WO2023162869A1 - Impedance converter - Google Patents

Impedance converter Download PDF

Info

Publication number
WO2023162869A1
WO2023162869A1 PCT/JP2023/005627 JP2023005627W WO2023162869A1 WO 2023162869 A1 WO2023162869 A1 WO 2023162869A1 JP 2023005627 W JP2023005627 W JP 2023005627W WO 2023162869 A1 WO2023162869 A1 WO 2023162869A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
stub
axis
wall
adjustment mechanism
Prior art date
Application number
PCT/JP2023/005627
Other languages
French (fr)
Japanese (ja)
Inventor
幹男 福井
伸司 高野
高史 夘野
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023162869A1 publication Critical patent/WO2023162869A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/04Coupling devices of the waveguide type with variable factor of coupling

Definitions

  • the present disclosure relates to impedance converters.
  • Patent Document 1 discloses an automatic matching device that responds to changes in microwave frequencies.
  • the automatic matching device described in Patent Document 1 is configured as part of a waveguide connecting a microwave power source and a load, and includes a directional coupler, three stubs, and a controller.
  • the three stubs function as impedance modifiers.
  • the reflected impedance is changed by changing the insertion length of the three stubs. Since the insertion length of the three stubs and the change in the actual impedance have no regularity, it is necessary to search for the conditions of the three stubs to obtain the desired impedance by trial and error.
  • An object of the present disclosure is to provide an impedance converter that can perform impedance conversion with a simple operation.
  • An impedance converter of one aspect of the present disclosure includes a cavity, an input port, an output port, and an adjustment mechanism.
  • the cavity has an electromagnetically sealed internal space.
  • An input antenna is provided in the cavity for inputting radio waves into the internal space of the cavity.
  • An output port is provided in the cavity for outputting radio waves from the internal space of the cavity.
  • the adjustment mechanism has a metal stub arranged within the internal space of the cavity.
  • An adjustment mechanism adjusts the position of the stub between the input port and the output port and the insertion length of the stub.
  • the stub insertion length is the effective length of the stub inserted into the internal space of the cavity.
  • impedance conversion can be performed with a simple operation.
  • FIG. 1 is a perspective view from above showing the appearance of an impedance converter according to an embodiment of the present disclosure.
  • FIG. 2 is a perspective view from below showing the appearance of the impedance converter according to the embodiment.
  • FIG. 3 is a plan view of the impedance converter according to the embodiment. 4 is a cross-sectional view taken along line 4--4 of FIG. 3.
  • FIG. 5 is an exploded perspective view of the impedance converter according to the embodiment. 6 is a cross-sectional view taken from below along line 6--6 of FIG. 4;
  • FIG. 7 is an exploded perspective view of the adjustment mechanism of the impedance converter according to the embodiment.
  • FIG. 8 is an enlarged cross-sectional view of the periphery of the electrical connection portion of the impedance converter according to the embodiment.
  • FIG. 9 is a plan view showing the first position of the stub in the impedance converter according to the embodiment.
  • 10 is a cross-sectional view along line 10-10 of FIG. 9.
  • FIG. 11 is a plan view showing the second position of the stub in the impedance converter according to the embodiment.
  • 12 is a cross-sectional view taken along line 12-12 of FIG. 11.
  • FIG. 13 is a cross-sectional view showing the third position of the stub in the impedance converter according to the embodiment.
  • FIG. 14 is a cross-sectional view showing the fourth position of the stub in the impedance converter according to the embodiment.
  • FIG. 15 is a Smith chart showing a first example of impedance change by the impedance converter according to the embodiment.
  • FIG. 16 is a Smith chart showing a second example of impedance change by the impedance converter according to the embodiment.
  • FIG. 17 is a Smith chart showing a third example of impedance change by the impedance converter according to the
  • FIG. 1 is a perspective view from above showing the appearance of the impedance converter 1.
  • FIG. 2 is a perspective view from below showing the appearance of the impedance converter 1.
  • FIG. 3 is a plan view of the impedance converter 1.
  • FIG. 4 is a cross-sectional view taken along line 4--4 of FIG. 3.
  • FIG. 5 is an exploded perspective view of the impedance converter 1.
  • FIG. 6 is a cross-sectional view taken from below along line 6--6 of FIG. 4; FIG.
  • the impedance converter 1 includes a cavity 2, an input port 3, an output port 4, and an adjustment mechanism 5.
  • the cavity 2 has an internal space 20 that is electromagnetically sealed.
  • the cavity 2 is made of metal such as aluminum, but the material is not particularly limited. Cavity 2 has a cuboid shape.
  • the cavity 2 has a first wall 21 and a second wall 22 perpendicular to the first axis C1.
  • the first wall portion 21 and the second wall portion 22 have the same rectangular plate shape.
  • the cavity 2 has a third wall 23 and a fourth wall 24 perpendicular to the second axis C2.
  • the third wall portion 23 and the fourth wall portion 24 have the same rectangular plate shape.
  • the cavity 2 has a fifth wall 25 and a sixth wall 26 perpendicular to the third axis C3.
  • the fifth wall portion 25 and the sixth wall portion 26 have the same rectangular plate shape.
  • the first axis is the vertical axis.
  • the second axis C2 is the horizontal axis of the cavity 2 orthogonal to the first axis C1.
  • the third axis C3 is the depth direction axis of the cavity 2 orthogonal to both the first axis C1 and the second axis C2.
  • the cavity 2 has the largest dimension along the second axis C2, the second largest dimension along the third axis C3 and the smallest dimension along the first axis C1.
  • the cavity 2 has mounting holes 27a and 27b provided in the first wall portion 21, and openings .
  • the input port 3, the output port 4 and the adjustment mechanism 5 are attached to the mounting hole 27a, the mounting hole 27b and the opening 28, respectively. That is, the input port 3 , the output port 4 and the adjustment mechanism 5 are arranged on the first wall portion 21 .
  • the internal space 20 of the cavity 2 is surrounded by the first to sixth walls 21 to 26 and electromagnetically sealed.
  • the cavity 2 has mounting holes 27a and 27b and an opening 28, and although the internal space 20 of the cavity 2 is not spatially sealed, it may be regarded as electromagnetically sealed.
  • the first wall portion 21 of the cavity 2 has a first surface 21a and a second surface 21b.
  • the first surface 21 a is the front surface of the first wall portion 21
  • the second surface 21 b is the rear surface of the first wall portion 21 facing the internal space 20 .
  • the first wall portion 21 has recesses 211a and 211b, a base portion 212, and a bank portion 213 provided on the first surface 21a.
  • the recessed portion 211 a is arranged near the end of the first wall portion 21 that contacts the third wall portion 23 .
  • the recessed portion 211 b is arranged near the end of the first wall portion 21 that contacts the fourth wall portion 24 .
  • the recesses 211a, 211b are aligned along the second axis C2 of the cavity 2. As shown in FIG.
  • the concave portions 211a and 211b have, for example, a rectangular shape.
  • a mounting hole 27a is formed in the bottom of the recess 211a, and a mounting hole 27b is formed in the bottom of the recess 211b.
  • the base portion 212 supports the adjustment mechanism 5 .
  • the adjusting mechanism 5 is installed on the base portion 212 .
  • the base portion 212 is arranged near the end portion of the first wall portion 21 that contacts the sixth wall portion 26 .
  • the base portion 212 has a rectangular plate-like shape extending along the second axis C ⁇ b>2 of the cavity 2 .
  • the bank portion 213 is a peripheral portion of the opening 28 of the cavity 2, which is arranged on the first wall portion 21 between the mounting holes 27a and 27b.
  • the bank portion 213 has a rectangular shape extending along the second axis C2 of the cavity 2 .
  • the first wall portion 21 of the cavity 2 has a recess 214 provided on the second surface 21b on the second wall portion 22 side.
  • the recess 214 is arranged on the second surface 21b of the first wall portion 21 between the mounting holes 27a and 27b.
  • the recess 214 is a groove extending along the second axis C2 of the cavity 2 .
  • the recess 214 has an oval shape when viewed along the first axis C1.
  • the recessed portion 214 corresponds to the internal space of the bank portion 213 .
  • An opening 28 is formed at the bottom of the recess 214 .
  • the opening 28 is a slit-shaped through hole extending along the second axis C2 of the cavity 2 .
  • the opening 28 is arranged between the mounting hole 27a and the mounting hole 27b. An opening 28 is thus arranged in the first wall 21 between the input port 3 and the output port 4 .
  • the input port 3 is provided in the cavity 2 for inputting radio waves into the internal space 20 . As shown in FIGS. 4 and 5, the input port 3 is provided with an input antenna 31 and a connector 32 . When the input port 3 receives a high-frequency signal from the outside via the connector 32 , radio waves corresponding to the high-frequency signal are input to the internal space 20 via the input antenna 31 .
  • the input antenna 31 is arranged within the internal space 20 of the cavity 2 .
  • the input antenna 31 has a round bar shape.
  • the input antenna 31 is made of copper, for example.
  • the input antenna 31 has a tip portion 31a and a trunk portion 31b. The diameter of the tip portion 31a is larger than that of the body portion 31b.
  • the input antenna 31 is arranged so that no discharge occurs between the tip 31 a of the input antenna 31 and the cavity 2 .
  • the distance between the tip portion 31a of the input antenna 31 and each of the second wall portion 22, the third wall portion 23, the fifth wall portion 25 and the sixth wall portion 26 of the cavity 2 is equal to the tip portion 31a and each wall portion.
  • the connector 32 is arranged outside the internal space 20 of the cavity 2 and used to electrically connect the impedance converter 1 to external equipment.
  • connector 32 is a coaxial connector connectable to a coaxial cable.
  • the connector 32 includes a rod-shaped inner conductor 32a, a cylindrical outer conductor 32b surrounding the inner conductor 32a, and an insulator 32c arranged between the inner conductor 32a and the outer conductor 32b.
  • the input port 3 is attached to the cavity 2 through the attachment hole 27a.
  • the connector 32 connects the input antenna 31 to the internal conductor 32a through the mounting hole 27a, and is fixed in the recess 211a of the first surface 21a of the first wall 21.
  • a trunk portion 31 b of the input antenna 31 is connected to an internal conductor 32 a of the connector 32 .
  • the output port 4 is provided in the cavity 2 to output radio waves from the internal space 20 . As shown in FIGS. 4 and 5, the output port 4 is provided with an output antenna 41 and a connector 42 . At the output port 4 , when the radio wave input to the internal space 20 is received by the output antenna 41 , the power of the high frequency signal corresponding to the received radio wave is output from the connector 42 .
  • the output antenna 41 is arranged within the internal space 20 of the cavity 2 .
  • the output antenna 41 has a round bar shape.
  • the output antenna 41 is made of copper, for example.
  • the output antenna 41 has a tip portion 41a and a trunk portion 41b. The diameter of the tip portion 41a is larger than that of the body portion 41b.
  • the output antenna 41 is arranged so that no discharge occurs between the tip 41 a of the output antenna 41 and the cavity 2 . More specifically, the distance between the tip portion 41a of the output antenna 41 and each of the second wall portion 22, the fourth wall portion 24, the fifth wall portion 25 and the sixth wall portion 26 of the cavity 2 is It is set so that discharge does not occur between each wall.
  • the connector 42 is arranged outside the internal space 20 of the cavity 2 and used to electrically connect the impedance converter 1 to external equipment.
  • connector 42 is a coaxial connector connectable to a coaxial cable.
  • the connector 42 includes a rod-shaped inner conductor 42a, a cylindrical outer conductor 42b surrounding the inner conductor 42a, and an insulator 42c arranged between the inner conductor 42a and the outer conductor 42b.
  • the output port 4 is attached to the cavity 2 through the attachment hole 27b.
  • the connector 42 connects the output antenna 41 to the inner conductor 42a through the mounting hole 27b and is fixed in the recess 211b of the first surface 21a of the first wall 21.
  • a trunk portion 41 b of the output antenna 41 is connected to an internal conductor 42 a of the connector 42 .
  • the input antenna 31 of the input port 3 has the same shape as the output antenna 41 of the output port 4. More specifically, tip 31 a of input antenna 31 has the same diameter and length as tip 41 a of output antenna 41 .
  • Body 31 b of input antenna 31 has the same diameter and length as body 41 b of output antenna 41 .
  • the input port 3 and the output port 4 are aligned in the direction of the second axis C2 of the cavity 2 (horizontal direction in FIG. 3) when viewed along the first axis C1 of the cavity 2.
  • a straight line L1 passing through the input port 3 and the output port 4 corresponds to the centerline of the cavity 2 in the direction of the third axis C3 (vertical direction in FIG. 3) when viewed along the first axis C1 of the cavity 2 .
  • the cavity 2 is symmetrical with respect to a straight line L1 passing through the input port 3 and the output port 4 when viewed along the first axis C1.
  • the input port 3 is closer to the third wall 23 than the output port 4. That is, output port 4 is closer to fourth wall 24 than input port 3 .
  • the distance D11 between the input port 3 and the third wall 23 is equal to the distance D12 between the output port 4 and the fourth wall 24 .
  • high-frequency signal power is input to the connector 32 of the input port 3 .
  • a radio wave corresponding to the power input to the input port 3 is radiated from the input antenna 31 into the internal space 20 of the cavity 2 .
  • the output port 4 when the radio waves radiated into the internal space 20 are received by the output antenna 41 , power of the high-frequency signal corresponding to the received radio waves is output from the connector 42 .
  • the adjustment mechanism 5 adjusts the impedance between the input port 3 and the output port 4.
  • the adjustment mechanism 5 has a stub 6 . How the stub 6 is arranged in the internal space 20 of the cavity 2 affects the propagation of radio waves from the input port 3 to the output port 4 .
  • the position of the stub 6 adjusts the impedance between the input port 3 and the output port 4.
  • the adjustment mechanism 5 can individually adjust the position of the stub 6 between the input port 3 and the output port 4 and the insertion length of the stub 6 .
  • the insertion length is the effective length of the portion of the stub 6 inserted into the internal space 20 of the cavity 2 .
  • the effective length is the length of the portion of the stub 6 that affects the impedance.
  • the insertion length of the stub 6 is the distance between the tip of the stub 6 and the second surface 21b of the first wall portion 21 in the direction of the first axis C1.
  • the insertion length is zero when the tip of the stub 6 does not protrude from the second surface 21b. That is, the insertion length of the stub 6 is the effective length of the portion of the stub 6 inserted into the internal space 20 of the cavity 2 .
  • FIG. 7 is an exploded perspective view of the adjustment mechanism 5.
  • the adjustment mechanism 5 includes a stub 6 , a position adjustment mechanism 71 , an insertion length adjustment mechanism 72 , a support 73 and an electrical connector 8 .
  • the stub 6 is made of metal such as aluminum, but the material is not particularly limited.
  • the stub 6 in FIG. 7 has a rod-like shape.
  • the stub 6 has a leading end 6a, a trailing end 6b and an intermediate portion 6c between the leading end 6a and the trailing end 6b.
  • the tip 6a has a disk-like shape with rounded corners. Due to this shape, the electric field strength in the vicinity of the tip 6a can be reduced, and the discharge between the tip 6a and the cavity 2 can be reduced.
  • the rear end portion 6b and the intermediate portion 6c have a flat plate shape.
  • the width of the intermediate portion 6c ie the dimension in the direction of the second axis, is smaller than that of the rear end portion 6b.
  • the dimension of the tip 6a of the stub 6 in the direction of the third axis C3 is greater than that of the opening 28 along the third axis C3. Therefore, the tip portion 6a cannot pass through the opening 28.
  • the dimensions of the rear end portion 6b and the intermediate portion 6c of the stub 6 in the direction of the third axis C3 are smaller than that of the opening 28 and can pass through the opening 28. As shown in FIG.
  • the stub 6 passes through the opening 28 as shown in FIG. That is, the leading end portion 6a and the trailing end portion 6b of the stub 6 are arranged inside and outside the internal space 20, respectively.
  • the tip 6 a of the stub 6 can be accommodated in the recess 214 of the cavity 2 .
  • the recess 214 has a depth capable of accommodating the tip portion 6a of the stub 6, that is, a dimension in the direction of the first axis C1. Therefore, the tip portion 6 a of the stub 6 does not protrude outside the recess 214 .
  • the position adjustment mechanism 71 holds the stub 6 movably within the opening 28 along the second axis C2.
  • the position adjustment mechanism 71 has a movable portion 711 and a fixed portion 712 .
  • the stub 6 is attached to the movable portion 711 in the position adjusting mechanism 71 .
  • the fixed portion 712 is fixed to the cavity 2 such that the longitudinal direction of the fixed portion 712 is along the second axis C2, and holds the movable portion 711 movably along the second axis C2.
  • the fixed part 712 has a base 712a, a rail 712b, and a screw 712c.
  • the base 712a has a rectangular plate shape.
  • the base 712 a is attached to the platform 212 of the cavity 2 .
  • the rail 712b is used to move the movable portion 711 along the longitudinal direction of the fixed portion 712, that is, along the second axis C2.
  • the rail 712b extends in the longitudinal direction of the fixed portion 712, that is, along the second axis C2.
  • Rail 712b is attached to base 712a.
  • the rail 712b has a shape whose width increases toward its tip. As a result, the movable portion 711 is coupled to the fixed portion 712 so as not to come off.
  • the screw 712c moves the movable part 711 with respect to the fixed part 712 along the second axis C2.
  • the screw 712c has a rotation axis along the second axis C2 and is rotatable about the rotation axis.
  • the movable portion 711 has a cuboid shape.
  • the movable part 711 has a rail groove 711a with which the rail 712b of the fixed part 712 is engaged.
  • a thread groove is formed in the rail groove 711a to mesh with the thread groove of the screw 712c.
  • the movable portion 711 has a mounting surface 711b provided on the side opposite to the rail groove 711a.
  • the stub 6 is indirectly attached to the attachment surface 711 b via the support 73 and the insertion length adjustment mechanism 72 .
  • the insertion length adjusting mechanism 72 holds the stub 6 movably along the first axis C1.
  • the insertion length adjusting mechanism 72 has a movable portion 721 and a fixed portion 722 .
  • the stub 6 is attached to the movable portion 721 in the insertion length adjusting mechanism 72 .
  • the fixed part 722 is fixed to the cavity 2 such that the longitudinal direction of the fixed part 722 is along the first axis C1, and holds the movable part 721 movably along the first axis C1.
  • the fixed part 722 has a base 722a, a rail groove 722b, and a screw 722c.
  • the base 722a has a rectangular plate shape.
  • the base 722 a is attached to the attachment surface 711 b of the movable portion 711 of the position adjustment mechanism 71 via the support 73 .
  • the rail groove 722b is used to move the movable portion 721 along the longitudinal direction of the fixed portion 722, that is, along the first axis C1.
  • the rail groove 722b extends along the first axis C1.
  • the rail groove 722b is formed on one surface of the base 722a.
  • the screw 722c moves the movable part 721 with respect to the fixed part 722 along the first axis C1.
  • the screw 722c has a rotation axis along the second axis C2 and is rotatable about the rotation axis.
  • the movable portion 721 has a cuboid shape.
  • the movable portion 721 has rails 721 a that engage with rail grooves 722 b of the fixed portion 722 .
  • the rail 721a has a shape whose width increases toward its tip. As a result, the movable portion 721 is coupled to the fixed portion 722 so as not to come off.
  • the support 73 is a member for attaching the insertion length adjusting mechanism 72 and the electrical connection portion 8 to the movable portion 711 of the position adjusting mechanism 71 .
  • the support 73 has a fixing portion 73a, a first support 73b, a second support 73c, and a pair of connecting portions 73d.
  • the fixed portion 73a is fixed to the mounting surface 711b of the movable portion 711 of the position adjustment mechanism 71.
  • the first support 73b has a plate-like shape extending from the fixing portion 73a in parallel with the first axis C1.
  • a fixing portion 722 of the insertion length adjusting mechanism 72 is attached to the first support 73b.
  • the second support 73c is fixed to the fixed portion 73a by a pair of connecting portions 73d so as to face the bank portion 213 of the cavity 2 in the direction of the first axis C1.
  • the fixed part 73a has a through hole 731 facing the opening 28 of the cavity 2 in the direction of the first axis C1.
  • the dimension of the through hole 731 in the direction of the second axis C2 or the third axis C3 is smaller than that of the leading end portion 6a and the rear end portion 6b of the stub 6, but larger than that of the intermediate portion 6c.
  • FIG. 8 is an enlarged cross-sectional view of the periphery of the electrical connection portion 8. As shown in FIG. As shown in FIG. 8, a concave portion 732 for accommodating the electrical connection portion 8 is formed in the cavity 2 side surface of the second support 73c.
  • the electrical connection portion 8 electrically connects the stub 6 to the cavity 2 .
  • the stub 6 is arranged to pass through the opening 28 and functions as an antenna for outputting part of the radio wave input from the input antenna 31 to the internal space 20 to the outside from the internal space 20 of the cavity 2 .
  • the electrical connection portion 8 can prevent the stub 6 from functioning as an antenna and prevent power leakage through the stub 6 .
  • the electrical connection portion 8 has a pair of first conductive members 81, a second conductive member 82, and a pair of urging members 83. As shown in FIGS. 7 and 8, the electrical connection portion 8 has a pair of first conductive members 81, a second conductive member 82, and a pair of urging members 83. As shown in FIGS. 7 and 8, the electrical connection portion 8 has a pair of first conductive members 81, a second conductive member 82, and a pair of urging members 83. As shown in FIGS.
  • Each of the pair of first conductive members 81 is arranged outside the internal space 20 of the cavity 2 .
  • the pair of first conductive members 81 are arranged to sandwich the stub 6 in the direction of the third axis C3 (horizontal direction in FIG. 8) and elastically contact the stub 6 in the direction of the third axis C3.
  • Each of the pair of first conductive members 81 is a leaf spring.
  • the insertion length adjusting mechanism 72 can move the stub 6 along the first axis C1 while stably making electrical contact with the pair of first conductive members 81 .
  • the second conductive member 82 is arranged outside the internal space 20 of the cavity 2 and electrically connects the first conductive member 81 to the embankment 213 , that is, the peripheral portion of the opening 28 of the cavity 2 .
  • the second conductive member 82 has a rectangular box shape.
  • the second conductive member 82 has a through hole 82a through which the stub 6 passes.
  • the second conductive member 82 accommodates a pair of first conductive members 81 that are arranged to sandwich the stub 6 and contact the stub 6 . Thereby, the second conductive member 82 is electrically connected to the pair of first conductive members 81 while keeping the pair of first conductive members 81 elastically in contact with the stub 6 . Since the second conductive member 82 is in contact with the bank portion 213 , the pair of first conductive members 81 are electrically connected to the peripheral portion of the opening 28 of the cavity 2 via the second conductive member 82 .
  • a pair of biasing members 83 bias the second conductive member 82 toward the cavity 2 , so that the second conductive member 82 elastically contacts the bank portion 213 of the cavity 2 .
  • the pair of biasing members 83 are, for example, coil springs.
  • the position adjusting mechanism 71 can move the stub 6 along the second axis C2 while the biasing member 83 keeps the second conductive member 82 stably in electrical contact with the cavity 2 .
  • the electrical connection 8 electrically connects the stub 6 to the cavity 2 .
  • power leakage through the stub 6 can be prevented.
  • the fixed portion 712 of the position adjustment mechanism 71 is directly fixed to the cavity 2 .
  • the fixed portion 722 of the insertion length adjusting mechanism 72 is fixed to the movable portion 711 of the position adjusting mechanism 71 via the support 73 .
  • the stub 6 is fixed to the movable portion 721 of the insertion length adjusting mechanism 72 .
  • the position adjusting mechanism 71 allows the stub 6, the insertion length adjusting mechanism 72, and the support 73 to move together with the movable portion 711 along the second axis C2.
  • the insertion length adjusting mechanism 72 allows the stub 6 to move along the first axis C1 together with the movable portion 721 .
  • the impedance converter 1 uses the adjustment mechanism 5 to adjust the impedance.
  • the adjustment mechanism 5 can individually adjust the position of the stub 6 between the input port 3 and the output port 4 and the insertion length of the stub 6 .
  • the position adjustment mechanism 71 adjusts the position of the stub 6 between the input port 3 and the output port 4.
  • the rotational motion of the screw 712c is converted into linear motion along the second axis C2, and the movable portion 711 moves along the rail 712b. It moves up along the second axis C2.
  • the stub 6 can be moved toward either the input port 3 or the output port 4 depending on the direction of rotation of the screw 712c.
  • FIG. 9 is a plan view showing the first position of the stub 6 in the impedance converter 1.
  • FIG. 10 is a cross-sectional view along line 10-10 of FIG. 9.
  • the stub 6 is arranged at the input port 3 side end of the opening 28 extending along the second axis C2. That is, the first position is the position closest to the input port 3 in the movable range of the stub 6 along the second axis C2.
  • FIG. 11 is a plan view showing the second position of the stub 6 in the impedance converter 1.
  • FIG. 12 is a cross-sectional view taken along line 12-12 of FIG. 11.
  • FIG. 11 and 12 the stub 6 is arranged at the output port 4 side end of the opening 28 extending along the second axis C2. That is, the second position is the position closest to the output port 4 within the movable range of the stub 6 along the second axis C2.
  • the position adjustment mechanism 71 can set the position of the stub 6 to any position within the movable range of the stub 6 along the second axis C2.
  • the insertion length adjustment mechanism 72 adjusts the insertion length of the stub 6.
  • the rotational motion of the screw 722c is converted into linear motion along the first axis C1, and the movable portion 721 moves along the rail 721a along the first axis C1. move along.
  • the stub 6 can be moved either in the direction of increasing or decreasing the insertion length.
  • FIG. 13 is a cross-sectional view showing the third position of the stub 6 in the impedance converter 1.
  • the insertion length of the stub 6 is the maximum value in the movable range of the stub 6 along the first axis C1.
  • the rear end 6b of the stub 6 contacts the edge of the through hole 731 of the second support 73c of the support 73, restricting the movement of the stub 6 in the direction of increasing the insertion length. be.
  • FIG. 14 is a cross-sectional view showing the fourth position of the stub 6 in the impedance converter 1.
  • the insertion length of the stub 6 is the minimum value in the movable range of the stub 6 along the first axis C1.
  • the tip 6a of the stub 6 is accommodated in the recess 214 of the cavity 2 and does not protrude into the internal space 20.
  • the insertion length of stub 6 is substantially zero.
  • the impedance between the input port 3 and the output port 4 can be set to a value equivalent to that without the stub 6.
  • the dimension of the opening 28 in the direction of the third axis C3 is smaller than that of the tip 6a of the stub 6. Therefore, the tip 6a of the stub 6 contacts the bottom of the recess 214, and the movement of the stub 6 in the direction in which the insertion length is reduced is restricted. That is, the insertion length adjustment mechanism 72 can set the position of the stub 6 to any position within the movable range of the stub 6 along the first axis C1.
  • the inventors used a network analyzer to evaluate the S parameter (Scattering parameter) in order to evaluate the change in impedance of the impedance converter 1 .
  • the inventors connected a 50 ⁇ terminating resistor to the output port 4 and used the reflection coefficient (S 11 ) of the input port 3 in the evaluation of the S-parameters.
  • FIG. 15 is a Smith chart showing a first example of impedance change by the impedance converter 1.
  • FIG. A Smith chart is a circular chart that shows complex impedance used in the design of impedance matching. The center of the Smith chart corresponds to impedance matching. The perimeter of the Smith chart corresponds to 100% reflection.
  • the Smith chart expresses impedance by the length of a line segment from the center to an arbitrary point on the chart and the angle formed by the line segment and a straight line extending leftward from the center.
  • the length of the line segment corresponds to the magnitude of the reflection coefficient and the angle of the line segment corresponds to the phase of the reflection coefficient.
  • Impedance includes a resistance component and a reactance component.
  • the magnitude of the reflection coefficient is related to the resistive component of the impedance, and the phase of the reflection coefficient is related to the reactive component of the impedance.
  • the insertion length of the stub 6 was changed. That is, the insertion length adjusting mechanism 72 moves the stub 6 along the first axis C1. As the insertion length increased, the impedance changed as indicated by arrow A1 in FIG. From FIG. 15, it can be seen that the change in the insertion length of the stub 6 greatly affects the resistance component of the impedance.
  • FIG. 16 is a Smith chart showing a second example of impedance change by the impedance converter 1.
  • FIG. In the second example the position of stub 6 between input port 3 and output port 4 was changed. That is, the position adjusting mechanism 71 moves the stub 6 along the second axis C2.
  • FIG. 17 is a Smith chart showing a third example of impedance change by the impedance converter 1.
  • FIG. As in the first example, the insertion length of the stub 6 was changed, and each time the insertion length was changed, the position of the stub 6 between the input port 3 and the output port 4 was changed as in the second example.
  • Each of the arrows A31, A32, A33, A34, A35 in FIG. 17 indicates changes in impedance according to the position of the stub 6 between the input port 3 and the output port 4 at the corresponding insertion length.
  • the insertion length increases in the order of arrow A31, arrows A32, A33, A34, and A35.
  • the inventors confirmed that the impedance can be adjusted by the position of the stub 6 between the input port 3 and the output port 4 and the insertion length of the stub 6.
  • the position of the stub 6 between the input port 3 and the output port 4 can adjust the reactance component of the impedance.
  • the resistance component of impedance can be adjusted by the insertion length of the stub 6 . That is, the stub 6 can individually adjust the resistance component and the reactance component of the impedance.
  • the inventors have tried various designs in the impedance converter 1, and confirmed that it is possible to change the magnitude of the reflection coefficient from 0% to 98% in the frequency band of 2400 MHz to 2500 MHz. .
  • the inventors also confirmed that it is possible to change the phase of the reflection coefficient from 0° to 360° in the same frequency band. Furthermore, the inventors have confirmed that the reflection loss can be suppressed to 0.4% to 1%.
  • the impedance converter 1 adjusts the reactance component of the impedance (the phase of the reflection coefficient) at the position of the stub 6 between the input port 3 and the output port 4, and the insertion length of the stub 6
  • the resistive component of impedance magnitude of reflection coefficient
  • the impedance can be easily adjusted using the correlation between the stub 6 and the resistance component (magnitude of reflection coefficient) and reactance component (phase of reflection coefficient) of the impedance.
  • the shape of the cavity 2 is not limited.
  • the dimensions of the cavity 2 in the directions of the first axis C1, the second axis C2, and the third axis C3 are appropriately set in consideration of the arrangement of the input port and the output port, the frequency of the high-frequency signal input to the input port, and the like. be. All dimensions of the cavity 2 in the directions of the first axis C1, the second axis C2 and the third axis C3 are related to efficiency (power loss) and frequency characteristics.
  • the dimension along the first axis C1 and the dimension in the direction of the second axis C2 are arbitrarily selected. to optimize the dimension in the direction of the third axis C3.
  • the dimension in the direction of the first axis C1 is not changed, but the dimension in the direction of the second axis C2 is changed to optimize the dimension in the direction of the third axis C3.
  • the optimum combination of the dimension in the direction of the second axis C2 and the dimension in the direction of the third axis C3 is searched for the dimension in the direction of the first axis C1 at that time.
  • the dimension in the direction of the first axis C1 is changed to search for the optimum combination of the dimension in the direction of the second axis C2 and the dimension in the direction of the third axis C3. This searches for the optimal combination of the three dimensions.
  • the cavity 2 is not limited to a rectangular parallelepiped shape.
  • the cavity 2 may have a circular or polygonal box-like shape.
  • the dimensions of the cavity 2 may be appropriately set in consideration of the arrangement of the input port and the output port, the frequency of the high frequency signal input to the input port, etc., as described above.
  • the shapes of the input antenna 31 of the input port 3 and the shape of the output antenna 41 of the output port 4 are not limited to those described in the above embodiment.
  • the shapes of the connectors 32, 42 of the input port 3 and the output port 4 are not limited to those described in the above embodiment.
  • the input port 3 may be a waveguide input section that is an opening provided in the cavity 2 for inputting radio waves into the internal space 20 .
  • the input port 3 can directly input radio waves into the internal space 20 .
  • the output port 4 may be a waveguide output section that is an opening provided in the cavity 2 for outputting radio waves from the internal space 20 .
  • the output port 4 can directly output radio waves from the internal space 20 .
  • the configuration of cavity 2, input port 3 and output port 4 may differ from those described in the above embodiments.
  • the input port 3 and the output port 4 do not necessarily have to be arranged on the first wall portion 21 .
  • the input port 3 may be arranged on the first wall 21 or the second wall 22 and the output port 4 may be arranged on the first wall 21 or the second wall 22 .
  • the input port 3 and the output port 4 do not necessarily have to line up along the second axis C2.
  • the cavity 2 does not have to be symmetrical with respect to a straight line passing through the input port 3 and the output port 4.
  • the distance D11 between the input port 3 and the third wall 23 may be different from the distance D12 between the output port 4 and the fourth wall 24 .
  • the adjustment mechanism 5 may not necessarily be able to individually adjust the position of the stub 6 between the input port 3 and the output port 4 and the insertion length of the stub 6. That is, the adjustment mechanism 5 may be configured to simultaneously adjust the position of the stub 6 between the input port 3 and the output port 4 and the insertion length of the stub 6 .
  • the fixed portion 722 of the insertion length adjustment mechanism 72 may be fixed to the cavity 2 and the position adjustment mechanism 71 may be fixed to the movable portion 721 of the insertion length adjustment mechanism 72.
  • the shapes of the position adjustment mechanism 71 and the insertion length adjustment mechanism 72 may be changed as appropriate as long as the stub 6 can be moved in a desired direction.
  • the adjustable range of the position of the stub 6 between the input port 3 and the output port 4 may be appropriately set according to the performance required of the impedance converter 1. The same applies to the adjustable range of the insertion length of the stub 6 .
  • the cavity 2 may not have the recess 214 . That is, the stub 6 may not be able to hide the stub 6 within the recess 214 .
  • the adjustment mechanism 5 may not have the electrical connection 8.
  • electrical connection 8 may be omitted if leakage of power through stub 6 has little adverse effect.
  • An impedance converter (1) according to the first aspect of the present disclosure comprises a cavity (2), an input port (3), an output port (4) and an adjustment mechanism (5).
  • the cavity (2) has an electromagnetically sealed internal space (20).
  • An input port (3) is provided in the cavity (2) for inputting radio waves into the internal space (20) of the cavity (2).
  • An output port (4) is provided in the cavity (2) for outputting radio waves from the internal space (20) of the cavity (2).
  • the adjustment mechanism (5) has a metal stub (6) arranged within the interior space (20) of the cavity (2).
  • An adjustment mechanism (5) adjusts the position of the stub (6) between the input port (3) and the output port (4) and the insertion length of the stub (6).
  • the insertion length of the stub (6) is the effective length of the portion of the stub (6) inserted into the interior space (20) of the cavity (2). According to this aspect, impedance conversion can be performed with a simple operation.
  • the adjustment mechanism (5) adjusts the position of the stub (6) between the input port (3) and the output port (4) and , and the insertion length of the stub (6) into the internal space (20) of the cavity (2) are individually adjusted. According to this aspect, impedance conversion can be performed more easily.
  • the cavity (2) has a first wall (21) and a second wall (21) orthogonal to the first axis C1 (22).
  • the input port (3) is arranged on the first wall (21) or the second wall (22).
  • the output port (4) is located on the first wall (21) or the second wall (22). When viewed along the first axis C1, the input port (3) and the output port (4) are aligned along a second axis C2 orthogonal to the first axis C1. According to this aspect, power loss can be reduced.
  • the cavity (2) is provided in the first wall (21) between the input port (3) and the output port (4). It has an aperture (28) provided.
  • the stub (6) passes through the opening (28) so that the leading end (6a) and the trailing end (6b) of the stub (6) are positioned inside and outside the internal space (20), respectively. According to this aspect, impedance conversion can be performed with a simple operation.
  • the opening (28) of the cavity (2) extends along the second axis C2.
  • the adjustment mechanism (5) includes a positioning mechanism (71) that holds the stub (6) movably within the opening (28) of the cavity (2) along the second axis C2.
  • the position adjustment mechanism (71) has a movable part (711) and a fixed part (712).
  • a stub (6) is attached to the movable part (711).
  • the fixed part (712) is fixed to the cavity (2) so that the longitudinal direction of the fixed part (712) is along the second axis C2, and the movable part (711) of the position adjustment mechanism (71) is aligned with the second axis C2. movably held along. According to this aspect, impedance conversion can be performed with a simple operation.
  • the adjustment mechanism (5) is an insert holding the stub (6) movably along the first axis C1.
  • the insertion length adjusting mechanism (72) has a movable portion (721) and a fixed portion (722).
  • a stub (6) is attached to the movable part (721) of the insertion length adjusting mechanism (72).
  • the fixed part (722) of the insertion length adjustment mechanism (72) is fixed to the cavity (2) so that the longitudinal direction is along the first axis C1, and the movable part (721) of the insertion length adjustment mechanism (72) is moved to the first position. It is held movably along the axis C1. According to this aspect, impedance conversion can be performed with a simple operation.
  • the cavity (2) has a surface (second surface) of the first wall (21) on the second wall (22) side 21b) with a recess (214) provided therein.
  • the opening (28) of the cavity (2) is formed at the bottom of the recess (214) of the cavity (2).
  • the recess (214) of the cavity (2) has a depth capable of accommodating the tip (6a) of the stub (6). According to this aspect, by hiding the stub (6) in the recess (214) of the cavity (2), the impedance between the input port (3) and the output port (4) is reduced to that without the stub (6). Can be set to equivalent values.
  • the adjustment mechanism (5) electrically connects the stub (6) to the cavity (2) It further has a connecting electrical connection (8). According to this aspect, power leakage through the stub (6) can be prevented.
  • the electrical connection part (8) includes a first conductive member (81) and a second conductive member (82) .
  • a first conductive member (81) is positioned outside the interior space (20) of the cavity (2) and is directed to the stub (6) in the direction of a third axis C3 orthogonal to both the first axis C1 and the second axis C2. elastic contact.
  • a second conductive member (82) is positioned outside the interior space (20) of the cavity (2) and electrically connects the first conductive member (81) to the peripheral portion of the opening (28) of the cavity (2). . According to this aspect, power leakage through the stub (6) can be prevented.
  • the cavity (2) when viewed along the first axis C1, the cavity (2) has an input port ( 3) and is symmetrical about a straight line (L1) through the output port (4). According to this aspect, power loss can be further reduced.
  • the cavity (2) has a third wall (23) orthogonal to the second axis C2 and a fourth wall (24).
  • the input port (3) is closer to the third wall (23) than the output port (4).
  • the distance (D11) between the input port (3) and the third wall (23) is equal to the distance (D12) between the output port (4) and the fourth wall (24). According to this aspect, power loss can be further reduced.
  • the input port (3) and the output port (4) are the first It is located on the wall (21). According to this aspect, power loss can be further reduced.
  • the input port (3) is arranged within the internal space (20) of the cavity (2) It has an input antenna (31) that is The output port (4) has an output antenna (41) located in the interior space (20) of the cavity (2). According to this aspect, a high frequency signal can be transmitted.
  • the input antenna (31) has the same shape as the output antenna (41). According to this aspect, power loss can be further reduced.
  • the input antenna (31) is provided between the tip (31a) of the input antenna (31) and the cavity (2). They are arranged so that no discharge occurs between them.
  • the output antenna (41) is arranged so that no discharge occurs between the tip (41a) of the output antenna (41) and the cavity (2). According to this aspect, it is possible to reduce the occurrence of discharge between the input antenna (31) and the output antenna (41) and the cavity (2).
  • the present disclosure is particularly applicable to impedance converters for high frequencies.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

An impedance converter (1) comprises a cavity (2), an input port (3), an output port (4), and an adjustment mechanism (5). The cavity (2) has an internal space (20) that is electromagnetically sealed. The input port (3) is provided to the cavity (2) for input of radio waves into the internal space (20). The output port (4) is provided to the cavity (2) for output of radio waves from the internal space (20). The adjustment mechanism (5) has a stub (6) that is made of metal and that is disposed in the internal space (20). The adjustment mechanism (5) adjusts the position of the stub (6) between the input port (3) and the output port (4) and the length of the stub (6) inserted in the internal space (20).

Description

インピーダンス変換器impedance converter
 本開示は、インピーダンス変換器に関する。 The present disclosure relates to impedance converters.
 特許文献1は、マイクロ波の周波数の変更に対応する自動整合装置を開示する。特許文献1に記載の自動整合装置は、マイクロ波電源と負荷とを接続する導波管の一部として構成され、方向性結合器と三つのスタブと制御部とを備える。 Patent Document 1 discloses an automatic matching device that responds to changes in microwave frequencies. The automatic matching device described in Patent Document 1 is configured as part of a waveguide connecting a microwave power source and a load, and includes a directional coupler, three stubs, and a controller.
 三つのスタブの挿入長を調整することにより、導波管における負荷に設定される負荷側の基準点における反射係数を変更することができる。すなわち、三つのスタブはインピーダンス変更装置として機能する。 By adjusting the insertion length of the three stubs, it is possible to change the reflection coefficient at the reference point on the load side set for the load in the waveguide. That is, the three stubs function as impedance modifiers.
特開2018-32974号公報JP 2018-32974 A
 特許文献1に記載のインピーダンス変更手段において、三つのスタブの挿入長を変化させることで反射インピーダンスを変化させる。三つのスタブの挿入長と実際のインピーダンスとの変化には法則性はないため、試行錯誤により所望のインピーダンスが得られる三つのスタブの条件を探索する必要がある。 In the impedance changing means described in Patent Document 1, the reflected impedance is changed by changing the insertion length of the three stubs. Since the insertion length of the three stubs and the change in the actual impedance have no regularity, it is necessary to search for the conditions of the three stubs to obtain the desired impedance by trial and error.
 本開示は、簡単な操作でインピーダンス変換を行うことができるインピーダンス変換器を提供することを目的とする。 An object of the present disclosure is to provide an impedance converter that can perform impedance conversion with a simple operation.
 本開示の一態様のインピーダンス変換器は、キャビティと、入力ポートと、出力ポートと、調整機構と、を備える。 An impedance converter of one aspect of the present disclosure includes a cavity, an input port, an output port, and an adjustment mechanism.
 キャビティは、電磁的に密閉された内部空間を有する。入力アンテナは、キャビティの内部空間に電波を入力するためにキャビティに設けられる。出力ポートは、キャビティの内部空間から電波を出力するためにキャビティに設けられる。 The cavity has an electromagnetically sealed internal space. An input antenna is provided in the cavity for inputting radio waves into the internal space of the cavity. An output port is provided in the cavity for outputting radio waves from the internal space of the cavity.
 調整機構は、キャビティの内部空間内に配置された金属製のスタブを有する。調整機構は、入力ポートおよび出力ポートの間のスタブの位置と、スタブの挿入長とを調整する。スタブの挿入長は、スタブのキャビティの内部空間に挿入される有効長さである。 The adjustment mechanism has a metal stub arranged within the internal space of the cavity. An adjustment mechanism adjusts the position of the stub between the input port and the output port and the insertion length of the stub. The stub insertion length is the effective length of the stub inserted into the internal space of the cavity.
 本開示の態様によれば、簡単な操作でインピーダンス変換を行うことができる。 According to the aspect of the present disclosure, impedance conversion can be performed with a simple operation.
図1は、本開示の実施の形態に係るインピーダンス変換器の外観を示す上方からの斜視図である。FIG. 1 is a perspective view from above showing the appearance of an impedance converter according to an embodiment of the present disclosure. 図2は、実施の形態に係るインピーダンス変換器の外観を示す下方からの斜視図である。FIG. 2 is a perspective view from below showing the appearance of the impedance converter according to the embodiment. 図3は、実施の形態に係るインピーダンス変換器の平面図である。FIG. 3 is a plan view of the impedance converter according to the embodiment. 図4は、図3の4-4線に沿った断面図である。4 is a cross-sectional view taken along line 4--4 of FIG. 3. FIG. 図5は、実施の形態に係るインピーダンス変換器の分解斜視図である。FIG. 5 is an exploded perspective view of the impedance converter according to the embodiment. 図6は、図4の6-6線に沿った下方から見た断面図である。6 is a cross-sectional view taken from below along line 6--6 of FIG. 4; FIG. 図7は、実施の形態に係るインピーダンス変換器の調整機構の分解斜視図である。FIG. 7 is an exploded perspective view of the adjustment mechanism of the impedance converter according to the embodiment. 図8は、実施の形態に係るインピーダンス変換器の電気接続部の周辺の拡大断面図である。FIG. 8 is an enlarged cross-sectional view of the periphery of the electrical connection portion of the impedance converter according to the embodiment. 図9は、実施の形態に係るインピーダンス変換器におけるスタブの第1位置を示す平面図である。FIG. 9 is a plan view showing the first position of the stub in the impedance converter according to the embodiment. 図10は、図9の10-10線に沿った断面図である。10 is a cross-sectional view along line 10-10 of FIG. 9. FIG. 図11は、実施の形態に係るインピーダンス変換器におけるスタブの第2位置を示す平面図である。FIG. 11 is a plan view showing the second position of the stub in the impedance converter according to the embodiment. 図12は、図11の12-12線に沿った断面図である。12 is a cross-sectional view taken along line 12-12 of FIG. 11. FIG. 図13は、実施の形態に係るインピーダンス変換器におけるスタブの第3位置を示す断面図である。FIG. 13 is a cross-sectional view showing the third position of the stub in the impedance converter according to the embodiment. 図14は、実施の形態に係るインピーダンス変換器におけるスタブの第4位置を示す断面図である。FIG. 14 is a cross-sectional view showing the fourth position of the stub in the impedance converter according to the embodiment. 図15は、実施の形態に係るインピーダンス変換器によるインピーダンスの変化の第1例を示すスミスチャートである。FIG. 15 is a Smith chart showing a first example of impedance change by the impedance converter according to the embodiment. 図16は、実施の形態に係るインピーダンス変換器によるインピーダンスの変化の第2例を示すスミスチャートである。FIG. 16 is a Smith chart showing a second example of impedance change by the impedance converter according to the embodiment. 図17は、実施の形態に係るインピーダンス変換器によるインピーダンスの変化の第3例を示すスミスチャートである。FIG. 17 is a Smith chart showing a third example of impedance change by the impedance converter according to the embodiment.
 以下、適宜図面を参照しながら、本開示の実施の形態を詳細に説明する。ただし、既知の事項の詳細説明および実質的に同一の構成に対する重複説明を省略する場合がある。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings as appropriate. However, detailed descriptions of known matters and redundant descriptions of substantially the same configurations may be omitted.
 [構成]
 図1~図6は、本実施の形態に係るインピーダンス変換器1の構成例を示す。図1は、インピーダンス変換器1の外観を示す上方からの斜視図である。図2は、インピーダンス変換器1の外観を示す下方からの斜視図である。図3は、インピーダンス変換器1の平面図である。図4は、図3の4-4線に沿った断面図である。図5は、インピーダンス変換器1の分解斜視図である。図6は、図4の6-6線に沿った下方から見た断面図である。
[composition]
1 to 6 show configuration examples of an impedance converter 1 according to the present embodiment. FIG. 1 is a perspective view from above showing the appearance of the impedance converter 1. FIG. FIG. 2 is a perspective view from below showing the appearance of the impedance converter 1. As shown in FIG. FIG. 3 is a plan view of the impedance converter 1. FIG. 4 is a cross-sectional view taken along line 4--4 of FIG. 3. FIG. FIG. 5 is an exploded perspective view of the impedance converter 1. FIG. 6 is a cross-sectional view taken from below along line 6--6 of FIG. 4; FIG.
 図1~図5に示すように、インピーダンス変換器1は、キャビティ2と、入力ポート3と、出力ポート4と、調整機構5とを備える。  As shown in FIGS. 1 to 5, the impedance converter 1 includes a cavity 2, an input port 3, an output port 4, and an adjustment mechanism 5.
 キャビティ2は、電磁的に密閉された内部空間20を有する。キャビティ2は、アルミニウムなどの金属製であるが、その材料は特に限定されない。キャビティ2は直方体形状を有する。 The cavity 2 has an internal space 20 that is electromagnetically sealed. The cavity 2 is made of metal such as aluminum, but the material is not particularly limited. Cavity 2 has a cuboid shape.
 図4に示すように、キャビティ2は、第1軸C1に直交する第1壁部21および第2壁部22を有する。第1壁部21および第2壁部22は、同形状の矩形の板状形状を有する。キャビティ2は、第2軸C2に直交する第3壁部23および第4壁部24を有する。第3壁部23および第4壁部24は、同形状の矩形の板状形状を有する。 As shown in FIG. 4, the cavity 2 has a first wall 21 and a second wall 22 perpendicular to the first axis C1. The first wall portion 21 and the second wall portion 22 have the same rectangular plate shape. The cavity 2 has a third wall 23 and a fourth wall 24 perpendicular to the second axis C2. The third wall portion 23 and the fourth wall portion 24 have the same rectangular plate shape.
 図1および図2に示すように、キャビティ2は、第3軸C3に直交する第5壁部25および第6壁部26を有する。第5壁部25および第6壁部26は、同形状の矩形の板状形状を有する。 As shown in FIGS. 1 and 2, the cavity 2 has a fifth wall 25 and a sixth wall 26 perpendicular to the third axis C3. The fifth wall portion 25 and the sixth wall portion 26 have the same rectangular plate shape.
 なお、図1および図2に示すように、第1軸は鉛直方向の軸である。図3および図4に示すように、第2軸C2は第1軸C1に直交するキャビティ2の左右方向の軸である。図1~図4に示すように、第3軸C3は、第1軸C1および第2軸C2の両方に直交するキャビティ2の奥行き方向の軸である。 Note that, as shown in FIGS. 1 and 2, the first axis is the vertical axis. As shown in FIGS. 3 and 4, the second axis C2 is the horizontal axis of the cavity 2 orthogonal to the first axis C1. As shown in FIGS. 1 to 4, the third axis C3 is the depth direction axis of the cavity 2 orthogonal to both the first axis C1 and the second axis C2.
 本実施の形態において、キャビティ2は、第2軸C2に沿って最大の寸法を有し、第3軸C3に沿って2番目に大きな寸法を有し、第1軸C1に沿って最小の寸法を有する。 In this embodiment, the cavity 2 has the largest dimension along the second axis C2, the second largest dimension along the third axis C3 and the smallest dimension along the first axis C1. have
 図1~図6に示すように、キャビティ2は、第1壁部21に設けられた取付孔27a、取付孔27b、および開口28を有する。入力ポート3、出力ポート4および調整機構5は、取付孔27a、取付孔27bおよび開口28にそれぞれ取り付けられる。すなわち、入力ポート3、出力ポート4および調整機構5は第1壁部21に配置される。 As shown in FIGS. 1 to 6, the cavity 2 has mounting holes 27a and 27b provided in the first wall portion 21, and openings . The input port 3, the output port 4 and the adjustment mechanism 5 are attached to the mounting hole 27a, the mounting hole 27b and the opening 28, respectively. That is, the input port 3 , the output port 4 and the adjustment mechanism 5 are arranged on the first wall portion 21 .
 キャビティ2の内部空間20は、第1壁部21~第6壁部26により囲まれ、電磁的に密閉される。キャビティ2は取付孔27a、27bおよび開口28を有しており、キャビティ2の内部空間20は空間的には密閉されていないが、電磁的には密閉されているとみなしてもよい。 The internal space 20 of the cavity 2 is surrounded by the first to sixth walls 21 to 26 and electromagnetically sealed. The cavity 2 has mounting holes 27a and 27b and an opening 28, and although the internal space 20 of the cavity 2 is not spatially sealed, it may be regarded as electromagnetically sealed.
 図5および図6に示すように、キャビティ2の第1壁部21は、第1面21aと第2面21bとを有する。第1面21aは第1壁部21の表面であり、第2面21bは内部空間20に面する第1壁部21の裏面である。 As shown in FIGS. 5 and 6, the first wall portion 21 of the cavity 2 has a first surface 21a and a second surface 21b. The first surface 21 a is the front surface of the first wall portion 21 , and the second surface 21 b is the rear surface of the first wall portion 21 facing the internal space 20 .
 第1壁部21は、第1面21aに設けられた、凹部211a、211bと、台部212と、土手部213とを有する。凹部211aは、第3壁部23に接する第1壁部21の端部の近傍に配置される。凹部211bは、第4壁部24に接する第1壁部21の端部の近傍に配置される。凹部211a、211bは、キャビティ2の第2軸C2に沿って並ぶ。凹部211a,211bは、例えば矩形形状を有する。 The first wall portion 21 has recesses 211a and 211b, a base portion 212, and a bank portion 213 provided on the first surface 21a. The recessed portion 211 a is arranged near the end of the first wall portion 21 that contacts the third wall portion 23 . The recessed portion 211 b is arranged near the end of the first wall portion 21 that contacts the fourth wall portion 24 . The recesses 211a, 211b are aligned along the second axis C2 of the cavity 2. As shown in FIG. The concave portions 211a and 211b have, for example, a rectangular shape.
 凹部211aの底部に取付孔27aが形成され、凹部211bの底部に取付孔27bが形成される。台部212は、調整機構5を支持する。調整機構5は、台部212上に設置される。台部212は、第6壁部26に接する第1壁部21の端部の近傍に配置される。台部212は、キャビティ2の第2軸C2に延在する矩形の板状形状を有する。 A mounting hole 27a is formed in the bottom of the recess 211a, and a mounting hole 27b is formed in the bottom of the recess 211b. The base portion 212 supports the adjustment mechanism 5 . The adjusting mechanism 5 is installed on the base portion 212 . The base portion 212 is arranged near the end portion of the first wall portion 21 that contacts the sixth wall portion 26 . The base portion 212 has a rectangular plate-like shape extending along the second axis C<b>2 of the cavity 2 .
 土手部213は、取付孔27a、27b間の第1壁部21に配置された、キャビティ2の開口28の周辺部分である。土手部213は、キャビティ2の第2軸C2に沿って延在する矩形状を有する。 The bank portion 213 is a peripheral portion of the opening 28 of the cavity 2, which is arranged on the first wall portion 21 between the mounting holes 27a and 27b. The bank portion 213 has a rectangular shape extending along the second axis C2 of the cavity 2 .
 図4および図6に示すように、キャビティ2の第1壁部21は、第2壁部22側の第2面21bに設けられた凹部214を有する。 As shown in FIGS. 4 and 6, the first wall portion 21 of the cavity 2 has a recess 214 provided on the second surface 21b on the second wall portion 22 side.
 図6に示すように、凹部214は、取付孔27a、27b間の、第1壁部21の第2面21bに配置される。凹部214は、キャビティ2の第2軸C2に沿って延在する溝である。凹部214は、第1軸C1に沿って見たとき、長円形形状を有する。凹部214は、土手部213の内部空間に相当する。 As shown in FIG. 6, the recess 214 is arranged on the second surface 21b of the first wall portion 21 between the mounting holes 27a and 27b. The recess 214 is a groove extending along the second axis C2 of the cavity 2 . The recess 214 has an oval shape when viewed along the first axis C1. The recessed portion 214 corresponds to the internal space of the bank portion 213 .
 凹部214の底部に開口28が形成される。開口28は、キャビティ2の第2軸C2に沿って延在するスリット状の貫通孔である。開口28は、取付孔27a、取付孔27b間に配置される。従って、開口28は、入力ポート3および出力ポート4間の第1壁部21に配置される。 An opening 28 is formed at the bottom of the recess 214 . The opening 28 is a slit-shaped through hole extending along the second axis C2 of the cavity 2 . The opening 28 is arranged between the mounting hole 27a and the mounting hole 27b. An opening 28 is thus arranged in the first wall 21 between the input port 3 and the output port 4 .
 入力ポート3は、内部空間20に電波を入力するためにキャビティ2に設けられる。図4および図5に示すように、入力ポート3に、入力アンテナ31と、コネクタ32とが設けられる。入力ポート3において、外部からの高周波信号がコネクタ32を介して受信されると、高周波信号に応じた電波が入力アンテナ31を介して内部空間20に入力される。 The input port 3 is provided in the cavity 2 for inputting radio waves into the internal space 20 . As shown in FIGS. 4 and 5, the input port 3 is provided with an input antenna 31 and a connector 32 . When the input port 3 receives a high-frequency signal from the outside via the connector 32 , radio waves corresponding to the high-frequency signal are input to the internal space 20 via the input antenna 31 .
 入力アンテナ31は、キャビティ2の内部空間20内に配置される。入力アンテナ31は丸棒状形状を有する。入力アンテナ31は、例えば銅製である。入力アンテナ31は、先端部31aおよび胴部31bを有する。先端部31aの直径は、胴部31bのそれより大きい。 The input antenna 31 is arranged within the internal space 20 of the cavity 2 . The input antenna 31 has a round bar shape. The input antenna 31 is made of copper, for example. The input antenna 31 has a tip portion 31a and a trunk portion 31b. The diameter of the tip portion 31a is larger than that of the body portion 31b.
 入力アンテナ31は、入力アンテナ31の先端部31aとキャビティ2との間に放電が生じないように配置される。具体的には、入力アンテナ31の先端部31aと、キャビティ2の第2壁部22、第3壁部23、第5壁部25および第6壁部26の各々との距離は、先端部31aと各壁部との間に放電が生じないように設定される。 The input antenna 31 is arranged so that no discharge occurs between the tip 31 a of the input antenna 31 and the cavity 2 . Specifically, the distance between the tip portion 31a of the input antenna 31 and each of the second wall portion 22, the third wall portion 23, the fifth wall portion 25 and the sixth wall portion 26 of the cavity 2 is equal to the tip portion 31a and each wall portion.
 コネクタ32は、キャビティ2の内部空間20の外に配置され、インピーダンス変換器1を外部機器に電気的に接続するために用いられる。例えば、コネクタ32は、同軸ケーブルに接続可能な同軸コネクタである。コネクタ32は、棒状の内部導体32aと、内部導体32aを囲う筒状の外部導体32bと、内部導体32aおよび外部導体32b間に配置される絶縁体32cとを備える。 The connector 32 is arranged outside the internal space 20 of the cavity 2 and used to electrically connect the impedance converter 1 to external equipment. For example, connector 32 is a coaxial connector connectable to a coaxial cable. The connector 32 includes a rod-shaped inner conductor 32a, a cylindrical outer conductor 32b surrounding the inner conductor 32a, and an insulator 32c arranged between the inner conductor 32a and the outer conductor 32b.
 図4に示すように、入力ポート3は、取付孔27aを介してキャビティ2に取り付けられる。コネクタ32は、取付孔27aを介して入力アンテナ31を内部導体32aに接続し、第1壁部21の第1面21aの凹部211a内に固定される。入力アンテナ31の胴部31bは、コネクタ32の内部導体32aに接続される。 As shown in FIG. 4, the input port 3 is attached to the cavity 2 through the attachment hole 27a. The connector 32 connects the input antenna 31 to the internal conductor 32a through the mounting hole 27a, and is fixed in the recess 211a of the first surface 21a of the first wall 21. As shown in FIG. A trunk portion 31 b of the input antenna 31 is connected to an internal conductor 32 a of the connector 32 .
 出力ポート4は、内部空間20から電波を出力するためにキャビティ2に設けられる。図4および図5に示すように、出力ポート4に、出力アンテナ41と、コネクタ42とが設けられる。出力ポート4において、内部空間20に入力された電波が出力アンテナ41により受信されると、受信された電波に応じた高周波信号の電力がコネクタ42から出力される。 The output port 4 is provided in the cavity 2 to output radio waves from the internal space 20 . As shown in FIGS. 4 and 5, the output port 4 is provided with an output antenna 41 and a connector 42 . At the output port 4 , when the radio wave input to the internal space 20 is received by the output antenna 41 , the power of the high frequency signal corresponding to the received radio wave is output from the connector 42 .
 出力アンテナ41は、キャビティ2の内部空間20内に配置される。出力アンテナ41は丸棒状形状を有する。出力アンテナ41は、例えば銅製である。出力アンテナ41は、先端部41aおよび胴部41bを有する。先端部41aの直径は、胴部41bのそれより大きい。 The output antenna 41 is arranged within the internal space 20 of the cavity 2 . The output antenna 41 has a round bar shape. The output antenna 41 is made of copper, for example. The output antenna 41 has a tip portion 41a and a trunk portion 41b. The diameter of the tip portion 41a is larger than that of the body portion 41b.
 出力アンテナ41は、出力アンテナ41の先端部41aとキャビティ2との間に放電が生じないように配置される。より詳細には、出力アンテナ41の先端部41aとキャビティ2の第2壁部22、第4壁部24、第5壁部25および第6壁部26の各々との距離は、先端部41aと各壁部との間に放電が生じないように設定される。 The output antenna 41 is arranged so that no discharge occurs between the tip 41 a of the output antenna 41 and the cavity 2 . More specifically, the distance between the tip portion 41a of the output antenna 41 and each of the second wall portion 22, the fourth wall portion 24, the fifth wall portion 25 and the sixth wall portion 26 of the cavity 2 is It is set so that discharge does not occur between each wall.
 コネクタ42は、キャビティ2の内部空間20の外に配置され、インピーダンス変換器1を外部機器に電気的に接続するために用いられる。例えば、コネクタ42は、同軸ケーブルに接続可能な同軸コネクタである。コネクタ42は、棒状の内部導体42aと、内部導体42aを囲う筒状の外部導体42bと、内部導体42aおよび外部導体42b間に配置される絶縁体42cとを備える。 The connector 42 is arranged outside the internal space 20 of the cavity 2 and used to electrically connect the impedance converter 1 to external equipment. For example, connector 42 is a coaxial connector connectable to a coaxial cable. The connector 42 includes a rod-shaped inner conductor 42a, a cylindrical outer conductor 42b surrounding the inner conductor 42a, and an insulator 42c arranged between the inner conductor 42a and the outer conductor 42b.
 図4に示すように、出力ポート4は、取付孔27bを介してキャビティ2に取り付けられる。コネクタ42は、取付孔27bを介して出力アンテナ41を内部導体42aに接続し、第1壁部21の第1面21aの凹部211b内に固定される。出力アンテナ41の胴部41bは、コネクタ42の内部導体42aに接続される。 As shown in FIG. 4, the output port 4 is attached to the cavity 2 through the attachment hole 27b. The connector 42 connects the output antenna 41 to the inner conductor 42a through the mounting hole 27b and is fixed in the recess 211b of the first surface 21a of the first wall 21. As shown in FIG. A trunk portion 41 b of the output antenna 41 is connected to an internal conductor 42 a of the connector 42 .
 図4および図5に示すように、入力ポート3の入力アンテナ31は、出力ポート4の出力アンテナ41と同じ形状を有する。より詳細には、入力アンテナ31の先端部31aは、出力アンテナ41の先端部41aと同じ直径および長さを有する。入力アンテナ31の胴部31bは、出力アンテナ41の胴部41bと同じ直径および長さを有する。 As shown in FIGS. 4 and 5, the input antenna 31 of the input port 3 has the same shape as the output antenna 41 of the output port 4. More specifically, tip 31 a of input antenna 31 has the same diameter and length as tip 41 a of output antenna 41 . Body 31 b of input antenna 31 has the same diameter and length as body 41 b of output antenna 41 .
 図3に示すように、入力ポート3および出力ポート4は、キャビティ2の第1軸C1に沿って見たとき、キャビティ2の第2軸C2の方向(図3における左右方向)に並ぶ。入力ポート3および出力ポート4を通る直線L1は、キャビティ2の第1軸C1に沿って見たとき、キャビティ2の第3軸C3の方向(図3における上下方向)における中心線に対応する。図3において、第1軸C1に沿って見たとき、キャビティ2は、入力ポート3および出力ポート4を通る直線L1に対して線対称である。 As shown in FIG. 3, the input port 3 and the output port 4 are aligned in the direction of the second axis C2 of the cavity 2 (horizontal direction in FIG. 3) when viewed along the first axis C1 of the cavity 2. A straight line L1 passing through the input port 3 and the output port 4 corresponds to the centerline of the cavity 2 in the direction of the third axis C3 (vertical direction in FIG. 3) when viewed along the first axis C1 of the cavity 2 . In FIG. 3, the cavity 2 is symmetrical with respect to a straight line L1 passing through the input port 3 and the output port 4 when viewed along the first axis C1.
 入力ポート3は出力ポート4より第3壁部23に近い。すなわち、出力ポート4は入力ポート3より第4壁部24に近い。図4に示すように、入力ポート3と第3壁部23との距離D11は、出力ポート4と第4壁部24との距離D12に等しい。 The input port 3 is closer to the third wall 23 than the output port 4. That is, output port 4 is closer to fourth wall 24 than input port 3 . As shown in FIG. 4, the distance D11 between the input port 3 and the third wall 23 is equal to the distance D12 between the output port 4 and the fourth wall 24 .
 インピーダンス変換器1において、入力ポート3のコネクタ32に、高周波信号の電力が入力される。入力ポート3に入力される電力に応じた電波が、入力アンテナ31からキャビティ2の内部空間20に放射される。出力ポート4において、内部空間20内に放射された電波が出力アンテナ41により受信されると、受信された電波に応じた高周波信号の電力がコネクタ42から出力される。 In the impedance converter 1 , high-frequency signal power is input to the connector 32 of the input port 3 . A radio wave corresponding to the power input to the input port 3 is radiated from the input antenna 31 into the internal space 20 of the cavity 2 . At the output port 4 , when the radio waves radiated into the internal space 20 are received by the output antenna 41 , power of the high-frequency signal corresponding to the received radio waves is output from the connector 42 .
 調整機構5は、入力ポート3と出力ポート4との間のインピーダンスを調整する。調整機構5はスタブ6を有する。スタブ6がキャビティ2の内部空間20にどのように配置されるかは、入力ポート3から出力ポート4への電波の伝播に影響する。 The adjustment mechanism 5 adjusts the impedance between the input port 3 and the output port 4. The adjustment mechanism 5 has a stub 6 . How the stub 6 is arranged in the internal space 20 of the cavity 2 affects the propagation of radio waves from the input port 3 to the output port 4 .
 すなわち、スタブ6の位置により、入力ポート3と出力ポート4との間のインピーダンスが調整される。調整機構5は、入力ポート3および出力ポート4の間のスタブ6の位置とスタブ6の挿入長とを個別に調整することができる。挿入長とは、スタブ6のキャビティ2の内部空間20内に挿入された部分の有効長さである。有効長さとは、スタブ6のインピーダンスに影響を与える部分の長さである。 That is, the position of the stub 6 adjusts the impedance between the input port 3 and the output port 4. The adjustment mechanism 5 can individually adjust the position of the stub 6 between the input port 3 and the output port 4 and the insertion length of the stub 6 . The insertion length is the effective length of the portion of the stub 6 inserted into the internal space 20 of the cavity 2 . The effective length is the length of the portion of the stub 6 that affects the impedance.
 具体的には、スタブ6の挿入長とは、第1軸C1の方向におけるスタブ6の先端と第1壁部21の第2面21bとの距離である。スタブ6の先端が第2面21bから突出していない場合、挿入長はゼロである。すなわち、スタブ6の挿入長は、スタブ6のキャビティ2の内部空間20に挿入される部分の有効長さである。 Specifically, the insertion length of the stub 6 is the distance between the tip of the stub 6 and the second surface 21b of the first wall portion 21 in the direction of the first axis C1. The insertion length is zero when the tip of the stub 6 does not protrude from the second surface 21b. That is, the insertion length of the stub 6 is the effective length of the portion of the stub 6 inserted into the internal space 20 of the cavity 2 .
 図7は、調整機構5の分解斜視図である。調整機構5は、スタブ6と、位置調整機構71と、挿入長調整機構72と、サポート73と、電気接続部8とを備える。 7 is an exploded perspective view of the adjustment mechanism 5. FIG. The adjustment mechanism 5 includes a stub 6 , a position adjustment mechanism 71 , an insertion length adjustment mechanism 72 , a support 73 and an electrical connector 8 .
 スタブ6は、アルミニウムなどの金属製であるが、その材料は特に限定されない。図7のスタブ6は棒状形状を有する。スタブ6は、先端部6aと、後端部6bと、先端部6aと後端部6bとの間の中間部6cを有する。 The stub 6 is made of metal such as aluminum, but the material is not particularly limited. The stub 6 in FIG. 7 has a rod-like shape. The stub 6 has a leading end 6a, a trailing end 6b and an intermediate portion 6c between the leading end 6a and the trailing end 6b.
 先端部6aは、角に丸みを帯びた円盤状形状を有する。この形状により、先端部6aの近傍における電界強度を低減することができ、先端部6aとキャビティ2との間での放電などを低減することができる。 The tip 6a has a disk-like shape with rounded corners. Due to this shape, the electric field strength in the vicinity of the tip 6a can be reduced, and the discharge between the tip 6a and the cavity 2 can be reduced.
 後端部6bおよび中間部6cは、平板状形状を有する。中間部6cの幅、すなわち第2軸の方向における寸法は後端部6bのそれより小さい。第3軸C3の方向におけるスタブ6の先端部6aの寸法は、第3軸C3での開口28のそれより大きい。このため、先端部6aは開口28を通ることができない。第3軸C3の方向におけるスタブ6の後端部6bおよび中間部6cの寸法は、開口28のそれより小さく、開口28を通ることができる。 The rear end portion 6b and the intermediate portion 6c have a flat plate shape. The width of the intermediate portion 6c, ie the dimension in the direction of the second axis, is smaller than that of the rear end portion 6b. The dimension of the tip 6a of the stub 6 in the direction of the third axis C3 is greater than that of the opening 28 along the third axis C3. Therefore, the tip portion 6a cannot pass through the opening 28. As shown in FIG. The dimensions of the rear end portion 6b and the intermediate portion 6c of the stub 6 in the direction of the third axis C3 are smaller than that of the opening 28 and can pass through the opening 28. As shown in FIG.
 図4に示すように、スタブ6は開口28を貫通する。すなわち、スタブ6の先端部6aおよび後端部6bは、それぞれ内部空間20の内部および外部に配置される。スタブ6の先端部6aは、キャビティ2の凹部214に収容可能である。特に、凹部214は、スタブ6の先端部6aを収容可能な深さ、すなわち、第1軸C1の方向の寸法を有する。このため、スタブ6の先端部6aは、凹部214の外に突出することがない。 The stub 6 passes through the opening 28 as shown in FIG. That is, the leading end portion 6a and the trailing end portion 6b of the stub 6 are arranged inside and outside the internal space 20, respectively. The tip 6 a of the stub 6 can be accommodated in the recess 214 of the cavity 2 . In particular, the recess 214 has a depth capable of accommodating the tip portion 6a of the stub 6, that is, a dimension in the direction of the first axis C1. Therefore, the tip portion 6 a of the stub 6 does not protrude outside the recess 214 .
 図3および図7に示すように、位置調整機構71は、スタブ6を開口28内で第2軸C2に沿って移動可能に保持する。位置調整機構71は、可動部711と、固定部712とを有する。位置調整機構71において、スタブ6は可動部711に取り付けられる。固定部712は、固定部712の長手方向が第2軸C2に沿うようにキャビティ2に固定され、可動部711を第2軸C2に沿って移動可能に保持する。 As shown in FIGS. 3 and 7, the position adjustment mechanism 71 holds the stub 6 movably within the opening 28 along the second axis C2. The position adjustment mechanism 71 has a movable portion 711 and a fixed portion 712 . The stub 6 is attached to the movable portion 711 in the position adjusting mechanism 71 . The fixed portion 712 is fixed to the cavity 2 such that the longitudinal direction of the fixed portion 712 is along the second axis C2, and holds the movable portion 711 movably along the second axis C2.
 固定部712は、ベース712aと、レール712bと、スクリュー712cとを有する。ベース712aは矩形の板状形状を有する。ベース712aは、キャビティ2の台部212に取り付けられる。 The fixed part 712 has a base 712a, a rail 712b, and a screw 712c. The base 712a has a rectangular plate shape. The base 712 a is attached to the platform 212 of the cavity 2 .
 レール712bは、可動部711を固定部712の長手方向、すなわち第2軸C2に沿って移動させるために利用される。レール712bは、固定部712の長手方向、すなわち第2軸C2に沿って延在する。レール712bはベース712aに取り付けられる。レール712bは、先端に向かって幅が大きくなる形状を有する。これにより、可動部711は固定部712と外れないように結合される。 The rail 712b is used to move the movable portion 711 along the longitudinal direction of the fixed portion 712, that is, along the second axis C2. The rail 712b extends in the longitudinal direction of the fixed portion 712, that is, along the second axis C2. Rail 712b is attached to base 712a. The rail 712b has a shape whose width increases toward its tip. As a result, the movable portion 711 is coupled to the fixed portion 712 so as not to come off.
 スクリュー712cは、固定部712に対して可動部711を第2軸C2に沿って移動させる。スクリュー712cは、第2軸C2に沿った回転軸を有し、その回転軸を中心に回転可能である。可動部711は直方体形状を有する。 The screw 712c moves the movable part 711 with respect to the fixed part 712 along the second axis C2. The screw 712c has a rotation axis along the second axis C2 and is rotatable about the rotation axis. The movable portion 711 has a cuboid shape.
 可動部711は、固定部712のレール712bが係合するレール溝711aを有する。レール溝711a内には、スクリュー712cのネジ溝とかみ合うネジ溝が形成される。可動部711は、レール溝711aと反対側に設けられた取付面711bを有する。取付面711bには、サポート73および挿入長調整機構72を介して、スタブ6が間接的に取り付けられる。 The movable part 711 has a rail groove 711a with which the rail 712b of the fixed part 712 is engaged. A thread groove is formed in the rail groove 711a to mesh with the thread groove of the screw 712c. The movable portion 711 has a mounting surface 711b provided on the side opposite to the rail groove 711a. The stub 6 is indirectly attached to the attachment surface 711 b via the support 73 and the insertion length adjustment mechanism 72 .
 位置調整機構71において、固定部712のスクリュー712cをスクリュー712cの回転軸を中心に回転させると、スクリュー712cの回転運動が第2軸C2に沿った直進運動に変換され、可動部711はレール712b上を第2軸C2に沿って移動する。 In the position adjustment mechanism 71, when the screw 712c of the fixed portion 712 is rotated around the rotation axis of the screw 712c, the rotational motion of the screw 712c is converted into linear motion along the second axis C2, and the movable portion 711 moves along the rail 712b. It moves up along the second axis C2.
 挿入長調整機構72は、スタブ6を第1軸C1に沿って移動可能に保持する。挿入長調整機構72は、可動部721と、固定部722とを有する。挿入長調整機構72において、スタブ6は可動部721に取り付けられる。固定部722は、固定部722の長手方向が第1軸C1に沿うようにキャビティ2に固定され、可動部721を第1軸C1に沿って移動可能に保持する。 The insertion length adjusting mechanism 72 holds the stub 6 movably along the first axis C1. The insertion length adjusting mechanism 72 has a movable portion 721 and a fixed portion 722 . The stub 6 is attached to the movable portion 721 in the insertion length adjusting mechanism 72 . The fixed part 722 is fixed to the cavity 2 such that the longitudinal direction of the fixed part 722 is along the first axis C1, and holds the movable part 721 movably along the first axis C1.
 固定部722は、ベース722aと、レール溝722bと、スクリュー722cとを有する。ベース722aは矩形の板状形状を有する。ベース722aは、サポート73を介して位置調整機構71の可動部711の取付面711bに取り付けられる。 The fixed part 722 has a base 722a, a rail groove 722b, and a screw 722c. The base 722a has a rectangular plate shape. The base 722 a is attached to the attachment surface 711 b of the movable portion 711 of the position adjustment mechanism 71 via the support 73 .
 レール溝722bは、可動部721を固定部722の長手方向、すなわち第1軸C1に沿って移動させるために利用される。レール溝722bは、第1軸C1に延在する。レール溝722bは、ベース722aの一面に形成される。 The rail groove 722b is used to move the movable portion 721 along the longitudinal direction of the fixed portion 722, that is, along the first axis C1. The rail groove 722b extends along the first axis C1. The rail groove 722b is formed on one surface of the base 722a.
 スクリュー722cは、固定部722に対して可動部721を第1軸C1に沿って移動させる。スクリュー722cは、第2軸C2に沿った回転軸を有し、その回転軸を中心に回転可能である。可動部721は直方体形状を有する。 The screw 722c moves the movable part 721 with respect to the fixed part 722 along the first axis C1. The screw 722c has a rotation axis along the second axis C2 and is rotatable about the rotation axis. The movable portion 721 has a cuboid shape.
 可動部721は、固定部722のレール溝722bに係合するレール721aを有する。レール721aは、先端に向かって幅が大きくなる形状を有する。これにより、可動部721は固定部722と外れないように結合される。 The movable portion 721 has rails 721 a that engage with rail grooves 722 b of the fixed portion 722 . The rail 721a has a shape whose width increases toward its tip. As a result, the movable portion 721 is coupled to the fixed portion 722 so as not to come off.
 挿入長調整機構72において、固定部722のスクリュー722cをスクリュー722cの回転軸を中心に回転させると、スクリュー722cの回転運動が第1軸C1に沿った直進運動に変換され、可動部721はレール721a上を第1軸C1に沿って移動する。 In the insertion length adjusting mechanism 72, when the screw 722c of the fixed part 722 is rotated around the rotation axis of the screw 722c, the rotational motion of the screw 722c is converted into linear motion along the first axis C1, and the movable part 721 moves along the rail. 721a along the first axis C1.
 サポート73は、位置調整機構71の可動部711に、挿入長調整機構72および電気接続部8を取り付けるための部材である。サポート73は、固定部73aと、第1サポート73bと、第2サポート73cと、一対の連結部73dとを有する。 The support 73 is a member for attaching the insertion length adjusting mechanism 72 and the electrical connection portion 8 to the movable portion 711 of the position adjusting mechanism 71 . The support 73 has a fixing portion 73a, a first support 73b, a second support 73c, and a pair of connecting portions 73d.
 固定部73aは、位置調整機構71の可動部711の取付面711bに固定される。第1サポート73bは、固定部73aから第1軸C1に平行に延在する平板状形状を有する。第1サポート73bに、挿入長調整機構72の固定部722が取り付けられる。第2サポート73cは、第1軸C1の方向にキャビティ2の土手部213と対向するように、一対の連結部73dにより固定部73aに固定される。 The fixed portion 73a is fixed to the mounting surface 711b of the movable portion 711 of the position adjustment mechanism 71. The first support 73b has a plate-like shape extending from the fixing portion 73a in parallel with the first axis C1. A fixing portion 722 of the insertion length adjusting mechanism 72 is attached to the first support 73b. The second support 73c is fixed to the fixed portion 73a by a pair of connecting portions 73d so as to face the bank portion 213 of the cavity 2 in the direction of the first axis C1.
 固定部73aは、第1軸C1の方向にキャビティ2の開口28と対向する貫通孔731を有する。第2軸C2または第3軸C3の方向における貫通孔731の寸法は、スタブ6の先端部6aおよび後端部6bのそれより小さいが、中間部6cの寸法より大きい。図8は、電気接続部8の周辺の拡大断面図である。図8に示すように、第2サポート73cのキャビティ2側の面に、電気接続部8を収容するための凹部732が形成される。 The fixed part 73a has a through hole 731 facing the opening 28 of the cavity 2 in the direction of the first axis C1. The dimension of the through hole 731 in the direction of the second axis C2 or the third axis C3 is smaller than that of the leading end portion 6a and the rear end portion 6b of the stub 6, but larger than that of the intermediate portion 6c. FIG. 8 is an enlarged cross-sectional view of the periphery of the electrical connection portion 8. As shown in FIG. As shown in FIG. 8, a concave portion 732 for accommodating the electrical connection portion 8 is formed in the cavity 2 side surface of the second support 73c.
 電気接続部8は、スタブ6をキャビティ2に電気的に接続する。スタブ6は、開口28を貫通するように配置されて、入力アンテナ31から内部空間20に入力された電波の一部をキャビティ2の内部空間20から外部に出力するアンテナとして機能する。電気接続部8は、スタブ6をキャビティ2に電気的に接続することにより、スタブ6がアンテナとして機能することを防止して、スタブ6を介した電力の漏洩を防止することができる。 The electrical connection portion 8 electrically connects the stub 6 to the cavity 2 . The stub 6 is arranged to pass through the opening 28 and functions as an antenna for outputting part of the radio wave input from the input antenna 31 to the internal space 20 to the outside from the internal space 20 of the cavity 2 . By electrically connecting the stub 6 to the cavity 2 , the electrical connection portion 8 can prevent the stub 6 from functioning as an antenna and prevent power leakage through the stub 6 .
 図7および図8に示すように、電気接続部8は、一対の第1導電部材81と、第2導電部材82と、一対の付勢部材83を有する。 As shown in FIGS. 7 and 8, the electrical connection portion 8 has a pair of first conductive members 81, a second conductive member 82, and a pair of urging members 83. As shown in FIGS.
 一対の第1導電部材81の各々は、キャビティ2の内部空間20外に配置される。一対の第1導電部材81は、第3軸C3の方向(図8における左右方向)にスタブ6を挟持するように配置され、第3軸C3の方向にスタブ6に弾力的に接触する。一対の第1導電部材81の各々は板バネである。 Each of the pair of first conductive members 81 is arranged outside the internal space 20 of the cavity 2 . The pair of first conductive members 81 are arranged to sandwich the stub 6 in the direction of the third axis C3 (horizontal direction in FIG. 8) and elastically contact the stub 6 in the direction of the third axis C3. Each of the pair of first conductive members 81 is a leaf spring.
 挿入長調整機構72は、スタブ6を、一対の第1導電部材81と安定的に電気的に接触させたまま第1軸C1に沿って移動させることができる。 The insertion length adjusting mechanism 72 can move the stub 6 along the first axis C1 while stably making electrical contact with the pair of first conductive members 81 .
 第2導電部材82は、キャビティ2の内部空間20外に配置され、第1導電部材81を土手部213、すなわちキャビティ2の開口28の周辺部分に電気的に接続する。第2導電部材82は、矩形の箱状形状を有する。第2導電部材82は、スタブ6が貫通する貫通孔82aを有する。 The second conductive member 82 is arranged outside the internal space 20 of the cavity 2 and electrically connects the first conductive member 81 to the embankment 213 , that is, the peripheral portion of the opening 28 of the cavity 2 . The second conductive member 82 has a rectangular box shape. The second conductive member 82 has a through hole 82a through which the stub 6 passes.
 第2導電部材82は、スタブ6を挟持するように配置されてスタブ6に接触する一対の第1導電部材81を収容する。これにより、第2導電部材82は、一対の第1導電部材81をスタブ6に弾力的に接触させたまま、一対の第1導電部材81と電気的に接続される。第2導電部材82は土手部213に接触されるため、一対の第1導電部材81は、第2導電部材82を介してキャビティ2の開口28の周辺部分に電気的に接続される。 The second conductive member 82 accommodates a pair of first conductive members 81 that are arranged to sandwich the stub 6 and contact the stub 6 . Thereby, the second conductive member 82 is electrically connected to the pair of first conductive members 81 while keeping the pair of first conductive members 81 elastically in contact with the stub 6 . Since the second conductive member 82 is in contact with the bank portion 213 , the pair of first conductive members 81 are electrically connected to the peripheral portion of the opening 28 of the cavity 2 via the second conductive member 82 .
 一対の付勢部材83が第2導電部材82をキャビティ2に向けて付勢することで、第2導電部材82はキャビティ2の土手部213に弾力的に接触する。一対の付勢部材83は、例えばコイルスプリングである。付勢部材83により第2導電部材82を安定的にキャビティ2に電気的に接触させたまま、位置調整機構71は、スタブ6を第2軸C2に沿って移動させることができる。 A pair of biasing members 83 bias the second conductive member 82 toward the cavity 2 , so that the second conductive member 82 elastically contacts the bank portion 213 of the cavity 2 . The pair of biasing members 83 are, for example, coil springs. The position adjusting mechanism 71 can move the stub 6 along the second axis C2 while the biasing member 83 keeps the second conductive member 82 stably in electrical contact with the cavity 2 .
 このようにして、電気接続部8は、スタブ6をキャビティ2に電気的に接続する。その結果、スタブ6を介した電力の漏洩を防止することができる。 Thus, the electrical connection 8 electrically connects the stub 6 to the cavity 2 . As a result, power leakage through the stub 6 can be prevented.
 以上のように、調整機構5において、位置調整機構71の固定部712がキャビティ2に直接的に固定される。挿入長調整機構72の固定部722は、サポート73を介して位置調整機構71の可動部711に固定される。スタブ6は、挿入長調整機構72の可動部721に固定される。 As described above, in the adjustment mechanism 5 , the fixed portion 712 of the position adjustment mechanism 71 is directly fixed to the cavity 2 . The fixed portion 722 of the insertion length adjusting mechanism 72 is fixed to the movable portion 711 of the position adjusting mechanism 71 via the support 73 . The stub 6 is fixed to the movable portion 721 of the insertion length adjusting mechanism 72 .
 位置調整機構71により、スタブ6、挿入長調整機構72、およびサポート73は、可動部711とともに第2軸C2に沿って移動可能である。挿入長調整機構72により、スタブ6は可動部721とともに第1軸C1に沿って移動可能である。 The position adjusting mechanism 71 allows the stub 6, the insertion length adjusting mechanism 72, and the support 73 to move together with the movable portion 711 along the second axis C2. The insertion length adjusting mechanism 72 allows the stub 6 to move along the first axis C1 together with the movable portion 721 .
 [動作]
 インピーダンス変換器1の動作について説明する。
[motion]
The operation of the impedance converter 1 will be described.
 インピーダンス変換器1は、調整機構5を用いてインピーダンスを調整する。調整機構5により、入力ポート3および出力ポート4の間のスタブ6の位置とスタブ6の挿入長とを個別に調整可能である。 The impedance converter 1 uses the adjustment mechanism 5 to adjust the impedance. The adjustment mechanism 5 can individually adjust the position of the stub 6 between the input port 3 and the output port 4 and the insertion length of the stub 6 .
 位置調整機構71は、入力ポート3および出力ポート4間におけるスタブ6の位置を調整する。位置調整機構71において、固定部712のスクリュー712cをスクリュー712cの回転軸を中心に回転させると、スクリュー712cの回転運動が第2軸C2に沿った直進運動に変換され、可動部711がレール712b上を第2軸C2に沿って移動する。スクリュー712cの回転方向により、スタブ6を入力ポート3、出力ポート4のいずれかに向けて移動させることができる。 The position adjustment mechanism 71 adjusts the position of the stub 6 between the input port 3 and the output port 4. In the position adjustment mechanism 71, when the screw 712c of the fixed portion 712 is rotated around the rotation axis of the screw 712c, the rotational motion of the screw 712c is converted into linear motion along the second axis C2, and the movable portion 711 moves along the rail 712b. It moves up along the second axis C2. The stub 6 can be moved toward either the input port 3 or the output port 4 depending on the direction of rotation of the screw 712c.
 図9は、インピーダンス変換器1におけるスタブ6の第1位置を示す平面図である。図10は、図9の10-10線に沿った断面図である。図9および図10に示すように、図9および図10において、スタブ6は、第2軸C2に沿って延在する開口28の入力ポート3側の端部に配置される。すなわち、第1位置は、第2軸C2に沿ったスタブ6の移動可能範囲における入力ポート3に最も近い位置である。 9 is a plan view showing the first position of the stub 6 in the impedance converter 1. FIG. 10 is a cross-sectional view along line 10-10 of FIG. 9. FIG. As shown in FIGS. 9 and 10, in FIGS. 9 and 10, the stub 6 is arranged at the input port 3 side end of the opening 28 extending along the second axis C2. That is, the first position is the position closest to the input port 3 in the movable range of the stub 6 along the second axis C2.
 図11は、インピーダンス変換器1におけるスタブ6の第2位置を示す平面図である。図12は、図11の12-12線に沿った断面図である。図11および図12において、スタブ6は、第2軸C2に沿って延在する開口28の出力ポート4側の端部に配置される。すなわち、第2位置は、第2軸C2に沿ったスタブ6の移動可能範囲における出力ポート4に最も近い位置である。 11 is a plan view showing the second position of the stub 6 in the impedance converter 1. FIG. 12 is a cross-sectional view taken along line 12-12 of FIG. 11. FIG. 11 and 12, the stub 6 is arranged at the output port 4 side end of the opening 28 extending along the second axis C2. That is, the second position is the position closest to the output port 4 within the movable range of the stub 6 along the second axis C2.
 このように、位置調整機構71は、スタブ6の位置を第2軸C2に沿ったスタブ6の移動可能範囲における任意の位置に設定することができる。 Thus, the position adjustment mechanism 71 can set the position of the stub 6 to any position within the movable range of the stub 6 along the second axis C2.
 挿入長調整機構72は、スタブ6の挿入長を調整する。挿入長調整機構72において、固定部722のスクリュー722cを回転させると、スクリュー722cの回転運動が第1軸C1に沿った直進運動に変換され、可動部721はレール721a上を第1軸C1に沿って移動する。スクリュー722cの回転方向により、スタブ6を、挿入長が増加する方向または減少する方向のいずれかに移動させることができる。 The insertion length adjustment mechanism 72 adjusts the insertion length of the stub 6. In the insertion length adjusting mechanism 72, when the screw 722c of the fixed portion 722 is rotated, the rotational motion of the screw 722c is converted into linear motion along the first axis C1, and the movable portion 721 moves along the rail 721a along the first axis C1. move along. Depending on the direction of rotation of the screw 722c, the stub 6 can be moved either in the direction of increasing or decreasing the insertion length.
 図13は、インピーダンス変換器1におけるスタブ6の第3位置を示す断面図である。図13に示すように、第3位置において、スタブ6の挿入長は、第1軸C1に沿ったスタブ6の移動可能範囲における最大値となる。スタブ6を第3位置に配置すると、スタブ6の後端部6bがサポート73の第2サポート73cの貫通孔731の縁部に当接し、挿入長が増加する方向におけるスタブ6の移動が制限される。 13 is a cross-sectional view showing the third position of the stub 6 in the impedance converter 1. FIG. As shown in FIG. 13, at the third position, the insertion length of the stub 6 is the maximum value in the movable range of the stub 6 along the first axis C1. When the stub 6 is placed at the third position, the rear end 6b of the stub 6 contacts the edge of the through hole 731 of the second support 73c of the support 73, restricting the movement of the stub 6 in the direction of increasing the insertion length. be.
 図14は、インピーダンス変換器1におけるスタブ6の第4位置を示す断面図である。図14に示すように、第4位置において、スタブ6の挿入長は、第1軸C1に沿ったスタブ6の移動可能範囲における最小値となる。スタブ6を第4位置に配置すると、スタブ6の先端部6aがキャビティ2の凹部214に収容されて、スタブ6の先端部6aが内部空間20内に突出しない。この場合、スタブ6の挿入長は実質的にゼロである。 14 is a cross-sectional view showing the fourth position of the stub 6 in the impedance converter 1. FIG. As shown in FIG. 14, at the fourth position, the insertion length of the stub 6 is the minimum value in the movable range of the stub 6 along the first axis C1. When the stub 6 is arranged at the fourth position, the tip 6a of the stub 6 is accommodated in the recess 214 of the cavity 2 and does not protrude into the internal space 20. As shown in FIG. In this case, the insertion length of stub 6 is substantially zero.
 すなわち、挿入長調整機構72によりスタブ6を凹部214内に隠すことで、入力ポート3と出力ポート4との間のインピーダンスをスタブ6がない場合と同等の値に設定することができる。 That is, by hiding the stub 6 in the recess 214 by the insertion length adjustment mechanism 72, the impedance between the input port 3 and the output port 4 can be set to a value equivalent to that without the stub 6.
 第3軸C3の方向における開口28の寸法は、スタブ6の先端部6aのそれより小さい。このため、スタブ6の先端部6aが凹部214の底部に当接し、挿入長が減少する方向におけるスタブ6の移動が制限される。すなわち、挿入長調整機構72は、スタブ6の位置を、第1軸C1に沿ったスタブ6の移動可能範囲におけるいずれかの位置に設定することができる。 The dimension of the opening 28 in the direction of the third axis C3 is smaller than that of the tip 6a of the stub 6. Therefore, the tip 6a of the stub 6 contacts the bottom of the recess 214, and the movement of the stub 6 in the direction in which the insertion length is reduced is restricted. That is, the insertion length adjustment mechanism 72 can set the position of the stub 6 to any position within the movable range of the stub 6 along the first axis C1.
 [評価]
 発明者らは、インピーダンス変換器1のインピーダンスの変化の評価のためにネットワークアナライザを用いてSパラメータ(Scattering parameter)の評価を行った。この評価において発明者らは、出力ポート4に50Ωの終端抵抗を接続し、Sパラメータの評価では、入力ポート3の反射係数(S11)を用いた。
[evaluation]
The inventors used a network analyzer to evaluate the S parameter (Scattering parameter) in order to evaluate the change in impedance of the impedance converter 1 . In this evaluation, the inventors connected a 50Ω terminating resistor to the output port 4 and used the reflection coefficient (S 11 ) of the input port 3 in the evaluation of the S-parameters.
 図15は、インピーダンス変換器1によるインピーダンスの変化の第1例を示すスミスチャートである。スミスチャートとは、インピーダンス整合の設計に用いられる複素インピーダンスを示す円形チャートである。スミスチャートの中心は、インピーダンス整合が取れた場合に対応する。スミスチャートの周囲は100%の反射に対応する。 FIG. 15 is a Smith chart showing a first example of impedance change by the impedance converter 1. FIG. A Smith chart is a circular chart that shows complex impedance used in the design of impedance matching. The center of the Smith chart corresponds to impedance matching. The perimeter of the Smith chart corresponds to 100% reflection.
 スミスチャートは、中心からチャート上の任意の点までの線分の長さ、および、その線分と中心から左方に延在する直線とのなす角度により、インピーダンスを表現する。上記線分の長さは反射係数の大きさに対応し、上記線分の角度は反射係数の位相に対応する。 The Smith chart expresses impedance by the length of a line segment from the center to an arbitrary point on the chart and the angle formed by the line segment and a straight line extending leftward from the center. The length of the line segment corresponds to the magnitude of the reflection coefficient and the angle of the line segment corresponds to the phase of the reflection coefficient.
 インピーダンスは、抵抗成分とリアクタンス成分とを含む。反射係数の大きさはインピーダンスの抵抗成分に関係し、反射係数の位相はインピーダンスのリアクタンス成分に関係する。  Impedance includes a resistance component and a reactance component. The magnitude of the reflection coefficient is related to the resistive component of the impedance, and the phase of the reflection coefficient is related to the reactive component of the impedance.
 第1例では、スタブ6の挿入長を変化させた。すなわち、挿入長調整機構72によりスタブ6を第1軸C1に沿って移動させた。挿入長が増加すると、インピーダンスは図15の矢印A1で示すように変化した。図15から、スタブ6の挿入長の変化が、インピーダンスの抵抗成分に大きく影響することが分かる。 In the first example, the insertion length of the stub 6 was changed. That is, the insertion length adjusting mechanism 72 moves the stub 6 along the first axis C1. As the insertion length increased, the impedance changed as indicated by arrow A1 in FIG. From FIG. 15, it can be seen that the change in the insertion length of the stub 6 greatly affects the resistance component of the impedance.
 図16は、インピーダンス変換器1によるインピーダンスの変化の第2例を示すスミスチャートである。第2例では、入力ポート3および出力ポート4の間のスタブ6の位置を変化させた。すなわち、位置調整機構71によりスタブ6を第2軸C2に沿って移動させた。 FIG. 16 is a Smith chart showing a second example of impedance change by the impedance converter 1. FIG. In the second example, the position of stub 6 between input port 3 and output port 4 was changed. That is, the position adjusting mechanism 71 moves the stub 6 along the second axis C2.
 スタブ6を開口28内で入力ポート3側の端部から出力ポート4側の端部に向けて移動させると、インピーダンスは図16の矢印A2で示すように変化した。図16から、入力ポート3および出力ポート4の間のスタブ6の位置の変化は、インピーダンスのリアクタンス成分に大きく影響することが分かる。 When the stub 6 was moved within the opening 28 from the end on the input port 3 side toward the end on the output port 4 side, the impedance changed as indicated by arrow A2 in FIG. From FIG. 16, it can be seen that a change in the position of the stub 6 between the input port 3 and the output port 4 greatly affects the reactance component of the impedance.
 図17は、インピーダンス変換器1によるインピーダンスの変化の第3例を示すスミスチャートである。第1例と同様にスタブ6の挿入長を変化させ、挿入長を変化させる度に、第2例と同様に入力ポート3および出力ポート4の間のスタブ6の位置を変化させた。 FIG. 17 is a Smith chart showing a third example of impedance change by the impedance converter 1. FIG. As in the first example, the insertion length of the stub 6 was changed, and each time the insertion length was changed, the position of the stub 6 between the input port 3 and the output port 4 was changed as in the second example.
 図17の矢印A31,A32,A33,A34,A35の各々は、対応する挿入長における入力ポート3および出力ポート4の間のスタブ6の位置に応じたインピーダンスの変化を示す。挿入長は、矢印A31、矢印A32、A33、A34、A35の順に大きい。 Each of the arrows A31, A32, A33, A34, A35 in FIG. 17 indicates changes in impedance according to the position of the stub 6 between the input port 3 and the output port 4 at the corresponding insertion length. The insertion length increases in the order of arrow A31, arrows A32, A33, A34, and A35.
 図15~図17を参照して、発明者らは、入力ポート3および出力ポート4の間のスタブ6の位置とスタブ6の挿入長とにより、インピーダンスを調整可能であることを確認した。 With reference to FIGS. 15 to 17, the inventors confirmed that the impedance can be adjusted by the position of the stub 6 between the input port 3 and the output port 4 and the insertion length of the stub 6.
 具体的には、入力ポート3および出力ポート4の間のスタブ6の位置により、インピーダンスのリアクタンス成分を調整することができる。スタブ6の挿入長により、インピーダンスの抵抗成分を調整することができる。すなわち、スタブ6により、インピーダンスの抵抗成分とリアクタンス成分とを個別に調整することができる。 Specifically, the position of the stub 6 between the input port 3 and the output port 4 can adjust the reactance component of the impedance. The resistance component of impedance can be adjusted by the insertion length of the stub 6 . That is, the stub 6 can individually adjust the resistance component and the reactance component of the impedance.
 発明者らは、インピーダンス変換器1において、種々の設計を試した結果、2400MHz~2500MHzの周波数帯域において、反射係数の大きさを0%~98%に変化させることが可能であることを確認した。また、発明者らは、同じ周波数帯域において、反射係数の位相を0°~360°に変化させることが可能であることを確認した。さらに、発明者らは、反射損失を0.4%~1%に抑制可能であることを確認した。 The inventors have tried various designs in the impedance converter 1, and confirmed that it is possible to change the magnitude of the reflection coefficient from 0% to 98% in the frequency band of 2400 MHz to 2500 MHz. . The inventors also confirmed that it is possible to change the phase of the reflection coefficient from 0° to 360° in the same frequency band. Furthermore, the inventors have confirmed that the reflection loss can be suppressed to 0.4% to 1%.
 以上、詳細に説明したように、インピーダンス変換器1は、入力ポート3および出力ポート4の間のスタブ6の位置でインピーダンスのリアクタンス成分(反射係数の位相)を調整し、スタブ6の挿入長でインピーダンスの抵抗成分(反射係数の大きさ)を調整することができる。 As explained in detail above, the impedance converter 1 adjusts the reactance component of the impedance (the phase of the reflection coefficient) at the position of the stub 6 between the input port 3 and the output port 4, and the insertion length of the stub 6 The resistive component of impedance (magnitude of reflection coefficient) can be adjusted.
 本実施の形態によれば、特許文献1と異なり、三つのスタブおよび反射インピーダンスの変化について試行錯誤する必要がない。スタブ6と、インピーダンスの抵抗成分(反射係数の大きさ)およびリアクタンス成分(反射係数の位相)との相関を利用してインピーダンスの調整が容易に行える。 According to the present embodiment, unlike Patent Document 1, there is no need for trial and error with respect to the three stubs and changes in reflected impedance. The impedance can be easily adjusted using the correlation between the stub 6 and the resistance component (magnitude of reflection coefficient) and reactance component (phase of reflection coefficient) of the impedance.
 さらに、本実施の形態によれば、導波管の管軸方向と直交する二つのプランジャを必要とする従来周知のEHチューナと比べて装置の小型化が可能である。 Furthermore, according to this embodiment, it is possible to make the device more compact than a conventionally known EH tuner that requires two plungers perpendicular to the axial direction of the waveguide.
 [変形例]
 本開示は、上記実施の形態に限定されない。上記実施の形態は、本開示の課題を達成できれば、設計などに応じて種々の変更が可能である。以下に、上記実施の形態の変形例を列挙する。以下に説明する変形例は、適宜組み合わせて適用可能である。
[Modification]
The present disclosure is not limited to the above embodiments. The above-described embodiments can be modified in various ways according to design and the like, as long as the objects of the present disclosure can be achieved. Modifications of the above embodiment are listed below. Modifications described below can be applied in combination as appropriate.
 一変形例において、キャビティ2の形状に限定はない。第1軸C1、第2軸C2および第3軸C3の各々の方向におけるキャビティ2の寸法は、入力ポートおよび出力ポートの配置、入力ポートに入力する高周波信号の周波数などを考慮して適宜設定される。第1軸C1、第2軸C2および第3軸C3の各々の方向におけるキャビティ2の寸法のすべてが、効率(電力損失)、周波数特性に関わる。 In one modification, the shape of the cavity 2 is not limited. The dimensions of the cavity 2 in the directions of the first axis C1, the second axis C2, and the third axis C3 are appropriately set in consideration of the arrangement of the input port and the output port, the frequency of the high-frequency signal input to the input port, and the like. be. All dimensions of the cavity 2 in the directions of the first axis C1, the second axis C2 and the third axis C3 are related to efficiency (power loss) and frequency characteristics.
 例えば、キャビティ2の第1軸C1、第2軸C2および第3軸C3の各々における寸法を決定するために、まず、第1軸C1に沿った寸法および第2軸C2の方向における寸法を任意の数値に設定して、第3軸C3の方向における寸法を最適化する。次に、第1軸C1の方向における寸法は変更せず、第2軸C2の方向における寸法を変更して、第3軸C3の方向における寸法を最適化する。 For example, in order to determine the dimensions of each of the first axis C1, the second axis C2 and the third axis C3 of the cavity 2, first, the dimension along the first axis C1 and the dimension in the direction of the second axis C2 are arbitrarily selected. to optimize the dimension in the direction of the third axis C3. Next, the dimension in the direction of the first axis C1 is not changed, but the dimension in the direction of the second axis C2 is changed to optimize the dimension in the direction of the third axis C3.
 これにより、その時点での第1軸C1の方向における寸法に対して、第2軸C2の方向における寸法および第3軸C3の方向における寸法の最適な組み合わせを探索する。第1軸C1の方向における寸法を変更して、第2軸C2の方向における寸法および第3軸C3の方向における寸法の最適な組み合わせを探索する。これにより、三つの寸法の最適な組み合わせを探索する。 Thereby, the optimum combination of the dimension in the direction of the second axis C2 and the dimension in the direction of the third axis C3 is searched for the dimension in the direction of the first axis C1 at that time. The dimension in the direction of the first axis C1 is changed to search for the optimum combination of the dimension in the direction of the second axis C2 and the dimension in the direction of the third axis C3. This searches for the optimal combination of the three dimensions.
 一変形例において、キャビティ2は、直方体形状に限定されない。キャビティ2は、円形または多角形の箱状形状を有してもよい。キャビティ2の寸法は、上述のように、入力ポートおよび出力ポートの配置、入力ポートに入力する高周波信号の周波数などを考慮して適宜設定されてよい。 In one modification, the cavity 2 is not limited to a rectangular parallelepiped shape. The cavity 2 may have a circular or polygonal box-like shape. The dimensions of the cavity 2 may be appropriately set in consideration of the arrangement of the input port and the output port, the frequency of the high frequency signal input to the input port, etc., as described above.
 一変形例において、入力ポート3の入力アンテナ31および出力ポート4の出力アンテナ41の形状は、上記実施の形態に記載のものに限定されない。一変形例において、入力ポート3および出力ポート4のコネクタ32,42の形状は、上記実施の形態に記載のものに限定されない。 In one modification, the shapes of the input antenna 31 of the input port 3 and the shape of the output antenna 41 of the output port 4 are not limited to those described in the above embodiment. In a modified example, the shapes of the connectors 32, 42 of the input port 3 and the output port 4 are not limited to those described in the above embodiment.
 入力ポート3は、内部空間20に電波を入力するためにキャビティ2に設けられた開口である導波管入力部であってもよい。この場合、入力ポート3は、内部空間20に電波をそのまま入力することができる。 The input port 3 may be a waveguide input section that is an opening provided in the cavity 2 for inputting radio waves into the internal space 20 . In this case, the input port 3 can directly input radio waves into the internal space 20 .
 出力ポート4は、内部空間20から電波を出力するためにキャビティ2に設けられた開口である導波管出力部であってもよい。この場合、出力ポート4は、内部空間20から電波をそのまま出力することができる。 The output port 4 may be a waveguide output section that is an opening provided in the cavity 2 for outputting radio waves from the internal space 20 . In this case, the output port 4 can directly output radio waves from the internal space 20 .
 一変形例において、キャビティ2、入力ポート3および出力ポート4の構成(例えば、相対的な形状および位置関係など)は、上記実施の形態に記載のものと異なってもよい。入力ポート3と出力ポート4とは必ずしも第1壁部21に配置されなくてもよい。入力ポート3は、第1壁部21または第2壁部22に配置されてもよく、出力ポート4は、第1壁部21または第2壁部22に配置されてもよい。 In one modification, the configuration of cavity 2, input port 3 and output port 4 (eg, relative shapes and positional relationships, etc.) may differ from those described in the above embodiments. The input port 3 and the output port 4 do not necessarily have to be arranged on the first wall portion 21 . The input port 3 may be arranged on the first wall 21 or the second wall 22 and the output port 4 may be arranged on the first wall 21 or the second wall 22 .
 第1軸C1に沿って見たとき、入力ポート3および出力ポート4は、必ずしも第2軸C2に沿って並ばなくてもよい。第1軸C1に沿って見たとき、キャビティ2は、入力ポート3および出力ポート4を通る直線に対して線対称でなくてもよい。入力ポート3と第3壁部23との距離D11は、出力ポート4と第4壁部24との距離D12と異なってもよい。 When viewed along the first axis C1, the input port 3 and the output port 4 do not necessarily have to line up along the second axis C2. When viewed along the first axis C1, the cavity 2 does not have to be symmetrical with respect to a straight line passing through the input port 3 and the output port 4. The distance D11 between the input port 3 and the third wall 23 may be different from the distance D12 between the output port 4 and the fourth wall 24 .
 一変形例において、調整機構5は、必ずしも、入力ポート3および出力ポート4の間のスタブ6の位置とスタブ6の挿入長とを個別に調整することができなくてもよい。すなわち、調整機構5は、入力ポート3および出力ポート4の間のスタブ6の位置とスタブ6の挿入長とを同時に調整するように構成されてもよい。 In one modification, the adjustment mechanism 5 may not necessarily be able to individually adjust the position of the stub 6 between the input port 3 and the output port 4 and the insertion length of the stub 6. That is, the adjustment mechanism 5 may be configured to simultaneously adjust the position of the stub 6 between the input port 3 and the output port 4 and the insertion length of the stub 6 .
 一変形例において、挿入長調整機構72の固定部722がキャビティ2に固定され、位置調整機構71が挿入長調整機構72の可動部721に固定されてもよい。 In a modified example, the fixed portion 722 of the insertion length adjustment mechanism 72 may be fixed to the cavity 2 and the position adjustment mechanism 71 may be fixed to the movable portion 721 of the insertion length adjustment mechanism 72.
 一変形例において、位置調整機構71および挿入長調整機構72の形状は、スタブ6を所望の方向に移動させることができさえすれば適宜変更されてもよい。 In a modified example, the shapes of the position adjustment mechanism 71 and the insertion length adjustment mechanism 72 may be changed as appropriate as long as the stub 6 can be moved in a desired direction.
 一変形例において、入力ポート3および出力ポート4の間のスタブ6の位置の調整可能な範囲は、インピーダンス変換器1に求められる性能に応じて適宜設定されればよい。スタブ6の挿入長の調整可能な範囲も同様である。 In one modified example, the adjustable range of the position of the stub 6 between the input port 3 and the output port 4 may be appropriately set according to the performance required of the impedance converter 1. The same applies to the adjustable range of the insertion length of the stub 6 .
 一変形例において、キャビティ2は、凹部214を有しなくてもよい。すなわち、スタブ6は、スタブ6を凹部214内に隠すことができなくてもよい。 In one variant, the cavity 2 may not have the recess 214 . That is, the stub 6 may not be able to hide the stub 6 within the recess 214 .
 一変形例において、調整機構5は、電気接続部8を有しなくてもよい。例えば、スタブ6を介した電力の漏洩がほとんど悪影響を及ぼさない場合、電気接続部8は省略されてもよい。 In one modification, the adjustment mechanism 5 may not have the electrical connection 8. For example, electrical connection 8 may be omitted if leakage of power through stub 6 has little adverse effect.
 [態様と効果]
 以上、詳細に説明したように、本開示は下記の態様を含む。下記態様において、上記実施の形態との対応を明らかにするために、符号を括弧付きで付す。
[Aspect and effect]
As described in detail above, the present disclosure includes the following aspects. In the following aspects, reference numerals are given in parentheses to clarify the correspondence with the above embodiments.
 本開示の第1の態様に係るインピーダンス変換器(1)は、キャビティ(2)と、入力ポート(3)と、出力ポート(4)と、調整機構(5)と、を備える。 An impedance converter (1) according to the first aspect of the present disclosure comprises a cavity (2), an input port (3), an output port (4) and an adjustment mechanism (5).
 キャビティ(2)は、電磁的に密閉された内部空間(20)を有する。入力ポート(3)は、キャビティ(2)の内部空間(20)に電波を入力するためにキャビティ(2)に設けられる。出力ポート(4)は、キャビティ(2)の内部空間(20)から電波を出力するためにキャビティ(2)に設けられる。 The cavity (2) has an electromagnetically sealed internal space (20). An input port (3) is provided in the cavity (2) for inputting radio waves into the internal space (20) of the cavity (2). An output port (4) is provided in the cavity (2) for outputting radio waves from the internal space (20) of the cavity (2).
 調整機構(5)は、キャビティ(2)の内部空間(20)内に配置された金属製のスタブ(6)を有する。調整機構(5)は、入力ポート(3)および出力ポート(4)の間のスタブ(6)の位置と、スタブ(6)の挿入長とを調整する。スタブ(6)の挿入長は、スタブ(6)のキャビティ(2)の内部空間(20)に挿入される部分の有効長さである。本態様によれば、簡単な操作でインピーダンス変換を行うことができる。 The adjustment mechanism (5) has a metal stub (6) arranged within the interior space (20) of the cavity (2). An adjustment mechanism (5) adjusts the position of the stub (6) between the input port (3) and the output port (4) and the insertion length of the stub (6). The insertion length of the stub (6) is the effective length of the portion of the stub (6) inserted into the interior space (20) of the cavity (2). According to this aspect, impedance conversion can be performed with a simple operation.
 第2の態様に係るインピーダンス変換器(1)において、第1の態様に加えて、調整機構(5)は、入力ポート(3)および出力ポート(4)の間のスタブ(6)の位置と、スタブ(6)のキャビティ(2)の内部空間(20)への挿入長とを個別に調整する。本態様によれば、インピーダンス変換をより簡単に行うことができる。 In the impedance converter (1) according to the second aspect, in addition to the first aspect, the adjustment mechanism (5) adjusts the position of the stub (6) between the input port (3) and the output port (4) and , and the insertion length of the stub (6) into the internal space (20) of the cavity (2) are individually adjusted. According to this aspect, impedance conversion can be performed more easily.
 第3の態様に係るインピーダンス変換器(1)において、第1または第2の態様に加えて、キャビティ(2)は、第1軸C1に直交する第1壁部(21)および第2壁部(22)を有する。 In the impedance converter (1) according to the third aspect, in addition to the first or second aspect, the cavity (2) has a first wall (21) and a second wall (21) orthogonal to the first axis C1 (22).
 入力ポート(3)は、第1壁部(21)または第2壁部(22)に配置される。出力ポート(4)は、第1壁部(21)または第2壁部(22)に配置される。第1軸C1に沿って見たとき、入力ポート(3)および出力ポート(4)は、第1軸C1に直交する第2軸C2に沿って並ぶ。本態様によれば、電力損失を低減することができる。 The input port (3) is arranged on the first wall (21) or the second wall (22). The output port (4) is located on the first wall (21) or the second wall (22). When viewed along the first axis C1, the input port (3) and the output port (4) are aligned along a second axis C2 orthogonal to the first axis C1. According to this aspect, power loss can be reduced.
 第4の態様に係るインピーダンス変換器(1)において、第3の態様に加えて、キャビティ(2)は、入力ポート(3)および出力ポート(4)の間の第1壁部(21)に設けられた開口(28)を有する。スタブ(6)は、開口(28)を貫通してスタブ(6)の先端部(6a)および後端部(6b)が内部空間(20)の内部および外部にそれぞれ配置される。本態様によれば、簡単な操作でインピーダンス変換を行うことができる。 In the impedance converter (1) according to the fourth aspect, in addition to the third aspect, the cavity (2) is provided in the first wall (21) between the input port (3) and the output port (4). It has an aperture (28) provided. The stub (6) passes through the opening (28) so that the leading end (6a) and the trailing end (6b) of the stub (6) are positioned inside and outside the internal space (20), respectively. According to this aspect, impedance conversion can be performed with a simple operation.
 第5の態様に係るインピーダンス変換器(1)において、第4の態様に加えて、キャビティ(2)の開口(28)は、第2軸C2に沿って延在する。調整機構(5)は、スタブ(6)をキャビティ(2)の開口(28)内で第2軸C2に沿って移動可能に保持する位置調整機構(71)を含む。 In the impedance converter (1) according to the fifth aspect, in addition to the fourth aspect, the opening (28) of the cavity (2) extends along the second axis C2. The adjustment mechanism (5) includes a positioning mechanism (71) that holds the stub (6) movably within the opening (28) of the cavity (2) along the second axis C2.
 位置調整機構(71)は、可動部(711)と、固定部(712)と、を有する。可動部(711)には、スタブ(6)が取り付けられる。固定部(712)は、固定部(712)の長手方向が第2軸C2に沿うようにキャビティ(2)に固定され、位置調整機構(71)の可動部(711)を第2軸C2に沿って移動可能に保持する。本態様によれば、簡単な操作でインピーダンス変換を行うことができる。 The position adjustment mechanism (71) has a movable part (711) and a fixed part (712). A stub (6) is attached to the movable part (711). The fixed part (712) is fixed to the cavity (2) so that the longitudinal direction of the fixed part (712) is along the second axis C2, and the movable part (711) of the position adjustment mechanism (71) is aligned with the second axis C2. movably held along. According to this aspect, impedance conversion can be performed with a simple operation.
 第6の態様に係るインピーダンス変換器(1)において、第4または第5の態様に加えて、調整機構(5)は、スタブ(6)を第1軸C1に沿って移動可能に保持する挿入長調整機構(72)を含む。挿入長調整機構(72)は、可動部(721)と、固定部(722)と、を有する。 In the impedance converter (1) according to the sixth aspect, in addition to the fourth or fifth aspect, the adjustment mechanism (5) is an insert holding the stub (6) movably along the first axis C1. Includes a length adjustment mechanism (72). The insertion length adjusting mechanism (72) has a movable portion (721) and a fixed portion (722).
 挿入長調整機構(72)の可動部(721)には、スタブ(6)が取り付けられる。挿入長調整機構(72)の固定部(722)は、長手方向が第1軸C1に沿うようにキャビティ(2)に固定され、挿入長調整機構(72)の可動部(721)を第1軸C1に沿って移動可能に保持する。本態様によれば、簡単な操作でインピーダンス変換を行うことができる。 A stub (6) is attached to the movable part (721) of the insertion length adjusting mechanism (72). The fixed part (722) of the insertion length adjustment mechanism (72) is fixed to the cavity (2) so that the longitudinal direction is along the first axis C1, and the movable part (721) of the insertion length adjustment mechanism (72) is moved to the first position. It is held movably along the axis C1. According to this aspect, impedance conversion can be performed with a simple operation.
 第7の態様に係るインピーダンス変換器(1)において、第6の態様に加えて、キャビティ(2)は、第2壁部(22)側の第1壁部(21)の面(第2面21b)に設けられた凹部(214)を有する。キャビティ(2)の開口(28)は、キャビティ(2)の凹部(214)の底部に形成される。キャビティ(2)の凹部(214)は、スタブ(6)の先端部(6a)を収容可能な深さを有する。本態様によれば、スタブ(6)をキャビティ(2)の凹部(214)に隠すことで、入力ポート(3)と出力ポート(4)との間のインピーダンスをスタブ(6)がない場合と同等の値に設定することができる。 In the impedance converter (1) according to the seventh aspect, in addition to the sixth aspect, the cavity (2) has a surface (second surface) of the first wall (21) on the second wall (22) side 21b) with a recess (214) provided therein. The opening (28) of the cavity (2) is formed at the bottom of the recess (214) of the cavity (2). The recess (214) of the cavity (2) has a depth capable of accommodating the tip (6a) of the stub (6). According to this aspect, by hiding the stub (6) in the recess (214) of the cavity (2), the impedance between the input port (3) and the output port (4) is reduced to that without the stub (6). Can be set to equivalent values.
 第8の態様に係るインピーダンス変換器(1)において、第4~第7の態様のいずれか一つに加えて、調整機構(5)は、スタブ(6)をキャビティ(2)に電気的に接続する電気接続部(8)をさらに有する。本態様によれば、スタブ(6)を介した電力の漏洩を防止することができる。 In the impedance converter (1) according to the eighth aspect, in addition to any one of the fourth to seventh aspects, the adjustment mechanism (5) electrically connects the stub (6) to the cavity (2) It further has a connecting electrical connection (8). According to this aspect, power leakage through the stub (6) can be prevented.
 第9の態様に係るインピーダンス変換器(1)において、第8の態様に加えて、電気接続部(8)は、第1導電部材(81)と、第2導電部材(82)と、を含む。 In the impedance converter (1) according to the ninth aspect, in addition to the eighth aspect, the electrical connection part (8) includes a first conductive member (81) and a second conductive member (82) .
 第1導電部材(81)は、キャビティ(2)の内部空間(20)外に配置され、第1軸C1および第2軸C2の両方に直交する第3軸C3の方向においてスタブ(6)に弾力的に接触する。第2導電部材(82)は、キャビティ(2)の内部空間(20)外に配置され、第1導電部材(81)をキャビティ(2)の開口(28)の周辺部分に電気的に接続する。本態様によれば、スタブ(6)を介した電力の漏洩を防止することができる。 A first conductive member (81) is positioned outside the interior space (20) of the cavity (2) and is directed to the stub (6) in the direction of a third axis C3 orthogonal to both the first axis C1 and the second axis C2. elastic contact. A second conductive member (82) is positioned outside the interior space (20) of the cavity (2) and electrically connects the first conductive member (81) to the peripheral portion of the opening (28) of the cavity (2). . According to this aspect, power leakage through the stub (6) can be prevented.
 第10の態様に係るインピーダンス変換器(1)において、第4~第9の態様のいずれか一つに加えて、第1軸C1に沿って見たとき、キャビティ(2)は、入力ポート(3)および出力ポート(4)を通る直線(L1)に対して線対称である。本態様によれば、電力損失をさらに低減することができる。 In the impedance converter (1) according to the tenth aspect, in addition to any one of the fourth to ninth aspects, when viewed along the first axis C1, the cavity (2) has an input port ( 3) and is symmetrical about a straight line (L1) through the output port (4). According to this aspect, power loss can be further reduced.
 第11の態様に係るインピーダンス変換器(1)において、第4~第10の態様のいずれか一つに加えて、キャビティ(2)は、第2軸C2に直交する第3壁部(23)および第4壁部(24)を有する。 In the impedance converter (1) according to the eleventh aspect, in addition to any one of the fourth to tenth aspects, the cavity (2) has a third wall (23) orthogonal to the second axis C2 and a fourth wall (24).
 入力ポート(3)は出力ポート(4)より第3壁部(23)に近い。入力ポート(3)と第3壁部(23)との距離(D11)は、出力ポート(4)と第4壁部(24)との距離(D12)に等しい。本態様によれば、電力損失をさらに低減することができる。 The input port (3) is closer to the third wall (23) than the output port (4). The distance (D11) between the input port (3) and the third wall (23) is equal to the distance (D12) between the output port (4) and the fourth wall (24). According to this aspect, power loss can be further reduced.
 第12の態様に係るインピーダンス変換器(1)において、第4~第11の態様のいずれか一つに加えて、入力ポート(3)および出力ポート(4)は、キャビティ(2)の第1壁部(21)に配置される。本態様によれば、電力損失をさらに低減することができる。 In the impedance converter (1) according to the twelfth aspect, in addition to any one of the fourth to eleventh aspects, the input port (3) and the output port (4) are the first It is located on the wall (21). According to this aspect, power loss can be further reduced.
 第13の態様に係るインピーダンス変換器(1)において、第1~第12の態様のいずれか一つに加えて、入力ポート(3)は、キャビティ(2)の内部空間(20)内に配置される入力アンテナ(31)を有する。出力ポート(4)は、キャビティ(2)の内部空間(20)に配置される出力アンテナ(41)を有する。本態様によれば、高周波信号を伝送することができる。 In the impedance converter (1) according to the thirteenth aspect, in addition to any one of the first to twelfth aspects, the input port (3) is arranged within the internal space (20) of the cavity (2) It has an input antenna (31) that is The output port (4) has an output antenna (41) located in the interior space (20) of the cavity (2). According to this aspect, a high frequency signal can be transmitted.
 第14の態様に係るインピーダンス変換器(1)において、第13の態様に加えて、入力アンテナ(31)は出力アンテナ(41)と同じ形状を有する。本態様によれば、電力損失をさらに低減することができる。 In the impedance converter (1) according to the 14th aspect, in addition to the 13th aspect, the input antenna (31) has the same shape as the output antenna (41). According to this aspect, power loss can be further reduced.
 第15の態様に係るインピーダンス変換器(1)において、第13または第14の態様に加えて、入力アンテナ(31)は、入力アンテナ(31)の先端部(31a)とキャビティ(2)との間に放電が生じないように配置される。出力アンテナ(41)は、出力アンテナ(41)の先端部(41a)とキャビティ(2)との間に放電が生じないように配置される。本態様によれば、入力アンテナ(31)および出力アンテナ(41)とキャビティ(2)との間の放電の発生を低減することができる。 In the impedance converter (1) according to the fifteenth aspect, in addition to the thirteenth or fourteenth aspect, the input antenna (31) is provided between the tip (31a) of the input antenna (31) and the cavity (2). They are arranged so that no discharge occurs between them. The output antenna (41) is arranged so that no discharge occurs between the tip (41a) of the output antenna (41) and the cavity (2). According to this aspect, it is possible to reduce the occurrence of discharge between the input antenna (31) and the output antenna (41) and the cavity (2).
 本開示は、特に、高周波用のインピーダンス変換器に適用可能である。 The present disclosure is particularly applicable to impedance converters for high frequencies.
 1 インピーダンス変換器
 2 キャビティ
 20 内部空間
 21 第1壁部
 21a 第1面
 21b 第2面
 211a、211b 凹部
 212 台部
 213 土手部
 214 凹部
 22 第2壁部
 23 第3壁部
 24 第4壁部
 25 壁部
 26 壁部
 27a 取付孔
 27b 取付孔
 28 開口
 3 入力ポート
 31 入力アンテナ
 31a 先端部
 31b 胴部
 32 コネクタ
 32a 内部導体
 32b 外部導体
 32c 絶縁体
 4 出力ポート
 41 出力アンテナ
 41a 先端部
 41b 胴部
 42 コネクタ
 42a 内部導体
 42b 外部導体
 42c 絶縁体
 5 調整機構
 6 スタブ
 6a 先端部
 6b 後端部
 6c 中間部
 71 位置調整機構
 711 可動部
 711a レール溝
 711b 取付面
 712 固定部
 712a ベース
 712b レール
 712c スクリュー
 72 挿入長調整機構
 721 可動部
 721a レール
 722 固定部
 722a ベース
 722b レール溝
 722c スクリュー
 73 サポート
 73a 固定部
 73b 第1サポート
 73c 第2サポート
 73d 連結部
 731 貫通孔
 732 凹部
 8 電気接続部
 81 第1導電部材
 82 第2導電部材
 82a 貫通孔
 83 付勢部材
1 Impedance Converter 2 Cavity 20 Interior Space 21 First Wall 21a First Surface 21b Second Surface 211a, 211b Recess 212 Base 213 Bank 214 Recess 22 Second Wall 23 Third Wall 24 Fourth Wall 25 Wall 26 Wall 27a Mounting hole 27b Mounting hole 28 Opening 3 Input port 31 Input antenna 31a Tip 31b Body 32 Connector 32a Internal conductor 32b External conductor 32c Insulator 4 Output port 41 Output antenna 41a Tip 41b Body 42 Connector 42a inner conductor 42b outer conductor 42c insulator 5 adjustment mechanism 6 stub 6a front end 6b rear end 6c intermediate portion 71 position adjustment mechanism 711 movable portion 711a rail groove 711b mounting surface 712 fixed portion 712a base 712b rail 712c screw 72 insertion length adjustment Mechanism 721 Movable Part 721a Rail 722 Fixed Part 722a Base 722b Rail Groove 722c Screw 73 Support 73a Fixed Part 73b First Support 73c Second Support 73d Connecting Part 731 Through Hole 732 Recess 8 Electrical Connection Part 81 First Conductive Member 82 Second Conductive Member 82a Through hole 83 Biasing member

Claims (15)

  1.  電磁的に密閉された内部空間を有するキャビティと、
     前記キャビティに設けられて前記内部空間に電波を入力するように構成された入力ポートと、
     前記キャビティに設けられて前記内部空間から電波を出力するように構成された出力ポートと、
     前記キャビティの前記内部空間内に配置された金属製のスタブを有し、前記入力ポートおよび前記出力ポートの間の前記スタブの位置と、前記スタブの前記キャビティの前記内部空間に挿入される部分の有効長さである挿入長とを調整するように構成された調整機構と、
     を備える、
     インピーダンス変換器。
    a cavity having an electromagnetically sealed internal space;
    an input port provided in the cavity and configured to input radio waves into the internal space;
    an output port provided in the cavity and configured to output radio waves from the internal space;
    a metal stub positioned within the interior space of the cavity, the position of the stub between the input port and the output port and the portion of the stub inserted into the interior space of the cavity; an adjustment mechanism configured to adjust the effective length and the insertion length;
    comprising
    impedance converter.
  2.  前記調整機構は、前記入力ポートおよび前記出力ポートの間の前記スタブの前記位置と、前記スタブの前記挿入長とを個別に調整するように構成された、
     請求項1に記載のインピーダンス変換器。
    wherein the adjustment mechanism is configured to individually adjust the position of the stub between the input port and the output port and the insertion length of the stub;
    2. The impedance converter of claim 1.
  3.  前記キャビティは、第1軸に直交する第1壁部および第2壁部を有し、
     前記入力ポートは、前記第1壁部または前記第2壁部に配置され、
     前記出力ポートは、前記第1壁部または前記第2壁部に配置され、
     前記第1軸に沿って見たとき、前記入力ポートおよび前記出力ポートは、前記第1軸に直交する第2軸に沿って並ぶ、
     請求項1または2に記載のインピーダンス変換器。
    the cavity has a first wall and a second wall orthogonal to a first axis;
    the input port is disposed on the first wall or the second wall;
    the output port is located on the first wall or the second wall;
    when viewed along the first axis, the input port and the output port are aligned along a second axis orthogonal to the first axis;
    3. The impedance converter according to claim 1 or 2.
  4.  前記キャビティは、前記入力ポートおよび前記出力ポートの間の前記第1壁部に設けられた開口を有し、
     前記スタブは、前記キャビティの前記開口を貫通して前記スタブの先端部および後端部が前記内部空間の内部および外部にそれぞれ配置される、
     請求項3に記載のインピーダンス変換器。
    the cavity has an opening in the first wall between the input port and the output port;
    the stub penetrates the opening of the cavity and the leading end and the trailing end of the stub are arranged inside and outside the internal space, respectively;
    4. Impedance converter according to claim 3.
  5.  前記キャビティの前記開口は、前記第2軸に沿って延在し、
     前記調整機構は、前記スタブを前記キャビティの前記開口内で前記第2軸に沿って移動可能に保持する位置調整機構を含み、
     前記位置調整機構は、
      前記スタブが取り付けられる可動部と、
      前記キャビティに固定され、前記位置調整機構の可動部を前記第2軸の方向に沿って移動可能に保持する固定部と、
     を有する、
     請求項4に記載のインピーダンス変換器。
    the opening of the cavity extends along the second axis;
    the adjustment mechanism includes a position adjustment mechanism that holds the stub movably along the second axis within the opening of the cavity;
    The position adjustment mechanism is
    a movable portion to which the stub is attached;
    a fixed portion fixed to the cavity and holding the movable portion of the position adjustment mechanism movably along the direction of the second axis;
    having
    5. Impedance converter according to claim 4.
  6.  前記調整機構は、前記スタブを前記第1軸に沿って移動可能に保持する挿入長調整機構を含み、
     前記挿入長調整機構は、
      前記スタブが取り付けられる可動部と、
      前記キャビティに固定され、前記挿入長調整機構の前記可動部を前記第1軸に沿って移動可能に保持する固定部と、
     を有する、
     請求項4または5に記載のインピーダンス変換器。
    the adjustment mechanism includes an insertion length adjustment mechanism that holds the stub movably along the first axis;
    The insertion length adjustment mechanism is
    a movable portion to which the stub is attached;
    a fixed portion fixed to the cavity and holding the movable portion of the insertion length adjusting mechanism movably along the first axis;
    having
    6. An impedance converter according to claim 4 or 5.
  7.  前記キャビティは、前記第2壁部側の前記第1壁部の面に設けられた凹部を有し、
     前記開口は、前記凹部の底部に形成され、
     前記凹部は、前記スタブの先端部を収容可能な深さを有する、
     請求項6に記載のインピーダンス変換器。
    The cavity has a recess provided in the surface of the first wall on the second wall side,
    The opening is formed at the bottom of the recess,
    The recess has a depth that can accommodate the tip of the stub,
    7. Impedance converter according to claim 6.
  8.  前記調整機構は、前記スタブを前記キャビティに電気的に接続する電気接続部をさらに有する、
     請求項4~7のいずれか一つに記載のインピーダンス変換器。
    The adjustment mechanism further comprises an electrical connection that electrically connects the stub to the cavity.
    The impedance converter according to any one of claims 4-7.
  9.  前記電気接続部は、
      前記キャビティの前記内部空間外に配置され、前記第1軸および前記第2軸の両方に直交する第3軸の方向において前記スタブに弾力的に接触する第1導電部材と、
      前記キャビティの前記内部空間外に配置され、前記第1導電部材を前記キャビティの前記開口の周辺部分に電気的に接続する第2導電部材と、
     を含む、
     請求項8に記載のインピーダンス変換器。
    The electrical connection is
    a first conductive member disposed outside the interior space of the cavity and resiliently contacting the stub in the direction of a third axis orthogonal to both the first axis and the second axis;
    a second conductive member disposed outside the internal space of the cavity and electrically connecting the first conductive member to a peripheral portion of the opening of the cavity;
    including,
    9. Impedance transformer according to claim 8.
  10.  前記第1軸に沿って見たとき、前記キャビティは、前記入力ポートおよび前記出力ポートを通る直線に対して線対称である、
     請求項4~9のいずれか一つに記載のインピーダンス変換器。
    When viewed along the first axis, the cavity is symmetrical about a line passing through the input port and the output port.
    The impedance converter according to any one of claims 4-9.
  11.  前記キャビティは、前記第2軸に直交する第3壁部および第4壁部を有し、
     前記入力ポートは前記出力ポートより前記第3壁部に近く、
     前記入力ポートと前記第3壁部との距離は、前記出力ポートと前記第4壁部との距離に等しい、
     請求項4~10のいずれか一つに記載のインピーダンス変換器。
    the cavity has a third wall and a fourth wall perpendicular to the second axis;
    the input port is closer to the third wall than the output port;
    the distance between the input port and the third wall is equal to the distance between the output port and the fourth wall;
    The impedance converter according to any one of claims 4-10.
  12.  前記入力ポートおよび前記出力ポートは、前記第1壁部に配置される、
     請求項4~11のいずれか一つに記載のインピーダンス変換器。
    the input port and the output port are located on the first wall;
    The impedance converter according to any one of claims 4-11.
  13.  前記入力ポートは、前記内部空間内に配置される入力アンテナを有し、
     前記出力ポートは、前記内部空間内に配置される出力アンテナを有する、
     請求項1~12のいずれか一つに記載のインピーダンス変換器。
    the input port has an input antenna disposed within the interior space;
    the output port has an output antenna positioned within the interior space;
    The impedance converter according to any one of claims 1-12.
  14.  前記入力アンテナは前記出力アンテナと同じ形状を有する、
     請求項13に記載のインピーダンス変換器。
    the input antenna has the same shape as the output antenna;
    14. Impedance transformer according to claim 13.
  15.  前記入力アンテナは、前記入力アンテナの先端部と前記キャビティとの間に放電が生じないように配置され、
     前記出力アンテナは、前記出力アンテナの先端部と前記キャビティとの間に放電が生じないように配置される、
     請求項13または14のいずれか一つに記載のインピーダンス変換器。
    the input antenna is arranged so that no discharge occurs between the tip of the input antenna and the cavity;
    The output antenna is arranged so that no discharge occurs between the tip of the output antenna and the cavity.
    15. Impedance transformer according to claim 13 or 14.
PCT/JP2023/005627 2022-02-25 2023-02-17 Impedance converter WO2023162869A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022028420 2022-02-25
JP2022-028420 2022-02-25

Publications (1)

Publication Number Publication Date
WO2023162869A1 true WO2023162869A1 (en) 2023-08-31

Family

ID=87765713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005627 WO2023162869A1 (en) 2022-02-25 2023-02-17 Impedance converter

Country Status (1)

Country Link
WO (1) WO2023162869A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02202202A (en) * 1989-01-31 1990-08-10 Nippon Koshuha Kk Automatic load matching circuit using single matching element
US20140263179A1 (en) * 2013-03-15 2014-09-18 Lam Research Corporation Tuning system and method for plasma-based substrate processing systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02202202A (en) * 1989-01-31 1990-08-10 Nippon Koshuha Kk Automatic load matching circuit using single matching element
US20140263179A1 (en) * 2013-03-15 2014-09-18 Lam Research Corporation Tuning system and method for plasma-based substrate processing systems

Similar Documents

Publication Publication Date Title
US10164384B2 (en) Coaxial connector
JPH08222940A (en) Antenna system
US10290913B2 (en) Deployment structure comprised of flat panels with waveguides disposed therein, where the flat panels are rotated into engagement with each other to couple the waveguides
CN111566872B (en) Antenna device, antenna system, and measurement system
JP6392563B2 (en) Suppression modes in antenna feeds with coaxial waveguides.
JP2015043562A5 (en)
JP2712931B2 (en) Antenna device
WO2023162869A1 (en) Impedance converter
US11171397B2 (en) Dielectric resonator and filter
US11557840B2 (en) High-performance dual-polarized antenna feed chain
Qiu et al. A dielectric resonator fed wideband metasurface antenna with radiation pattern restoration under its high order modes
WO2020169072A1 (en) Phase shifter and electrically tunable antenna
CN112470340B (en) Antenna device
CN220797101U (en) Excited slot cavity antenna
JP2001060824A (en) Antenna equipment
JP5409323B2 (en) Dielectric resonator and high frequency filter using the same
CN108695600A (en) A kind of broadband circular polarizer
CN117080708B (en) Resonator, filter and communication device
WO2015145989A1 (en) Waveguide converter and waveguide conversion method
US11251532B2 (en) Small dipole antenna
JP4870951B2 (en) Plug for coaxial cable
JP2010263285A (en) Waveguide power distributor and waveguide slot array antenna
CN117543195A (en) Ultra-wideband radiating element and antenna
CN114709582A (en) Ka-waveband orthogonal waveguide coaxial converter with height reduction transition and assembling method
CN117832799A (en) Impedance tuner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759870

Country of ref document: EP

Kind code of ref document: A1