長域を含む光と白色光を歯牙に照射したとき、露出制御処理及びホワイトバランス調整処理を行った後の、歯垢領域と歯牙の領域の色差データの一例を示す図である。歯牙領域は実質的に白色と見なしている。参考として、図17Dにおいて歯垢領域の色相の色差平均座標は(0.014、0.048)であった。なお、これらの色相の色差平均座標は参考値であり、青色光、白色光の強度やカメラの感度の影響で変わり得る値である。 Similarly, FIG. 17D shows, without a blue light cut filter, when the teeth are irradiated with light including a wavelength range of blue light and white light, and after performing exposure control processing and white balance adjustment processing, plaque FIG. 10 is a diagram showing an example of color difference data between a region and a tooth region; Tooth regions are considered substantially white. For reference, the color difference average coordinates of the hue of the plaque area in FIG. 17D were (0.014, 0.048). The color difference average coordinates of these hues are reference values, and are values that may change under the influence of the intensity of blue light and white light and the sensitivity of the camera.
 図17B~図17Dより、口腔内を照射する光源の種類によらず、歯垢領域の色相をほぼ同じく、赤みを帯びたピンク色に表示することができる。 From FIGS. 17B to 17D, regardless of the type of light source that irradiates the oral cavity, the hue of the plaque region can be displayed in almost the same reddish pink color.
 (歯垢領域の強調表示)
 図18は、図15に示した状態で撮影した前歯の第4RGB画像の一例を示す図である。図19は、図15に示した状態で撮影した前歯の第4RGB画像の他の一例を示す図である。
(highlighting of plaque area)
FIG. 18 is a diagram showing an example of the fourth RGB image of the front teeth photographed in the state shown in FIG. FIG. 19 is a diagram showing another example of the fourth RGB image of the front teeth photographed in the state shown in FIG.
 携帯端末1070は、図16Aに示されるよう第1RGB画像10200を口腔内カメラ10から取得する。 The mobile terminal 1070 acquires the first RGB image 10200 from the intraoral camera 10 as shown in FIG. 16A.
 また、携帯端末1070は、さらに、第2RGB画像10210の歯垢領域10211に対して彩度強調処理を行うことで図18に示されるように歯垢領域10221を区別しやすい第4RGB画像10220を生成することができる。 Further, the portable terminal 1070 further performs saturation enhancement processing on the plaque region 10211 of the second RGB image 10210 to generate a fourth RGB image 10220 in which the plaque region 10221 can be easily distinguished as shown in FIG. can do.
 一方で、携帯端末1070は、さらに、第2RGB画像10210の歯垢領域10211を所定パターンに置き換えることで図19に示されるように歯垢領域10231が所定パターンに置き換えられた第4RGB画像10230を生成することができる。 On the other hand, portable terminal 1070 further replaces plaque region 10211 of second RGB image 10210 with a predetermined pattern, thereby generating fourth RGB image 10230 in which plaque region 10231 is replaced with a predetermined pattern as shown in FIG. can do.
 (画像処理フロー)
 図20は、携帯端末1070における画像処理のフローチャートである。
(Image processing flow)
FIG. 20 is a flowchart of image processing in the mobile terminal 1070. FIG.
 携帯端末1070は、第1RGB画像を口腔内カメラ1010から取得する(S1111)。 The mobile terminal 1070 acquires the first RGB image from the intraoral camera 1010 (S1111).
 次に、携帯端末1070は、第1RGB画像に対して露出制御処理を行うことで第3RGB画像を生成する(S1112)。 Next, the mobile terminal 1070 generates a third RGB image by performing exposure control processing on the first RGB image (S1112).
 次に、携帯端末1070は、第3RGB画像に対してホワイトバランス調整処理を行うことで第2RGB画像を生成する(S1113)。 Next, the mobile terminal 1070 generates a second RGB image by performing white balance adjustment processing on the third RGB image (S1113).
 次に、携帯端末1070は、第2RGB画像における歯垢領域を特定する(S1114)。 Next, the mobile terminal 1070 identifies the plaque area in the second RGB image (S1114).
 次に、携帯端末1070は、第2RGB画像の歯垢領域に対して彩度強調処理を行うか、歯垢領域を所定パターンに置き換えることで第4RGB画像を生成する(S1115)。 Next, the mobile terminal 1070 generates a fourth RGB image by performing saturation enhancement processing on the plaque area of the second RGB image or by replacing the plaque area with a predetermined pattern (S1115).
 以上の説明に係る画像処理装置(例えば、携帯端末1070)は、取得部10101と、生成部10102とを備える。取得部10101は、青色光の波長域を含む光を歯牙に照射することで蛍光反応している歯牙を撮影することで得られた第1RGB画像を取得する。生成部10102は、第1RGB画像に対して第1画像処理を含む画像処理を行うことで第2RGB画像を生成する。第1画像処理は、処理対象のRGB画像のうちの歯牙の領域を構成する複数の第1画素が有する複数の赤画素値の第1赤画素平均値と、複数の第1画素が有する複数の緑画素値の第1緑画素平均値と、複数の第1画素が有する複数の青画素値の第1青画素平均値とが等しくなるように、第1RGB画像の赤成分、緑成分、及び、青成分のうちの少なくとも2つの色成分のゲインを調整する処理である。 The image processing apparatus (for example, the mobile terminal 1070) according to the above description includes an acquisition unit 10101 and a generation unit 10102. The acquisition unit 10101 acquires a first RGB image obtained by photographing a tooth that reacts with fluorescence by irradiating the tooth with light including a wavelength range of blue light. The generation unit 10102 generates a second RGB image by performing image processing including the first image processing on the first RGB image. In the first image processing, in an RGB image to be processed, a first red pixel average value of a plurality of red pixel values of a plurality of first pixels constituting a tooth region, and a plurality of red pixel values of a plurality of first pixels. The red component, green component, and A process of adjusting the gain of at least two color components of the blue component.
 これによれば、第1画像処理を行うことで、蛍光反応している歯牙が撮影されている第1RGB画像のホワイトバランスを調整することができる。このため、歯牙において歯垢が付着している領域である歯垢領域を区別しやすい第2RGB画像を生成することができる。よって、歯牙の画像における歯垢領域を容易に特定することができる。これにより、例えば、歯磨き後の歯牙の画像を撮影し、歯垢領域を特定することで、磨き残しの領域をユーザに提示することができる。 According to this, by performing the first image processing, it is possible to adjust the white balance of the first RGB image in which the fluorescently reacting tooth is captured. Therefore, it is possible to generate a second RGB image that makes it easy to distinguish the plaque region, which is the region of the tooth to which dental plaque adheres. Therefore, it is possible to easily identify the plaque region in the image of the tooth. As a result, for example, by taking an image of the tooth after brushing and specifying the plaque area, it is possible to present the user with the area left unbrushed.
 また、以上の説明に係る画像処理装置(例えば、携帯端末1070)において、さらに、第2RGB画像の色空間をHSV空間に変換することでHSV画像を生成し、HSV画像が有する複数の第4画素のうち彩度が第1の所定範囲内、色相が第2の所定範囲内、及び、明度が第3の所定範囲内の少なくとも1つを満たす1以上の第4画素が位置する特定画素領域を特定し、第2RGB画像における特定画素領域に対して彩度強調処理を行うことで第4RGB画像を生成する。 Further, in the image processing apparatus (for example, the mobile terminal 1070) according to the above description, the HSV image is generated by further converting the color space of the second RGB image into the HSV space, and the plurality of fourth pixels of the HSV image are generated. A specific pixel region in which one or more fourth pixels satisfying at least one of the following: saturation within a first predetermined range, hue within a second predetermined range, and brightness within a third predetermined range A fourth RGB image is generated by specifying and performing saturation enhancement processing on a specified pixel region in the second RGB image.
 これによれば、第2RGB画像において歯垢領域としての特定画素領域を特定し、特定画素領域に対して彩度強調処理を行うため、さらに、歯垢領域を区別しやすい第3RGB画像を生成することができる。よって、歯牙の画像における歯垢領域を容易に特定することができる。 According to this, since the specific pixel region as the dental plaque region is specified in the second RGB image and the saturation enhancement processing is performed on the specific pixel region, the third RGB image is further generated in which the plaque region can be easily distinguished. be able to. Therefore, it is possible to easily identify the plaque region in the image of the tooth.
 また、以上の説明に係る画像処理装置(例えば、携帯端末1070)において、さらに、第2RGB画像の色空間をHSV空間に変換することでHSV画像を生成し、HSV画像が有する複数の第4画素のうち彩度が第1の所定範囲内、色相が第2の所定範囲内、及び、明度が第3の所定範囲内の少なくとも1つを満たす1以上の第4画素が位置する特定画素領域を特定し、第2RGB画像における特定画素領域を所定パターンで置き換えることで第4RGB画像を生成する。 Further, in the image processing apparatus (for example, the mobile terminal 1070) according to the above description, the HSV image is generated by further converting the color space of the second RGB image into the HSV space, and the plurality of fourth pixels of the HSV image are generated. A specific pixel region in which one or more fourth pixels satisfying at least one of the following: saturation within a first predetermined range, hue within a second predetermined range, and brightness within a third predetermined range A fourth RGB image is generated by identifying and replacing the specific pixel area in the second RGB image with a predetermined pattern.
 これによれば、第2RGB画像において歯垢領域としての特定画素領域を特定し、特定画素領域を所定パターンで置き換えるため、さらに、歯垢領域を区別しやすい第4RGB画像を生成することができる。よって、歯牙の画像における歯垢領域を容易に特定することができる。 According to this, since the specific pixel area as the dental plaque area is specified in the second RGB image and the specific pixel area is replaced with the predetermined pattern, it is possible to further generate the fourth RGB image in which the dental plaque area can be easily distinguished. Therefore, it is possible to easily identify the plaque region in the image of the tooth.
 また、以上の説明に係る画像処理装置(例えば、携帯端末1070)において、画像処理は、さらに、第2画像処理を含む。第2画像処理は、処理対象のRGB画像に含まれる複数の第2画素がそれぞれ有する複数の第2画素値から算出した複数の輝度値の平均値が所定値になるようにゲインを決定し、決定したゲインを処理対象のRGB画像に適用することで第3RGB画像を生成する処理である。第1画像処理は、第3RGB画像を処理対象とする処理である。 Also, in the image processing apparatus (for example, the mobile terminal 1070) according to the above description, the image processing further includes a second image processing. In the second image processing, a gain is determined so that an average value of a plurality of luminance values calculated from a plurality of second pixel values of a plurality of second pixels included in an RGB image to be processed becomes a predetermined value, This is a process of generating a third RGB image by applying the determined gain to the RGB image to be processed. The first image processing is processing for processing the third RGB image.
 これによれば、複数の第2画素の輝度値のゲインを調整することで露出制御処理を行うため、撮影条件にバラツキがあっても複数の輝度値の条件を一定にすることができる。つまり、第1画像処理を行う処理対象の第3RGB画像の輝度分布の条件を撮影条件によらず一定にすることができるため、より効果的に第1画像処理を行うことができる。 According to this, since the exposure control processing is performed by adjusting the gain of the luminance values of the plurality of second pixels, the conditions of the plurality of luminance values can be kept constant even if the shooting conditions vary. That is, since the condition of the luminance distribution of the third RGB image to be processed for the first image processing can be made constant regardless of the photographing conditions, the first image processing can be performed more effectively.
 また、以上の説明に係る画像処理装置(例えば、携帯端末1070)において、複数の輝度値の平均値は、第1RGB画像の赤成分、緑成分、及び、青成分のうちの最大平均値を有する色成分の平均値である。 Further, in the image processing device (for example, the mobile terminal 1070) according to the above description, the average value of the plurality of luminance values is the maximum average value among the red, green, and blue components of the first RGB image. It is the average value of the color components.
 また、以上の説明に係る画像処理装置(例えば、携帯端末1070)において、複数の輝度値は、複数の画素値のそれぞれについて、当該画素値に含まれる赤画素値、緑画素値、及び、青画素値に基づいて算出することで得られる。 Further, in the image processing apparatus (for example, the mobile terminal 1070) according to the above description, the plurality of luminance values are obtained by determining, for each of the plurality of pixel values, the red pixel value, the green pixel value, and the blue pixel value included in the pixel value. It is obtained by calculation based on the pixel value.
 また、以上の説明に係る画像処理装置(例えば、携帯端末1070)において、複数の第2画素は、第1RGB画像を構成する複数の第3画素のうち、最大の色成分の画素値が第1閾値より小さく、かつ、最小の色成分の画素値が第2閾値以下であることを満たす画素である。 Further, in the image processing apparatus (for example, the mobile terminal 1070) according to the above description, the plurality of second pixels has the pixel value of the largest color component among the plurality of third pixels forming the first RGB image. It is a pixel that satisfies that the pixel value of the minimum color component is smaller than the threshold and is equal to or less than the second threshold.
 このため、第1RGB画像において照射している光による反射の影響を強く受けている領域を除外して、第2画像処理を行うことができる。 Therefore, it is possible to perform the second image processing by excluding areas strongly affected by the reflection of the irradiated light in the first RGB image.
 以下、以上の説明の変形例について説明する。 A modified example of the above description will be described below.
 [5-6.変形例1]
 以上の説明では、生成部10102は、第1RGB画像に対して露出制御処理を行い、露出制御処理で生成された第3RGB画像に対してホワイトバランス調整処理を行うとしたが、これに限らずに、露出制御処理を行わなくてもよい。例えば、輝度分布にバラツキが生じることを低減された第1RGB画像が得られていれば、露出制御処理は行われなくてもよい。例えば、撮影条件が一定になるように照明制御を行うことで、得られる第1RGB画像の輝度分布のバラツキを低減してもよい。
[5-6. Modification 1]
In the above description, the generation unit 10102 performs exposure control processing on the first RGB image and performs white balance adjustment processing on the third RGB image generated by the exposure control processing. , exposure control processing may not be performed. For example, exposure control processing may not be performed as long as the first RGB image is obtained in which variations in luminance distribution are reduced. For example, by performing lighting control so that the shooting conditions are constant, variations in the brightness distribution of the obtained first RGB image may be reduced.
 [5-7.変形例2]
 以上の説明では、口腔内カメラ1010を用いてユーザが口腔内の撮影を行うときに、携帯端末1070の表示部10103に、撮影する口腔内位置を指定するガイダンスを表示してもよい。ガイダンスは、携帯端末1070の図示しないスピーカから音声で出力してもよい。これにより、ユーザは、ガイダンスに従って、指定された口腔内位置で撮影が行われるように、口腔内カメラ1010を指定された口腔内位置に移動させることができる。例えば、口腔内位置とは、前歯の位置、奥歯の位置などである。
[5-7. Modification 2]
In the above description, when the user takes an intraoral image using the intraoral camera 1010, the display unit 10103 of the mobile terminal 1070 may display guidance for designating the intraoral position to be imaged. Guidance may be output by voice from a speaker (not shown) of mobile terminal 1070 . Accordingly, the user can follow the guidance to move the intraoral camera 1010 to the specified intraoral position so that the image is captured at the specified intraoral position. For example, the intraoral position is the position of the front teeth, the position of the back teeth, and the like.
 そして、携帯端末1070は、ガイダンスで指示している口腔内位置と、当該口腔内位置が指示されている間に取得された第1RGB画像に対して行われた画像処理によって生成された第2RGB画像または第4RGB画像とを対応付けて記憶してもよい。 Then, the portable terminal 1070 generates a second RGB image generated by image processing performed on the intraoral position indicated by the guidance and the first RGB image acquired while the intraoral position is indicated. Alternatively, it may be stored in association with the fourth RGB image.
 このため、第2RGB画像または第4RGB画像に含まれる歯牙の口腔内位置を容易に特定することができる。 Therefore, it is possible to easily identify the intraoral position of the tooth included in the second RGB image or the fourth RGB image.
 [5-8.変形例3]
 以上の説明では、口腔内カメラ1010は、携帯端末1070に第1RGB画像を送信し、携帯端末1070において第1RGB画像に対する画像処理が行われるとしたが、これに限らずに、第1RGB画像は、クラウドサーバ1080に送信され、クラウドサーバ1080が上記画像処理を行い、画像処理結果の第2RGB画像または第4RGB画像を携帯端末1070へ送信する構成であってもよい。この場合、第1RGB画像は、口腔内カメラ1010から携帯端末1070を経由せずにクラウドサーバ1080へ送信されてもよいし、口腔内カメラ1010から携帯端末1070を経由してクラウドサーバ1080へ送信されてもよい。
[5-8. Modification 3]
In the above description, the intraoral camera 1010 transmits the first RGB image to the mobile terminal 1070, and the mobile terminal 1070 performs image processing on the first RGB image. The image may be transmitted to the cloud server 1080 , the cloud server 1080 may perform the above image processing, and the second RGB image or the fourth RGB image of the image processing result may be transmitted to the mobile terminal 1070 . In this case, the first RGB image may be transmitted from intraoral camera 1010 to cloud server 1080 without going through mobile terminal 1070, or may be transmitted from intraoral camera 1010 to cloud server 1080 through mobile terminal 1070. may
 以上、本画像処理方法等に係る口腔内カメラシステムについて説明したが、本画像処理方法等は、この形態に限定されるものではない。 Although the intraoral camera system according to the present image processing method and the like has been described above, the present image processing method and the like are not limited to this form.
 例えば、上記説明では、歯牙を撮影することを主目的とした口腔内カメラ1010を用いる例を説明したが、口腔内カメラ1010は、カメラを備える口腔内ケア機器であってもよい。例えば、口腔内カメラ1010は、カメラを備える口腔内洗浄機等であってもよい。 For example, in the above description, an example using the intraoral camera 1010 whose main purpose is to photograph teeth has been described, but the intraoral camera 1010 may be an intraoral care device equipped with a camera. For example, intraoral camera 1010 may be an intraoral cleaner or the like that includes a camera.
 また、以上の説明に係る口腔内カメラシステムに含まれる各処理部は典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。 Also, each processing unit included in the intraoral camera system according to the above description is typically realized as an LSI, which is an integrated circuit. These may be made into one chip individually, or may be made into one chip so as to include part or all of them.
 また、集積回路化はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後にプログラムすることが可能なFPGA(Field Programmable Gate Array)、又はLSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。 In addition, circuit integration is not limited to LSIs, and may be realized with dedicated circuits or general-purpose processors. An FPGA (Field Programmable Gate Array) that can be programmed after the LSI is manufactured, or a reconfigurable processor that can reconfigure the connections and settings of the circuit cells inside the LSI may be used.
 また、以上の説明において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。 Also, in the above description, each component may be implemented by dedicated hardware or by executing a software program suitable for each component. Each component may be realized by reading and executing a software program recorded in a recording medium such as a hard disk or a semiconductor memory by a program execution unit such as a CPU or processor.
 また、本画像処理方法等は、口腔内カメラシステムにより実行される画像表示方法等として実現されてもよい。また、本画像処理方法等は、口腔内カメラシステムに含まれる口腔内カメラ、携帯端末、又はクラウドサーバとして実現されてもよい。 Also, this image processing method and the like may be realized as an image display method and the like executed by an intraoral camera system. Also, the present image processing method and the like may be implemented as an intraoral camera, a mobile terminal, or a cloud server included in an intraoral camera system.
 また、ブロック図における機能ブロックの分割は一例であり、複数の機能ブロックを一つの機能ブロックとして実現したり、一つの機能ブロックを複数に分割したり、一部の機能を他の機能ブロックに移してもよい。また、類似する機能を有する複数の機能ブロックの機能を単一のハードウェア又はソフトウェアが並列又は時分割に処理してもよい。 Also, the division of functional blocks in the block diagram is an example, and a plurality of functional blocks can be realized as one functional block, one functional block can be divided into a plurality of functional blocks, and some functions can be moved to other functional blocks. may Moreover, single hardware or software may process the functions of a plurality of functional blocks having similar functions in parallel or in a time-sharing manner.
 また、フローチャートにおける各ステップが実行される順序は、本画像処理方法等を具体的に説明するために例示するためのものであり、上記以外の順序であってもよい。また、上記ステップの一部が、他のステップと同時(並列)に実行されてもよい。 Also, the order in which each step in the flow chart is executed is for illustrative purposes in order to specifically describe the image processing method, etc., and orders other than the above may be used. Also, some of the above steps may be executed concurrently (in parallel) with other steps.
 以上、一つまたは複数の態様に係る口腔内カメラシステム等について説明したが、本画像処理方法等は、この形態に限定されるものではない。本画像処理方法等に関する説明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本形態に施したものや、異なる形態における構成要素を組み合わせて構築される形態も、一つまたは複数の態様の範囲内に含まれてもよい。 Although the intraoral camera system and the like according to one or more aspects have been described above, the present image processing method and the like are not limited to this aspect. As long as it does not deviate from the gist of the description regarding this image processing method, etc., various modifications that a person skilled in the art can think of, or a form constructed by combining the constituent elements of different forms, are also part of one or more aspects. may be included within the scope.
 [5-9.変形例4]
 以上の説明では、口腔内を青色光(ピーク波長は405nm)のみで照射した場合、ならびに、口腔内を青色光(ピーク波長は405nm)と白色光で照射した場合について説明したが、これに限らない。白色光にも歯垢の励起蛍光を発生させる波長が含まれおり、白色光のみでも微弱ではあるが歯垢の励起蛍光を検出することが可能である。つまり、口腔内に少なくとも青色光成分(波長は405nm程度)を含む光を照射する構成であれば、どのような照射光を用いても本願発明を実施することが可能である。
[5-9. Modification 4]
In the above description, the case where the oral cavity is irradiated with only blue light (peak wavelength is 405 nm) and the case where the oral cavity is irradiated with blue light (peak wavelength is 405 nm) and white light were explained, but this is not the only case. do not have. White light also contains a wavelength that causes excitation fluorescence of dental plaque, and it is possible to detect the excitation fluorescence of dental plaque, although it is faint, with only white light. In other words, the present invention can be implemented using any irradiation light as long as it is configured to irradiate the oral cavity with light containing at least a blue light component (with a wavelength of about 405 nm).
 [5-10.利用可能性]
 本画像処理方法などは、口腔内カメラシステムに適用できる。
[5-10. Availability]
This image processing method and the like can be applied to an intraoral camera system.
 (その他の実施の形態)
 以上、本開示の実施の形態に係る口腔洗浄装置等について説明したが、本開示は、この実施の形態に限定されるものではない。
(Other embodiments)
Although the mouthwash device and the like according to the embodiments of the present disclosure have been described above, the present disclosure is not limited to these embodiments.
 例えば、記実施の形態に係る口腔洗浄装置が備える各処理部は典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。 For example, each processing unit provided in the oral cavity cleaning apparatus according to the embodiment is typically implemented as an LSI, which is an integrated circuit. These may be made into one chip individually, or may be made into one chip so as to include part or all of them.
 また、集積回路化はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後にプログラムすることが可能なFPGA(Field Programmable Gate Array)、又はLSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。 In addition, circuit integration is not limited to LSIs, and may be realized with dedicated circuits or general-purpose processors. An FPGA (Field Programmable Gate Array) that can be programmed after the LSI is manufactured, or a reconfigurable processor that can reconfigure the connections and settings of the circuit cells inside the LSI may be used.
 また、上記実施の形態等において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU又はプロセッサなどのプログラム実行部が、ハードディスク又は半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。 In addition, in the above embodiments and the like, each component may be configured with dedicated hardware or realized by executing a software program suitable for each component. Each component may be realized by reading and executing a software program recorded in a recording medium such as a hard disk or a semiconductor memory by a program execution unit such as a CPU or processor.
 また、本開示の一態様は、口腔洗浄装置により実行される口腔洗浄方法又は口腔洗浄装置の制御方法等として実現されてもよい。また、本開示の一態様は、口腔洗浄方法又は制御方法に含まれる特徴的な各ステップをコンピュータに実行させるコンピュータプログラムであってもよい。 Further, one aspect of the present disclosure may be implemented as a mouthwash method executed by a mouthwash device, a control method of a mouthwash device, or the like. Moreover, one aspect of the present disclosure may be a computer program that causes a computer to execute each characteristic step included in the oral cavity cleaning method or the control method.
 また、上記実施の形態等に係る口腔洗浄装置は、単一の装置として実現されてもよいし、複数の装置により実現されてもよい。口腔洗浄装置が複数の装置によって実現される場合、当該口腔洗浄装置が有する各構成要素は、複数の装置にどのように振り分けられてもよい。例えば、制御装置は、携帯端末が有していてもよい。また、例えば、制御装置の機能構成の少なくとも1つは、携帯端末又は携帯端末と通信可能なサーバ(例えば、クラウドサーバ)により実現されてもよい。口腔洗浄装置が複数の装置で実現される場合、当該複数の装置間の通信方法は、特に限定されず、無線通信であってもよいし、有線通信であってもよい。また、装置間では、無線通信及び有線通信が組み合わされてもよい。なお、クラウドサーバは、携帯端末に対してインターネットなどを介して通信可能なサーバであって、携帯端末に口腔内カメラを使用するためのアプリケーションを提供してもよい。例えば、ユーザがアプリケーションをクラウドサーバからダウンロードして携帯端末にインストールする。また、クラウドサーバは、口腔洗浄装置によって撮影された画像を、携帯端末を介して取得してもよい。 In addition, the oral cavity cleaning device according to the above embodiments and the like may be implemented as a single device, or may be implemented as a plurality of devices. When the oral cavity cleaning device is realized by a plurality of devices, each component of the oral cavity cleaning device may be distributed to the plurality of devices in any way. For example, the control device may be included in the mobile terminal. Also, for example, at least one of the functional configurations of the control device may be implemented by a mobile terminal or a server (for example, a cloud server) capable of communicating with the mobile terminal. When the oral cavity cleaning device is implemented by a plurality of devices, the communication method between the plurality of devices is not particularly limited, and may be wireless communication or wired communication. Also, wireless and wired communications may be combined between devices. Note that the cloud server is a server that can communicate with the mobile terminal via the Internet or the like, and may provide the mobile terminal with an application for using the intraoral camera. For example, a user downloads an application from a cloud server and installs it on a mobile terminal. Also, the cloud server may acquire the image captured by the oral cavity cleaning device via the mobile terminal.
 また、ブロック図における機能ブロックの分割は一例であり、複数の機能ブロックを一つの機能ブロックとして実現したり、一つの機能ブロックを複数に分割したり、一部の機能を他の機能ブロックに移してもよい。また、類似する機能を有する複数の機能ブロックの機能を単一のハードウェア又はソフトウェアが並列又は時分割に処理してもよい。 Also, the division of functional blocks in the block diagram is an example, and a plurality of functional blocks can be realized as one functional block, one functional block can be divided into a plurality of functional blocks, and some functions can be moved to other functional blocks. may Moreover, single hardware or software may process the functions of a plurality of functional blocks having similar functions in parallel or in a time-sharing manner.
 また、フローチャートにおける各ステップが実行される順序は、本開示を具体的に説明するために例示するためのものであり、上記以外の順序であってもよい。また、上記ステップの一部が、他のステップと同時(並列)に実行されてもよい。 Also, the order in which each step in the flowchart is executed is for illustrative purposes in order to specifically describe the present disclosure, and orders other than the above may be used. Also, some of the above steps may be executed concurrently (in parallel) with other steps.
 本開示は、以上の一つ又は複数の態様に限定されることなく、本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、一つ又は複数の態様の範囲内に含まれてもよい。 The present disclosure is not limited to the above one or more aspects, and as long as it does not depart from the spirit of the present disclosure, various modifications that can be made by those skilled in the art can be made to the present embodiment, and different embodiments Forms constructed by combining components may also be included within the scope of one or more aspects.
 本開示は、口腔洗浄装置に適用できる。 The present disclosure can be applied to oral cleaning devices.
  98 歯肉
  99 歯牙
  99a 歯垢
 100、100a、100b、100c 口腔洗浄装置
 101 カメラ部
 101a 検出領域
 101aa 洗浄有効領域
 102 LED照明部
 103 洗浄液噴射部
 103a 噴射口
 103b ブラシ
 104 入力部
 150 制御装置
 151 カメラ制御部
 152 LED照明制御部
 153 噴射制御部
 154 メモリ部
 155 画像処理部
 156 歯垢付着量検出部
 157 不調検出部
 158 判定部
 159 出力部
 200 端末装置
 201 通信部
 202 端末入力部
 203 端末表示部
 1010 口腔内カメラ
 1010a ヘッド部
 1010b ハンドル部
 1010c ネック部
 1012 撮影光学系
 1014 撮像素子
 1026A 第1のLED
 1026B 第2のLED
 1026C 第3のLED
 1026D 第4のLED 
 1036、1040 アクチュエータ
 1050 中央制御部
 1052 画像処理部
 1054 LED制御部
 1056 レンズドライバ
 1058 無線通信モジュール
 1060 電源制御部
 1062 コントローラ
 1064 メモリ
 1066 電池
 1068 コイル
 1069 充電器
 1070 携帯端末
 1072 タッチスクリーン
 1080 クラウドサーバ
10101 取得部
10102 生成部
10103 表示部
10200 第1RGB画像
10201、10211、10221、10231 歯垢領域
10210 第2RGB画像
10220、10230 第4RGB画像
98 Gum 99 Tooth 99a Plaque 100, 100a, 100b, 100c Mouth cleaning device 101 Camera section 101a Detection area 101aa Cleaning effective area 102 LED illumination section 103 Cleaning fluid injection section 103a Injection port 103b Brush 104 Input section 150 Control device 151 Camera control section 152 LED illumination control unit 153 injection control unit 154 memory unit 155 image processing unit 156 plaque adhesion amount detection unit 157 malfunction detection unit 158 determination unit 159 output unit 200 terminal device 201 communication unit 202 terminal input unit 203 terminal display unit 1010 intraoral Camera 1010a Head 1010b Handle 1010c Neck 1012 Photographic optical system 1014 Imaging element 1026A First LED
1026B Second LED
1026C Third LED
1026D 4th LED
1036, 1040 actuator 1050 central control unit 1052 image processing unit 1054 LED control unit 1056 lens driver 1058 wireless communication module 1060 power control unit 1062 controller 1064 memory 1066 battery 1068 coil 1069 charger 1070 mobile terminal 1072 touch screen 1080 cloud Server 10101 Acquisition unit 10102 generation unit 10103 display unit 10200 first RGB images 10201, 10211, 10221, 10231 plaque region 10210 second RGB images 10220, 10230 fourth RGB images

Claims (12)

  1.  歯牙を洗浄する口腔洗浄装置であって、
     歯牙洗浄部を介して歯牙に作用する洗浄力を制御する洗浄制御部と、
     前記歯牙洗浄部による洗浄効果がある洗浄有効領域を内包する照射領域に照射光を照射する光照射部と、
     前記照射光に応じて発光した検出光を、前記洗浄有効領域を内包し前記照射領域に含まれる二次元状の検出領域内で検出する光検出部と、を備え、
     前記洗浄制御部は、
     前記光検出部の検出結果に基づいて、前記検出領域内の歯垢部分を推定し、
     前記歯垢部分の推定結果に基づいて、前記洗浄力の制御量を決定し、
     前記歯牙洗浄部の洗浄力が決定した制御量となるように前記歯牙洗浄部を制御する
     口腔洗浄装置。
    An oral cleaning device for cleaning teeth,
    a cleaning control unit that controls the cleaning force acting on the teeth via the tooth cleaning unit;
    a light irradiation unit that irradiates irradiation light onto an irradiation region that includes a cleaning effective region having a cleaning effect by the tooth cleaning unit;
    a light detection unit that detects detection light emitted in response to the irradiation light within a two-dimensional detection region that includes the effective cleaning region and is included in the irradiation region;
    The cleaning control unit
    estimating a dental plaque portion within the detection area based on the detection result of the light detection unit;
    determining a control amount of the detergency based on the estimation result of the plaque portion;
    An oral cavity cleaning apparatus that controls the tooth cleaning unit so that the cleansing power of the tooth cleaning unit becomes the determined control amount.
  2.  前記歯牙洗浄部はブラシであり、
     前記洗浄制御部は、前記ブラシの前記洗浄力としての前記ブラシの駆動モードを制御する駆動制御部を備える
     請求項1に記載の口腔洗浄装置。
    the tooth cleaning unit is a brush,
    The oral cavity cleaning apparatus according to claim 1, wherein the cleaning control section includes a drive control section that controls a drive mode of the brush as the cleaning power of the brush.
  3.  前記歯牙洗浄部は、噴射口から歯牙に向けて噴射した洗浄液を歯牙に衝突させる水流式の洗浄液噴射部であり、
     前記洗浄制御部は、前記洗浄液噴射部の洗浄力としての洗浄液の流量及び洗浄液の噴射圧の少なくとも一方を制御する噴射制御部として機能する
     請求項1に記載の口腔洗浄装置。
    The tooth washing unit is a water jet type washing liquid spraying unit that causes the washing liquid sprayed from the injection port toward the teeth to collide with the teeth,
    The oral cavity cleaning apparatus according to claim 1, wherein the cleaning control unit functions as an injection control unit that controls at least one of the flow rate of the cleaning liquid and the injection pressure of the cleaning liquid as the cleaning power of the cleaning liquid injection section.
  4.  前記噴射制御部は、
      前記検出結果に基づいて、前記検出領域内の歯垢部分の面積を前記検出領域内における、前記検出光が検出された部分の面積によって算出し、
      算出した面積が大きいほど大きくなるように、前記噴射口から噴射される前記洗浄液の流量及び噴射圧の少なくとも一方の制御量を決定する
     請求項3に記載の口腔洗浄装置。
    The injection control unit is
    based on the detection result, calculating the area of the plaque portion in the detection region by the area of the portion where the detection light is detected in the detection region;
    The oral cavity cleaning apparatus according to claim 3, wherein the control amount of at least one of the flow rate and the injection pressure of the cleaning liquid injected from the injection port is determined so as to increase as the calculated area increases.
  5.  前記噴射制御部は、
      前記検出結果に基づいて、前記検出領域内の歯垢部分の付着量を前記検出領域内における、前記検出光の輝度値によって算出し、
      算出した付着量が大きいほど大きくなるように、前記噴射口から噴射される前記洗浄液の流量及び噴射圧の少なくとも一方の制御量を決定する
     請求項3に記載の口腔洗浄装置。
    The injection control unit is
    calculating, based on the detection result, the amount of plaque adhered within the detection area from the luminance value of the detection light within the detection area;
    The oral cavity cleaning apparatus according to claim 3, wherein a control amount of at least one of flow rate and injection pressure of the cleaning liquid injected from the injection port is determined so as to increase as the calculated adhesion amount increases.
  6.  前記照射光は、前記歯垢部分に含まれる細菌の代謝産物を励起させる波長の光を含み、
     前記検出光は、励起された前記代謝産物が発する蛍光である
     請求項1に記載の口腔洗浄装置。
    the irradiation light includes light having a wavelength that excites the metabolites of bacteria contained in the dental plaque portion;
    The mouthwash device according to claim 1, wherein the detection light is fluorescence emitted by the excited metabolite.
  7.  前記噴射制御部は、前記光検出部が前記検出光の検出を開始してから終了するまでの検出期間と少なくとも一部が重複する禁止期間において、前記噴射口からの前記洗浄液の噴射を禁止する
     請求項3に記載の口腔洗浄装置。
    The injection control unit inhibits injection of the cleaning liquid from the injection port during a prohibition period that at least partially overlaps with a detection period from when the light detection unit starts to finishes detecting the detection light. A mouthwash device according to claim 3.
  8.  前記検出光の明度が所定値以下の状態が所定時間以上継続した場合に、(i)前記検出領域と前記光検出部との間における前記検出光、又は、(ii)前記光照射部と前記照射領域との間における前記照射光の少なくとも一方を遮る遮蔽物が存在すると判定する判定部と、
     前記判定部の判定結果を出力する出力部と、をさらに備える
     請求項1に記載の口腔洗浄装置。
    (i) the detected light between the detection region and the photodetector, or (ii) the light irradiation unit and the A determination unit that determines that there is a shield that blocks at least one of the irradiation light between the irradiation area and the irradiation area;
    The oral cavity cleaning device according to claim 1, further comprising an output section that outputs the determination result of the determination section.
  9.  前記洗浄制御部は、
      前記光検出部の検出結果に基づいて、前記検出領域内の一部の領域であって、前記歯牙洗浄部による洗浄効果がある洗浄有効領域において前記歯垢部分を推定し、
      前記歯垢部分の推定結果に基づいて、前記洗浄力の制御量を決定する
     請求項1に記載の口腔洗浄装置。
    The cleaning control unit
    estimating the plaque portion in a cleaning effective area, which is a part of the detection area and has a cleaning effect by the tooth cleaning unit, based on the detection result of the light detection unit;
    The oral cavity cleaning device according to claim 1, wherein the control amount of the cleaning power is determined based on the estimation result of the plaque portion.
  10.  歯牙洗浄部により歯牙を洗浄する口腔洗浄装置用の制御装置であって、
     前記歯牙洗浄部が歯牙に作用する洗浄力を制御する洗浄制御部と、
     前記歯牙洗浄部による洗浄効果がある洗浄有効領域を内包する照射領域に照射された照射光に応じて発光した検出光を、前記洗浄有効領域を内包し前記照射領域に含まれる二次元状の検出領域内で検出した検出結果を取得する取得部と、を備え、
     前記洗浄制御部は、
      取得した前記検出結果に基づいて、前記検出領域内の歯垢部分を推定し、
      前記歯垢部分の推定結果に基づいて、前記歯牙洗浄部を介して歯牙に作用する洗浄力の制御量を決定し、
      前記洗浄力が、決定した制御量となるように制御する
     制御装置。
    A control device for an oral cavity cleaning device that cleans teeth with a tooth cleaning unit,
    a cleaning control unit for controlling the cleaning force applied to the teeth by the tooth cleaning unit;
    The detection light emitted in response to the irradiation light applied to the irradiation area including the cleaning effective area having the cleaning effect by the tooth cleaning unit is detected in a two-dimensional shape including the cleaning effective area and included in the irradiation area. an acquisition unit that acquires detection results detected within the area,
    The cleaning control unit
    estimating a plaque portion within the detection area based on the acquired detection result;
    determining a control amount of the cleaning force acting on the tooth via the tooth cleaning unit based on the estimation result of the plaque portion;
    A control device that controls the detergency so that it becomes the determined control amount.
  11.  歯牙洗浄部により歯牙を洗浄する口腔洗浄装置用の制御方法をコンピュータに実行させるためのプログラムであって、
     前記制御方法では、
     前記歯牙洗浄部による洗浄効果がある洗浄有効領域を内包する照射領域に照射された照射光に応じて発光した検出光を、前記洗浄有効領域を内包し前記照射領域に含まれる二次元状の検出領域内で検出した検出結果を取得し、
     取得した前記検出結果に基づいて、前記検出領域内の歯垢部分を推定し、
     前記歯垢部分の推定結果に基づいて、前記歯牙洗浄部を介して歯牙に作用する洗浄力の制御量を決定し、
     前記洗浄力が、決定した制御量となるように制御する
     プログラム。
    A program for causing a computer to execute a control method for an oral cavity cleaning device that cleans teeth with a tooth cleaning unit,
    In the control method,
    The detection light emitted in response to the irradiation light applied to the irradiation area including the cleaning effective area having the cleaning effect by the tooth cleaning unit is detected in a two-dimensional shape including the cleaning effective area and included in the irradiation area. Get the detection result detected in the area,
    estimating a plaque portion within the detection area based on the acquired detection result;
    determining a control amount of the cleaning force acting on the tooth via the tooth cleaning unit based on the estimation result of the plaque portion;
    A program for controlling the detergency to be the determined control amount.
  12.  歯牙洗浄部により歯牙を洗浄する口腔洗浄装置を用いた口腔洗浄方法であって、
     前記歯牙洗浄部による洗浄効果がある洗浄有効領域を内包する照射領域に照射された照射光に応じて発光した検出光を、前記洗浄有効領域を内包し前記照射領域に含まれる二次元状の検出領域内で検出した検出結果を取得し、
     取得した前記検出結果に基づいて、前記検出領域内の歯垢部分を推定し、
     前記歯垢部分の推定結果に基づいて、前記歯牙洗浄部を介して歯牙に作用する洗浄力の制御量を決定し、
     前記洗浄力が、決定した制御量となるように制御する
     口腔洗浄方法。
    An oral cleaning method using an oral cleaning device for cleaning teeth with a tooth cleaning unit,
    The detection light emitted in response to the irradiation light applied to the irradiation area including the cleaning effective area having the cleaning effect by the tooth cleaning unit is detected in a two-dimensional shape including the cleaning effective area and included in the irradiation area. Get the detection result detected in the area,
    estimating a plaque portion within the detection area based on the acquired detection result;
    determining a control amount of the cleaning force acting on the tooth via the tooth cleaning unit based on the estimation result of the plaque portion;
    A method for cleaning the oral cavity, wherein the detergency is controlled to be the determined control amount.
PCT/JP2023/006498 2022-02-22 2023-02-22 Oral-cavity cleaning device, control device, oral-cavity cleaning method, and program WO2023163051A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022025927 2022-02-22
JP2022-025927 2022-02-22
JP2022-183836 2022-11-17
JP2022183836 2022-11-17

Publications (1)

Publication Number Publication Date
WO2023163051A1 true WO2023163051A1 (en) 2023-08-31

Family

ID=87766034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006498 WO2023163051A1 (en) 2022-02-22 2023-02-22 Oral-cavity cleaning device, control device, oral-cavity cleaning method, and program

Country Status (1)

Country Link
WO (1) WO2023163051A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014133029A (en) * 2013-01-11 2014-07-24 Panasonic Corp Dental plaque detection system and dental plaque detection method
JP2018019731A (en) * 2015-06-12 2018-02-08 オムロンヘルスケア株式会社 Electric toothbrush and operation method of electric toothbrush
US20210186199A1 (en) * 2019-12-19 2021-06-24 Colgate-Palmolive Company Oral Care System
WO2021148764A1 (en) * 2020-01-20 2021-07-29 Dyson Technology Limited A cleaning appliance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014133029A (en) * 2013-01-11 2014-07-24 Panasonic Corp Dental plaque detection system and dental plaque detection method
JP2018019731A (en) * 2015-06-12 2018-02-08 オムロンヘルスケア株式会社 Electric toothbrush and operation method of electric toothbrush
US20210186199A1 (en) * 2019-12-19 2021-06-24 Colgate-Palmolive Company Oral Care System
WO2021148764A1 (en) * 2020-01-20 2021-07-29 Dyson Technology Limited A cleaning appliance

Similar Documents

Publication Publication Date Title
US11062442B2 (en) Vascular information acquisition device, endoscope system, and vascular information acquisition method
US11944187B2 (en) Tracked toothbrush and toothbrush tracking system
EP2365848B1 (en) Personal hygiene device
US10383711B2 (en) Focus scanning apparatus recording color
CN110709886B (en) Intraoral scanning method
JP6430934B2 (en) Intraoral 3D scanner to measure fluorescence
EP2992805B1 (en) Electronic endoscope system
US20210393026A1 (en) Oral Care System and Method for Promoting Oral Hygiene
JP2017537744A (en) Intraoral 3D fluorescence imaging
US11382517B2 (en) Intra-oral scanning device with integrated optical coherence tomography (OCT)
JP2009279172A (en) Fluorescent image obtainment method and apparatus
US20200397300A1 (en) Noise aware edge enhancement in a pulsed hyperspectral imaging system
JP2017164021A (en) Image processing device, endoscope system, image processing method, image processing program, and recording medium
WO2020256986A1 (en) Noise aware edge enhancement in a pulsed laser mapping imaging system
WO2022169544A1 (en) System and devices for multispectral 3d imaging and diagnostics of tissues, and methods thereof
JP5192499B2 (en) Diagnostic method and apparatus for fluorescent image
WO2023163051A1 (en) Oral-cavity cleaning device, control device, oral-cavity cleaning method, and program
JP2007190370A (en) Image composing device, and method and program thereof
WO2023163049A1 (en) Oral cleaning device, control device, oral cleaning method, and program
WO2024106391A1 (en) Image processing method, image processing device, and program
JP7263245B2 (en) Method and system for measuring local inflammation using an oral care device
JP6401098B2 (en) Endoscopic diagnosis apparatus and operation method of endoscopic diagnosis apparatus
JPWO2019087895A1 (en) Electronic endoscope processor and electronic endoscope system
US20240180429A1 (en) System for diagnosing oral care conditions and remediating same, and methods thereof
US12013496B2 (en) Noise aware edge enhancement in a pulsed laser mapping imaging system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23760050

Country of ref document: EP

Kind code of ref document: A1