WO2023162829A1 - Information processing device, information processing method, and recording medium - Google Patents
Information processing device, information processing method, and recording medium Download PDFInfo
- Publication number
- WO2023162829A1 WO2023162829A1 PCT/JP2023/005304 JP2023005304W WO2023162829A1 WO 2023162829 A1 WO2023162829 A1 WO 2023162829A1 JP 2023005304 W JP2023005304 W JP 2023005304W WO 2023162829 A1 WO2023162829 A1 WO 2023162829A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- user
- identifier
- unit
- learning
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H20/00—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
Definitions
- the present invention relates to an information processing device and the like that proposes a course of action according to the user's biopsy results.
- Patent Document 1 there is a technology that outputs information indicating recommended health foods according to test results and information indicating recommended lifestyle habits according to test results.
- the information processing apparatus of the first invention includes a user information reception unit that receives user information having one or more user attribute values including result information that specifies the test results related to the biological body of one user, and a user's countermeasure.
- Two or more training data associated with the identified treatment identifier including first result information specifying inspection results before handling and second result information specifying inspection results as a result of handling
- Two or more training data associated with the identified treatment identifier including first result information specifying inspection results before handling and second result information specifying inspection results as a result of handling
- Two or more training data associated with the identified treatment identifier including first result information specifying inspection results before handling and second result information specifying inspection results as a result of handling
- Two or more training data associated with the identified treatment identifier including first result information specifying inspection results before handling and second result information specifying inspection results as a result of handling
- Two or more training data associated with the identified treatment identifier including first result information specifying inspection results before handling and second result information specifying inspection results as a result of handling
- the basis information acquisition unit receives one or more teacher data corresponding to the handling identifier acquired by the handling determination unit and the user information reception unit accepts information indicating the level of grounds for recommending a course of action, and the reason for recommending the course of action, using the user information obtained by the user, and information indicating the reason for recommending the course of action.
- An information processing apparatus that acquires basis information including one or more types of information among reason information that is information including satisfaction level information related to satisfaction level after performing a.
- the basis information acquisition unit fails to acquire the basis information
- the basis information that is information to the effect that there is no basis is an information processing device that acquires
- the information processing device of the fourth invention is information specifying a reward for recommending the user to take action against any one of the first to third inventions, and corresponds to the basis information.
- the information processing apparatus further includes a remuneration information acquisition unit that acquires remuneration information as information, and the information output unit also outputs the remuneration information acquired by the remuneration information acquisition unit.
- the remuneration information acquisition unit acquires remuneration information specifying remuneration according to the basis level included in the basis information. It is a device.
- the information processing apparatus of the sixth invention is obtained by using the second result information possessed by each of the two or more teacher data for each treatment identifier for any one of the first to fifth inventions.
- a classification unit that classifies two or more teacher data into two or more classes using effect information that is information and is information about the effect of coping, and associates each of the two or more teacher data with a class identifier that identifies the class.
- the handling determining unit determines a class to which the user information belongs for each of the two or more handling identifiers using the user information received by the user information accepting unit and learning information based on the two or more teacher data. Further, the information processing apparatus distinguishes and acquires a measure identifier corresponding to a class having a large difference between the first result information and the second result information and a measure identifier corresponding to a class having a small difference.
- the teacher data also has the user's degree of satisfaction as a result of taking action
- the classifying unit includes two points for each action identifier.
- each of the two or more classes classified by the classification unit is associated with a basis level based on effect information for teacher data corresponding to the class.
- the basis information acquisition unit acquires the basis level corresponding to the class, and is information acquired using the second result information of the teacher data corresponding to the class determined by the handling determination unit, and the effect of handling 7.
- effectiveness information is obtained using effect information that is related information, and basis information that includes a basis level and reason information that is information containing effectiveness information is obtained.
- the teacher data also has the user's satisfaction level of the result of taking the countermeasure
- the classification unit includes two Using the effect information and satisfaction level for each of the above teaching data, two or more teaching data are classified into two or more classes, each of the two or more teaching data is associated with a class identifier that identifies the class, and the basis is
- the information acquisition unit is an information processing device that acquires satisfaction level information using the satisfaction level of the teacher data corresponding to the class to which the user information belongs, and acquires basis information including reason information including the satisfaction level information.
- the information processing apparatus of the tenth invention satisfies the similarity condition with one or more user attribute values included in the user information received by the user information receiving unit, in relation to any one of the first to ninth inventions.
- the learning information acquisition unit acquires learning information using two or more teacher data having one or more user attribute values, and the learning information storage unit of the learning information storage unit stores the learning acquired by the learning information acquisition unit. It is an information processing device that is information.
- the information processing apparatus of the eleventh invention is, for any one of the first to tenth inventions, the countermeasure is to provide a challenge or service to ingest the product for a certain period or more in order to improve the test result.
- the countermeasure is to provide a challenge or service to ingest the product for a certain period or more in order to improve the test result.
- the teacher data is an information processing device that includes the degree of effort for the challenge, which is answer information to a questionnaire about the challenge.
- the grounds for the proposal when proposing measures to deal with test results, the grounds for the proposal can be presented.
- Embodiment 1 an information processing apparatus that receives inspection results of a user, acquires and outputs countermeasures (for example, products) according to the inspection results and grounds information on grounds for recommending the countermeasures using learning information.
- countermeasures for example, products
- the fact that the information X is associated with the information Y means that the information Y can be obtained from the information X or the information X can be obtained from the information Y, and the method of the association does not matter.
- Information X and information Y may be linked, may exist in the same buffer, information X may be included in information Y, and information Y may be included in information X. etc. is fine.
- FIG. 1 is a conceptual diagram of the information system A according to this embodiment.
- An information system A includes an information processing device 1 , one, or two or more terminal devices 2 .
- the information processing device 1 is a device that outputs countermeasures and basis information according to the user's test results.
- the information processing device 1 is a so-called server, for example, a cloud server or an ASP server, but the type of server does not matter. Note that the information processing device 1 may be a stand-alone device.
- the terminal device 2 is a device used by the user.
- the terminal device 2 is, for example, a so-called personal computer, a multifunctional mobile phone such as a smart phone, a mobile phone, or a tablet terminal, but the type of the terminal device 2 is not limited.
- a user is a person who uses the information processing device 1 or an administrator of the information processing device 1 .
- the information processing device 1 and one or more terminal devices 2 can communicate via a network such as the Internet or a LAN.
- FIG. 2 is a block diagram of the information system A according to this embodiment.
- the information processing device 1 includes a storage unit 11 , a reception unit 12 , a processing unit 13 and an output unit 14 .
- the storage unit 11 includes a teacher data storage unit 111 and a learning information storage unit 112 .
- the reception unit 12 has a user information reception unit 121 .
- the processing unit 13 includes a classification unit 131 , a learning information acquisition unit 132 , a coping determination unit 133 , a basis information acquisition unit 134 and a remuneration information acquisition unit 135 .
- the output unit 14 has an information output unit 141 .
- the terminal device 2 includes a terminal storage section 21 , a terminal reception section 22 , a terminal processing section 23 , a terminal transmission section 24 , a terminal reception section 25 and a terminal output section 26 .
- Various types of information are stored in the storage unit 11 that constitutes the information processing device 1 .
- the various types of information are, for example, teacher data to be described later, learning information to be described later, questionnaire information to be described later, answer information to be described later, and various conditions to be described later.
- Various conditions are, for example, an effect condition described later, a satisfaction condition described later, an acquisition condition described later, a remuneration condition described later, and information that associates a class identifier with a basis level.
- the teacher data storage unit 111 stores one or more teacher data.
- Teacher data is information that is the source of learning information.
- the training data is associated with an action identifier that identifies the action taken by the user (which may also be referred to as a "subject").
- Teacher data has two or more user attribute values.
- the two or more user attribute values include first result information and second result information.
- User attribute values of 2 or more are, for example, user gender, user age, user height, user weight, activity information, lifestyle information, goals, and goal achievement rate (to-be realization rate). , including satisfaction.
- the training data may be obtained directly from the user himself/herself, or may be obtained indirectly from an academic paper, an academic journal, or the like.
- the training data include effect information.
- the effect information is information about the effect of countermeasures. Effect information is usually information obtained using the second result information.
- the effect information is, for example, information regarding the difference between the first result information and the second result information.
- the effect information is, for example, information indicating the degree of improvement, which is the difference between the first result information and the second result information, or the ratio of the difference between the first result information and the second result information to the first result information.
- the effect information is, for example, information regarding the difference between the second result information and the target.
- the effect information is, for example, the difference between the second result information and the target, the information indicating the degree of improvement which is the ratio of the difference between the second result information and the target and the target, or the degree of achievement of the target.
- the teacher data may not include the first result information and the second result information.
- Effect information is information related to the effect of the user's action.
- the effect information is information related to the difference between the first result information and the second result information. Improvement rate of xyl sulfate measurement value, number of increases in intestinal health, rate of increase in intestinal health, amount of weight loss (increase), amount of improvement in body composition, and amount of change in height.
- Treatment is information about the user's behavior according to the test results.
- the action is, for example, a product ingested by the user, a service provided to the user, an action performed by the user, or a challenge performed by the user.
- the challenges made by the user are, for example, that the user ingests a product in a predetermined period (for example, eats a meal using the low-salt product A for two weeks), that the user enjoys the service provided in a predetermined period, that the user in a given period of time (e.g., walked for 30 minutes for 1 month, ran for 1 hour continuously for 2 weeks, stopped or restricted smoking or drinking for 1 month) , etc.).
- the products, services, actions, etc. ingested by the user are, for example, products for improving test results.
- the first result information is information that specifies the inspection result before taking the action identified by the action identifier.
- the second result information is information specifying the inspection result after taking the treatment identified by the treatment identifier.
- the first result information and second result information are, for example, blood sugar level, blood pressure, measured value of indoxyl sulfate, health level of intestinal environment, weight, body composition, and height.
- the body composition is, for example, muscle mass (percentage), body fat mass (percentage), visceral fat mass (percentage), subcutaneous fat mass (percentage), bone density, BMI, body age, and the like.
- the inspection is an inspection of the user's living body.
- a test is performed here, for example, using a sample.
- a specimen is a biological or ex vivo sample.
- Biological samples are, for example, urine, stool, blood, intraoral cells, saliva, hair, body hair, sebum, nails, skin pieces, semen, tears, sweat, breast milk, runny nose, sputum, tartar, and tongue coating.
- Ex vivo samples are, for example, subject's photographic data, subject's video data, subject's audio data, and house dust of the subject's residence.
- the inspection includes, for example, an inspection using a test kit, but is not limited to this.
- the examination may be, for example, an examination using a physical examination instrument such as a weight scale, a body composition meter, or a stature meter.
- the test may be, for example, a subjective stress degree check or discomfort check by questionnaire, or a cognitive function test.
- Such tests are, for example, the Mini-Mental State Examination (MMSE) test that evaluates cognitive status (see URL: http://www.shizuokamind.org/wp-content/uploads/2013/10/MMSE.pdf) , the Kupperman climacteric index (KKSI) test (see URL: https://ohana-clinic-kinoshitacho.com/wp-content/themes/ohana/download/kuppaman.pdf) to assess menopausal symptoms.
- MMSE Mini-Mental State Examination
- KSI Kupperman climacteric index
- a test kit is, for example, an article for testing using substances emitted from the subject's body. Substances emitted from the living body are, for example, urine, blood, stool, and other body fluids.
- a test kit is an article for testing, eg, to obtain an indoxyl sulfate measurement. Test kits include, for example, an equol test kit, a urine test that measures whether equol is produced from soy isoflavones, and an intestinal environment test kit, a urine test that measures the health of the intestinal environment based on the amount of putrefactive substances derived from intestinal bacteria.
- kit oxidative stress test kit that measures DNA (8-OHdG) damaged by active oxygen, urinalysis test kit that measures salt intake per day, low-salt test kit, stomach cancer It is a urine test kit that measures the presence or absence of antibodies to Helicobacter pylori, which increases the risk.
- the test kit may be, for example, information for testing using information about the subject (for example, rights information).
- the information about the subject is, for example, voice data of the subject and image data of the subject, and the image data is a still image or moving image. Items other than articles may be information including both image data and audio data.
- Information about the health condition of the subject can be obtained as the test result from the voice data of the subject and the image data of the subject.
- the information about the health condition is, for example, the degree of frailty, the degree of depression, etc., but the content of the information does not matter.
- Effort information is information about the status of the user's efforts toward the challenge. Effort information is, for example, the degree of effort for the user's challenge.
- the action information is, for example, the completion rate and the number of days the action was taken.
- the completion rate is, for example, the rate of days on which measures were taken during a predetermined period.
- the effort information may include not only information about direct efforts to the challenge, but also information about incidental efforts. Ancillary efforts are health-related actions that the user engages in outside of the challenge.
- the information about the incidental efforts may be actions that are known to lead to improvement in test results or actions that are not known to lead to improvement in test results.
- Information related to accompanying efforts includes, for example, information indicating that snacking has been stopped, information indicating that sleep time has been increased, information specifying sleep time, for the challenge program effort (e.g., yogurt intake), Information indicating increased exercise time, information specifying exercise time, information indicating quitting smoking, information specifying the number of cigarettes smoked, information indicating quitting drinking, information specifying the amount of alcohol consumed, etc. be.
- information indicating that snacking has been stopped information indicating that sleep time has been increased
- information specifying sleep time for the challenge program effort (e.g., yogurt intake)
- Information indicating increased exercise time information specifying exercise time
- information indicating quitting smoking information specifying the number of cigarettes smoked
- information indicating quitting drinking information specifying the amount of alcohol consumed, etc. be.
- Lifestyle information is information related to the user's lifestyle.
- the lifestyle information includes, for example, whether or not the person smokes, whether or not he/she drinks alcohol, the amount of smoking per day, the frequency of drinking alcohol, the amount of drinking alcohol, the presence/absence of exercise habits, and the exercise time for a predetermined period (for example, one day).
- a goal is a user's goal, usually a goal related to test results.
- a goal is, for example, a goal for which there is a basis.
- a goal indicates an ideal state based on, for example, papers or statistical results.
- a goal may be, for example, a value between the ideal value and the current user's value.
- the target is, for example, a blood pressure target value and a weight target value.
- the target may also be a target value corresponding to the first result information and the second result information. good too.
- the To-Be realization rate is the degree of achievement from the user's current state (As-Is) to the ideal state (To-Be). ).
- Satisfaction is the degree of satisfaction after taking action. Satisfaction is usually the degree of satisfaction with the treatment. Satisfaction is, for example, a numerical value from 1 to 5, an evaluation value in one of three stages of "satisfied", “normal”, and “not satisfied", and a continuous value such as VAS (Visual Analog Scale). .
- User attribute values other than the first result information and the second result information included in the training data are, for example, answer information corresponding to questionnaires for users.
- the answer information includes, for example, the user's gender, user's age, user's height, user's weight, effort information, lifestyle information, goal, To-Be realization rate, and satisfaction level.
- the learning information storage unit 112 stores learning information based on two or more teacher data.
- the learning information storage unit 112 is, for example, a learning device to be described later, a correspondence table to be described later, and a teacher data set.
- the processing of creating learning information in the learning information storage unit 112 may be performed by the learning information acquisition unit 132 described later, or may be performed by an external learning device (not shown).
- a teacher data set is a set of two or more teacher data.
- a learning device is, for example, data created by machine learning learning processing using two or more teacher data. Such a learning process may be performed by the learning information acquisition unit 132, which will be described later, or may be performed by an external learning device (not shown). If an external learning device performs the learning process, the teacher data storage unit 111 is unnecessary. Note that the learning device may also be called a classifier, a predictor, a learning model, a model, or the like.
- the correspondence table has two or more pieces of correspondence information.
- Correspondence information is, for example, information indicating correspondence between one or more user attribute values and action identifiers.
- Correspondence information is, for example, information indicating correspondence between one or more user attribute values and class identifiers. Class identifiers will be described later.
- the reception unit 12 receives various information and instructions.
- Various information and instructions are, for example, user information described later.
- acceptance usually means reception of information transmitted from the terminal device 2 via a wired or wireless communication line.
- reception may be a concept that includes reception of information input from input devices such as keyboards, mice, and touch panels, and reception of information read from recording media such as optical disks, magnetic disks, and semiconductor memories. .
- the user information reception unit 121 receives user information of one user.
- User information has one or more user attribute values.
- User attribute values include result information.
- the result information is information specifying the result of an examination on the living body of one user.
- the result information is, for example, blood sugar level, blood pressure, measured value of indoxyl sulfate, health level of intestinal environment.
- the reason why the user information receiving unit 121 receives user information is usually to obtain a countermeasure identifier and ground information.
- the result information included in the user information received by the user information receiving unit 121 is information on the inspection result before taking action.
- the processing unit 13 performs various types of processing. Various types of processing are processing performed by the classification unit 131, the learning information acquisition unit 132, the coping determination unit 133, the ground information acquisition unit 134, and the remuneration information acquisition unit 135, for example.
- the processing unit 13 may use the basis information acquired by the basis information acquisition unit 134 to construct the output information.
- the processing unit 13 may configure the output information using the basis information acquired by the basis information acquisition unit 134 and the remuneration information acquired by the remuneration information acquisition unit 135 .
- Output information is information to be output.
- the classification unit 131 classifies two or more teacher data in the teacher data storage unit 111 into two or more classes, and associates each of the two or more teacher data with a class identifier.
- a class identifier is information for identifying a class.
- the class identifier is, for example, one of "class 1", “class 2", “class 3", and "class 4".
- the classification unit 131 classifies two or more teacher data into two or more classes using effect information for each action identifier, and associates each of the two or more teacher data with a class identifier.
- the classification unit 131 acquires effect information regarding the difference between the first result information and the second result information possessed by each of the two or more pieces of teacher data for each treatment identifier. Next, the classification unit 131 classifies the effect information corresponding to each of the two or more pieces of teacher data into two or more classes, and classifies the two or more pieces of teacher data into two or more classes according to the classification of the effect information. , corresponding to each of the two or more teacher data with a class identifier.
- the classification unit 131 classifies the two or more teacher data into two or more classes using the effect information and the satisfaction level of each of the two or more teacher data for each coping identifier, and classifies the two or more teacher data. corresponds to a class identifier that identifies a class for
- “threshold 1 ⁇ effect information and threshold a ⁇ satisfaction level” as "class 4"
- Two or more teacher data are classified into four classes. The number of classes does not matter.
- the classification unit 131 may classify, for example, two or more pieces of teacher data into two or more classes using a known cluster analysis algorithm.
- Known cluster analysis algorithms include hierarchical methods such as the k-means method, the shortest distance method (nearest neighbor method), the shortest distance method (nearest neighbor method), the centroid method, and the group average method, the k-means method, and hypervolume
- a non-hierarchical method such as a method may also be used.
- classifying two or more pieces of teacher data into two or more classes means associating each of the two or more pieces of teacher data with a class identifier.
- the learning information acquisition unit 132 acquires learning information using two or more pieces of teacher data in the teacher data storage unit 111. It is preferable that the learning information acquisition unit 132 acquires learning information using the result of the classification performed by the classification unit 131 .
- the learning information is information used to acquire the action identifier.
- the learning information may be information that acquires the class identifier of the class to which the user belongs before acquiring the action identifier. Also, the learning information is, for example, a learning device and a correspondence table.
- the learning information acquiring unit 132 uses two or more teacher data having one or more user attribute values that satisfy a similarity condition with one or more user attribute values included in the user information received by the user information receiving unit 121, and obtains learning information. It is preferable to obtain
- the similarity condition is, for example, that the degree of similarity is equal to or greater than a threshold, and that the degree of similarity is greater than the threshold.
- the degree of similarity is calculated using a vector whose elements are one or more user attribute values included in the user information received by the user information receiving unit 121, and a vector whose elements are one or more user attribute values included in the teacher data. is the similarity of
- the algorithm for calculating the degree of similarity between two vectors is a well-known technique, so the explanation is omitted.
- the learning information acquisition unit 132 acquires two or more pieces of teacher data stored in the teacher data storage unit 111 for each action identifier. Next, the learning information acquisition unit 132 uses one or more user attribute values possessed by each of two or more teacher data as an explanatory variable for each action identifier, and sets the class identifier corresponding to each of two or more teacher data as an objective variable. , a learning process of machine learning is performed, a learning device is acquired, and it is stored in the learning information storage unit 112 in association with the countermeasure identifier. Note that the class identifier of the training data is information acquired by the classification unit 131 .
- deep learning, decision trees, random forests, SVR, etc. can be used as algorithms for machine learning learning processing, but it does not matter.
- an algorithm for performing prediction processing of machine learning which will be described later, may be deep learning, decision tree, random forest, SVR, or the like, but it does not matter.
- various machine learning functions such as TensorFlow library, fastText, tinySVM, R language random forest module, and various existing libraries can be used.
- the module may also be called a program, software, function, method, or the like.
- the learning information acquisition unit 132 does not need to use all the user attribute values that make up the teacher data when creating a learning device, and may use a part of the user attribute values. (1-1-2) When the learner is a binary classification learner
- the learning information acquisition unit 132 acquires two or more pieces of teacher data stored in the teacher data storage unit 111 for each action identifier. Next, the learning information acquisition unit 132 sets the teacher data corresponding to the class identifier of interest as a positive example and the teacher data not corresponding to the class identifier as a negative example for each action identifier and each class identifier, and performs machine learning. A learning process is performed, a learning device is acquired, the action identifier and the class identifier are associated with each other, and stored in the learning information storage unit 112 .
- the learning information acquisition unit 132 uses one or more user attribute values possessed by each of two or more teacher data as an explanatory variable, and uses a class identifier corresponding to each of two or more teacher data as an objective variable for machine learning learning. Execute processing and acquire a binary classification learner. (1-2) When learning information is a correspondence table (1-2-1) When one correspondence information corresponds to one teacher data
- the learning information acquisition unit 132 acquires two or more pieces of teacher data stored in the teacher data storage unit 111 for each action identifier. Next, the learning information acquisition unit 132 constructs a vector whose elements are one or more user attribute values of two or more pieces of teacher data for each action identifier. Then, the learning information acquisition unit 132 constructs a correspondence table having two or more pieces of correspondence information having class identifiers corresponding to the vector and the teacher data for each countermeasure identifier, and associates the correspondence table with the countermeasure identifier. and stored in the learning information storage unit 112 . (1-2-2) When one correspondence information corresponds to one class identifier
- the learning information acquisition unit 132 acquires two or more pieces of teacher data stored in the teacher data storage unit 111 for each action identifier. Next, the learning information acquiring unit 132 constructs a vector whose elements are one or more user attribute values of one or two or more pieces of teacher data for each action identifier and each class identifier. Next, the learning information acquisition unit 132 acquires a representative vector representing one or more vectors for each handling identifier and each class identifier. Next, the learning information acquisition unit 132 constructs a correspondence table having two or more pieces of correspondence information having representative vectors and class identifiers for each handling identifier and each class identifier, and associates the correspondence table with the handling identifier. and stored in the learning information storage unit 112 . (2) Learning information for acquiring action identifiers
- the learning information is information for acquiring a countermeasure identifier, there is no need to classify the teacher data, and the classifying unit 131 is unnecessary.
- learning information is a learner
- the learning information acquisition unit 132 acquires effect information corresponding to each piece of teacher data from two or more pieces of each piece of teacher data held by the teacher data storage unit 111 . Next, the learning information acquisition unit 132 acquires one or more teacher data whose effect information satisfies predetermined effect conditions. Next, the learning information acquisition unit 132 uses one or more user identifiers of each of the one or more acquired teacher data as explanatory variables, and uses the action identifier corresponding to each of the one or more teacher data as objective variables, and performs machine learning. A learning process is performed, a learning device is acquired, and stored in the learning information storage unit 112 .
- the effect condition is a condition for judging that the effect information is equal to or greater than a predetermined effect.
- the effect condition is, for example, if the effect information is greater than or equal to a threshold (eg, "decrease in blood glucose level by 10 or more", “decrease in systolic blood pressure by 20 or more", “target achievement level of 80% or more") or greater than a threshold (eg, " Blood glucose reduction greater than 10, systolic blood pressure reduction greater than 20, goal achievement greater than 70%, or a specific value (eg, effective, great improvement). (2-1-2) When using effect information and satisfaction
- the learning information acquisition unit 132 acquires the effect information for each teacher data and the degree of satisfaction possessed by each teacher data from two or more each of the teacher data stored in the teacher data storage unit 111 . Next, the learning information acquisition unit 132 acquires one or more teacher data whose effect information satisfies a predetermined effect condition and whose degree of satisfaction satisfies a predetermined satisfaction condition. Next, the learning information acquisition unit 132 uses one or more user identifiers of each of the one or more acquired teacher data as explanatory variables, and uses the action identifier corresponding to each of the one or more teacher data as objective variables, and performs machine learning. A learning process is performed, a learning device is acquired, and stored in the learning information storage unit 112 .
- the effect information for the teacher data is effect information acquired from information possessed by the teacher data or effect information possessed by the teacher data.
- the satisfaction level condition is a condition for determining that the satisfaction level is high, and is, for example, that the satisfaction level is equal to or greater than a threshold or larger than the threshold (satisfied).
- the learning information acquisition unit 132 acquires effect information corresponding to each piece of teacher data from two or more pieces of teacher data stored in the teacher data storage unit 111 . Next, the learning information acquisition unit 132 acquires one or more teacher data whose effect information satisfies predetermined effect conditions. Next, the learning information acquiring unit 132 constructs a vector whose elements are the one or more user identifiers of the acquired one or more teacher data. Then, the learning information acquisition unit 132 constructs a correspondence table having two or more pieces of correspondence information having the vector and the handling identifier corresponding to the training data, and accumulates the correspondence table in the learning information storage unit 112 . (2-2-1-2) When one correspondence information corresponds to one handling identifier
- the learning information acquisition unit 132 acquires effect information corresponding to each piece of teacher data from two or more pieces of teacher data stored in the teacher data storage unit 111 . Next, the learning information acquisition unit 132 acquires one or more teacher data whose effect information satisfies predetermined effect conditions. Next, the learning information acquisition unit 132 constructs a vector whose elements are one or more user attribute values included in one or more pieces of teacher data for each action identifier. Next, the learning information acquisition unit 132 acquires a representative vector representing one or more vectors for each countermeasure identifier. Next, learning information acquisition section 132 constructs a correspondence table having two or more pieces of correspondence information each having a representative vector and a countermeasure identifier, and accumulates the correspondence table in learning information storage section 112 . (2-2-2) When effect information and satisfaction level are used (2-2-2-1) When one correspondence information corresponds to one teacher data
- the learning information acquisition unit 132 acquires the effect information and the degree of satisfaction corresponding to each piece of teacher data from two or more pieces of teacher data held by the teacher data storage unit 111 . Next, the learning information acquisition unit 132 acquires one or more teacher data whose effect information satisfies a predetermined effect condition and whose degree of satisfaction satisfies a predetermined satisfaction condition. Next, the learning information acquiring unit 132 constructs a vector whose elements are the one or more user identifiers of the acquired one or more teacher data. Then, the learning information acquisition unit 132 constructs a correspondence table having two or more pieces of correspondence information having the vector and the handling identifier corresponding to the training data, and accumulates the correspondence table in the learning information storage unit 112 . (2-2-2-2) When one correspondence information corresponds to one handling identifier
- the learning information acquisition unit 132 acquires effect information and satisfaction level corresponding to each teacher data from two or more each of the teacher data stored in the teacher data storage unit 111 . Next, the learning information acquisition unit 132 acquires one or more teacher data whose effect information satisfies a predetermined effect condition and whose degree of satisfaction satisfies a predetermined satisfaction condition. Next, the learning information acquisition unit 132 constructs a vector whose elements are one or more user attribute values included in one or more pieces of teacher data for each action identifier. Next, the learning information acquisition unit 132 acquires a representative vector representing one or more vectors for each countermeasure identifier. Next, learning information acquisition section 132 constructs a correspondence table having two or more pieces of correspondence information each having a representative vector and a countermeasure identifier, and accumulates the correspondence table in learning information storage section 112 .
- the handling determining unit 133 acquires learning information, and uses the learning information and the user information received by the user information receiving unit 121 to identify one or more measures according to the result information of the user information. Get an identifier.
- the handling determination unit 133 determines the class to which the user information belongs for each of two or more handling identifiers, and determines the class to which the user information belongs.
- a countermeasure identifier corresponding to a class having a large difference from the second result information (a class having a large countermeasure effect) and a countermeasure identifier corresponding to a class having a small difference (a class having a small countermeasure effect) are acquired separately. Acquiring them separately means, for example, sorting the action identifiers in descending order of difference, or acquiring only the action identifiers corresponding to the differences that satisfy the effect condition.
- the handling determination unit 133 acquires a handling identifier by, for example, machine learning prediction processing.
- the handling determination unit 133 acquires a handling identifier using, for example, a correspondence table. An example of the processing of the handling determination unit 133 will be described below.
- the learning information is a learner (1-1)
- the learner is a learner that acquires a class identifier (1-1-1)
- the handling determining unit 133 acquires one or more attribute values of the user information accepted by the user information accepting unit 121 for each handling identifier. Next, the handling determining unit 133 constructs a vector whose elements are the one or more attribute values. Further, the handling determination unit 133 acquires a learning device corresponding to the handling identifier from the learning information storage unit 112 . Next, the handling determining unit 133 provides the vector and the learning device for each handling identifier to a module that performs prediction processing of machine learning, executes the module, and acquires a class identifier.
- the handling determination unit 133 associates the acquired class identifier with the handling identifier, and stores them in a buffer (not shown).
- the handling determination unit 133 may acquire one or more handling identifiers corresponding to a class identifier that satisfies an acquisition condition (for example, an identifier of a class that has a large effect and a high level of satisfaction), and accumulate them in a buffer (not shown).
- Acquisition conditions are conditions for acquiring a countermeasure identifier. Acquisition conditions are effect conditions based on effect information. Acquisition conditions may be effect conditions and satisfaction conditions. The effect condition is, for example, that the effect information is greater than or equal to a threshold.
- a satisfaction condition is a condition based on satisfaction, for example, satisfaction is greater than or equal to a threshold. Acquisition conditions are, for example, that the effect indicated by the effect information is the highest and the degree of satisfaction is the highest. (1-1-2) When the learner is a binary classification learner with two or more
- the handling determining unit 133 acquires one or more attribute values of the user information accepted by the user information accepting unit 121 for each handling identifier. Next, the handling determining unit 133 constructs a vector whose elements are the one or more attribute values. Further, the handling determination unit 133 acquires the learning device corresponding to the handling identifier and each class identifier from the learning information storage unit 112 . Next, the handling determination unit 133 supplies the configured vector and the acquired learning device to a module that performs prediction processing of machine learning for each handling identifier and each class identifier, executes the module, and identifies with the class identifier. Get a prediction result that indicates whether the class belongs to Note that the prediction result may include a score.
- the handling determination unit 133 acquires one or more class identifiers corresponding to the prediction result including the information "belongs to class".
- the handling determining unit 133 associates each handling identifier with the acquired class identifier and stores them in a buffer (not shown).
- the handling determination unit 133 may acquire one or more handling identifiers corresponding to class identifiers that satisfy acquisition conditions, and store them in a buffer (not shown).
- the acquisition condition is, for example, that the effect information corresponding to the class identifier is information equal to or greater than a threshold (has a large effect).
- the learning device is a learning device that acquires an action identifier (1-2-1)
- the handling determining unit 133 acquires one or more attribute values of the user information received by the user information receiving unit 121 for each handling identifier. Next, the handling determining unit 133 constructs a vector whose elements are the one or more attribute values. Also, the handling determination unit 133 acquires a learning device from the learning information storage unit 112 . Next, the countermeasure determination unit 133 provides the vector and the learning device to a module that performs prediction processing of machine learning, executes the module, and acquires a countermeasure identifier. (1-2-2) When the learner is a binary classification learner with two or more
- the handling determining unit 133 acquires one or more attribute values of the user information received by the user information receiving unit 121 for each handling identifier. Next, the handling determining unit 133 constructs a vector whose elements are the one or more attribute values. Further, the handling determination unit 133 acquires a learning device from the learning information storage unit 112 for each handling identifier. Next, for each countermeasure identifier, the countermeasure determination unit 133 provides the vector and the learning device to a module that performs machine learning prediction processing, executes the module, and determines whether the module belongs to the countermeasure identified by the countermeasure identifier.
- the countermeasure determination unit 133 acquires the countermeasure identifier corresponding to the prediction result including the information indicating that "it belongs to the countermeasure identified by the countermeasure identifier".
- the learning information is a correspondence table (2-1)
- the correspondence table is a correspondence table for acquiring class identifiers
- the handling determining unit 133 acquires one or more attribute values of the user information accepted by the user information accepting unit 121 for each handling identifier. Next, the handling determining unit 133 constructs a vector whose elements are the one or more attribute values. Next, the handling determination unit 133 determines correspondence information having a vector that is most similar to the vector, and acquires the class identifier of the correspondence information.
- the handling determination unit 133 associates the acquired class identifier with the handling identifier, and stores them in a buffer (not shown).
- the handling determination unit 133 may acquire one or more handling identifiers corresponding to class identifiers that satisfy acquisition conditions, and store them in a buffer (not shown).
- the acquisition condition is, for example, that the effect information corresponding to the class identifier is information equal to or greater than a threshold value (has a large effect).
- the correspondence table is a correspondence table for obtaining a countermeasure identifier
- the handling determining unit 133 acquires one or more attribute values of the user information accepted by the user information accepting unit 121 for each handling identifier. Next, the handling determining unit 133 constructs a vector whose elements are the one or more attribute values. Next, the handling determination unit 133 determines correspondence information having a vector that is most similar to the vector, and acquires a handling identifier included in the correspondence information.
- the handling determination unit 133 may acquire from the storage unit 11 the handling identifiers of all two or more candidate measures.
- the basis information acquisition unit 134 uses one or more training data corresponding to each of the one or more countermeasure identifiers acquired by the countermeasure determination unit 133 and the user information received by the user information reception unit 121 to obtain the basis information. Get information.
- the basis information is information relating to the basis for recommending the countermeasure identified by the countermeasure identifier acquired by the countermeasure determination unit 133 .
- the basis information acquisition unit 134 acquires, for example, the basis level corresponding to the class identifier associated by the classification unit 131.
- the grounds information acquisition unit 134 acquires effectiveness information using, for example, effect information for teacher data corresponding to the class identifier associated by the classification unit 131, and obtains information including the grounds level and the effectiveness information. Get information. It is preferable for the basis information acquisition unit 134 to acquire basis information including, for example, one or more types of information among basis level and reason information.
- the grounds information acquisition unit 134 acquires satisfaction level information using the satisfaction level of the teacher data corresponding to the class to which the user information belongs, and acquires grounds information including reason information including the satisfaction level information. be.
- Basis information can be called evidence information.
- the basis information has, for example, one or more information among basis level and reason information.
- Reason information has one or more information of effectiveness information and satisfaction information.
- the rationale level is information that specifies the strength of the rationale for recommending a course of action.
- the basis level is, for example, one of “1”, “2”, “3”, “4", and "5", but it is sufficient if it is sequential information such as "A”, "B”, and "C”. .
- the reason information is information about the reason for recommending the action.
- Effectiveness information is information about the effectiveness of countermeasures. Effectiveness information includes, for example, the average value of effectiveness when taking action, the percentage of users whose effectiveness is above the threshold when taking action (percentage of teacher data), and the effectiveness when taking action. It is the number of users above the threshold. Satisfaction level information is information related to the satisfaction level after taking action. Satisfaction information includes the average satisfaction after taking action, the ratio of users whose satisfaction is above the threshold after taking action (teaching data is also acceptable), and the satisfaction after taking action is above the threshold. is the number of users of
- the basis information acquiring unit 134 uses one or more teacher data corresponding to the handling identifier and the user information received by the user information accepting unit 121. , to get the rationale level.
- the basis information acquisition unit 134 acquires, for example, a class identifier paired with one or more teacher data corresponding to the handling identifier acquired by the handling determination unit 133 .
- the basis information acquisition unit 134 acquires, for example, the basis level corresponding to the class identifier. In this case, it is assumed that the class identifier is associated with the basis level and stored in the storage unit 11 .
- the basis information acquisition unit 134 acquires effectiveness information, for example, for each measure identifier using one or more training data corresponding to the measure identifier acquired by the measure determination unit 133 .
- the basis information acquisition unit 134 acquires, for example, effect information corresponding to one or more pieces of teacher data corresponding to each coping identifier acquired by the coping determination unit 133 .
- the basis information acquisition unit 134 acquires, for example, the effective number of persons, which is the number of effect information that satisfies the effect conditions, among the acquired effect information for each countermeasure identifier.
- the basis information acquisition unit 134 acquires effectiveness information, which is a ratio of effectiveness, using, for example, the number of all teaching data items corresponding to the action identifier and the number of persons who are effective.
- the effectiveness information may be the number of persons who are effective.
- the effect condition is information indicating that the effect information is highly effective, and for example, the effect information is equal to or greater than the threshold, the effect information is greater than the threshold, and the effect
- the basis information acquisition unit 134 acquires satisfaction level information, for example, for each measure identifier using one or more teacher data corresponding to the measure identifier acquired by the measure determination unit 133 .
- the basis information acquisition unit 134 acquires, for example, satisfaction levels of one or more pieces of teacher data corresponding to each handling identifier acquired by the handling determination unit 133 .
- the basis information acquisition unit 134 acquires, for example, the number of people who were satisfied, which is the number of degrees of satisfaction that satisfy the satisfaction level condition, among the acquired degrees of satisfaction, for each measure identifier.
- the basis information acquisition unit 134 acquires satisfaction level information, which is the rate of satisfaction, using, for example, the number of all teacher data corresponding to the handling identifier and the number of people who were satisfied.
- the satisfaction level information may be the number of people who were satisfied.
- the basis information acquisition unit 134 acquires effectiveness information and satisfaction level information, for example, for each measure identifier using one or more teacher data corresponding to the measure identifier acquired by the measure determination unit 133 . Then, it is preferable that the basis information acquisition unit 134 configure reason information having, for example, the acquired effectiveness information and the acquired satisfaction level information.
- the basis information acquisition unit 134 acquire recommended information for strongly recommending a measure identifier that satisfies the goal achievement condition.
- the goal achievement condition is that the degree of goal achievement is greater than or equal to a threshold.
- the goal achievement rate is the degree of achievement with respect to a goal, which is a user attribute value.
- the degree of goal achievement is, for example, one or more representative values (eg, average value, median value) of goal achievement rates, the number of users who have achieved their goals, and the percentage of users who have achieved their goals.
- the basis information acquisition unit 134 prefferably acquire basis information that is information indicating that there is no basis for the action identifier for which basis information could not be acquired.
- the basis information acquisition unit 134 usually associates the acquired basis information with the corresponding action identifier and temporarily stores it in a buffer (not shown).
- the remuneration information acquisition unit 135 acquires remuneration information, which is information specifying a remuneration for recommending the user to take action, and is information corresponding to the basis information.
- the remuneration information is, for example, information recommending purchase of goods or services corresponding to the countermeasure.
- the remuneration information is, for example, information indicating the discount rate of the product or service corresponding to the handling.
- the remuneration information acquisition unit 135 acquires remuneration information that specifies remuneration according to the basis level included in the basis information.
- the remuneration information acquisition unit 135 acquires, for example, remuneration information specifying a higher remuneration as the ground level included in the ground information is lower.
- the reward indicated by the reward information in such a case is the reward for the user's efforts to adopt the low basis level.
- the remuneration information acquisition unit 135 acquires remuneration information specifying a higher remuneration, for example, as the ground level included in the ground information is higher. In such a case, it is a case where we want the user to take action with a high level of grounds.
- An administrator of the information processing device 1 may set such a relationship between the basis level and the remuneration information.
- the remuneration information acquisition unit 135 acquires remuneration information associated with the acquired basis level from the storage unit 11.
- the output unit 14 outputs various information.
- Various types of information are, for example, a countermeasure identifier, basis information, and remuneration information.
- the output is usually transmission to the terminal device 2, but display on a display, projection using a projector, printing on a printer, sound output, storage on a recording medium, other processing devices or other
- the concept may include delivery of the processing result to a program or the like.
- the information output unit 141 outputs the countermeasure identifier acquired by the countermeasure determination unit 133 and the basis information acquired by the basis information acquisition unit 134 . It is preferable that the information output unit 141 also output the remuneration information acquired by the remuneration information acquisition unit 135 .
- Various types of information are stored in the terminal storage unit 21 that constitutes the terminal device 2 .
- Various information is, for example, a user identifier.
- the user identifier may be the ID of the terminal device 2 or the like.
- the terminal reception unit 22 receives various information and instructions.
- Various information and instructions are, for example, user information.
- Input means for various information and instructions may be anything, such as a microphone, a touch panel, a keyboard, a mouse, or a menu screen.
- the terminal processing unit 23 performs various types of processing.
- Various types of processing are, for example, processing for creating a data structure for transmitting instructions and information received by the terminal receiving unit 22 .
- various kinds of processing are, for example, processing to make a data structure for outputting information received by the terminal reception unit 25 .
- the terminal transmission unit 24 transmits various information and instructions to the information processing device 1 .
- Various information and instructions are, for example, user information.
- the terminal reception unit 25 receives various types of information from the information processing device 1 .
- Various types of information are, for example, a countermeasure identifier, basis information, and remuneration information.
- the terminal output unit 26 outputs various information.
- Various types of information are, for example, a countermeasure identifier, basis information, and remuneration information.
- the storage unit 11, the teacher data storage unit 111, the learning information storage unit 112, and the terminal storage unit 21 are preferably non-volatile recording media, but can also be realized with volatile recording media.
- information may be stored in the storage unit 11 or the like via a recording medium, or information transmitted via a communication line or the like may be stored in the storage unit 11 or the like.
- information input via an input device may be stored in the storage unit 11 or the like.
- the reception unit 12 and the user information reception unit 121 are preferably realized by wireless or wired communication means, but device drivers for input means such as means for receiving broadcasts, touch panels and keyboards, and menu screen It may be realized by control software or the like.
- the processing unit 13, the learning information acquisition unit 132, the classification unit 131, the coping determination unit 133, the basis information acquisition unit 134, the remuneration information acquisition unit 135, and the terminal processing unit 23 can usually be implemented by a processor, memory, or the like.
- the processing procedure of the processing unit 13 and the like is normally realized by software, and the software is recorded in a recording medium such as a ROM.
- the processing unit 13 and the like may be realized by hardware (dedicated circuit).
- the processor may be a CPU, MPU, GPU, or the like, and may be of any type.
- the output unit 14, the information output unit 141, and the terminal transmission unit 24 are usually realized by wireless or wired communication means, but may be realized by broadcasting means.
- the terminal reception unit 22 can be realized by device drivers for input means such as touch panels and keyboards, control software for menu screens, and the like.
- the terminal receiving unit 25 is usually realized by wireless or wired communication means, but may be realized by means for receiving broadcast.
- the terminal output unit 26 may or may not include output devices such as displays and speakers.
- the terminal output unit 26 can be realized by output device driver software, or by output device driver software and an output device.
- Step S301 The reception unit 12 determines whether or not one or more teaching data has been received. If one or more teacher data is received, the process goes to step S302. If no teacher data is received, the process goes to step S303. It should be noted that the reception here is reception from the terminal device 2, for example.
- Step S302 The processing unit 13 accumulates the one or more teacher data accepted in step S301 in the teacher data storage unit 111. Return to step S301.
- Step S303 The processing unit 13 determines whether or not to create learning information. If it is determined to create learning information, the process goes to step S304, and if it is not determined to create learning information, the process goes to step S305. Note that the processing unit 13 determines to create learning information, for example, when the receiving unit 12 receives a learning information creation instruction. Also, the processing unit 13 determines to create the learning information, for example, when a predetermined time has come. Also, the processing unit 13 determines to create learning information, for example, when the number of training data items accumulated in the training data storage unit 111 is equal to or greater than a threshold. However, the condition for judging that the processing unit 13 creates learning information does not matter.
- Step S304 The learning information acquisition unit 132 performs learning information creation processing. Return to step S301. An example of learning information creation processing will be described with reference to the flowcharts of FIGS. 4, 7, 8, and 9. FIG.
- Step S305 The user information reception unit 121 determines whether user information has been received. If the user information has been received, the process goes to step S306, and if the user information has not been received, the process returns to step S301. It should be noted that the reception here is reception from the terminal device 2, for example.
- Step S306 The processing unit 13 performs output information acquisition processing. An example of output information acquisition processing will be described with reference to the flowchart of FIG.
- Step S307 The information output unit 141 outputs the output information acquired in step S306. Return to step S301. Note that the output here is transmission to the terminal device 2, for example.
- the process ends when the power is turned off or an interrupt to end the process occurs.
- a first example of learning information creation processing is an example of acquiring a learning device for acquiring a class identifier.
- Step S401 The processing unit 13 substitutes 1 for the counter i.
- Step S402 The processing unit 13 determines whether or not the i-th action identifier exists. If the i-th action identifier exists, go to step S403, and if the i-th action identifier does not exist, return to the upper process.
- Step S403 The classification unit 131 classifies two or more teacher data corresponding to the i-th action identifier. An example of such classification processing will be described with reference to the flowchart of FIG.
- Step S404 The learning information acquisition unit 132 performs learning processing using the result of the classification processing in step S403, and acquires a learning device. An example of learning processing will be described with reference to the flowchart of FIG.
- Step S405 The learning information acquisition unit 132 stores the learning device acquired in step S404 in the learning information storage unit 112 in association with the i-th action identifier.
- Step S406 The processing unit 13 increments the counter i by 1. Return to step S402.
- Step S501 The classification unit 131 acquires from the teacher data storage unit 111 all training data corresponding to the action identifier of interest (the i-th action identifier in S402).
- Step S502 The classification unit 131 substitutes 1 for the counter i.
- Step S503 The classification unit 131 determines whether or not i-th teacher data exists in the teacher data acquired in step S501. If the i-th teacher data exists, the process goes to step S504, and if the i-th teacher data does not exist, the process returns to the upper process.
- the classification unit 131 acquires effect information for the i-th teacher data. For example, the classification unit 131 acquires the first result information and the second result information included in the i-th teacher data, and acquires the effect information regarding the difference between the first result information and the second result information. The classification unit 131 acquires, for example, effect information of i-th teacher data.
- Step S505 The classification unit 131 acquires the satisfaction level of the i-th teacher data.
- Step S506 Using the effect information acquired in step S504 and the satisfaction level acquired in step S505, the classification unit 131 acquires a class identifier corresponding to the effect information and the satisfaction level.
- Step S507 The classification unit 131 associates the i-th teacher data with the class identifier acquired in step S506.
- Step S508 The classification unit 131 increments the counter i by 1. Return to step S503.
- the classification unit 131 determines the class of the training data using the effect information and the degree of satisfaction. However, the classification unit 131 may use one of the effect information and the degree of satisfaction to determine the class of the teacher data.
- the classification unit 131 may classify two or more pieces of teacher data using the known cluster analysis algorithm described above.
- step S404 an example of the learning process in step S404 will be described using the flowchart of FIG.
- Step S601 The learning information acquisition unit 132 substitutes 1 for the counter i.
- Step S602 The learning information acquisition unit 132 determines whether the class identifier of the i-th class classified by the classification unit 131 in step S403 exists. If the i-th class identifier exists, go to step S603; otherwise, return to the upper process.
- Step S603 The learning information acquisition unit 132 acquires one or more positive examples.
- a positive example is teacher data associated with the i-th class identifier.
- the learning information acquisition unit 132 acquires one or more negative examples.
- a negative example is teacher data that is not associated with the i-th class identifier.
- Teacher data not associated with the i-th class identifier is usually teacher data associated with a class identifier other than the i-th class identifier.
- Step S605 The learning information acquisition unit 132 performs machine learning learning processing using the one or more positive examples acquired in step S603 and the one or more negative examples acquired in step S604, and acquires a learning device. do.
- This learning device is a learning device for determining whether or not it belongs to the i-th class, and is a learning device that performs binary classification.
- Step S606 The learning information acquisition unit 132 stores the learning device acquired in step S605 in the learning information storage unit 112 in association with the action identifier of interest and the i-th class identifier.
- Step S607 The learning information acquisition unit 132 increments the counter i by 1. Return to step S602.
- the learning information acquisition unit 132 uses two or more teacher data corresponding to the action identifier of interest, uses one or more user attribute values possessed by each teacher data as explanatory variables, and class identifiers as explanatory variables.
- a machine learning learning process may be performed to obtain a learning device using an objective variable, and the obtained learning device may be stored in the learning information storage unit 112 in association with the action identifier of interest.
- one learner corresponds to one action identifier.
- Such a learner is a learner for predicting any of the class identifiers.
- a second example of learning information creation processing is an example of acquiring a learning device for acquiring a countermeasure identifier.
- the learning device acquired in the second example is a learning device for determining whether or not to take the action identified by the corresponding action identifier, and is acquired for each action.
- Such a learner is a learner that performs binary classification.
- Step S701 The learning information acquisition unit 132 substitutes 1 for the counter i.
- Step S702 The learning information acquisition unit 132 determines whether or not the i-th action identifier exists. If the i-th countermeasure identifier exists, go to step S703; otherwise, return to the upper process.
- Step S703 The learning information acquisition unit 132 acquires two or more teacher data corresponding to the i-th action identifier from the teacher data storage unit 111.
- Step S704 The learning information acquisition unit 132 acquires one or more positive examples from the two or more teacher data acquired in step S703.
- a positive example is teacher data that meets the positive example condition.
- the positive case condition is a condition for determining that action should be taken.
- a positive example condition may be one or two of satisfying an effect condition and satisfying a satisfaction condition.
- a positive example condition is, for example, a condition based on one or more types of information among effect information and satisfaction.
- Positive example conditions include, for example, "effect information is greater than or equal to the threshold value”, “satisfaction is greater than or equal to the threshold value”, “effect information is greater than or equal to the threshold value and satisfaction is greater than the threshold value greater than or equal to a threshold”.
- Step S705 The learning information acquisition unit 132 acquires one or more negative examples from the two or more teacher data acquired in step S703. Negative examples are training data that do not meet the positive example conditions.
- Step S706 The learning information acquisition unit 132 acquires a learning device by performing machine learning learning processing using the one or more positive examples acquired in step S704 and the one or more negative examples acquired in step S705. .
- Step S707 The learning information acquisition unit 132 stores the learning device acquired in step S706 in the learning information storage unit 112 in association with the action identifier of interest.
- Step S708 The learning information acquisition unit 132 increments the counter i by 1. Return to step S702.
- a third example of the learning information creation process in step S304 is an example of acquiring one learning device for acquiring a countermeasure identifier. Note that such a learning device is usually a learning device for performing multilevel classification.
- Step S801 The learning information acquiring unit 132 acquires from the teaching data storage unit 111 one or more teacher data that match the positive case condition.
- Step S802 The learning information acquisition unit 132 gives the one or more teacher data acquired in step S801 to the learning module for machine learning, and acquires a learning device.
- Step S803 The learning information acquisition unit 132 accumulates the learners learned in step S802 in the learning information storage unit 112. Return to upper process.
- step S304 a fourth example of the learning information creation process in step S304 will be described using the flowchart of FIG.
- a fourth example of learning information creation processing creates a correspondence table for each countermeasure identifier.
- the description of the same steps as in the flow chart of FIG. 4 will be omitted.
- Step S901 The learning information acquisition unit 132 substitutes 1 for the counter j.
- Step S902 The learning information acquisition unit 132 determines whether or not the j-th class identifier corresponding to the i-th action identifier exists. If the j-th class identifier exists, go to step S903, otherwise go to step S907.
- Step S903 The learning information acquisition unit 132 acquires one or more teacher data corresponding to the i-th action identifier and the j-th class identifier.
- Step S904 The learning information acquisition unit 132 acquires a representative vector of vectors composed of one or more teacher data.
- Step S905 The learning information acquisition unit 132 temporarily accumulates the representative vector acquired in step S904 in association with the j-th class identifier.
- Step S906 The learning information acquisition unit 132 increments the counter j by 1. Return to step S902.
- Step S907 The learning information acquisition unit 132 constructs a correspondence table having two or more pieces of correspondence information having the representative vectors and class identifiers acquired in step S905, associates the i-th measure identifier with the correspondence table are stored in the learning information storage unit 112 .
- Step S908 The learning information acquisition unit 132 increments the counter i by 1. Return to step S402.
- Step S1001 The handling determining unit 133 acquires handling information.
- An example of handling information acquisition processing will be described with reference to flowcharts of FIGS. 11, 12, 13, and 14. FIG.
- Step S1002 The basis information acquisition unit 134 acquires basis information.
- An example of basis information processing will be described with reference to the flowchart of FIG. 15 .
- Step S1003 The remuneration information acquisition unit 135 acquires remuneration information.
- An example of reward information processing will be described using the flowchart of FIG. 16 .
- Step S1004 The processing unit 13 forms output information using the countermeasure information, ground information, and remuneration information. Return to upper process.
- step S1001 an example of the countermeasure information acquisition process in step S1001 will be described using the flowchart of FIG.
- a learner is used for each measure and for each class.
- Step S1101 The handling determination unit 133 acquires one or more user attribute values included in the received user information.
- Step S1102 The handling determination unit 133 substitutes 1 for the counter i.
- Step S1103 The handling determination unit 133 determines whether or not the i-th handling identifier exists. If the i-th countermeasure identifier exists, go to step S1104; otherwise, return to the upper process.
- Step S1104 The handling determination unit 133 substitutes 1 for the counter j.
- Step S1105) The handling determination unit 133 determines whether or not the j-th class identifier exists. If the j-th class identifier exists, go to step S1106; if not, go to step S1111.
- the handling determination unit 133 acquires from the learning information storage unit 112 the learner corresponding to the i-th handling identifier and the j-th class identifier.
- Step S1107 The handling determination unit 133 uses the learner acquired in step S1106 and one or more user attribute values acquired in step S1101 to perform machine learning prediction processing and acquire a prediction result.
- the prediction result includes information as to whether or not it belongs to the class identified by the j-th class identifier.
- Prediction results preferably include scores.
- Step S1108 If the prediction result obtained in step S1107 is a prediction result that "belongs to the class identified by the j-th class identifier", the handling determination unit 133 goes to step S1109, does not belong to the class identified by the class identifier", go to step S1110.
- the handling determination unit 133 temporarily stores the j-th class identifier in a buffer (not shown) in association with the i-th handling identifier.
- Step S1110 The handling determination unit 133 increments the counter j by 1. Return to step S1105.
- Step S1111 The handling determination unit 133 increments the counter i by 1. Return to step S1103.
- the handling determination unit 133 may store only the handling identifier corresponding to the determined class identifier in the storage unit 11 only when the determined class identifier satisfies the acquisition condition.
- step S1001 an example of the countermeasure information acquisition process in step S1001 will be described using the flowchart of FIG. In the flowchart of FIG. 12, description of the same steps as in the flowchart of FIG. 11 will be omitted.
- the learning device is for determining whether or not to take action, and a learning device for each action is used.
- Step S ⁇ b>1201 The handling determination unit 133 acquires the learning device corresponding to the i-th handling identifier from the learning information storage unit 112 .
- Step S1202 The handling determination unit 133 uses the learner acquired in step S1201 and one or more user attribute values acquired in step S1101 to perform machine learning prediction processing and acquire a prediction result.
- the prediction result includes information as to whether the countermeasure identified by the j-th countermeasure identifier is effective (satisfied).
- Prediction results preferably include scores.
- Step S1203 If the prediction result in step S1202 includes "satisfy” (eg, "1"), the handling determination unit 133 proceeds to step S1204; Go to step S1207. Note that "satisfied" in the prediction result indicates that the action identified by the action identifier should be taken.
- Step S1204 The handling determination unit 133 acquires the score of the prediction process in step S1202.
- Step S1205 The handling determination unit 133 determines whether the score obtained in step S1204 satisfies the conditions. If the condition is satisfied, go to step S1206, otherwise go to step S1207.
- the condition is that the score is high, for example, "the score is greater than or equal to the threshold" and "the score is greater than the threshold".
- Step S1206 The handling determination unit 133 accumulates the j-th handling identifier in the storage unit 11. FIG. It is preferable that the handling determination unit 133 also accumulates the scores acquired in step S1204.
- Step S1207 The handling determination unit 133 increments the counter i by 1. Return to step S1105.
- step S1001 an example of the countermeasure information acquisition process in step S1001 will be described using the flowchart of FIG. In the flowchart of FIG. 13, the description of the same steps as in the flowchart of FIG. 11 will be omitted. Note that in the flowchart of FIG. 13, a learning device that outputs a countermeasure identifier is used.
- Step S ⁇ b>1301 The handling determination unit 133 acquires a learning device from the learning information storage unit 112 .
- Step S1302 The handling determination unit 133 uses the learner acquired in step S1301 and one or more user attribute values acquired in step S1101 to perform machine learning prediction processing and acquire a prediction result.
- the prediction result includes a countermeasure identifier.
- Prediction results preferably include scores.
- Step S1303 The handling determination unit 133 accumulates the handling identifier acquired in step S1302. Return to upper process. Here, it is preferable that the handling determination unit 133 also accumulates scores.
- step S1001 an example of the countermeasure information acquisition process in step S1001 will be described using the flowchart of FIG. In the flowchart of FIG. 14, description of the same steps as in the flowchart of FIG. 11 will be omitted. In addition, in the flowchart of FIG. 14, a correspondence table for acquiring class identifiers is used.
- Step S1401 The handling determination unit 133 constructs a vector whose elements are one or more user attribute values acquired in step S1101. Next, the countermeasure determining unit 133 determines correspondence information having a vector that is most similar to the vector from the correspondence table of the learning information storage unit 112 that is paired with the i-th countermeasure identifier.
- Step S1402 The handling determination unit 133 acquires the class identifier included in the correspondence information determined in step S1401.
- Step S1403 The handling determination unit 133 determines whether the class identifier acquired in step S1402 satisfies the conditions. If the condition is satisfied, go to step S1404, otherwise go to step S1405.
- the condition here is that the class identifier is one of one or more predetermined class identifiers (for example, an identifier of a class that satisfies the effect condition).
- Step S1404 The handling determining unit 133 stores the class identifier acquired in step S1402 and the i-th handling identifier as a pair.
- Step S1405 The handling determination unit 133 increments the counter i by 1. Return to step S1103.
- a correspondence table for acquiring the countermeasure identifier may be used.
- the handling determination unit 133 acquires and accumulates the handling identifier included in the correspondence information determined in step S1401. Also, in such a case, steps S1403 and S1404 are unnecessary.
- step S1002 an example of the basis information processing in step S1002 will be described using the flowchart of FIG.
- Step S1501 The basis information acquisition unit 134 substitutes 1 for the counter i.
- Step S1502 The basis information acquisition unit 134 determines whether or not the i-th measure identifier exists among the measure identifiers acquired in step S1002. If the i-th countermeasure identifier exists, go to step S1503; otherwise, return to the upper process.
- the basis information acquisition unit 134 acquires original information.
- the original information is information used when acquiring the basis level.
- the original information is, for example, a class identifier corresponding to the handling identifier and a score corresponding to the handling identifier.
- Step S1504 The basis information acquisition unit 134 acquires the basis level corresponding to the original information acquired in step S1503.
- the basis information acquisition unit 134 acquires, for example, the basis level corresponding to the class identifier acquired in step S1503.
- the storage unit 11 stores two or more class identifiers and evidence levels paired with each class identifier.
- the basis information acquisition unit 134 acquires, for example, the basis level corresponding to the score acquired in step S1503.
- the storage unit 11 stores the ground level paired with each condition of two or more scores.
- the score condition is usually information indicating the score range. Note that the score is a score obtained in prediction processing of machine learning.
- Step S1505 The basis information acquisition unit 134 acquires one or more teacher data from which the i-th measure identifier is acquired.
- Step S1506 The basis information acquisition unit 134 acquires effect information corresponding to each teacher data using one or more of each teacher data acquired in step S1505. Next, the basis information acquisition unit 134 acquires effectiveness information using one or more effect information, associates it with the i-th countermeasure identifier, and stores it in a buffer (not shown).
- Step S1507 The basis information acquisition unit 134 acquires the degree of satisfaction from each of the one or more teacher data acquired in step S1505.
- Step S1508 The basis information acquisition unit 134 acquires satisfaction level information using one or more satisfaction levels acquired in step S1507, associates it with the i-th measure identifier, and stores it in a buffer (not shown).
- Step S1509 The basis information acquisition unit 134 increments the counter i by 1. Return to step S1502.
- Step S1601 The remuneration information acquisition unit 135 substitutes 1 for the counter i.
- Step S1602 The remuneration information acquisition unit 135 determines whether or not the i-th action identifier exists. If the i-th countermeasure identifier exists, go to step S1603; otherwise, return to the upper process.
- Step S1603 The remuneration information acquisition unit 135 determines whether or not the i-th action identifier matches the remuneration conditions. If the remuneration conditions are met, the process goes to step S1604, and if the remuneration conditions are not met, the process goes to step S1606.
- the remuneration information acquisition unit 135 uses one or more of the i-th coping identifier, the basis level associated with the i-th coping identifier, the effect information, and the satisfaction level information to determine whether the i-th coping identifier is the remuneration condition. It is determined whether or not the
- the remuneration conditions are the conditions for obtaining remuneration information.
- the remuneration conditions are, for example, ⁇ that the remuneration information associated with the i-th action identifier is stored in the storage unit 11'', and ⁇ the grounds level associated with the i-th action identifier indicates that there is no grounds. information", "the ground level associated with the i-th action identifier is equal to or less than the threshold value or smaller than the threshold value", "the effect indicated by the effect information associated with the i-th action identifier is low enough to satisfy the conditions "that the degree of satisfaction indicated by the satisfaction level information associated with the i-th measure identifier is so low as to satisfy the condition".
- the remuneration information acquisition unit 135 acquires remuneration information from the storage unit 11.
- the remuneration information acquisition unit 135 acquires remuneration information associated with the i-th action identifier from the storage unit 11, for example.
- the remuneration information acquisition unit 135 acquires, for example, remuneration information associated with remuneration conditions from the storage unit 11 .
- Step S1605 The remuneration information acquisition unit 135 temporarily stores the remuneration information acquired in step S1604 as remuneration information to be output in a buffer (not shown) in association with the i-th action identifier.
- Step S1606 The remuneration information acquisition unit 135 increments the counter i by 1. Return to step S1602.
- the terminal reception unit 22 of the terminal device 2 receives user information.
- the terminal processing unit 23 configures user information to be transmitted using the user information.
- the terminal transmission unit 24 transmits the user information to the information processing device 1 .
- the terminal reception unit 25 receives output information from the information processing device 1 in response to transmission of the user information.
- the terminal processing unit 23 configures information to be output using the output information.
- the terminal output unit 26 outputs the configured information.
- the output information includes, for example, a countermeasure identifier, basis information, and remuneration information.
- the terminal reception unit 22 of the terminal device 2 may receive teacher data.
- the terminal processing unit 23 uses the teacher data to compose the teacher data to be transmitted.
- the terminal transmission unit 24 transmits the teacher data to the information processing device 1 .
- the teacher data storage unit 111 of the information processing device 1 stores a teacher data management table having two or more pieces of teacher data transmitted from the terminal device 2 .
- the teacher data is information about a user who has taken some kind of action, and has first result information and second result information.
- This teaching data management table is shown in FIG.
- the training data management table manages two or more records having "ID”, “treatment identifier”, “first result information”, “second result information”, “gender”, "age”, “height”, “weight”, and “response information”. It is "Answer information” is an answer to a questionnaire for the user, and has "effort information", "lifestyle information", “goals”, and “satisfaction” here.
- the "first result information” is the inspection result before the treatment identified by the treatment identifier is performed.
- “Second result information” is the inspection result after taking the treatment identified by the treatment identifier.
- the test result here is the systolic blood pressure.
- “Target” is the systolic blood pressure that the user aims for.
- the “satisfaction level” is the user's degree of satisfaction with the action identified by the action identifier.
- the storage unit 11 of the information processing device 1 stores countermeasure identifiers "product A (reduced salt soy sauce)", “product B (reduced salt miso)” and “product C (yogurt)".
- the action corresponding to "product A” is a program (program A) in which product A is used continuously for one month, and the action corresponding to "product B” is to continue using product B for one month.
- the program (program B) is a program (program B) that uses product C continuously for two months
- the measure corresponding to "product C” is a program (program C) that uses product C continuously for two months.
- the program refers to continuous ingestion of products, services, etc., and is also called a challenge program.
- the storage unit 11 stores the basis level "3" associated with the class identifier "class A”, the basis level “2” associated with the class identifiers “class B” and “class D”, the class identifier " Assume that a basis level determination table is stored that has a basis level "1” associated with class C” and a basis level “0” associated with the class identifier "none".
- the basis level determination table may be a table for judging the basis level using one or more information among the effectiveness information and the satisfaction level information, as shown in FIG.
- the basis level judgment table has "basis level” and "judgment condition".
- the classification unit 131 of the information processing device 1 acquires the first result information, the second result information, the goal, and the degree of satisfaction of each teacher data in FIG. 17 for each action identifier.
- the classification unit 131 acquires effect information using the first result information, the second result information, and the goal for each treatment identifier and each training data.
- the effect information is the target achievement rate here.
- the target achievement rate is calculated by, for example, "(first result information-second result information)/(first result information-target)*100(%)".
- the classification unit 131 classifies the training data using the effect information and the degree of satisfaction for each treatment identifier.
- the classification unit 131 sets the class identifier of teacher data whose effect information is 60% or more and whose satisfaction level is “4 or 5” to “class A”, and the effect information is 60%.
- the class identifier of the teacher data whose satisfaction level is "4 or 5" is "class B”, the effect information is less than 60%, and the satisfaction level is "1 or 2 or 3".
- the teacher data is classified with the identifier as "class C" and the class identifier of the teacher data whose effect information is 60% or more and the degree of satisfaction is "1, 2 or 3" as "class D”.
- FIG. 19 is a diagram showing the concept of such teacher data classification.
- the learning information acquisition unit 132 retrieves “first result information”, “gender”, “age”, “height”, “weight”, “lifestyle information”, “goal” from the training data management table of FIG. 17 for each coping identifier. is obtained for each training data, and the "first result information”, “gender”, “age”, “height”, “weight”, “lifestyle information”, and “goal” are used as explanatory variables, and a vector is constructed with the class identifier as the objective variable. do.
- the learning information acquisition unit 132 performs machine learning learning processing using two or more vectors for each handling identifier, configures a learning device for each handling identifier, and constructs a learning device for each handling identifier, It is stored in the learning information storage unit 112 in association with the countermeasure identifier.
- This learning device is a learning device for predicting a class identifier using a vector having "first result information", "gender”, “age”, “height”, “weight”, “lifestyle information”, and "goal". be.
- the user information reception unit 121 of the information processing device 1 receives the user information from the terminal device 2 of the user A.
- the processing unit 13 performs output information acquisition processing as follows. That is, first, the handling determination unit 133 determines a class identifier for each of the handling identifiers “product A (low-salt soy sauce),” “product B (low-salt miso),” and “product C (yogurt).” That is, first, the countermeasure determination unit 133 acquires from the learning information storage unit 112 a learning device paired with the countermeasure identifier “Product A (low-salt soy sauce)”.
- the handling determination unit 133 determines the user attribute value " ⁇ first result information> 183 ⁇ sex> male ⁇ age> 68 ⁇ height> 175 ⁇ weight> 88 ⁇ lifestyle information> smoking ⁇ goal> 140 ” and the obtained learner are given to a prediction module that performs prediction processing of machine learning, the prediction module is executed, and the class identifier “class A” is obtained. Similarly, the countermeasure determination unit 133 acquires from the learning information storage unit 112 a learning device paired with the countermeasure identifier “product B (low-salt miso)”.
- the handling determination unit 133 gives the two or more user attribute values included in the user information and the acquired learner to a prediction module that performs machine learning prediction processing, executes the prediction module, and uses the class identifier “class D" is acquired. It is assumed that the handling determination unit 133 has failed to acquire a learning device paired with the handling identifier “product C (yogurt)” from the learning information storage unit 112 .
- the basis information acquisition unit 134 acquires from the storage unit 11 the basis level "3" paired with the class identifier "class A” corresponding to the countermeasure identifier "product A (reduced salt soy sauce)". Further, the basis information acquisition unit 134 acquires from the storage unit 11 the basis level “2” paired with the class identifier “class D” corresponding to the countermeasure identifier “product B (low-salt miso)”. Furthermore, the basis information acquisition unit 134 acquires from the storage unit 11 the basis level “0” paired with the handling identifier “product C (yogurt)” for which the class could not be determined.
- the basis information acquisition unit 134 acquires one or more training data corresponding to each handling identifier from which the class identifier has been acquired and the handling identifier and the class identifier. Then, the basis information acquisition unit 134 acquires effect information of each teacher data using the acquired one or more teacher data. Next, the basis information acquisition unit 134 acquires “effectiveness information” that is the average of the effect information of each teacher data. Assume that the basis information acquisition unit 134 acquires the effectiveness information “80%” from one or more training data corresponding to the measure identifier “product A (reduced salt soy sauce)” and the class identifier “class A”. . Further, the basis information acquisition unit 134 acquires the degree of satisfaction of each of the acquired one or more teacher data. Next, it is assumed that the basis information acquisition unit 134 acquires satisfaction level information “60%”, which is the ratio of teacher data having a satisfaction level of “4” or “5” in the same class.
- the basis information acquisition unit 134 acquires one or more training data corresponding to the class identifier "class D” corresponding to the handling identifier "product B (low-salt miso)", and uses the training data to obtain valid Assume that sex information "80%” and satisfaction level information "30%" have been acquired.
- the basis information acquiring unit 134 acquires the recommendation information “unnecessary” in association with the countermeasure identifiers “product B (low-salt miso)” and “product C (yogurt)” that do not satisfy the goal achievement condition.
- the basis information acquisition unit 134 could not acquire the effectiveness information and satisfaction level information corresponding to the measure identifier "product C (yogurt)". This is because the basis level is "0".
- the processing unit 13 configures output information using the acquired coping information, basis information, recommended information, and remuneration information.
- the information output unit 141 transmits the acquired output information to the terminal device 2 .
- the terminal device 2 receives and outputs the output information.
- An example of such an output is shown in FIG.
- 2001 is the basis level, which is called “evidence level” here.
- 2002 is evidence information having effectiveness information and satisfaction level information, and is given a label of "Reason”.
- 2003 is recommended information with a label of "to achieve ToBe”.
- 2004 is remuneration information, labeled as "incentive”.
- the grounds for the proposal can be presented.
- the processing in the present embodiment may be realized by software. Then, this software may be distributed by software download or the like. Also, this software may be recorded on a recording medium such as a CD-ROM and distributed. Note that this also applies to other embodiments in this specification.
- the software that implements the information processing apparatus according to the present embodiment is the following program. In other words, the program identifies a computer as a user information reception unit that receives user information having one or more user attribute values including result information that specifies the test results related to the living body of one user, and a countermeasure taken by the user.
- Two or more training data associated with a handling identifier including first result information specifying the test result before the handling and second result information specifying the inspection result of the handling Acquiring learning information from a learning information storage unit storing learning information based on two or more teacher data having two or more user attribute values, and acquiring the learning information and the user information received by the user information receiving unit.
- a handling determination unit that acquires a handling identifier that identifies a handling corresponding to the result information contained in the user information, and one or more teacher data corresponding to the handling identifier acquired by the handling determination unit and the user information
- a grounds information acquisition unit for acquiring grounds information relating to grounds for recommending the handling identified by the handling identifier acquired by the handling determination unit, using the user information received by the reception unit;
- FIG. 21 shows the appearance of a computer that executes the programs described in this specification and implements the information processing apparatus 1 and the like of the various embodiments described above.
- the embodiments described above may be implemented in computer hardware and computer programs running thereon.
- FIG. 21 is an overview diagram of this computer system 300
- FIG. 22 is a block diagram of the system 300. As shown in FIG.
- computer system 300 includes computer 301 including a CD-ROM drive, keyboard 302 , mouse 303 and monitor 304 .
- a computer 301 includes a CD-ROM drive 3012, an MPU 3013, a bus 3014 connected to the CD-ROM drive 3012, a ROM 3015 for storing programs such as a boot-up program, It includes a RAM 3016 connected and for temporarily storing application program instructions and providing temporary storage space, and a hard disk 3017 for storing application programs, system programs and data.
- computer 301 may also include a network card that provides connection to a LAN.
- a program that causes the computer system 300 to execute the functions of the information processing apparatus 1 of the embodiment described above may be stored in the CD-ROM 3101, inserted into the CD-ROM drive 3012, and further transferred to the hard disk 3017. .
- the program may be transmitted to computer 301 via a network (not shown) and stored in hard disk 3017 .
- Programs are loaded into RAM 3016 during execution.
- the program may be loaded directly from CD-ROM 3101 or network.
- the program does not necessarily include an operating system (OS) that causes the computer 301 to execute the functions of the information processing apparatus 1 of the embodiment described above, or a third-party program.
- OS operating system
- a program need only contain those parts of instructions that call the appropriate functions (modules) in a controlled manner to produce the desired result. How the computer system 300 operates is well known and will not be described in detail.
- the step of transmitting information, the step of receiving information, etc. are performed by hardware. processing) are not included.
- the computer that executes the above program may be singular or plural. That is, centralized processing may be performed, or distributed processing may be performed.
- two or more communication means existing in one device may be physically realized in one medium.
- each process may be implemented by centralized processing by a single device, or may be implemented by distributed processing by a plurality of devices.
- the information processing apparatus has the effect of being able to present the grounds for the proposal when proposing a countermeasure for the result of an examination. It is useful as a server or the like that outputs .
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Primary Health Care (AREA)
- Public Health (AREA)
- Medical Treatment And Welfare Office Work (AREA)
Abstract
[Problem] Conventionally, when an intervention with respect to the result of an inspection is to be proposed, the reason for the proposal could not have been presented. [Solution] The above problem can be solved by an information processing device 1 provided with: a user information reception unit 121 for receiving user information including result information that specifies an inspection result of a user; an intervention determination unit 133 for acquiring learning information based on two or more training data items that are associated with an intervention identifier for identifying an intervention made by the user and that include first result information that specifies an inspection result before making the intervention and second result information that specifies an inspection result after making the intervention, and acquiring the intervention identifier corresponding to the result information included in the user information by using the learning information and the received user information; a reason information acquisition unit 134 for, by using the received user information and one or more training data items corresponding to the acquired intervention identifier, acquiring the reason information concerning the reason why the intervention is recommended; and an information output unit 141 for outputting the intervention identifier and the reason information.
Description
本発明は、ユーザの生体の検査結果に応じた対処を提案する情報処理装置等に関するものである。
The present invention relates to an information processing device and the like that proposes a course of action according to the user's biopsy results.
従来技術において、検査結果に応じて推奨される健康食品を示す情報、および検査結果に応じて推奨される生活習慣を示す情報等を出力する技術があった(特許文献1参照)。
In the prior art, there is a technology that outputs information indicating recommended health foods according to test results and information indicating recommended lifestyle habits according to test results (see Patent Document 1).
しかしながら、従来技術においては、検査の結果に対する対処を提案する場合に、その提案の根拠を提示できなかった。
However, in the prior art, when proposing measures to deal with test results, it was not possible to present the grounds for the proposal.
本第一の発明の情報処理装置は、一のユーザの生体に関する検査結果を特定する結果情報を含む1以上のユーザ属性値を有するユーザ情報を受け付けるユーザ情報受付部と、ユーザが行った対処を識別する対処識別子に対応付いた2以上の教師データであり、対処を行う前の検査結果を特定する第一結果情報と、対処を行った結果の検査結果を特定する第二結果情報とを含む2以上のユーザ属性値とを有する2以上の教師データに基づく学習情報が格納される学習情報格納部から学習情報を取得し、学習情報と、ユーザ情報受付部が受け付けたユーザ情報とを用いて、ユーザ情報が有する結果情報に応じた対処を識別する対処識別子を取得する対処決定部と、対処決定部が取得した対処識別子に対応する1以上の教師データとユーザ情報受付部が受け付けたユーザ情報とを用いて、対処決定部が取得した対処識別子で識別される対処を勧める根拠に関する根拠情報を取得する根拠情報取得部と、対処決定部が取得した対処識別子と根拠情報取得部が取得した根拠情報とを出力する情報出力部とを具備する情報処理装置である。
The information processing apparatus of the first invention includes a user information reception unit that receives user information having one or more user attribute values including result information that specifies the test results related to the biological body of one user, and a user's countermeasure. Two or more training data associated with the identified treatment identifier, including first result information specifying inspection results before handling and second result information specifying inspection results as a result of handling Acquiring learning information from a learning information storage unit storing learning information based on two or more teacher data having two or more user attribute values, and using the learning information and the user information received by the user information receiving unit a countermeasure determination unit that acquires a countermeasure identifier that identifies a countermeasure corresponding to the result information contained in the user information; one or more teacher data corresponding to the countermeasure identifier that the countermeasure determination unit acquires; and a grounds information acquisition unit for acquiring grounds information relating to grounds for recommending the handling identified by the handling identifier acquired by the handling determination unit, and the grounds acquired by the handling identifier acquired by the handling determination unit and the grounds information acquisition unit using and an information output unit that outputs information.
かかる構成により、検査の結果に対する対処を提案する場合に、その提案の根拠を提示できる。
With this configuration, when proposing measures to deal with inspection results, the grounds for the proposal can be presented.
また、本第二の発明の情報処理装置は、第一の発明に対して、根拠情報取得部は、対処決定部が取得した対処識別子に対応する1以上の教師データとユーザ情報受付部が受け付けたユーザ情報とを用いて、対処を推薦する根拠の強さの度合いを特定する根拠レベル、および対処を推薦する理由を示す情報であり、対処を行った場合の有効性に関する有効性情報または対処を行った後の満足度に関する満足度情報を含む情報である理由情報のうちの1種類以上の情報を含む根拠情報を取得する、情報処理装置である。
Further, in the information processing apparatus of the second invention, in contrast to the first invention, the basis information acquisition unit receives one or more teacher data corresponding to the handling identifier acquired by the handling determination unit and the user information reception unit accepts information indicating the level of grounds for recommending a course of action, and the reason for recommending the course of action, using the user information obtained by the user, and information indicating the reason for recommending the course of action. An information processing apparatus that acquires basis information including one or more types of information among reason information that is information including satisfaction level information related to satisfaction level after performing a.
かかる構成により、検査の結果に対する対処を提案する場合に、その提案の適切な根拠を提示できる。
With this configuration, when proposing measures to deal with inspection results, it is possible to present appropriate grounds for the proposal.
また、本第三の発明の情報処理装置は、第一または第二の発明に対して、根拠情報取得部は、根拠情報を取得できなかった場合に、根拠が無い旨の情報である根拠情報を取得する、情報処理装置である。
Further, in the information processing apparatus of the third invention, in contrast to the first or second invention, if the basis information acquisition unit fails to acquire the basis information, the basis information that is information to the effect that there is no basis is an information processing device that acquires
かかる構成により、検査の結果に対する対処を提案する場合に、その提案の根拠が無いことも明示できる。
With this configuration, when proposing measures to deal with inspection results, it is possible to clearly indicate that there is no basis for the proposal.
また、本第四の発明の情報処理装置は、第一から第三いずれか1つの発明に対して、ユーザに対処を行うことを勧めるための報酬を特定する情報であり、根拠情報に対応する情報である報酬情報を取得する報酬情報取得部をさらに具備し、情報出力部は、報酬情報取得部が取得した報酬情報をも出力する、情報処理装置である。
Further, the information processing device of the fourth invention is information specifying a reward for recommending the user to take action against any one of the first to third inventions, and corresponds to the basis information. The information processing apparatus further includes a remuneration information acquisition unit that acquires remuneration information as information, and the information output unit also outputs the remuneration information acquired by the remuneration information acquisition unit.
かかる構成により、検査の結果に対する対処を提案する場合に、その対処を行うインセンティブをユーザに与えることが示できる。
With this configuration, it is possible to provide the user with an incentive to take action when proposing a course of action for the inspection results.
また、本第五の発明の情報処理装置は、第四の発明に対して、報酬情報取得部は、根拠情報に含まれる根拠レベルに応じて、報酬を特定する報酬情報を取得する、情報処理装置である。
Further, in the information processing device of the fifth invention, in the information processing apparatus of the fourth invention, the remuneration information acquisition unit acquires remuneration information specifying remuneration according to the basis level included in the basis information. It is a device.
かかる構成により、検査の結果に対する対処を提案する場合に、その対処を行うインセンティブをユーザに与えることが示できる。
With this configuration, it is possible to provide the user with an incentive to take action when proposing a course of action for the inspection results.
また、本第六の発明の情報処理装置は、第一から第五いずれか1つの発明に対して、対処識別子ごとに、2以上の各教師データが有する第二結果情報を用いて取得される情報であり、対処の効果に関する情報である効果情報を用いて、2以上の教師データを2以上のクラスに分類し、2以上の各教師データに対してクラスを識別するクラス識別子に対応付ける分類部をさらに具備し、対処決定部は、ユーザ情報受付部が受け付けたユーザ情報と2以上の教師データに基づく学習情報とを用いて、2以上の各対処識別子ごとに、ユーザ情報が属するクラスを決定し、第一結果情報と第二結果情報との差異が大きいクラスに対応する対処識別子と差異が小さいクラスに対応する対処識別子とを区別して取得する、情報処理装置である。
Further, the information processing apparatus of the sixth invention is obtained by using the second result information possessed by each of the two or more teacher data for each treatment identifier for any one of the first to fifth inventions. A classification unit that classifies two or more teacher data into two or more classes using effect information that is information and is information about the effect of coping, and associates each of the two or more teacher data with a class identifier that identifies the class. and the handling determining unit determines a class to which the user information belongs for each of the two or more handling identifiers using the user information received by the user information accepting unit and learning information based on the two or more teacher data. Further, the information processing apparatus distinguishes and acquires a measure identifier corresponding to a class having a large difference between the first result information and the second result information and a measure identifier corresponding to a class having a small difference.
かかる構成により、検査の結果に対する適切な対処を決定できる。
With such a configuration, it is possible to determine an appropriate course of action for the inspection results.
また、本第七の発明の情報処理装置は、第六の発明に対して、教師データは、対処を行った結果のユーザの満足度をも有し、分類部は、対処識別子ごとに、2以上の各教師データに対する効果情報と満足度とを用いて、2以上の教師データを2以上のクラスに分類し、2以上の各教師データに対してクラスを識別するクラス識別子に対応付ける、情報処理装置である。
Further, in the information processing apparatus of the seventh invention, in contrast to the sixth invention, the teacher data also has the user's degree of satisfaction as a result of taking action, and the classifying unit includes two points for each action identifier. Information processing for classifying two or more teacher data into two or more classes using the effect information and satisfaction level for each of the above teacher data, and associating each of the two or more teacher data with a class identifier that identifies the class. It is a device.
かかる構成により、検査の結果に対するより適切な対処を決定できる。
With such a configuration, it is possible to determine a more appropriate response to the inspection results.
また、本第八の発明の情報処理装置は、第六の発明に対して、分類部が分類した2以上の各クラスには、クラスに対応する教師データに対する効果情報に基づく根拠レベルが対応付いており、根拠情報取得部は、クラスに対応する根拠レベルを取得し、対処決定部が決定したクラスに対応する教師データが有する第二結果情報を用いて取得される情報であり、対処の効果に関する情報である効果情報を用いて有効性情報を取得し、根拠レベルと有効性情報を含む情報である理由情報とを含む根拠情報を取得する、請求項6載の情報処理装置である。
Further, in the information processing apparatus of the eighth invention, in contrast to the sixth invention, each of the two or more classes classified by the classification unit is associated with a basis level based on effect information for teacher data corresponding to the class. The basis information acquisition unit acquires the basis level corresponding to the class, and is information acquired using the second result information of the teacher data corresponding to the class determined by the handling determination unit, and the effect of handling 7. The information processing apparatus according to claim 6, wherein effectiveness information is obtained using effect information that is related information, and basis information that includes a basis level and reason information that is information containing effectiveness information is obtained.
かかる構成により、検査の結果に対する対処を提案する場合に、その提案の適切な根拠を提示できる。
With this configuration, when proposing measures to deal with inspection results, it is possible to present appropriate grounds for the proposal.
また、本第九の発明の情報処理装置は、第八の発明に対して、教師データは、対処を行った結果のユーザの満足度をも有し、分類部は、対処識別子ごとに、2以上の各教師データに対する効果情報と満足度とを用いて、2以上の教師データを2以上のクラスに分類し、2以上の各教師データに対してクラスを識別するクラス識別子に対応付け、根拠情報取得部は、ユーザ情報が属するクラスに対応する教師データが有する満足度を用いて満足度情報を取得し、満足度情報を含む理由情報を含む根拠情報を取得する、情報処理装置である。
Further, in the information processing apparatus of the ninth invention, in contrast to the eighth invention, the teacher data also has the user's satisfaction level of the result of taking the countermeasure, and the classification unit includes two Using the effect information and satisfaction level for each of the above teaching data, two or more teaching data are classified into two or more classes, each of the two or more teaching data is associated with a class identifier that identifies the class, and the basis is The information acquisition unit is an information processing device that acquires satisfaction level information using the satisfaction level of the teacher data corresponding to the class to which the user information belongs, and acquires basis information including reason information including the satisfaction level information.
かかる構成により、検査の結果に対する対処を提案する場合に、その提案のより適切な根拠を提示できる。
With this configuration, it is possible to present a more appropriate basis for the proposal when proposing measures to deal with the results of the inspection.
また、本第十の発明の情報処理装置は、第一から第九いずれか1つの発明に対して、ユーザ情報受付部が受け付けたユーザ情報に含まれる1以上のユーザ属性値と類似条件を満たす1以上のユーザ属性値を有する2以上の教師データを用いて、学習情報を取得する学習情報取得部をさらに具備し、学習情報格納部の学習情報格納部は、学習情報取得部が取得した学習情報である、情報処理装置である。
Further, the information processing apparatus of the tenth invention satisfies the similarity condition with one or more user attribute values included in the user information received by the user information receiving unit, in relation to any one of the first to ninth inventions. The learning information acquisition unit acquires learning information using two or more teacher data having one or more user attribute values, and the learning information storage unit of the learning information storage unit stores the learning acquired by the learning information acquisition unit. It is an information processing device that is information.
かかる構成により、検査の結果に対するより適切な対処を決定できる。
With such a configuration, it is possible to determine a more appropriate response to the inspection results.
また、本第十一の発明の情報処理装置は、第一から第十いずれか1つの発明に対して、対処は、検査結果の改善のために商品を一定期間以上摂取するチャレンジまたはサービスの提供を一定期間以上享受するチャレンジまたは行動を一定期間以上行うチャレンジであり、教師データは、チャレンジに関するアンケートの回答情報であるチャレンジの取り組み度合いを含む、情報処理装置である。
Further, the information processing apparatus of the eleventh invention is, for any one of the first to tenth inventions, the countermeasure is to provide a challenge or service to ingest the product for a certain period or more in order to improve the test result. is a challenge to enjoy a certain period of time or longer, or a challenge to perform an action for a certain period of time or longer, and the teacher data is an information processing device that includes the degree of effort for the challenge, which is answer information to a questionnaire about the challenge.
かかる構成により、検査の結果に対する対処を提案する場合に、その提案の根拠を提示できる。
With this configuration, when proposing measures to deal with inspection results, the grounds for the proposal can be presented.
本発明による情報処理装置によれば、検査の結果に対する対処を提案する場合に、その提案の根拠を提示できる。
According to the information processing apparatus of the present invention, when proposing measures to deal with test results, the grounds for the proposal can be presented.
以下、情報処理装置等の実施形態について図面を参照して説明する。なお、実施の形態において同じ符号を付した構成要素は同様の動作を行うので、再度の説明を省略する場合がある。
Hereinafter, embodiments of an information processing device, etc. will be described with reference to the drawings. It should be noted that, since components denoted by the same reference numerals in the embodiments perform similar operations, repetitive description may be omitted.
(実施の形態1)
本実施の形態において、ユーザの検査結果を受け付け、学習情報を用いて、検査結果に応じた対処(例えば、商品)と、当該対処を勧める根拠に関する根拠情報とを取得し、出力する情報処理装置について説明する。 (Embodiment 1)
In the present embodiment, an information processing apparatus that receives inspection results of a user, acquires and outputs countermeasures (for example, products) according to the inspection results and grounds information on grounds for recommending the countermeasures using learning information. will be explained.
本実施の形態において、ユーザの検査結果を受け付け、学習情報を用いて、検査結果に応じた対処(例えば、商品)と、当該対処を勧める根拠に関する根拠情報とを取得し、出力する情報処理装置について説明する。 (Embodiment 1)
In the present embodiment, an information processing apparatus that receives inspection results of a user, acquires and outputs countermeasures (for example, products) according to the inspection results and grounds information on grounds for recommending the countermeasures using learning information. will be explained.
また、本実施の形態において、根拠情報を用いて、報酬情報を取得し、出力する情報処理装置について説明する。
Also, in the present embodiment, an information processing apparatus that acquires and outputs remuneration information using basis information will be described.
さらに、本実施の形態において、ユーザが対処を行った後に、当該対処に対するアンケートの回答情報を用いて、検査結果に応じた対処と、当該対処を勧める根拠に関する根拠情報を取得し、出力する情報処理装置について説明する。
Furthermore, in the present embodiment, after the user has taken action, information for acquiring and outputting information on the basis information on the basis for recommending the action and the action according to the inspection result using the answer information of the questionnaire for the action. A processing device will be described.
なお、本実施の形態において、情報Xが情報Yに対応付いていることは、情報Xから情報Yを取得できること、または情報Yから情報Xを取得できることであり、その対応付けの方法は問わない。情報Xと情報Yとがリンク付いていても良いし、同じバッファに存在していても良いし、情報Xが情報Yに含まれていても良いし、情報Yが情報Xに含まれている等でも良い。
In the present embodiment, the fact that the information X is associated with the information Y means that the information Y can be obtained from the information X or the information X can be obtained from the information Y, and the method of the association does not matter. . Information X and information Y may be linked, may exist in the same buffer, information X may be included in information Y, and information Y may be included in information X. etc. is fine.
図1は、本実施の形態における情報システムAの概念図である。情報システムAは、情報処理装置1、1または2以上の端末装置2を備える。
FIG. 1 is a conceptual diagram of the information system A according to this embodiment. An information system A includes an information processing device 1 , one, or two or more terminal devices 2 .
情報処理装置1は、ユーザの検査結果に応じた対処や根拠情報を出力する装置である。情報処理装置1は、いわゆるサーバであり、例えば、クラウドサーバ、ASPサーバであるが、その種類は問わない。なお、情報処理装置1は、スタンドアロンの装置でも良い。
The information processing device 1 is a device that outputs countermeasures and basis information according to the user's test results. The information processing device 1 is a so-called server, for example, a cloud server or an ASP server, but the type of server does not matter. Note that the information processing device 1 may be a stand-alone device.
端末装置2は、ユーザが使用する装置である。端末装置2は、例えば、いわゆるパーソナルコンピュータ、スマートフォン等の多機能携帯電話、携帯電話、タブレット型端末であるが、その種類は問わない。なお、ユーザは、情報処理装置1を使用する人、または情報処理装置1の管理者である。
The terminal device 2 is a device used by the user. The terminal device 2 is, for example, a so-called personal computer, a multifunctional mobile phone such as a smart phone, a mobile phone, or a tablet terminal, but the type of the terminal device 2 is not limited. A user is a person who uses the information processing device 1 or an administrator of the information processing device 1 .
情報処理装置1と1以上の各端末装置2とは、インターネットやLAN等のネットワークにより通信可能である。
The information processing device 1 and one or more terminal devices 2 can communicate via a network such as the Internet or a LAN.
図2は、本実施の形態における情報システムAのブロック図である。情報処理装置1は、格納部11、受付部12、処理部13、および出力部14を備える。格納部11は、教師データ格納部111、および学習情報格納部112を備える。受付部12は、ユーザ情報受付部121を備える。処理部13は、分類部131、学習情報取得部132、対処決定部133、根拠情報取得部134、および報酬情報取得部135を備える。出力部14は、情報出力部141を備える。
FIG. 2 is a block diagram of the information system A according to this embodiment. The information processing device 1 includes a storage unit 11 , a reception unit 12 , a processing unit 13 and an output unit 14 . The storage unit 11 includes a teacher data storage unit 111 and a learning information storage unit 112 . The reception unit 12 has a user information reception unit 121 . The processing unit 13 includes a classification unit 131 , a learning information acquisition unit 132 , a coping determination unit 133 , a basis information acquisition unit 134 and a remuneration information acquisition unit 135 . The output unit 14 has an information output unit 141 .
端末装置2は、端末格納部21、端末受付部22、端末処理部23、端末送信部24、端末受信部25、および端末出力部26を備える。
The terminal device 2 includes a terminal storage section 21 , a terminal reception section 22 , a terminal processing section 23 , a terminal transmission section 24 , a terminal reception section 25 and a terminal output section 26 .
情報処理装置1を構成する格納部11には、各種の情報が格納される。各種の情報とは、例えば、後述する教師データ、後述する学習情報、後述するアンケート情報、後述する回答情報、後述する各種の条件である。各種の条件は、例えば、後述する効果条件、後述する満足度条件、後述する取得条件、後述する報酬条件、クラス識別子と根拠レベルとを対応付ける情報である。
Various types of information are stored in the storage unit 11 that constitutes the information processing device 1 . The various types of information are, for example, teacher data to be described later, learning information to be described later, questionnaire information to be described later, answer information to be described later, and various conditions to be described later. Various conditions are, for example, an effect condition described later, a satisfaction condition described later, an acquisition condition described later, a remuneration condition described later, and information that associates a class identifier with a basis level.
教師データ格納部111には、1または2以上の教師データが格納される。教師データは、学習情報の元になる情報である。教師データは、ユーザ(「被験者」と言っても良い)が行った対処を識別する対処識別子に対応付いている。教師データは、2以上のユーザ属性値を有する。2以上のユーザ属性値は、第一結果情報と第二結果情報とを含む。2以上のユーザ属性値は、例えば、ユーザの性別、ユーザの年齢、ユーザの身長、ユーザの体重、取組情報、生活習慣情報、目標、目標達成率(To-Be実現率と言っても良い)、満足度を含む。教師データは、ユーザ本人から直接的に取得したものであってもよいし、学術論文や学会誌等から間接的に取得してもよい。
The teacher data storage unit 111 stores one or more teacher data. Teacher data is information that is the source of learning information. The training data is associated with an action identifier that identifies the action taken by the user (which may also be referred to as a "subject"). Teacher data has two or more user attribute values. The two or more user attribute values include first result information and second result information. User attribute values of 2 or more are, for example, user gender, user age, user height, user weight, activity information, lifestyle information, goals, and goal achievement rate (to-be realization rate). , including satisfaction. The training data may be obtained directly from the user himself/herself, or may be obtained indirectly from an academic paper, an academic journal, or the like.
教師データは、効果情報を含むことは好適である。効果情報は、対処の効果に関する情報である。効果情報は、通常、第二結果情報を用いて取得される情報である。効果情報は、例えば、第一結果情報と第二結果情報との差異に関する情報である。効果情報は、例えば、第一結果情報と第二結果情報との差、または第一結果情報と第二結果情報との差異と第一結果情報との割合である改善の度合いを示す情報である。効果情報は、例えば、第二結果情報と目標との差異に関する情報である。効果情報は、例えば、第二結果情報と目標との差、または第二結果情報と目標との差異と目標との割合である改善の度合いを示す情報、または目標に対する達成度である。教師データが効果情報を含む場合、教師データは、第一結果情報と第二結果情報とを含まなくても良い。効果情報とは、ユーザが対処を行ったことによる効果に関する情報である。効果情報は、第一結果情報と第二結果情報との差異に関する情報であり、例えば、血圧の減少数(増大量)、血糖値の減少数(増大量)、効果の有無を示す情報、インドキシル硫酸測定値の改善率、腸内環境の健康度の上昇数、腸内環境の健康度の上昇率、体重の減少量(増大量)、体組成の改善量、身長の増減量である。
It is preferable that the training data include effect information. The effect information is information about the effect of countermeasures. Effect information is usually information obtained using the second result information. The effect information is, for example, information regarding the difference between the first result information and the second result information. The effect information is, for example, information indicating the degree of improvement, which is the difference between the first result information and the second result information, or the ratio of the difference between the first result information and the second result information to the first result information. . The effect information is, for example, information regarding the difference between the second result information and the target. The effect information is, for example, the difference between the second result information and the target, the information indicating the degree of improvement which is the ratio of the difference between the second result information and the target and the target, or the degree of achievement of the target. If the teacher data includes effect information, the teacher data may not include the first result information and the second result information. Effect information is information related to the effect of the user's action. The effect information is information related to the difference between the first result information and the second result information. Improvement rate of xyl sulfate measurement value, number of increases in intestinal health, rate of increase in intestinal health, amount of weight loss (increase), amount of improvement in body composition, and amount of change in height.
対処とは、検査結果に応じたユーザの行動に関する情報である。対処は、例えば、ユーザが摂取した商品、ユーザに提供されたサービス、ユーザが行った行動、ユーザが行ったチャレンジである。ユーザが行ったチャレンジは、例えば、ユーザが所定期間において商品を摂取すること(例えば、減塩商品Aを2週間使った食事をする)、ユーザが所定期間においてサービスの提供を享受すること、ユーザが所定期間において所定の行動(例えば、1ヶ月の間に30分のウォーキングを行った、2週間、継続して毎日1時間のラニングを行った、1カ月間喫煙又は飲酒を止めた又は制限した、など)をとることである。なお、ユーザが摂取する商品やサービスや行動等は、例えば、検査結果の改善のための商品である。
Treatment is information about the user's behavior according to the test results. The action is, for example, a product ingested by the user, a service provided to the user, an action performed by the user, or a challenge performed by the user. The challenges made by the user are, for example, that the user ingests a product in a predetermined period (for example, eats a meal using the low-salt product A for two weeks), that the user enjoys the service provided in a predetermined period, that the user in a given period of time (e.g., walked for 30 minutes for 1 month, ran for 1 hour continuously for 2 weeks, stopped or restricted smoking or drinking for 1 month) , etc.). It should be noted that the products, services, actions, etc. ingested by the user are, for example, products for improving test results.
第一結果情報は、対処識別子により識別される対処を行う前の検査結果を特定する情報である。第二結果情報は、対処識別子により識別される対処を行った後の検査結果を特定する情報である。第一結果情報および第二結果情報は、例えば、血糖値、血圧、インドキシル硫酸測定値、腸内環境の健康度、体重、体組成、身長である。体組成は、例えば筋肉量(率)、体脂肪量(率)、内臓脂肪量(率)、皮下脂肪量(率)、骨密度、BMI、体年齢、等である。
The first result information is information that specifies the inspection result before taking the action identified by the action identifier. The second result information is information specifying the inspection result after taking the treatment identified by the treatment identifier. The first result information and second result information are, for example, blood sugar level, blood pressure, measured value of indoxyl sulfate, health level of intestinal environment, weight, body composition, and height. The body composition is, for example, muscle mass (percentage), body fat mass (percentage), visceral fat mass (percentage), subcutaneous fat mass (percentage), bone density, BMI, body age, and the like.
なお、検査は、ユーザの生体に対する検査である。検査は、ここでは、例えば、検体を用いて実施される。検体は、生体試料または生体外試料である。生体試料は、例えば、尿、便、血液、口腔内細胞、唾液、毛髪、体毛、皮脂、爪、皮膚片、精液、涙液、汗、母乳、鼻水、痰、歯石、舌苔である。生体外試料は、例えば、被験者の写真データ、被験者の映像データ、被験者の音声データ、被験者の住居のハウスダストである。また、検査は、例えば、検査キットを用いた検査があるが、これに限られない。検査は、例えば、体重計、体組成計、身長計等の身体検査器具を用いた検査であってよい。検査は、例えば、アンケートによる主観的なストレス度チェックや不快感チェック、または認知機能検査でも良い。なお、かかる検査は、例えば、認知状態を評価するMini-Mental State Examination (MMSE)検査(URL:http://www.shizuokamind.org/wp-content/uploads/2013/10/MMSE.pdf参照)、更年期症状を評価するKupperman更年期障害指数(KKSI)検査(URL:https://ohana-clinic-kinoshitacho.com/wp-content/themes/ohana/download/kuppaman.pdf参照)である。
It should be noted that the inspection is an inspection of the user's living body. A test is performed here, for example, using a sample. A specimen is a biological or ex vivo sample. Biological samples are, for example, urine, stool, blood, intraoral cells, saliva, hair, body hair, sebum, nails, skin pieces, semen, tears, sweat, breast milk, runny nose, sputum, tartar, and tongue coating. Ex vivo samples are, for example, subject's photographic data, subject's video data, subject's audio data, and house dust of the subject's residence. Further, the inspection includes, for example, an inspection using a test kit, but is not limited to this. The examination may be, for example, an examination using a physical examination instrument such as a weight scale, a body composition meter, or a stature meter. The test may be, for example, a subjective stress degree check or discomfort check by questionnaire, or a cognitive function test. Such tests are, for example, the Mini-Mental State Examination (MMSE) test that evaluates cognitive status (see URL: http://www.shizuokamind.org/wp-content/uploads/2013/10/MMSE.pdf) , the Kupperman climacteric index (KKSI) test (see URL: https://ohana-clinic-kinoshitacho.com/wp-content/themes/ohana/download/kuppaman.pdf) to assess menopausal symptoms.
検査キットは、例えば、被験者の生体から出される物質を用いた検査のための物品等である。生体から出される物質は、例えば、尿、血液、便、その他の体液である。検査キットは、例えば、インドキシル硫酸測定値を得るための検査のための物品である。検査キットは、例えば、大豆イソフラボンからエクオールがつくれているか測る尿検査であるエクオール検査のキット、腸内細菌由来の腐敗物質量で腸内環境の健康度を測る尿検査である腸内環境検査のキット、活性酸素によってダメージをうけたDNA(8-OHdG)を測る尿検査である酸化ストレス検査のキット、1日あたりどれくらい食塩を摂っているのか測る尿検査である減塩測定の検査キット、胃がんリスクを高める「ヘリコバクター・ピロリ菌」の抗体の有無を測る尿検査のキットである。
A test kit is, for example, an article for testing using substances emitted from the subject's body. Substances emitted from the living body are, for example, urine, blood, stool, and other body fluids. A test kit is an article for testing, eg, to obtain an indoxyl sulfate measurement. Test kits include, for example, an equol test kit, a urine test that measures whether equol is produced from soy isoflavones, and an intestinal environment test kit, a urine test that measures the health of the intestinal environment based on the amount of putrefactive substances derived from intestinal bacteria. kit, oxidative stress test kit that measures DNA (8-OHdG) damaged by active oxygen, urinalysis test kit that measures salt intake per day, low-salt test kit, stomach cancer It is a urine test kit that measures the presence or absence of antibodies to Helicobacter pylori, which increases the risk.
検査キットは、例えば、被験者に関する情報を用いた検査のための情報(例えば、権利情報)でも良い。被験者に関する情報は、例えば、被験者の音声データ、被験者の画像データである、画像データは、静止画または動画である。物品以外のものは、画像データと音声データの両方を含む情報でも良い。なお、被験者の音声データや被験者の画像データから、被検者の健康状態に関する情報が検査結果として得られる。かかる健康状態に関する情報は、例えば、フレイル度や心の落ち込み度等であるが、情報の内容は問わない。
The test kit may be, for example, information for testing using information about the subject (for example, rights information). The information about the subject is, for example, voice data of the subject and image data of the subject, and the image data is a still image or moving image. Items other than articles may be information including both image data and audio data. Information about the health condition of the subject can be obtained as the test result from the voice data of the subject and the image data of the subject. The information about the health condition is, for example, the degree of frailty, the degree of depression, etc., but the content of the information does not matter.
取組情報とは、ユーザのチャレンジに対する取り組みの状況に関する情報である。取組情報は、例えば、ユーザのチャレンジに対する取り組み度合いである。取組情報は、例えば、完遂率、対処を行った日数である。完遂率は、例えば、予め決められた期間における対処を行った日の率である。取組情報は、チャレンジに対する直接的な取り組みに関する情報だけでなく、付随する取り組みに関する情報も含めても良い。付随する取り組みとは、チャレンジ以外にユーザが取り組む健康に関する行動である。付随する取り組みに関する情報は、検査結果の改善に繋がることが知られている行動でも、検査結果の改善に繋がることが知られていない行動でも良く、健康に関する行動であれば内容は問わない。付随する取り組みに関する情報は、例えば、チャレンジプログラムの取り組み(例えば、ヨーグルトの摂取)に対して、間食を止めたことを示す情報、睡眠時間を長くしたことを示す情報、睡眠時間を特定する情報、運動時間を増やしたことを示す情報、運動時間を特定する情報、喫煙を止めたことを示す情報、喫煙本数を特定する情報、飲酒を止めたことを示す情報、飲酒量を特定する情報等である。
Effort information is information about the status of the user's efforts toward the challenge. Effort information is, for example, the degree of effort for the user's challenge. The action information is, for example, the completion rate and the number of days the action was taken. The completion rate is, for example, the rate of days on which measures were taken during a predetermined period. The effort information may include not only information about direct efforts to the challenge, but also information about incidental efforts. Ancillary efforts are health-related actions that the user engages in outside of the challenge. The information about the incidental efforts may be actions that are known to lead to improvement in test results or actions that are not known to lead to improvement in test results. Information related to accompanying efforts includes, for example, information indicating that snacking has been stopped, information indicating that sleep time has been increased, information specifying sleep time, for the challenge program effort (e.g., yogurt intake), Information indicating increased exercise time, information specifying exercise time, information indicating quitting smoking, information specifying the number of cigarettes smoked, information indicating quitting drinking, information specifying the amount of alcohol consumed, etc. be.
生活習慣情報とは、ユーザの生活習慣に関する情報である。生活習慣情報は、例えば、喫煙の有無、飲酒の有無、1日の喫煙の量、飲酒の頻度、飲酒の量、運動習慣の有無、所定期間(例えば、1日)の運動時間である。
Lifestyle information is information related to the user's lifestyle. The lifestyle information includes, for example, whether or not the person smokes, whether or not he/she drinks alcohol, the amount of smoking per day, the frequency of drinking alcohol, the amount of drinking alcohol, the presence/absence of exercise habits, and the exercise time for a predetermined period (for example, one day).
目標とは、ユーザの目標であり、通常、検査結果に関する目標である。目標は、例えば、根拠が存在する目標である。目標は、例えば、論文や統計的な結果に基づく理想的な状態を示すものである。目標は、例えば、理想的な値と現在のユーザの値との間の値でも良い。目標は、例えば、血圧の目標値、体重の目標値である。目標は、他にも第一結果情報および第二結果情報に対応した目標値でもよく、例えば、血糖値、血圧、インドキシル硫酸測定値、腸内環境の健康度、等の目標値であってもよい。
A goal is a user's goal, usually a goal related to test results. A goal is, for example, a goal for which there is a basis. A goal indicates an ideal state based on, for example, papers or statistical results. A goal may be, for example, a value between the ideal value and the current user's value. The target is, for example, a blood pressure target value and a weight target value. The target may also be a target value corresponding to the first result information and the second result information. good too.
To-Be実現率とは、ユーザの現在の状態(As-Is)から理想の状態(To-Be)までの達成度合いであり、言い換えればユーザ個人が設定した目標(例えば、最高血圧「120」)に対する達成の割合である。
The To-Be realization rate is the degree of achievement from the user's current state (As-Is) to the ideal state (To-Be). ).
満足度とは、対処を行った後の満足の度合いである。満足度は、通常、対処に対する満足の度合いである。満足度は、例えば、1から5のいずれかの数値、「満足する」「普通」「満足しない」の3段階のうちのいずれかの評価値、VAS(ビジュアルアナログスケール)等の連続値である。
"Satisfaction" is the degree of satisfaction after taking action. Satisfaction is usually the degree of satisfaction with the treatment. Satisfaction is, for example, a numerical value from 1 to 5, an evaluation value in one of three stages of "satisfied", "normal", and "not satisfied", and a continuous value such as VAS (Visual Analog Scale). .
なお、教師データに含まれる第一結果情報と第二結果情報以外のユーザ属性値は、例えば、ユーザに対するアンケートに対応する回答情報である。回答情報は、例えば、ユーザの性別、ユーザの年齢、ユーザの身長、ユーザの体重、取組情報、生活習慣情報、目標、To-Be実現率、満足度である。
User attribute values other than the first result information and the second result information included in the training data are, for example, answer information corresponding to questionnaires for users. The answer information includes, for example, the user's gender, user's age, user's height, user's weight, effort information, lifestyle information, goal, To-Be realization rate, and satisfaction level.
学習情報格納部112は、2以上の教師データに基づく学習情報が格納される。学習情報格納部112は、例えば、後述する学習器、後述する対応表、教師データ集合である。学習情報格納部112の学習情報を作成する処理は、後述する学習情報取得部132が行っても良いし、図示しない外部の学習装置が行っても良い。なお、教師データ集合は、2以上の教師データの集合である。
The learning information storage unit 112 stores learning information based on two or more teacher data. The learning information storage unit 112 is, for example, a learning device to be described later, a correspondence table to be described later, and a teacher data set. The processing of creating learning information in the learning information storage unit 112 may be performed by the learning information acquisition unit 132 described later, or may be performed by an external learning device (not shown). Note that a teacher data set is a set of two or more teacher data.
学習器は、例えば、2以上の教師データを用いて、機械学習の学習処理により、作成されたデータである。かかる学習処理は、後述する学習情報取得部132が行っても良いし、図示しない外部の学習装置が行っても良い。外部の学習装置が学習処理を行う場合、教師データ格納部111は不要である。なお、学習器は、分類器、予測器、学習モデル、モデル等と言っても良い。
A learning device is, for example, data created by machine learning learning processing using two or more teacher data. Such a learning process may be performed by the learning information acquisition unit 132, which will be described later, or may be performed by an external learning device (not shown). If an external learning device performs the learning process, the teacher data storage unit 111 is unnecessary. Note that the learning device may also be called a classifier, a predictor, a learning model, a model, or the like.
対応表は、2以上の対応情報を有する。対応情報は、例えば、1または2以上のユーザ属性値と対処識別子との対応を示す情報である。対応情報は、例えば、1または2以上のユーザ属性値とクラス識別子との対応を示す情報である。クラス識別子については後述する。
The correspondence table has two or more pieces of correspondence information. Correspondence information is, for example, information indicating correspondence between one or more user attribute values and action identifiers. Correspondence information is, for example, information indicating correspondence between one or more user attribute values and class identifiers. Class identifiers will be described later.
受付部12は、各種の情報や指示を受け付ける。各種の情報や指示とは、例えば、後述するユーザ情報である。
The reception unit 12 receives various information and instructions. Various information and instructions are, for example, user information described later.
ここで、受け付けとは、通常、有線もしくは無線の通信回線を介して、端末装置2から送信された情報の受信である。ただし、受け付けは、キーボードやマウス、タッチパネルなどの入力デバイスから入力された情報の受け付け、光ディスクや磁気ディスク、半導体メモリなどの記録媒体から読み出された情報の受け付けなどを含む概念であっても良い。
Here, "acceptance" usually means reception of information transmitted from the terminal device 2 via a wired or wireless communication line. However, reception may be a concept that includes reception of information input from input devices such as keyboards, mice, and touch panels, and reception of information read from recording media such as optical disks, magnetic disks, and semiconductor memories. .
ユーザ情報受付部121は、一のユーザのユーザ情報を受け付ける。ユーザ情報は、1以上のユーザ属性値を有する。ユーザ属性値は、結果情報を含む。結果情報は、一のユーザの生体に関する検査の結果を特定する情報である。結果情報は、例えば、血糖値、血圧、インドキシル硫酸測定値、腸内環境の健康度である。ユーザ情報受付部121がユーザ情報を受け付けるのは、通常、対処識別子や根拠情報を得るためである。ユーザ情報受付部121が受け付けるユーザ情報が有する結果情報は、対処を行う前の検査結果の情報である。
The user information reception unit 121 receives user information of one user. User information has one or more user attribute values. User attribute values include result information. The result information is information specifying the result of an examination on the living body of one user. The result information is, for example, blood sugar level, blood pressure, measured value of indoxyl sulfate, health level of intestinal environment. The reason why the user information receiving unit 121 receives user information is usually to obtain a countermeasure identifier and ground information. The result information included in the user information received by the user information receiving unit 121 is information on the inspection result before taking action.
処理部13は、各種の処理を行う。各種の処理は、例えば、分類部131、学習情報取得部132、対処決定部133、根拠情報取得部134、報酬情報取得部135が行う処理である。
The processing unit 13 performs various types of processing. Various types of processing are processing performed by the classification unit 131, the learning information acquisition unit 132, the coping determination unit 133, the ground information acquisition unit 134, and the remuneration information acquisition unit 135, for example.
処理部13は、根拠情報取得部134が取得した根拠情報を用いて、出力情報を構成しても良い。処理部13は、根拠情報取得部134が取得した根拠情報と報酬情報取得部135が取得した報酬情報とを用いて、出力情報を構成しても良い。出力情報は、出力される情報である。
The processing unit 13 may use the basis information acquired by the basis information acquisition unit 134 to construct the output information. The processing unit 13 may configure the output information using the basis information acquired by the basis information acquisition unit 134 and the remuneration information acquired by the remuneration information acquisition unit 135 . Output information is information to be output.
分類部131は、教師データ格納部111の2以上の教師データを2以上のクラスに分類し、2以上の各教師データに対してクラス識別子に対応付ける。クラス識別子は、クラスを識別する情報である。クラス識別子は、例えば、「クラス1」「クラス2」「クラス3」「クラス4」のうちのいずれかである。
The classification unit 131 classifies two or more teacher data in the teacher data storage unit 111 into two or more classes, and associates each of the two or more teacher data with a class identifier. A class identifier is information for identifying a class. The class identifier is, for example, one of "class 1", "class 2", "class 3", and "class 4".
分類部131は、対処識別子ごとに、効果情報を用いて、2以上の教師データを2以上のクラスに分類し、2以上の各教師データに対してクラス識別子に対応付ける。
The classification unit 131 classifies two or more teacher data into two or more classes using effect information for each action identifier, and associates each of the two or more teacher data with a class identifier.
分類部131は、例えば、対処識別子ごとに、2以上の各教師データが有する第一結果情報と第二結果情報との差異に関する効果情報を取得する。次に、分類部131は、2以上の各教師データに対応する効果情報を2以上のクラスに分類し、当該効果情報の分類に応じて、2以上の教師データを2以上のクラスに分類し、当該2以上の各教師データに対してクラス識別子に対応付ける。分類部131は、例えば、「効果情報<=閾値1」の教師データを「クラス1」、「閾値1<効果情報<=閾値2」の教師データを「クラス2」、「閾値2<効果情報」の教師データを「クラス3」として、2以上の教師データを3つのクラスに分類する。なお、クラスの数は問わない。
The classification unit 131, for example, acquires effect information regarding the difference between the first result information and the second result information possessed by each of the two or more pieces of teacher data for each treatment identifier. Next, the classification unit 131 classifies the effect information corresponding to each of the two or more pieces of teacher data into two or more classes, and classifies the two or more pieces of teacher data into two or more classes according to the classification of the effect information. , corresponding to each of the two or more teacher data with a class identifier. For example, the classification unit 131 classifies the teacher data of “effect information <= threshold 1” into “class 1”, the teacher data of “threshold 1 < effect information <= threshold 2” into “class 2”, and classifies the teacher data of “threshold 2 < effect information” into “class 1”. ” is classified into “class 3”, and two or more pieces of teacher data are classified into three classes. The number of classes does not matter.
分類部131は、例えば、対処識別子ごとに、2以上の各教師データが有する効果情報と満足度とを用いて、2以上の教師データを2以上のクラスに分類し、2以上の各教師データに対してクラスを識別するクラス識別子に対応付ける。
For example, the classification unit 131 classifies the two or more teacher data into two or more classes using the effect information and the satisfaction level of each of the two or more teacher data for each coping identifier, and classifies the two or more teacher data. corresponds to a class identifier that identifies a class for
分類部131は、例えば、「効果情報<=閾値1 かつ 満足度<=閾値a」の教師データを「クラス1」、「効果情報<=閾値1 かつ 閾値a<満足度」の教師データを「クラス2」、「閾値1<効果情報 かつ 満足度<=閾値a」の教師データを「クラス3」、「閾値1<効果情報 かつ 閾値a<満足度」の教師データを「クラス4」として、2以上の教師データを4つのクラスに分類する。なお、クラスの数は問わない。
For example, the classification unit 131 classifies teacher data of "effect information <= threshold 1 and satisfaction level <= threshold a" as "class 1", and classifies teacher data of "effect information <= threshold 1 and threshold a < satisfaction level" as "class 1". class 2", "threshold 1 < effect information and satisfaction level <= threshold a" as "class 3", and "threshold 1 < effect information and threshold a < satisfaction level" as "class 4", Two or more teacher data are classified into four classes. The number of classes does not matter.
また、分類部131は、例えば、2以上の各教師データを、公知のクラスター分析のアルゴリズムにより、2以上のクラスに分類しても良い。公知のクラスター分析のアルゴリズムは、k-means法や最短距離法(最近隣法)や最短距離法(最近隣法)や重心法や群平均法等の階層的手法、k-means法や超体積法等の非階層的手法でも良い。なお、2以上の教師データを2以上のクラスに分類することは、2以上の各教師データにクラス識別子に対応付けることである。
Also, the classification unit 131 may classify, for example, two or more pieces of teacher data into two or more classes using a known cluster analysis algorithm. Known cluster analysis algorithms include hierarchical methods such as the k-means method, the shortest distance method (nearest neighbor method), the shortest distance method (nearest neighbor method), the centroid method, and the group average method, the k-means method, and hypervolume A non-hierarchical method such as a method may also be used. Note that classifying two or more pieces of teacher data into two or more classes means associating each of the two or more pieces of teacher data with a class identifier.
学習情報取得部132は、教師データ格納部111の2以上の教師データを用いて、学習情報を取得する。学習情報取得部132は、分類部131が行った分類の結果を用いて、学習情報を取得することは好適である。学習情報は、対処識別子を取得するために使用される情報である。学習情報は、対処識別子を取得する前に、ユーザが属するクラスのクラス識別子を取得される情報でも良い。また、学習情報は、例えば、学習器、対応表である。
The learning information acquisition unit 132 acquires learning information using two or more pieces of teacher data in the teacher data storage unit 111. It is preferable that the learning information acquisition unit 132 acquires learning information using the result of the classification performed by the classification unit 131 . The learning information is information used to acquire the action identifier. The learning information may be information that acquires the class identifier of the class to which the user belongs before acquiring the action identifier. Also, the learning information is, for example, a learning device and a correspondence table.
学習情報取得部132は、ユーザ情報受付部121が受け付けたユーザ情報に含まれる1以上のユーザ属性値と類似条件を満たす1以上のユーザ属性値を有する2以上の教師データを用いて、学習情報を取得することは好適である。類似条件は、例えば、類似度が閾値以上、類似度が閾値より大きいことである。なお、類似度は、ユーザ情報受付部121が受け付けたユーザ情報に含まれる1以上の各ユーザ属性値を要素とするベクトルと、教師データが有する1以上の各ユーザ属性値を要素とするベクトルとの類似度である。なお、2つのベクトルの類似度を算出するアルゴリズムは公知技術であるので、説明を省略する。
The learning information acquiring unit 132 uses two or more teacher data having one or more user attribute values that satisfy a similarity condition with one or more user attribute values included in the user information received by the user information receiving unit 121, and obtains learning information. It is preferable to obtain The similarity condition is, for example, that the degree of similarity is equal to or greater than a threshold, and that the degree of similarity is greater than the threshold. Note that the degree of similarity is calculated using a vector whose elements are one or more user attribute values included in the user information received by the user information receiving unit 121, and a vector whose elements are one or more user attribute values included in the teacher data. is the similarity of The algorithm for calculating the degree of similarity between two vectors is a well-known technique, so the explanation is omitted.
以下、学習情報を取得するための具体的なアルゴリズムの例を説明する。
(1)クラス識別子を取得するための学習情報
(1-1)学習情報が学習器である場合
(1-1-1)学習器がクラス識別子の候補のうちの一のクラス識別子を出力するための学習器(例えば、他値分類)である場合 A specific example of an algorithm for acquiring learning information will be described below.
(1) Learning information for acquiring a class identifier (1-1) When learning information is a learning device (1-1-1) For a learning device to output one class identifier among class identifier candidates If the learner (e.g., multivalued classification) of
(1)クラス識別子を取得するための学習情報
(1-1)学習情報が学習器である場合
(1-1-1)学習器がクラス識別子の候補のうちの一のクラス識別子を出力するための学習器(例えば、他値分類)である場合 A specific example of an algorithm for acquiring learning information will be described below.
(1) Learning information for acquiring a class identifier (1-1) When learning information is a learning device (1-1-1) For a learning device to output one class identifier among class identifier candidates If the learner (e.g., multivalued classification) of
学習情報取得部132は、対処識別子ごとに、教師データ格納部111が有する2以上の教師データを取得する。次に、学習情報取得部132は、対処識別子ごとに、2以上の各教師データが有する1または2以上のユーザ属性値を説明変数として、2以上の各教師データに対応するクラス識別子を目的変数として、機械学習の学習処理を行い、学習器を取得し、対処識別子に対応付けて、学習情報格納部112に蓄積する。なお、教師データのクラス識別子は、分類部131が取得した情報である。
The learning information acquisition unit 132 acquires two or more pieces of teacher data stored in the teacher data storage unit 111 for each action identifier. Next, the learning information acquisition unit 132 uses one or more user attribute values possessed by each of two or more teacher data as an explanatory variable for each action identifier, and sets the class identifier corresponding to each of two or more teacher data as an objective variable. , a learning process of machine learning is performed, a learning device is acquired, and it is stored in the learning information storage unit 112 in association with the countermeasure identifier. Note that the class identifier of the training data is information acquired by the classification unit 131 .
なお、機械学習の学習処理を行うアルゴリズムとして、深層学習、決定木、ランダムフォレスト、SVR等があり得るが、問わない。なお、後述する機械学習の予測処理を行うアルゴリズムも、深層学習、決定木、ランダムフォレスト、SVR等があり得るが、問わない。また、機械学習には、例えば、TensorFlowのライブラリ、fastText、tinySVM、R言語のrandom forestのモジュール等の各種の機械学習の関数や、種々の既存のライブラリを用いることができる。なお、モジュールは、プログラム、ソフトウェア、関数、メソッド等と言っても良い。
It should be noted that deep learning, decision trees, random forests, SVR, etc. can be used as algorithms for machine learning learning processing, but it does not matter. It should be noted that an algorithm for performing prediction processing of machine learning, which will be described later, may be deep learning, decision tree, random forest, SVR, or the like, but it does not matter. For machine learning, for example, various machine learning functions such as TensorFlow library, fastText, tinySVM, R language random forest module, and various existing libraries can be used. Note that the module may also be called a program, software, function, method, or the like.
なお、学習情報取得部132は、学習器を作成する際に、教師データを構成する全てのユーザ属性値を使用する必要はなく、一部のユーザ属性値を使用しても良い。
(1-1-2)学習器が二値分類の学習器である場合 Note that the learninginformation acquisition unit 132 does not need to use all the user attribute values that make up the teacher data when creating a learning device, and may use a part of the user attribute values.
(1-1-2) When the learner is a binary classification learner
(1-1-2)学習器が二値分類の学習器である場合 Note that the learning
(1-1-2) When the learner is a binary classification learner
学習情報取得部132は、対処識別子ごとに、教師データ格納部111が有する2以上の教師データを取得する。次に、学習情報取得部132は、対処識別子ごと、およびクラス識別子ごとに、着目するクラス識別子に対応する教師データを正例とし、当該クラス識別子に対応しない教師データを負例として、機械学習の学習処理を行い、学習器を取得し、対処識別子と当該クラス識別子とに対応付けて、学習情報格納部112に蓄積する。
The learning information acquisition unit 132 acquires two or more pieces of teacher data stored in the teacher data storage unit 111 for each action identifier. Next, the learning information acquisition unit 132 sets the teacher data corresponding to the class identifier of interest as a positive example and the teacher data not corresponding to the class identifier as a negative example for each action identifier and each class identifier, and performs machine learning. A learning process is performed, a learning device is acquired, the action identifier and the class identifier are associated with each other, and stored in the learning information storage unit 112 .
なお、学習情報取得部132は、2以上の各教師データが有する1または2以上のユーザ属性値を説明変数として、2以上の各教師データに対応するクラス識別子を目的変数として、機械学習の学習処理を行い、二値分類の学習器を取得する。
(1-2)学習情報が対応表である場合
(1-2-1)一の対応情報が一の教師データに対応する場合 The learninginformation acquisition unit 132 uses one or more user attribute values possessed by each of two or more teacher data as an explanatory variable, and uses a class identifier corresponding to each of two or more teacher data as an objective variable for machine learning learning. Execute processing and acquire a binary classification learner.
(1-2) When learning information is a correspondence table (1-2-1) When one correspondence information corresponds to one teacher data
(1-2)学習情報が対応表である場合
(1-2-1)一の対応情報が一の教師データに対応する場合 The learning
(1-2) When learning information is a correspondence table (1-2-1) When one correspondence information corresponds to one teacher data
学習情報取得部132は、対処識別子ごとに、教師データ格納部111が有する2以上の教師データを取得する。次に、学習情報取得部132は、対処識別子ごとに、2以上の各教師データが有する1以上の各ユーザ属性値を要素とするベクトルを構成する。そして、学習情報取得部132は、対処識別子ごとに、当該ベクトルと教師データに対応するクラス識別子とを有する2以上の対応情報を有する対応表を構成し、当該対応表を当該対処識別子に対応付けて、学習情報格納部112に蓄積する。
(1-2-2)一の対応情報が一のクラス識別子に対応する場合 The learninginformation acquisition unit 132 acquires two or more pieces of teacher data stored in the teacher data storage unit 111 for each action identifier. Next, the learning information acquisition unit 132 constructs a vector whose elements are one or more user attribute values of two or more pieces of teacher data for each action identifier. Then, the learning information acquisition unit 132 constructs a correspondence table having two or more pieces of correspondence information having class identifiers corresponding to the vector and the teacher data for each countermeasure identifier, and associates the correspondence table with the countermeasure identifier. and stored in the learning information storage unit 112 .
(1-2-2) When one correspondence information corresponds to one class identifier
(1-2-2)一の対応情報が一のクラス識別子に対応する場合 The learning
(1-2-2) When one correspondence information corresponds to one class identifier
学習情報取得部132は、対処識別子ごとに、教師データ格納部111が有する2以上の教師データを取得する。次に、学習情報取得部132は、対処識別子ごとおよびクラス識別子ごとに、1または2以上の各教師データが有する1以上の各ユーザ属性値を要素とするベクトルを構成する。次に、学習情報取得部132は、対処識別子ごとおよびクラス識別子ごとに、1以上のベクトルを代表する代表ベクトルを取得する。次に、学習情報取得部132は、対処識別子ごとおよびクラス識別子ごとに、代表ベクトルとクラス識別子とを有する2以上の対応情報を有する対応表を構成し、当該対応表を当該対処識別子に対応付けて、学習情報格納部112に蓄積する。
(2)対処識別子を取得するための学習情報 The learninginformation acquisition unit 132 acquires two or more pieces of teacher data stored in the teacher data storage unit 111 for each action identifier. Next, the learning information acquiring unit 132 constructs a vector whose elements are one or more user attribute values of one or two or more pieces of teacher data for each action identifier and each class identifier. Next, the learning information acquisition unit 132 acquires a representative vector representing one or more vectors for each handling identifier and each class identifier. Next, the learning information acquisition unit 132 constructs a correspondence table having two or more pieces of correspondence information having representative vectors and class identifiers for each handling identifier and each class identifier, and associates the correspondence table with the handling identifier. and stored in the learning information storage unit 112 .
(2) Learning information for acquiring action identifiers
(2)対処識別子を取得するための学習情報 The learning
(2) Learning information for acquiring action identifiers
学習情報が対処識別子を取得するための情報である場合、教師データを分類する必要は無く、分類部131は不要である。
(2-1)学習情報が学習器である場合
(2-1-1)効果情報を用いる場合 If the learning information is information for acquiring a countermeasure identifier, there is no need to classify the teacher data, and the classifyingunit 131 is unnecessary.
(2-1) When learning information is a learner (2-1-1) When using effect information
(2-1)学習情報が学習器である場合
(2-1-1)効果情報を用いる場合 If the learning information is information for acquiring a countermeasure identifier, there is no need to classify the teacher data, and the classifying
(2-1) When learning information is a learner (2-1-1) When using effect information
学習情報取得部132は、教師データ格納部111が有する2以上の各教師データから、各教師データに対応する効果情報を取得する。次に、学習情報取得部132は、効果情報が予め決められた効果条件を満たす1または2以上の教師データを取得する。次に、学習情報取得部132は、取得した1以上の各教師データが有する1以上のユーザ識別子を説明変数とし、1以上の各教師データに対応する対処識別子を目的変数して、機械学習の学習処理を行い、学習器を取得し、学習情報格納部112に蓄積する。
The learning information acquisition unit 132 acquires effect information corresponding to each piece of teacher data from two or more pieces of each piece of teacher data held by the teacher data storage unit 111 . Next, the learning information acquisition unit 132 acquires one or more teacher data whose effect information satisfies predetermined effect conditions. Next, the learning information acquisition unit 132 uses one or more user identifiers of each of the one or more acquired teacher data as explanatory variables, and uses the action identifier corresponding to each of the one or more teacher data as objective variables, and performs machine learning. A learning process is performed, a learning device is acquired, and stored in the learning information storage unit 112 .
なお、効果条件は、効果情報が予め決められた効果と同じまたはよりも大きな効果であると判断するための条件である。効果条件は、例えば、効果情報が閾値以上(例えば、「血糖値の減少が10以上」「最高血圧の減少が20以上」「目標達成度が80%以上」)または閾値より大きい(例えば、「血糖値の減少が10より大きい」「最高血圧の減少が20より大きい」「目標達成度が70%より大きい」)または特定の値(例えば、「効果あり」「改善が大きい」)である。
(2-1-2)効果情報と満足度とを用いる場合 The effect condition is a condition for judging that the effect information is equal to or greater than a predetermined effect. The effect condition is, for example, if the effect information is greater than or equal to a threshold (eg, "decrease in blood glucose level by 10 or more", "decrease in systolic blood pressure by 20 or more", "target achievement level of 80% or more") or greater than a threshold (eg, " Blood glucose reduction greater than 10, systolic blood pressure reduction greater than 20, goal achievement greater than 70%, or a specific value (eg, effective, great improvement).
(2-1-2) When using effect information and satisfaction
(2-1-2)効果情報と満足度とを用いる場合 The effect condition is a condition for judging that the effect information is equal to or greater than a predetermined effect. The effect condition is, for example, if the effect information is greater than or equal to a threshold (eg, "decrease in blood glucose level by 10 or more", "decrease in systolic blood pressure by 20 or more", "target achievement level of 80% or more") or greater than a threshold (eg, " Blood glucose reduction greater than 10, systolic blood pressure reduction greater than 20, goal achievement greater than 70%, or a specific value (eg, effective, great improvement).
(2-1-2) When using effect information and satisfaction
学習情報取得部132は、教師データ格納部111が有する2以上の各教師データから、各教師データに対する効果情報と、各教師データが有する満足度とを取得する。次に、学習情報取得部132は、効果情報が予め決められた効果条件を満たし、かつ満足度が予め決められた満足度条件を満たす1または2以上の教師データを取得する。次に、学習情報取得部132は、取得した1以上の各教師データが有する1以上のユーザ識別子を説明変数とし、1以上の各教師データに対応する対処識別子を目的変数して、機械学習の学習処理を行い、学習器を取得し、学習情報格納部112に蓄積する。
The learning information acquisition unit 132 acquires the effect information for each teacher data and the degree of satisfaction possessed by each teacher data from two or more each of the teacher data stored in the teacher data storage unit 111 . Next, the learning information acquisition unit 132 acquires one or more teacher data whose effect information satisfies a predetermined effect condition and whose degree of satisfaction satisfies a predetermined satisfaction condition. Next, the learning information acquisition unit 132 uses one or more user identifiers of each of the one or more acquired teacher data as explanatory variables, and uses the action identifier corresponding to each of the one or more teacher data as objective variables, and performs machine learning. A learning process is performed, a learning device is acquired, and stored in the learning information storage unit 112 .
なお、教師データに対する効果情報とは、教師データが有する情報から取得される効果情報、または教師データが有する効果情報である。また、満足度条件は、満足度が高いことを判断するための条件であり、例えば、満足度が閾値以上または閾値より大きい(満足している)ことである。
(2-2)学習情報が対応表である場合
(2-2-1)効果情報を用いる場合
(2-2-1-1)一の対応情報が一の教師データに対応する場合 Note that the effect information for the teacher data is effect information acquired from information possessed by the teacher data or effect information possessed by the teacher data. The satisfaction level condition is a condition for determining that the satisfaction level is high, and is, for example, that the satisfaction level is equal to or greater than a threshold or larger than the threshold (satisfied).
(2-2) When learning information is a correspondence table (2-2-1) When effect information is used (2-2-1-1) When one correspondence information corresponds to one teacher data
(2-2)学習情報が対応表である場合
(2-2-1)効果情報を用いる場合
(2-2-1-1)一の対応情報が一の教師データに対応する場合 Note that the effect information for the teacher data is effect information acquired from information possessed by the teacher data or effect information possessed by the teacher data. The satisfaction level condition is a condition for determining that the satisfaction level is high, and is, for example, that the satisfaction level is equal to or greater than a threshold or larger than the threshold (satisfied).
(2-2) When learning information is a correspondence table (2-2-1) When effect information is used (2-2-1-1) When one correspondence information corresponds to one teacher data
学習情報取得部132は、教師データ格納部111が有する2以上の各教師データから、各教師データに対応する効果情報を取得する。次に、学習情報取得部132は、効果情報が予め決められた効果条件を満たす1または2以上の教師データを取得する。次に、学習情報取得部132は、取得した1以上の各教師データが有する1以上の各ユーザ識別子を要素とするベクトルを構成する。そして、学習情報取得部132は、当該ベクトルと当該教師データに対応する対処識別子とを有する2以上の対応情報を有する対応表を構成し、当該対応表を学習情報格納部112に蓄積する。
(2-2-1-2)一の対応情報が一の対処識別子に対応する場合 The learninginformation acquisition unit 132 acquires effect information corresponding to each piece of teacher data from two or more pieces of teacher data stored in the teacher data storage unit 111 . Next, the learning information acquisition unit 132 acquires one or more teacher data whose effect information satisfies predetermined effect conditions. Next, the learning information acquiring unit 132 constructs a vector whose elements are the one or more user identifiers of the acquired one or more teacher data. Then, the learning information acquisition unit 132 constructs a correspondence table having two or more pieces of correspondence information having the vector and the handling identifier corresponding to the training data, and accumulates the correspondence table in the learning information storage unit 112 .
(2-2-1-2) When one correspondence information corresponds to one handling identifier
(2-2-1-2)一の対応情報が一の対処識別子に対応する場合 The learning
(2-2-1-2) When one correspondence information corresponds to one handling identifier
学習情報取得部132は、教師データ格納部111が有する2以上の各教師データから、各教師データに対応する効果情報を取得する。次に、学習情報取得部132は、効果情報が予め決められた効果条件を満たす1または2以上の教師データを取得する。次に、学習情報取得部132は、対処識別子ごとに、1以上の各教師データが有する1以上の各ユーザ属性値を要素とするベクトルを構成する。次に、学習情報取得部132は、対処識別子ごとに、1以上のベクトルを代表する代表ベクトルを取得する。次に、学習情報取得部132は、代表ベクトルと対処識別子とを有する2以上の対応情報を有する対応表を構成し、当該対応表を学習情報格納部112に蓄積する。
(2-2-2)効果情報と満足度とを用いる場合
(2-2-2-1)一の対応情報が一の教師データに対応する場合 The learninginformation acquisition unit 132 acquires effect information corresponding to each piece of teacher data from two or more pieces of teacher data stored in the teacher data storage unit 111 . Next, the learning information acquisition unit 132 acquires one or more teacher data whose effect information satisfies predetermined effect conditions. Next, the learning information acquisition unit 132 constructs a vector whose elements are one or more user attribute values included in one or more pieces of teacher data for each action identifier. Next, the learning information acquisition unit 132 acquires a representative vector representing one or more vectors for each countermeasure identifier. Next, learning information acquisition section 132 constructs a correspondence table having two or more pieces of correspondence information each having a representative vector and a countermeasure identifier, and accumulates the correspondence table in learning information storage section 112 .
(2-2-2) When effect information and satisfaction level are used (2-2-2-1) When one correspondence information corresponds to one teacher data
(2-2-2)効果情報と満足度とを用いる場合
(2-2-2-1)一の対応情報が一の教師データに対応する場合 The learning
(2-2-2) When effect information and satisfaction level are used (2-2-2-1) When one correspondence information corresponds to one teacher data
学習情報取得部132は、教師データ格納部111が有する2以上の各教師データから、各教師データに対応する効果情報と満足度とを取得する。次に、学習情報取得部132は、効果情報が予め決められた効果条件を満たし、満足度が予め決められた満足度条件を満たす1または2以上の教師データを取得する。次に、学習情報取得部132は、取得した1以上の各教師データが有する1以上の各ユーザ識別子を要素とするベクトルを構成する。そして、学習情報取得部132は、当該ベクトルと当該教師データに対応する対処識別子とを有する2以上の対応情報を有する対応表を構成し、当該対応表を学習情報格納部112に蓄積する。
(2-2-2-2)一の対応情報が一の対処識別子に対応する場合 The learninginformation acquisition unit 132 acquires the effect information and the degree of satisfaction corresponding to each piece of teacher data from two or more pieces of teacher data held by the teacher data storage unit 111 . Next, the learning information acquisition unit 132 acquires one or more teacher data whose effect information satisfies a predetermined effect condition and whose degree of satisfaction satisfies a predetermined satisfaction condition. Next, the learning information acquiring unit 132 constructs a vector whose elements are the one or more user identifiers of the acquired one or more teacher data. Then, the learning information acquisition unit 132 constructs a correspondence table having two or more pieces of correspondence information having the vector and the handling identifier corresponding to the training data, and accumulates the correspondence table in the learning information storage unit 112 .
(2-2-2-2) When one correspondence information corresponds to one handling identifier
(2-2-2-2)一の対応情報が一の対処識別子に対応する場合 The learning
(2-2-2-2) When one correspondence information corresponds to one handling identifier
学習情報取得部132は、教師データ格納部111が有する2以上の各教師データから、各教師データに対応する効果情報と満足度とを取得する。次に、学習情報取得部132は、効果情報が予め決められた効果条件を満たし、満足度が予め決められた満足度条件を満たす1または2以上の教師データを取得する。次に、学習情報取得部132は、対処識別子ごとに、1以上の各教師データが有する1以上の各ユーザ属性値を要素とするベクトルを構成する。次に、学習情報取得部132は、対処識別子ごとに、1以上のベクトルを代表する代表ベクトルを取得する。次に、学習情報取得部132は、代表ベクトルと対処識別子とを有する2以上の対応情報を有する対応表を構成し、当該対応表を学習情報格納部112に蓄積する。
The learning information acquisition unit 132 acquires effect information and satisfaction level corresponding to each teacher data from two or more each of the teacher data stored in the teacher data storage unit 111 . Next, the learning information acquisition unit 132 acquires one or more teacher data whose effect information satisfies a predetermined effect condition and whose degree of satisfaction satisfies a predetermined satisfaction condition. Next, the learning information acquisition unit 132 constructs a vector whose elements are one or more user attribute values included in one or more pieces of teacher data for each action identifier. Next, the learning information acquisition unit 132 acquires a representative vector representing one or more vectors for each countermeasure identifier. Next, learning information acquisition section 132 constructs a correspondence table having two or more pieces of correspondence information each having a representative vector and a countermeasure identifier, and accumulates the correspondence table in learning information storage section 112 .
対処決定部133は、学習情報を取得し、当該学習情報と、ユーザ情報受付部121が受け付けたユーザ情報とを用いて、ユーザ情報が有する結果情報に応じた1以上の各対処を識別する対処識別子を取得する。
The handling determining unit 133 acquires learning information, and uses the learning information and the user information received by the user information receiving unit 121 to identify one or more measures according to the result information of the user information. Get an identifier.
対処決定部133は、例えば、ユーザ情報受付部121が受け付けたユーザ情報と学習情報とを用いて、2以上の各対処識別子ごとに、ユーザ情報が属するクラスを決定し、第一結果情報と第二結果情報との差異が大きいクラス(対処の効果が大きいクラス)に対応する対処識別子と差異が小さいクラス(対処の効果が小さいクラス)に対応する対処識別子とを区別して取得する。区別して取得することは、例えば、差異が大きい順に対処識別子をソートすること、効果条件を満たす差異に対応する対処識別子のみを取得することである。
For example, using the user information and learning information received by the user information receiving unit 121, the handling determination unit 133 determines the class to which the user information belongs for each of two or more handling identifiers, and determines the class to which the user information belongs. A countermeasure identifier corresponding to a class having a large difference from the second result information (a class having a large countermeasure effect) and a countermeasure identifier corresponding to a class having a small difference (a class having a small countermeasure effect) are acquired separately. Acquiring them separately means, for example, sorting the action identifiers in descending order of difference, or acquiring only the action identifiers corresponding to the differences that satisfy the effect condition.
対処決定部133は、例えば、機械学習の予測処理により、対処識別子を取得する。対処決定部133は、例えば、対応表を用いて、対処識別子を取得する。以下の対処決定部133の処理の例について説明する。
学習情報が学習器である場合
(1-1)学習器がクラス識別子を取得する学習器である場合
(1-1-1)学習器が一つである場合 The handlingdetermination unit 133 acquires a handling identifier by, for example, machine learning prediction processing. The handling determination unit 133 acquires a handling identifier using, for example, a correspondence table. An example of the processing of the handling determination unit 133 will be described below.
When the learning information is a learner (1-1) When the learner is a learner that acquires a class identifier (1-1-1) When there is one learner
学習情報が学習器である場合
(1-1)学習器がクラス識別子を取得する学習器である場合
(1-1-1)学習器が一つである場合 The handling
When the learning information is a learner (1-1) When the learner is a learner that acquires a class identifier (1-1-1) When there is one learner
対処決定部133は、対処識別子ごとに、ユーザ情報受付部121が受け付けたユーザ情報が有する1以上の属性値を取得する。次に、対処決定部133は、当該1以上の各属性値を要素とするベクトルを構成する。また、対処決定部133は、学習情報格納部112から当該対処識別子に対応する学習器を取得する。次に、対処決定部133は、対処識別子ごとに、当該ベクトルと当該学習器とを、機械学習の予測処理を行うモジュールに与え、当該モジュールを実行し、クラス識別子を取得する。
The handling determining unit 133 acquires one or more attribute values of the user information accepted by the user information accepting unit 121 for each handling identifier. Next, the handling determining unit 133 constructs a vector whose elements are the one or more attribute values. Further, the handling determination unit 133 acquires a learning device corresponding to the handling identifier from the learning information storage unit 112 . Next, the handling determining unit 133 provides the vector and the learning device for each handling identifier to a module that performs prediction processing of machine learning, executes the module, and acquires a class identifier.
次に、対処決定部133は、対処識別子に取得したクラス識別子を対応付けて、図示しないバッファに蓄積する。なお、対処決定部133は、取得条件を満たすクラス識別子(例えば、効果が大きく、満足度が高いクラスの識別子)に対応する1以上の対処識別子を取得し、図示しないバッファに蓄積しても良い。取得条件は、対処識別子を取得するための条件である。取得条件は、効果情報に基づく効果条件である。取得条件は、効果条件と満足度条件でも良い。効果条件は、例えば、効果情報が閾値以上または閾値より大きいことである。満足度条件は、満足度に基づく条件であり、例えば、満足度が閾値以上または閾値より大きいことである。取得条件は、例えば、効果情報が示す効果が最高であり、かつ満足度が最大であることである。
(1-1-2)学習器が2以上の二値分類の学習器である場合 Next, the handlingdetermination unit 133 associates the acquired class identifier with the handling identifier, and stores them in a buffer (not shown). Note that the handling determination unit 133 may acquire one or more handling identifiers corresponding to a class identifier that satisfies an acquisition condition (for example, an identifier of a class that has a large effect and a high level of satisfaction), and accumulate them in a buffer (not shown). . Acquisition conditions are conditions for acquiring a countermeasure identifier. Acquisition conditions are effect conditions based on effect information. Acquisition conditions may be effect conditions and satisfaction conditions. The effect condition is, for example, that the effect information is greater than or equal to a threshold. A satisfaction condition is a condition based on satisfaction, for example, satisfaction is greater than or equal to a threshold. Acquisition conditions are, for example, that the effect indicated by the effect information is the highest and the degree of satisfaction is the highest.
(1-1-2) When the learner is a binary classification learner with two or more
(1-1-2)学習器が2以上の二値分類の学習器である場合 Next, the handling
(1-1-2) When the learner is a binary classification learner with two or more
対処決定部133は、対処識別子ごとに、ユーザ情報受付部121が受け付けたユーザ情報が有する1以上の属性値を取得する。次に、対処決定部133は、当該1以上の各属性値を要素とするベクトルを構成する。また、対処決定部133は、学習情報格納部112から当該対処識別子および各クラス識別子に対応する学習器を取得する。次に、対処決定部133は、対処識別子ごとおよびクラス識別子ごとに、構成したベクトルと取得した学習器とを機械学習の予測処理を行うモジュールに与え、当該モジュールを実行し、当該クラス識別子で識別されるクラスに属するか否かを示す予測結果を取得する。なお、予測結果は、スコアを含んでも良い。
The handling determining unit 133 acquires one or more attribute values of the user information accepted by the user information accepting unit 121 for each handling identifier. Next, the handling determining unit 133 constructs a vector whose elements are the one or more attribute values. Further, the handling determination unit 133 acquires the learning device corresponding to the handling identifier and each class identifier from the learning information storage unit 112 . Next, the handling determination unit 133 supplies the configured vector and the acquired learning device to a module that performs prediction processing of machine learning for each handling identifier and each class identifier, executes the module, and identifies with the class identifier. Get a prediction result that indicates whether the class belongs to Note that the prediction result may include a score.
次に、対処決定部133は、「クラスに属する」との情報を含む予測結果に対応する1または2以上のクラス識別子を取得する。
Next, the handling determination unit 133 acquires one or more class identifiers corresponding to the prediction result including the information "belongs to class".
次に、対処決定部133は、対処識別子ごとに、取得したクラス識別子を対応付けて、図示しないバッファに蓄積する。なお、対処決定部133は、取得条件を満たすクラス識別子に対応する1以上の対処識別子を取得し、図示しないバッファに蓄積しても良い。取得条件は、例えば、クラス識別子に対応する効果情報が閾値以上または閾値より大きな情報である(大きな効果がある)ことである。
(1-2)学習器が対処識別子を取得する学習器である場合
(1-2-1)学習器が一つである場合 Next, thehandling determining unit 133 associates each handling identifier with the acquired class identifier and stores them in a buffer (not shown). Note that the handling determination unit 133 may acquire one or more handling identifiers corresponding to class identifiers that satisfy acquisition conditions, and store them in a buffer (not shown). The acquisition condition is, for example, that the effect information corresponding to the class identifier is information equal to or greater than a threshold (has a large effect).
(1-2) When the learning device is a learning device that acquires an action identifier (1-2-1) When there is one learning device
(1-2)学習器が対処識別子を取得する学習器である場合
(1-2-1)学習器が一つである場合 Next, the
(1-2) When the learning device is a learning device that acquires an action identifier (1-2-1) When there is one learning device
対処決定部133は、対処識別子ごとに、ユーザ情報受付部121が受け付けたユーザ情報が有する1以上の属性値を取得する。次に、対処決定部133は、当該1以上の各属性値を要素とするベクトルを構成する。また、対処決定部133は、学習情報格納部112から学習器を取得する。次に、対処決定部133は、当該ベクトルと当該学習器とを、機械学習の予測処理を行うモジュールに与え、当該モジュールを実行し、対処識別子を取得する。
(1-2-2)学習器が2以上の二値分類の学習器である場合 Thehandling determining unit 133 acquires one or more attribute values of the user information received by the user information receiving unit 121 for each handling identifier. Next, the handling determining unit 133 constructs a vector whose elements are the one or more attribute values. Also, the handling determination unit 133 acquires a learning device from the learning information storage unit 112 . Next, the countermeasure determination unit 133 provides the vector and the learning device to a module that performs prediction processing of machine learning, executes the module, and acquires a countermeasure identifier.
(1-2-2) When the learner is a binary classification learner with two or more
(1-2-2)学習器が2以上の二値分類の学習器である場合 The
(1-2-2) When the learner is a binary classification learner with two or more
対処決定部133は、対処識別子ごとに、ユーザ情報受付部121が受け付けたユーザ情報が有する1以上の属性値を取得する。次に、対処決定部133は、当該1以上の各属性値を要素とするベクトルを構成する。また、対処決定部133は、対処識別子ごとに、学習情報格納部112から学習器を取得する。次に、対処決定部133は、対処識別子ごとに、当該ベクトルと当該学習器とを、機械学習の予測処理を行うモジュールに与え、当該モジュールを実行し、対処識別子で識別される対処に属するか否かを示す情報を含む予測結果を取得する。そして、対処決定部133は、「対処識別子で識別される対処に属する」旨の情報を含む予測結果に対応する対処識別子を取得する。
(2)学習情報が対応表である場合
(2-1)対応表がクラス識別子を取得する対応表である場合 Thehandling determining unit 133 acquires one or more attribute values of the user information received by the user information receiving unit 121 for each handling identifier. Next, the handling determining unit 133 constructs a vector whose elements are the one or more attribute values. Further, the handling determination unit 133 acquires a learning device from the learning information storage unit 112 for each handling identifier. Next, for each countermeasure identifier, the countermeasure determination unit 133 provides the vector and the learning device to a module that performs machine learning prediction processing, executes the module, and determines whether the module belongs to the countermeasure identified by the countermeasure identifier. Obtain a prediction result that includes information indicating whether or not Then, the countermeasure determination unit 133 acquires the countermeasure identifier corresponding to the prediction result including the information indicating that "it belongs to the countermeasure identified by the countermeasure identifier".
(2) When the learning information is a correspondence table (2-1) When the correspondence table is a correspondence table for acquiring class identifiers
(2)学習情報が対応表である場合
(2-1)対応表がクラス識別子を取得する対応表である場合 The
(2) When the learning information is a correspondence table (2-1) When the correspondence table is a correspondence table for acquiring class identifiers
対処決定部133は、対処識別子ごとに、ユーザ情報受付部121が受け付けたユーザ情報が有する1以上の属性値を取得する。次に、対処決定部133は、当該1以上の各属性値を要素とするベクトルを構成する。次に、対処決定部133は、当該ベクトルに最も近似するベクトルを有する対応情報を決定し、当該対応情報が有するクラス識別子を取得する。
The handling determining unit 133 acquires one or more attribute values of the user information accepted by the user information accepting unit 121 for each handling identifier. Next, the handling determining unit 133 constructs a vector whose elements are the one or more attribute values. Next, the handling determination unit 133 determines correspondence information having a vector that is most similar to the vector, and acquires the class identifier of the correspondence information.
次に、対処決定部133は、対処識別子に取得したクラス識別子を対応付けて、図示しないバッファに蓄積する。なお、対処決定部133は、取得条件を満たすクラス識別子に対応する1以上の対処識別子を取得し、図示しないバッファに蓄積しても良い。なお、取得条件は、例えば、クラス識別子に対応する効果情報が閾値以上または閾値より大きな情報である(大きな効果がある)ことである。
(2-2)対応表が対処識別子を取得する対応表である場合 Next, the handlingdetermination unit 133 associates the acquired class identifier with the handling identifier, and stores them in a buffer (not shown). Note that the handling determination unit 133 may acquire one or more handling identifiers corresponding to class identifiers that satisfy acquisition conditions, and store them in a buffer (not shown). Note that the acquisition condition is, for example, that the effect information corresponding to the class identifier is information equal to or greater than a threshold value (has a large effect).
(2-2) When the correspondence table is a correspondence table for obtaining a countermeasure identifier
(2-2)対応表が対処識別子を取得する対応表である場合 Next, the handling
(2-2) When the correspondence table is a correspondence table for obtaining a countermeasure identifier
対処決定部133は、対処識別子ごとに、ユーザ情報受付部121が受け付けたユーザ情報が有する1以上の属性値を取得する。次に、対処決定部133は、当該1以上の各属性値を要素とするベクトルを構成する。次に、対処決定部133は、当該ベクトルに最も近似するベクトルを有する対応情報を決定し、当該対応情報が有する対処識別子を取得する。
The handling determining unit 133 acquires one or more attribute values of the user information accepted by the user information accepting unit 121 for each handling identifier. Next, the handling determining unit 133 constructs a vector whose elements are the one or more attribute values. Next, the handling determination unit 133 determines correspondence information having a vector that is most similar to the vector, and acquires a handling identifier included in the correspondence information.
なお、対処決定部133は、候補となる2以上のすべての対処の対処識別子を格納部11から取得しても良い。
Note that the handling determination unit 133 may acquire from the storage unit 11 the handling identifiers of all two or more candidate measures.
根拠情報取得部134は、対処決定部133が取得した1以上の各対処識別子ごとに、対処識別子に対応する1以上の教師データとユーザ情報受付部121が受け付けたユーザ情報とを用いて、根拠情報を取得する。根拠情報は、対処決定部133が取得した対処識別子で識別される対処を勧める根拠に関する情報である。
The basis information acquisition unit 134 uses one or more training data corresponding to each of the one or more countermeasure identifiers acquired by the countermeasure determination unit 133 and the user information received by the user information reception unit 121 to obtain the basis information. Get information. The basis information is information relating to the basis for recommending the countermeasure identified by the countermeasure identifier acquired by the countermeasure determination unit 133 .
根拠情報取得部134は、例えば、分類部131が対応付けたクラス識別子に対応する根拠レベルを取得する。根拠情報取得部134は、例えば、分類部131が対応付けたクラス識別子に対応する教師データに対する効果情報を用いて有効性情報を取得し、当該根拠レベルと当該有効性情報を含む情報である理由情報を取得する。根拠情報取得部134は、例えば、根拠レベルと理由情報のうちの1種類以上の情報を含む根拠情報を取得することは好適である。
The basis information acquisition unit 134 acquires, for example, the basis level corresponding to the class identifier associated by the classification unit 131. The grounds information acquisition unit 134 acquires effectiveness information using, for example, effect information for teacher data corresponding to the class identifier associated by the classification unit 131, and obtains information including the grounds level and the effectiveness information. Get information. It is preferable for the basis information acquisition unit 134 to acquire basis information including, for example, one or more types of information among basis level and reason information.
根拠情報取得部134は、ユーザ情報が属するクラスに対応する教師データが有する満足度を用いて満足度情報を取得し、当該満足度情報を含む理由情報を含む根拠情報を取得することは好適である。
It is preferable that the grounds information acquisition unit 134 acquires satisfaction level information using the satisfaction level of the teacher data corresponding to the class to which the user information belongs, and acquires grounds information including reason information including the satisfaction level information. be.
根拠は、エビデンスと言っても良い。根拠情報は、エビデンス情報と言っても良い。根拠情報は、例えば、根拠レベル、理由情報のうちの1以上の情報を有する。理由情報は、有効性情報、満足度情報のうちの1以上の情報を有する。
You can call it evidence. Basis information can be called evidence information. The basis information has, for example, one or more information among basis level and reason information. Reason information has one or more information of effectiveness information and satisfaction information.
根拠レベルは、対処を推薦する根拠の強さの度合いを特定する情報である。根拠レベルは、例えば、「1」「2」「3」「4」「5」のうちのいずれかであるが、「A」「B」「C」等の順序性のある情報であれば良い。
The rationale level is information that specifies the strength of the rationale for recommending a course of action. The basis level is, for example, one of "1", "2", "3", "4", and "5", but it is sufficient if it is sequential information such as "A", "B", and "C". .
理由情報は、対処を勧める理由に関する情報である。有効性情報は、対処を行った場合の有効性に関する情報である。有効性情報は、例えば、対処を行った場合の有効度の平均値、対処を行った場合の有効度が閾値以上のユーザの割合(教師データの割合)、対処を行った場合の有効度が閾値以上のユーザの数である。満足度情報は、対処を行った後の満足度に関する情報である。満足度情報は、対処を行った後の満足度の平均値、対処を行った場合の満足度が閾値以上のユーザ(教師データでも良い)の割合、対処を行った場合の満足度が閾値以上のユーザの数である。
The reason information is information about the reason for recommending the action. Effectiveness information is information about the effectiveness of countermeasures. Effectiveness information includes, for example, the average value of effectiveness when taking action, the percentage of users whose effectiveness is above the threshold when taking action (percentage of teacher data), and the effectiveness when taking action. It is the number of users above the threshold. Satisfaction level information is information related to the satisfaction level after taking action. Satisfaction information includes the average satisfaction after taking action, the ratio of users whose satisfaction is above the threshold after taking action (teaching data is also acceptable), and the satisfaction after taking action is above the threshold. is the number of users of
根拠情報取得部134は、例えば、対処決定部133が取得した1以上の各対処識別子ごとに、対処識別子に対応する1以上の教師データとユーザ情報受付部121が受け付けたユーザ情報とを用いて、根拠レベルを取得する。根拠情報取得部134は、例えば、対処決定部133が取得した対処識別子に対応する1以上の教師データと対になるクラス識別子を取得する。次に、根拠情報取得部134は、例えば、当該クラス識別子に対応する根拠レベルを取得する。なお、かかる場合、クラス識別子に根拠レベルが対応付けられて、格納部11に格納されている、とする。
For example, for each of the one or more handling identifiers acquired by the handling determining unit 133, the basis information acquiring unit 134 uses one or more teacher data corresponding to the handling identifier and the user information received by the user information accepting unit 121. , to get the rationale level. The basis information acquisition unit 134 acquires, for example, a class identifier paired with one or more teacher data corresponding to the handling identifier acquired by the handling determination unit 133 . Next, the basis information acquisition unit 134 acquires, for example, the basis level corresponding to the class identifier. In this case, it is assumed that the class identifier is associated with the basis level and stored in the storage unit 11 .
根拠情報取得部134は、例えば、対処識別子ごとに、対処決定部133が取得した対処識別子に対応する1以上の教師データを用いて有効性情報を取得する。根拠情報取得部134は、例えば、対処決定部133が取得した各対処識別子に対応する1以上の各教師データに対応する効果情報を取得する。次に、根拠情報取得部134は、例えば、対処識別子ごとに、取得した効果情報の中で、効果条件を満たす効果情報の数である有効である人数を取得する。次に、根拠情報取得部134は、例えば、対処識別子に対応する全教師データの数と有効である人数とを用いて、有効である割合である有効性情報を取得する。なお、有効性情報は、有効である人数等でも良い。また、効果条件は、効果情報が高い効果を示す情報であり、例えば、効果情報が閾値以上、効果情報が閾値より大きいこと、効果情報が「効果あり」であることである。
The basis information acquisition unit 134 acquires effectiveness information, for example, for each measure identifier using one or more training data corresponding to the measure identifier acquired by the measure determination unit 133 . The basis information acquisition unit 134 acquires, for example, effect information corresponding to one or more pieces of teacher data corresponding to each coping identifier acquired by the coping determination unit 133 . Next, the basis information acquisition unit 134 acquires, for example, the effective number of persons, which is the number of effect information that satisfies the effect conditions, among the acquired effect information for each countermeasure identifier. Next, the basis information acquisition unit 134 acquires effectiveness information, which is a ratio of effectiveness, using, for example, the number of all teaching data items corresponding to the action identifier and the number of persons who are effective. Note that the effectiveness information may be the number of persons who are effective. The effect condition is information indicating that the effect information is highly effective, and for example, the effect information is equal to or greater than the threshold, the effect information is greater than the threshold, and the effect information is "effective".
根拠情報取得部134は、例えば、対処識別子ごとに、対処決定部133が取得した対処識別子に対応する1以上の教師データを用いて満足度情報を取得する。根拠情報取得部134は、例えば、対処決定部133が取得した各対処識別子に対応する1以上の各教師データが有する満足度を取得する。次に、根拠情報取得部134は、例えば、対処識別子ごとに、取得した満足度の中で、満足度条件を満たす満足度の数である満足であった人数を取得する。次に、根拠情報取得部134は、例えば、対処識別子に対応する全教師データの数と満足であった人数とを用いて、満足である割合である満足度情報を取得する。なお、満足度情報は、満足であった人数等でも良い。
The basis information acquisition unit 134 acquires satisfaction level information, for example, for each measure identifier using one or more teacher data corresponding to the measure identifier acquired by the measure determination unit 133 . The basis information acquisition unit 134 acquires, for example, satisfaction levels of one or more pieces of teacher data corresponding to each handling identifier acquired by the handling determination unit 133 . Next, the basis information acquisition unit 134 acquires, for example, the number of people who were satisfied, which is the number of degrees of satisfaction that satisfy the satisfaction level condition, among the acquired degrees of satisfaction, for each measure identifier. Next, the basis information acquisition unit 134 acquires satisfaction level information, which is the rate of satisfaction, using, for example, the number of all teacher data corresponding to the handling identifier and the number of people who were satisfied. The satisfaction level information may be the number of people who were satisfied.
根拠情報取得部134は、例えば、対処識別子ごとに、対処決定部133が取得した対処識別子に対応する1以上の教師データを用いて有効性情報と満足度情報とを取得する。そして、根拠情報取得部134は、例えば、取得した有効性情報と取得した満足度情報とを有する理由情報を構成することは好適である。
The basis information acquisition unit 134 acquires effectiveness information and satisfaction level information, for example, for each measure identifier using one or more teacher data corresponding to the measure identifier acquired by the measure determination unit 133 . Then, it is preferable that the basis information acquisition unit 134 configure reason information having, for example, the acquired effectiveness information and the acquired satisfaction level information.
根拠情報取得部134は、目標達成条件を満たす対処識別子に対して、強く勧めるためのお勧め情報を取得することは好適である。目標達成条件は、目標達成度合いが閾値以上であること、または閾値より大きいことである。目標達成率は、ユーザ属性値である目標に対する達成度合いである。目標達成度合いは、例えば、1以上の目標達成率の代表値(例えば、平均値、中央値)、目標を達成したユーザの数、目標を達成したユーザの割合である。
It is preferable for the basis information acquisition unit 134 to acquire recommended information for strongly recommending a measure identifier that satisfies the goal achievement condition. The goal achievement condition is that the degree of goal achievement is greater than or equal to a threshold. The goal achievement rate is the degree of achievement with respect to a goal, which is a user attribute value. The degree of goal achievement is, for example, one or more representative values (eg, average value, median value) of goal achievement rates, the number of users who have achieved their goals, and the percentage of users who have achieved their goals.
根拠情報取得部134は、根拠情報を取得できなかった対処識別子に対して、根拠が無い旨の情報である根拠情報を取得することは好適である。
It is preferable for the basis information acquisition unit 134 to acquire basis information that is information indicating that there is no basis for the action identifier for which basis information could not be acquired.
なお、根拠情報取得部134は、通常、取得した根拠情報を、対応する対処識別子に対応付けて、図示しないバッファに一時蓄積する。
Note that the basis information acquisition unit 134 usually associates the acquired basis information with the corresponding action identifier and temporarily stores it in a buffer (not shown).
報酬情報取得部135は、ユーザに対処を行うことを勧めるための報酬を特定する情報であり、根拠情報に対応する情報である報酬情報を取得する。報酬情報は、例えば、対処に対応する商品またはサービスの購入を勧める情報である。報酬情報は、例えば、対処に対応する商品またはサービスの割引率を示す情報である。
The remuneration information acquisition unit 135 acquires remuneration information, which is information specifying a remuneration for recommending the user to take action, and is information corresponding to the basis information. The remuneration information is, for example, information recommending purchase of goods or services corresponding to the countermeasure. The remuneration information is, for example, information indicating the discount rate of the product or service corresponding to the handling.
報酬情報取得部135は、根拠情報に含まれる根拠レベルに応じて、報酬を特定する報酬情報を取得する。報酬情報取得部135は、例えば、根拠情報に含まれる根拠レベルが低いほど、高い報酬を特定する報酬情報を取得する。かかる場合の報酬情報が示す報酬は、根拠レベルが低いものを採用するユーザの取り組みに対する報酬である。また、報酬情報取得部135は、例えば、根拠情報に含まれる根拠レベルが高いほど、高い報酬を特定する報酬情報を取得する。かかる場合は、根拠レベルが高い取り組みをユーザに行って欲しい場合である。このような根拠レベルと報酬情報と関係性は、情報処理装置1の管理者が設定してもよい。
The remuneration information acquisition unit 135 acquires remuneration information that specifies remuneration according to the basis level included in the basis information. The remuneration information acquisition unit 135 acquires, for example, remuneration information specifying a higher remuneration as the ground level included in the ground information is lower. The reward indicated by the reward information in such a case is the reward for the user's efforts to adopt the low basis level. Further, the remuneration information acquisition unit 135 acquires remuneration information specifying a higher remuneration, for example, as the ground level included in the ground information is higher. In such a case, it is a case where we want the user to take action with a high level of grounds. An administrator of the information processing device 1 may set such a relationship between the basis level and the remuneration information.
報酬情報取得部135は、例えば、取得された根拠レベルに対応付く報酬情報を格納部11から取得する。
For example, the remuneration information acquisition unit 135 acquires remuneration information associated with the acquired basis level from the storage unit 11.
出力部14は、各種の情報を出力する。各種の情報とは、例えば、対処識別子、根拠情報、報酬情報である。
The output unit 14 outputs various information. Various types of information are, for example, a countermeasure identifier, basis information, and remuneration information.
ここで、出力とは、通常、端末装置2への送信であるが、ディスプレイへの表示、プロジェクターを用いた投影、プリンタでの印字、音出力、記録媒体への蓄積、他の処理装置や他のプログラムなどへの処理結果の引渡しなどを含む概念であっても良い。
Here, the output is usually transmission to the terminal device 2, but display on a display, projection using a projector, printing on a printer, sound output, storage on a recording medium, other processing devices or other The concept may include delivery of the processing result to a program or the like.
情報出力部141は、対処決定部133が取得した対処識別子と根拠情報取得部134が取得した根拠情報とを出力する。情報出力部141は、報酬情報取得部135が取得した報酬情報をも出力することは好適である。
The information output unit 141 outputs the countermeasure identifier acquired by the countermeasure determination unit 133 and the basis information acquired by the basis information acquisition unit 134 . It is preferable that the information output unit 141 also output the remuneration information acquired by the remuneration information acquisition unit 135 .
端末装置2を構成する端末格納部21には、各種の情報が格納される。各種の情報は、例えば、ユーザ識別子である。ユーザ識別子は、端末装置2のID等でも良い。
Various types of information are stored in the terminal storage unit 21 that constitutes the terminal device 2 . Various information is, for example, a user identifier. The user identifier may be the ID of the terminal device 2 or the like.
端末受付部22は、各種の情報や指示を受け付ける。各種の情報や指示とは、例えば、ユーザ情報である。各種の情報や指示の入力手段は、マイクやタッチパネルやキーボードやマウスやメニュー画面によるもの等、何でも良い。
The terminal reception unit 22 receives various information and instructions. Various information and instructions are, for example, user information. Input means for various information and instructions may be anything, such as a microphone, a touch panel, a keyboard, a mouse, or a menu screen.
端末処理部23は、各種の処理を行う。各種の処理は、例えば、端末受付部22が受け付けた指示や情報を送信するデータ構造にする処理である。また、各種の処理は、例えば、端末受信部25が受信した情報を出力するデータ構造にする処理である。
The terminal processing unit 23 performs various types of processing. Various types of processing are, for example, processing for creating a data structure for transmitting instructions and information received by the terminal receiving unit 22 . Further, various kinds of processing are, for example, processing to make a data structure for outputting information received by the terminal reception unit 25 .
端末送信部24は、各種の情報や指示を情報処理装置1に送信する。各種の情報や指示とは、例えば、ユーザ情報である。
The terminal transmission unit 24 transmits various information and instructions to the information processing device 1 . Various information and instructions are, for example, user information.
端末受信部25は、各種の情報を情報処理装置1から受信する。各種の情報は、例えば、対処識別子、根拠情報、報酬情報である。
The terminal reception unit 25 receives various types of information from the information processing device 1 . Various types of information are, for example, a countermeasure identifier, basis information, and remuneration information.
端末出力部26は、各種の情報を出力する。各種の情報は、例えば、対処識別子、根拠情報、報酬情報である。
The terminal output unit 26 outputs various information. Various types of information are, for example, a countermeasure identifier, basis information, and remuneration information.
格納部11、教師データ格納部111、学習情報格納部112、および端末格納部21は、不揮発性の記録媒体が好適であるが、揮発性の記録媒体でも実現可能である。
The storage unit 11, the teacher data storage unit 111, the learning information storage unit 112, and the terminal storage unit 21 are preferably non-volatile recording media, but can also be realized with volatile recording media.
格納部11等に情報が記憶される過程は問わない。例えば、記録媒体を介して情報が格納部11等で記憶されるようになってもよく、通信回線等を介して送信された情報が格納部11等で記憶されるようになってもよく、あるいは、入力デバイスを介して入力された情報が格納部11等で記憶されるようになってもよい。
The process by which information is stored in the storage unit 11 or the like does not matter. For example, information may be stored in the storage unit 11 or the like via a recording medium, or information transmitted via a communication line or the like may be stored in the storage unit 11 or the like. Alternatively, information input via an input device may be stored in the storage unit 11 or the like.
受付部12、およびユーザ情報受付部121は、無線または有線の通信手段で実現されることが好適であるが、放送を受信する手段、タッチパネルやキーボード等の入力手段のデバイスドライバーや、メニュー画面の制御ソフトウェア等で実現されても良い。
The reception unit 12 and the user information reception unit 121 are preferably realized by wireless or wired communication means, but device drivers for input means such as means for receiving broadcasts, touch panels and keyboards, and menu screen It may be realized by control software or the like.
処理部13、学習情報取得部132、分類部131、対処決定部133、根拠情報取得部134、報酬情報取得部135、および端末処理部23は、通常、プロセッサやメモリ等から実現され得る。処理部13等の処理手順は、通常、ソフトウェアで実現され、当該ソフトウェアはROM等の記録媒体に記録されている。但し、処理部13等は、ハードウェア(専用回路)で実現しても良い。なお、プロセッサは、CPU、MPU、GPU等であり、その種類は問わない。
The processing unit 13, the learning information acquisition unit 132, the classification unit 131, the coping determination unit 133, the basis information acquisition unit 134, the remuneration information acquisition unit 135, and the terminal processing unit 23 can usually be implemented by a processor, memory, or the like. The processing procedure of the processing unit 13 and the like is normally realized by software, and the software is recorded in a recording medium such as a ROM. However, the processing unit 13 and the like may be realized by hardware (dedicated circuit). Note that the processor may be a CPU, MPU, GPU, or the like, and may be of any type.
出力部14、情報出力部141、および端末送信部24は、通常、無線または有線の通信手段で実現されるが、放送手段で実現されても良い。
The output unit 14, the information output unit 141, and the terminal transmission unit 24 are usually realized by wireless or wired communication means, but may be realized by broadcasting means.
端末受付部22は、タッチパネルやキーボード等の入力手段のデバイスドライバーや、メニュー画面の制御ソフトウェア等で実現され得る。
The terminal reception unit 22 can be realized by device drivers for input means such as touch panels and keyboards, control software for menu screens, and the like.
端末受信部25は、通常、無線または有線の通信手段で実現されるが、放送を受信する手段で実現されても良い。
The terminal receiving unit 25 is usually realized by wireless or wired communication means, but may be realized by means for receiving broadcast.
端末出力部26は、ディスプレイやスピーカー等の出力デバイスを含むと考えても含まないと考えても良い。端末出力部26は、出力デバイスのドライバーソフトまたは、出力デバイスのドライバーソフトと出力デバイス等で実現され得る。
The terminal output unit 26 may or may not include output devices such as displays and speakers. The terminal output unit 26 can be realized by output device driver software, or by output device driver software and an output device.
次に、情報システムAの動作例について説明する。まず、情報処理装置1の動作例について、図3のフローチャートを用いて説明する。
Next, an operation example of information system A will be described. First, an operation example of the information processing apparatus 1 will be described with reference to the flowchart of FIG.
(ステップS301)受付部12は、1以上の教師データを受け付けたか否かを判断する。1以上の教師データを受け付けた場合はステップS302に行く、教師データを受け付けなかった場合はステップS303に行く。なお、ここでの受け付けは、例えば、端末装置2からの受信である。
(Step S301) The reception unit 12 determines whether or not one or more teaching data has been received. If one or more teacher data is received, the process goes to step S302. If no teacher data is received, the process goes to step S303. It should be noted that the reception here is reception from the terminal device 2, for example.
(ステップS302)処理部13は、ステップS301で受け付けられた1以上の教師データを教師データ格納部111に蓄積する。ステップS301に戻る。
(Step S302) The processing unit 13 accumulates the one or more teacher data accepted in step S301 in the teacher data storage unit 111. Return to step S301.
(ステップS303)処理部13は、学習情報を作成するか否かを判断する。学習情報を作成すると判断した場合はステップS304に行き、学習情報を作成すると判断しなかった場合はステップS305に行く。なお、処理部13は、例えば、受付部12が学習情報作成指示を受け付けた場合に、学習情報を作成すると判断する。また、処理部13は、例えば、予め決められた時刻になった場合に学習情報を作成すると判断する。また、処理部13は、例えば、教師データ格納部111に蓄積された教師データの数が閾値以上になった場合に学習情報を作成すると判断する。ただし、処理部13が学習情報を作成すると判断する条件は問わない。
(Step S303) The processing unit 13 determines whether or not to create learning information. If it is determined to create learning information, the process goes to step S304, and if it is not determined to create learning information, the process goes to step S305. Note that the processing unit 13 determines to create learning information, for example, when the receiving unit 12 receives a learning information creation instruction. Also, the processing unit 13 determines to create the learning information, for example, when a predetermined time has come. Also, the processing unit 13 determines to create learning information, for example, when the number of training data items accumulated in the training data storage unit 111 is equal to or greater than a threshold. However, the condition for judging that the processing unit 13 creates learning information does not matter.
(ステップS304)学習情報取得部132は、学習情報作成処理を行う。ステップS301に戻る。学習情報作成処理の例について、図4、図7、図8、および図9のフローチャートを用いて説明する。
(Step S304) The learning information acquisition unit 132 performs learning information creation processing. Return to step S301. An example of learning information creation processing will be described with reference to the flowcharts of FIGS. 4, 7, 8, and 9. FIG.
(ステップS305)ユーザ情報受付部121は、ユーザ情報を受け付けたか否かを判断する。ユーザ情報を受け付けた場合はステップS306に行き、ユーザ情報を受け付けなかった場合はステップS301に戻る。なお、ここでの受け付けは、例えば、端末装置2からの受信である。
(Step S305) The user information reception unit 121 determines whether user information has been received. If the user information has been received, the process goes to step S306, and if the user information has not been received, the process returns to step S301. It should be noted that the reception here is reception from the terminal device 2, for example.
(ステップS306)処理部13は、出力情報取得処理を行う。出力情報取得処理の例について、図10のフローチャートを用いて説明する。
(Step S306) The processing unit 13 performs output information acquisition processing. An example of output information acquisition processing will be described with reference to the flowchart of FIG.
(ステップS307)情報出力部141は、ステップS306で取得された出力情報を出力する。ステップS301に戻る。なお、ここでの出力は、例えば、端末装置2への送信である。
(Step S307) The information output unit 141 outputs the output information acquired in step S306. Return to step S301. Note that the output here is transmission to the terminal device 2, for example.
なお、図3のフローチャートにおいて、電源オフや処理終了の割り込みにより処理は終了する。
In addition, in the flowchart of FIG. 3, the process ends when the power is turned off or an interrupt to end the process occurs.
次に、ステップS304の学習情報作成処理の第一の例について、図4のフローチャートを用いて説明する。学習情報作成処理の第一の例は、クラス識別子を取得するための学習器を取得する場合の例である。
Next, a first example of the learning information creation process in step S304 will be described using the flowchart of FIG. A first example of learning information creation processing is an example of acquiring a learning device for acquiring a class identifier.
(ステップS401)処理部13は、カウンタiに1を代入する。
(Step S401) The processing unit 13 substitutes 1 for the counter i.
(ステップS402)処理部13は、i番目の対処識別子が存在するか否かを判断する。i番目の対処識別子が存在する場合はステップS403に行き、i番目の対処識別子が存在しない場合は上位処理にリターンする。
(Step S402) The processing unit 13 determines whether or not the i-th action identifier exists. If the i-th action identifier exists, go to step S403, and if the i-th action identifier does not exist, return to the upper process.
(ステップS403)分類部131は、i番目の対処識別子に対応する2以上の教師データを分類する。かかる分類処理の例について、図5のフローチャートを用いて説明する。
(Step S403) The classification unit 131 classifies two or more teacher data corresponding to the i-th action identifier. An example of such classification processing will be described with reference to the flowchart of FIG.
(ステップS404)学習情報取得部132は、ステップS403における分類処理の結果を用いて学習処理を行い、学習器を取得する。学習処理の例について、図6のフローチャートを用いて説明する。
(Step S404) The learning information acquisition unit 132 performs learning processing using the result of the classification processing in step S403, and acquires a learning device. An example of learning processing will be described with reference to the flowchart of FIG.
(ステップS405)学習情報取得部132は、ステップS404で取得した学習器を、i番目の対処識別子に対応付けて、学習情報格納部112に蓄積する。
(Step S405) The learning information acquisition unit 132 stores the learning device acquired in step S404 in the learning information storage unit 112 in association with the i-th action identifier.
(ステップS406)処理部13は、カウンタiを1、インクリメントする。ステップS402に戻る。
(Step S406) The processing unit 13 increments the counter i by 1. Return to step S402.
次に、ステップS403の分類処理の例について、図5のフローチャートを用いて説明する。
Next, an example of the classification processing in step S403 will be described using the flowchart of FIG.
(ステップS501)分類部131は、着目する対処識別子(S402のi番目の対処識別子)に対応するすべての教師データを教師データ格納部111から取得する。
(Step S501) The classification unit 131 acquires from the teacher data storage unit 111 all training data corresponding to the action identifier of interest (the i-th action identifier in S402).
(ステップS502)分類部131は、カウンタiに1を代入する。
(Step S502) The classification unit 131 substitutes 1 for the counter i.
(ステップS503)分類部131は、ステップS501で取得した教師データの中で、i番目の教師データが存在するか否かを判断する。i番目の教師データが存在する場合はステップS504に行き、i番目の教師データが存在しない場合は上位処理にリターンする。
(Step S503) The classification unit 131 determines whether or not i-th teacher data exists in the teacher data acquired in step S501. If the i-th teacher data exists, the process goes to step S504, and if the i-th teacher data does not exist, the process returns to the upper process.
(ステップS504)分類部131は、i番目の教師データに対する効果情報を取得する。分類部131は、例えば、i番目の教師データが有する第一結果情報と第二結果情報とを取得し、当該第一結果情報と当該第二結果情報との差異に関する効果情報を取得する。分類部131は、例えば、i番目の教師データが有する効果情報を取得する。
(Step S504) The classification unit 131 acquires effect information for the i-th teacher data. For example, the classification unit 131 acquires the first result information and the second result information included in the i-th teacher data, and acquires the effect information regarding the difference between the first result information and the second result information. The classification unit 131 acquires, for example, effect information of i-th teacher data.
(ステップS505)分類部131は、i番目の教師データが有する満足度を取得する。
(Step S505) The classification unit 131 acquires the satisfaction level of the i-th teacher data.
(ステップS506)分類部131は、ステップS504で取得した効果情報およびステップS505で取得した満足度を用いて、当該効果情報および当該満足度に対応するクラス識別子を取得する。
(Step S506) Using the effect information acquired in step S504 and the satisfaction level acquired in step S505, the classification unit 131 acquires a class identifier corresponding to the effect information and the satisfaction level.
(ステップS507)分類部131は、ステップS506で取得したクラス識別子に、i番目の教師データを対応付ける。
(Step S507) The classification unit 131 associates the i-th teacher data with the class identifier acquired in step S506.
(ステップS508)分類部131は、カウンタiを1、インクリメントする。ステップS503に戻る。
(Step S508) The classification unit 131 increments the counter i by 1. Return to step S503.
なお、図5のフローチャートにおいて、分類部131は、効果情報および満足度を用いて、教師データのクラスを決定した。しかし、分類部131は、効果情報、満足度のうちの一方を用いて、教師データのクラスを決定しても良い。
In addition, in the flowchart of FIG. 5, the classification unit 131 determines the class of the training data using the effect information and the degree of satisfaction. However, the classification unit 131 may use one of the effect information and the degree of satisfaction to determine the class of the teacher data.
また、図5のフローチャートにおいて、分類部131は、上述した公知のクラスター分析のアルゴリズムを用いて、2以上の教師データを分類しても良い。
In addition, in the flowchart of FIG. 5, the classification unit 131 may classify two or more pieces of teacher data using the known cluster analysis algorithm described above.
次に、ステップS404の学習処理の例について、図6のフローチャートを用いて説明する。
Next, an example of the learning process in step S404 will be described using the flowchart of FIG.
(ステップS601)学習情報取得部132は、カウンタiに1を代入する。
(Step S601) The learning information acquisition unit 132 substitutes 1 for the counter i.
(ステップS602)学習情報取得部132は、ステップS403において分類部131が分類したi番目のクラスのクラス識別子が存在するか否かを判断する。i番目のクラス識別子が存在する場合はステップS603に行き、存在しない場合は上位処理にリターンする。
(Step S602) The learning information acquisition unit 132 determines whether the class identifier of the i-th class classified by the classification unit 131 in step S403 exists. If the i-th class identifier exists, go to step S603; otherwise, return to the upper process.
(ステップS603)学習情報取得部132は、1以上の正例を取得する。なお、正例は、i番目のクラス識別子に対応付けられた教師データである。
(Step S603) The learning information acquisition unit 132 acquires one or more positive examples. A positive example is teacher data associated with the i-th class identifier.
(ステップS604)学習情報取得部132は、1以上の負例を取得する。なお、負例は、i番目のクラス識別子に対応付けられていない教師データである。i番目のクラス識別子に対応付けられていない教師データは、通常、i番目のクラス識別子以外のクラス識別子に対応付けられた教師データである。
(Step S604) The learning information acquisition unit 132 acquires one or more negative examples. A negative example is teacher data that is not associated with the i-th class identifier. Teacher data not associated with the i-th class identifier is usually teacher data associated with a class identifier other than the i-th class identifier.
(ステップS605)学習情報取得部132は、ステップS603で取得した1以上の正例と、ステップS604で取得した1以上の負例とを用いて、機械学習の学習処理を行い、学習器を取得する。なお、かかる学習器は、i番目のクラスに属するか否かを判断するための学習器であり、二値分類を行う学習器である。
(Step S605) The learning information acquisition unit 132 performs machine learning learning processing using the one or more positive examples acquired in step S603 and the one or more negative examples acquired in step S604, and acquires a learning device. do. This learning device is a learning device for determining whether or not it belongs to the i-th class, and is a learning device that performs binary classification.
(ステップS606)学習情報取得部132は、着目する対処識別子とi番目のクラス識別子とに対応付けて、ステップS605で取得した学習器を学習情報格納部112に蓄積する。
(Step S606) The learning information acquisition unit 132 stores the learning device acquired in step S605 in the learning information storage unit 112 in association with the action identifier of interest and the i-th class identifier.
(ステップS607)学習情報取得部132は、カウンタiを1、インクリメントする。ステップS602に戻る。
(Step S607) The learning information acquisition unit 132 increments the counter i by 1. Return to step S602.
なお、図6のフローチャートにおいて、学習情報取得部132は、着目する対処識別子に対応する2以上の教師データを用いて、各教師データが有する1以上のユーザ属性値を説明変数とし、クラス識別子を目的変数とし、機械学習の学習処理を行い、学習器を取得し、着目する対処識別子に対応付けて、取得した学習器を学習情報格納部112に蓄積しても良い。かかる場合、一の対処識別子に対応する学習器は一つである。かかる学習器は、クラス識別子のうちのいずれかを予測するための学習器である。
Note that in the flowchart of FIG. 6, the learning information acquisition unit 132 uses two or more teacher data corresponding to the action identifier of interest, uses one or more user attribute values possessed by each teacher data as explanatory variables, and class identifiers as explanatory variables. A machine learning learning process may be performed to obtain a learning device using an objective variable, and the obtained learning device may be stored in the learning information storage unit 112 in association with the action identifier of interest. In this case, one learner corresponds to one action identifier. Such a learner is a learner for predicting any of the class identifiers.
次に、ステップS304の学習情報作成処理の第二の例について、図7のフローチャートを用いて説明する。学習情報作成処理の第二の例は、対処識別子を取得するための学習器を取得する場合の例である。また、第二の例で取得される学習器は、対応する対処識別子で識別される対処を行うべきか否かを判断するための学習器であり、対処ごとに取得される。かかる学習器は、二値分類を行う学習器である。
Next, a second example of the learning information creation process in step S304 will be described using the flowchart of FIG. A second example of learning information creation processing is an example of acquiring a learning device for acquiring a countermeasure identifier. Also, the learning device acquired in the second example is a learning device for determining whether or not to take the action identified by the corresponding action identifier, and is acquired for each action. Such a learner is a learner that performs binary classification.
(ステップS701)学習情報取得部132は、カウンタiに1を代入する。
(Step S701) The learning information acquisition unit 132 substitutes 1 for the counter i.
(ステップS702)学習情報取得部132は、i番目の対処識別子が存在するか否かを判断する。i番目の対処識別子が存在する場合はステップS703に行き、存在しない場合は上位処理にリターンする。
(Step S702) The learning information acquisition unit 132 determines whether or not the i-th action identifier exists. If the i-th countermeasure identifier exists, go to step S703; otherwise, return to the upper process.
(ステップS703)学習情報取得部132は、i番目の対処識別子に対応する2以上の教師データを教師データ格納部111から取得する。
(Step S703) The learning information acquisition unit 132 acquires two or more teacher data corresponding to the i-th action identifier from the teacher data storage unit 111.
(ステップS704)学習情報取得部132は、ステップS703で取得した2以上の教師データから、1以上の正例を取得する。正例は、正例条件に合致する教師データである。
(Step S704) The learning information acquisition unit 132 acquires one or more positive examples from the two or more teacher data acquired in step S703. A positive example is teacher data that meets the positive example condition.
なお、正例条件は、対処を行うべきであると決定するための条件である。正例条件は、効果条件を満たすこと、満足度条件を満たすことのうちの1つまたは2つの条件でも良い。正例条件は、例えば、効果情報と満足度のうちの1または2種類以上の情報に基づく条件である。正例条件は、例えば、「効果情報が閾値以上または閾値より大きいこと」、「満足度が閾値以上または閾値より大きいこと」、「効果情報が閾値以上または閾値より大きいこと、かつ満足度が閾値以上または閾値より大きいこと」である。
It should be noted that the positive case condition is a condition for determining that action should be taken. A positive example condition may be one or two of satisfying an effect condition and satisfying a satisfaction condition. A positive example condition is, for example, a condition based on one or more types of information among effect information and satisfaction. Positive example conditions include, for example, "effect information is greater than or equal to the threshold value", "satisfaction is greater than or equal to the threshold value", "effect information is greater than or equal to the threshold value and satisfaction is greater than the threshold value greater than or equal to a threshold”.
(ステップS705)学習情報取得部132は、ステップS703で取得した2以上の教師データから、1以上の負例を取得する。負例は、正例条件に合致しない教師データである。
(Step S705) The learning information acquisition unit 132 acquires one or more negative examples from the two or more teacher data acquired in step S703. Negative examples are training data that do not meet the positive example conditions.
(ステップS706)学習情報取得部132は、ステップS704で取得した1以上の正例とステップS705で取得した1以上の負例とを用いて、機械学習の学習処理を行い、学習器を取得する。
(Step S706) The learning information acquisition unit 132 acquires a learning device by performing machine learning learning processing using the one or more positive examples acquired in step S704 and the one or more negative examples acquired in step S705. .
(ステップS707)学習情報取得部132は、ステップS706で取得した学習器を、着目する対処識別子に対応付けて学習情報格納部112に蓄積する。
(Step S707) The learning information acquisition unit 132 stores the learning device acquired in step S706 in the learning information storage unit 112 in association with the action identifier of interest.
(ステップS708)学習情報取得部132は、カウンタiを1、インクリメントする。ステップS702に戻る。
(Step S708) The learning information acquisition unit 132 increments the counter i by 1. Return to step S702.
次に、ステップS304の学習情報作成処理の第三の例について、図8のフローチャートを用いて説明する。学習情報作成処理の第三の例は、対処識別子を取得するための一の学習器を取得する場合の例である。なお、かかる学習器は、通常、多値分類を行うための学習器である。
Next, a third example of the learning information creation process in step S304 will be described using the flowchart of FIG. A third example of the learning information creation process is an example of acquiring one learning device for acquiring a countermeasure identifier. Note that such a learning device is usually a learning device for performing multilevel classification.
(ステップS801)学習情報取得部132は、正例条件に合致する1以上の教師データを教師データ格納部111から取得する。
(Step S801) The learning information acquiring unit 132 acquires from the teaching data storage unit 111 one or more teacher data that match the positive case condition.
(ステップS802)学習情報取得部132は、ステップS801で取得した1以上の教師データを、機械学習の学習モジュールに与え、学習器を取得する。
(Step S802) The learning information acquisition unit 132 gives the one or more teacher data acquired in step S801 to the learning module for machine learning, and acquires a learning device.
(ステップS803)学習情報取得部132は、ステップS802で習得した学習器を学習情報格納部112に蓄積する。上位処理にリターンする。
(Step S803) The learning information acquisition unit 132 accumulates the learners learned in step S802 in the learning information storage unit 112. Return to upper process.
次に、ステップS304の学習情報作成処理の第四の例について、図9のフローチャートを用いて説明する。学習情報作成処理の第四の例は、対処識別子ごとの対応表を作成する。図9のフローチャートにおいて、図4のフローチャートと同一のステップについて、説明を省略する。
Next, a fourth example of the learning information creation process in step S304 will be described using the flowchart of FIG. A fourth example of learning information creation processing creates a correspondence table for each countermeasure identifier. In the flow chart of FIG. 9, the description of the same steps as in the flow chart of FIG. 4 will be omitted.
(ステップS901)学習情報取得部132は、カウンタjに1を代入する。
(Step S901) The learning information acquisition unit 132 substitutes 1 for the counter j.
(ステップS902)学習情報取得部132は、i番目の対処識別子に対応するj番目のクラス識別子が存在するか否かを判断する。j番目のクラス識別子が存在する場合はステップS903に行き、存在しない場合はステップS907に行く。
(Step S902) The learning information acquisition unit 132 determines whether or not the j-th class identifier corresponding to the i-th action identifier exists. If the j-th class identifier exists, go to step S903, otherwise go to step S907.
(ステップS903)学習情報取得部132は、i番目の対処識別子とj番目のクラス識別子とに対応する1以上の教師データを取得する。
(Step S903) The learning information acquisition unit 132 acquires one or more teacher data corresponding to the i-th action identifier and the j-th class identifier.
(ステップS904)学習情報取得部132は、1以上の各教師データから構成されるベクトルの代表ベクトルを取得する。
(Step S904) The learning information acquisition unit 132 acquires a representative vector of vectors composed of one or more teacher data.
(ステップS905)学習情報取得部132は、j番目のクラス識別子に対応付けて、ステップS904で取得した代表ベクトルを一時蓄積する。
(Step S905) The learning information acquisition unit 132 temporarily accumulates the representative vector acquired in step S904 in association with the j-th class identifier.
(ステップS906)カ学習情報取得部132は、カウンタjを1、インクリメントする。ステップS902に戻る。
(Step S906) The learning information acquisition unit 132 increments the counter j by 1. Return to step S902.
(ステップS907)学習情報取得部132は、ステップS905で取得した代表ベクトルとクラス識別子とを有する2以上の対応情報を有する対応表を構成し、i番目の対処識別子に対応付けて、当該対応表を学習情報格納部112に蓄積する。
(Step S907) The learning information acquisition unit 132 constructs a correspondence table having two or more pieces of correspondence information having the representative vectors and class identifiers acquired in step S905, associates the i-th measure identifier with the correspondence table are stored in the learning information storage unit 112 .
(ステップS908)学習情報取得部132は、カウンタiを1、インクリメントする。ステップS402に戻る。
(Step S908) The learning information acquisition unit 132 increments the counter i by 1. Return to step S402.
次に、ステップS306の出力情報取得処理の例について、図10のフローチャートを用いて説明する。
Next, an example of the output information acquisition process in step S306 will be described using the flowchart of FIG.
(ステップS1001)対処決定部133は、対処情報を取得する。対処情報取得処理の例について、図11、図12、図13、図14のフローチャートを用いて説明する。
(Step S1001) The handling determining unit 133 acquires handling information. An example of handling information acquisition processing will be described with reference to flowcharts of FIGS. 11, 12, 13, and 14. FIG.
(ステップS1002)根拠情報取得部134は、根拠情報を取得する。根拠情報処理の例について、図15のフローチャートを用いて説明する。
(Step S1002) The basis information acquisition unit 134 acquires basis information. An example of basis information processing will be described with reference to the flowchart of FIG. 15 .
(ステップS1003)報酬情報取得部135は、報酬情報を取得する。報酬情報処理の例について、図16のフローチャートを用いて説明する。
(Step S1003) The remuneration information acquisition unit 135 acquires remuneration information. An example of reward information processing will be described using the flowchart of FIG. 16 .
(ステップS1004)処理部13は、対処情報、根拠情報、報酬情報を用いて出力情報を構成する。上位処理にリターンする。
(Step S1004) The processing unit 13 forms output information using the countermeasure information, ground information, and remuneration information. Return to upper process.
次に、ステップS1001の対処情報取得処理の例について、図11のフローチャートを用いて説明する。なお、図11のフローチャートにおいて、対処ごと、およびクラスごとの学習器を用いる。
Next, an example of the countermeasure information acquisition process in step S1001 will be described using the flowchart of FIG. In addition, in the flowchart of FIG. 11, a learner is used for each measure and for each class.
(ステップS1101)対処決定部133は、受け付けられたユーザ情報が有する1以上のユーザ属性値を取得する。
(Step S1101) The handling determination unit 133 acquires one or more user attribute values included in the received user information.
(ステップS1102)対処決定部133は、カウンタiに1を代入する。
(Step S1102) The handling determination unit 133 substitutes 1 for the counter i.
(ステップS1103)対処決定部133は、i番目の対処識別子が存在するか否かを判断する。i番目の対処識別子が存在する場合はステップS1104に行き、存在しない場合は上位処理にリターンする。
(Step S1103) The handling determination unit 133 determines whether or not the i-th handling identifier exists. If the i-th countermeasure identifier exists, go to step S1104; otherwise, return to the upper process.
(ステップS1104)対処決定部133は、カウンタjに1を代入する。
(Step S1104) The handling determination unit 133 substitutes 1 for the counter j.
(ステップS1105)対処決定部133は、j番目のクラス識別子が存在するか否かを判断する。j番目のクラス識別子が存在する場合はステップS1106に行き、存在しない場合はステップS1111に行く。
(Step S1105) The handling determination unit 133 determines whether or not the j-th class identifier exists. If the j-th class identifier exists, go to step S1106; if not, go to step S1111.
(ステップS1106)対処決定部133は、i番目の対処識別子とj番目のクラス識別子とに対応する学習器を学習情報格納部112から取得する。
(Step S1106) The handling determination unit 133 acquires from the learning information storage unit 112 the learner corresponding to the i-th handling identifier and the j-th class identifier.
(ステップS1107)対処決定部133は、ステップS1106で取得した学習器とステップS1101で取得した1以上のユーザ属性値とを用いて、機械学習の予測処理を行い、予測結果を取得する。なお、予測結果は、j番目のクラス識別子で識別されるクラスに属するか否かの情報を含む。予測結果は、スコアを含むことは好適である。
(Step S1107) The handling determination unit 133 uses the learner acquired in step S1106 and one or more user attribute values acquired in step S1101 to perform machine learning prediction processing and acquire a prediction result. Note that the prediction result includes information as to whether or not it belongs to the class identified by the j-th class identifier. Prediction results preferably include scores.
(ステップS1108)対処決定部133は、ステップS1107で取得した予測結果が、「j番目のクラス識別子で識別されるクラスに属する」との予測結果である場合はステップS1109に行き、「j番目のクラス識別子で識別されるクラスに属さない」との予測結果である場合はステップS1110に行く。
(Step S1108) If the prediction result obtained in step S1107 is a prediction result that "belongs to the class identified by the j-th class identifier", the handling determination unit 133 goes to step S1109, does not belong to the class identified by the class identifier", go to step S1110.
(ステップS1109)対処決定部133は、i番目の対処識別子に対応付けて、j番目のクラス識別子を図示しないバッファに一時蓄積する。
(Step S1109) The handling determination unit 133 temporarily stores the j-th class identifier in a buffer (not shown) in association with the i-th handling identifier.
(ステップS1110)対処決定部133は、カウンタjを1、インクリメントする。ステップS1105に戻る。
(Step S1110) The handling determination unit 133 increments the counter j by 1. Return to step S1105.
(ステップS1111)対処決定部133は、カウンタiを1、インクリメントする。ステップS1103に戻る。
(Step S1111) The handling determination unit 133 increments the counter i by 1. Return to step S1103.
なお、図11のフローチャートにおいて、対処識別子ごとのクラス識別子が決定された。そして、対処決定部133は、決定されたクラス識別子が取得条件を満たす場合のみ、当該クラス識別子に対応する対処識別子のみを格納部11に蓄積しても良い。
It should be noted that in the flowchart of FIG. 11, the class identifier was determined for each countermeasure identifier. Then, the handling determination unit 133 may store only the handling identifier corresponding to the determined class identifier in the storage unit 11 only when the determined class identifier satisfies the acquisition condition.
次に、ステップS1001の対処情報取得処理の例について、図12のフローチャートを用いて説明する。図12のフローチャートにおいて、図11のフローチャートと同一のステップについて、説明を省略する。なお、図12のフローチャートにおいて、対処を行うか否かを判断するための学習器であり、対処ごとの学習器を用いる。
Next, an example of the countermeasure information acquisition process in step S1001 will be described using the flowchart of FIG. In the flowchart of FIG. 12, description of the same steps as in the flowchart of FIG. 11 will be omitted. In addition, in the flowchart of FIG. 12, the learning device is for determining whether or not to take action, and a learning device for each action is used.
(ステップS1201)対処決定部133は、i番目の対処識別子に対応する学習器を学習情報格納部112から取得する。
(Step S<b>1201 ) The handling determination unit 133 acquires the learning device corresponding to the i-th handling identifier from the learning information storage unit 112 .
(ステップS1202)対処決定部133は、ステップS1201で取得した学習器とステップS1101で取得した1以上のユーザ属性値とを用いて、機械学習の予測処理を行い、予測結果を取得する。なお、予測結果は、j番目の対処識別子で識別される対処を行って効果があるか否か(満たすか否か)の情報を含む。予測結果は、スコアを含むことは好適である。
(Step S1202) The handling determination unit 133 uses the learner acquired in step S1201 and one or more user attribute values acquired in step S1101 to perform machine learning prediction processing and acquire a prediction result. Note that the prediction result includes information as to whether the countermeasure identified by the j-th countermeasure identifier is effective (satisfied). Prediction results preferably include scores.
(ステップS1203)対処決定部133は、ステップS1202における予測結果が「満たす」(例えば、「1」)を含む場合はステップS1204に行き、「満たさない」(例えば、「0」)を含む場合はステップS1207に行く。なお、予測結果が「満たす」ことは、当該対処識別子で識別される対処を行うべきであることを示す。
(Step S1203) If the prediction result in step S1202 includes "satisfy" (eg, "1"), the handling determination unit 133 proceeds to step S1204; Go to step S1207. Note that "satisfied" in the prediction result indicates that the action identified by the action identifier should be taken.
(ステップS1204)対処決定部133は、ステップS1202における予測処理のスコアを取得する。
(Step S1204) The handling determination unit 133 acquires the score of the prediction process in step S1202.
(ステップS1205)対処決定部133は、ステップS1204で取得したスコアが条件を満たすか否かを判断する。条件を満たす場合はステップS1206に行き、条件を満たさない場合はステップS1207に行く。なお、条件は、スコアが高いことであり、例えば、「スコアが閾値以上」「スコアが閾値より大きい」ことである。
(Step S1205) The handling determination unit 133 determines whether the score obtained in step S1204 satisfies the conditions. If the condition is satisfied, go to step S1206, otherwise go to step S1207. The condition is that the score is high, for example, "the score is greater than or equal to the threshold" and "the score is greater than the threshold".
(ステップS1206)対処決定部133は、j番目の対処識別子を格納部11に蓄積する。対処決定部133は、ステップS1204で取得したスコアも蓄積することは好適である。
(Step S1206) The handling determination unit 133 accumulates the j-th handling identifier in the storage unit 11. FIG. It is preferable that the handling determination unit 133 also accumulates the scores acquired in step S1204.
(ステップS1207)対処決定部133は、カウンタiを1、インクリメントする。ステップS1105に戻る。
(Step S1207) The handling determination unit 133 increments the counter i by 1. Return to step S1105.
次に、ステップS1001の対処情報取得処理の例について、図13のフローチャートを用いて説明する。図13のフローチャートにおいて、図11のフローチャートと同一のステップについて、説明を省略する。なお、図13のフローチャートにおいて、対処識別子を出力する学習器を用いる。
Next, an example of the countermeasure information acquisition process in step S1001 will be described using the flowchart of FIG. In the flowchart of FIG. 13, the description of the same steps as in the flowchart of FIG. 11 will be omitted. Note that in the flowchart of FIG. 13, a learning device that outputs a countermeasure identifier is used.
(ステップS1301)対処決定部133は、学習器を学習情報格納部112から取得する。
(Step S<b>1301 ) The handling determination unit 133 acquires a learning device from the learning information storage unit 112 .
(ステップS1302)対処決定部133は、ステップS1301で取得した学習器とステップS1101で取得した1以上のユーザ属性値とを用いて、機械学習の予測処理を行い、予測結果を取得する。なお、予測結果は、対処識別子を含む。予測結果は、スコアを含むことは好適である。
(Step S1302) The handling determination unit 133 uses the learner acquired in step S1301 and one or more user attribute values acquired in step S1101 to perform machine learning prediction processing and acquire a prediction result. Note that the prediction result includes a countermeasure identifier. Prediction results preferably include scores.
(ステップS1303)対処決定部133は、ステップS1302で取得した対処識別子を蓄積する。上位処理にリターンする。なお、ここで、対処決定部133は、スコアも蓄積することは好適である。
(Step S1303) The handling determination unit 133 accumulates the handling identifier acquired in step S1302. Return to upper process. Here, it is preferable that the handling determination unit 133 also accumulates scores.
次に、ステップS1001の対処情報取得処理の例について、図14のフローチャートを用いて説明する。図14のフローチャートにおいて、図11のフローチャートと同一のステップについて、説明を省略する。なお、図14のフローチャートにおいて、クラス識別子を取得するための対応表を用いる。
Next, an example of the countermeasure information acquisition process in step S1001 will be described using the flowchart of FIG. In the flowchart of FIG. 14, description of the same steps as in the flowchart of FIG. 11 will be omitted. In addition, in the flowchart of FIG. 14, a correspondence table for acquiring class identifiers is used.
(ステップS1401)対処決定部133は、ステップS1101で取得した1以上の各ユーザ属性値を要素とするベクトルを構成する。次に、対処決定部133は、当該ベクトルと最も近似するベクトルを有する対応情報を、学習情報格納部112の対応表であり、i番目の対処識別子と対になる対応表から決定する。
(Step S1401) The handling determination unit 133 constructs a vector whose elements are one or more user attribute values acquired in step S1101. Next, the countermeasure determining unit 133 determines correspondence information having a vector that is most similar to the vector from the correspondence table of the learning information storage unit 112 that is paired with the i-th countermeasure identifier.
(ステップS1402)対処決定部133は、ステップS1401で決定した対応情報が有するクラス識別子を取得する。
(Step S1402) The handling determination unit 133 acquires the class identifier included in the correspondence information determined in step S1401.
(ステップS1403)対処決定部133は、ステップS1402で取得したクラス識別子が条件を満たすか否かを判断する。条件を満たす場合はステップS1404に行き、条件を満たさない場合はステップS1405に行く。なお、ここでの条件は、クラス識別子が予め決められた1以上のクラス識別子のうちのいずれかのクラス識別子(例えば、効果条件を満たすクラスの識別子)であることである。
(Step S1403) The handling determination unit 133 determines whether the class identifier acquired in step S1402 satisfies the conditions. If the condition is satisfied, go to step S1404, otherwise go to step S1405. The condition here is that the class identifier is one of one or more predetermined class identifiers (for example, an identifier of a class that satisfies the effect condition).
(ステップS1404)対処決定部133は、ステップS1402で取得したクラス識別子をi番目の対処識別子と対にして蓄積する。
(Step S1404) The handling determining unit 133 stores the class identifier acquired in step S1402 and the i-th handling identifier as a pair.
(ステップS1405)対処決定部133は、カウンタiを1、インクリメントする。ステップS1103に戻る。
(Step S1405) The handling determination unit 133 increments the counter i by 1. Return to step S1103.
なお、図14のフローチャートにおいて、対処識別子を取得するための対応表を用いても良い。かかる場合、ステップS1402で、対処決定部133は、ステップS1401で決定した対応情報が有する対処識別子を取得し、蓄積する。また、かかる場合、ステップS1403、ステップS1404は不要である。
In addition, in the flowchart of FIG. 14, a correspondence table for acquiring the countermeasure identifier may be used. In such a case, in step S1402, the handling determination unit 133 acquires and accumulates the handling identifier included in the correspondence information determined in step S1401. Also, in such a case, steps S1403 and S1404 are unnecessary.
次に、ステップS1002の根拠情報処理の例について、図15のフローチャートを用いて説明する。
Next, an example of the basis information processing in step S1002 will be described using the flowchart of FIG.
(ステップS1501)根拠情報取得部134は、カウンタiに1を代入する。
(Step S1501) The basis information acquisition unit 134 substitutes 1 for the counter i.
(ステップS1502)根拠情報取得部134は、ステップS1002で取得された対処識別子の中で、i番目の対処識別子が存在するか否かを判断する。i番目の対処識別子が存在する場合はステップS1503に行き、存在しない場合は上位処理にリターンする。
(Step S1502) The basis information acquisition unit 134 determines whether or not the i-th measure identifier exists among the measure identifiers acquired in step S1002. If the i-th countermeasure identifier exists, go to step S1503; otherwise, return to the upper process.
(ステップS1503)根拠情報取得部134は、元情報を取得する。なお、元情報とは、根拠レベルを取得する際に使用する情報である。元情報は、例えば、対処識別子に対応するクラス識別子、対処識別子に対応するスコアである。
(Step S1503) The basis information acquisition unit 134 acquires original information. Note that the original information is information used when acquiring the basis level. The original information is, for example, a class identifier corresponding to the handling identifier and a score corresponding to the handling identifier.
(ステップS1504)根拠情報取得部134は、ステップS1503で取得した元情報に対応する根拠レベルを取得する。
(Step S1504) The basis information acquisition unit 134 acquires the basis level corresponding to the original information acquired in step S1503.
なお、根拠情報取得部134は、例えば、ステップS1503で取得したクラス識別子に対応する根拠レベルを取得する。かかる場合、2以上の各クラス識別子と対になる根拠レベルが格納部11に格納されている。
Note that the basis information acquisition unit 134 acquires, for example, the basis level corresponding to the class identifier acquired in step S1503. In such a case, the storage unit 11 stores two or more class identifiers and evidence levels paired with each class identifier.
また、拠情報取得部134は、例えば、ステップS1503で取得したスコアに対応する根拠レベルを取得する。かかる場合、スコアの2以上の各条件と対になる根拠レベルが格納部11に格納されている。スコアの条件は、通常、スコアの幅を示す情報である。なお、スコアは、機械学習の予測処理において取得されたスコアである。
Also, the basis information acquisition unit 134 acquires, for example, the basis level corresponding to the score acquired in step S1503. In such a case, the storage unit 11 stores the ground level paired with each condition of two or more scores. The score condition is usually information indicating the score range. Note that the score is a score obtained in prediction processing of machine learning.
(ステップS1505)根拠情報取得部134は、i番目の対処識別子を取得する元になった1以上の教師データを取得する。
(Step S1505) The basis information acquisition unit 134 acquires one or more teacher data from which the i-th measure identifier is acquired.
(ステップS1506)根拠情報取得部134は、ステップS1505で取得した1以上の各教師データを用いて、各教師データに対応する効果情報を取得する。次に、根拠情報取得部134は、1以上の効果情報を用いて、有効性情報を取得し、i番目の対処識別子に対応付けて、図示しないバッファに蓄積する。
(Step S1506) The basis information acquisition unit 134 acquires effect information corresponding to each teacher data using one or more of each teacher data acquired in step S1505. Next, the basis information acquisition unit 134 acquires effectiveness information using one or more effect information, associates it with the i-th countermeasure identifier, and stores it in a buffer (not shown).
(ステップS1507)根拠情報取得部134は、ステップS1505で取得した1以上の各教師データから満足度を取得する。
(Step S1507) The basis information acquisition unit 134 acquires the degree of satisfaction from each of the one or more teacher data acquired in step S1505.
(ステップS1508)根拠情報取得部134は、ステップS1507で取得した1以上の満足度を用いて、満足度情報を取得し、i番目の対処識別子に対応付けて、図示しないバッファに蓄積する。
(Step S1508) The basis information acquisition unit 134 acquires satisfaction level information using one or more satisfaction levels acquired in step S1507, associates it with the i-th measure identifier, and stores it in a buffer (not shown).
(ステップS1509)根拠情報取得部134は、カウンタiを1、インクリメントする。ステップS1502に戻る。
(Step S1509) The basis information acquisition unit 134 increments the counter i by 1. Return to step S1502.
なお、図15のフローチャートにおいて、根拠レベル、効果情報、満足度情報が取得されたが、これらの情報のうち、1または2種類の情報のみを取得しても良い。
Although the basis level, effect information, and satisfaction level information are acquired in the flowchart of FIG. 15, only one or two types of information may be acquired.
次に、ステップS1003の報酬情報処理の例について、図16のフローチャートを用いて説明する。
Next, an example of the reward information processing in step S1003 will be described using the flowchart of FIG.
(ステップS1601)報酬情報取得部135は、カウンタiに1を代入する。
(Step S1601) The remuneration information acquisition unit 135 substitutes 1 for the counter i.
(ステップS1602)報酬情報取得部135は、i番目の対処識別子が存在するか否かを判断する。i番目の対処識別子が存在する場合はステップS1603に行き、存在しない場合は上位処理にリターンする。
(Step S1602) The remuneration information acquisition unit 135 determines whether or not the i-th action identifier exists. If the i-th countermeasure identifier exists, go to step S1603; otherwise, return to the upper process.
(ステップS1603)報酬情報取得部135は、i番目の対処識別子が報酬条件に合致するか否かを判断する。報酬条件に合致する場合はステップS1604に行き、報酬条件に合致しない場合はステップS1606に行く。
(Step S1603) The remuneration information acquisition unit 135 determines whether or not the i-th action identifier matches the remuneration conditions. If the remuneration conditions are met, the process goes to step S1604, and if the remuneration conditions are not met, the process goes to step S1606.
報酬情報取得部135は、例えば、i番目の対処識別子、i番目の対処識別子に対応付く根拠レベル、効果情報、また満足度情報のいずれか1以上を用いて、i番目の対処識別子が報酬条件に合致するか否かを判断する。
For example, the remuneration information acquisition unit 135 uses one or more of the i-th coping identifier, the basis level associated with the i-th coping identifier, the effect information, and the satisfaction level information to determine whether the i-th coping identifier is the remuneration condition. It is determined whether or not the
なお、報酬条件は、報酬情報を取得するための条件である。報酬条件は、例えば、「i番目の対処識別子に対応付けられた報酬情報が格納部11に格納されていること」、「i番目の対処識別子に対応付く根拠レベルが「根拠がないことを示す情報である」こと」、「i番目の対処識別子に対応付く根拠レベルが閾値以下または閾値より小さいであること」、「i番目の対処識別子に対応付く効果情報が示す効果が条件を満たすほど低いこと」、「i番目の対処識別子に対応付く満足度情報が示す満足の度合いが条件を満たすほど低いこと」である。
It should be noted that the remuneration conditions are the conditions for obtaining remuneration information. The remuneration conditions are, for example, ``that the remuneration information associated with the i-th action identifier is stored in the storage unit 11'', and ``the grounds level associated with the i-th action identifier indicates that there is no grounds. information", "the ground level associated with the i-th action identifier is equal to or less than the threshold value or smaller than the threshold value", "the effect indicated by the effect information associated with the i-th action identifier is low enough to satisfy the conditions "that the degree of satisfaction indicated by the satisfaction level information associated with the i-th measure identifier is so low as to satisfy the condition".
(ステップS1604)報酬情報取得部135は、報酬情報を格納部11から取得する。報酬情報取得部135は、例えば、i番目の対処識別子に対応付く報酬情報を格納部11から取得する。報酬情報取得部135は、例えば、報酬条件に対応付く報酬情報を格納部11から取得する。
(Step S1604) The remuneration information acquisition unit 135 acquires remuneration information from the storage unit 11. The remuneration information acquisition unit 135 acquires remuneration information associated with the i-th action identifier from the storage unit 11, for example. The remuneration information acquisition unit 135 acquires, for example, remuneration information associated with remuneration conditions from the storage unit 11 .
(ステップS1605)報酬情報取得部135は、ステップS1604で取得した報酬情報を、出力する報酬情報として、i番目の対処識別子に対応付けて、図示しないバッファに一時蓄積する。
(Step S1605) The remuneration information acquisition unit 135 temporarily stores the remuneration information acquired in step S1604 as remuneration information to be output in a buffer (not shown) in association with the i-th action identifier.
(ステップS1606)報酬情報取得部135は、カウンタiを1、インクリメントする。ステップS1602に戻る。
(Step S1606) The remuneration information acquisition unit 135 increments the counter i by 1. Return to step S1602.
次に、端末装置2の動作例について説明する。端末装置2の端末受付部22は、ユーザ情報を受け付ける。次に、端末処理部23は、当該ユーザ情報を用いて、送信するユーザ情報を構成する。端末送信部24は、当該ユーザ情報を情報処理装置1に送信する。次に、ユーザ情報の送信に応じて、端末受信部25は、情報処理装置1から出力情報を受信する。次に、端末処理部23は、当該出力情報を用いて、出力する情報を構成する。端末出力部26は、当該構成された情報を出力する。出力された情報は、例えば、対処識別子、根拠情報、報酬情報を有する。
Next, an operation example of the terminal device 2 will be described. The terminal reception unit 22 of the terminal device 2 receives user information. Next, the terminal processing unit 23 configures user information to be transmitted using the user information. The terminal transmission unit 24 transmits the user information to the information processing device 1 . Next, the terminal reception unit 25 receives output information from the information processing device 1 in response to transmission of the user information. Next, the terminal processing unit 23 configures information to be output using the output information. The terminal output unit 26 outputs the configured information. The output information includes, for example, a countermeasure identifier, basis information, and remuneration information.
また、端末装置2の端末受付部22は、教師データを受け付けても良い。かかる場合、端末処理部23は、当該教師データを用いて、送信する教師データを構成する。次に、端末送信部24は、当該教師データを情報処理装置1に送信する。
Also, the terminal reception unit 22 of the terminal device 2 may receive teacher data. In such a case, the terminal processing unit 23 uses the teacher data to compose the teacher data to be transmitted. Next, the terminal transmission unit 24 transmits the teacher data to the information processing device 1 .
以下、本実施の形態における情報システムAの具体的な動作例について説明する。
A specific operation example of the information system A in this embodiment will be described below.
今、情報処理装置1の教師データ格納部111には、端末装置2から送信された2以上の教師データを有する教師データ管理表が格納されている、とする。教師データは、何らかの対処を行ったユーザの情報であり、第一結果情報と第二結果情報とを有する。この教師データ管理表は、図17である。教師データ管理表には、「ID」「対処識別子」「第一結果情報」「第二結果情報」「性別」「年齢」「身長」「体重」「回答情報」を有する2以上のレコードが管理されている。「回答情報」は、ユーザに対するアンケートの回答であり、ここでは、「取組情報」「生活習慣情報」「目標」「満足度」を有する。また、「第一結果情報」は、対処識別子で識別される対処を行う前の検査結果である。「第二結果情報」は、対処識別子で識別される対処を行った後の検査結果である。検査結果は、ここでは、最高血圧である。「目標」は、ユーザが目指す最高血圧である。「満足度」は、対処識別子で識別される対処を行った、ユーザの満足の度合いである。
Assume that the teacher data storage unit 111 of the information processing device 1 stores a teacher data management table having two or more pieces of teacher data transmitted from the terminal device 2 . The teacher data is information about a user who has taken some kind of action, and has first result information and second result information. This teaching data management table is shown in FIG. The training data management table manages two or more records having "ID", "treatment identifier", "first result information", "second result information", "gender", "age", "height", "weight", and "response information". It is "Answer information" is an answer to a questionnaire for the user, and has "effort information", "lifestyle information", "goals", and "satisfaction" here. Also, the "first result information" is the inspection result before the treatment identified by the treatment identifier is performed. "Second result information" is the inspection result after taking the treatment identified by the treatment identifier. The test result here is the systolic blood pressure. "Target" is the systolic blood pressure that the user aims for. The “satisfaction level” is the user's degree of satisfaction with the action identified by the action identifier.
また、情報処理装置1の格納部11には、対処識別子「商品A(減塩醤油)」「商品B(減塩味噌)」「商品C(ヨーグルト)」が格納されている、とする。また、ここでは、「商品A」に対応する対処は、商品Aを1ヶ月継続して使用するプログラム(プログラムA)であり、「商品B」に対応する対処は、商品Bを1ヶ月継続して使用するプログラム(プログラムB)であり、「商品C」に対応する対処は、商品Cを2ヶ月継続して使用するプログラム(プログラムC)である、とする。プログラムは、商品やサービス等を継続して摂取等することを言い、チャレンジプログラムとも言うこととする。
It is also assumed that the storage unit 11 of the information processing device 1 stores countermeasure identifiers "product A (reduced salt soy sauce)", "product B (reduced salt miso)" and "product C (yogurt)". Further, here, the action corresponding to "product A" is a program (program A) in which product A is used continuously for one month, and the action corresponding to "product B" is to continue using product B for one month. It is assumed that the program (program B) is a program (program B) that uses product C continuously for two months, and that the measure corresponding to "product C" is a program (program C) that uses product C continuously for two months. The program refers to continuous ingestion of products, services, etc., and is also called a challenge program.
また、格納部11には、クラス識別子「クラスA」に対応付けられた根拠レベル「3」、クラス識別子「クラスB」および「クラスD」に対応付けられた根拠レベル「2」、クラス識別子「クラスC」に対応付けられた根拠レベル「1」、クラス識別子「なし」に対応付けられた根拠レベル「0」を有する根拠レベル判定表が格納されている、とする。
Further, the storage unit 11 stores the basis level "3" associated with the class identifier "class A", the basis level "2" associated with the class identifiers "class B" and "class D", the class identifier " Assume that a basis level determination table is stored that has a basis level "1" associated with class C" and a basis level "0" associated with the class identifier "none".
なお、根拠レベル判定表は、図18に示すように、有効性情報、満足度情報のうちの1以上の情報を用いて根拠レベルを判定するための表であっても良い。かかる根拠レベル判定表は「根拠レベル」「判定条件」を有する。なお、「判定条件」は、根拠レベルを決定するための条件である。つまり、根拠情報取得部134は、有効性情報、満足度情報のうちの1以上の情報を用いて根拠レベルを取得しても良い。また、「根拠レベル=1から3」の判定条件は、例えば、教師データが閾値(例えば、100件)以上または閾値より多く存在する場合に適用される、とする。また、図18の「根拠レベル=1から3」において、「根拠レベル=3」「根拠レベル=2」「根拠レベル=1」の順で適用される、とする。
It should be noted that the basis level determination table may be a table for judging the basis level using one or more information among the effectiveness information and the satisfaction level information, as shown in FIG. The basis level judgment table has "basis level" and "judgment condition". The "judgment condition" is a condition for determining the basis level. That is, the basis information acquisition unit 134 may acquire the basis level using one or more of the effectiveness information and the satisfaction level information. Also, it is assumed that the judgment condition of "foundation level = 1 to 3" is applied, for example, when the number of training data is equal to or greater than a threshold (for example, 100) or more than the threshold. In addition, it is assumed that "ground level = 1 to 3" in Fig. 18 is applied in the order of "ground level = 3", "ground level = 2", and "ground level = 1".
また、格納部11には、目標達成条件「目標達成率>=80%」が格納されている、とする。そして、根拠情報取得部134は、目標達成条件を満たす対処識別子に対して、強く勧めるためのお勧め情報を取得する、とする。お勧め情報は、ここでは「必要」(例えば、「1」)である、とする。なお、「必要」は、目標達成のために、対処識別子で識別される対処を行うことが必要であることを意味する。また、根拠情報取得部134は、目標達成条件を満たさない対処識別子に対して、お勧め情報「不要」(例えば、「0」)を取得する、とする。
It is also assumed that the storage unit 11 stores the target achievement condition "target achievement rate >= 80%". Then, it is assumed that the basis information acquisition unit 134 acquires recommendation information for strongly recommending a measure identifier that satisfies the target achievement condition. It is assumed here that the recommended information is "required" (for example, "1"). Note that "necessary" means that it is necessary to take the action identified by the action identifier in order to achieve the goal. Further, it is assumed that the basis information acquisition unit 134 acquires recommended information “unnecessary” (for example, “0”) for a measure identifier that does not satisfy the goal achievement condition.
また、格納部11には、報酬条件「根拠レベル=0」と、当該報酬条件に対応する報酬情報「30%OFF」とが格納されている、とする。つまり、「根拠レベル=0」に対応する商品に対して、30%OFFの報酬情報(30%引きで、商品が購入できる旨を示す情報)を提示するものとする。
It is also assumed that the storage unit 11 stores a remuneration condition "base level = 0" and remuneration information "30% OFF" corresponding to the remuneration condition. In other words, 30% off remuneration information (information indicating that the product can be purchased with a 30% discount) is presented for the product corresponding to "ground level=0".
かかる状況において、情報処理装置1の分類部131は、対処識別子ごとに、図17の各教師データの第一結果情報と第二結果情報と目標と満足度とを取得する。次に、分類部131は、対処識別子ごとおよび教師データごとに、第一結果情報と第二結果情報と目標を用いて、効果情報を取得する。効果情報は、ここでは、目標達成率である。目標達成率は、例えば、「(第一結果情報-第二結果情報)/(第一結果情報-目標)*100(%)」により算出される、とする。
In this situation, the classification unit 131 of the information processing device 1 acquires the first result information, the second result information, the goal, and the degree of satisfaction of each teacher data in FIG. 17 for each action identifier. Next, the classification unit 131 acquires effect information using the first result information, the second result information, and the goal for each treatment identifier and each training data. The effect information is the target achievement rate here. The target achievement rate is calculated by, for example, "(first result information-second result information)/(first result information-target)*100(%)".
次に、分類部131は、対処識別子ごとに、効果情報と満足度とを用いて、教師データを分類する。ここでは、分類部131は、対処識別子ごとに、例えば、効果情報が60%以上であり、満足度が「4または5」である教師データのクラス識別子を「クラスA」、効果情報が60%未満であり、満足度が「4または5」である教師データのクラス識別子を「クラスB」、効果情報が60%未満であり、満足度が「1または2または3」である教師データのクラス識別子を「クラスC」、効果情報が60%以上であり、満足度が「1または2または3」である教師データのクラス識別子を「クラスD」として、教師データを分類する、とする。かかる教師データの分類の概念を示した図は、図19である。
Next, the classification unit 131 classifies the training data using the effect information and the degree of satisfaction for each treatment identifier. Here, for each measure identifier, the classification unit 131 sets the class identifier of teacher data whose effect information is 60% or more and whose satisfaction level is “4 or 5” to “class A”, and the effect information is 60%. The class identifier of the teacher data whose satisfaction level is "4 or 5" is "class B", the effect information is less than 60%, and the satisfaction level is "1 or 2 or 3". Assume that the teacher data is classified with the identifier as "class C" and the class identifier of the teacher data whose effect information is 60% or more and the degree of satisfaction is "1, 2 or 3" as "class D". FIG. 19 is a diagram showing the concept of such teacher data classification.
次に、学習情報取得部132は、対処識別子ごとに、図17の教師データ管理表から、「第一結果情報」「性別」「年齢」「身長」「体重」「生活習慣情報」「目標」を教師データごとに取得し、当該「第一結果情報」「性別」「年齢」「身長」「体重」「生活習慣情報」「目標」を説明変数とし、クラス識別子を目的変数とするベクトルを構成する。
Next, the learning information acquisition unit 132 retrieves “first result information”, “gender”, “age”, “height”, “weight”, “lifestyle information”, “goal” from the training data management table of FIG. 17 for each coping identifier. is obtained for each training data, and the "first result information", "gender", "age", "height", "weight", "lifestyle information", and "goal" are used as explanatory variables, and a vector is constructed with the class identifier as the objective variable. do.
次に、学習情報取得部132は、対処識別子ごとに、2以上のベクトルを用いて、機械学習の学習処理を行い、対処識別子ごとに、学習器を構成し、対処識別子ごとの学習器を、対処識別子に対応付けて学習情報格納部112に蓄積する。なお、かかる学習器は、「第一結果情報」「性別」「年齢」「身長」「体重」「生活習慣情報」「目標」を有するベクトルを用いて、クラス識別子を予測するための学習器である。
Next, the learning information acquisition unit 132 performs machine learning learning processing using two or more vectors for each handling identifier, configures a learning device for each handling identifier, and constructs a learning device for each handling identifier, It is stored in the learning information storage unit 112 in association with the countermeasure identifier. This learning device is a learning device for predicting a class identifier using a vector having "first result information", "gender", "age", "height", "weight", "lifestyle information", and "goal". be.
以上の状況において、ユーザAは、端末装置2に、「<第一結果情報>183 <性別>男 <年齢>68 <身長>175 <体重>88 <生活習慣情報>喫煙 <目標>140」を有するユーザ情報を入力した、とする。次に、端末装置2は、当該ユーザ情報を受け付け、ユーザ情報を情報処理装置1に送信する。
In the above situation, user A sends "<first result information> 183 <sex> male <age> 68 <height> 175 <weight> 88 <lifestyle information> smoking <goal> 140" to the terminal device 2. It is assumed that the user information that has Next, the terminal device 2 receives the user information and transmits the user information to the information processing device 1 .
次に、情報処理装置1のユーザ情報受付部121は、ユーザAの端末装置2から当該ユーザ情報を受信する。
Next, the user information reception unit 121 of the information processing device 1 receives the user information from the terminal device 2 of the user A.
次に、処理部13は、以下のように出力情報取得処理を行う。つまり、まず、対処決定部133は、対処識別子「商品A(減塩醤油)」「商品B(減塩味噌)」「商品C(ヨーグルト)」ごとに、クラス識別子を決定する。つまり、まず、対処決定部133は、対処識別子「商品A(減塩醤油)」と対になる学習器を学習情報格納部112から取得する。次に、対処決定部133は、ユーザ情報が有するユーザ属性値「<第一結果情報>183 <性別>男 <年齢>68 <身長>175 <体重>88 <生活習慣情報>喫煙 <目標>140」と取得した学習器とを、機械学習の予測処理を行う予測モジュールに与え、当該予測モジュールを実行し、クラス識別子「クラスA」を取得した、とする。同様に、対処決定部133は、対処識別子「商品B(減塩味噌)」と対になる学習器を学習情報格納部112から取得する。次に、対処決定部133は、ユーザ情報が有する2以上のユーザ属性値と取得した学習器とを、機械学習の予測処理を行う予測モジュールに与え、当該予測モジュールを実行し、クラス識別子「クラスD」を取得した、とする。なお、対処決定部133は、対処識別子「商品C(ヨーグルト)」と対になる学習器を学習情報格納部112から取得できなかった、とする。
Next, the processing unit 13 performs output information acquisition processing as follows. That is, first, the handling determination unit 133 determines a class identifier for each of the handling identifiers “product A (low-salt soy sauce),” “product B (low-salt miso),” and “product C (yogurt).” That is, first, the countermeasure determination unit 133 acquires from the learning information storage unit 112 a learning device paired with the countermeasure identifier “Product A (low-salt soy sauce)”. Next, the handling determination unit 133 determines the user attribute value "<first result information> 183 <sex> male <age> 68 <height> 175 <weight> 88 <lifestyle information> smoking <goal> 140 ” and the obtained learner are given to a prediction module that performs prediction processing of machine learning, the prediction module is executed, and the class identifier “class A” is obtained. Similarly, the countermeasure determination unit 133 acquires from the learning information storage unit 112 a learning device paired with the countermeasure identifier “product B (low-salt miso)”. Next, the handling determination unit 133 gives the two or more user attribute values included in the user information and the acquired learner to a prediction module that performs machine learning prediction processing, executes the prediction module, and uses the class identifier “class D" is acquired. It is assumed that the handling determination unit 133 has failed to acquire a learning device paired with the handling identifier “product C (yogurt)” from the learning information storage unit 112 .
次に、根拠情報取得部134は、対処識別子「商品A(減塩醤油)」に対応するクラス識別子「クラスA」と対になる根拠レベル「3」を格納部11から取得する。また、根拠情報取得部134は、対処識別子「商品B(減塩味噌)」に対応するクラス識別子「クラスD」と対になる根拠レベル「2」を格納部11から取得する。さらに、根拠情報取得部134は、クラスを決定できなかった対処識別子「商品C(ヨーグルト)」と対になる根拠レベル「0」を格納部11から取得する。
Next, the basis information acquisition unit 134 acquires from the storage unit 11 the basis level "3" paired with the class identifier "class A" corresponding to the countermeasure identifier "product A (reduced salt soy sauce)". Further, the basis information acquisition unit 134 acquires from the storage unit 11 the basis level “2” paired with the class identifier “class D” corresponding to the countermeasure identifier “product B (low-salt miso)”. Furthermore, the basis information acquisition unit 134 acquires from the storage unit 11 the basis level “0” paired with the handling identifier “product C (yogurt)” for which the class could not be determined.
次に、根拠情報取得部134は、クラス識別子が取得された対処識別子ごとに、当該対処識別子と当該クラス識別子に対応する1以上の教師データを取得する。そして、根拠情報取得部134は、取得した1以上の教師データを用いて、各教師データの効果情報を取得する。次に、根拠情報取得部134は、各教師データの効果情報の平均である「有効性情報」を取得する。なお、根拠情報取得部134は、対処識別子「商品A(減塩醤油)」とクラス識別子「クラスA」とに対応する1以上の教師データから有効性情報「80%」を取得した、とする。また、根拠情報取得部134は、取得した1以上の各教師データが有する満足度を取得する。次に、根拠情報取得部134は、同一クラスにおける満足度が「4」または「5」を有する教師データの割合である満足度情報「60%」を取得した、とする。
Next, the basis information acquisition unit 134 acquires one or more training data corresponding to each handling identifier from which the class identifier has been acquired and the handling identifier and the class identifier. Then, the basis information acquisition unit 134 acquires effect information of each teacher data using the acquired one or more teacher data. Next, the basis information acquisition unit 134 acquires “effectiveness information” that is the average of the effect information of each teacher data. Assume that the basis information acquisition unit 134 acquires the effectiveness information “80%” from one or more training data corresponding to the measure identifier “product A (reduced salt soy sauce)” and the class identifier “class A”. . Further, the basis information acquisition unit 134 acquires the degree of satisfaction of each of the acquired one or more teacher data. Next, it is assumed that the basis information acquisition unit 134 acquires satisfaction level information “60%”, which is the ratio of teacher data having a satisfaction level of “4” or “5” in the same class.
同様に、根拠情報取得部134は、対処識別子「商品B(減塩味噌)」に対応するクラス識別子「クラスD」に対応する1以上の教師データを取得し、当該教師データを用いて、有効性情報「80%」および満足度情報「30%」を取得した、とする。
Similarly, the basis information acquisition unit 134 acquires one or more training data corresponding to the class identifier "class D" corresponding to the handling identifier "product B (low-salt miso)", and uses the training data to obtain valid Assume that sex information "80%" and satisfaction level information "30%" have been acquired.
また、根拠情報取得部134は、目標達成条件「目標達成率>=80%」を格納部11から取得する。次に、根拠情報取得部134は、対処識別子ごとに、当該対処識別子と対応するクラス識別子に対する1以上の教師データの目標達成率の平均が目標達成条件を満たす対処識別子「商品A(減塩醤油)」を取得する。次に、根拠情報取得部134は、対処識別子「商品A(減塩醤油)」に対応付けて、お勧め情報「必要」を取得する。また、根拠情報取得部134は、目標達成条件を満たさない対処識別子「商品B(減塩味噌)」および「商品C(ヨーグルト)」に対応付けて、お勧め情報「不要」を取得する。
Also, the basis information acquisition unit 134 acquires the goal achievement condition "goal achievement rate >= 80%" from the storage unit 11. Next, the basis information acquiring unit 134 acquires, for each measure identifier, the measure identifier “product A (reduced salt soy sauce)” that satisfies the target achievement condition by averaging the target achievement rate of the one or more teacher data for the class identifier corresponding to the measure identifier. )”. Next, the basis information acquisition unit 134 acquires the recommendation information "required" in association with the countermeasure identifier "product A (low-salt soy sauce)". Further, the basis information acquiring unit 134 acquires the recommendation information “unnecessary” in association with the countermeasure identifiers “product B (low-salt miso)” and “product C (yogurt)” that do not satisfy the goal achievement condition.
また、根拠情報取得部134は、対処識別子「商品C(ヨーグルト)」に対応する有効性情報と満足度情報とは取得できなかった。根拠レベルが「0」であるからである。
Also, the basis information acquisition unit 134 could not acquire the effectiveness information and satisfaction level information corresponding to the measure identifier "product C (yogurt)". This is because the basis level is "0".
次に、報酬情報取得部135は、格納部11の報酬条件「根拠レベル=0」を参照し、「根拠レベル=0」に対応する対処識別子「商品C(ヨーグルト)」に対して、30%OFFの報酬情報を取得する。
Next, the remuneration information acquisition unit 135 refers to the remuneration condition “basis level=0” in the storage unit 11, and determines that the handling identifier “product C (yogurt)” corresponding to the “basis level=0” Acquire OFF reward information.
次に、処理部13は、取得された対処情報、根拠情報、お勧め情報、および報酬情報を用いて出力情報を構成する。次に、情報出力部141は、取得された出力情報を端末装置2に送信する。
Next, the processing unit 13 configures output information using the acquired coping information, basis information, recommended information, and remuneration information. Next, the information output unit 141 transmits the acquired output information to the terminal device 2 .
次に、端末装置2は、出力情報を受信し、出力する。かかる出力例は、図20である。図20において、2001は根拠レベルであり、ここでは「エビデンスレベル」と言っている。また、2002は、有効性情報と満足度情報とを有する根拠情報であり、「理由」のラベルが付与されている。2003は、お勧め情報であり、「ToBe達成のため」というラベルが付与されている。さらに、2004は、報酬情報であり、「インセンティブ」というラベルが付与されている。
Next, the terminal device 2 receives and outputs the output information. An example of such an output is shown in FIG. In FIG. 20, 2001 is the basis level, which is called "evidence level" here. Further, 2002 is evidence information having effectiveness information and satisfaction level information, and is given a label of "Reason". 2003 is recommended information with a label of "to achieve ToBe". Further, 2004 is remuneration information, labeled as "incentive".
以上、本実施の形態によれば、検査の結果に対する適切な対処を決定できる。
As described above, according to the present embodiment, it is possible to determine an appropriate course of action for the inspection result.
また、本実施の形態によれば、検査の結果に対する対処を提案する場合に、その提案の根拠を提示できる。
Also, according to the present embodiment, when proposing measures to deal with test results, the grounds for the proposal can be presented.
また、本実施の形態によれば、検査の結果に対する対処を提案する場合に、その提案の根拠が無いことも明示できる。
In addition, according to the present embodiment, when proposing measures to deal with test results, it is possible to clearly indicate that there is no basis for the proposal.
さらに、本実施の形態によれば、検査の結果に対する対処を提案する場合に、その対処を行うインセンティブをユーザに与えることが示できる。
Furthermore, according to the present embodiment, it is possible to provide the user with an incentive to take action when proposing a course of action for the inspection result.
また、本実施の形態における処理は、ソフトウェアで実現しても良い。そして、このソフトウェアをソフトウェアダウンロード等により配布しても良い。また、このソフトウェアをCD-ROMなどの記録媒体に記録して流布しても良い。なお、このことは、本明細書における他の実施の形態においても該当する。なお、本実施の形態における情報処理装置を実現するソフトウェアは、以下のようなプログラムである。つまり、このプログラムは、コンピュータを、一のユーザの生体に関する検査結果を特定する結果情報を含む1以上のユーザ属性値を有するユーザ情報を受け付けるユーザ情報受付部と、ユーザが行った対処を識別する対処識別子に対応付いた2以上の教師データであり、当該対処を行う前の検査結果を特定する第一結果情報と、当該対処を行った結果の検査結果を特定する第二結果情報とを含む2以上のユーザ属性値とを有する2以上の教師データに基づく学習情報が格納される学習情報格納部から学習情報を取得し、当該学習情報と、前記ユーザ情報受付部が受け付けた前記ユーザ情報とを用いて、当該ユーザ情報が有する結果情報に応じた対処を識別する対処識別子を取得する対処決定部と、前記対処決定部が取得した前記対処識別子に対応する1以上の教師データと前記ユーザ情報受付部が受け付けた前記ユーザ情報とを用いて、前記対処決定部が取得した前記対処識別子で識別される対処を勧める根拠に関する根拠情報を取得する根拠情報取得部と、前記対処決定部が取得した前記対処識別子と前記根拠情報取得部が取得した前記根拠情報とを出力する情報出力部として機能させるためのプログラムである。
Also, the processing in the present embodiment may be realized by software. Then, this software may be distributed by software download or the like. Also, this software may be recorded on a recording medium such as a CD-ROM and distributed. Note that this also applies to other embodiments in this specification. The software that implements the information processing apparatus according to the present embodiment is the following program. In other words, the program identifies a computer as a user information reception unit that receives user information having one or more user attribute values including result information that specifies the test results related to the living body of one user, and a countermeasure taken by the user. Two or more training data associated with a handling identifier, including first result information specifying the test result before the handling and second result information specifying the inspection result of the handling Acquiring learning information from a learning information storage unit storing learning information based on two or more teacher data having two or more user attribute values, and acquiring the learning information and the user information received by the user information receiving unit. , a handling determination unit that acquires a handling identifier that identifies a handling corresponding to the result information contained in the user information, and one or more teacher data corresponding to the handling identifier acquired by the handling determination unit and the user information a grounds information acquisition unit for acquiring grounds information relating to grounds for recommending the handling identified by the handling identifier acquired by the handling determination unit, using the user information received by the reception unit; A program for functioning as an information output unit that outputs the countermeasure identifier and the basis information acquired by the basis information acquisition unit.
また、図21は、本明細書で述べたプログラムを実行して、上述した種々の実施の形態の情報処理装置1等を実現するコンピュータの外観を示す。上述の実施の形態は、コンピュータハードウェア及びその上で実行されるコンピュータプログラムで実現され得る。図21は、このコンピュータシステム300の概観図であり、図22は、システム300のブロック図である。
Also, FIG. 21 shows the appearance of a computer that executes the programs described in this specification and implements the information processing apparatus 1 and the like of the various embodiments described above. The embodiments described above may be implemented in computer hardware and computer programs running thereon. FIG. 21 is an overview diagram of this computer system 300, and FIG. 22 is a block diagram of the system 300. As shown in FIG.
図21において、コンピュータシステム300は、CD-ROMドライブを含むコンピュータ301と、キーボード302と、マウス303と、モニタ304とを含む。
In FIG. 21, computer system 300 includes computer 301 including a CD-ROM drive, keyboard 302 , mouse 303 and monitor 304 .
図22において、コンピュータ301は、CD-ROMドライブ3012に加えて、MPU3013と、CD-ROMドライブ3012等に接続されたバス3014と、ブートアッププログラム等のプログラムを記憶するためのROM3015と、MPU3013に接続され、アプリケーションプログラムの命令を一時的に記憶するとともに一時記憶空間を提供するためのRAM3016と、アプリケーションプログラム、システムプログラム、及びデータを記憶するためのハードディスク3017とを含む。ここでは、図示しないが、コンピュータ301は、さらに、LANへの接続を提供するネットワークカードを含んでも良い。
22, a computer 301 includes a CD-ROM drive 3012, an MPU 3013, a bus 3014 connected to the CD-ROM drive 3012, a ROM 3015 for storing programs such as a boot-up program, It includes a RAM 3016 connected and for temporarily storing application program instructions and providing temporary storage space, and a hard disk 3017 for storing application programs, system programs and data. Although not shown here, computer 301 may also include a network card that provides connection to a LAN.
コンピュータシステム300に、上述した実施の形態の情報処理装置1等の機能を実行させるプログラムは、CD-ROM3101に記憶されて、CD-ROMドライブ3012に挿入され、さらにハードディスク3017に転送されても良い。これに代えて、プログラムは、図示しないネットワークを介してコンピュータ301に送信され、ハードディスク3017に記憶されても良い。プログラムは実行の際にRAM3016にロードされる。プログラムは、CD-ROM3101またはネットワークから直接、ロードされても良い。
A program that causes the computer system 300 to execute the functions of the information processing apparatus 1 of the embodiment described above may be stored in the CD-ROM 3101, inserted into the CD-ROM drive 3012, and further transferred to the hard disk 3017. . Alternatively, the program may be transmitted to computer 301 via a network (not shown) and stored in hard disk 3017 . Programs are loaded into RAM 3016 during execution. The program may be loaded directly from CD-ROM 3101 or network.
プログラムは、コンピュータ301に、上述した実施の形態の情報処理装置1等の機能を実行させるオペレーティングシステム(OS)、またはサードパーティープログラム等は、必ずしも含まなくても良い。プログラムは、制御された態様で適切な機能(モジュール)を呼び出し、所望の結果が得られるようにする命令の部分のみを含んでいれば良い。コンピュータシステム300がどのように動作するかは周知であり、詳細な説明は省略する。
The program does not necessarily include an operating system (OS) that causes the computer 301 to execute the functions of the information processing apparatus 1 of the embodiment described above, or a third-party program. A program need only contain those parts of instructions that call the appropriate functions (modules) in a controlled manner to produce the desired result. How the computer system 300 operates is well known and will not be described in detail.
なお、上記プログラムにおいて、情報を送信するステップや、情報を受信するステップなどでは、ハードウェアによって行われる処理、例えば、送信ステップにおけるモデムやインターフェースカードなどで行われる処理(ハードウェアでしか行われない処理)は含まれない。
In the above program, the step of transmitting information, the step of receiving information, etc. are performed by hardware. processing) are not included.
また、上記プログラムを実行するコンピュータは、単数であってもよく、複数であってもよい。すなわち、集中処理を行ってもよく、あるいは分散処理を行ってもよい。
Also, the computer that executes the above program may be singular or plural. That is, centralized processing may be performed, or distributed processing may be performed.
また、上記各実施の形態において、一の装置に存在する2以上の通信手段は、物理的に一の媒体で実現されても良いことは言うまでもない。
In addition, in each of the above embodiments, it goes without saying that two or more communication means existing in one device may be physically realized in one medium.
また、上記各実施の形態において、各処理は、単一の装置によって集中処理されることによって実現されてもよく、あるいは、複数の装置によって分散処理されることによって実現されてもよい。
Also, in each of the above embodiments, each process may be implemented by centralized processing by a single device, or may be implemented by distributed processing by a plurality of devices.
本発明は、以上の実施の形態に限定されることなく、種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることは言うまでもない。
It goes without saying that the present invention is not limited to the above embodiments, and that various modifications are possible and are also included within the scope of the present invention.
以上のように、本発明にかかる情報処理装置は、検査の結果に対する対処を提案する場合に、その提案の根拠を提示できるという効果を有し、推薦する対処を識別する対処識別子と根拠情報とを出力するサーバ等として有用である。
As described above, the information processing apparatus according to the present invention has the effect of being able to present the grounds for the proposal when proposing a countermeasure for the result of an examination. It is useful as a server or the like that outputs .
Claims (13)
- 一のユーザの生体に関する検査結果を特定する結果情報を含む1以上のユーザ属性値を有するユーザ情報を受け付けるユーザ情報受付部と、
ユーザが行った対処を識別する対処識別子に対応付いた2以上の教師データであり、当該対処を行う前の検査結果を特定する第一結果情報と、当該対処を行った結果の検査結果を特定する第二結果情報とを含む2以上のユーザ属性値とを有する2以上の教師データに基づく学習情報が格納される学習情報格納部から学習情報を取得し、当該学習情報と、前記ユーザ情報受付部が受け付けた前記ユーザ情報とを用いて、当該ユーザ情報が有する結果情報に応じた対処を識別する対処識別子を取得する対処決定部と、
前記対処決定部が取得した前記対処識別子に対応する1以上の教師データと前記ユーザ情報受付部が受け付けた前記ユーザ情報とを用いて、前記対処決定部が取得した前記対処識別子で識別される対処を勧める根拠に関する根拠情報を取得する根拠情報取得部と、
前記対処決定部が取得した前記対処識別子と前記根拠情報取得部が取得した前記根拠情報とを出力する情報出力部とを具備する情報処理装置。 a user information reception unit that receives user information having one or more user attribute values including result information specifying test results related to the living body of one user;
Two or more teaching data associated with a handling identifier that identifies a handling performed by a user, and specifies first result information that specifies inspection results before the handling and inspection results as a result of carrying out the handling. Acquiring learning information from a learning information storage unit storing learning information based on two or more teacher data having two or more user attribute values including second result information, and receiving the learning information and the user information a countermeasure determination unit that acquires a countermeasure identifier that identifies a countermeasure corresponding to the result information included in the user information, using the user information received by the unit;
A countermeasure identified by the countermeasure identifier acquired by the countermeasure determination unit using one or more teacher data corresponding to the countermeasure identifier acquired by the countermeasure determination unit and the user information received by the user information reception unit a grounds information acquisition unit that acquires grounds information on the grounds for recommending
An information processing apparatus comprising: an information output unit that outputs the countermeasure identifier acquired by the countermeasure determination unit and the basis information acquired by the basis information acquisition unit. - 前記根拠情報取得部は、
前記対処決定部が取得した前記対処識別子に対応する1以上の教師データと前記ユーザ情報受付部が受け付けた前記ユーザ情報とを用いて、前記対処を推薦する根拠の強さの度合いを特定する根拠レベル、および前記対処を推薦する理由を示す情報であり、当該対処を行った場合の有効性に関する有効性情報または当該対処を行った後の満足度に関する満足度情報を含む情報である理由情報のうちの1種類以上の情報を含む根拠情報を取得する、請求項1記載の情報処理装置。 The basis information acquisition unit
Grounds for specifying the degree of strength of grounds for recommending the countermeasures using one or more training data corresponding to the countermeasure identifiers acquired by the countermeasure determination unit and the user information received by the user information reception unit Reason information, which is information indicating the level and the reason for recommending the above-mentioned countermeasure, and is information including effectiveness information about the effectiveness when the countermeasure is performed or satisfaction information about the degree of satisfaction after performing the countermeasure 2. The information processing apparatus according to claim 1, which acquires basis information including one or more types of information among them. - 前記根拠情報取得部は、
根拠情報を取得できなかった場合に、根拠が無い旨の情報である根拠情報を取得する、請求項1または請求項2記載の情報処理装置。 The basis information acquisition unit
3. The information processing apparatus according to claim 1, wherein when the basis information cannot be acquired, the basis information that is information indicating that there is no basis is acquired. - ユーザに前記対処を行うことを勧めるための報酬を特定する情報であり、前記根拠情報に対応する情報である報酬情報を取得する報酬情報取得部をさらに具備し、
前記情報出力部は、
前記報酬情報取得部が取得した前記報酬情報をも出力する、請求項1記載の情報処理装置。 further comprising a remuneration information acquiring unit that acquires remuneration information that is information specifying a remuneration for recommending the user to take the action and that is information corresponding to the basis information;
The information output unit
2. The information processing apparatus according to claim 1, wherein said remuneration information acquired by said remuneration information acquisition unit is also output. - 前記報酬情報取得部は、
前記根拠情報に含まれる根拠レベルに応じた報酬を特定する報酬情報を取得する、請求項4記載の情報処理装置。 The remuneration information acquisition unit
5. The information processing apparatus according to claim 4, wherein remuneration information specifying a remuneration according to a basis level included in said basis information is acquired. - 対処識別子ごとに、前記2以上の各教師データが有する前記第二結果情報を用いて取得される情報であり、対処の効果に関する情報である効果情報を用いて、前記2以上の教師データを2以上のクラスに分類し、前記2以上の各教師データに対して前記クラスを識別するクラス識別子に対応付ける分類部をさらに具備し、
前記対処決定部は、
前記ユーザ情報受付部が受け付けた前記ユーザ情報と前記2以上の教師データに基づく前記学習情報とを用いて、2以上の各対処識別子ごとに、前記ユーザ情報が属するクラスを決定し、前記第一結果情報と前記第二結果情報との差異が大きいクラスに対応する前記対処識別子と前記差異が小さいクラスに対応する前記対処識別子とを区別して取得する、請求項1記載の情報処理装置。 For each action identifier, the two or more teacher data are divided into two by using effect information, which is information obtained using the second result information possessed by each of the two or more teacher data, and is information relating to the effect of the action. Classifying into the above classes, further comprising a classifying unit that associates each of the two or more teacher data with a class identifier that identifies the class,
The handling determination unit
determining a class to which the user information belongs for each of the two or more action identifiers using the user information received by the user information receiving unit and the learning information based on the two or more teacher data; 2. The information processing apparatus according to claim 1, wherein said handling identifier corresponding to a class having a large difference between said result information and said second result information and said handling identifier corresponding to said class having a small difference are acquired separately. - 前記教師データは、前記対処を行った結果のユーザの満足度をも有し、
前記分類部は、
対処識別子ごとに、前記2以上の各教師データに対する前記効果情報と前記満足度とを用いて、前記2以上の教師データを2以上のクラスに分類し、前記2以上の各教師データに対して前記クラスを識別するクラス識別子に対応付ける、請求項6記載の情報処理装置。 The training data also includes user satisfaction as a result of taking the action,
The classification unit
Classify the two or more teacher data into two or more classes using the effect information and the satisfaction level for each of the two or more teacher data for each coping identifier, and classify the two or more teacher data into two or more classes. 7. The information processing apparatus according to claim 6, associated with a class identifier that identifies said class. - 前記分類部が分類した2以上の各クラスには、当該クラスに対応する教師データに対する効果情報に基づく根拠レベルが対応付いており、
前記根拠情報取得部は、
前記クラスに対応する根拠レベルを取得し、前記対処決定部が決定した前記クラスに対応する教師データが有する前記第二結果情報を用いて取得される情報であり、対処の効果に関する情報である効果情報を用いて有効性情報を取得し、当該根拠レベルと当該有効性情報を含む情報である理由情報とを含む根拠情報を取得する、請求項6記載の情報処理装置。 Each of the two or more classes classified by the classification unit is associated with a basis level based on effect information for the teacher data corresponding to the class,
The basis information acquisition unit
Effect, which is information obtained by obtaining the basis level corresponding to the class and using the second result information included in the teacher data corresponding to the class determined by the handling determination unit, and is information relating to the effect of handling. 7. The information processing apparatus according to claim 6, wherein validity information is obtained using information, and base information including the base level and reason information that is information including the validity information is obtained. - 前記教師データは、前記対処を行った結果のユーザの満足度をも有し、
前記分類部は、
対処識別子ごとに、前記2以上の各教師データに対する前記効果情報と前記満足度とを用いて、前記2以上の教師データを2以上のクラスに分類し、前記2以上の各教師データに対して前記クラスを識別するクラス識別子に対応付け、
前記根拠情報取得部は、
前記ユーザ情報が属する前記クラスに対応する教師データが有する満足度を用いて満足度情報を取得し、当該満足度情報を含む理由情報を含む根拠情報を取得する、請求項8記載の情報処理装置。 The training data also includes user satisfaction as a result of taking the action,
The classification unit
Classify the two or more teacher data into two or more classes using the effect information and the satisfaction level for each of the two or more teacher data for each coping identifier, and classify the two or more teacher data into two or more classes. associated with a class identifier that identifies the class;
The basis information acquisition unit
9. The information processing apparatus according to claim 8, wherein satisfaction level information is obtained using the satisfaction level of teacher data corresponding to said class to which said user information belongs, and base information including reason information including said satisfaction level information is obtained. . - 前記ユーザ情報受付部が受け付けた前記ユーザ情報に含まれる前記1以上のユーザ属性値と類似条件を満たす1以上のユーザ属性値を有する2以上の教師データを用いて、学習情報を取得する学習情報取得部をさらに具備し、
前記学習情報格納部の学習情報は、前記学習情報取得部が取得した学習情報である、請求項1記載の情報処理装置。 Learning information for acquiring learning information using two or more teacher data having one or more user attribute values satisfying a similarity condition with the one or more user attribute values contained in the user information received by the user information receiving unit. further comprising an acquisition unit;
2. The information processing apparatus according to claim 1, wherein the learning information stored in said learning information storage unit is learning information acquired by said learning information acquisition unit. - 前記対処は、検査結果の改善のために商品を一定期間以上摂取するチャレンジまたはサービスの提供を一定期間以上享受するチャレンジまたは行動を一定期間以上行うチャレンジであり、前記教師データは、前記チャレンジに関するアンケートの回答情報であるチャレンジの取り組み度合いを含む、請求項1記載の情報処理装置。 The countermeasure is a challenge of taking a product for a certain period of time or longer, a challenge of receiving a service for a certain period of time or longer, or a challenge of performing an action for a certain period of time or longer in order to improve test results. 2. The information processing apparatus according to claim 1, further comprising a level of effort for the challenge, which is the answer information for the challenge.
- ユーザ情報受付部と、対処決定部と、根拠情報取得部と、情報出力部とにより実現される情報処理方法であって、
前記ユーザ情報受付部が、一のユーザの生体に関する検査結果を特定する結果情報を含む1以上のユーザ属性値を有するユーザ情報を受け付けるユーザ情報受付ステップと、
前記対処決定部が、対処を行う前の検査結果を特定する第一結果情報と、当該対処を行った結果の検査結果を特定する第二結果情報とを含む1以上のユーザ属性値とを有する2以上の教師データに基づく学習情報が格納される学習情報格納部から学習情報を取得し、当該学習情報と、前記ユーザ情報受付部が受け付けた前記ユーザ情報とを用いて、当該ユーザ情報が有する結果情報に応じた対処を識別する対処識別子を取得する対処決定ステップと、
前記根拠情報取得部が、前記対処決定ステップで取得された前記対処識別子に対応する1以上の教師データと前記ユーザ情報受付部が受け付けた前記ユーザ情報とを用いて、前記対処決定部が取得した前記対処識別子で識別される対処を勧める根拠に関する根拠情報を取得する根拠情報取得ステップと、
前記情報出力部が、前記対処決定ステップで取得された前記対処識別子と前記根拠情報取得ステップで取得された前記根拠情報とを出力する情報出力ステップとを具備する情報処理方法。 An information processing method realized by a user information reception unit, a handling determination unit, a basis information acquisition unit, and an information output unit,
a user information reception step in which the user information reception unit receives user information having one or more user attribute values including result information specifying test results related to the living body of one user;
The handling determination unit has one or more user attribute values including first result information specifying inspection results before handling and second result information specifying inspection results as a result of taking the handling Acquiring learning information from a learning information storage unit that stores learning information based on two or more teaching data, and using the learning information and the user information received by the user information receiving unit, the user information has a countermeasure determination step of acquiring a countermeasure identifier that identifies a countermeasure according to the result information;
The countermeasure determination unit obtains the basis information acquisition unit using one or more teacher data corresponding to the countermeasure identifier obtained in the countermeasure determination step and the user information received by the user information reception unit a grounds information acquisition step of acquiring grounds information relating to grounds for recommending the handling identified by the handling identifier;
and an information output step in which the information output unit outputs the countermeasure identifier acquired in the countermeasure determination step and the basis information acquired in the basis information acquisition step. - 対処を行う前の検査結果を特定する第一結果情報と、当該対処を行った結果の検査結果を特定する第二結果情報とを含む1以上のユーザ属性値とを有する2以上の教師データに基づく学習情報が格納される学習情報格納部にアクセス可能なコンピュータを、
一のユーザの生体に関する検査結果を特定する結果情報を含む1以上のユーザ属性値を有するユーザ情報を受け付けるユーザ情報受付部と、
前記学習情報格納部から前記学習情報を取得し、当該学習情報と、前記ユーザ情報受付部が受け付けた前記ユーザ情報とを用いて、当該ユーザ情報が有する結果情報に応じた対処を識別する対処識別子を取得する対処決定部と、
前記対処決定部が取得した前記対処識別子に対応する1以上の教師データと前記ユーザ情報受付部が受け付けた前記ユーザ情報とを用いて、前記対処決定部が取得した前記対処識別子で識別される対処を勧める根拠に関する根拠情報を取得する根拠情報取得部と、
前記対処決定部が取得した前記対処識別子と前記根拠情報取得部が取得した前記根拠情報とを出力する情報出力部として機能させるためのプログラムを記録した記録媒体。 Two or more teacher data having one or more user attribute values including first result information specifying inspection results before taking action and second result information specifying inspection results as a result of taking the action A computer that can access a learning information storage unit that stores learning information based on
a user information reception unit that receives user information having one or more user attribute values including result information specifying test results related to the living body of one user;
Acquiring the learned information from the learned information storage unit, and using the learned information and the user information received by the user information receiving unit, a countermeasure identifier that identifies a countermeasure corresponding to the result information of the user information a handling determination unit that acquires
A countermeasure identified by the countermeasure identifier acquired by the countermeasure determination unit using one or more teacher data corresponding to the countermeasure identifier acquired by the countermeasure determination unit and the user information received by the user information reception unit a grounds information acquisition unit that acquires grounds information on the grounds for recommending
A recording medium recording a program for functioning as an information output unit that outputs the countermeasure identifier acquired by the countermeasure determination unit and the basis information acquired by the basis information acquisition unit.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-025386 | 2022-02-22 | ||
JP2022025386A JP2023121986A (en) | 2022-02-22 | 2022-02-22 | Information processing device, information processing method, and program |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023162829A1 true WO2023162829A1 (en) | 2023-08-31 |
Family
ID=87765952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/005304 WO2023162829A1 (en) | 2022-02-22 | 2023-02-15 | Information processing device, information processing method, and recording medium |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2023121986A (en) |
WO (1) | WO2023162829A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013117941A (en) * | 2011-10-31 | 2013-06-13 | Sony Corp | Diathesis determination apparatus, diathesis determination method, health assistance apparatus, health assistance method, program, terminal apparatus, and health assistance system |
WO2015107710A1 (en) * | 2014-01-17 | 2015-07-23 | 任天堂株式会社 | Information processing system, information processing server, information processing program, and fatigue evaluation method |
JP2016099656A (en) * | 2014-11-18 | 2016-05-30 | 富士フイルム株式会社 | Information collection device, operation method and operation program of information collection device, and information collection system |
JP2018028889A (en) * | 2017-02-02 | 2018-02-22 | 株式会社FiNC | Health care device |
JP2020035083A (en) * | 2018-08-28 | 2020-03-05 | 株式会社ヘルスケアシステムズ | Inspection information management system, inspection information management server, inspection information management method, and inspection information management program |
JP6913810B1 (en) * | 2020-11-18 | 2021-08-04 | 株式会社オプティム | Programs, methods, information processing equipment, and systems |
-
2022
- 2022-02-22 JP JP2022025386A patent/JP2023121986A/en active Pending
-
2023
- 2023-02-15 WO PCT/JP2023/005304 patent/WO2023162829A1/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013117941A (en) * | 2011-10-31 | 2013-06-13 | Sony Corp | Diathesis determination apparatus, diathesis determination method, health assistance apparatus, health assistance method, program, terminal apparatus, and health assistance system |
WO2015107710A1 (en) * | 2014-01-17 | 2015-07-23 | 任天堂株式会社 | Information processing system, information processing server, information processing program, and fatigue evaluation method |
JP2016099656A (en) * | 2014-11-18 | 2016-05-30 | 富士フイルム株式会社 | Information collection device, operation method and operation program of information collection device, and information collection system |
JP2018028889A (en) * | 2017-02-02 | 2018-02-22 | 株式会社FiNC | Health care device |
JP2020035083A (en) * | 2018-08-28 | 2020-03-05 | 株式会社ヘルスケアシステムズ | Inspection information management system, inspection information management server, inspection information management method, and inspection information management program |
JP6913810B1 (en) * | 2020-11-18 | 2021-08-04 | 株式会社オプティム | Programs, methods, information processing equipment, and systems |
Also Published As
Publication number | Publication date |
---|---|
JP2023121986A (en) | 2023-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Michaelson et al. | Family as a health promotion setting: A scoping review of conceptual models of the health-promoting family | |
Molho et al. | Disgust and anger relate to different aggressive responses to moral violations | |
Shankar et al. | Longitudinal associations between social connections and subjective wellbeing in the English Longitudinal Study of Ageing | |
Årdal et al. | The Five Cs of Positive Youth Development in a school context; gender and mediator effects | |
Tsaur et al. | The effect of tour leaders’ emotional intelligence on tourists’ consequences | |
Fioravanti et al. | Examining the impact of daily exposure to body-positive and fitspiration Instagram content on young women’s mood and body image: An intensive longitudinal study | |
Bollmer et al. | A friend in need: The role of friendship quality as a protective factor in peer victimization and bullying | |
Rhodes et al. | Attractiveness of facial averageness and symmetry in non-Western cultures: In search of biologically based standards of beauty | |
Strandberg et al. | The effect of smoking in midlife on health-related quality of life in old age: a 26-year prospective study | |
Kemp et al. | Promoting consumer well-being: Examining emotion regulation strategies in social advertising messages | |
Ahrens et al. | A longitudinal and comparative content analysis of Instagram fitness posts | |
Van Hook et al. | Healthy eating among Mexican immigrants: migration in childhood and time in the United States | |
Oliveira et al. | Humor–Robot interaction: a scoping review of the literature and future directions | |
Wen et al. | Accurate prognostic awareness and preference states influence the concordance between terminally ill cancer patients’ states of preferred and received life-sustaining treatments in the last 6 months of life | |
Mesler et al. | The impact of masculinity stress on preferences and willingness-to-pay for red meat | |
Grogan et al. | Women’s long-term reactions to whole-body scanning: A mixed methods approach | |
Harrison et al. | Perceptions, opinions, beliefs, and attitudes about physical activity and exercise in urban-community-residing older adults | |
Wigginton et al. | Reflexive intervention development: Using qualitative research to inform the development of an intervention for women with metastatic breast cancer | |
Schmeer | Household income during childhood and young adult weight status: evidence from a nutrition transition setting | |
Shimaoka et al. | Linking temporal dominance of sensations for primary-sensory and multi-sensory attributes using canonical correlation analysis | |
Cross et al. | Your move: An open access dataset of over 1500 board gamer’s demographics, preferences and motivations | |
Yildirim et al. | Analysis of facial emotion expression in eating occasions using deep learning | |
Sim et al. | Perceiving people with physical disabilities as overcoming adversity warps mind perception | |
Maciel et al. | Development of an e-health education program at the workplace using formative research–Technologies for improving quality of life | |
Giannattasio et al. | Crafting a healthier future: exploring the nexus of product design, digital innovations and dynamic marketing for obesity prevention. A literature review |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23759830 Country of ref document: EP Kind code of ref document: A1 |