WO2023163040A1 - SUGAR CHAIN-MODIFIED α1-MICROGLOBULIN AND PERFORMANCE EVALUATION REAGENT FOR BLOOD PURIFIER - Google Patents

SUGAR CHAIN-MODIFIED α1-MICROGLOBULIN AND PERFORMANCE EVALUATION REAGENT FOR BLOOD PURIFIER Download PDF

Info

Publication number
WO2023163040A1
WO2023163040A1 PCT/JP2023/006450 JP2023006450W WO2023163040A1 WO 2023163040 A1 WO2023163040 A1 WO 2023163040A1 JP 2023006450 W JP2023006450 W JP 2023006450W WO 2023163040 A1 WO2023163040 A1 WO 2023163040A1
Authority
WO
WIPO (PCT)
Prior art keywords
sugar chain
microglobulin
residue
mannose
glycan
Prior art date
Application number
PCT/JP2023/006450
Other languages
French (fr)
Japanese (ja)
Inventor
隆 木村
泰史 谷
隆太 戸部
Original Assignee
ニプロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニプロ株式会社 filed Critical ニプロ株式会社
Publication of WO2023163040A1 publication Critical patent/WO2023163040A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione

Definitions

  • the present invention relates to sugar chain variant ⁇ 1 -microglobulin and a reagent for evaluating the performance of a blood purifier using the same.
  • ⁇ 1 -microglobulin is a glycoprotein having a molecular weight of about 30,000 and a sugar content of about 20% by mass, and is known to have an antioxidant action as a radical scavenger.
  • ⁇ 1 -microglobulin is produced mainly in the liver, passes through the renal glomerulus and is reabsorbed from the proximal renal tubules, so that it is normally hardly excreted in the urine. Therefore, the content of ⁇ 1 -microglobulin in urine is known to serve as a marker for renal tubular and renal glomerular disorders.
  • ⁇ 1 -microglobulin is also known as one of the low-molecular-weight proteins to be removed in blood purification. Therefore, performance evaluation of blood purifiers such as dialyzers or hemodiafilters may test the ability to remove ⁇ 1 -microglobulin.
  • Patent Document 1 discloses that, in a method for manufacturing a blood purifier, the clearance of ⁇ 1 -microglobulin in the membrane area of a hollow fiber membrane provided in the blood purifier is set to a predetermined value or more. Specifically, in the examples of the document, a bovine plasma solution with an adjusted concentration of ⁇ 1 -microglobulin is prepared, and the clearance of ⁇ 1 -microglobulin in a blood purifier is measured (evaluated).
  • ⁇ 1 -microglobulin is not only very expensive but also difficult to obtain. Since a blood purifier is used to purify a large amount of blood, it is not realistic to use ⁇ 1 -microglobulin for the purpose of evaluating the performance of the blood purifier. Therefore, for evaluating the performance of blood purifiers, other proteins, such as prolactin (molecular weight about 22 kDa, no glycosylation), which are considered to have similar removal behavior to ⁇ 1 -microglobulin, have been substituted.
  • prolactin moleukin (molecular weight about 22 kDa, no glycosylation)
  • ⁇ 1 -microglobulin it is better to use ⁇ 1 -microglobulin than other substitute proteins to evaluate the performance of blood purifiers.
  • a recombinant protein production system is constructed using genetic engineering techniques.
  • a recombinant ⁇ 1 -microglobulin that can be used for evaluating the performance of blood purifiers has not been known so far.
  • the present invention was made to solve such problems, and an object of the present invention is to provide a recombinant ⁇ 1 -microglobulin that can be used for performance evaluation of blood purifiers.
  • the sugar chain variant ⁇ 1 -microglobulin according to the present disclosure contains a core glycan structure common to N-type sugar chains and has an N-acetylneuraminic acid residue at the non-reducing end. It is a configuration having a mutant N-type sugar chain to which no groups are attached.
  • the sugar chain variant ⁇ 1 -microglobulin has an N-type sugar chain structure that is not the same as the original N-type sugar chain structure, and has a non-reducing terminal N-acetylneuraminic acid It can be used to evaluate the performance of blood purifiers even though it does not have residues.
  • recombinant ⁇ 1 -microglobulin which can be used for performance evaluation of blood purifiers, can be produced using a general method, and mass production can be aimed at.
  • mass production can be aimed at.
  • the possibility of producing recombinant forms of 1 -microglobulin at low cost can also be found.
  • the mutant N-type sugar chain has two non-reducing ends in the core glycan structure represented as Man ⁇ 1-6(Man ⁇ 1-3)Man ⁇ 1-4GlcNAc ⁇ 1-4GlcNAc.
  • the configuration may include a sugar chain structure in which a mannose residue or an N-acetylglucosamine residue is bound to at least one of the mannose residues.
  • the mutant N-type sugar chain is expressed as Man ⁇ 1-3(Man ⁇ 1-3(Man ⁇ 1-6)Man ⁇ 1-6)Man ⁇ 1-4GlcNAc ⁇ 1-4GlcNAc.
  • a configuration including a pentamannosyl structure may also be used.
  • the mutant N-type sugar chain is added to at least one of the three mannose residues at the non-reducing end of the pentamannosyl structure
  • a structure containing a sugar chain structure in which a group or an N-acetylglucosamine residue is glycoside-linked may also be used.
  • the mutant N-type sugar chain has N-acetyl It may have a structure including a sugar chain structure in which a glucosamine residue is bound and a galactose residue or a fucose residue is bound to the N-acetylglucosamine residue.
  • the sugar chain variant yeast may be Pichia pastoris.
  • the sugar chain variant yeast may be SuperMan-5 strain (product name).
  • the present disclosure also includes a performance evaluation reagent for a blood purifier containing the sugar chain variant ⁇ 1 -microglobulin having the above configuration. Furthermore, the present disclosure also includes a method for evaluating the performance of a blood purifier using the sugar chain variant ⁇ 1 -microglobulin having the above configuration.
  • the present invention has the effect of providing a recombinant ⁇ 1 -microglobulin that can be used for performance evaluation of a blood purifier by the above configuration.
  • FIG. 1A shows a sugar chain structure of sugar chain variant ⁇ 1 -microglobulin according to a representative embodiment of the present disclosure and a typical sugar chain structure of human-derived ⁇ 1 -microglobulin.
  • FIG. 1B is a schematic diagram for comparison, and FIG. 1B is a schematic diagram showing an example of a sugar chain structure when ⁇ 1 -microglobulin is hyperglycosylated in common yeast.
  • FIG. 2 is a schematic diagram showing representative variations of the mutant sugar chain shown in FIG. 1A.
  • FIG. 3 is a schematic diagram showing representative variations of the mutant sugar chain shown in FIG. 1A.
  • FIG. 4 shows electrophoresis results of mutant ⁇ 1 -microglobulin in a representative example of the present disclosure.
  • [Sugar chain variant ⁇ 1 -microglobulin] ⁇ 1 -Microglobulin and its family are known to exist in mammals including humans, birds, amphibians, fishes and the like.
  • Human-derived ⁇ 1 -microglobulin is generally a glycoprotein of about 33 kDa (molecular weight of about 30,000) containing two N-type sugar chains, the protein itself being about 21 kDa.
  • ⁇ 1 -microglobulin is mainly synthesized in the liver and secreted into blood, and is widely distributed in body fluids including blood.
  • ⁇ 1 -microglobulin Since ⁇ 1 -microglobulin has a low molecular weight, it easily passes through the renal glomerulus of the kidney from the blood, but is reabsorbed from the proximal renal tubules, so it is normally hardly excreted in the urine.
  • ⁇ 1 -microglobulin The amino acid sequence of human-derived ⁇ 1 -microglobulin (hereinafter simply referred to as ⁇ 1 -microglobulin) is known as shown in SEQ ID NO: 1 in the sequence listing, and consists of 183 amino acid residues. N-glycans are attached to the 17th and 96th asparagine (Asn, N) residues. The amino acid sequence shown in SEQ ID NO: 1 is truncated.
  • FIG. 1A schematically shows the sugar chain structure of the N-type sugar chain possessed by ⁇ 1 -microglobulin.
  • FIG. 22 is an example of a representative sugar chain structure of a human-derived N-type sugar chain.
  • These glycans 21 or 22 are referred to as "human-derived glycans 21" or "human-derived glycans 22" for convenience of explanation.
  • the glycan 20 shown on the left side of the paper surface of the sugar chain structure shown in FIG. 1A is a typical example of the N-type sugar chain possessed by the sugar chain variant ⁇ 1 -microglobulin according to the present disclosure. .
  • This glycan 20 is referred to as mutated glycan 20 for convenience of explanation.
  • N-acetylglucosamine (GlcNAc) is indicated by a rectangular symbol 11
  • Man mannose
  • Gal is indicated by the double circle symbol 13
  • N-acetylneuraminic acid (NeuNAc) is indicated by the diamond symbol 14
  • fucose is indicated by the triangular symbol 15.
  • the sugar chain structure surrounded by dotted lines indicates the core glycan structure 10 of the N-type sugar chain.
  • asparagine residues (Asn) or peptides are not shown as specific symbols, but simply shown as thick curves.
  • the core glycan structure 10 also sometimes referred to as the tri-mannosyl core structure, is shown in FIG.
  • An N-acetylglucosamine residue 11 and a mannose residue 12 are bonded in this order, and two mannose residues 12 are bonded to this mannose residue 12 in a branched manner.
  • the first N-acetylglucosamine residue 11 is glycosidic-bonded to the asparagine residue in the ⁇ -form, and the first The second N-acetylglucosamine residue 11 to the N-acetylglucosamine residue 11 is glycosidically bonded in the ⁇ 1-4 type, and the first to the second N-acetylglucosamine residue 11
  • the mannose residue 12 is ⁇ 1-4 type and is glycosidic bonded, and the mannose residue 12 is glycosidic bonded so that the two mannose residues 12 are each branched, but one mannose residue 12 is bound in the ⁇ 1-3 form and the other mannose residue 12 is bound in the ⁇ 1-6 form.
  • This core glycan structure 10 can be described as Man ⁇ 1-6 (Man ⁇ 1-3) Man ⁇ 1-4GlcNAc ⁇ 1-4GlcNAc ⁇ Asn, in order from the non-reducing end to the reducing end, and the monosaccharide residues as general abbreviations.
  • the type of glycosidic bond is indicated by the carbon position of the 6-membered ring to which it is bound together with the bond type of ⁇ or ⁇ , and the branched chain is indicated in parentheses. .
  • sugar chain nomenclature including the nomenclature recommended by the IUPAC (International Union of Pure and Applied Chemistry).
  • IUPAC International Union of Pure and Applied Chemistry
  • sugar chain description method When describing only the sugar chain structure, the description of Asn ⁇ -bonded to the sugar chain residue at the reducing end is omitted.
  • human-derived glycan 21 has four branched chains on the non-reducing end side, and has a sugar chain structure containing two branched chains each consisting of one monosaccharide residue in core glycan structure 10 .
  • This type of sugar chain structure is called a “complex type” that does not contain mannose residues 12 other than the core glycan structure 10 .
  • one N-acetylglucosamine residue 11 is bound to each of two mannose residues 12 that are the non-reducing ends of the core glycan structure 10 .
  • Galactose residue 13 is bound to each of these N-acetylglucosamine residues 11, and N-acetylneuraminic acid residue 14 is bound to the galactose residue 13
  • human-derived glycan 21 is similar to
  • human-derived glycan 22 is similar to human-derived glycan 21 in that fucose residue 15 is branch-bonded to N-acetylglucosamine residue 11, which is the reducing end.
  • the N-acetylglucosamine residue 11 is not bound to the mannose residue 12 that becomes .
  • the human-derived glycan 22 has two branched chains on the non-reducing end side, and has a sugar chain structure in which the core glycan structure 10 includes only one branched chain consisting of one monosaccharide residue.
  • This human-derived glycan 22 is also “complex” because it does not contain mannose residues 12 other than core glycan structure 10 .
  • the mannose residue 12 that serves as the starting point for branching of the core glycan structure 10 is referred to as the "branch point mannose residue 12", and ⁇ 1-3 type is used for the branch point mannose residue 12.
  • the binding mannose residue 12 shall be referred to as the “ ⁇ 3 mannose residue 12” and the mannose residue 12 which binds in the ⁇ 1-6 form to the branch point mannose residue 12 shall be referred to as the " ⁇ 6 mannose residue 12". .
  • human-derived glycan 21 for ⁇ 3 mannose residue 12, two N-acetylglucosamine residues 11 are bound in the ⁇ 1-2 or ⁇ 1-4 form, respectively, and for ⁇ 6 mannose residue 12, Thus, two N-acetylglucosamine residues 11 are linked in the ⁇ 1-2 or ⁇ 1-6 form, respectively.
  • human-derived glycan 22 one N-acetylglucosamine residue 11 is linked to both ⁇ 3 mannose residue 12 and ⁇ 6 mannose residue 12 in the ⁇ 1-2 form.
  • galactose residue 13 is linked to N-acetylglucosamine residue 11 in the ⁇ 1-3 form, and N-acetylneuraminic acid residue 14 is , bound to galactose residue 13 in the ⁇ 2-3 form.
  • the branched fucose residue 15 is bound to the N-acetylglucosamine residue 11 in the ⁇ 1-6 type, and the branched N-acetylglucosamine residue 11 in the human-derived glycan 21 is the branch point It binds to mannose residue 12 in the ⁇ 1-4 form.
  • the types of glycosidic bonds are basically not described.
  • the type of glycosidic bond is added in the abbreviated form of “ ⁇ 3” or “ ⁇ 6” for the branched portion of the mannose residue 12 in the core glycan structure 10 .
  • “ ⁇ 3” indicates an ⁇ 1-3 type glycosidic bond
  • “ ⁇ 6” indicates an ⁇ 1-6 type glycosidic bond.
  • Human-derived glycan 21 or human-derived glycan 22 shown in FIG. 1A is a representative example of the N-type sugar chain possessed by human-derived ⁇ 1 -microglobulin, and wild-type ⁇ 1 -microglobulin. does not necessarily have the sugar chain structure shown in human-derived glycan 21 or human-derived glycan 22.
  • the bond type between monosaccharide residues in human-derived glycan 21 or human-derived glycan 22 is also a representative example. does not necessarily match the bond types described above.
  • ⁇ 1 -microglobulin is one of the indicators of removal ability in evaluating the performance of blood purifiers such as dialyzers and hemodiafilters.
  • commercially available ⁇ 1 -microglobulin is very expensive and difficult to obtain. Therefore, with the aim of producing ⁇ 1 -microglobulin at low cost, it is envisioned to construct a recombinant protein production system using genetic engineering techniques.
  • ⁇ 1 -microglobulin is a glycoprotein as described above. Normally, proteins are not glycosylated in prokaryotic cells such as E. coli even if they are expressed. In order to produce a recombinant ⁇ 1 -microglobulin, it is considered preferable to select prokaryotic cells as a host from the viewpoint of productivity. is not suitable as a host. Therefore, eukaryotic cells that allow post-translational modifications, including sugar chain modifications, to the expressed proteins should be selected as hosts.
  • Yeast can be mass-cultured together with eukaryotic cells like prokaryotic cells such as E. coli.
  • eukaryotic cells include, for example, cultured cells of animals and plants, but such cultured cells of animals and plants require an expensive culture solution, are slow to grow, and are more difficult to grow than unicellular organisms. Concerns such as relatively strict legal regulations are known. Therefore, it is considered that yeast is suitable as a host for producing a recombinant ⁇ 1 -microglobulin.
  • ⁇ 1 -microglobulin expressed in yeast is hyperglycosylated (or hyperglycosylated). It was found that excessive sugar chain modification called mannosylation occurs.
  • Glycan 23 shown in FIG. 1B is an example of a sugar chain structure when hyperglycosylation occurs.
  • two mannose residues 12 bind to ⁇ 6 mannose residue 12 in the core glycan structure 10, and one of these mannose residues 12 has mannose residue 12 and mannose phosphate residue. 16 are bound.
  • the ⁇ 3 mannose residue 12 has the same binding structure as the ⁇ 6 mannose residue 12 in that two mannose residues 12 are directly bound.
  • a large number of mannose residues 12 are bonded in series, branched chains in which a plurality of (for example, three) mannose residues 12 are bonded in series branch from each mannose residue 12, and partially mannose residues 12 Acid residue 16 is attached.
  • hypermannose structure 120 The sugar chain structure that binds to this ⁇ 3 mannose residue 12 is referred to as a “hypermannose structure 120” for convenience of explanation, and is shown surrounded by a dashed line in FIG. 1B.
  • Some hypermannose structures 120 have 100 or more mannose residues 12, and the number of mannose residues 12 is not constant. Therefore, the molecular weight of hyperglycosylated ⁇ 1 -microglobulin varies. As shown in the examples below, when hyperglycosylated ⁇ 1 -microglobulin is electrophoresed, it is not identified as a relatively distinct single band, but is continuously elongated along the direction of electrophoresis. A blurred band (a so-called smear state) results.
  • hyperglycosylation of ⁇ 1 -microglobulin not only increases the molecular weight of ⁇ 1 -microglobulin compared to standard human-derived ⁇ 1 -microglobulin, but also causes variation in the molecular weight itself. become. This makes it difficult to use the blood purifier to evaluate the ability to remove ⁇ 1 -microglobulin.
  • sialic acid is not bound to the non-reducing end of the sugar chain structure when attempting to produce a recombinant ⁇ 1 -microglobulin using yeast as a host.
  • N-acetylneuraminic acid is an acidic monosaccharide residue that is confirmed in many biological species, including humans.
  • human-derived ⁇ 1 -microglobulin has an N-acetylneuraminic acid residue 14 at the non-reducing end. In humans, it is generally localized at the non-reducing ends of not only ⁇ 1 -microglobulin but also many glycoproteins or glycolipids, and is thought to be involved in cell surface signaling.
  • yeast species do not have a sialic acid synthesis pathway.
  • yeast does not have a sialic acid synthesis pathway, for example, in the example of human-derived glycan 21, a sugar chain structure in which sialic acid is not bound to the tips of the four branched chains at the non-reducing end, or It is assumed that a sugar chain structure in which other sugar chain residues are bound to is generated.
  • the sugar chain structure of recombinant ⁇ 1 -microglobulin lacks as many as four sugar chain residues at the non-reducing end. , it is thought that a large deviation occurs in the molecular weight of the glycoprotein.
  • sialic acid is an acidic sugar, it is assumed that it may have some influence on the behavior of ⁇ 1 -microglobulin released into the blood. Therefore, in evaluating the removal ability of ⁇ 1 -microglobulin in a blood purifier, not only the molecular weight problem but also the removal ability of ⁇ 1 -microglobulin should be considered if sialic acid is not present at the tip of the sugar chain structure. may not be properly evaluated.
  • human-derived ⁇ 1 -microglobulin has It has become clear that it is not necessary to reproduce a sugar chain structure similar to that of the original sugar chain structure, such as human-derived glycan 21 or human-derived glycan 22. It was also found that no residue was required.
  • the N-type sugar chain possessed by the ⁇ 1 -microglobulin recombinant obtained in the example described later is the mutant glycan 20 shown on the left side of FIG. 1A, and the human-derived glycan 21 or human Compared to derived glycan 22, it is significantly different in that it does not have N-acetylneuraminic acid residue 14 at the non-reducing end, which is essentially essential for human-derived glycan structures.
  • what is common between the mutant glycan 20 and the human-derived glycan 21 or the human-derived glycan 22 is that they have a core glycan structure 10 .
  • the N-type sugar chain of ⁇ 1 -microglobulin is the original N-type sugar chain derived from humans (wild-type N-type sugar chain). It is derived that it does not need to have the same structure as , and that it suffices to have at least the coagulcan structure 10, and that the N-acetylneuraminic acid residue at the non-reducing end is not necessary.
  • the sugar chain variant ⁇ 1 -microglobulin according to the present disclosure can be used for evaluating the performance of blood purifiers, and has a mutated N-type sugar chain.
  • N-acetylneuraminic acid is not bound to at least one non-reducing end of the N-type sugar chain of human-derived ⁇ 1 -microglobulin, in other words, a core glycan structure common to N-type sugar chains Any sugar chain structure may be used as long as it contains N-acetylneuraminic acid residue 14 and the monosaccharide residue at the non-reducing end is not N-acetylneuraminic acid residue 14 .
  • mutant glycan 20 shown in FIG. 1A becomes Man ⁇ 1-6 (Man ⁇ 1-3) Man ⁇ 1-6 (Man ⁇ 1-3) Man ⁇ 1-4GlcNAc ⁇ 1-4GlcNAc (reducing end Asn ⁇ -bonded to is omitted).
  • this mutant glycan 20 has a structure in which two mannose residues 12 are branched and bound to the ⁇ 6 mannose residue 12 in the core glycan structure 10 . Because the core glycan structure 10 has three mannose residues 12, it is sometimes referred to as the trimannosyl core structure, as described above. Based on this, in the present embodiment, since the mutant glycan 20 has five mannose residues 12, it may be referred to as a pentamannosyl structure for convenience of explanation.
  • the mutant N-type sugar chain possessed by the sugar chain variant ⁇ 1 -microglobulin according to the present disclosure contains a core glycan structure common to N-type sugar chains and has N-acetylneuramin at the non-reducing end. It is not particularly limited as long as it has a sugar chain structure to which no acid is bound.
  • Representative mutant N-glycans can include, for example, hybrid-type glycans 20a-20e or high-mannose-type glycans 20f-20h shown in FIG. 2, or complex-type glycans 30a-30l shown in FIG. .
  • the mutant N-type sugar chain according to the present disclosure may be the sugar chain structure (pentamannosyl structure) of the mutant glycan 20 shown in FIG. 1A.
  • the three non-reducing terminal mannose residues 12 in the mutated glycan 20 i.e., ⁇ 3 mannose residue 12, mannose residue 12 glycosyl-linked to ⁇ 6 mannose residue 12 in the ⁇ 1-6 form, and ⁇ 6 mannose residue 12
  • Examples include those containing a sugar chain structure in which mannose residue 12 and N-acetylglucosamine residue 11 are linked to at least one of mannose residues 12) glycosyl-linked to residue 12 in the ⁇ 1-3 type.
  • one or two mannose residues 12 may be bound to one mannose residue 12 at the non-reducing end of the pentamannosyl structure, or one mannose residue 12 at the non-reducing end Alternatively, one or two N-acetylglucosamine residues 11 may be attached. If only the mannose residue 12 is bound to the mannose residue 12 at the non-reducing end, it is a "high mannose type" sugar chain structure, and if at least one N-acetylglucosamine residue 11 is bound. For example, it is a “hybrid” sugar chain structure.
  • the N-acetylglucosamine residue 11 when the N-acetylglucosamine residue 11 is bound to at least one non-reducing terminal mannose residue 12 of the pentamannosyl structure, the N-acetylglucosamine residue 11 Furthermore, it may contain a sugar chain structure in which galactose residue 13 is bound, or a sugar chain structure in which N-acetylglucosamine residue 11 is bound to branch point mannose residue 12 .
  • the fucose residue 15 may be branched and bound to the N-acetylglucosamine residue 11 (directly bound to Asn) at the reducing end, or the N-acetylglucosamine residue 11 located at the non-reducing end side.
  • the fucose residue 15 may be branched and bound to .
  • the ⁇ 1-3 type glycosyl bond is abbreviated simply as “ ⁇ 1-3 bond”
  • the ⁇ 1-2 type glycosyl bond is simply abbreviated as “ ⁇ 1-2 bond”.
  • the mannose residue 12 that is ⁇ 1-3 bonded to the ⁇ 6 mannose residue 12 is referred to as ⁇ 6 ⁇ 3 mannose residue 12, and the ⁇ 6 ⁇ 6 mannose residue that is ⁇ 1-6 bonded to the ⁇ 6 mannose residue 12. 12. Therefore, in FIG. 2, for ⁇ 6 mannose residue 12 in the pentamannosyl structure (variant glycan 20), as well as for branch point mannose residue 12, the type of glycosidic bond is indicated in the abbreviated form “ ⁇ 3” or “ ⁇ 6”. is appended.
  • the hybrid glycan 20a shown on the left side of the page (first row) in FIG. It has a glycosyl-linked sugar chain structure.
  • the hybrid glycan 20a is Man ⁇ 1-6 (Man ⁇ 1-3) Man ⁇ 1-6 (GlcNAc ⁇ 1-2Man ⁇ 1-3) Man ⁇ 1-4GlcNAc ⁇ 1-4GlcNAc.
  • the hybrid-type glycan 20b shown in the upper center of FIG. 2 has a sugar chain structure in which galactose residues 13 are ⁇ 1-4-linked to the N-acetylglucosamine residue 11 at the non-reducing end of the hybrid-type glycan 20a.
  • N-acetylglucosamine residue 11 is ⁇ 1-2 bound to ⁇ 3 mannose residue 12
  • galactose residue 13 is ⁇ 1 to the N-acetylglucosamine residue 11.
  • -4 has a linked sugar chain structure.
  • the hybrid glycan 20b is Man ⁇ 1-6 (Man ⁇ 1-3) Man ⁇ 1-6 (Gal ⁇ 1-4GlcNAc ⁇ 1-2Man ⁇ 1-3) Man ⁇ 1-4GlcNAc ⁇ 1-4GlcNAc.
  • the hybrid glycan 20c shown on the right side of the upper page of FIG. 2 has a sugar chain structure in which the fucose residue 15 is ⁇ 1-3 linked to the N-acetylglucosamine residue 11 of the hybrid glycan 20b.
  • N-acetylglucosamine residue 11 is ⁇ 1-2 bound to ⁇ 3 mannose residue 12
  • galactose residue 13 is ⁇ 1 to the N-acetylglucosamine residue 11.
  • the hybrid glycan 20c is Man ⁇ 1-6 (Man ⁇ 1-3) Man ⁇ 1-6 (Gal ⁇ 1-4 (Fuc ⁇ 1-3) GlcNAc ⁇ 1-2Man ⁇ 1-3) Man ⁇ 1-4GlcNAc ⁇ 1-4GlcNAc becomes.
  • the hybrid glycan 20d shown on the left in the middle (second row) of FIG. 2 has a sugar chain structure in which the N-acetylglucosamine residue 11 is ⁇ 1-4 linked to the branch point mannose residue 12 in the hybrid glycan 20a. are doing. Based on mutant glycan 20, N-acetylglucosamine residue 11 is ⁇ 1-2 linked to ⁇ 3 mannose residue 12, and N-acetylglucosamine residue 11 is linked to branch point mannose residue 12. It has a ⁇ 1-4 linked sugar chain structure.
  • the hybrid glycan 20d is Man ⁇ 1-6 (Man ⁇ 1-3) Man ⁇ 1-6 (GlcNAc ⁇ 1-2Man ⁇ 1-3) (GlcNAc ⁇ 1-4) Man ⁇ 1-4GlcNAc ⁇ 1-4GlcNAc.
  • the hybrid-type glycan 20e shown in the center of the middle row of FIG. Group 11 is branched and ⁇ 1-4 linked, N-acetylglucosamine residue 11 is ⁇ 1-4 linked to branch point mannose residue 12, and N-acetylglucosamine at the reducing end (directly linked to Asn) It has a sugar chain structure in which fucose residue 15 is ⁇ 1-6 linked to residue 11.
  • the first N-acetylglucosamine residue 11 is ⁇ 1-2 linked to the ⁇ 3 mannose residue 12, and the second N-acetylglucosamine residue 11 is ⁇ 1-4 linked.
  • the N-acetylglucosamine residue 11 is ⁇ 1-4 bonded to the branch point mannose residue 12, and the galactose residue 13 is ⁇ 1-4 bonded to the first N-acetylglucosamine residue 11.
  • the galactose residue 13 is ⁇ 1-4 bonded to the first N-acetylglucosamine residue 11.
  • the hybrid glycan 20e is Man ⁇ 1-6 (Man ⁇ 1-3) Man ⁇ 1-6 (Gal ⁇ 1-4GlcNAc ⁇ 1-2 (GlcNAc ⁇ 1-4) Man ⁇ 1-3) (GlcNAc ⁇ 1-4) Man ⁇ 1-4GlcNAc ⁇ 1-4(Fuc ⁇ 1-6)GlcNAc.
  • the high-mannose glycan 20f shown in the center right of FIG. 2 has a sugar chain structure in which the mannose residue 12 is ⁇ 1-2 linked to the ⁇ 3 mannose residue 12 of the mutant glycan 20.
  • the high-mannose glycan 20f is Man ⁇ 1-6 (Man ⁇ 1-3) Man ⁇ 1-6 (Man ⁇ 1-2Man ⁇ 1-3) Man ⁇ 1-4GlcNAc ⁇ 1-4GlcNAc.
  • 20 g of high-mannose glycans are Man ⁇ 1-2Man ⁇ 1-6 (Man ⁇ 1-3) Man ⁇ 1-6 (Man ⁇ 1-2Man ⁇ 1-2Man ⁇ 1-3) Man ⁇ 1-4GlcNAc ⁇ 1-4GlcNAc.
  • the high-mannose glycan 20h shown in the lower right of FIG. 2 has a sugar chain structure in which the mannose residue 12 is further ⁇ 1-2 linked to the ⁇ 6 ⁇ 3 mannose residue 12 in the high-mannose glycan 20g.
  • mannose residue 12 is ⁇ 1-2 bonded to ⁇ 3 mannose residue 12
  • mannose residue 12 is further ⁇ 1-2 bonded to this mannose residue 12
  • It has a sugar chain structure in which ⁇ 6 ⁇ 6 mannose residue 12 is further ⁇ 1-2 bonded to mannose residue 12, and ⁇ 6 ⁇ 3 mannose residue 12 is further ⁇ 1-2 bonded to mannose residue 12.
  • the high-mannose glycans 20 g are Man ⁇ 1-2Man ⁇ 1-6 (Man ⁇ 1-2Man ⁇ 1-3) Man ⁇ 1-6 (Man ⁇ 1-2Man ⁇ 1-2Man ⁇ 1-3) Man ⁇ 1-4GlcNAc ⁇ 1-4GlcNAc. Become.
  • the mannose residue 12 when the mannose residue 12 is branched, it binds to other mannose residues 12 via the ⁇ 1-3 bond and the ⁇ 1-6 bond, but when it is not branched, is ⁇ 1-2 linked to another mannose residue 12.
  • the sugar chain binding type is not limited to this, and various binding types may be used within a known range.
  • a galactose residue 13 may be bound to at least one of the plurality of mannose residues 12 at the non-reducing end.
  • two mannose residues 12 may be branched and linked to the ⁇ 3 mannose residue 12 in high-mannose glycans 20f-20h.
  • the mutant N-type sugar chain is expressed as Man ⁇ 1-3(Man ⁇ 1-3(Man ⁇ 1-6)Man ⁇ 1-6)Man ⁇ 1-4GlcNAc ⁇ 1-4GlcNAc
  • the mutant N-type sugar chain is expressed as Man ⁇ 1-3(Man ⁇ 1-3(Man ⁇ 1-6)Man ⁇ 1-6)Man ⁇ 1-4GlcNAc ⁇ 1-4GlcNAc
  • FIG. 2 for at least one of the three mannose residues 12 at the non-reducing end of the pentamannosyl structure, further mannose residue 12
  • those containing a sugar chain structure in which N-acetylglucosamine residue 11 is glycoside-linked can be mentioned.
  • the mutant N-type sugar chain according to the present disclosure is a complex type sugar chain that includes core glycan structure 10 (trimannosyl core structure) but does not include the sugar chain structure of mutant glycan 20 (pentamannosyl structure).
  • Those containing structures can be mentioned.
  • the galactose residue 13 is further attached to the N-acetylglucosamine residue 11. It may contain a binding sugar chain structure, the fucose residue 15 may be branched and bound, or the fucose residue 15 may be branched and bound to the N-acetylglucosamine residue 11 at the reducing end. .
  • the leftmost complex glycan 30a in the upper (first) row of FIG. have.
  • the complex glycan 30a is Man ⁇ 1-6 (GlcNAc ⁇ 1-2Man ⁇ 1-3) Man ⁇ 1-4GlcNAc ⁇ 1-4GlcNAc.
  • the complex-type glycan 30b shown second from the left in the upper part of FIG. .
  • complex glycan 30b is GlcNAc ⁇ 1-2Man ⁇ 1-6 (Man ⁇ 1-3) Man ⁇ 1-4GlcNAc ⁇ 1-4GlcNAc.
  • Complex-type glycan 30c shown third from the left in the upper part of FIG. It has a sugar chain structure in which N-acetylglucosamine residue 11 is ⁇ 1-2 linked.
  • the complex glycan 30c is GlcNAc ⁇ 1-2Man ⁇ 1-6 (GlcNAc ⁇ 1-2Man ⁇ 1-3)Man ⁇ 1-4GlcNAc ⁇ 1-4GlcNAc.
  • Complex-type glycan 30d shown on the right in the upper part of FIG. 11 has a sugar chain structure in which fucose residue 15 is ⁇ 1-6 linked.
  • complex glycan 30d is Man ⁇ 1-6(GlcNAc ⁇ 1-2Man ⁇ 1-3)Man ⁇ 1-4GlcNAc ⁇ 1-4(Fuc ⁇ 1-6)GlcNAc.
  • Complex-type glycan 30e shown on the far left in the middle (second) of FIG. It has a sugar chain structure in which galactose residue 13 is ⁇ 1-4 linked to glucosamine residue 11.
  • complex glycan 30e is Man ⁇ 1-6(Gal ⁇ 1-4GlcNAc ⁇ 1-2Man ⁇ 1-3)Man ⁇ 1-4GlcNAc ⁇ 1-4GlcNAc.
  • Complex-type glycan 30f shown second from the left in the middle of FIG. 11, it has a sugar chain structure in which galactose residue 13 is ⁇ 1-4 linked.
  • complex glycan 30f is Gal ⁇ 1-4GlcNAc ⁇ 1-2Man ⁇ 1-6(Man ⁇ 1-3)Man ⁇ 1-4GlcNAc ⁇ 1-4GlcNAc.
  • Complex-type glycan 30g shown third from the left in the middle of FIG. 11, it has a sugar chain structure in which galactose residue 13 is ⁇ 1-4 linked and fucose residue 15 is ⁇ 1-3 linked.
  • the complex glycan 30 g is Man ⁇ 1-6(Gal ⁇ 1-4(Fuc ⁇ 1-3)GlcNAc ⁇ 1-2Man ⁇ 1-3)Man ⁇ 1-4GlcNAc ⁇ 1-4GlcNAc.
  • Complex-type glycan 30h shown on the far right in the middle of FIG. On the other hand, it has a sugar chain structure in which galactose residue 13 is ⁇ 1-4 linked and fucose residue 15 is ⁇ 1-3 linked.
  • complex glycan 30h is Gal ⁇ 1-4(Fuc ⁇ 1-3)GlcNAc ⁇ 1-2Man ⁇ 1-6(Man ⁇ 1-3)Man ⁇ 1-4GlcNAc ⁇ 1-4GlcNAc.
  • Galactose residue 13 is further ⁇ 1-4 bonded to glucosamine residue 11, and N-acetylglucosamine residue 11 is ⁇ 1-2 bonded to ⁇ 6 mannose residue 12, and the N-acetylglucosamine residue It has a sugar chain structure in which galactose residue 13 is ⁇ 1-4 linked to group 11.
  • complex glycan 30i is Gal ⁇ 1-4GlcNAc ⁇ 1-2Man ⁇ 1-6(Gal ⁇ 1-4GlcNAc ⁇ 1-2Man ⁇ 1-3)Man ⁇ 1-4GlcNAc ⁇ 1-4GlcNAc.
  • the complex glycan 30j is GlcNAc ⁇ 1-2Man ⁇ 1-6(Gal ⁇ 1-4GlcNAc ⁇ 1-2Man ⁇ 1-3)Man ⁇ 1-4GlcNAc ⁇ 1-4GlcNAc.
  • complex glycan 30k is Gal ⁇ 1-4GlcNAc ⁇ 1-2Man ⁇ 1-6(Gal ⁇ 1-4(Fuc ⁇ 1-3)GlcNAc ⁇ 1-2Man ⁇ 1-3)Man ⁇ 1-4GlcNAc ⁇ 1-4GlcNAc.
  • Galactose residue 13 is ⁇ 1-4 bonded, and N-acetylglucosamine residue 11 is ⁇ 1-2 bonded to ⁇ 6 mannose residue 12, and to the N-acetylglucosamine residue 11, Furthermore, galactose residue 13 has a ⁇ 1-4 bond, and fucose residue 15 has a sugar chain structure in which fucose residue 15 is ⁇ 1-6 linked to N-acetylglucosamine residue 11 at the reducing end of coagulan structure 10 .
  • complex glycan 30l is Gal ⁇ 1-4GlcNAc ⁇ 1-2Man ⁇ 1-6(Gal ⁇ 1-4GlcNAc ⁇ 1-2Man ⁇ 1-3)Man ⁇ 1-4GlcNAc ⁇ 1-4(Fuc ⁇ 1-6)GlcNAc.
  • the variant N-type sugar chain contains the core glycan structure 10 denoted as Man ⁇ 1-6(Man ⁇ 1-3)Man ⁇ 1-4GlcNAc ⁇ 1-4GlcNAc.
  • the mannose residue 12 binds to at least one of the two mannose residues 12 at the non-reducing end in the core glycan structure 10
  • the hybrid glycans 20a to 20e or the high mannose glycans 20f to 20f shown in FIG. 20h but binding of N-acetylglucosamine residue 11 to at least one of the two mannose residues 12 at the non-reducing end can result in complex glycans 30a-30l shown in FIG.
  • the mutant N-type sugar chain binds to at least one of the two mannose residues at the non-reducing end in the coagulan structure 10
  • the N-acetylglucosamine residue 11 binds to the N-acetylglucosamine residue 11.
  • galactose residue 13 or fucose residue 15 may be bound.
  • the method for producing the sugar chain variant ⁇ 1 -microglobulin according to the present disclosure is not particularly limited.
  • a recombinant protein production system can be constructed using a known genetic engineering technique using a common yeast that does not have a sialic acid synthesis pathway as a host.
  • yeast that can be used as a host is not particularly limited, but for example, Saccharomyces species such as Saccharomyces cerevisiae; Schizzosaccharomyces pombe; Pichia pastoris, Pichia finlandica (Pichia Finlandica), Pichia trehalophila, Pichia koclamae, Pichia membranaefaciens, Pichia minuta, Pichia lindneri, Pichia opuntiae , Pichia thermotolerans, Pichia salictaria, Pichia guercuum, Pichia pijperi, Pichia stiptis, Pichia methanolica, etc.
  • Kluyveromyces species such as Kluyveromyces lactis; Candida species such as Candida albicans and Candida utilis; In the examples described later, P. pastoris is used as a host.
  • proteins expressed in cells undergo post-translational modifications such as glycosylation, and the glycosylation does not cause hyperglycosylation.
  • a sugar chain mutant strain introduced with a mutation that prevents hyperglycosylation may be used.
  • a commercially available sugar chain mutant strain of P. pastoris manufactured by BioGrammatics, product name: SuperMan-5 strain is used.
  • the ⁇ 1 -microglobulin gene used in the sugar chain variant ⁇ 1 -microglobulin production system is, for example, a DNA having the base sequence shown in SEQ ID NO:2.
  • the base sequence shown in SEQ ID NO: 2 is an optimized sequence that also includes a restriction enzyme sequence. Therefore, DNA encoding ⁇ 1 -microglobulin used in the present disclosure is not limited to DNA having the nucleotide sequence shown in SEQ ID NO:2.
  • it may be a DNA having a nucleotide sequence homologous to the nucleotide sequence shown in SEQ ID NO: 2, or a DNA having another nucleotide sequence encoding the ⁇ 1 -microglobulin amino acid sequence shown in SEQ ID NO: 1. There may be.
  • the ⁇ 1 -microglobulin gene used in the present disclosure may be one in which the transcriptionally translated ⁇ 1 -microglobulin has reactivity with a commercially available or known anti- ⁇ 1 -microglobulin antibody.
  • Mutant DNA in which at least one mutation has been introduced in the base sequence shown in SEQ ID NO: 2 may also be used.
  • This antibody may have at least a portion of the human-derived ⁇ 1 -microglobulin protein itself as an epitope.
  • a base sequence in which one or more bases are deleted, substituted or added in the base sequence shown in SEQ ID NO: 2 to the extent that the antigenicity of the encoded ⁇ 1 -microglobulin is maintained Those having The number of bases to be deleted, substituted or added may generally be in the range of 1 to 120, may be in the range of 1 to 60, or may be in the range of 1 to 30. good too.
  • the ⁇ 1 -microglobulin shown in SEQ ID NO: 1 has at least 95% homology (or sequence identity) with the amino acid sequence shown in SEQ ID NO: 1 as long as it retains its antigenicity. , may have 97% or more homology, or may have 98% or more homology.
  • the sugar chain variant ⁇ 1 -microglobulin according to the present disclosure has the above-described variant N-type sugar chain and retains the antigenicity of ⁇ 1 -microglobulin.
  • the amino acid sequence shown may contain amino acid substitutions, and the nucleotide sequence shown in SEQ ID NO: 2 may contain mutations. Such amino acid substitutions or base sequence mutations are advantageous from the viewpoint of low-cost production of recombinant ⁇ 1 -microglobulin, and the amino acid sequence shown in SEQ ID NO: 1 or SEQ ID NO: 2. It can be positively introduced into the indicated nucleotide sequence.
  • a DNA encoding the chain variant ⁇ 1 -microglobulin is constructed as a recombinant DNA by inserting it into a known vector.
  • a method for constructing such a recombinant DNA is not particularly limited, and a known genetic engineering technique may be used.
  • a DNA encoding a sugar chain variant ⁇ 1 -microglobulin and a vector are digested (cleavage) with a known type II restriction enzyme, and these DNA fragments and vector fragments are cut, if necessary.
  • a method of ligation using DNA ligase or the like after annealing treatment may be mentioned, but is not particularly limited.
  • the specific vector used in the present disclosure is not particularly limited as long as it is capable of autonomous replication in host cells.
  • Representative phases include, for example, pHV14, TRp7, YEp series plasmids, pBS7, YAC, pBR series plasmids, shuttle vector plasmids such as pAUR112, or commercial yeast expression vector plasmids.
  • a vector commercially available as a Pichia yeast expression vector (manufactured by ATUM, product name pD912 vector) is used.
  • the promoter used for gene expression is not particularly limited as long as it functions in the host yeast cell. Representative examples include promoters such as GAPDH, PGK, GAL1, CUP1, AOX and FLD. This promoter sequence may be included in the vector in advance.
  • the vector may also contain regulatory sequences other than promoters, such as terminators, and may also contain restriction enzyme recognition sequences and the like.
  • the recombinant DNA having the structure described above may contain a DNA encoding the sugar chain variant ⁇ 1 -microglobulin and a DNA other than the vector.
  • the vector may contain a separate DNA encoding a control sequence (promoter, terminator, etc.) not contained in the vector, or may contain a DNA (or gene, etc.) encoding another peptide.
  • a base sequence encoding ⁇ -factor which is a secretory signal, is included in order to secrete sugar chain variant ⁇ 1 -microglobulin outside the host cell.
  • the method of introducing the recombinant DNA having the above structure into the host cell is not particularly limited, and known methods can be used depending on the type of host cell or the type of autonomously replicable vector.
  • a representative transformation method is not particularly limited, but if the host cell is yeast, for example, a method of partially removing the cell wall of the yeast cell to form a spheroplast, a lithium acetate method, or electroporation. method, particle gun method, transfection method, etc. can be used. In the examples described later, the electroporation method is used.
  • the transformant or DNA-integrated cell thus obtained may be cultured using a known nutrient medium depending on various conditions such as the type of host cell and the purpose of culture.
  • a known nutrient medium depending on various conditions such as the type of host cell and the purpose of culture.
  • LB medium LB culture solution
  • ⁇ 1 -microglobulin is produced by culturing the transformant having the above constitution
  • a known medium suitable for the type of transformant or cell may be used.
  • various known additives may be added to the medium depending on various conditions.
  • a commercially available P. pastoris sugar chain mutant strain is used as a host, and transformants are cultured according to the specifications of the commercially available mutant strain.
  • the sugar chain variant ⁇ 1 -microglobulin according to the present disclosure can be obtained by introducing (or integrating) DNA encoding ⁇ 1 -microglobulin into a host cell capable of sugar chain modification by various methods to obtain a transformant. (or DNA-integrating cell) and culturing this transformant (or DNA-integrating cell). Therefore, the present disclosure also includes a method for culturing such cells and obtaining sugar chain variant ⁇ 1 -microglobulin from the resulting culture, that is, a method for producing sugar chain variant ⁇ 1 -microglobulin. can contain.
  • the culture scale of the transformed cells is not particularly limited. Alternatively, it may be a small-scale culture using a flask, a large-scale culture using a jar fermenter, or a large-scale culture using a tank at an industrial level.
  • the method for obtaining sugar chain variant ⁇ 1 -microglobulin from cultured cells is not particularly limited, and known methods can be used.
  • the cultured cells are harvested and disrupted by a known method to obtain a crude enzyme solution. may be purified or concentrated by a known method. If purification or concentration is not required, the crude enzyme solution may be used as the sugar chain variant ⁇ 1 -microglobulin according to the present disclosure.
  • the sugar chain variant ⁇ 1 -microglobulin when the expressed sugar chain variant ⁇ 1 -microglobulin is significantly secreted extracellularly, the sugar chain variant ⁇ 1 -microglobulin may be obtained from the culture medium (recovery and purification), Sugar chain variant ⁇ 1 -microglobulin may be obtained (collected and purified) from the entire culture including the cultured cells and the culture medium. In the examples described later, the sugar chain variant ⁇ 1 -microglobulin is secreted (released) outside the host cell using the ⁇ factor, so the sugar chain variant ⁇ 1 -microglobulin is collected and purified from the culture medium. are doing.
  • sugar chain variant ⁇ 1 -microglobulin collected and purified from host cells if necessary, the state of sugar chain modification may be confirmed by a known technique.
  • a commercially available yeast strain is used as a host, there is no particular need to confirm the glycosylation structure of the expressed protein, since the specifications of the yeast strain, research reports, etc. reveal the structure of the glycosylation.
  • a commercially available sugar chain mutant strain of P. pastoris, SuperMan- 5 strain (product name), was used. is revealed to be the mutated glycan 20 shown on the left in FIG. 1A, the pentamannosyl structure.
  • sugar chain mutant yeast when sugar chain mutant yeast was newly constructed instead of using commercially available host cells, it was collected using an electrophoresis method such as SDS-PAGE as in the examples described later. Hyperglycosylation may be confirmed in the sugar chain variant ⁇ 1 -microglobulin.
  • the structure of the N-type sugar chain may be analyzed by a known technique. For example, a sugar chain is excised from sugar chain variant ⁇ 1 -microglobulin by a known method, subjected to necessary or suitable known treatment, mass spectrometry, method using lectin, antibody The sugar chain structure may be analyzed by a method using
  • the sugar chain variant ⁇ 1 -microglobulin according to the present disclosure can be suitably used for performance evaluation of blood purifiers.
  • Specific types of blood purifiers are not particularly limited, and devices using dialysis membranes for various blood purification methods such as dialysis, filtration, plasma exchange, and adsorption can be mentioned.
  • the specific structure of the blood purifier is not particularly limited, either, and a known structure can be suitably adopted.
  • the sugar chain variant ⁇ 1 -microglobulin according to the present disclosure can be used as a performance evaluation reagent for blood purifiers.
  • the form of such a performance evaluation reagent is not particularly limited, and any form may be used as long as it is stable and can be maintained for a certain period of time without denaturing or aggregating the sugar chain variant ⁇ 1 -microglobulin.
  • a protein solution in which sugar chain variant ⁇ 1 -microglobulin is dissolved or dispersed in a known buffer solution can be mentioned.
  • the specific composition of the buffer solution is not particularly limited, and known compositions can be suitably used.
  • the sugar chain variant ⁇ 1 -microglobulin according to the present disclosure can be used in a method for evaluating the performance of blood purifiers.
  • a specific configuration of the performance evaluation method of the blood purifier is not particularly limited, and a known method can be suitably used.
  • As a representative performance evaluation method for example, the performance evaluation method for a blood purifier described in Reference 1: Japanese Patent No. 4973194 can be cited. The contents of reference 1 are incorporated herein by reference.
  • the specific configuration of the performance evaluation method is the content described in Reference Document 1.
  • the method for evaluating the performance of the blood purifier according to the present disclosure may use the sugar chain variant ⁇ 1 -microglobulin according to the present disclosure.
  • the content described in Reference Document 1 can be appropriately changed or modified within the scope of common general technical knowledge.
  • the form in which the sugar chain variant ⁇ 1-microglobulin according to the present disclosure is used in the performance evaluation method of a blood purifier is not particularly limited, and it may be used as the performance evaluation reagent described above, or a known performance evaluation.
  • the sugar chain variant ⁇ 1 -microglobulin according to the present disclosure may be contained in known reagents used in the method. Therefore, the present disclosure also includes a method for evaluating the performance of a blood purifier using the aforementioned performance evaluation reagent (reagent containing sugar chain variant ⁇ 1 -microglobulin).
  • the sugar chain variant ⁇ 1 -microglobulin according to the present disclosure is ⁇ 1 -microglobulin used for performance evaluation of blood purifiers, contains a core glycan structure common to N-type sugar chains, and , a configuration having a mutated N-type sugar chain in which an N-acetylneuraminic acid residue is not bound to the non-reducing end.
  • the sugar chain variant ⁇ 1 -microglobulin has an N-glycan structure that is not identical to the original N-glycan structure, and has a non-reducing terminal N-acetylneu Although it has no laminic acid residue, it can be used for performance evaluation of blood purifiers.
  • recombinant ⁇ 1 -microglobulin which can be used for performance evaluation of blood purifiers, can be produced using a general method, and mass production can be aimed at.
  • mass production can be aimed at.
  • the possibility of producing recombinant forms of 1 -microglobulin at low cost can also be found.
  • the ⁇ 1 -microglobulin gene having the nucleotide sequence shown in SEQ ID NO: 2 (optimized sequence including restriction enzyme sequence), or the ⁇ 1 -microglobulin gene and 10 consecutive histidine residues
  • An expression plasmid was constructed by inserting a nucleotide sequence encoding a group (histidine tag). The expression plasmid was introduced into a host by electroporation to obtain a transformant.
  • the ⁇ 1 -microglobulin recombinant was expressed in host cells (transformant cells). Since the expressed ⁇ 1 -microglobulin recombinant is released outside the host cell by ⁇ factor, the ⁇ 1 -microglobulin recombinant can be obtained from the culture supernatant.
  • the ⁇ 1 -microglobulin recombinant was obtained by purifying the culture supernatant by column chromatography (purifying by affinity chromatography when having a histidine tag).
  • EAEA or EA E: glutamic acid (Glu), A: alanine (Ala)
  • Glu glutamic acid
  • A alanine
  • the possibility of appending to the ends is known.
  • EAEA or EA is added to the N-terminal side is considered to have no effect on the evaluation in the present disclosure .
  • the terminal side is not particularly analyzed.
  • the obtained ⁇ 1 -microglobulin recombinant was subjected to SDS-PAGE and stained with CBB to confirm and evaluate the molecular weight and band state.
  • the state of the band was evaluated as "absent” when no smear was observed, and as "presence” when smear was observed.
  • Comparative example 1 A P. pastoris ⁇ aox1 wild strain was used as a host, the expression plasmid was introduced into the host, and the ⁇ 1 -microglobulin recombinant according to Comparative Example 1 was obtained by the above-described expression system.
  • the ⁇ 1 -microglobulin recombinants were evaluated by body reactivity and SDS-PAGE and sieving coefficients were determined as described above. The results are shown in Table 1, and the results of SDS-PAGE are shown in FIG. In addition, in the results of SDS-PAGE shown in FIG. 4, the leftmost lane is the molecular weight marker.
  • WT the host P. pastoris ⁇ aox1 wild strain is abbreviated as "WT”.
  • Comparative example 2 An ⁇ 1 -microglobulin recombinant according to Comparative Example 2 was obtained in the same manner as in Comparative Example 1, except that the expression plasmid contained a base sequence encoding an N-terminal histidine tag.
  • the ⁇ 1 -microglobulin recombinant was evaluated by antibody reactivity and SDS-PAGE as described above. The results are shown in Table 1, and the results of SDS-PAGE are shown in FIG.
  • Example 1 The ⁇ 1-microglobulin recombinant according to Example 1 was obtained in the same manner as in Comparative Example 1, except that the SuperMan-5 strain (manufactured by BioGrammatics) was used as the host.
  • the ⁇ 1 -microglobulin recombinants were evaluated by antibody reactivity and SDS-PAGE and sieving coefficients were measured as described above. The results are shown in Table 1, and the results of SDS-PAGE are shown in FIG.
  • the host SuperMan-5 strain is abbreviated as "SM5".
  • Example 2 The ⁇ 1 -microglobulin recombinant according to Example 2 was obtained in the same manner as in Example 1, except that the expression plasmid contained a base sequence encoding an N-terminal histidine tag.
  • the ⁇ 1 -microglobulin recombinant was evaluated by antibody reactivity and SDS-PAGE as described above. The results are shown in Table 1, and the results of SDS-PAGE are shown in FIG.
  • the ⁇ 1 -microglobulin recombinant according to Comparative Example 1 has a molecular weight of 37 kDa. It was confirmed (staining was confirmed from around 30 kDa to over 40 kDa, centering on a darkly stained portion around 37 kDa).
  • the ⁇ 1 -microglobulin recombinant according to Comparative Example 2 has a molecular weight of 39 kDa. Significant smearing was confirmed in the same manner as in Example 1 (staining was confirmed from around 31 kDa to nearly 50 kDa, centering on the darkly stained portion around 39 kDa).
  • the ⁇ 1 -microglobulin recombinant according to Example 1 had a molecular weight of 31 kDa
  • the ⁇ 1 -microglobulin recombinant according to Example 2 had a molecular weight of 33 kDa. No smear was observed in the band (see Figure 4).
  • Comparative Example 1 or Comparative Example 2 wild-type P. pastoris was used as the host, and the results of these Comparative Examples confirmed a broad smear in the SDS-PAGE band. As is clear from this, it can be seen that ⁇ 1 -microglobulin is hyperglycosylated when wild-type yeast is used. On the other hand, in Example 1 or Example 2, sugar chain mutant P. pastoris was used as the host, but the results of these Examples show clear SDS-PAGE bands and no smearing. Therefore, even if the host is yeast, hyperglycosylation of ⁇ 1 -microglobulin can be avoided by using the sugar chain mutant strain.
  • the ⁇ 1 -microglobulin recombinant according to Example 1 had a sieving coefficient comparable to that of the reference example, that is, human-derived ⁇ 1 -microglobulin. Therefore, it is judged that the ⁇ 1 -microglobulin recombinant according to Example 1 has sufficient practical utility in evaluating the performance of blood purifiers.
  • the ⁇ 1 -microglobulin recombinant according to Comparative Example 1 had smaller sieving coefficient values than those of Example 1 or Reference Example.
  • FIG. 4 results of SDS-PAGE
  • the ⁇ 1 -microglobulin recombinant was hyperglycosylated. This is thought to be due to the occurrence of
  • the ⁇ 1 -microglobulin recombinant according to Example 2 which has a histidine tag on the N-terminal side, is also considered to have sufficient practicality for performance evaluation of blood purifiers.
  • the N-type sugar chain does not undergo hyperglycosylation as shown in FIG.
  • the structure of the mutant glycan 20 shown that is, the sugar chain structure (pentamannosyl structure) in which two mannose residues 12 are bound to the ⁇ 6 mannose residue 12 in the core glycan structure 10, has been clarified. Therefore, the sugar chain structures of the ⁇ 1 -microglobulin recombinants according to Examples 1 and 2 also have a pentamannosyl structure.
  • N-glycans such as hybrid-type glycans 20a-20e or high-mannose-type glycans 20f-20h illustrated in FIG. 2, or complex-type glycans 30a-30l illustrated in FIG. If it is a sugar chain variant ⁇ 1 -microglobulin having a mutant N-type sugar chain that contains a common core glycan structure 10 and has a non-reducing end bound to an N-acetylneuraminic acid residue 14 , like the original human-derived ⁇ 1 -microglobulin, can be used to evaluate the performance of blood purifiers.
  • the present invention can be widely and suitably used in the field of performance evaluation of blood purifiers.

Abstract

This sugar chain-modified α1-microglobulin is used for the performance evaluation of a blood purifier, contains a core glycan structure common in an N-type sugar chain, and has a modified N-type sugar chain in which an N-acetylneuraminic acid residue is not bonded to a non-reducing terminal. As a result, it is possible to produce a recombinant of α1-microglobulin, which can be used for evaluating the performance of the blood purifier, by using a general method, and it is also possible to aspire to mass-production.

Description

糖鎖変異型α1-マイクログロブリンおよび血液浄化器の性能評価試薬Glycan variant α1-microglobulin and performance evaluation reagent for blood purifier
 本発明は、糖鎖変異型α-マイクログロブリンと、これを用いた血液浄化器の性能評価試薬に関する。 The present invention relates to sugar chain variant α 1 -microglobulin and a reagent for evaluating the performance of a blood purifier using the same.
 α-マイクログロブリンは、分子量が約3万であり糖含有量が約20質量%の糖タンパク質であって、ラジカルスカベンジャーとして抗酸化作用を有することが知られている。α-マイクログロブリンは、主として肝臓で産生され、腎糸球体を通過して近位尿細管より再吸収されるので、正常では尿中にほとんど排出されない。そのため、尿中のα-マイクログロブリンの含有量は、尿細管および腎糸球体障害のマーカーとなることが知られている。 α 1 -microglobulin is a glycoprotein having a molecular weight of about 30,000 and a sugar content of about 20% by mass, and is known to have an antioxidant action as a radical scavenger. α 1 -microglobulin is produced mainly in the liver, passes through the renal glomerulus and is reabsorbed from the proximal renal tubules, so that it is normally hardly excreted in the urine. Therefore, the content of α 1 -microglobulin in urine is known to serve as a marker for renal tubular and renal glomerular disorders.
 また、α-マイクログロブリンは、血液浄化において除去対象となる低分子量タンパク質の一つとしても知られている。そのため、ダイアライザまたはヘモダイアフィルタ等の血液浄化器の性能評価では、α-マイクログロブリンの除去能力が試験される場合がある。 α 1 -microglobulin is also known as one of the low-molecular-weight proteins to be removed in blood purification. Therefore, performance evaluation of blood purifiers such as dialyzers or hemodiafilters may test the ability to remove α 1 -microglobulin.
 例えば、特許文献1では、血液浄化器の製造方法において、血液浄化器が備える中空糸膜において、その膜面積におけるα-マイクログロブリンのクリアランスを所定値以上に設定することが開示されている。具体的には、同文献の実施例では、α-マイクログロブリンの濃度を調整した牛血漿溶液を準備して、血液浄化器におけるα-マイクログロブリンのクリアランスを測定(評価)している。 For example, Patent Document 1 discloses that, in a method for manufacturing a blood purifier, the clearance of α 1 -microglobulin in the membrane area of a hollow fiber membrane provided in the blood purifier is set to a predetermined value or more. Specifically, in the examples of the document, a bovine plasma solution with an adjusted concentration of α 1 -microglobulin is prepared, and the clearance of α 1 -microglobulin in a blood purifier is measured (evaluated).
特許第6030295号公報Japanese Patent No. 6030295
 ここで、市販されるα-マイクログロブリンは非常に高価であるだけでなく、入手しにくい。血液浄化器は、大量の血液を浄化するために用いられるので、当該血液浄化器の性能評価を実施する目的で、α-マイクログロブリンを用いることは現実的ではない。それゆえ、血液浄化器の性能評価用としては、α-マイクログロブリンの除去挙動に類似すると考えられる他のタンパク質、例えばプロラクチン(分子量約22kDaで糖鎖修飾無し)で代用されている。 Here, commercially available α 1 -microglobulin is not only very expensive but also difficult to obtain. Since a blood purifier is used to purify a large amount of blood, it is not realistic to use α 1 -microglobulin for the purpose of evaluating the performance of the blood purifier. Therefore, for evaluating the performance of blood purifiers, other proteins, such as prolactin (molecular weight about 22 kDa, no glycosylation), which are considered to have similar removal behavior to α 1 -microglobulin, have been substituted.
 血液浄化器の性能を評価するためには、他の代用のタンパク質を用いずに、α-マイクログロブリンを用いた方がよいことは言うまでもない。一般的には、タンパク質を低コストで生産する方法としては、遺伝子工学的手法を用いて組換えタンパク質生産系を構築することが想定される。しかしながら、血液浄化器の性能評価に用いることが可能な、α-マイクログロブリンの組換え体については、これまで知られていなかった。 Needless to say, it is better to use α 1 -microglobulin than other substitute proteins to evaluate the performance of blood purifiers. In general, as a method for producing proteins at low cost, it is assumed that a recombinant protein production system is constructed using genetic engineering techniques. However, a recombinant α 1 -microglobulin that can be used for evaluating the performance of blood purifiers has not been known so far.
 本発明はこのような課題を解決するためになされたものであって、血液浄化器の性能評価に用いることが可能な、α-マイクログロブリンの組換え体を提供することを目的とする。 The present invention was made to solve such problems, and an object of the present invention is to provide a recombinant α 1 -microglobulin that can be used for performance evaluation of blood purifiers.
 本開示に係る糖鎖変異型α-マイクログロブリンは、前記の課題を解決するために、N型糖鎖に共通するコアグリカン構造を含み、かつ、非還元末端に、N-アセチルノイラミン酸残基が結合していない、変異N型糖鎖を有する構成である。 In order to solve the above problems, the sugar chain variant α 1 -microglobulin according to the present disclosure contains a core glycan structure common to N-type sugar chains and has an N-acetylneuraminic acid residue at the non-reducing end. It is a configuration having a mutant N-type sugar chain to which no groups are attached.
 前記構成によれば、糖鎖変異型α-マイクログロブリンは、そのN型糖鎖の構造は、オリジナルのN型糖鎖構造と同一ではなく、かつ、非還元末端のN-アセチルノイラミン酸残基を有していないにも関わらず、血液浄化器の性能評価に用いることができる。 According to the above configuration, the sugar chain variant α 1 -microglobulin has an N-type sugar chain structure that is not the same as the original N-type sugar chain structure, and has a non-reducing terminal N-acetylneuraminic acid It can be used to evaluate the performance of blood purifiers even though it does not have residues.
 糖鎖の非還元末端にN-アセチルノイラミン酸等のシアル酸を糖転移させる必要がなければ、シアル酸の生合成経路を有さない一般的な酵母を宿主として、遺伝子工学的手法を用いて組換えタンパク質生産系を構築することが可能となる。これにより、血液浄化器の性能評価に用いることが可能な、α-マイクログロブリンの組換え体を、一般的な手法を用いて生産できるとともに、大量生産を目指すことも可能となるので、α-マイクログロブリンの組換え体を低コストで生産する可能性も見出すことができる。 If it is not necessary to transglycosylate sialic acid such as N-acetylneuraminic acid to the non-reducing end of the sugar chain, genetic engineering techniques can be used using a common yeast that does not have a sialic acid biosynthetic pathway as a host. It becomes possible to construct a recombinant protein production system by using As a result, recombinant α 1 -microglobulin, which can be used for performance evaluation of blood purifiers, can be produced using a general method, and mass production can be aimed at. The possibility of producing recombinant forms of 1 -microglobulin at low cost can also be found.
 前記構成の糖鎖変異型α-マイクログロブリンにおいては、前記変異N型糖鎖が、Manα1-6(Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcとして表記されるコアグリカン構造における、非還元末端の2つのマンノース残基の少なくともいずれかに、マンノース残基またはN-アセチルグルコサミン残基が結合した糖鎖構造を含む構成であってもよい。 In the sugar chain variant α 1 -microglobulin having the above configuration, the mutant N-type sugar chain has two non-reducing ends in the core glycan structure represented as Manα1-6(Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAc. The configuration may include a sugar chain structure in which a mannose residue or an N-acetylglucosamine residue is bound to at least one of the mannose residues.
 また、前記構成の糖鎖変異型α-マイクログロブリンにおいては、前記変異N型糖鎖が、Manα1-3(Manα1-3(Manα1-6)Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAcとして表記されるペンタマンノシル構造を含む構成であってもよい。 Further, in the sugar chain variant α 1 -microglobulin having the above configuration, the mutant N-type sugar chain is expressed as Manα1-3(Manα1-3(Manα1-6)Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAc. A configuration including a pentamannosyl structure may also be used.
 また、前記構成の糖鎖変異型α-マイクログロブリンにおいては、前記変異N型糖鎖が、前記ペンタマンノシル構造の非還元末端の3つのマンノース残基の少なくともいずれかに対して、さらにマンノース残基またはN-アセチルグルコサミン残基がグリコシド結合した糖鎖構造を含む構成であってもよい。 Further, in the sugar chain variant α 1 -microglobulin having the above configuration, the mutant N-type sugar chain is added to at least one of the three mannose residues at the non-reducing end of the pentamannosyl structure, A structure containing a sugar chain structure in which a group or an N-acetylglucosamine residue is glycoside-linked may also be used.
 また、前記構成の糖鎖変異型α-マイクログロブリンにおいては、前記変異N型糖鎖が、前記コアグリカン構造における、非還元末端の2つのマンノース残基の少なくともいずれかに対して、N-アセチルグルコサミン残基が結合し、当該N-アセチルグルコサミン残基に対して、ガラクトース残基またはフコース残基が結合した糖鎖構造を含む構成であってもよい。 Further, in the sugar chain variant α 1 -microglobulin having the above configuration, the mutant N-type sugar chain has N-acetyl It may have a structure including a sugar chain structure in which a glucosamine residue is bound and a galactose residue or a fucose residue is bound to the N-acetylglucosamine residue.
 また、前記構成の糖鎖変異型α-マイクログロブリンにおいては、α-マイクログロブリン遺伝子を、ハイパーグリコシル化が生じない糖鎖変異株酵母で発現させることにより生産される、構成であってもよい。 In addition, in the sugar chain variant α 1 -microglobulin having the above configuration, even if it is produced by expressing the α 1 -microglobulin gene in sugar chain variant yeast that does not cause hyperglycosylation. good.
 また、前記構成の糖鎖変異型α-マイクログロブリンにおいては、前記糖鎖変異株酵母が、Pichia pastoris(ピキア パストリス)である構成であってもよい。 Further, in the sugar chain variant α 1 -microglobulin having the above configuration, the sugar chain variant yeast may be Pichia pastoris.
 また、前記構成の糖鎖変異型α-マイクログロブリンにおいては、前記糖鎖変異株酵母が、SuperMan-5株(製品名)である構成であってもよい。 Further, in the sugar chain variant α 1 -microglobulin having the above configuration, the sugar chain variant yeast may be SuperMan-5 strain (product name).
 本開示には、前記構成の糖鎖変異型α-マイクログロブリンを含有する血液浄化器の性能評価試薬も含まれる。さらに本開示には、前記構成の糖鎖変異型α-マイクログロブリンを使用する、血液浄化器の性能評価方法も含まれる。 The present disclosure also includes a performance evaluation reagent for a blood purifier containing the sugar chain variant α 1 -microglobulin having the above configuration. Furthermore, the present disclosure also includes a method for evaluating the performance of a blood purifier using the sugar chain variant α 1 -microglobulin having the above configuration.
 本発明の上記目的、他の目的、特徴、および利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。 The above object, other objects, features, and advantages of the present invention will be made clear from the following detailed description of preferred embodiments with reference to the accompanying drawings.
 本発明では、以上の構成により、血液浄化器の性能評価に用いることが可能な、α-マイクログロブリンの組換え体を提供することができる、という効果を奏する。 The present invention has the effect of providing a recombinant α 1 -microglobulin that can be used for performance evaluation of a blood purifier by the above configuration.
図1Aは、本開示の代表的な実施の形態に係る糖鎖変異型α-マイクログロブリンが有する糖鎖構造と、ヒト由来のα-マイクログロブリンが有する代表的な糖鎖構造とを示す対比模式図であり、図1Bは、一般的な酵母においてα-マイクログロブリンにハイパーグリコシル化が生じたときの糖鎖構造の一例を示す模式図である。FIG. 1A shows a sugar chain structure of sugar chain variant α 1 -microglobulin according to a representative embodiment of the present disclosure and a typical sugar chain structure of human-derived α 1 -microglobulin. FIG. 1B is a schematic diagram for comparison, and FIG. 1B is a schematic diagram showing an example of a sugar chain structure when α 1 -microglobulin is hyperglycosylated in common yeast. 図2は、図1Aに示す変異型糖鎖の代表的なバリエーションを示す模式図である。FIG. 2 is a schematic diagram showing representative variations of the mutant sugar chain shown in FIG. 1A. 図3は、図1Aに示す変異型糖鎖の代表的なバリエーションを示す模式図である。FIG. 3 is a schematic diagram showing representative variations of the mutant sugar chain shown in FIG. 1A. 図4は、本開示の代表的な実施例における変異型α-マイクログロブリンの電気泳動結果を示す図である。FIG. 4 shows electrophoresis results of mutant α 1 -microglobulin in a representative example of the present disclosure.
 以下、本発明の代表的な実施の形態を、図面を参照しながら説明する。なお、以下では全ての図を通じて同一又は相当する要素には同一の参照符号を付して、その重複する説明を省略する。 Hereinafter, representative embodiments of the present invention will be described with reference to the drawings. In the following description, the same or corresponding elements are denoted by the same reference numerals throughout all the drawings, and duplicate descriptions thereof will be omitted.
 [糖鎖変異型α-マイクログロブリン]
 α-マイクログロブリンおよびそのファミリーは、ヒトを含む哺乳類、鳥類、両生類、魚類等に存在していることが知られている。ヒト由来のα-マイクログロブリンは、一般的には、タンパク質自体が約21kDaであり、2つのN型糖鎖を含む、約33kDa(分子量約3万)の糖タンパク質である。α-マイクログロブリンは、主として肝臓で合成されて血液中に分泌され、血液を含む体液中に広く分布している。α-マイクログロブリンは低分子量であるため、血液から腎臓の腎糸球体を容易に通過するものの、近位尿細管より再吸収されるので、正常では尿中にほとんど排出されない。
[Sugar chain variant α 1 -microglobulin]
α 1 -Microglobulin and its family are known to exist in mammals including humans, birds, amphibians, fishes and the like. Human-derived α 1 -microglobulin is generally a glycoprotein of about 33 kDa (molecular weight of about 30,000) containing two N-type sugar chains, the protein itself being about 21 kDa. α 1 -microglobulin is mainly synthesized in the liver and secreted into blood, and is widely distributed in body fluids including blood. Since α 1 -microglobulin has a low molecular weight, it easily passes through the renal glomerulus of the kidney from the blood, but is reabsorbed from the proximal renal tubules, so it is normally hardly excreted in the urine.
 ヒト由来のα-マイクログロブリン(以下、単にα-マイクログロブリンとする。)のアミノ酸配列は、配列表の配列番号1に示すように公知であり、183のアミノ酸残基で構成される。N型糖鎖は、17番目および96番目のアスパラギン(Asn,N)残基に結合している。なお、配列番号1に示すアミノ酸配列はトランケイト型である。 The amino acid sequence of human-derived α 1 -microglobulin (hereinafter simply referred to as α 1 -microglobulin) is known as shown in SEQ ID NO: 1 in the sequence listing, and consists of 183 amino acid residues. N-glycans are attached to the 17th and 96th asparagine (Asn, N) residues. The amino acid sequence shown in SEQ ID NO: 1 is truncated.
 図1Aには、α-マイクログロブリンが有するN型糖鎖の糖鎖構造を模式的に示しており、図1Aに示す3つの糖鎖構造のうち中央に示すグリカン21および紙面右側に示すグリカン22が、ヒト由来のN型糖鎖の代表的な糖鎖構造の例である。これらグリカン21またはグリカン22を、説明の便宜上、「ヒト由来グリカン21」または「ヒト由来グリカン22」と称する。 FIG. 1A schematically shows the sugar chain structure of the N-type sugar chain possessed by α 1 -microglobulin. Of the three sugar chain structures shown in FIG. 22 is an example of a representative sugar chain structure of a human-derived N-type sugar chain. These glycans 21 or 22 are referred to as "human-derived glycans 21" or "human-derived glycans 22" for convenience of explanation.
 また、後述するように、図1Aに示す糖鎖構造のうち紙面左側に示すグリカン20が、本開示に係る糖鎖変異型α-マイクログロブリンが有するN型糖鎖の代表的な一例である。このグリカン20を、説明の便宜上、変異グリカン20と称する。 In addition, as will be described later, the glycan 20 shown on the left side of the paper surface of the sugar chain structure shown in FIG. 1A is a typical example of the N-type sugar chain possessed by the sugar chain variant α 1 -microglobulin according to the present disclosure. . This glycan 20 is referred to as mutated glycan 20 for convenience of explanation.
 なお、図1A~図3に模式的に示す糖鎖構造においては、単糖残基のうち、N-アセチルグルコサミン(GlcNAc)を矩形のシンボル11で示し、マンノース(Man)を円形のシンボル12で示し、ガラクトース(Gal)を二重円形のシンボル13で示し、N-アセチルノイラミン酸(NeuNAc)を菱形のシンボル14で示し、フコース(Fuc)を三角形のシンボル15で示す。また、図1A~図3では、点線で囲んだ糖鎖構造が、N型糖鎖のコアグリカン構造10を示す。図1A~図3では、アスパラギン残基(Asn)またはペプチドは具体的なシンボルとしては図示しておらず、太い曲線として簡略的に図示している。 In the sugar chain structures schematically shown in FIGS. 1A to 3, among monosaccharide residues, N-acetylglucosamine (GlcNAc) is indicated by a rectangular symbol 11, and mannose (Man) is indicated by a circular symbol 12. Galactose (Gal) is indicated by the double circle symbol 13, N-acetylneuraminic acid (NeuNAc) is indicated by the diamond symbol 14 and fucose (Fuc) is indicated by the triangular symbol 15. In addition, in FIGS. 1A to 3, the sugar chain structure surrounded by dotted lines indicates the core glycan structure 10 of the N-type sugar chain. In FIGS. 1A-3, asparagine residues (Asn) or peptides are not shown as specific symbols, but simply shown as thick curves.
 コアグリカン(core glycan)構造10は、トリマンノシルコア(tri-mannosyl core)構造とも称される場合があり、図1Aに示すように、アスパラギン残基(簡略的な太曲線)に対して、2つのN-アセチルグルコサミン残基11とマンノース残基12とがこの順で結合し、このマンノース残基12に対して2つのマンノース残基12が分岐するように結合している。 The core glycan structure 10, also sometimes referred to as the tri-mannosyl core structure, is shown in FIG. An N-acetylglucosamine residue 11 and a mannose residue 12 are bonded in this order, and two mannose residues 12 are bonded to this mannose residue 12 in a branched manner.
 図1A(並びに図1B~図3)では、具体的に図示しないが、アスパラギン残基に対して1つ目のN-アセチルグルコサミン残基11はβ型でグリコシド結合しており、1つ目のN-アセチルグルコサミン残基11に対して2つ目のN-アセチルグルコサミン残基11はβ1-4型でグリコシド結合しており、2つ目のN-アセチルグルコサミン残基11に対して1つ目のマンノース残基12はβ1-4型でグリコシド結合しており、当該マンノース残基12に対して、2つのマンノース残基12がそれぞれ分岐するようにグリコシド結合しているが、一方のマンノース残基12はα1-3型で結合しており、他方のマンノース残基12はα1-6型で結合している。 Although not specifically illustrated in FIG. 1A (and FIGS. 1B to 3), the first N-acetylglucosamine residue 11 is glycosidic-bonded to the asparagine residue in the β-form, and the first The second N-acetylglucosamine residue 11 to the N-acetylglucosamine residue 11 is glycosidically bonded in the β1-4 type, and the first to the second N-acetylglucosamine residue 11 The mannose residue 12 is β1-4 type and is glycosidic bonded, and the mannose residue 12 is glycosidic bonded so that the two mannose residues 12 are each branched, but one mannose residue 12 is bound in the α1-3 form and the other mannose residue 12 is bound in the α1-6 form.
 このコアグリカン構造10を、非還元末端から還元末端の順で、単糖残基を一般的な簡略表記として表記すると、Manα1-6(Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβAsnと記述することができる。この糖鎖構造の記述方式では、グリコシド結合の型については、αまたはβの結合型とともに、結合対象である6員環の炭素位置を併記しており、分岐鎖については括弧書き表記している。 This core glycan structure 10 can be described as Manα1-6 (Manα1-3) Manβ1-4GlcNAcβ1-4GlcNAcβAsn, in order from the non-reducing end to the reducing end, and the monosaccharide residues as general abbreviations. In this method of describing the sugar chain structure, the type of glycosidic bond is indicated by the carbon position of the 6-membered ring to which it is bound together with the bond type of α or β, and the branched chain is indicated in parentheses. .
 糖鎖構造の表記法、すなわち、糖鎖命名法については、IUPAC(International Union of Pure and Applied Chemistry)が推奨する命名法も含め、様々な方法が提唱されている。しかしながら、現時点では、国際的に標準化された糖鎖命名法は確認できないため、本明細書(および特許請求の範囲)では、特に単糖残基を認識しやすくする観点から、慣用的に用いられる前述した記述方式(以下、単に「本糖鎖記述方式」とする。)に基づいて糖鎖構造を記述する。糖鎖構造のみを記述する場合には、還元末端の糖鎖残基にβ結合するAsnの記述は省略する。 Various methods have been proposed for notation of sugar chain structures, that is, sugar chain nomenclature, including the nomenclature recommended by the IUPAC (International Union of Pure and Applied Chemistry). However, at present, no internationally standardized sugar chain nomenclature can be confirmed, so in the present specification (and the scope of claims), especially from the viewpoint of facilitating recognition of monosaccharide residues, it is commonly used The sugar chain structure is described based on the description method described above (hereinafter simply referred to as "this sugar chain description method"). When describing only the sugar chain structure, the description of Asn β-bonded to the sugar chain residue at the reducing end is omitted.
 今後、国際的に標準化された糖鎖命名法が確立された場合には、本明細書(および特許請求の範囲)において、前述した本糖鎖記述方式に基づいて記述される糖鎖構造は、標準化された糖鎖命名法による記述に置き換えることができる。 In the future, when an internationally standardized sugar chain nomenclature is established, in the present specification (and the scope of claims), the sugar chain structure described based on the above-described present sugar chain description system will be Descriptions in standardized carbohydrate nomenclature can be substituted.
 図1Aにおける中央に示すヒト由来グリカン21は、コアグリカン構造10の非還元末端である2つのマンノース残基12に対して、それぞれN-アセチルグルコサミン残基11が2つずつ結合しており、各N-アセチルグルコサミン残基11に対してはガラクトース残基13が結合しており、当該ガラクトース残基13に対してはN-アセチルノイラミン酸残基14が結合している。また、コアグリカン構造10の分岐元となるマンノース残基12には、N-アセチルグルコサミン残基11が分岐して結合しており、還元末端である(アスパラギンに結合する)N-アセチルグルコサミン残基11には、フコース残基15が分岐して結合している。 Human-derived glycan 21 shown in the center of FIG. Galactose residue 13 is bound to -acetylglucosamine residue 11, and N-acetylneuraminic acid residue 14 is bound to the galactose residue 13. In addition, N-acetylglucosamine residue 11 is branched and bound to mannose residue 12 serving as a branching source of coagulan structure 10, and N-acetylglucosamine residue 11 (which binds to asparagine) is a reducing end. , the fucose residue 15 is branched and bound.
 したがって、ヒト由来グリカン21は、非還元末端側に4つの分岐鎖を有し、コアグリカン構造10に、1つの単糖残基からなる分岐鎖を2つ含む糖鎖構造となっている。このタイプの糖鎖構造は、コアグリカン構造10以外にはマンノース残基12を含まない「複合型」といわれる。 Therefore, human-derived glycan 21 has four branched chains on the non-reducing end side, and has a sugar chain structure containing two branched chains each consisting of one monosaccharide residue in core glycan structure 10 . This type of sugar chain structure is called a “complex type” that does not contain mannose residues 12 other than the core glycan structure 10 .
 図1Aにおける右側に示すヒト由来グリカン22は、コアグリカン構造10の非還元末端である2つのマンノース残基12に対して、それぞれN-アセチルグルコサミン残基11が1つずつ結合している。これらN-アセチルグルコサミン残基11に対して、それぞれガラクトース残基13が結合し、当該ガラクトース残基13に対してN-アセチルノイラミン酸残基14が結合している点は、ヒト由来グリカン21と同様である。また、ヒト由来グリカン22は、還元末端であるN-アセチルグルコサミン残基11にフコース残基15が分岐結合している点も、ヒト由来グリカン21と同様であるが、コアグリカン構造10の分岐の起点となるマンノース残基12には、N-アセチルグルコサミン残基11は結合していない。 In the human-derived glycan 22 shown on the right side of FIG. 1A, one N-acetylglucosamine residue 11 is bound to each of two mannose residues 12 that are the non-reducing ends of the core glycan structure 10 . Galactose residue 13 is bound to each of these N-acetylglucosamine residues 11, and N-acetylneuraminic acid residue 14 is bound to the galactose residue 13, human-derived glycan 21 is similar to In addition, human-derived glycan 22 is similar to human-derived glycan 21 in that fucose residue 15 is branch-bonded to N-acetylglucosamine residue 11, which is the reducing end. The N-acetylglucosamine residue 11 is not bound to the mannose residue 12 that becomes .
 したがって、ヒト由来グリカン22は、非還元末端側に2つの分岐鎖を有し、コアグリカン構造10に、1つの単糖残基からなる分岐鎖を1つのみ含む糖鎖構造となっている。このヒト由来グリカン22も、コアグリカン構造10以外にはマンノース残基12を含まないため「複合型」である。 Therefore, the human-derived glycan 22 has two branched chains on the non-reducing end side, and has a sugar chain structure in which the core glycan structure 10 includes only one branched chain consisting of one monosaccharide residue. This human-derived glycan 22 is also “complex” because it does not contain mannose residues 12 other than core glycan structure 10 .
 ここで、糖鎖構造を説明する便宜上、コアグリカン構造10の分岐の起点となるマンノース残基12を「分岐点マンノース残基12」と称し、分岐点マンノース残基12に対してα1-3型で結合するマンノース残基12を「α3マンノース残基12」と称し、分岐点マンノース残基12に対してα1-6型で結合するマンノース残基12を「α6マンノース残基12」と称するものとする。 Here, for the convenience of describing the sugar chain structure, the mannose residue 12 that serves as the starting point for branching of the core glycan structure 10 is referred to as the "branch point mannose residue 12", and α1-3 type is used for the branch point mannose residue 12. The binding mannose residue 12 shall be referred to as the "α3 mannose residue 12" and the mannose residue 12 which binds in the α1-6 form to the branch point mannose residue 12 shall be referred to as the "α6 mannose residue 12". .
 ヒト由来グリカン21では、α3マンノース残基12に対しては、2つのN-アセチルグルコサミン残基11は、それぞれβ1-2型またはβ1-4型で結合しており、α6マンノース残基12に対しては、2つのN-アセチルグルコサミン残基11は、それぞれβ1-2型またはβ1-6型で結合している。ヒト由来グリカン22では、α3マンノース残基12に対してもα6マンノース残基12に対しても、1つのN-アセチルグルコサミン残基11はβ1-2型で結合している。 In human-derived glycan 21, for α3 mannose residue 12, two N-acetylglucosamine residues 11 are bound in the β1-2 or β1-4 form, respectively, and for α6 mannose residue 12, Thus, two N-acetylglucosamine residues 11 are linked in the β1-2 or β1-6 form, respectively. In human-derived glycan 22, one N-acetylglucosamine residue 11 is linked to both α3 mannose residue 12 and α6 mannose residue 12 in the β1-2 form.
 ヒト由来グリカン21およびヒト由来グリカン22のいずれにおいても、ガラクトース残基13は、N-アセチルグルコサミン残基11に対してβ1-3型で結合しており、N-アセチルノイラミン酸残基14は、ガラクトース残基13に対してα2-3型で結合している。また、分岐鎖のフコース残基15は、N-アセチルグルコサミン残基11に対してα1-6型で結合しており、ヒト由来グリカン21における分岐鎖のN-アセチルグルコサミン残基11は、分岐点マンノース残基12に対してβ1-4型で結合している。 In both human-derived glycan 21 and human-derived glycan 22, galactose residue 13 is linked to N-acetylglucosamine residue 11 in the β1-3 form, and N-acetylneuraminic acid residue 14 is , bound to galactose residue 13 in the α2-3 form. In addition, the branched fucose residue 15 is bound to the N-acetylglucosamine residue 11 in the α1-6 type, and the branched N-acetylglucosamine residue 11 in the human-derived glycan 21 is the branch point It binds to mannose residue 12 in the β1-4 form.
 なお、図1Aにおいては、図示の便宜上、グリコシド結合の種類については、基本的に記載していない。ただし、図1Aにおいて左側に示す変異グリカン20については、コアグリカン構造10におけるマンノース残基12の分岐部分について、「α3」または「α6」という略記形式で、グリコシド結合の種類を付記している。「α3」がα1-3型のグリコシド結合を示し、「α6」がα1-6型のグリコシド結合を示す。 In addition, in FIG. 1A, for convenience of illustration, the types of glycosidic bonds are basically not described. However, with respect to the mutant glycan 20 shown on the left side in FIG. 1A, the type of glycosidic bond is added in the abbreviated form of “α3” or “α6” for the branched portion of the mannose residue 12 in the core glycan structure 10 . “α3” indicates an α1-3 type glycosidic bond, and “α6” indicates an α1-6 type glycosidic bond.
 また、図1Aに示すヒト由来グリカン21またはヒト由来グリカン22は、飽くまで、ヒト由来のα-マイクログロブリンが有するN型糖鎖の代表的な一例であって、野生型のα-マイクログロブリンのN型糖鎖が、必ずヒト由来グリカン21またはヒト由来グリカン22に示す糖鎖構造を有しているわけではない。同様に、ヒト由来グリカン21またはヒト由来グリカン22における単糖残基同士の結合型も代表的な一例であり、野生型のα1-マイクログロブリンのN型糖鎖において、それぞれの単糖残基同士の結合型が前述した結合型に必ず一致するわけではない。 Human-derived glycan 21 or human-derived glycan 22 shown in FIG. 1A is a representative example of the N-type sugar chain possessed by human-derived α 1 -microglobulin, and wild-type α 1 -microglobulin. does not necessarily have the sugar chain structure shown in human-derived glycan 21 or human-derived glycan 22. Similarly, the bond type between monosaccharide residues in human-derived glycan 21 or human-derived glycan 22 is also a representative example. does not necessarily match the bond types described above.
 α-マイクログロブリンは、ダイアライザまたはヘモダイアフィルタ等の血液浄化器の性能評価において、除去能力の指標の一つとなる。しかしながら、市販されるα-マイクログロブリンは非常に高価であるとともに入手しにくい。そのため、α-マイクログロブリンを低コストで生産することを目指して、遺伝子工学的手法を用いて組換えタンパク質生産系を構築することが想定される。 α 1 -microglobulin is one of the indicators of removal ability in evaluating the performance of blood purifiers such as dialyzers and hemodiafilters. However, commercially available α 1 -microglobulin is very expensive and difficult to obtain. Therefore, with the aim of producing α 1 -microglobulin at low cost, it is envisioned to construct a recombinant protein production system using genetic engineering techniques.
 ただし、α-マイクログロブリンは、前述した通り糖タンパク質である。通常、大腸菌等の原核細胞ではタンパク質を発現させても糖鎖修飾がなされない。α-マイクログロブリンの組換え体を生産するためには、生産性の観点では、原核細胞を宿主として選択することは好適であると考えられるが、タンパク質の糖鎖修飾の観点では、原核細胞は宿主として適さない。そのため、宿主としては、発現したタンパク質に対して糖鎖修飾を含む翻訳後修飾がなされ得る真核細胞を選択すべきである。 However, α 1 -microglobulin is a glycoprotein as described above. Normally, proteins are not glycosylated in prokaryotic cells such as E. coli even if they are expressed. In order to produce a recombinant α 1 -microglobulin, it is considered preferable to select prokaryotic cells as a host from the viewpoint of productivity. is not suitable as a host. Therefore, eukaryotic cells that allow post-translational modifications, including sugar chain modifications, to the expressed proteins should be selected as hosts.
 酵母は、真核細胞とともに大腸菌等の原核細胞のように大量培養することが可能である。他の真核細胞としては、例えば動植物の培養細胞も挙げることができるが、このような動植物の培養細胞は、培養液が高価である、培養細胞の増殖が遅い、単細胞生物の培養に比べて法的な規制が相対的に厳格である等の懸念点が知られている。そのため、α-マイクログロブリンの組換え体を生産するための宿主としては、酵母が好適であると考えられる。 Yeast can be mass-cultured together with eukaryotic cells like prokaryotic cells such as E. coli. Other eukaryotic cells include, for example, cultured cells of animals and plants, but such cultured cells of animals and plants require an expensive culture solution, are slow to grow, and are more difficult to grow than unicellular organisms. Concerns such as relatively strict legal regulations are known. Therefore, it is considered that yeast is suitable as a host for producing a recombinant α 1 -microglobulin.
 ところが、本発明者らの検討の結果、酵母を宿主としてα-マイクログロブリンの組換え体を生産しようとすると、酵母内で発現したα-マイクログロブリンに対して、ハイパーグリコシル化(あるいはハイパーマンノシル化)と呼ばれる過剰な糖鎖修飾が発生することが明らかとなった。 However, as a result of investigations by the present inventors, when trying to produce a recombinant α 1 -microglobulin using yeast as a host, α 1 -microglobulin expressed in yeast is hyperglycosylated (or hyperglycosylated). It was found that excessive sugar chain modification called mannosylation occurs.
 図1Bに示すグリカン23は、ハイパーグリコシル化が発生した場合の糖鎖構造の一例である。グリカン23では、コアグリカン構造10のうち、α6マンノース残基12に対して2つのマンノース残基12が結合し、そのうち一方のマンノース残基12に対しては、マンノース残基12とマンノースリン酸残基16が結合している。 Glycan 23 shown in FIG. 1B is an example of a sugar chain structure when hyperglycosylation occurs. In glycan 23, two mannose residues 12 bind to α6 mannose residue 12 in the core glycan structure 10, and one of these mannose residues 12 has mannose residue 12 and mannose phosphate residue. 16 are bound.
 一方、α3マンノース残基12に対しては、直接的には2つのマンノース残基12が結合している点ではα6マンノース残基12の結合構造と同様であるが、一方のマンノース残基12に対して、多数のマンノース残基12が直列で結合し、それぞれのマンノース残基12から、複数(例えば3つ)のマンノース残基12が直列で結合した分岐鎖が分岐し、部分的にマンノースリン酸残基16が結合している。 On the other hand, the α3 mannose residue 12 has the same binding structure as the α6 mannose residue 12 in that two mannose residues 12 are directly bound. On the other hand, a large number of mannose residues 12 are bonded in series, branched chains in which a plurality of (for example, three) mannose residues 12 are bonded in series branch from each mannose residue 12, and partially mannose residues 12 Acid residue 16 is attached.
 このα3マンノース残基12に対して結合する糖鎖構造を、説明の便宜上「ハイパーマンノース構造120」と称し、図1Bでは破線で囲んで図示する。ハイパーマンノース構造120は、マンノース残基12の数が100以上であるものも存在し、しかも、マンノース残基12の数も一定しない。そのため、ハイパーグリコシル化が生じたα-マイクログロブリンの分子量にはばらつきが生じる。後述する実施例にも示すように、ハイパーグリコシル化されたα-マイクログロブリンを電気泳動すると、相対的に明確な単一のバンドとして確認されず、電気泳動方向に沿って連続的に延伸する不鮮明なバンド(いわゆるスメアな状態)となる。 The sugar chain structure that binds to this α3 mannose residue 12 is referred to as a “hypermannose structure 120” for convenience of explanation, and is shown surrounded by a dashed line in FIG. 1B. Some hypermannose structures 120 have 100 or more mannose residues 12, and the number of mannose residues 12 is not constant. Therefore, the molecular weight of hyperglycosylated α 1 -microglobulin varies. As shown in the examples below, when hyperglycosylated α 1 -microglobulin is electrophoresed, it is not identified as a relatively distinct single band, but is continuously elongated along the direction of electrophoresis. A blurred band (a so-called smear state) results.
 このように、α-マイクログロブリンにハイパーグリコシル化が生じると、α-マイクログロブリンの分子量が、標準的なヒト由来のものに比べて大きくなるだけでなく、分子量そのものにもばらつきが生じることになる。そうすると、血液浄化器におけるα-マイクログロブリンの除去能力の評価に用いることは困難となる。 Thus, hyperglycosylation of α 1 -microglobulin not only increases the molecular weight of α 1 -microglobulin compared to standard human-derived α 1 -microglobulin, but also causes variation in the molecular weight itself. become. This makes it difficult to use the blood purifier to evaluate the ability to remove α 1 -microglobulin.
 また、酵母を宿主として、α-マイクログロブリンの組換え体を生産しようとする場合には、糖鎖構造の非還元末端にシアル酸が結合されないことも懸念点として挙げられる。シアル酸のうち、N-アセチルノイラミン酸は、ヒトも含めて多くの生物種で確認される酸性の単糖残基であり、図1Aに示すヒト由来グリカン21またはヒト由来グリカン22に示すように、ヒト由来のα-マイクログロブリンでは、非還元末端にN-アセチルノイラミン酸残基14が存在する。一般的に、ヒトでは、α-マイクログロブリンだけでなく、多くの糖タンパク質または糖脂質の非還元末端に局在しており、細胞表面の情報伝達に関連していると考えられている。一方、多くの酵母種ではシアル酸合成経路が存在しないことが知られている。 Another concern is that sialic acid is not bound to the non-reducing end of the sugar chain structure when attempting to produce a recombinant α 1 -microglobulin using yeast as a host. Among sialic acids, N-acetylneuraminic acid is an acidic monosaccharide residue that is confirmed in many biological species, including humans. Furthermore, human-derived α 1 -microglobulin has an N-acetylneuraminic acid residue 14 at the non-reducing end. In humans, it is generally localized at the non-reducing ends of not only α 1 -microglobulin but also many glycoproteins or glycolipids, and is thought to be involved in cell surface signaling. On the other hand, it is known that many yeast species do not have a sialic acid synthesis pathway.
 仮に、酵母を宿主としてα-マイクログロブリンを発現させたときに、ハイパーグリコシル化を抑制し、ヒト由来グリカン21またはヒト由来グリカン22に類似する糖鎖構造を再現できたとする。酵母はシアル酸合成経路を有していないので、例えば、ヒト由来グリカン21の例では、非還元末端の4つの分岐鎖の先端にシアル酸が結合していない糖鎖構造、あるいはシアル酸の代わりに他の糖鎖残基が結合する糖鎖構造が生じることが想定される。この場合、野生型のα-マイクログロブリンにおける糖鎖構造に比べて、組換え体のα-マイクログロブリンにおける糖鎖構造は、非還元末端の糖鎖残基が4つも失われることになり、糖タンパク質の分子量に大きなずれが生じると考えられる。 Suppose that when expressing α 1 -microglobulin in yeast as a host, hyperglycosylation could be suppressed and a sugar chain structure similar to human-derived glycan 21 or human-derived glycan 22 could be reproduced. Since yeast does not have a sialic acid synthesis pathway, for example, in the example of human-derived glycan 21, a sugar chain structure in which sialic acid is not bound to the tips of the four branched chains at the non-reducing end, or It is assumed that a sugar chain structure in which other sugar chain residues are bound to is generated. In this case, compared with the sugar chain structure of wild-type α 1 -microglobulin, the sugar chain structure of recombinant α 1 -microglobulin lacks as many as four sugar chain residues at the non-reducing end. , it is thought that a large deviation occurs in the molecular weight of the glycoprotein.
 また、シアル酸は酸性糖であるため、血液中に遊離するα-マイクログロブリンの挙動に何らかの影響を及ぼしている可能性も想定される。そのため、血液浄化器におけるα-マイクログロブリンの除去能力を評価する上で、分子量の問題だけでなく、糖鎖構造の先端にシアル酸が存在していなければ、α-マイクログロブリンの除去能力を適切に評価できない可能性もある。 In addition, since sialic acid is an acidic sugar, it is assumed that it may have some influence on the behavior of α 1 -microglobulin released into the blood. Therefore, in evaluating the removal ability of α 1 -microglobulin in a blood purifier, not only the molecular weight problem but also the removal ability of α 1 -microglobulin should be considered if sialic acid is not present at the tip of the sugar chain structure. may not be properly evaluated.
 これに対して、本発明者らの鋭意検討の結果、後述する実施例でも実証しているように、血液浄化器の性能評価を目的とする観点では、ヒト由来のα-マイクログロブリンが有するオリジナルの糖鎖構造であるヒト由来グリカン21またはヒト由来グリカン22等と同様の糖鎖構造を再現する必要がないことが明らかとなり、また、非還元末端のシアル酸(N-アセチルノイラミン酸)残基も必要がないことも明らかとなった。 On the other hand, as a result of intensive studies by the present inventors, as demonstrated in Examples described later, human-derived α 1 -microglobulin has It has become clear that it is not necessary to reproduce a sugar chain structure similar to that of the original sugar chain structure, such as human-derived glycan 21 or human-derived glycan 22. It was also found that no residue was required.
 後述する実施例で得られたα-マイクログロブリン組換え体が有するN型糖鎖は、図1Aにおいて左側に示す変異グリカン20であり、図1Aにおいて中央または右に示すヒト由来グリカン21またはヒト由来グリカン22と比較して、ヒト由来の糖鎖構造に実質的に必須とされる、非還元末端のN-アセチルノイラミン酸残基14を有していない点で大きく異なっている。一方、変異グリカン20と、ヒト由来グリカン21またはヒト由来グリカン22とを比較して共通するのは、コアグリカン構造10を有している点である。 The N-type sugar chain possessed by the α 1 -microglobulin recombinant obtained in the example described later is the mutant glycan 20 shown on the left side of FIG. 1A, and the human-derived glycan 21 or human Compared to derived glycan 22, it is significantly different in that it does not have N-acetylneuraminic acid residue 14 at the non-reducing end, which is essentially essential for human-derived glycan structures. On the other hand, what is common between the mutant glycan 20 and the human-derived glycan 21 or the human-derived glycan 22 is that they have a core glycan structure 10 .
 これらの点から導き出されるのは、血液浄化器の性能評価を行う上では、α-マイクログロブリンのN型糖鎖は、ヒト由来のオリジナルのN型糖鎖(野生型のN型糖鎖)と同一構造である必要はなく、少なくともコアグリカン構造10を有していればよいこと、並びに、非還元末端のN-アセチルノイラミン酸残基も必要でないことが導き出される。 What is derived from these points is that in evaluating the performance of blood purifiers, the N-type sugar chain of α 1 -microglobulin is the original N-type sugar chain derived from humans (wild-type N-type sugar chain). It is derived that it does not need to have the same structure as , and that it suffices to have at least the coagulcan structure 10, and that the N-acetylneuraminic acid residue at the non-reducing end is not necessary.
 したがって、本開示に係る糖鎖変異型α-マイクログロブリンは、血液浄化器の性能評価に用いることが可能なものであってN型糖鎖が変異しており、当該変異N型糖鎖は、ヒト由来のα-マイクログロブリンが有するN型糖鎖における少なくとも一つの非還元末端に、N-アセチルノイラミン酸が結合していないもの、言い換えれば、N型糖鎖に共通するコアグリカン構造を含んでおり、非還元末端の単糖残基がN-アセチルノイラミン酸残基14ではない糖鎖構造であればよい。 Therefore, the sugar chain variant α 1 -microglobulin according to the present disclosure can be used for evaluating the performance of blood purifiers, and has a mutated N-type sugar chain. N-acetylneuraminic acid is not bound to at least one non-reducing end of the N-type sugar chain of human-derived α 1 -microglobulin, in other words, a core glycan structure common to N-type sugar chains Any sugar chain structure may be used as long as it contains N-acetylneuraminic acid residue 14 and the monosaccharide residue at the non-reducing end is not N-acetylneuraminic acid residue 14 .
 なお、図1Aに示す変異グリカン20を、前述した本糖鎖記述方式に基づいて記述すると、Manα1-6(Manα1-3)Manα1-6(Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcとなる(還元末端にβ結合するAsnは省略)。また、この変異グリカン20は、コアグリカン構造10におけるα6マンノース残基12に対して、さらに2つのマンノース残基12が分岐して結合した構造である。コアグリカン構造10が3つのマンノース残基12を有するため、前記の通りトリマンノシルコア構造と称する場合がある。これに基づいて、本実施の形態では、変異グリカン20を、5つのマンノース残基12を有することから、説明の便宜上、ペンタマンノシル構造と称する場合がある。 If the mutant glycan 20 shown in FIG. 1A is described based on the present sugar chain description method described above, it becomes Manα1-6 (Manα1-3) Manα1-6 (Manα1-3) Manβ1-4GlcNAcβ1-4GlcNAc (reducing end Asn β-bonded to is omitted). In addition, this mutant glycan 20 has a structure in which two mannose residues 12 are branched and bound to the α6 mannose residue 12 in the core glycan structure 10 . Because the core glycan structure 10 has three mannose residues 12, it is sometimes referred to as the trimannosyl core structure, as described above. Based on this, in the present embodiment, since the mutant glycan 20 has five mannose residues 12, it may be referred to as a pentamannosyl structure for convenience of explanation.
 [変異N型糖鎖のバリエーションの例]
 本開示に係る糖鎖変異型α-マイクログロブリンが有する変異N型糖鎖は、前記の通り、N型糖鎖に共通するコアグリカン構造を含み、かつ、非還元末端に、N-アセチルノイラミン酸が結合していない糖鎖構造を有するものであれば、特に限定されない。代表的な変異N型糖鎖としては、例えば図2に示す、ハイブリッド型グリカン20a~20eまたは高マンノース型グリカン20f~20h、もしくは、図3に示す、複合型グリカン30a~30lを挙げることができる。
[Examples of Variations of Mutant N-Glycans]
As described above, the mutant N-type sugar chain possessed by the sugar chain variant α 1 -microglobulin according to the present disclosure contains a core glycan structure common to N-type sugar chains and has N-acetylneuramin at the non-reducing end. It is not particularly limited as long as it has a sugar chain structure to which no acid is bound. Representative mutant N-glycans can include, for example, hybrid-type glycans 20a-20e or high-mannose-type glycans 20f-20h shown in FIG. 2, or complex-type glycans 30a-30l shown in FIG. .
 まず、本開示に係る変異N型糖鎖は、図1Aに示す変異グリカン20の糖鎖構造(ペンタマンノシル構造)であってもよいが、当該変異グリカン20を基準としたときに、図2に示すように、当該変異グリカン20における3つの非還元末端のマンノース残基12(すなわち、α3マンノース残基12、α6マンノース残基12にα1-6型でグリコシル結合したマンノース残基12、およびα6マンノース残基12にα1-3型でグリコシル結合したマンノース残基12)の少なくともいずれかに、マンノース残基12、N-アセチルグルコサミン残基11が結合する糖鎖構造を含むものを挙げることができる。 First, the mutant N-type sugar chain according to the present disclosure may be the sugar chain structure (pentamannosyl structure) of the mutant glycan 20 shown in FIG. 1A. As shown, the three non-reducing terminal mannose residues 12 in the mutated glycan 20 (i.e., α3 mannose residue 12, mannose residue 12 glycosyl-linked to α6 mannose residue 12 in the α1-6 form, and α6 mannose residue 12) Examples include those containing a sugar chain structure in which mannose residue 12 and N-acetylglucosamine residue 11 are linked to at least one of mannose residues 12) glycosyl-linked to residue 12 in the α1-3 type.
 このとき、ペンタマンノシル構造が有する非還元末端の1つのマンノース残基12に対して、1つまたは2つのマンノース残基12が結合してもよいし、非還元末端の1つのマンノース残基12に対して、1つまたは2つのN-アセチルグルコサミン残基11が結合してもよい。非還元末端のマンノース残基12に対して、マンノース残基12のみが結合していれば「高マンノース型」の糖鎖構造であり、少なくとも1つのN-アセチルグルコサミン残基11が結合していれば「ハイブリッド型」の糖鎖構造である。 At this time, one or two mannose residues 12 may be bound to one mannose residue 12 at the non-reducing end of the pentamannosyl structure, or one mannose residue 12 at the non-reducing end Alternatively, one or two N-acetylglucosamine residues 11 may be attached. If only the mannose residue 12 is bound to the mannose residue 12 at the non-reducing end, it is a "high mannose type" sugar chain structure, and if at least one N-acetylglucosamine residue 11 is bound. For example, it is a “hybrid” sugar chain structure.
 また、図2に示すように、ペンタマンノシル構造が有する少なくとも一つの非還元末端のマンノース残基12に、N-アセチルグルコサミン残基11が結合した場合、当該N-アセチルグルコサミン残基11に対して、さらにガラクトース残基13が結合する糖鎖構造を含んでもよいし、分岐点マンノース残基12にN-アセチルグルコサミン残基11が結合する糖鎖構造を含んでもよい。 Further, as shown in FIG. 2, when the N-acetylglucosamine residue 11 is bound to at least one non-reducing terminal mannose residue 12 of the pentamannosyl structure, the N-acetylglucosamine residue 11 Furthermore, it may contain a sugar chain structure in which galactose residue 13 is bound, or a sugar chain structure in which N-acetylglucosamine residue 11 is bound to branch point mannose residue 12 .
 さらには、還元末端の(Asnに直接結合する)N-アセチルグルコサミン残基11にフコース残基15が分岐して結合してもよいし、非還元末端側に位置するN-アセチルグルコサミン残基11にフコース残基15が分岐して結合してもよい。 Furthermore, the fucose residue 15 may be branched and bound to the N-acetylglucosamine residue 11 (directly bound to Asn) at the reducing end, or the N-acetylglucosamine residue 11 located at the non-reducing end side. The fucose residue 15 may be branched and bound to .
 なお、説明の便宜上、例えば、α1-3型のグリコシル結合は、単に「α1-3結合」と省略し、β1-2型のグリコシル結合は、単に「β1-2結合」と省略する。また、α6マンノース残基12に対してα1-3結合しているマンノース残基12を、α6α3マンノース残基12と称し、α6マンノース残基12に対してα1-6結合しているα6α6マンノース残基12と称する。そのため、図2では、ペンタマンノシル構造(変異グリカン20)におけるα6マンノース残基12に対しても分岐点マンノース残基12と同様に、「α3」または「α6」という略記形式で、グリコシド結合の種類を付記している。 For convenience of explanation, for example, the α1-3 type glycosyl bond is abbreviated simply as "α1-3 bond", and the β1-2 type glycosyl bond is simply abbreviated as "β1-2 bond". In addition, the mannose residue 12 that is α1-3 bonded to the α6 mannose residue 12 is referred to as α6α3 mannose residue 12, and the α6α6 mannose residue that is α1-6 bonded to the α6 mannose residue 12. 12. Therefore, in FIG. 2, for α6 mannose residue 12 in the pentamannosyl structure (variant glycan 20), as well as for branch point mannose residue 12, the type of glycosidic bond is indicated in the abbreviated form “α3” or “α6”. is appended.
 例えば、図2上段(第1段)紙面左に示すハイブリッド型グリカン20aは、図1Aに示す変異グリカン20におけるα3マンノース残基12に対して、N-アセチルグルコサミン残基11がβ1-2型でグリコシル結合した糖鎖構造を有している。 For example, the hybrid glycan 20a shown on the left side of the page (first row) in FIG. It has a glycosyl-linked sugar chain structure.
 前述した本糖鎖記述方式に基づいて記述すると、ハイブリッド型グリカン20aは、Manα1-6(Manα1-3)Manα1-6(GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcとなる。 Based on the present sugar chain description method described above, the hybrid glycan 20a is Manα1-6 (Manα1-3) Manα1-6 (GlcNAcβ1-2Manα1-3) Manβ1-4GlcNAcβ1-4GlcNAc.
 図2上段中央に示すハイブリッド型グリカン20bは、ハイブリッド型グリカン20aの非還元末端のN-アセチルグルコサミン残基11に、さらにガラクトース残基13がβ1-4結合した糖鎖構造を有している。変異グリカン20を基準にすれば、α3マンノース残基12に対して、N-アセチルグルコサミン残基11がβ1-2結合し、当該N-アセチルグルコサミン残基11に対して、ガラクトース残基13がβ1-4結合した糖鎖構造を有している。 The hybrid-type glycan 20b shown in the upper center of FIG. 2 has a sugar chain structure in which galactose residues 13 are β1-4-linked to the N-acetylglucosamine residue 11 at the non-reducing end of the hybrid-type glycan 20a. Based on mutant glycan 20, N-acetylglucosamine residue 11 is β1-2 bound to α3 mannose residue 12, and galactose residue 13 is β1 to the N-acetylglucosamine residue 11. -4 has a linked sugar chain structure.
 前述した本糖鎖記述方式に基づいて記述すると、ハイブリッド型グリカン20bは、Manα1-6(Manα1-3)Manα1-6(Galβ1-4GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcとなる。 Based on the present sugar chain description method described above, the hybrid glycan 20b is Manα1-6 (Manα1-3) Manα1-6 (Galβ1-4GlcNAcβ1-2Manα1-3) Manβ1-4GlcNAcβ1-4GlcNAc.
 図2上段紙面右に示すハイブリッド型グリカン20cは、ハイブリッド型グリカン20bのN-アセチルグルコサミン残基11に、さらにフコース残基15がα1-3結合した糖鎖構造を有している。変異グリカン20を基準にすれば、α3マンノース残基12に対して、N-アセチルグルコサミン残基11がβ1-2結合し、当該N-アセチルグルコサミン残基11に対して、ガラクトース残基13がβ1-4結合するとともにフコース残基15がα1-3結合した糖鎖構造を有している。 The hybrid glycan 20c shown on the right side of the upper page of FIG. 2 has a sugar chain structure in which the fucose residue 15 is α1-3 linked to the N-acetylglucosamine residue 11 of the hybrid glycan 20b. Based on mutant glycan 20, N-acetylglucosamine residue 11 is β1-2 bound to α3 mannose residue 12, and galactose residue 13 is β1 to the N-acetylglucosamine residue 11. -4 linkage and α1-3 linkage of fucose residue 15.
 前述した本糖鎖記述方式に基づいて記述すると、ハイブリッド型グリカン20cは、Manα1-6(Manα1-3)Manα1-6(Galβ1-4(Fucα1-3)GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcとなる。 Based on the present sugar chain description system described above, the hybrid glycan 20c is Manα1-6 (Manα1-3) Manα1-6 (Galβ1-4 (Fucα1-3) GlcNAcβ1-2Manα1-3) Manβ1-4GlcNAcβ1-4GlcNAc becomes.
 図2中段(第2段)左に示すハイブリッド型グリカン20dは、ハイブリッド型グリカン20aにおける分岐点マンノース残基12に対して、N-アセチルグルコサミン残基11がβ1-4結合した糖鎖構造を有している。変異グリカン20を基準にすれば、α3マンノース残基12に対して、N-アセチルグルコサミン残基11がβ1-2結合し、分岐点マンノース残基12に対して、N-アセチルグルコサミン残基11がβ1-4結合した糖鎖構造を有している。 The hybrid glycan 20d shown on the left in the middle (second row) of FIG. 2 has a sugar chain structure in which the N-acetylglucosamine residue 11 is β1-4 linked to the branch point mannose residue 12 in the hybrid glycan 20a. are doing. Based on mutant glycan 20, N-acetylglucosamine residue 11 is β1-2 linked to α3 mannose residue 12, and N-acetylglucosamine residue 11 is linked to branch point mannose residue 12. It has a β1-4 linked sugar chain structure.
 前述した本糖鎖記述方式に基づいて記述すると、ハイブリッド型グリカン20dは、Manα1-6(Manα1-3)Manα1-6(GlcNAcβ1-2Manα1-3)(GlcNAcβ1-4)Manβ1-4GlcNAcβ1-4GlcNAcとなる。 Based on the present sugar chain description method described above, the hybrid glycan 20d is Manα1-6 (Manα1-3) Manα1-6 (GlcNAcβ1-2Manα1-3) (GlcNAcβ1-4) Manβ1-4GlcNAcβ1-4GlcNAc.
 図2中段中央に示すハイブリッド型グリカン20eは、ハイブリッド型グリカン20bにおけるα3マンノース残基12に対して、β1-2結合しているN-アセチルグルコサミン残基11とは別に、さらにN-アセチルグルコサミン残基11が分岐してβ1-4結合し、分岐点マンノース残基12に対して、N-アセチルグルコサミン残基11がβ1-4結合し、還元末端の(Asnに直接結合する)N-アセチルグルコサミン残基11にフコース残基15がα1-6結合した糖鎖構造を有している。変異グリカン20を基準にすれば、α3マンノース残基12に対して、第一のN-アセチルグルコサミン残基11がβ1-2結合するとともに第二のN-アセチルグルコサミン残基11がβ1-4結合し、分岐点マンノース残基12に対して、N-アセチルグルコサミン残基11がβ1-4結合し、第一のN-アセチルグルコサミン残基11に対して、ガラクトース残基13がβ1-4結合し、還元末端のN-アセチルグルコサミン残基11にフコース残基15がα1-6結合した糖鎖構造を有している。 The hybrid-type glycan 20e shown in the center of the middle row of FIG. Group 11 is branched and β1-4 linked, N-acetylglucosamine residue 11 is β1-4 linked to branch point mannose residue 12, and N-acetylglucosamine at the reducing end (directly linked to Asn) It has a sugar chain structure in which fucose residue 15 is α1-6 linked to residue 11. Based on the mutant glycan 20, the first N-acetylglucosamine residue 11 is β1-2 linked to the α3 mannose residue 12, and the second N-acetylglucosamine residue 11 is β1-4 linked. Then, the N-acetylglucosamine residue 11 is β1-4 bonded to the branch point mannose residue 12, and the galactose residue 13 is β1-4 bonded to the first N-acetylglucosamine residue 11. , has a sugar chain structure in which fucose residue 15 is α1-6 linked to N-acetylglucosamine residue 11 at the reducing end.
 前述した本糖鎖記述方式に基づいて記述すると、ハイブリッド型グリカン20eは、Manα1-6(Manα1-3)Manα1-6(Galβ1-4GlcNAcβ1-2(GlcNAcβ1-4)Manα1-3)(GlcNAcβ1-4)Manβ1-4GlcNAcβ1-4(Fucα1-6)GlcNAcとなる。 Based on the present sugar chain description system described above, the hybrid glycan 20e is Manα1-6 (Manα1-3) Manα1-6 (Galβ1-4GlcNAcβ1-2 (GlcNAcβ1-4) Manα1-3) (GlcNAcβ1-4) Manβ1-4GlcNAcβ1-4(Fucα1-6)GlcNAc.
 図2中央右に示す高マンノース型グリカン20fは、変異グリカン20のα3マンノース残基12に対して、マンノース残基12がα1-2結合した糖鎖構造を有している。 The high-mannose glycan 20f shown in the center right of FIG. 2 has a sugar chain structure in which the mannose residue 12 is α1-2 linked to the α3 mannose residue 12 of the mutant glycan 20.
 前述した本糖鎖記述方式に基づいて記述すると、高マンノース型グリカン20fは、Manα1-6(Manα1-3)Manα1-6(Manα1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcとなる。 Based on the present sugar chain description method described above, the high-mannose glycan 20f is Manα1-6 (Manα1-3) Manα1-6 (Manα1-2Manα1-3) Manβ1-4GlcNAcβ1-4GlcNAc.
 図2下段(第3段)左に示す高マンノース型グリカン20gは、高マンノース型グリカン20fにおいてα3マンノース残基12に結合したマンノース残基12に対して、さらにマンノース残基12がα1-2結合するとともに、α6α6マンノース残基12に、さらにマンノース残基12がα1-2結合した糖鎖構造を有している。変異グリカン20を基準にすれば、α3マンノース残基12に対して、マンノース残基12がα1-2結合し、このマンノース残基12に対して、さらにマンノース残基12がα1-2結合し、α6α6マンノース残基12に、さらにマンノース残基12がα1-2結合した糖鎖構造を有している。 The high-mannose glycan 20g shown in the lower (third row) left of FIG. In addition, it has a sugar chain structure in which α6α6 mannose residue 12 and mannose residue 12 are linked α1-2. Based on the mutant glycan 20, mannose residue 12 is α1-2 bonded to α3 mannose residue 12, and mannose residue 12 is further α1-2 bonded to this mannose residue 12, It has a sugar chain structure in which 12 α6α6 mannose residues are further α1-2 linked to 12 mannose residues.
 前述した本糖鎖記述方式に基づいて記述すると、高マンノース型グリカン20gは、Manα1-2Manα1-6(Manα1-3)Manα1-6(Manα1-2Manα1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcとなる。 Based on the present sugar chain description method described above, 20 g of high-mannose glycans are Manα1-2Manα1-6 (Manα1-3) Manα1-6 (Manα1-2Manα1-2Manα1-3) Manβ1-4GlcNAcβ1-4GlcNAc.
 図2下段右に示す高マンノース型グリカン20hは、高マンノース型グリカン20gにおいて、α6α3マンノース残基12に、さらにマンノース残基12がα1-2結合した糖鎖構造を有している。変異グリカン20を基準にすれば、α3マンノース残基12に対して、マンノース残基12がα1-2結合し、このマンノース残基12に対して、さらにマンノース残基12がα1-2結合し、α6α6マンノース残基12に、さらにマンノース残基12がα1-2結合し、α6α3マンノース残基12に、さらにマンノース残基12がα1-2結合した糖鎖構造を有している。 The high-mannose glycan 20h shown in the lower right of FIG. 2 has a sugar chain structure in which the mannose residue 12 is further α1-2 linked to the α6α3 mannose residue 12 in the high-mannose glycan 20g. Based on the mutant glycan 20, mannose residue 12 is α1-2 bonded to α3 mannose residue 12, and mannose residue 12 is further α1-2 bonded to this mannose residue 12, It has a sugar chain structure in which α6α6 mannose residue 12 is further α1-2 bonded to mannose residue 12, and α6α3 mannose residue 12 is further α1-2 bonded to mannose residue 12.
 前述した本糖鎖記述方式に基づいて記述すると、高マンノース型グリカン20gは、Manα1-2Manα1-6(Manα1-2Manα1-3)Manα1-6(Manα1-2Manα1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcとなる。 Based on the present sugar chain description method described above, the high-mannose glycans 20 g are Manα1-2Manα1-6 (Manα1-2Manα1-3) Manα1-6 (Manα1-2Manα1-2Manα1-3) Manβ1-4GlcNAcβ1-4GlcNAc. Become.
 なお、図2に示す糖鎖構造の例では、マンノース残基12は、分岐する場合には、α1-3結合およびα1-6結合で他のマンノース残基12に結合するが、分岐しない場合には、他のマンノース残基12とはα1-2結合している。糖鎖の結合型はこれに限定されず、公知の範囲でさまざまな結合型であってもよい。また、高マンノース型グリカン20f~20hにおいては、非還元末端の複数のマンノース残基12の少なくともいずれかに、ガラクトース残基13が結合してもよい。あるいは、高マンノース型グリカン20f~20hにおいては、α3マンノース残基12に対して2つのマンノース残基12が分岐して結合してもよい。 In the example of the sugar chain structure shown in FIG. 2, when the mannose residue 12 is branched, it binds to other mannose residues 12 via the α1-3 bond and the α1-6 bond, but when it is not branched, is α1-2 linked to another mannose residue 12. The sugar chain binding type is not limited to this, and various binding types may be used within a known range. Moreover, in the high-mannose glycans 20f to 20h, a galactose residue 13 may be bound to at least one of the plurality of mannose residues 12 at the non-reducing end. Alternatively, two mannose residues 12 may be branched and linked to the α3 mannose residue 12 in high-mannose glycans 20f-20h.
 このように、本開示に係る糖鎖変異型α-マイクログロブリンにおいては、変異N型糖鎖は、Manα1-3(Manα1-3(Manα1-6)Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAcとして表記されるペンタマンノシル構造を含むものであればよく、例えば、図2に示すように、当該ペンタマンノシル構造の非還元末端の3つのマンノース残基12の少なくともいずれかに対して、さらにマンノース残基12またはN-アセチルグルコサミン残基11がグリコシド結合した糖鎖構造を含むものを挙げることができる。 Thus, in the sugar chain variant α 1 -microglobulin according to the present disclosure, the mutant N-type sugar chain is expressed as Manα1-3(Manα1-3(Manα1-6)Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAc For example, as shown in FIG. 2, for at least one of the three mannose residues 12 at the non-reducing end of the pentamannosyl structure, further mannose residue 12 Alternatively, those containing a sugar chain structure in which N-acetylglucosamine residue 11 is glycoside-linked can be mentioned.
 あるいは、本開示に係る変異N型糖鎖は、図3に示すように、コアグリカン構造10(トリマンノシルコア構造)を含むものの変異グリカン20の糖鎖構造(ペンタマンノシル構造)を含まない、複合型の糖鎖構造であってもよい。すなわち、コアグリカン構造10の2つの非還元末端のマンノース残基12(すなわち、α3マンノース残基12および、α6マンノース残基12)の少なくともいずれかに、N-アセチルグルコサミン残基11が結合した糖鎖構造を含むものを挙げることができる。 Alternatively, the mutant N-type sugar chain according to the present disclosure, as shown in FIG. 3, is a complex type sugar chain that includes core glycan structure 10 (trimannosyl core structure) but does not include the sugar chain structure of mutant glycan 20 (pentamannosyl structure). may be a sugar chain structure of That is, a sugar chain in which N-acetylglucosamine residue 11 is bound to at least one of two non-reducing terminal mannose residues 12 (that is, α3 mannose residue 12 and α6 mannose residue 12) of coagulan structure 10. Those containing structures can be mentioned.
 このとき、コアグリカン構造10が有する非還元末端の1つのマンノース残基12に対しては、1つのマンノース残基12のみが結合する。また、コアグリカン構造10が有する少なくとも一つの非還元末端のマンノース残基12に、N-アセチルグルコサミン残基11が結合した場合、当該N-アセチルグルコサミン残基11に対して、さらにガラクトース残基13が結合する糖鎖構造を含んでもよいし、フコース残基15が分岐して結合してもよいし、還元末端のN-アセチルグルコサミン残基11にフコース残基15が分岐して結合してもよい。 At this time, only one mannose residue 12 binds to one mannose residue 12 at the non-reducing end of the coagulan structure 10 . Further, when the N-acetylglucosamine residue 11 is bound to at least one non-reducing terminal mannose residue 12 of the coagulan structure 10, the galactose residue 13 is further attached to the N-acetylglucosamine residue 11. It may contain a binding sugar chain structure, the fucose residue 15 may be branched and bound, or the fucose residue 15 may be branched and bound to the N-acetylglucosamine residue 11 at the reducing end. .
 例えば、図3上段(第1段)において最も左に示す複合型グリカン30aは、コアグリカン構造10のα3マンノース残基12に対して、N-アセチルグルコサミン残基11がβ1-2結合した糖鎖構造を有している。 For example, the leftmost complex glycan 30a in the upper (first) row of FIG. have.
 前述した本糖鎖記述方式に基づいて記述すると、複合型グリカン30aは、Manα1-6(GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcとなる。 Based on the present sugar chain description method described above, the complex glycan 30a is Manα1-6 (GlcNAcβ1-2Manα1-3) Manβ1-4GlcNAcβ1-4GlcNAc.
 図3上段において左から2番目に示す複合型グリカン30bは、コアグリカン構造10のα6マンノース残基12に対して、N-アセチルグルコサミン残基11がβ1-2結合した糖鎖構造を有している。 The complex-type glycan 30b, shown second from the left in the upper part of FIG. .
 前述した本糖鎖記述方式に基づいて記述すると、複合型グリカン30bは、GlcNAcβ1-2Manα1-6(Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcとなる。 Based on the present sugar chain description system described above, complex glycan 30b is GlcNAcβ1-2Manα1-6 (Manα1-3) Manβ1-4GlcNAcβ1-4GlcNAc.
 図3上段において左から3番目に示す複合型グリカン30cは、コアグリカン構造10のα3マンノース残基12に対して、N-アセチルグルコサミン残基11がβ1-2結合し、α6マンノース残基12に対して、N-アセチルグルコサミン残基11がβ1-2結合した糖鎖構造を有している。 Complex-type glycan 30c, shown third from the left in the upper part of FIG. It has a sugar chain structure in which N-acetylglucosamine residue 11 is β1-2 linked.
 前述した本糖鎖記述方式に基づいて記述すると、複合型グリカン30cは、GlcNAcβ1-2Manα1-6(GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcとなる。 Based on the present sugar chain description system described above, the complex glycan 30c is GlcNAcβ1-2Manα1-6 (GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAc.
 図3上段において右に示す複合型グリカン30dは、コアグリカン構造10のα3マンノース残基12に対して、N-アセチルグルコサミン残基11がβ1-2結合するとともに、還元末端のN-アセチルグルコサミン残基11に対して、フコース残基15がα1-6結合した糖鎖構造を有している。 Complex-type glycan 30d shown on the right in the upper part of FIG. 11 has a sugar chain structure in which fucose residue 15 is α1-6 linked.
 前述した本糖鎖記述方式に基づいて記述すると、複合型グリカン30dは、Manα1-6(GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4(Fucα1-6)GlcNAcとなる。 Based on the present sugar chain description method described above, complex glycan 30d is Manα1-6(GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4(Fucα1-6)GlcNAc.
 図3中段(第2段)において最も左に示す複合型グリカン30eは、コアグリカン構造10のα3マンノース残基12に対して、N-アセチルグルコサミン残基11がβ1-2結合し、当該N-アセチルグルコサミン残基11に対して、さらにガラクトース残基13がβ1-4結合した糖鎖構造を有している。 Complex-type glycan 30e shown on the far left in the middle (second) of FIG. It has a sugar chain structure in which galactose residue 13 is β1-4 linked to glucosamine residue 11.
 前述した本糖鎖記述方式に基づいて記述すると、複合型グリカン30eは、Manα1-6(Galβ1-4GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcとなる。 Based on the present sugar chain description method described above, complex glycan 30e is Manα1-6(Galβ1-4GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAc.
 図3中段において左から2番目に示す複合型グリカン30fは、コアグリカン構造10のα6マンノース残基12に対して、N-アセチルグルコサミン残基11がβ1-2結合し、当該N-アセチルグルコサミン残基11に対して、さらにガラクトース残基13がβ1-4結合した糖鎖構造を有している。 Complex-type glycan 30f, shown second from the left in the middle of FIG. 11, it has a sugar chain structure in which galactose residue 13 is β1-4 linked.
 前述した本糖鎖記述方式に基づいて記述すると、複合型グリカン30fは、Galβ1-4GlcNAcβ1-2Manα1-6(Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcとなる。 Based on the present sugar chain description method described above, complex glycan 30f is Galβ1-4GlcNAcβ1-2Manα1-6(Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAc.
 図3中段において左から3番目に示す複合型グリカン30gは、コアグリカン構造10のα3マンノース残基12に対して、N-アセチルグルコサミン残基11がβ1-2結合し、当該N-アセチルグルコサミン残基11に対して、さらにガラクトース残基13がβ1-4結合するとともにフコース残基15がα1-3結合した糖鎖構造を有している。 Complex-type glycan 30g, shown third from the left in the middle of FIG. 11, it has a sugar chain structure in which galactose residue 13 is β1-4 linked and fucose residue 15 is α1-3 linked.
 前述した本糖鎖記述方式に基づいて記述すると、複合型グリカン30gは、Manα1-6(Galβ1-4(Fucα1-3)GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcとなる。 Based on the present sugar chain description method described above, the complex glycan 30 g is Manα1-6(Galβ1-4(Fucα1-3)GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAc.
 図3中段において最も右に示す複合型グリカン30hは、コアグリカン構造10のα6マンノース残基12に対して、N-アセチルグルコサミン残基11がβ1-2結合し、当該N-アセチルグルコサミン残基11に対して、さらにガラクトース残基13がβ1-4結合するとともにフコース残基15がα1-3結合した糖鎖構造を有している。 Complex-type glycan 30h shown on the far right in the middle of FIG. On the other hand, it has a sugar chain structure in which galactose residue 13 is β1-4 linked and fucose residue 15 is α1-3 linked.
 前述した本糖鎖記述方式に基づいて記述すると、複合型グリカン30hは、Galβ1-4(Fucα1-3)GlcNAcβ1-2Manα1-6(Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcとなる。 Based on the present sugar chain description method described above, complex glycan 30h is Galβ1-4(Fucα1-3)GlcNAcβ1-2Manα1-6(Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAc.
 図3下段(第3段)において最も左に示す複合型グリカン30iは、コアグリカン構造10のα3マンノース残基12に対して、N-アセチルグルコサミン残基11がβ1-2結合し、当該N-アセチルグルコサミン残基11に対して、さらにガラクトース残基13がβ1-4結合するとともに、α6マンノース残基12に対して、N-アセチルグルコサミン残基11がβ1-2結合し、当該N-アセチルグルコサミン残基11に対して、さらにガラクトース残基13がβ1-4結合した糖鎖構造を有している。 Complex-type glycan 30i shown on the far left in FIG. Galactose residue 13 is further β1-4 bonded to glucosamine residue 11, and N-acetylglucosamine residue 11 is β1-2 bonded to α6 mannose residue 12, and the N-acetylglucosamine residue It has a sugar chain structure in which galactose residue 13 is β1-4 linked to group 11.
 前述した本糖鎖記述方式に基づいて記述すると、複合型グリカン30iは、Galβ1-4GlcNAcβ1-2Manα1-6(Galβ1-4GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcとなる。 Based on the present sugar chain description method described above, complex glycan 30i is Galβ1-4GlcNAcβ1-2Manα1-6(Galβ1-4GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAc.
 図3下段において左から2番目に示す複合型グリカン30jは、コアグリカン構造10のα3マンノース残基12に対して、N-アセチルグルコサミン残基11がβ1-2結合し、当該N-アセチルグルコサミン残基11に対して、さらにガラクトース残基13がβ1-4結合するとともに、α6マンノース残基12に対して、N-アセチルグルコサミン残基11がβ1-2結合した糖鎖構造を有している。 Complex-type glycan 30j shown second from the left in the lower part of FIG. Galactose residue 13 is β1-4 linked to 11, and N-acetylglucosamine residue 11 is β1-2 linked to α6 mannose residue 12.
 前述した本糖鎖記述方式に基づいて記述すると、複合型グリカン30jは、GlcNAcβ1-2Manα1-6(Galβ1-4GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcとなる。 Based on the present sugar chain description method described above, the complex glycan 30j is GlcNAcβ1-2Manα1-6(Galβ1-4GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAc.
 図3下段において左から3番目に示す複合型グリカン30kは、コアグリカン構造10のα3マンノース残基12に対して、N-アセチルグルコサミン残基11がβ1-2結合し、当該N-アセチルグルコサミン残基11に対して、さらにガラクトース残基13がβ1-4結合するとともにフコース残基15がα1-3結合し、α6マンノース残基12に対して、N-アセチルグルコサミン残基11がβ1-2結合し、当該N-アセチルグルコサミン残基11に対して、さらにガラクトース残基13がβ1-4結合した糖鎖構造を有している。 The complex-type glycan 30k shown third from the left in the lower part of FIG. Furthermore, galactose residue 13 is β1-4 linked to 11, fucose residue 15 is β1-3 linked, and N-acetylglucosamine residue 11 is β1-2 linked to α6 mannose residue 12. , has a sugar chain structure in which galactose residue 13 is β1-4 linked to the N-acetylglucosamine residue 11.
 前述した本糖鎖記述方式に基づいて記述すると、複合型グリカン30kは、Galβ1-4GlcNAcβ1-2Manα1-6(Galβ1-4(Fucα1-3)GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcとなる。 Based on the present sugar chain description method described above, complex glycan 30k is Galβ1-4GlcNAcβ1-2Manα1-6(Galβ1-4(Fucα1-3)GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAc.
 図3下段において右に示す複合型グリカン30lは、コアグリカン構造10のα3マンノース残基12に対して、N-アセチルグルコサミン残基11がβ1-2結合し、当該N-アセチルグルコサミン残基11に対して、さらにガラクトース残基13がβ1-4結合するとともに、α6マンノース残基12に対して、N-アセチルグルコサミン残基11がβ1-2結合し、当該N-アセチルグルコサミン残基11に対して、さらにガラクトース残基13がβ1-4結合し、さらにコアグリカン構造10の還元末端のN-アセチルグルコサミン残基11に対して、フコース残基15がα1-6結合した糖鎖構造を有している。 Complex-type glycan 30l shown on the right in the lower part of FIG. Furthermore, galactose residue 13 is β1-4 bonded, and N-acetylglucosamine residue 11 is β1-2 bonded to α6 mannose residue 12, and to the N-acetylglucosamine residue 11, Furthermore, galactose residue 13 has a β1-4 bond, and fucose residue 15 has a sugar chain structure in which fucose residue 15 is α1-6 linked to N-acetylglucosamine residue 11 at the reducing end of coagulan structure 10 .
 前述した本糖鎖記述方式に基づいて記述すると、複合型グリカン30lは、Galβ1-4GlcNAcβ1-2Manα1-6(Galβ1-4GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4(Fucα1-6)GlcNAcとなる。 Based on the present sugar chain description method described above, complex glycan 30l is Galβ1-4GlcNAcβ1-2Manα1-6(Galβ1-4GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4(Fucα1-6)GlcNAc.
 このように、本開示に係る糖鎖変異型α-マイクログロブリンにおいては、変異N型糖鎖は、Manα1-6(Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcとして表記されるコアグリカン構造10を含んでいればよく、コアグリカン構造10における、非還元末端の2つのマンノース残基12の少なくともいずれかに、マンノース残基12が結合すると、図2に示すハイブリッド型グリカン20a~20eまたは高マンノース型グリカン20f~20hとなり得るが、非還元末端の2つのマンノース残基12の少なくともいずれかに、N-アセチルグルコサミン残基11が結合すると、図3に示す複合型グリカン30a~30lになり得る。 Thus, in the sugar chain variant α 1 -microglobulin according to the present disclosure, the variant N-type sugar chain contains the core glycan structure 10 denoted as Manα1-6(Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAc. When the mannose residue 12 binds to at least one of the two mannose residues 12 at the non-reducing end in the core glycan structure 10, the hybrid glycans 20a to 20e or the high mannose glycans 20f to 20f shown in FIG. 20h, but binding of N-acetylglucosamine residue 11 to at least one of the two mannose residues 12 at the non-reducing end can result in complex glycans 30a-30l shown in FIG.
 変異N型糖鎖が、コアグリカン構造10における、非還元末端の2つのマンノース残基の少なくともいずれかに対して、N-アセチルグルコサミン残基11が結合したときには、当該N-アセチルグルコサミン残基11に対して、ガラクトース残基13またはフコース残基15が結合してもよい。 When the mutant N-type sugar chain binds to at least one of the two mannose residues at the non-reducing end in the coagulan structure 10, the N-acetylglucosamine residue 11 binds to the N-acetylglucosamine residue 11. In contrast, galactose residue 13 or fucose residue 15 may be bound.
 [糖鎖変異型α-マイクログロブリンの生産方法および利用]
 本開示に係る糖鎖変異型α-マイクログロブリンを生産する方法は特に限定されず、N型糖鎖の非還元末端にN-アセチルノイラミン酸残基14の糖転移が不要であるため、シアル酸合成経路を有していない一般的な酵母を宿主として用い、公知の遺伝子工学的手法を用いて組換えタンパク質生産系を構築することができる。
[Method for production and use of sugar chain variant α 1 -microglobulin]
The method for producing the sugar chain variant α 1 -microglobulin according to the present disclosure is not particularly limited. A recombinant protein production system can be constructed using a known genetic engineering technique using a common yeast that does not have a sialic acid synthesis pathway as a host.
 本開示において、宿主として利用可能な酵母は特に限定されないが、例えば、Saccharomyces cerevisiae(サッカロミセス セレビシエ)等のSaccharomyces(サッカロミセス)種;Schizzosaccharomyces pombe(シゾサッカロミセス ポンベ);Pichia pastoris(ピキア パストリス),Pichia finlandica(ピキア フィンランディカ),Pichia trehalophila(ピキア トレハロフィラ),Pichia koclamae(ピキア コクラメ),Pichia membranaefaciens(ピキア メンブラネファシエンス),Pichia minuta(ピキア ミヌタ),Pichia lindneri(ピキア リンドネリ),Pichia opuntiae(ピキア オプンティエ),Pichia thermotolerans(ピキア タルモトレランス),Pichia salictaria(ピキア サリクタリア),Pichia guercuum(ピキア グエルクウム),Pichia pijperi(ピキア ピジュペリ),Pichia stiptis(ピキア ステイプティス),Pichia methanolica(ピキア メタノリカ)等のPichia(ピキア)種;Kluyveromyces lactis(クルイべロミセス ラクティス)等のKluyveromyces(クルイベロミセス)種;Candida albicans(カンジダ アルビカンス),Candida utilis(カンジダ ユティリス)等のCandida(カンジダ)種;等を挙げることができる。後述する実施例では、P. pastorisを宿主として用いている。 In the present disclosure, yeast that can be used as a host is not particularly limited, but for example, Saccharomyces species such as Saccharomyces cerevisiae; Schizzosaccharomyces pombe; Pichia pastoris, Pichia finlandica (Pichia Finlandica), Pichia trehalophila, Pichia koclamae, Pichia membranaefaciens, Pichia minuta, Pichia lindneri, Pichia opuntiae , Pichia thermotolerans, Pichia salictaria, Pichia guercuum, Pichia pijperi, Pichia stiptis, Pichia methanolica, etc. Kluyveromyces species such as Kluyveromyces lactis; Candida species such as Candida albicans and Candida utilis; In the examples described later, P. pastoris is used as a host.
 これら酵母は、細胞内で発現するタンパク質に糖鎖修飾等の翻訳後修飾がなされるものであって、糖鎖修飾がハイパーグリコシル化しないものであればよい。野生型酵母においてハイパーグリコシル化が生じる場合には、ハイパーグリコシル化しないように変異を導入した糖鎖変異株を用いればよい。後述する実施例では、P. pastorisの市販の糖鎖変異株(BioGrammatics社製、製品名SuperMan-5株)を用いている。 In these yeasts, proteins expressed in cells undergo post-translational modifications such as glycosylation, and the glycosylation does not cause hyperglycosylation. When hyperglycosylation occurs in wild-type yeast, a sugar chain mutant strain introduced with a mutation that prevents hyperglycosylation may be used. In the examples described later, a commercially available sugar chain mutant strain of P. pastoris (manufactured by BioGrammatics, product name: SuperMan-5 strain) is used.
 本開示において、糖鎖変異型α-マイクログロブリンの生産系に用いられるα-マイクログロブリン遺伝子は、例えば、配列番号2に示す塩基配列を有するDNAを挙げることができる。配列番号2に示す塩基配列は、制限酵素配列も含む最適化配列である。したがって、本開示で用いられる、α-マイクログロブリンをコードするDNAは、配列番号2に示す塩基配列を有するDNAに限定されない。例えば、配列番号2に示す塩基配列に相同的な塩基配列を有するDNAであってもよいし、配列番号1に示す、α-マイクログロブリンのアミノ酸配列をコードする他の塩基配列を有するDNAであってもよい。 In the present disclosure, the α 1 -microglobulin gene used in the sugar chain variant α 1 -microglobulin production system is, for example, a DNA having the base sequence shown in SEQ ID NO:2. The base sequence shown in SEQ ID NO: 2 is an optimized sequence that also includes a restriction enzyme sequence. Therefore, DNA encoding α 1 -microglobulin used in the present disclosure is not limited to DNA having the nucleotide sequence shown in SEQ ID NO:2. For example, it may be a DNA having a nucleotide sequence homologous to the nucleotide sequence shown in SEQ ID NO: 2, or a DNA having another nucleotide sequence encoding the α 1 -microglobulin amino acid sequence shown in SEQ ID NO: 1. There may be.
 また、本開示で用いられるα-マイクログロブリン遺伝子は、転写翻訳されるα-マイクログロブリンが、市販または公知の抗α-マイクログロブリン抗体に反応性を有するものであればよく、例えば、配列番号2に示す塩基配列において少なくとも1つの変異が導入された変異DNAであってもよい。この抗体は、ヒト由来のα-マイクログロブリンのタンパク質自体の少なくとも一部をエピトープとするものであればよい。 In addition, the α 1 -microglobulin gene used in the present disclosure may be one in which the transcriptionally translated α 1 -microglobulin has reactivity with a commercially available or known anti-α 1 -microglobulin antibody. Mutant DNA in which at least one mutation has been introduced in the base sequence shown in SEQ ID NO: 2 may also be used. This antibody may have at least a portion of the human-derived α 1 -microglobulin protein itself as an epitope.
 この変異DNAにおいては、コードされるα-マイクログロブリンの抗原性を保持する範囲で、配列番号2に示される塩基配列において1個または2個以上の塩基が欠失、置換もしくは付加した塩基配列を有するものが挙げられる。欠失、置換もしくは付加する塩基の個数としては、通常、1~120個の範囲内であればよく、1~60個の範囲内であってもよく、1~30個の範囲内であってもよい。 In this mutant DNA, a base sequence in which one or more bases are deleted, substituted or added in the base sequence shown in SEQ ID NO: 2 to the extent that the antigenicity of the encoded α 1 -microglobulin is maintained. Those having The number of bases to be deleted, substituted or added may generally be in the range of 1 to 120, may be in the range of 1 to 60, or may be in the range of 1 to 30. good too.
 あるいは、配列番号1に示すα-マイクログロブリンは、その抗原性を保持する範囲であれば、当該配列番号1に示されるアミノ酸配列と少なくとも95%以上の相同性(または配列同一性)を有するものであってもよいし、97%以上の相同性を有するものであってもよいし、98%以上の相同性を有するものであってもよい。 Alternatively, the α 1 -microglobulin shown in SEQ ID NO: 1 has at least 95% homology (or sequence identity) with the amino acid sequence shown in SEQ ID NO: 1 as long as it retains its antigenicity. , may have 97% or more homology, or may have 98% or more homology.
 本開示に係る糖鎖変異型α-マイクログロブリンは、前述した変異N型糖鎖を有しており、かつ、α-マイクログロブリンの抗原性を保持するものであれば、配列番号1に示されるアミノ酸配列にアミノ酸の置換が含まれてもよいし、配列番号2に示される塩基配列に変異が含まれてもよい。このようなアミノ酸の置換または塩基配列の変異は、α-マイクログロブリンの組換え体を低コストで生産する観点で有利なものであれば、配列番号1に示されるアミノ酸配列または配列番号2に示される塩基配列に対して積極的に導入することができる。 The sugar chain variant α 1 -microglobulin according to the present disclosure has the above-described variant N-type sugar chain and retains the antigenicity of α 1 -microglobulin. The amino acid sequence shown may contain amino acid substitutions, and the nucleotide sequence shown in SEQ ID NO: 2 may contain mutations. Such amino acid substitutions or base sequence mutations are advantageous from the viewpoint of low-cost production of recombinant α 1 -microglobulin, and the amino acid sequence shown in SEQ ID NO: 1 or SEQ ID NO: 2. It can be positively introduced into the indicated nucleotide sequence.
 配列番号1に示されるアミノ酸配列またはその相同配列をコードするDNA、または、配列番号2に示される塩基配列を有するDNA、もしくは、これらDNAに変異が導入されたDNA、すなわち、本開示に係る糖鎖変異型α-マイクログロブリンをコードするDNAは、公知のベクターに挿入されることにより組換えDNAとして構築される。このような組換えDNAの構築方法は特に限定されず、公知の遺伝子工学的手法を用いればよい。 A DNA encoding the amino acid sequence shown in SEQ ID NO: 1 or a homologous sequence thereof, a DNA having the base sequence shown in SEQ ID NO: 2, or a DNA obtained by introducing mutations into these DNAs, that is, a sugar according to the present disclosure A DNA encoding the chain variant α 1 -microglobulin is constructed as a recombinant DNA by inserting it into a known vector. A method for constructing such a recombinant DNA is not particularly limited, and a known genetic engineering technique may be used.
 一般的には、例えば、糖鎖変異型α-マイクログロブリンをコードするDNAと、ベクターとを公知のII型制限酵素で消化(切断)し、これらDNA断片およびベクター断片を、必要に応じてアニーリング処理した後に、DNAリガーゼ等を用いてライゲーションする方法が挙げられるが特に限定されない。 In general, for example, a DNA encoding a sugar chain variant α 1 -microglobulin and a vector are digested (cleavage) with a known type II restriction enzyme, and these DNA fragments and vector fragments are cut, if necessary. A method of ligation using DNA ligase or the like after annealing treatment may be mentioned, but is not particularly limited.
 本開示において用いられる具体的なベクターは特に限定されず、宿主細胞内で自立複製可能なものであればよい。代表期には、例えば、pHV14,TRp7,YEp系プラスミド,pBS7,YAC,pBR系プラスミド、pAUR112等のシャトルベクタープラスミド、もしくは、市販の酵母用発現ベクタープラスミド等を挙げることができる。後述する実施例では、Pichia系酵母発現ベクターとして市販されているベクター(ATUM社製、製品名pD912ベクター)を用いている。 The specific vector used in the present disclosure is not particularly limited as long as it is capable of autonomous replication in host cells. Representative phases include, for example, pHV14, TRp7, YEp series plasmids, pBS7, YAC, pBR series plasmids, shuttle vector plasmids such as pAUR112, or commercial yeast expression vector plasmids. In the examples described later, a vector commercially available as a Pichia yeast expression vector (manufactured by ATUM, product name pD912 vector) is used.
 遺伝子発現に用いられるプロモーターとしては、宿主である酵母細胞内で機能するものであれば特に限定されない。代表的には、GAPDH,PGK,GAL1,CUP1,AOX,FLD等のプロモーターを挙げることができる。このプロモーター配列はベクターに予め含まれていればよい。また、プロモーター以外の制御配列、例えばターミネーターもベクターに含まれていてもよいし、制限酵素認識配列等もベクターに含まれてもよい。 The promoter used for gene expression is not particularly limited as long as it functions in the host yeast cell. Representative examples include promoters such as GAPDH, PGK, GAL1, CUP1, AOX and FLD. This promoter sequence may be included in the vector in advance. The vector may also contain regulatory sequences other than promoters, such as terminators, and may also contain restriction enzyme recognition sequences and the like.
 また、前記構成の組換えDNAには、糖鎖変異型α-マイクログロブリンをコードするDNA、および、ベクター以外のDNAを含んでいてもよい。例えば、ベクターに含まれない制御配列(プロモーター、ターミネーター等)をコードするDNAを別途含んでもよいし、他のペプチドをコードするDNA(または遺伝子等)を含んでもよい。例えば、後述する実施例では、糖鎖変異型α-マイクログロブリンを宿主細胞外に分泌させるために、分泌シグナルであるα因子をコードする塩基配列を含んでいる。 In addition, the recombinant DNA having the structure described above may contain a DNA encoding the sugar chain variant α 1 -microglobulin and a DNA other than the vector. For example, the vector may contain a separate DNA encoding a control sequence (promoter, terminator, etc.) not contained in the vector, or may contain a DNA (or gene, etc.) encoding another peptide. For example, in Examples to be described later, a base sequence encoding α-factor, which is a secretory signal, is included in order to secrete sugar chain variant α 1 -microglobulin outside the host cell.
 宿主細胞に前記構成の組換えDNAを導入する方法、すなわち、形質転換法は特に限定されず、宿主細胞の種類または自律複製可能なベクターの種類等に応じた公知の方法を用いることができる。代表的な形質転換法は特に限定されないが、宿主細胞が酵母であれば、例えば、当該酵母細胞の細胞壁を部分的に除去してスフェロプラスト化する方法、あるいは、酢酸リチウム法、エレクトロポレーション法、パーティクル・ガン法、トランスフェクション法等を用いることができる。後述する実施例では、エレクトロポレーション法を用いている。 The method of introducing the recombinant DNA having the above structure into the host cell, that is, the transformation method, is not particularly limited, and known methods can be used depending on the type of host cell or the type of autonomously replicable vector. A representative transformation method is not particularly limited, but if the host cell is yeast, for example, a method of partially removing the cell wall of the yeast cell to form a spheroplast, a lithium acetate method, or electroporation. method, particle gun method, transfection method, etc. can be used. In the examples described later, the electroporation method is used.
 このようにして得られる形質転換体またはDNA組み込み細胞の培養は、宿主細胞の種類または培養の目的等の諸条件に応じて公知の栄養培地を用いて培養すればよい。例えば、大腸菌を宿主として組換えDNAを複製する場合には、LB培地(LB培養液)等を用いればよい。また、前記構成の形質転換体を培養してα-マイクログロブリンを生産する場合には、形質転換体または細胞の種類に応じた公知の培地(培養液)を用いればよい。また、諸条件に応じて、培地に対して公知のさまざまな添加成分を添加してもよい。後述する実施例では、市販のP. pastoris糖鎖変異株を宿主として用いているので、当該市販変異株の仕様に基づいて形質転換体を培養している。 The transformant or DNA-integrated cell thus obtained may be cultured using a known nutrient medium depending on various conditions such as the type of host cell and the purpose of culture. For example, when replicating recombinant DNA using Escherichia coli as a host, LB medium (LB culture solution) or the like may be used. In addition, when α 1 -microglobulin is produced by culturing the transformant having the above constitution, a known medium (culture solution) suitable for the type of transformant or cell may be used. In addition, various known additives may be added to the medium depending on various conditions. In the examples described later, a commercially available P. pastoris sugar chain mutant strain is used as a host, and transformants are cultured according to the specifications of the commercially available mutant strain.
 本開示に係る糖鎖変異型α-マイクログロブリンは、α-マイクログロブリンをコードするDNAを種々の方法により、糖鎖修飾を可能とする宿主細胞に導入(または組み込み)して形質転換体(またはDNA組み込み細胞)を作製し、この形質転換体(またはDNA組み込み細胞)を培養することによって生産することができる。それゆえ、本開示には、このような細胞を培養し、得られる培養物から糖鎖変異型α-マイクログロブリンを取得する方法、すなわち、糖鎖変異型α-マイクログロブリンの生産方法も含むことができる。 The sugar chain variant α 1 -microglobulin according to the present disclosure can be obtained by introducing (or integrating) DNA encoding α 1 -microglobulin into a host cell capable of sugar chain modification by various methods to obtain a transformant. (or DNA-integrating cell) and culturing this transformant (or DNA-integrating cell). Therefore, the present disclosure also includes a method for culturing such cells and obtaining sugar chain variant α 1 -microglobulin from the resulting culture, that is, a method for producing sugar chain variant α 1 -microglobulin. can contain.
 本開示に係る糖鎖変異型α-マイクログロブリンを生産する際には、形質転換された細胞の培養スケールは特に限定されず、例えば液体培地(培養液)を用いた場合には、試験管またはフラスコを用いた少量培養であってもよいし、ジャーファーメンターを用いた大量培養であってもよいし、産業レベルであればタンクを用いた大量培養であってもよい。 When producing the sugar chain variant α 1 -microglobulin according to the present disclosure, the culture scale of the transformed cells is not particularly limited. Alternatively, it may be a small-scale culture using a flask, a large-scale culture using a jar fermenter, or a large-scale culture using a tank at an industrial level.
 培養した細胞から糖鎖変異型α-マイクログロブリンを取得する方法は特に限定されず、公知の方法を用いることができる。発現した糖鎖変異型α-マイクログロブリンが細胞内に蓄積される場合には、培養した細胞を集菌し、公知の方法で細胞を破砕して粗酵素液を取得し、この粗酵素液を公知の方法で精製または濃縮すればよい。精製または濃縮する必要がなければ、前記の粗酵素液を、本開示に係る糖鎖変異型α-マイクログロブリンとして用いればよい。 The method for obtaining sugar chain variant α 1 -microglobulin from cultured cells is not particularly limited, and known methods can be used. When the expressed sugar chain variant α 1 -microglobulin accumulates intracellularly, the cultured cells are harvested and disrupted by a known method to obtain a crude enzyme solution. may be purified or concentrated by a known method. If purification or concentration is not required, the crude enzyme solution may be used as the sugar chain variant α 1 -microglobulin according to the present disclosure.
 また、発現した糖鎖変異型α-マイクログロブリンが細胞外に有意に分泌される場合には、培養液から糖鎖変異型α-マイクログロブリンを取得(回収精製)してもよいし、培養細胞および培養液を含む培養物全体から糖鎖変異型α-マイクログロブリンを取得(回収精製)すればよい。後述する実施例では、α因子を利用して糖鎖変異型α-マイクログロブリンを宿主細胞外に分泌(放出)させているので、培養液から糖鎖変異型α-マイクログロブリンを回収精製している。 Further, when the expressed sugar chain variant α 1 -microglobulin is significantly secreted extracellularly, the sugar chain variant α 1 -microglobulin may be obtained from the culture medium (recovery and purification), Sugar chain variant α 1 -microglobulin may be obtained (collected and purified) from the entire culture including the cultured cells and the culture medium. In the examples described later, the sugar chain variant α 1 -microglobulin is secreted (released) outside the host cell using the α factor, so the sugar chain variant α 1 -microglobulin is collected and purified from the culture medium. are doing.
 宿主細胞から回収精製した糖鎖変異型α-マイクログロブリンにおいては、必要に応じて、公知の手法により糖鎖修飾の状態を確認してもよい。市販の酵母株を宿主として用いる場合には、当該酵母株の仕様または研究報告等により、発現したタンパク質の糖鎖修飾の構造が明らかであるので特に確認の必要はない。例えば、後述する実施例では、市販のP. pastorisの糖鎖変異株であるSuperMan-5株(製品名)を用いているため、得られる糖鎖変異型α-マイクログロブリンのN型糖鎖は、図1Aにおいて左側に示す変異グリカン20すなわちペンタマンノシル構造であることが明らかとなっている。 In sugar chain variant α 1 -microglobulin collected and purified from host cells, if necessary, the state of sugar chain modification may be confirmed by a known technique. When a commercially available yeast strain is used as a host, there is no particular need to confirm the glycosylation structure of the expressed protein, since the specifications of the yeast strain, research reports, etc. reveal the structure of the glycosylation. For example, in the examples described later, a commercially available sugar chain mutant strain of P. pastoris, SuperMan- 5 strain (product name), was used. is revealed to be the mutated glycan 20 shown on the left in FIG. 1A, the pentamannosyl structure.
 一方、例えば市販の宿主細胞ではなく、新たに糖鎖変異型の酵母を構築したような場合には、後述する実施例のように、SDS-PAGE等の電気泳動法を利用して、回収した糖鎖変異型α-マイクログロブリンにハイパーグリコシル化が生じていないか確認してもよい。また、N型糖鎖の構造が不明あるいはN型糖鎖の構造確認が必要な場合には、N型糖鎖を公知の手法で構造解析すればよい。例えば、糖鎖変異型α-マイクログロブリンから公知の手法で糖鎖を切り出して、必要な公知の処理または好適な公知の処理を施した上で、質量分析法、レクチンを用いた方法、抗体を用いた方法等により糖鎖構造を解析すればよい。 On the other hand, for example, when sugar chain mutant yeast was newly constructed instead of using commercially available host cells, it was collected using an electrophoresis method such as SDS-PAGE as in the examples described later. Hyperglycosylation may be confirmed in the sugar chain variant α 1 -microglobulin. Moreover, when the structure of the N-type sugar chain is unknown or when confirmation of the structure of the N-type sugar chain is required, the structure of the N-type sugar chain may be analyzed by a known technique. For example, a sugar chain is excised from sugar chain variant α 1 -microglobulin by a known method, subjected to necessary or suitable known treatment, mass spectrometry, method using lectin, antibody The sugar chain structure may be analyzed by a method using
 本開示に係る糖鎖変異型α-マイクログロブリンは、血液浄化器の性能評価に好適に用いることができる。血液浄化器の具体的な種類は特に限定されず、透析膜を用いて透析、濾過、血漿交換、吸着等の各種の血液浄化法に用いられるデバイスを挙げることができる。血液浄化器の具体的な構造等についても特に限定されず、公知の構成を好適に採用することができる。 The sugar chain variant α 1 -microglobulin according to the present disclosure can be suitably used for performance evaluation of blood purifiers. Specific types of blood purifiers are not particularly limited, and devices using dialysis membranes for various blood purification methods such as dialysis, filtration, plasma exchange, and adsorption can be mentioned. The specific structure of the blood purifier is not particularly limited, either, and a known structure can be suitably adopted.
 したがって、本開示に係る糖鎖変異型α-マイクログロブリンは、血液浄化器の性能評価試薬として用いることができる。このような性能評価試薬の形態は特に限定されず、糖鎖変異型α-マイクログロブリンが変質したり凝集したりすることがなく、安定したものとして一定期間維持できるような形態であればよい。一般的には、公知の緩衝液に糖鎖変異型α-マイクログロブリンを溶解または分散させたタンパク質溶液を挙げることができる。緩衝液の具体的な組成等については特に限定されず、公知の組成を好適に用いることができる。 Therefore, the sugar chain variant α 1 -microglobulin according to the present disclosure can be used as a performance evaluation reagent for blood purifiers. The form of such a performance evaluation reagent is not particularly limited, and any form may be used as long as it is stable and can be maintained for a certain period of time without denaturing or aggregating the sugar chain variant α 1 -microglobulin. . Generally, a protein solution in which sugar chain variant α 1 -microglobulin is dissolved or dispersed in a known buffer solution can be mentioned. The specific composition of the buffer solution is not particularly limited, and known compositions can be suitably used.
 また、本開示に係る糖鎖変異型α-マイクログロブリンは、血液浄化器の性能評価方法に使用することができる。血液浄化器の性能評価方法の具体的構成は特に限定されず、公知の方法を好適に用いることができる。代表的な性能評価方法としては、例えば、参考文献1:特許第4973194号公報に記載される血液浄化器の性能評価方法を挙げることができる。参考文献1の記載内容は、本明細書で参照することにより本明細書の記載の一部とする。 In addition, the sugar chain variant α 1 -microglobulin according to the present disclosure can be used in a method for evaluating the performance of blood purifiers. A specific configuration of the performance evaluation method of the blood purifier is not particularly limited, and a known method can be suitably used. As a representative performance evaluation method, for example, the performance evaluation method for a blood purifier described in Reference 1: Japanese Patent No. 4973194 can be cited. The contents of reference 1 are incorporated herein by reference.
 なお、参考文献1に記載の性能評価方法に本開示に係る糖鎖変異型α-マイクログロブリンを使用する場合であっても、性能評価方法の具体的な構成は、参考文献1の記載内容に限定されないことは言うまでもない。つまり、本開示に係る血液浄化器の性能評価方法は、本開示に係る糖鎖変異型α-マイクログロブリンを使用すればよく、例えば、参考文献1に記載の性能評価方法を採用するとしても、参考文献1に記載の内容を技術常識の範囲内で適宜変更または修飾することができる。 Even when the sugar chain variant α 1 -microglobulin according to the present disclosure is used in the performance evaluation method described in Reference Document 1, the specific configuration of the performance evaluation method is the content described in Reference Document 1. Needless to say, it is not limited to In other words, the method for evaluating the performance of the blood purifier according to the present disclosure may use the sugar chain variant α 1 -microglobulin according to the present disclosure. , the content described in Reference Document 1 can be appropriately changed or modified within the scope of common general technical knowledge.
 また、本開示に係る糖鎖変異型α1-マイクログロブリンを血液浄化器の性能評価方法に使用する際の形態も特に限定されず、前記の性能評価試薬として用いてもよいし、公知の性能評価方法に用いられる公知の試薬に、本開示に係る糖鎖変異型α-マイクログロブリンを含有させて用いてもよい。したがって、本開示には、前記の性能評価試薬(糖鎖変異型α-マイクログロブリンを含有する試薬)を用いた血液浄化器の性能評価方法も含まれる。 In addition, the form in which the sugar chain variant α1-microglobulin according to the present disclosure is used in the performance evaluation method of a blood purifier is not particularly limited, and it may be used as the performance evaluation reagent described above, or a known performance evaluation. The sugar chain variant α 1 -microglobulin according to the present disclosure may be contained in known reagents used in the method. Therefore, the present disclosure also includes a method for evaluating the performance of a blood purifier using the aforementioned performance evaluation reagent (reagent containing sugar chain variant α 1 -microglobulin).
 このように、本開示に係る糖鎖変異型α-マイクログロブリンは、血液浄化器の性能評価に用いられるα-マイクログロブリンであって、N型糖鎖に共通するコアグリカン構造を含み、かつ、非還元末端に、N-アセチルノイラミン酸残基が結合していない、変異N型糖鎖を有する構成であればよい。 Thus, the sugar chain variant α 1 -microglobulin according to the present disclosure is α 1 -microglobulin used for performance evaluation of blood purifiers, contains a core glycan structure common to N-type sugar chains, and , a configuration having a mutated N-type sugar chain in which an N-acetylneuraminic acid residue is not bound to the non-reducing end.
 このような構成によれば、糖鎖変異型α-マイクログロブリンは、そのN型糖鎖の構造は、オリジナルのN型糖鎖構造と同一ではなく、かつ、非還元末端のN-アセチルノイラミン酸残基を有していないにも関わらず、血液浄化器の性能評価に用いることができる。 According to such a configuration, the sugar chain variant α 1 -microglobulin has an N-glycan structure that is not identical to the original N-glycan structure, and has a non-reducing terminal N-acetylneu Although it has no laminic acid residue, it can be used for performance evaluation of blood purifiers.
 糖鎖の非還元末端にN-アセチルノイラミン酸等のシアル酸を糖転移させる必要がなければ、シアル酸の生合成経路を有さない一般的な酵母を宿主として、遺伝子工学的手法を用いて組換えタンパク質生産系を構築することが可能となる。これにより、血液浄化器の性能評価に用いることが可能な、α-マイクログロブリンの組換え体を、一般的な手法を用いて生産できるとともに、大量生産を目指すことも可能となるので、α-マイクログロブリンの組換え体を低コストで生産する可能性も見出すことができる。 If it is not necessary to transglycosylate sialic acid such as N-acetylneuraminic acid to the non-reducing end of the sugar chain, genetic engineering techniques can be used using a common yeast that does not have a sialic acid biosynthetic pathway as a host. It becomes possible to construct a recombinant protein production system by using As a result, recombinant α 1 -microglobulin, which can be used for performance evaluation of blood purifiers, can be produced using a general method, and mass production can be aimed at. The possibility of producing recombinant forms of 1 -microglobulin at low cost can also be found.
 本開示について、実施例および比較例に基づいてより具体的に説明するが、本開示はこれに限定されるものではない。当業者は本開示の範囲を逸脱することなく、種々の変更、修正、および改変を行うことができる。 The present disclosure will be described more specifically based on Examples and Comparative Examples, but the present disclosure is not limited thereto. Various changes, modifications, and alterations can be made by those skilled in the art without departing from the scope of this disclosure.
 (α-マイクログロブリン組換え体の発現系の構築)
 宿主として、メタノール資化性酵母Pichia pastoris Δaox1野生株、または、P. pastorisの糖鎖変異株である、製品名SuperMan-5株(BioGrammatics社製)を用いた。ベクターとしては、分泌シグナルであるα因子の塩基配列を含む、製品名pD912ベクター(ATUM社製)を用いた。
(Construction of Expression System for α 1 -Microglobulin Recombinant)
As a host, the methanol-utilizing yeast Pichia pastoris Δaox1 wild strain or P. pastoris sugar chain mutant strain SuperMan-5 (product name: BioGrammatics) was used. As a vector, pD912 vector (product name) (manufactured by ATUM) containing the nucleotide sequence of α-factor, which is a secretory signal, was used.
 pD912ベクターに対して、配列番号2に示す塩基配列を有するα-マイクログロブリン遺伝子(制限酵素配列も含む最適化配列)、あるいは、当該α-マイクログロブリン遺伝子とともに、10個の連続するヒスチジン残基(ヒスチジンタグ)をコードする塩基配列を挿入して発現プラスミドを構築した。当該発現プラスミドをエレクトロポレーション法により宿主に導入して、形質転換体を得た。 For the pD912 vector, the α 1 -microglobulin gene having the nucleotide sequence shown in SEQ ID NO: 2 (optimized sequence including restriction enzyme sequence), or the α 1 -microglobulin gene and 10 consecutive histidine residues An expression plasmid was constructed by inserting a nucleotide sequence encoding a group (histidine tag). The expression plasmid was introduced into a host by electroporation to obtain a transformant.
 当該形質転換体をSuperMan-5の仕様に基づいて培養することにより、宿主細胞(形質転換体の細胞)内でα-マイクログロブリン組換え体を発現させた。発現したα-マイクログロブリン組換え体は、α因子により宿主細胞外に放出されるため、培養液上清からα-マイクログロブリン組換え体を取得することができる。培養液上清をカラムクロマトグラフィーで精製(ヒスチジンタグを有する場合には、アフィニティクロマトグラフィーで精製)することにより、α-マイクログロブリン組換え体を取得した。 By culturing the transformant according to the SuperMan-5 specifications, the α 1 -microglobulin recombinant was expressed in host cells (transformant cells). Since the expressed α 1 -microglobulin recombinant is released outside the host cell by α factor, the α 1 -microglobulin recombinant can be obtained from the culture supernatant. The α 1 -microglobulin recombinant was obtained by purifying the culture supernatant by column chromatography (purifying by affinity chromatography when having a histidine tag).
 なお、本発現系では、α因子の切れ残り構造であるEAEAまたはEA(E:グルタミン酸(Glu)、A:アラニン(Ala))が、発現したタンパク質(α-マイクログロブリン組換え体)のN末端に付加する可能性が知られている。しかしながら、本実施例においては、N末端側にEAEAまたはEAが付加されても付加されなくても、本開示における評価には影響しないと考えられるため、α-マイクログロブリン組換え体タンパク質のN末端側については特に解析していない。 In this expression system, EAEA or EA (E: glutamic acid (Glu), A: alanine (Ala)), which is a fragmented structure of α factor, is the N of the expressed protein (α 1 -microglobulin recombinant). The possibility of appending to the ends is known. However, in this example, whether or not EAEA or EA is added to the N-terminal side is considered to have no effect on the evaluation in the present disclosure . The terminal side is not particularly analyzed.
 (α-マイクログロブリン組換え体の評価)
 取得したα-マイクログロブリン組換え体を、市販の抗α-マイクログロブリン抗体試薬(栄研化学株式会社製、LZテスト‘栄研’α-M)と反応させて、その反応性(抗原性を有するか否か)を確認することにより、α-マイクログロブリン組換え体の品質を評価した。反応性が確認できれば○、反応性が確認できなければ×と評価した、
(Evaluation of α 1 -microglobulin recombinants)
The obtained α 1 -microglobulin recombinant was reacted with a commercially available anti-α 1 -microglobulin antibody reagent (manufactured by Eiken Chemical Co., Ltd., LZ test 'Eiken' α 1 -M), and its reactivity ( The quality of the α 1 -microglobulin recombinant was evaluated by confirming whether it has antigenicity or not. If reactivity could be confirmed, it was evaluated as ○, and if reactivity could not be confirmed, it was evaluated as ×.
 また、取得したα-マイクログロブリン組換え体を、SDS-PAGEに供してCBB染色し、分子量およびバンドの状態を確認して評価した。バンドの状態については、スメアが確認されない場合には「無」、スメアが確認された場合には「有」と評価した。 In addition, the obtained α 1 -microglobulin recombinant was subjected to SDS-PAGE and stained with CBB to confirm and evaluate the molecular weight and band state. The state of the band was evaluated as "absent" when no smear was observed, and as "presence" when smear was observed.
 (透析膜の透過性の評価)
 日本透析医学会学術委員会が示すダイアライザのふるい係数測定手順にしたがって、膜面積1.5m2 のポリエーテルスルホン膜ダイアライザPES-15Eαeco(製品名、ニプロ株式会社製)を用いて、α-マイクログロブリン組換え体のふるい係数を測定した。
(Evaluation of permeability of dialysis membrane)
A polyethersulfone membrane dialyzer PES-15Eαeco (product name, manufactured by Nipro Corporation) having a membrane area of 1.5 m 2 was used to measure α 1 -micro Sieving coefficients of globulin recombinants were determined.
 (比較例1)
 宿主としてP. pastoris Δaox1野生株を用いて、当該宿主に前記発現プラスミドを導入し、前述した発現系により、比較例1に係るα-マイクログロブリン組換え体を取得した。このα-マイクログロブリン組換え体について、前記の通り、体反応性およびSDS-PAGEにより評価するとともに、ふるい係数を測定した。その結果を表1に示すとともに、SDS-PAGEの結果を図4に示す。なお、図4に示すSDS-PAGEの結果においては、最も左側のレーンは分子量マーカーである。また、表1では、宿主のP. pastoris Δaox1野生株を「WT」と略記している。
(Comparative example 1)
A P. pastoris Δaox1 wild strain was used as a host, the expression plasmid was introduced into the host, and the α 1 -microglobulin recombinant according to Comparative Example 1 was obtained by the above-described expression system. The α 1 -microglobulin recombinants were evaluated by body reactivity and SDS-PAGE and sieving coefficients were determined as described above. The results are shown in Table 1, and the results of SDS-PAGE are shown in FIG. In addition, in the results of SDS-PAGE shown in FIG. 4, the leftmost lane is the molecular weight marker. In Table 1, the host P. pastoris Δaox1 wild strain is abbreviated as "WT".
 (比較例2)
 前記発現プラスミドが、N末端側ヒスチジンタグをコードする塩基配列を含むものである以外は、比較例1と同様にして、比較例2に係るα-マイクログロブリン組換え体を取得した。このα-マイクログロブリン組換え体について、前記の通り、抗体反応性およびSDS-PAGEにより評価した。その結果を表1に示すとともに、SDS-PAGEの結果を図4に示す。
(Comparative example 2)
An α 1 -microglobulin recombinant according to Comparative Example 2 was obtained in the same manner as in Comparative Example 1, except that the expression plasmid contained a base sequence encoding an N-terminal histidine tag. The α 1 -microglobulin recombinant was evaluated by antibody reactivity and SDS-PAGE as described above. The results are shown in Table 1, and the results of SDS-PAGE are shown in FIG.
 (実施例1)
 宿主としてSuperMan-5株(BioGrammatics社製)を用いた以外は、比較例1と同様にして、実施例1に係るα1-マイクログロブリン組換え体を取得した。このα-マイクログロブリン組換え体について、前記の通り、抗体反応性およびSDS-PAGEにより評価するとともに、ふるい係数を測定した。その結果を表1に示すとともに、SDS-PAGEの結果を図4に示す。なお、表1では、宿主のSuperMan-5株を「SM5」と略記している。
(Example 1)
The α1-microglobulin recombinant according to Example 1 was obtained in the same manner as in Comparative Example 1, except that the SuperMan-5 strain (manufactured by BioGrammatics) was used as the host. The α 1 -microglobulin recombinants were evaluated by antibody reactivity and SDS-PAGE and sieving coefficients were measured as described above. The results are shown in Table 1, and the results of SDS-PAGE are shown in FIG. In Table 1, the host SuperMan-5 strain is abbreviated as "SM5".
 (実施例2)
 前記発現プラスミドが、N末端側ヒスチジンタグをコードする塩基配列を含むものである以外は、実施例1と同様にして、実施例2に係るα-マイクログロブリン組換え体を取得した。このα-マイクログロブリン組換え体について、前記の通り、抗体反応性およびSDS-PAGEにより評価した。その結果を表1に示すとともに、SDS-PAGEの結果を図4に示す。
(Example 2)
The α 1 -microglobulin recombinant according to Example 2 was obtained in the same manner as in Example 1, except that the expression plasmid contained a base sequence encoding an N-terminal histidine tag. The α 1 -microglobulin recombinant was evaluated by antibody reactivity and SDS-PAGE as described above. The results are shown in Table 1, and the results of SDS-PAGE are shown in FIG.
 (参考例)
 透析膜の透過性の比較対象として、ヒト尿由来の市販のα-マイクログロブリン(MyBioSource社製)を用いて、前記の通りふるい係数を測定した。ふるい係数の結果を表1に示す。
(Reference example)
The sieving coefficient was measured as described above using commercially available α 1 -microglobulin derived from human urine (manufactured by MyBioSource) as a comparison target for the permeability of the dialysis membrane. The sieving coefficient results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 (実施例および比較例の対比)
 比較例1および2、実施例1および2のいずれにおいても、表1に示すように、α-マイクログロブリン組換え体は抗体反応性を示したため、これら組換え体タンパク質は、タンパク質自体として抗原性を有する、すなわち、α-マイクログロブリンとして適切なものとなっていた。
(Comparison of Examples and Comparative Examples)
In both Comparative Examples 1 and 2 and Examples 1 and 2, as shown in Table 1, α 1 -microglobulin recombinants showed antibody reactivity, and these recombinant proteins were regarded as antigens as proteins themselves. , ie suitable as α 1 -microglobulin.
 表1および図4に示すように、比較例1に係るα-マイクログロブリン組換え体は、分子量が37kDaであり、特に図4に示すように、SDS-PAGEのバンドには有意なスメアが確認された(37kDa付近の濃い染色部分を中心に、30kDa前後から40kDaを超えるまで染色が確認された)。 As shown in Table 1 and FIG. 4, the α 1 -microglobulin recombinant according to Comparative Example 1 has a molecular weight of 37 kDa. It was confirmed (staining was confirmed from around 30 kDa to over 40 kDa, centering on a darkly stained portion around 37 kDa).
 また、比較例2に係るα-マイクログロブリン組換え体(N末端側にヒスチジンタグを有する)は、分子量が39kDaであり、特に図4に示すように、SDS-PAGEのバンドには、比較例1と同様に有意なスメアが確認された(39kDa付近の濃い染色部分を中心に、31kDa前後から50kDa近くまで染色が確認された)。 The α 1 -microglobulin recombinant according to Comparative Example 2 (having a histidine tag on the N-terminal side) has a molecular weight of 39 kDa. Significant smearing was confirmed in the same manner as in Example 1 (staining was confirmed from around 31 kDa to nearly 50 kDa, centering on the darkly stained portion around 39 kDa).
 これに対して、実施例1に係るα-マイクログロブリン組換え体は、分子量が31kDaであり、実施例2に係るα-マイクログロブリン組換え体は、分子量が33kDaであって、いずれもバンドにスメアは確認されなかった(図4参照)。 In contrast, the α 1 -microglobulin recombinant according to Example 1 had a molecular weight of 31 kDa, and the α 1 -microglobulin recombinant according to Example 2 had a molecular weight of 33 kDa. No smear was observed in the band (see Figure 4).
 比較例1または比較例2では、宿主として野生株のP. pastorisを用いたが、これら比較例の結果では、SDS-PAGEのバンドに幅広いスメアが確認された。このことからも明らかなように、野生株の酵母を用いた場合にはα-マイクログロブリンに対してハイパーグリコシル化が生じていることがわかる。一方、実施例1または実施例2では、宿主として糖鎖変異株のP. pastorisを用いたが、これら実施例の結果では、SDS-PAGEのバンドは明確であり、スメアは確認されない。したがって、宿主が酵母であっても糖鎖変異株を用いることで、α-マイクログロブリンに対するハイパーグリコシル化は回避できることがわかる。 In Comparative Example 1 or Comparative Example 2, wild-type P. pastoris was used as the host, and the results of these Comparative Examples confirmed a broad smear in the SDS-PAGE band. As is clear from this, it can be seen that α 1 -microglobulin is hyperglycosylated when wild-type yeast is used. On the other hand, in Example 1 or Example 2, sugar chain mutant P. pastoris was used as the host, but the results of these Examples show clear SDS-PAGE bands and no smearing. Therefore, even if the host is yeast, hyperglycosylation of α 1 -microglobulin can be avoided by using the sugar chain mutant strain.
 なお、比較例2または実施例2に係るα-マイクログロブリン組換え体は、図4に示すように、N末端側ヒスチジンタグの影響が顕著に現れなかったため、血液浄化器の性能評価についても、それぞれ比較例1または実施例1と同等に近い結果になると考えられたため、ふるい係数の測定は実施しなかった。 In the α 1 -microglobulin recombinant according to Comparative Example 2 or Example 2, as shown in FIG. 4, the effect of the N-terminal histidine tag did not appear significantly, so the performance evaluation of the blood purifier was also performed. , the sieving coefficient was not measured because it was thought that the results would be nearly equivalent to those of Comparative Example 1 or Example 1, respectively.
 実施例1に係るα-マイクログロブリン組換え体は、表1に示すように、参考例すなわちヒト由来のα-マイクログロブリンと同程度のふるい係数が測定された。したがって、実施例1に係るα-マイクログロブリン組換え体は、血液浄化器の性能評価について十分な実用性を有すると判断される。 As shown in Table 1, the α 1 -microglobulin recombinant according to Example 1 had a sieving coefficient comparable to that of the reference example, that is, human-derived α 1 -microglobulin. Therefore, it is judged that the α 1 -microglobulin recombinant according to Example 1 has sufficient practical utility in evaluating the performance of blood purifiers.
 一方、比較例1に係るα-マイクログロブリン組換え体は、実施例1または参考例よりもふるい係数の数値が小さくなった。これは、図4に示す結果(SDS-PAGEの結果)からも明らかなように、宿主としてP. pastoris Δaox1野生株を用いた場合には、α-マイクログロブリン組換え体にはハイパーグリコシル化が生じているためであると考えられる。 On the other hand, the α 1 -microglobulin recombinant according to Comparative Example 1 had smaller sieving coefficient values than those of Example 1 or Reference Example. As is clear from the results shown in FIG. 4 (results of SDS-PAGE), when the P. pastoris Δaox1 wild strain was used as the host, the α 1 -microglobulin recombinant was hyperglycosylated. This is thought to be due to the occurrence of
 一方、図4に示すように、比較例1のバンドに対する比較例2のバンド、あるいは、実施例1のバンドに対する実施例2のバンドには顕著な差が確認できない。そのため、N末端側にヒスチジンタグを有する実施例2に係るα-マイクログロブリン組換え体も、血液浄化器の性能評価について十分な実用性を有すると考えられる。 On the other hand, as shown in FIG. 4, no significant difference can be confirmed between the band of Comparative Example 2 and the band of Comparative Example 1, or between the band of Example 2 and the band of Example 1. Therefore, the α 1 -microglobulin recombinant according to Example 2, which has a histidine tag on the N-terminal side, is also considered to have sufficient practicality for performance evaluation of blood purifiers.
 なお、宿主として、糖鎖変異株であるSuperMan-5株を用いて発現させた組換えタンパク質においては、N型糖鎖は、図1Bに示すようなハイパーグリコシル化が生じることなく、図1Aに示す変異グリカン20の構造、すなわち、コアグリカン構造10におけるα6マンノース残基12に2つのマンノース残基12が結合した糖鎖構造(ペンタマンノシル構造)となることが明らかとなっている。したがって、実施例1および実施例2に係るα-マイクログロブリン組換え体の糖鎖構造もペンタマンノシル構造となっている。 In addition, in the recombinant protein expressed using the SuperMan-5 strain, which is a sugar chain mutant strain, as a host, the N-type sugar chain does not undergo hyperglycosylation as shown in FIG. The structure of the mutant glycan 20 shown, that is, the sugar chain structure (pentamannosyl structure) in which two mannose residues 12 are bound to the α6 mannose residue 12 in the core glycan structure 10, has been clarified. Therefore, the sugar chain structures of the α 1 -microglobulin recombinants according to Examples 1 and 2 also have a pentamannosyl structure.
 すなわち、実施例1(または実施例2)に係るα-マイクログロブリン組換え体の糖鎖構造(変異グリカン20)と、ヒト由来のα-マイクログロブリンが有するオリジナルの糖鎖構造であるヒト由来グリカン21またはヒト由来グリカン22とを比較すると、α-マイクログロブリンが透析膜を透過する挙動に関しては、全体的な糖鎖構造が再現されている必要はないこと、非還元末端のシアル酸(N-アセチルノイラミン酸)残基も必要がないことが明らかとなった。 That is, the sugar chain structure (variant glycan 20) of the recombinant α 1 -microglobulin according to Example 1 (or Example 2) and the original sugar chain structure of α 1 -microglobulin derived from human Comparing human-derived glycan 21 or human-derived glycan 22, α 1 -microglobulin does not need to reproduce the entire carbohydrate chain structure for the permeation behavior of the dialysis membrane. It turned out that the (N-acetylneuraminic acid) residue was also not necessary.
 したがって、本開示においては、図2に例示するハイブリッド型グリカン20a~20eまたは高マンノース型グリカン20f~20h,あるいは、図3に例示する複合型グリカン30a~30l等のように、N型糖鎖に共通するコアグリカン構造10を含み、かつ、非還元末端に、N-アセチルノイラミン酸残基14が結合していない、変異N型糖鎖を有する、糖鎖変異型α-マイクログロブリンであれば、オリジナルのヒト由来のα-マイクログロブリンと同様に、血液浄化器の性能評価に用いることが可能である。 Therefore, in the present disclosure, N-glycans such as hybrid-type glycans 20a-20e or high-mannose-type glycans 20f-20h illustrated in FIG. 2, or complex-type glycans 30a-30l illustrated in FIG. If it is a sugar chain variant α 1 -microglobulin having a mutant N-type sugar chain that contains a common core glycan structure 10 and has a non-reducing end bound to an N-acetylneuraminic acid residue 14 , like the original human-derived α 1 -microglobulin, can be used to evaluate the performance of blood purifiers.
 なお、本発明は前記実施の形態の記載に限定されるものではなく、特許請求の範囲に示した範囲内で種々の変更が可能であり、異なる実施の形態や複数の変形例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施の形態についても本発明の技術的範囲に含まれる。 It should be noted that the present invention is not limited to the description of the above embodiments, and various modifications are possible within the scope of the claims, and different embodiments and multiple modifications are disclosed respectively. Embodiments obtained by appropriately combining the above technical means are also included in the technical scope of the present invention.
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。 From the above description, many modifications and other embodiments of the invention will be apparent to those skilled in the art. Accordingly, the above description is to be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. Substantial details of construction and/or function may be changed without departing from the spirit of the invention.
 本発明は、血液浄化器の性能評価の分野に広く好適に用いることができる。 The present invention can be widely and suitably used in the field of performance evaluation of blood purifiers.
10:コアグリカン構造(トリマンノシルコア構造)
11:N-アセチルグルコサミン残基(GlcNAc)
12:マンノース残基(Man)
13:ガラクトース残基(Gal)
14:N-アセチルノイラミン酸残基(NeuNAc)
15:フコース残基(Man)
16:マンノースリン酸残基
20:変異グリカン(変異N型糖鎖)
20a~20e:ハイブリッド型グリカン(変異N型糖鎖)
20f~20i:高マンノース型グリカン(変異N型糖鎖)
30a~30l:複合型グリカン(変異N型糖鎖)
21:ヒト由来グリカン(ヒト由来オリジナルN型糖鎖)
22:ヒト由来グリカン(ヒト由来オリジナルN型糖鎖)
23:グリカン(ハイパーグリコシル化糖鎖)
120:ハイパーマンノース構造
10: Coaglycan structure (trimannosyl core structure)
11: N-acetylglucosamine residue (GlcNAc)
12: Mannose residue (Man)
13: Galactose residue (Gal)
14: N-acetyl neuraminic acid residue (NeuNAc)
15: Fucose residue (Man)
16: mannose phosphate residue 20: mutated glycan (mutated N-type sugar chain)
20a-20e: Hybrid glycans (mutated N-type sugar chains)
20f-20i: high mannose type glycans (mutated N-type sugar chains)
30a-30l: Complex-type glycans (mutated N-type sugar chains)
21: Human-derived glycan (human-derived original N-type sugar chain)
22: Human-derived glycan (human-derived original N-type sugar chain)
23: glycans (hyperglycosylated sugar chains)
120: Hypermannose structure

Claims (10)

  1.  N型糖鎖に共通するコアグリカン構造を含み、かつ、非還元末端に、N-アセチルノイラミン酸残基が結合していない、変異N型糖鎖を有することを特徴とする、
    糖鎖変異型α-マイクログロブリン。
    A mutant N-type sugar chain comprising a core glycan structure common to N-type sugar chains and having a non-reducing end to which an N-acetylneuraminic acid residue is not bound,
    Sugar chain variant α 1 -microglobulin.
  2.  前記変異N型糖鎖が、Manα1-6(Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcとして表記されるコアグリカン構造における、非還元末端の2つのマンノース残基の少なくともいずれかに、マンノース残基またはN-アセチルグルコサミン残基が結合した糖鎖構造を含む、
    請求項1に記載の糖鎖変異型α-マイクログロブリン。
    The mutant N-type sugar chain has a mannose residue or an N- Containing a sugar chain structure to which an acetylglucosamine residue is bound,
    The sugar chain variant α 1 -microglobulin according to claim 1.
  3.  前記変異N型糖鎖が、Manα1-3(Manα1-3(Manα1-6)Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAcとして表記されるペンタマンノシル構造を含む、
    請求項2に記載の糖鎖変異型α-マイクログロブリン。
    The mutant N-type sugar chain comprises a pentamannosyl structure denoted as Manα1-3(Manα1-3(Manα1-6)Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAc,
    The sugar chain variant α 1 -microglobulin according to claim 2.
  4.  前記変異N型糖鎖が、前記ペンタマンノシル構造の非還元末端の3つのマンノース残基の少なくともいずれかに対して、さらにマンノース残基またはN-アセチルグルコサミン残基がグリコシド結合した糖鎖構造を含む、
    請求項3に記載の糖鎖変異型α-マイクログロブリン。
    The mutant N-type sugar chain comprises a sugar chain structure in which a mannose residue or an N-acetylglucosamine residue is glycoside-bonded to at least one of the three mannose residues at the non-reducing end of the pentamannosyl structure. ,
    The sugar chain variant α 1 -microglobulin according to claim 3.
  5.  前記変異N型糖鎖が、前記コアグリカン構造における、非還元末端の2つのマンノース残基の少なくともいずれかに対して、N-アセチルグルコサミン残基が結合し、当該N-アセチルグルコサミン残基に対して、ガラクトース残基またはフコース残基が結合した糖鎖構造を含む、
    請求項2に記載の糖鎖変異型α-マイクログロブリン。
    The mutant N-type sugar chain binds an N-acetylglucosamine residue to at least one of the two mannose residues at the non-reducing end in the coagulan structure, and binds to the N-acetylglucosamine residue , containing a sugar chain structure to which a galactose residue or a fucose residue is bound,
    The sugar chain variant α 1 -microglobulin according to claim 2.
  6.  α-マイクログロブリン遺伝子を、ハイパーグリコシル化が生じない糖鎖変異株酵母で発現させることにより生産される、
    請求項1から5のいずれか1項に記載の糖鎖変異型α-マイクログロブリン。
    Produced by expressing the α 1 -microglobulin gene in sugar chain mutant strain yeast in which hyperglycosylation does not occur,
    The sugar chain variant α 1 -microglobulin according to any one of claims 1 to 5.
  7.  前記糖鎖変異株酵母が、Pichia pastoris(ピキア パストリス)である、
    請求項6に記載の糖鎖変異型α-マイクログロブリン。
    The sugar chain mutant yeast is Pichia pastoris,
    The sugar chain variant α 1 -microglobulin according to claim 6.
  8.  前記糖鎖変異株酵母が、SuperMan-5株(製品名)である、
    請求項7に記載の糖鎖変異型α-マイクログロブリン。
    The sugar chain mutant strain yeast is SuperMan-5 strain (product name),
    The sugar chain variant α 1 -microglobulin according to claim 7.
  9.  請求項1から8のいずれか1項に記載の糖鎖変異型α-マイクログロブリンを含有する、
    血液浄化器の性能評価試薬。
    containing the sugar chain variant α 1 -microglobulin according to any one of claims 1 to 8,
    Performance evaluation reagent for blood purifiers.
  10.  請求項1から8のいずれか1項に記載の糖鎖変異型α-マイクログロブリンを使用する、血液浄化器の性能評価方法。
     
    A method for evaluating the performance of a blood purifier, using the sugar chain variant α 1 -microglobulin according to any one of claims 1 to 8.
PCT/JP2023/006450 2022-02-28 2023-02-22 SUGAR CHAIN-MODIFIED α1-MICROGLOBULIN AND PERFORMANCE EVALUATION REAGENT FOR BLOOD PURIFIER WO2023163040A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-029348 2022-02-28
JP2022029348 2022-02-28

Publications (1)

Publication Number Publication Date
WO2023163040A1 true WO2023163040A1 (en) 2023-08-31

Family

ID=87766014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006450 WO2023163040A1 (en) 2022-02-28 2023-02-22 SUGAR CHAIN-MODIFIED α1-MICROGLOBULIN AND PERFORMANCE EVALUATION REAGENT FOR BLOOD PURIFIER

Country Status (1)

Country Link
WO (1) WO2023163040A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013085826A (en) * 2011-10-20 2013-05-13 Asahi Kasei Medical Co Ltd Blood purifier

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013085826A (en) * 2011-10-20 2013-05-13 Asahi Kasei Medical Co Ltd Blood purifier

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BRATT, T. ET AL.: "Cleavage of the alpha1-microglobulin-bikunin precursor is localized to the Golgi apparatus of rat liver cells", BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1157, 1993, pages 147 - 154, XP023491536, DOI: 10.1016/0304-4165(93)90058-G *
EKSTROM BIRGITTA, LUNDBLAD ARNE, SVENSSON SIGFRID: "Structural Studies on the Carbohydrate Portion of Human alpha1-Microglobulin", EUROPEAN JOURNAL OF BIOCHEMISTRY, PUBLISHED BY SPRINGER-VERLAG ON BEHALF OF THE FEDERATION OF EUROPEAN BIOCHEMICAL SOCIETIES, vol. 114, no. 3, 1 March 1981 (1981-03-01), pages 663 - 666, XP093088294, ISSN: 0014-2956, DOI: 10.1111/j.1432-1033.1981.tb05194.x *
SUNOHARA, TAKASHI ET AL.: "O-03 Development of recombinant α1 microglobulin reagent", PROGRAM AND ABSTRACTS OF THE 37TH MEETING OF THE JAPANESE SOCIETY OF HIGH PERFORMANCE MEMBRANE FOR BLOOD PURIFICATION; MARCH, 19, 2022, 6 April 2022 (2022-04-06) - 19 March 2022 (2022-03-19), pages 24, XP009549345 *
TAN, C.-R.; XU, GUO-BIN; XIA, TIE-AN: "Secreted expression and purification of recombinant human alpha1- microglobulin in Pichia pastoris", CHINESE JOURNAL OF LABORATORY MEDICINE - ZHONGHUA JIANYAN YIXUE ZAZHI, ZHONGHUA YIXUEHUI ZAZHISHE, CN, vol. 29, no. 8, 30 November 2005 (2005-11-30), CN , pages 736 - 739, XP009548859, ISSN: 1009-9158 *
WESTER, L. ET AL.: "Physicochemical and Biochemical Characterization of Human alpha1- Microglobulin Expressed in Baculovirus-Infected Insect Cells", PROTEIN EXPRESSION AND PURIFICATION., vol. 11, no. PT 970760, 1997, pages 95 - 103, XP004451756, DOI: 10.1006/prep.1997.0760 *

Similar Documents

Publication Publication Date Title
TWI232238B (en) Novel yeast mutant strains and method for preparing glycoprotein with mammalian-typed sugar chains
AU2009214077B2 (en) Production of glycosylated polypeptides in microalgae
ES2589655T3 (en) Method for producing proteins in Pichia pastoris that lack detectable cross-binding activity to antibodies against host cell antigens
EP1505149A1 (en) Methylotroph producing mammalian type sugar chain
JP6790057B2 (en) Cells producing glycoproteins with modified N- and O-glycosylation patterns and methods and uses thereof
TW200916585A (en) Glycosylation profile analysis
AU2009309925A1 (en) Novel tools for the production of glycosylated proteins in host cells
EA030095B1 (en) Production of hemagglutinin-neuraminidase protein in microalgae
US8536302B2 (en) Dockerin polypeptide and method of purifying recombinant fused protein using the same
AU2019325329A1 (en) Modification of protein glycosylation in microorganisms
CN101343635B (en) Method for construction and expression of prescribed sugar chain modified glucoprotein engineering bacterial strain
US20140349343A1 (en) Use of lysozyme as a tag
WO2023163040A1 (en) SUGAR CHAIN-MODIFIED α1-MICROGLOBULIN AND PERFORMANCE EVALUATION REAGENT FOR BLOOD PURIFIER
CA2609473A1 (en) A recombinant method for production of an erythropoiesis stimulating protein
US20210017500A1 (en) Animal cell strain and method for use in producing glycoprotein, glycoprotein and use thereof
JP6354462B2 (en) Thermostable xylanase belonging to GH family 10
Choi et al. N-glycan structures of human transferrin produced by Lymantria dispar (gypsy moth) cells using the LdMNPV expression system
JP6350987B2 (en) Thermostable β-xylosidase belonging to GH family 3
CN114196688B (en) Expression of prokaryotic alkaline phosphatase in yeast
CN107778365A (en) The recombinant-protein expression that a kind of multiple spot is integrated
US20230220358A1 (en) Nucleic Acids, Vectors, Host Cells and Methods for Production of Fructosyltransferase from Aspergillus Japonicus
JP6364662B2 (en) Thermostable β-xylosidase belonging to GH family 3
Baumgartner et al. Large-scale production and purification of recombinant Galanthus nivalis agglutinin (GNA) expressed in the methylotrophic yeast Pichia pastoris
JP3091851B2 (en) Production method of mammalian high mannose glycoprotein sugar chain by yeast
CN115247160B (en) Detection method for protein core fucosylation modification

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23760039

Country of ref document: EP

Kind code of ref document: A1