WO2023162537A1 - Pulse reception circuit, signal transmission device, electronic device, and vehicle - Google Patents

Pulse reception circuit, signal transmission device, electronic device, and vehicle Download PDF

Info

Publication number
WO2023162537A1
WO2023162537A1 PCT/JP2023/001905 JP2023001905W WO2023162537A1 WO 2023162537 A1 WO2023162537 A1 WO 2023162537A1 JP 2023001905 W JP2023001905 W JP 2023001905W WO 2023162537 A1 WO2023162537 A1 WO 2023162537A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
potential
transformer
pulse
coil
Prior art date
Application number
PCT/JP2023/001905
Other languages
French (fr)
Japanese (ja)
Inventor
洋介 山中
雄二 嶋田
弘治 齊藤
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2023162537A1 publication Critical patent/WO2023162537A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/689Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors with galvanic isolation between the control circuit and the output circuit
    • H03K17/691Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors with galvanic isolation between the control circuit and the output circuit using transformer coupling
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines

Definitions

  • the inventions disclosed in this specification relate to pulse receiving circuits, signal transmission devices, electronic devices, and vehicles.
  • Patent Document 1 can be cited as an example of conventional technology related to the above.
  • the pulse receiving circuit used in the conventional signal transmission device has room for further investigation regarding common-mode noise immunity.
  • the invention disclosed in the present specification provides a pulse receiver circuit, a signal transmission device, an electronic device, and a vehicle that are excellent in common-mode noise immunity in view of the above-described problems found by the inventors of the present application. With the goal.
  • the pulse receiver circuit disclosed herein includes a first constant current source configured to generate a first reference current and a second constant current source configured to generate a second reference current.
  • a first receiver configured to sum a first received current induced in a secondary coil of the first transformer and the first reference current to produce a first current signal; and a second transformer.
  • a second receiver configured to sum a second received current induced in the secondary coil of the second receiver and the second reference current to generate a second current signal; a first signal converter configured to convert the second current signal into a signal; a second signal converter configured to convert the second current signal into a second voltage signal; the first voltage signal and the second voltage signal; a comparator configured to compare the voltage signal to generate an output pulse signal.
  • the pulse receiving circuit disclosed in this specification reduces the low frequency component of the first received current induced in the secondary coil of the first transformer to generate the first filter output signal. and a second high-pass filter configured to reduce low-frequency components of the second received current induced in the secondary coil of the second transformer to generate a second filter output signal.
  • a highpass filter a highpass filter; a first subtractor configured to subtract the second filter output signal from the first filter output signal to produce a first difference signal; and the first filter output from the second filter output signal.
  • a second subtractor configured to subtract a signal to produce a second difference signal; and a positive component of said first difference signal interposed between said first subtractor and a first input of said comparator.
  • a first positive component extraction unit configured to generate a first extraction signal by extracting only the second difference, provided between the second subtractor and a second input terminal of the comparator; a second positive component extractor configured to generate a second extracted signal by extracting only the positive component of the signal.
  • FIG. 1 is a diagram showing the basic configuration of a signal transmission device.
  • FIG. 2 is a diagram showing the basic structure of a transformer chip.
  • FIG. 3 is a perspective view of a semiconductor device used as a two-channel transformer chip. 4 is a plan view of the semiconductor device shown in FIG. 3.
  • FIG. 5 is a plan view showing a layer in which a low potential coil is formed in the semiconductor device of FIG. 3.
  • FIG. 6 is a plan view showing a layer in which a high-potential coil is formed in the semiconductor device of FIG. 3.
  • FIG. FIG. 7 is a cross-sectional view taken along line VIII-VIII shown in FIG.
  • FIG. 8 is an enlarged view (separation structure) of region XIII shown in FIG.
  • FIG. 9 is a diagram schematically showing a layout example of a transformer chip.
  • FIG. 10 is a diagram illustrating a configuration example of an electronic device.
  • FIG. 11 is a diagram showing a comparative example of the signal transmission device.
  • FIG. 12 is a diagram showing a first embodiment of the signal transmission device.
  • FIG. 13 is a diagram illustrating an example of pulse reception operation.
  • FIG. 14 is a diagram showing how undershoot occurs.
  • FIG. 15 is a diagram showing a second embodiment of the signal transmission device.
  • FIG. 16 is a diagram showing how undershoot is improved.
  • FIG. 17 is a diagram showing a third embodiment of the signal transmission device.
  • FIG. 18 is a diagram showing how an erroneous output of the output pulse signal occurs.
  • FIG. 19 is a diagram showing a fourth embodiment of the signal transmission device.
  • FIG. 20 is a diagram showing how the erroneous output of the output pulse signal is improved.
  • FIG. 21 is a diagram showing how in-phase noise is superimposed at the reception timing of regular pulses.
  • FIG. 22 is a diagram showing a fifth embodiment of the signal transmission device.
  • FIG. 23 is a diagram showing a configuration example of a vehicle.
  • FIG. 1 is a diagram showing the basic configuration of a signal transmission device.
  • the signal transmission device 200 of this configuration example provides insulation between the primary circuit system 200p (VCC1-GND1 system) and the secondary circuit system 200s (VCC2-GND2 system), and the secondary circuit system 200s from the primary circuit system 200p
  • a semiconductor integrated circuit device (a so-called insulated gate driver IC) that transmits a pulse signal to the secondary circuit system 200s and drives the gate of a switch element (not shown) provided in the secondary circuit system 200s.
  • the signal transmission device 200 is formed by sealing a controller chip 210, a driver chip 220, and a transformer chip 230 in a single package.
  • the controller chip 210 is a semiconductor chip that operates by being supplied with a power supply voltage VCC1 (for example, a maximum of 7 V based on GND1).
  • VCC1 for example, a maximum of 7 V based on GND1.
  • a pulse transmission circuit 211 and buffers 212 and 213 are integrated in the controller chip 210 .
  • the pulse transmission circuit 211 is a pulse generator that generates transmission pulse signals S11 and S21 according to the input pulse signal IN. More specifically, when the pulse transmission circuit 211 notifies that the input pulse signal IN is at a high level, the transmission pulse signal S11 is pulse-driven (single-shot or multiple-shot transmission pulse output) and the input pulse signal S11 is output. When notifying that the signal IN is at low level, the transmission pulse signal S21 is pulse-driven. That is, the pulse transmission circuit 211 pulse-drives one of the transmission pulse signals S11 and S21 according to the logic level of the input pulse signal IN.
  • the buffer 212 receives the input of the transmission pulse signal S11 from the pulse transmission circuit 211 and pulse-drives the transformer chip 230 (specifically, the transformer 231).
  • the buffer 213 receives the input of the transmission pulse signal S21 from the pulse transmission circuit 211 and pulse-drives the transformer chip 230 (specifically, the transformer 232).
  • the driver chip 220 is a semiconductor chip that operates by being supplied with a power supply voltage VCC2 (for example, 30 V maximum based on GND2). Buffers 221 and 222, a pulse receiving circuit 223, and a driver 224 are integrated in the driver chip 220, for example.
  • VCC2 power supply voltage
  • Buffers 221 and 222, a pulse receiving circuit 223, and a driver 224 are integrated in the driver chip 220, for example.
  • the buffer 221 waveform-shapes the received pulse signal S12 induced in the transformer chip 230 (specifically, the transformer 231 ) and outputs it to the pulse receiving circuit 223 .
  • the buffer 222 waveform-shapes the received pulse signal S22 induced in the transformer chip 230 (specifically, the transformer 232) and outputs it to the pulse receiving circuit 223.
  • the pulse receiving circuit 223 generates the output pulse signal OUT by driving the driver 224 according to the received pulse signals S12 and S22 input via the buffers 221 and 222. More specifically, the pulse receiving circuit 223 raises the output pulse signal OUT to a high level in response to the pulse drive of the reception pulse signal S12, and raises the output pulse signal OUT in response to the pulse drive of the reception pulse signal S22. Driver 224 is driven to fall to low level. That is, the pulse receiving circuit 223 switches the logic level of the output pulse signal OUT according to the logic level of the input pulse signal IN. As the pulse receiving circuit 223, for example, an RS flip-flop can be preferably used.
  • the driver 224 generates the output pulse signal OUT based on the driving control of the pulse receiving circuit 223.
  • the transformer chip 230 uses transformers 231 and 232 to provide DC isolation between the controller chip 210 and the driver chip 220, while transforming the transmission pulse signals S11 and S21 input from the pulse transmission circuit 211 into the reception pulse signal S12. and output to the pulse receiving circuit 223 as S22.
  • the phrase "directly insulate" means that objects to be insulated are not connected by a conductor.
  • the transformer 231 outputs the reception pulse signal S12 from the secondary coil 231s in response to the transmission pulse signal S11 input to the primary coil 231p.
  • the transformer 232 outputs a reception pulse signal S22 from the secondary coil 232s according to the transmission pulse signal S21 input to the primary coil 232p.
  • the signal transmission device 200 of this configuration example independently has a transformer chip 230 on which only the transformers 231 and 232 are mounted separately from the controller chip 210 and the driver chip 220, and these three chips are integrated into a single chip. It is sealed in a package.
  • both the controller chip 210 and the driver chip 220 can be formed by a general low-to-medium-voltage process (withstand voltage of several V to several tens of V). It is no longer necessary to use a high withstand voltage process (several kV withstand voltage), making it possible to reduce manufacturing costs.
  • the signal transmission device 200 can be suitably used, for example, as a power supply device or a motor drive device for in-vehicle equipment mounted in a vehicle.
  • the above vehicles include electric vehicles (BEV [battery electric vehicle], HEV [hybrid electric vehicle], PHEV / PHV (plug-in hybrid electric vehicle / plug-in hybrid vehicle), or FCEV / FCV (xEV such as fuel cell electric vehicle/fuel cell vehicle) is also included.
  • FIG. 2 is a diagram showing the basic structure of the transformer chip 230.
  • the transformer 231 includes a primary side coil 231p and a secondary side coil 231s facing each other in the vertical direction.
  • the transformer 232 includes a primary side coil 232p and a secondary side coil 232s facing each other in the vertical direction.
  • Both the primary side coils 231p and 232p are formed on the first wiring layer (lower layer) 230a of the transformer chip 230 .
  • the secondary coils 231 s and 232 s are both formed on the second wiring layer (upper layer in this figure) 230 b of the transformer chip 230 .
  • the secondary coil 231s is arranged directly above the primary coil 231p and faces the primary coil 231p.
  • the secondary coil 232s is arranged directly above the primary coil 232p and faces the primary coil 232p.
  • the primary coil 231p is spirally laid so as to surround the internal terminal X21 in a clockwise direction, starting from the first end connected to the internal terminal X21, and the second end corresponding to the end point is the internal terminal X21. It is connected to the terminal X22.
  • the primary coil 232p is spirally laid so as to surround the internal terminal X23 in a counterclockwise direction, starting from the first end connected to the internal terminal X23, and the second coil 232p corresponds to the end point.
  • the end is connected to the internal terminal X22.
  • the internal terminals X21, X22 and X23 are linearly arranged in the order shown.
  • the internal terminal X21 is connected to the external terminal T21 of the second layer 230b via the conductive wiring Y21 and via Z21.
  • the internal terminal X22 is connected to the external terminal T22 of the second layer 230b through a conductive wiring Y22 and via Z22.
  • the internal terminal X23 is connected to the external terminal T23 of the second layer 230b through the conductive wiring Y23 and via Z23.
  • the external terminals T21 to T23 are linearly arranged and used for wire bonding with the controller chip 210.
  • the secondary coil 231s is spirally laid so as to surround the external terminal T24 in a counterclockwise direction, with a first end connected to the external terminal T24 as a starting point, and a second end corresponding to the end point. is connected to the external terminal T25.
  • the secondary coil 232s is spirally laid so as to surround the periphery of the external terminal T26 clockwise, starting from the first end connected to the external terminal T26. The end is connected to the external terminal T25.
  • the external terminals T24, T25 and T26 are linearly arranged in the order shown in the figure and used for wire bonding with the driver chip 220.
  • the secondary coils 231s and 232s are AC-connected to the primary coils 231p and 232p by magnetic coupling, respectively, and are DC-insulated from the primary coils 231p and 232p. That is, the driver chip 220 is AC-connected to the controller chip 210 via the transformer chip 230 and DC-insulated from the controller chip 210 by the transformer chip 230 .
  • FIG. 3 is a perspective view showing a semiconductor device 5 used as a two-channel transformer chip.
  • 4 is a plan view of the semiconductor device 5 shown in FIG. 3.
  • FIG. 5 is a plan view showing a layer in which the low-potential coil 22 (corresponding to the primary side coil of the transformer) is formed in the semiconductor device 5 shown in FIG.
  • FIG. 7 is a cross-sectional view taken along line VIII-VIII shown in FIG.
  • the semiconductor device 5 includes a semiconductor chip 41 having a rectangular parallelepiped shape.
  • Semiconductor chip 41 includes at least one of silicon, a wide bandgap semiconductor, and a compound semiconductor.
  • a wide bandgap semiconductor consists of a semiconductor that exceeds the bandgap of silicon (approximately 1.12 eV).
  • the bandgap of the wide bandgap semiconductor is preferably 2.0 eV or more.
  • the wide bandgap semiconductor may be SiC (silicon carbide).
  • the compound semiconductor may be a III-V compound semiconductor.
  • the compound semiconductor may contain at least one of AlN (aluminum nitride), InN (indium nitride), GaN (gallium nitride) and GaAs (gallium arsenide).
  • the semiconductor chip 41 includes a semiconductor substrate made of silicon in this form.
  • the semiconductor chip 41 may be an epitaxial substrate having a laminated structure including a semiconductor substrate made of silicon and an epitaxial layer made of silicon.
  • the conductivity type of the semiconductor substrate may be n-type or p-type.
  • the epitaxial layer may be n-type or p-type.
  • the semiconductor chip 41 has a first main surface 42 on one side, a second main surface 43 on the other side, and chip side walls 44A to 44D connecting the first main surface 42 and the second main surface 43.
  • the first main surface 42 and the second main surface 43 are formed in a quadrangular shape (rectangular shape in this embodiment) in plan view (hereinafter simply referred to as "plan view") as seen from their normal direction Z. .
  • the chip sidewalls 44A-44D include a first chip sidewall 44A, a second chip sidewall 44B, a third chip sidewall 44C and a fourth chip sidewall 44D.
  • the first chip side wall 44A and the second chip side wall 44B form long sides of the semiconductor chip 41 .
  • the first chip sidewall 44A and the second chip sidewall 44B extend along the first direction X and face the second direction Y.
  • the third chip side wall 44C and the fourth chip side wall 44D form short sides of the semiconductor chip 41 .
  • the third chip side wall 44C and the fourth chip side wall 44D extend in the second direction Y and face the first direction X.
  • Chip side walls 44A-44D are ground surfaces.
  • the semiconductor device 5 further includes an insulating layer 51 formed on the first main surface 42 of the semiconductor chip 41 .
  • the insulating layer 51 has an insulating main surface 52 and insulating sidewalls 53A-53D.
  • the insulating main surface 52 is formed in a quadrangular shape (rectangular shape in this embodiment) matching the first main surface 42 in plan view.
  • the insulating main surface 52 extends parallel to the first main surface 42 .
  • the insulating sidewalls 53A-53D include a first insulating sidewall 53A, a second insulating sidewall 53B, a third insulating sidewall 53C and a fourth insulating sidewall 53D.
  • the insulating side walls 53A to 53D extend from the peripheral edge of the insulating main surface 52 toward the semiconductor chip 41 and connect to the chip side walls 44A to 44D. Specifically, the insulating sidewalls 53A-53D are formed flush with the chip sidewalls 44A-44D.
  • the insulating sidewalls 53A-53D form ground surfaces flush with the chip sidewalls 44A-44D.
  • the insulating layer 51 has a multi-layer insulating laminate structure including a bottom insulating layer 55 , a top insulating layer 56 and a plurality of (eleven layers in this embodiment) interlayer insulating layers 57 .
  • the bottom insulating layer 55 is an insulating layer that directly covers the first major surface 42 .
  • the top insulating layer 56 is an insulating layer that forms the insulating main surface 52 .
  • a plurality of interlayer insulating layers 57 are insulating layers interposed between the bottom insulating layer 55 and the top insulating layer 56 .
  • the bottom insulating layer 55 has a single layer structure containing silicon oxide in this embodiment.
  • the top insulating layer 56 has a single layer structure containing silicon oxide in this form.
  • the thickness of the bottom insulating layer 55 and the thickness of the top insulating layer 56 may each be 1 ⁇ m or more and 3 ⁇ m or less (for example, about 2 ⁇ m).
  • the plurality of interlayer insulating layers 57 each have a laminated structure including a first insulating layer 58 on the bottom insulating layer 55 side and a second insulating layer 59 on the top insulating layer 56 side.
  • the first insulating layer 58 may contain silicon nitride.
  • the first insulating layer 58 is formed as an etching stopper layer for the second insulating layer 59 .
  • the thickness of the first insulating layer 58 may be 0.1 ⁇ m or more and 1 ⁇ m or less (for example, about 0.3 ⁇ m).
  • a second insulating layer 59 is formed on the first insulating layer 58 . It contains an insulating material different from the first insulating layer 58 .
  • the second insulating layer 59 may contain silicon oxide.
  • the thickness of the second insulating layer 59 may be 1 ⁇ m or more and 3 ⁇ m or less (for example, about 2 ⁇ m). The thickness of the second insulating layer 59 preferably exceeds the thickness of the first insulating layer 58 .
  • the total thickness DT of the insulating layer 51 may be 5 ⁇ m or more and 50 ⁇ m or less.
  • the total thickness DT of the insulating layers 51 and the number of layers of the interlayer insulating layers 57 are arbitrary, and are adjusted according to the dielectric breakdown voltage (dielectric breakdown tolerance) to be achieved.
  • Insulating materials for the lowermost insulating layer 55, the uppermost insulating layer 56, and the interlayer insulating layer 57 are arbitrary, and are not limited to specific insulating materials.
  • the semiconductor device 5 includes a first functional device 45 formed in an insulating layer 51.
  • the first functional device 45 includes one or more (in this form, more than one) transformers 21 (corresponding to the previously mentioned transformers).
  • the semiconductor device 5 is a multi-channel device including multiple transformers 21 .
  • a plurality of transformers 21 are formed in the inner portion of the insulating layer 51 spaced apart from the insulating sidewalls 53A-53D.
  • a plurality of transformers 21 are formed at intervals in the first direction X. As shown in FIG.
  • the plurality of transformers 21 are, in plan view, a first transformer 21A, a second transformer 21B, a third transformer 21C, and a first transformer 21A, a second transformer 21B, and a A fourth transformer 21D is included.
  • a plurality of transformers 21A-21D each have a similar structure.
  • the structure of the first transformer 21A will be described below as an example. Descriptions of the structures of the second transformer 21B, the third transformer 21C, and the fourth transformer 21D are omitted because the description of the structure of the first transformer 21A applies mutatis mutandis.
  • the first transformer 21A includes a low potential coil 22 and a high potential coil 23.
  • FIG. The low potential coil 22 is formed within the insulating layer 51 .
  • the high-potential coil 23 is formed in the insulating layer 51 so as to face the low-potential coil 22 in the normal direction Z.
  • the low-potential coil 22 and the high-potential coil 23 are formed in a region sandwiched between the bottom insulating layer 55 and the top insulating layer 56 (that is, the plurality of interlayer insulating layers 57) in this embodiment.
  • the low potential coil 22 is formed on the lowermost insulating layer 55 (semiconductor chip 41 ) side within the insulating layer 51
  • the high potential coil 23 is formed on the uppermost insulating layer 56 with respect to the low potential coil 22 within the insulating layer 51 . It is formed on the (insulating main surface 52) side. That is, the high potential coil 23 faces the semiconductor chip 41 with the low potential coil 22 interposed therebetween.
  • the low-potential coil 22 and the high-potential coil 23 can be arranged at any position. Also, the high-potential coil 23 may face the low-potential coil 22 with one or more interlayer insulating layers 57 interposed therebetween.
  • the distance between the low-potential coil 22 and the high-potential coil 23 (that is, the number of layers of the interlayer insulation layers 57) is appropriately adjusted according to the withstand voltage and electric field strength between the low-potential coil 22 and the high-potential coil 23.
  • the low-potential coil 22 is formed on the third interlayer insulating layer 57 counted from the bottom insulating layer 55 side.
  • the high-potential coil 23 is formed on the first interlayer insulating layer 57 counted from the uppermost insulating layer 56 side.
  • the low-potential coil 22 is embedded through the first insulating layer 58 and the second insulating layer 59 in the interlayer insulating layer 57 .
  • the low potential coil 22 includes a first inner end 24 , a first outer end 25 and a first helix 26 helically routed between the first inner end 24 and the first outer end 25 .
  • the first spiral portion 26 is wound in a spiral shape extending in an elliptical shape (oval shape) in plan view. A portion forming the innermost peripheral edge of the first spiral portion 26 defines an elliptical first inner region 66 in plan view.
  • the number of turns of the first spiral portion 26 may be 5 or more and 30 or less.
  • the width of the first spiral portion 26 may be 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the width of the first spiral portion 26 is preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • the width of the first spiral portion 26 is defined by the width in the direction orthogonal to the spiral direction.
  • the first winding pitch of the first spiral portion 26 may be 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the first winding pitch is preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • the first winding pitch is defined by the distance between two adjacent portions of the first helical portion 26 in a direction orthogonal to the helical direction.
  • the winding shape of the first spiral portion 26 and the planar shape of the first inner region 66 are arbitrary, and are not limited to the shapes shown in FIG. 5 and the like.
  • the first spiral portion 26 may be wound in a polygonal shape such as a triangular shape, a square shape, or a circular shape in a plan view.
  • the first inner region 66 may be divided into a polygonal shape such as a triangular shape, a quadrangular shape, or a circular shape in plan view according to the winding shape of the first spiral portion 26 .
  • the low potential coil 22 may contain at least one of titanium, titanium nitride, copper, aluminum and tungsten.
  • the low potential coil 22 may have a laminated structure including barrier layers and body layers.
  • the barrier layer defines a recess space within the interlayer insulating layer 57 .
  • a body layer is embedded in the recessed space defined by the barrier layer.
  • the barrier layer may include at least one of titanium and titanium nitride.
  • the body layer may include at least one of copper, aluminum and tungsten.
  • the high-potential coil 23 is embedded through the first insulating layer 58 and the second insulating layer 59 in the interlayer insulating layer 57 .
  • the high potential coil 23 includes a second inner end 27 , a second outer end 28 and a second helix 29 helically routed between the second inner end 27 and the second outer end 28 .
  • the second spiral portion 29 is wound in a spiral shape extending in an elliptical shape (oval shape) in plan view.
  • the portion forming the innermost peripheral edge of the second spiral portion 29 defines an elliptical second inner region 67 in plan view.
  • the second inner region 67 of the second spiral portion 29 faces the first inner region 66 of the first spiral portion 26 in the normal direction Z. As shown in FIG.
  • the number of turns of the second spiral portion 29 may be 5 or more and 30 or less.
  • the number of turns of the second spiral portion 29 relative to the number of turns of the first spiral portion 26 is adjusted according to the voltage value to be boosted.
  • the number of turns of the second spiral portion 29 preferably exceeds the number of turns of the first spiral portion 26 .
  • the number of turns of the second spiral portion 29 may be less than the number of turns of the first spiral portion 26 or may be equal to the number of turns of the first spiral portion 26 .
  • the width of the second spiral portion 29 may be 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the width of the second spiral portion 29 is preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • the width of the second spiral portion 29 is defined by the width in the direction orthogonal to the spiral direction.
  • the width of the second spiral portion 29 is preferably equal to the width of the first spiral portion 26 .
  • the second winding pitch of the second spiral portion 29 may be 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the second winding pitch is preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • the second winding pitch is defined by the distance between two adjacent portions of the second helical portion 29 in a direction orthogonal to the helical direction.
  • the second winding pitch is preferably equal to the first winding pitch of the first helix 26 .
  • the winding shape of the second spiral portion 29 and the planar shape of the second inner region 67 are arbitrary, and are not limited to the shapes shown in FIG. 6 and the like.
  • the second spiral portion 29 may be wound in a polygonal shape such as a triangular shape, a square shape, or a circular shape in a plan view.
  • the second inner region 67 may be divided into a polygonal shape such as a triangular shape, a square shape, or a circular shape in plan view according to the winding shape of the second spiral portion 29 .
  • the high-potential coil 23 is preferably made of the same conductive material as the low-potential coil 22. That is, the high-potential coil 23 preferably includes barrier layers and body layers, similar to the low-potential coil 22 .
  • semiconductor device 5 includes a plurality of (12 in this drawing) low potential terminals 11 and a plurality of (12 in this drawing) high potential terminals 12 .
  • a plurality of low potential terminals 11 are electrically connected to low potential coils 22 of corresponding transformers 21A to 21D, respectively.
  • a plurality of high potential terminals 12 are electrically connected to high potential coils 23 of corresponding transformers 21A to 21D, respectively.
  • a plurality of low-potential terminals 11 are formed on the insulating main surface 52 of the insulating layer 51 . Specifically, the plurality of low-potential terminals 11 are formed in a region on the side of the insulating sidewall 53B at intervals in the second direction Y from the plurality of transformers 21A to 21D, and are arranged at intervals in the first direction X. It is
  • the plurality of low potential terminals 11 includes a first low potential terminal 11A, a second low potential terminal 11B, a third low potential terminal 11C, a fourth low potential terminal 11D, a fifth low potential terminal 11E and a sixth low potential terminal 11F. include.
  • Each of the plurality of low potential terminals 11A to 11F is formed two by two in this embodiment.
  • the number of the plurality of low potential terminals 11A-11F is arbitrary.
  • the first low potential terminal 11A faces the first transformer 21A in the second direction Y in plan view.
  • the second low potential terminal 11B faces the second transformer 21B in the second direction Y in plan view.
  • the third low potential terminal 11C faces the third transformer 21C in the second direction Y in plan view.
  • the fourth low potential terminal 11D faces the fourth transformer 21D in the second direction Y in plan view.
  • the fifth low potential terminal 11E is formed in a region between the first low potential terminal 11A and the second low potential terminal 11B in plan view.
  • the sixth low potential terminal 11F is formed in a region between the third low potential terminal 11C and the fourth low potential terminal 11D in plan view.
  • the first low potential terminal 11A is electrically connected to the first inner end 24 of the first transformer 21A (low potential coil 22).
  • the second low potential terminal 11B is electrically connected to the first inner end 24 of the second transformer 21B (low potential coil 22).
  • the third low potential terminal 11C is electrically connected to the first inner end 24 of the third transformer 21C (low potential coil 22).
  • the fourth low potential terminal 11D is electrically connected to the first inner end 24 of the fourth transformer 21D (low potential coil 22).
  • the fifth low potential terminal 11E is electrically connected to the first outer terminal 25 of the first transformer 21A (low potential coil 22) and the first outer terminal 25 of the second transformer 21B (low potential coil 22).
  • the sixth low potential terminal 11F is electrically connected to the first outer terminal 25 of the third transformer 21C (low potential coil 22) and the first outer terminal 25 of the fourth transformer 21D (low potential coil 22).
  • the plurality of high-potential terminals 12 are formed on the insulating main surface 52 of the insulating layer 51 at intervals from the plurality of low-potential terminals 11 . Specifically, the plurality of high-potential terminals 12 are formed in a region on the side of the insulating sidewall 53A spaced apart from the plurality of low-potential terminals 11 in the second direction Y, and are arranged in the first direction X at intervals. ing.
  • a plurality of high-potential terminals 12 are formed in regions adjacent to the corresponding transformers 21A to 21D in plan view.
  • the high potential terminal 12 being close to the transformers 21A to 21D means that the distance between the high potential terminal 12 and the transformer 21 in plan view is less than the distance between the low potential terminal 11 and the high potential terminal 12. means.
  • the plurality of high-potential terminals 12 are formed at intervals along the first direction X so as to face the plurality of transformers 21A to 21D along the first direction X in plan view. . More specifically, the plurality of high potential terminals 12 are arranged along the first direction X so as to be located in the second inner region 67 of the high potential coil 23 and the region between the adjacent high potential coils 23 in plan view. formed with a gap. As a result, the plurality of high-potential terminals 12 are arranged in line with the plurality of transformers 21A to 21D in the first direction X in plan view.
  • the plurality of high potential terminals 12 includes a first high potential terminal 12A, a second high potential terminal 12B, a third high potential terminal 12C, a fourth high potential terminal 12D, a fifth high potential terminal 12E and a sixth high potential terminal 12F. include.
  • Each of the plurality of high-potential terminals 12A to 12F is formed two by two in this embodiment.
  • the number of high potential terminals 12A to 12F is arbitrary.
  • the first high potential terminal 12A is formed in the second inner region 67 of the first transformer 21A (high potential coil 23) in plan view.
  • the second high potential terminal 12B is formed in the second inner region 67 of the second transformer 21B (high potential coil 23) in plan view.
  • the third high potential terminal 12C is formed in the second inner region 67 of the third transformer 21C (high potential coil 23) in plan view.
  • the fourth high potential terminal 12D is formed in the second inner region 67 of the fourth transformer 21D (high potential coil 23) in plan view.
  • the fifth high potential terminal 12E is formed in a region between the first transformer 21A and the second transformer 21B in plan view.
  • the sixth high potential terminal 12F is formed in a region between the third transformer 21C and the fourth transformer 21D in plan view.
  • the first high potential terminal 12A is electrically connected to the second inner end 27 of the first transformer 21A (high potential coil 23).
  • the second high potential terminal 12B is electrically connected to the second inner end 27 of the second transformer 21B (high potential coil 23).
  • the third high potential terminal 12C is electrically connected to the second inner end 27 of the third transformer 21C (high potential coil 23).
  • the fourth high potential terminal 12D is electrically connected to the second inner end 27 of the fourth transformer 21D (high potential coil 23).
  • the fifth high potential terminal 12E is electrically connected to the second outer end 28 of the first transformer 21A (high potential coil 23) and the second outer end 28 of the second transformer 21B (high potential coil 23).
  • the sixth high potential terminal 12F is electrically connected to the second outer end 28 of the third transformer 21C (high potential coil 23) and the second outer end 28 of the fourth transformer 21D (high potential coil 23).
  • semiconductor device 5 includes first low-potential wiring 31, second low-potential wiring 32, first high-potential wiring 33 and second high-potential wiring formed in insulating layer 51, respectively. 34.
  • a plurality of first low potential wirings 31, a plurality of second low potential wirings 32, a plurality of first high potential wirings 33 and a plurality of second high potential wirings 34 are formed.
  • the first low potential wiring 31 and the second low potential wiring 32 fix the low potential coil 22 of the first transformer 21A and the low potential coil 22 of the second transformer 21B to the same potential.
  • the first low potential wiring 31 and the second low potential wiring 32 fix the low potential coil 22 of the third transformer 21C and the low potential coil 22 of the fourth transformer 21D to the same potential.
  • the first low potential wiring 31 and the second low potential wiring 32 fix all the low potential coils 22 of the transformers 21A to 21D to the same potential.
  • the first high-potential wiring 33 and the second high-potential wiring 34 fix the high-potential coil 23 of the first transformer 21A and the high-potential coil 23 of the second transformer 21B to the same potential. Also, the first high-potential wiring 33 and the second high-potential wiring 34 fix the high-potential coil 23 of the third transformer 21C and the high-potential coil 23 of the fourth transformer 21D to the same potential. The first high-potential wiring 33 and the second high-potential wiring 34 fix all the high-potential coils 23 of the transformers 21A to 21D at the same potential in this form.
  • the plurality of first low potential wirings 31 are electrically connected to the corresponding low potential terminals 11A-11D and the first inner ends 24 of the corresponding transformers 21A-21D (low potential coils 22), respectively.
  • the multiple first low-potential wirings 31 have the same structure.
  • the structure of the first low-potential wiring 31 connected to the first low-potential terminal 11A and the first transformer 21A will be described below as an example.
  • the description of the structure of the other first low potential wiring 31 is omitted because the description of the structure of the first low potential wiring 31 connected to the first transformer 21A applies mutatis mutandis.
  • the first low-potential wiring 31 includes a through-wiring 71, a low-potential connection wiring 72, a lead-out wiring 73, a first connection plug electrode 74, a second connection plug electrode 75, and one or more (in this embodiment, more than one) pad plug electrodes. 76 , and one or more (in this form, more than one) substrate plug electrodes 77 .
  • the through wiring 71, the low potential connection wiring 72, the lead wiring 73, the first connection plug electrode 74, the second connection plug electrode 75, the pad plug electrode 76, and the substrate plug electrode 77 are made of the same conductive material as the low potential coil 22 and the like. It is preferable that they are formed respectively. That is, the through wiring 71, the low potential connection wiring 72, the lead wiring 73, the first connection plug electrode 74, the second connection plug electrode 75, the pad plug electrode 76, and the substrate plug electrode 77 are similar to the low potential coil 22 and the like. It preferably includes a barrier layer and a body layer, respectively.
  • the through wiring 71 penetrates the plurality of interlayer insulating layers 57 in the insulating layer 51 and extends in a columnar shape extending along the normal direction Z. As shown in FIG. Through wire 71 is formed in a region between lowermost insulating layer 55 and uppermost insulating layer 56 in insulating layer 51 in this embodiment.
  • the through wire 71 has an upper end on the uppermost insulating layer 56 side and a lower end on the lowermost insulating layer 55 side.
  • the upper end of the through wire 71 is formed in the same interlayer insulating layer 57 as the high potential coil 23 and covered with the uppermost insulating layer 56 .
  • the lower end of the through wire 71 is formed on the same interlayer insulating layer 57 as the low potential coil 22 .
  • the through wiring 71 includes a first electrode layer 78, a second electrode layer 79, and a plurality of wiring plug electrodes 80 in this embodiment.
  • the first electrode layer 78, the second electrode layer 79, and the wire plug electrode 80 are made of the same conductive material as the low potential coil 22 and the like. That is, the first electrode layer 78, the second electrode layer 79, and the wiring plug electrode 80 each include a barrier layer and a body layer, like the low-potential coil 22 and the like.
  • the first electrode layer 78 forms the upper end of the through wire 71 .
  • the second electrode layer 79 forms the lower end of the through wire 71 .
  • the first electrode layer 78 is formed in an island shape and faces the low potential terminal 11 (first low potential terminal 11A) in the normal direction Z.
  • the second electrode layer 79 is formed in an island shape and faces the first electrode layer 78 in the normal direction Z. As shown in FIG.
  • a plurality of wiring plug electrodes 80 are embedded in a plurality of interlayer insulating layers 57 positioned between the first electrode layer 78 and the second electrode layer 79, respectively.
  • a plurality of wiring plug electrodes 80 are laminated from the bottom insulating layer 55 toward the top insulating layer 56 so as to be electrically connected to each other, and electrically connect the first electrode layer 78 and the second electrode layer 79 to each other. Connected.
  • the plurality of wiring plug electrodes 80 each have a planar area less than the planar area of the first electrode layer 78 and the planar area of the second electrode layer 79 .
  • the number of lamination of the plurality of wiring plug electrodes 80 matches the number of lamination of the plurality of interlayer insulating layers 57 .
  • the number of wiring plug electrodes 80 embedded in each interlayer insulating layer 57 is arbitrary.
  • one or more wiring plug electrodes 80 may be formed penetrating the plurality of interlayer insulating layers 57 .
  • the low-potential connection wiring 72 is formed in the first inner region 66 of the first transformer 21A (low-potential coil 22) in the same interlayer insulating layer 57 as the low-potential coil 22.
  • the low-potential connection wiring 72 is formed in an island shape and faces the high-potential terminal 12 (first high-potential terminal 12A) in the normal direction Z. As shown in FIG.
  • the low-potential connection wiring 72 preferably has a plane area larger than that of the wiring plug electrode 80 .
  • a low potential connection wire 72 is electrically connected to the first inner end 24 of the low potential coil 22 .
  • the lead wiring 73 is formed in a region between the semiconductor chip 41 and the through wiring 71 within the interlayer insulating layer 57 .
  • the lead-out wiring 73 is formed in the first interlayer insulating layer 57 counted from the lowermost insulating layer 55 in this embodiment.
  • Lead wiring 73 includes a first end on one side, a second end on the other side, and a wiring portion connecting the first end and the second end.
  • a first end of lead-out wiring 73 is located in a region between semiconductor chip 41 and the lower end of through-wiring 71 .
  • a second end of the lead wire 73 is located in a region between the semiconductor chip 41 and the low potential connection wire 72 .
  • the wiring portion extends along the first main surface 42 of the semiconductor chip 41 and extends in a strip shape in a region between the first end portion and the second end portion.
  • the first connection plug electrode 74 is formed in a region between the through wire 71 and the lead wire 73 within the interlayer insulating layer 57 and is electrically connected to first ends of the through wire 71 and the lead wire 73 .
  • the second connection plug electrode 75 is formed in a region between the low-potential connection wiring 72 and the lead-out wiring 73 within the interlayer insulating layer 57 and is electrically connected to the second ends of the low-potential connection wiring 72 and the lead-out wiring 73 . It is
  • a plurality of pad plug electrodes 76 are formed in a region between the low potential terminal 11 (first low potential terminal 11A) and the through wire 71 in the uppermost insulating layer 56, and are formed at the upper ends of the low potential terminal 11 and the through wire 71. They are electrically connected to each other.
  • a plurality of substrate plug electrodes 77 are formed in a region between the semiconductor chip 41 and the lead wiring 73 within the lowermost insulating layer 55 . In this embodiment, the substrate plug electrode 77 is formed in a region between the semiconductor chip 41 and the first ends of the lead wires 73, and is electrically connected to the semiconductor chip 41 and the first ends of the lead wires 73, respectively.
  • a plurality of first high potential wires 33 are connected to corresponding high potential terminals 12A-12D and second inner ends 27 of corresponding transformers 21A-21D (high potential coils 23), respectively. electrically connected.
  • the multiple first high-potential wirings 33 each have a similar structure.
  • the structure of the first high-potential wiring 33 connected to the first high-potential terminal 12A and the first transformer 21A will be described below as an example.
  • the description of the structure of the other first high-potential wiring 33 is omitted because the description of the structure of the first high-potential wiring 33 connected to the first transformer 21A applies mutatis mutandis.
  • the first high-potential wiring 33 includes a high-potential connection wiring 81 and one or more (in this embodiment, more than one) pad plug electrodes 82 .
  • the high potential connection wiring 81 and the pad plug electrode 82 are preferably made of the same conductive material as the low potential coil 22 and the like. That is, the high potential connection wiring 81 and the pad plug electrode 82 preferably include a barrier layer and a body layer like the low potential coil 22 and the like.
  • the high-potential connection wiring 81 is formed in the second inner region 67 of the high-potential coil 23 in the same interlayer insulating layer 57 as the high-potential coil 23 .
  • the high-potential connection wiring 81 is formed in an island shape and faces the high-potential terminal 12 (first high-potential terminal 12A) in the normal direction Z.
  • a high potential connecting wire 81 is electrically connected to the second inner end 27 of the high potential coil 23 .
  • the high-potential connection wiring 81 is spaced from the low-potential connection wiring 72 in plan view, and does not face the low-potential connection wiring 72 in the normal direction Z. As shown in FIG. As a result, the insulation distance between the low-potential connection wiring 72 and the high-potential connection wiring 81 is increased, and the withstand voltage of the insulation layer 51 is increased.
  • a plurality of pad plug electrodes 82 are formed in a region between the high potential terminal 12 (first high potential terminal 12A) and the high potential connection wiring 81 in the uppermost insulating layer 56, are electrically connected to each other.
  • Each of the plurality of pad plug electrodes 82 has a plane area smaller than the plane area of the high-potential connection wiring 81 in plan view.
  • the distance D1 between the low potential terminal 11 and the high potential terminal 12 preferably exceeds the distance D2 between the low potential coil 22 and the high potential coil 23 (D2 ⁇ D1).
  • the distance D1 preferably exceeds the total thickness DT of the plurality of interlayer insulating layers 57 (DT ⁇ D1).
  • a ratio D2/D1 of the distance D2 to the distance D1 may be 0.01 or more and 0.1 or less.
  • the distance D1 is preferably 100 ⁇ m or more and 500 ⁇ m or less.
  • the distance D2 may be 1 ⁇ m or more and 50 ⁇ m or less.
  • the distance D2 is preferably 5 ⁇ m or more and 25 ⁇ m or less.
  • the values of the distance D1 and the distance D2 are arbitrary, and are appropriately adjusted according to the dielectric breakdown voltage to be achieved.
  • semiconductor device 5 includes dummy patterns 85 embedded in insulating layer 51 so as to be positioned around transformers 21A to 21D in plan view.
  • the dummy pattern 85 is formed in a pattern (discontinuous pattern) different from that of the high-potential coil 23 and the low-potential coil 22, and is independent of the transformers 21A-21D. In other words, the dummy pattern 85 does not function as the transformers 21A-21D.
  • the dummy pattern 85 is formed as a shield conductor layer that shields the electric field between the low-potential coil 22 and the high-potential coil 23 in the transformers 21A-21D and suppresses electric field concentration on the high-potential coil 23.
  • FIG. In this form, the dummy pattern 85 is routed with a line density equal to the line density of the high-potential coil 23 per unit area.
  • the fact that the line density of the dummy patterns 85 is equal to the line density of the high-potential coil 23 means that the line density of the dummy patterns 85 is within ⁇ 20% of the line density of the high-potential coil 23 .
  • the depth position of the dummy pattern 85 inside the insulating layer 51 is arbitrary, and is adjusted according to the electric field strength to be alleviated.
  • the dummy pattern 85 is preferably formed in a region closer to the high-potential coil 23 than the low-potential coil 22 with respect to the normal direction Z. As shown in FIG.
  • the dummy pattern 85 being close to the high-potential coil 23 in the normal direction Z means that the distance between the dummy pattern 85 and the high-potential coil 23 in the normal direction Z is equal to the distance between the dummy pattern 85 and the low-potential coil 22 in the normal direction Z. means less than the distance of
  • Dummy pattern 85 is preferably formed in the same interlayer insulating layer 57 as high-potential coil 23 . In this case, electric field concentration on the high-potential coil 23 can be suppressed more appropriately.
  • Dummy pattern 85 includes a plurality of dummy patterns having different electrical states. The dummy pattern 85 may include a high potential dummy pattern.
  • the depth position of the high-potential dummy pattern 86 inside the insulating layer 51 is arbitrary, and is adjusted according to the electric field strength to be alleviated.
  • the high-potential dummy pattern 86 is preferably formed in a region closer to the high-potential coil 23 than the low-potential coil 22 with respect to the normal direction Z. As shown in FIG.
  • the high-potential dummy pattern 86 being close to the high-potential coil 23 in the normal direction Z means that the distance between the high-potential dummy pattern 86 and the high-potential coil 23 in the normal direction Z is equal to the high-potential dummy pattern 86 and the low-potential coil 23 . It means less than the distance between the coils 22 .
  • the dummy pattern 85 includes floating dummy patterns formed in an electrically floating state within the insulating layer 51 so as to be positioned around the transformers 21A to 21D.
  • the floating dummy pattern is drawn in a dense line shape so as to partially cover and partially expose the area around the high-potential coil 23 in plan view.
  • the floating dummy pattern may be formed in a shape with an end, or may be formed in a shape without an end.
  • the depth position of the floating dummy pattern inside the insulating layer 51 is arbitrary, and is adjusted according to the electric field intensity to be relaxed.
  • a floating dummy pattern may be composed of a plurality of floating patterns.
  • semiconductor device 5 includes second functional device 60 formed on first main surface 42 of semiconductor chip 41 in device region 62 .
  • the second functional device 60 is formed using the surface layer portion of the first main surface 42 of the semiconductor chip 41 and/or the region above the first main surface 42 of the semiconductor chip 41, and includes the insulating layer 51 (lowermost It is covered by an insulating layer 55).
  • the second functional device 60 is simply indicated by the dashed line indicated on the surface layer of the first main surface 42. As shown in FIG.
  • the second functional device 60 is electrically connected to the low potential terminal 11 via the low potential wiring and electrically connected to the high potential terminal 12 via the high potential wiring.
  • the low potential wiring has the same structure as the first low potential wiring 31 (second low potential wiring 32) except that it is routed in the insulating layer 51 so as to be connected to the second functional device 60. have.
  • the high-potential wiring has the same structure as the first high-potential wiring 33 (second high-potential wiring 34) except that it is routed in the insulating layer 51 so as to be connected to the second functional device 60. have.
  • a detailed description of the low-potential wiring and high-potential wiring related to the second functional device 60 is omitted.
  • the second functional device 60 may include at least one of a passive device, a semiconductor rectifying device and a semiconductor switching device.
  • the passive device, the second functional device 60 may include a network in which any two or more of passive devices, semiconductor rectifying devices and semiconductor switching devices are selectively combined.
  • the circuitry may form part or all of an integrated circuit.
  • Passive devices may include semiconductor passive devices. Passive devices may include either or both resistors and capacitors.
  • the semiconductor rectifier device may include at least one of a pn junction diode, a PIN diode, a Zener diode, a Schottky barrier diode and a fast recovery diode.
  • the semiconductor switching device may include at least one of BJT [Bipolar Junction Transistor], MISFET [Metal Insulator Field Effect Transistor], IGBT [Insulated Gate Bipolar Junction Transistor] and JFET [Junction Field Effect Transistor].
  • the semiconductor device 5 further includes a seal conductor 61 embedded within the insulating layer 51.
  • the seal conductor 61 is embedded in the insulating layer 51 in a wall shape with a gap from the insulating side walls 53A to 53D in plan view, and partitions the insulating layer 51 into a device region 62 and an outer region 63 .
  • the seal conductor 61 suppresses entry of moisture and cracks from the outer region 63 into the device region 62 .
  • the device region 62 includes a first functional device 45 (plurality of transformers 21), a second functional device 60, a plurality of low potential terminals 11, a plurality of high potential terminals 12, a first low potential wiring 31, and a second low potential wiring. 32 , first high potential wiring 33 , second high potential wiring 34 and dummy pattern 85 .
  • the outer area 63 is an area outside the device area 62 .
  • the seal conductor 61 is electrically separated from the device region 62 .
  • the seal conductor 61 includes the first functional device 45 (the plurality of transformers 21), the second functional device 60, the plurality of low potential terminals 11, the plurality of high potential terminals 12, the first low potential wiring 31, It is electrically separated from the second low potential wiring 32 , the first high potential wiring 33 , the second high potential wiring 34 and the dummy pattern 85 . More specifically, the seal conductor 61 is fixed in an electrically floating state. Seal conductor 61 does not form a current path leading to device region 62 .
  • the seal conductor 61 is formed in a strip shape along the insulating side walls 53 to 53D in plan view.
  • the seal conductor 61 is formed in a quadrangular ring shape (specifically, a rectangular ring shape) in plan view.
  • the seal conductor 61 defines a quadrangular (specifically rectangular) device region 62 in plan view.
  • the seal conductor 61 defines an outer region 63 of a quadrangular ring shape (specifically, a rectangular ring shape) surrounding the device region 62 in plan view.
  • the seal conductor 61 has an upper end portion on the insulating main surface 52 side, a lower end portion on the semiconductor chip 41 side, and a wall portion extending like a wall between the upper end portion and the lower end portion.
  • the upper end of the seal conductor 61 is spaced from the insulating main surface 52 toward the semiconductor chip 41 and positioned within the insulating layer 51 .
  • the upper end of the seal conductor 61 is covered with the top insulating layer 56 in this embodiment.
  • the upper ends of the seal conductors 61 may be covered by one or more interlayer insulation layers 57 .
  • the top end of the seal conductor 61 may be exposed from the top insulating layer 56 .
  • the bottom end of the seal conductor 61 is spaced from the semiconductor chip 41 toward the top end.
  • the seal conductor 61 is embedded in the insulating layer 51 so as to be located on the semiconductor chip 41 side with respect to the plurality of low potential terminals 11 and the plurality of high potential terminals 12 .
  • the seal conductor 61 includes the first functional device 45 (the plurality of transformers 21), the first low-potential wiring 31, the second low-potential wiring 32, the first high-potential wiring 33, and the second high-potential wiring within the insulating layer 51. It faces the wiring 34 and the dummy pattern 85 in a direction parallel to the insulating main surface 52 .
  • the seal conductor 61 may face a portion of the second functional device 60 in the insulating layer 51 in a direction parallel to the insulating main surface 52 .
  • the seal conductor 61 includes a plurality of seal plug conductors 64 and one or more (in this embodiment, more than one) seal via conductors 65 .
  • the number of seal via conductors 65 is arbitrary.
  • An uppermost seal plug conductor 64 of the plurality of seal plug conductors 64 forms the upper end of the seal conductor 61 .
  • a plurality of seal via conductors 65 form the lower ends of the seal conductors 61 respectively.
  • Seal plug conductor 64 and seal via conductor 65 are preferably made of the same conductive material as low potential coil 22 . That is, the seal plug conductor 64 and the seal via conductor 65 preferably include a barrier layer and a body layer like the low potential coil 22 and the like.
  • the plurality of seal plug conductors 64 are respectively embedded in the plurality of interlayer insulating layers 57 and formed in a quadrangular ring shape (specifically, a rectangular ring shape) surrounding the device region 62 in plan view.
  • a plurality of seal plug conductors 64 are stacked from the bottom insulating layer 55 toward the top insulating layer 56 so as to be connected to each other.
  • the number of laminated seal plug conductors 64 matches the number of laminated interlayer insulating layers 57 .
  • one or more seal plug conductors 64 may be formed to penetrate the multiple interlayer insulating layers 57 .
  • an assembly of a plurality of seal plug conductors 64 forms one ring-shaped seal conductor 61, not all of the plurality of seal plug conductors 64 need to be ring-shaped.
  • at least one of the plurality of seal plug conductors 64 may be formed with ends.
  • at least one of the plurality of seal plug conductors 64 may be divided into a plurality of band-like portions with ends.
  • the plurality of seal plug conductors 64 be endless (annular).
  • a plurality of seal via conductors 65 are formed in regions between the semiconductor chip 41 and the seal plug conductors 64 in the bottom insulating layer 55 .
  • a plurality of seal via conductors 65 are formed spaced apart from the semiconductor chip 41 and connected to the seal plug conductors 64 .
  • the plurality of seal via conductors 65 have plane areas less than the plane area of the seal plug conductors 64 .
  • the single seal via conductor 65 may have a planar area equal to or larger than the planar area of the seal plug conductor 64 .
  • the width of the seal conductor 61 may be 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the width of the seal conductor 61 is preferably 1 ⁇ m or more and 5 ⁇ m or less.
  • the width of the seal conductor 61 is defined by the width in the direction orthogonal to the extending direction of the seal conductor 61 .
  • the semiconductor device 5 further includes an isolation structure 130 interposed between the semiconductor chip 41 and the seal conductor 61 to electrically isolate the seal conductor 61 from the semiconductor chip 41.
  • FIG. Isolation structure 130 preferably includes an insulator.
  • the isolation structure 130 consists of the field insulating film 131 formed in the 1st main surface 42 of the semiconductor chip 41 in this form.
  • the field insulating film 131 includes at least one of an oxide film (silicon oxide film) and a nitride film (silicon nitride film).
  • the field insulating film 131 is preferably made of a LOCOS (local oxidation of silicon) film, which is an example of an oxide film formed by oxidizing the first main surface 42 of the semiconductor chip 41 .
  • the thickness of the field insulating film 131 is arbitrary as long as the semiconductor chip 41 and the seal conductor 61 can be insulated.
  • Field insulating film 131 may have a thickness of 0.1 ⁇ m or more and 5 ⁇ m or less.
  • the isolation structure 130 is formed on the first main surface 42 of the semiconductor chip 41 and extends in a strip shape along the seal conductor 61 in plan view.
  • the separation structure 130 is formed in a quadrangular ring shape (specifically, a rectangular ring shape) in plan view.
  • the separation structure 130 has a connection portion 132 to which the lower end portion (seal via conductor 65) of the seal conductor 61 is connected.
  • the connection portion 132 may form an anchor portion in which the lower end portion (seal via conductor 65 ) of the seal conductor 61 bites toward the semiconductor chip 41 side.
  • the connecting portion 132 may be formed flush with the main surface of the isolation structure 130 .
  • the isolation structure 130 includes an inner end portion 130A on the device region 62 side, an outer end portion 130B on the outer region 63 side, and a body portion 130C between the inner end portion 130A and the outer end portion 130B.
  • the inner end portion 130A defines a region in which the second functional device 60 is formed (that is, the device region 62) in plan view.
  • the inner end portion 130A may be formed integrally with an insulating film (not shown) formed on the first main surface 42 of the semiconductor chip 41 .
  • the outer end portion 130B is exposed from the chip side walls 44A to 44D of the semiconductor chip 41 and continues to the chip side walls 44A to 44D of the semiconductor chip 41. As shown in FIG. More specifically, the outer end portion 130B is formed flush with the chip sidewalls 44A to 44D of the semiconductor chip 41. As shown in FIG. The outer end portion 130B forms a flush ground surface between the chip side walls 44A to 44D of the semiconductor chip 41 and the insulating side walls 53A to 53D of the insulating layer 51. As shown in FIG. Of course, in another form, the outer end 130B may be formed in the first major surface 42 spaced apart from the chip sidewalls 44A-44D.
  • the main body portion 130C has a flat surface extending substantially parallel to the first main surface 42 of the semiconductor chip 41 .
  • the body portion 130C has a connecting portion 132 to which the lower end portion (seal via conductor 65) of the seal conductor 61 is connected.
  • the connecting portion 132 is formed at a portion of the body portion 130C spaced apart from the inner end portion 130A and the outer end portion 130B.
  • the isolation structure 130 can take various forms other than the field insulating film 131 .
  • semiconductor device 5 further includes an inorganic insulating layer 140 formed on insulating main surface 52 of insulating layer 51 so as to cover seal conductor 61 .
  • Inorganic insulating layer 140 may be referred to as a passivation layer. The inorganic insulating layer 140 protects the insulating layer 51 and the semiconductor chip 41 from above the insulating main surface 52 .
  • the inorganic insulating layer 140 has a laminated structure including a first inorganic insulating layer 141 and a second inorganic insulating layer 142 in this embodiment.
  • the first inorganic insulating layer 141 may contain silicon oxide.
  • the first inorganic insulating layer 141 preferably contains USG (undoped silicate glass), which is silicon oxide with no impurity added.
  • the thickness of the first inorganic insulating layer 141 may be 50 nm or more and 5000 nm or less.
  • the second inorganic insulating layer 142 may contain silicon nitride.
  • the thickness of the second inorganic insulating layer 142 may be 500 nm or more and 5000 nm or less.
  • the breakdown voltage (V/cm) of USG exceeds the breakdown voltage (V/cm) of silicon nitride. Therefore, when the inorganic insulating layer 140 is thickened, it is preferable to form the first inorganic insulating layer 141 thicker than the second inorganic insulating layer 142 .
  • the first inorganic insulating layer 141 may contain at least one of BPSG (boron doped phosphor silicate glass) and PSG (phosphorus silicate glass) as an example of silicon oxide. However, in this case, since silicon oxide contains impurities (boron or phosphorus), it is particularly preferable to form the first inorganic insulating layer 141 made of USG in order to increase the withstand voltage on the high-potential coil 23 . .
  • the inorganic insulating layer 140 may have a single layer structure consisting of either the first inorganic insulating layer 141 or the second inorganic insulating layer 142 .
  • the inorganic insulating layer 140 covers the entire area of the seal conductor 61 and has a plurality of low potential pad openings 143 and a plurality of high potential pad openings 144 formed outside the seal conductor 61 .
  • a plurality of low potential pad openings 143 expose a plurality of low potential terminals 11 respectively.
  • a plurality of high potential pad openings 144 respectively expose a plurality of high potential terminals 12 .
  • the inorganic insulating layer 140 may have an overlapping portion that runs over the peripheral portion of the low potential terminal 11 .
  • the inorganic insulating layer 140 may have an overlapping portion overlying the peripheral portion of the high potential terminal 12 .
  • the semiconductor device 5 further includes an organic insulating layer 145 formed on the inorganic insulating layer 140 .
  • the organic insulating layer 145 may contain a photosensitive resin.
  • Organic insulating layer 145 may include at least one of polyimide, polyamide, and polybenzoxazole.
  • Organic insulating layer 145 comprises polyimide in this form.
  • the thickness of the organic insulating layer 145 may be 1 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of the organic insulating layer 145 preferably exceeds the total thickness of the inorganic insulating layer 140 . Furthermore, the total thickness of inorganic insulating layer 140 and organic insulating layer 145 is preferably equal to or greater than distance D2 between low potential coil 22 and high potential coil 23 . In this case, the total thickness of the inorganic insulating layer 140 is preferably 2 ⁇ m or more and 10 ⁇ m or less. Also, the thickness of the organic insulating layer 145 is preferably 5 ⁇ m or more and 50 ⁇ m or less.
  • the laminated film of the inorganic insulating layer 140 and the organic insulating layer 145 appropriately increases the withstand voltage of the high-potential coil 23. be able to.
  • the organic insulating layer 145 includes a first portion 146 covering the low potential side region and a second portion 147 covering the high potential side region.
  • the first portion 146 covers the seal conductor 61 with the inorganic insulating layer 140 interposed therebetween.
  • the first portion 146 has a plurality of low potential terminal openings 148 exposing the plurality of low potential terminals 11 (low potential pad openings 143 ) respectively in a region outside the seal conductor 61 .
  • the first portion 146 may have an overlap portion that runs over the periphery (overlap portion) of the low potential pad opening 143 .
  • the second portion 147 is spaced apart from the first portion 146 and exposes the inorganic insulating layer 140 between the first portion 146 and the second portion 147 .
  • the second portion 147 has a plurality of high potential terminal openings 149 that respectively expose a plurality of high potential terminals 12 (high potential pad openings 144).
  • the second portion 147 may have an overlap portion that runs over the periphery (overlap portion) of the high potential pad opening 144 .
  • the second portion 147 collectively covers the transformers 21A to 21D and the dummy pattern 85. Specifically, the second portion 147 collectively covers the plurality of high-potential coils 23, the plurality of high-potential terminals 12, the first high-potential dummy pattern 87, the second high-potential dummy pattern 88, and the floating dummy pattern 121. are doing.
  • Embodiments of the present invention can be implemented in other forms.
  • an example in which the first functional device 45 and the second functional device 60 are formed has been described.
  • a form having only the second functional device 60 without having the first functional device 45 may be employed.
  • dummy pattern 85 may be removed.
  • the second functional device 60 can achieve the same effects as those described in the first embodiment (excluding the effects related to the dummy pattern 85).
  • the second functional device 60 is formed.
  • the second functional device 60 is not necessarily required and may be removed.
  • the dummy pattern 85 is formed.
  • the dummy pattern 85 is not necessarily required and may be removed.
  • the first functional device 45 is of a multi-channel type including a plurality of transformers 21 .
  • a single-channel first functional device 45 including a single transformer 21 may be employed.
  • FIG. 9 is a plan view (top view) schematically showing an example of a transformer arrangement in a two-channel transformer chip 300 (corresponding to the semiconductor device 5 described above).
  • the transformer chip 300 in this figure includes a first transformer 301, a second transformer 302, a third transformer 303, a fourth transformer 304, a first guard ring 305, a second guard ring 306, and pads a1 to a8. , pads b1 to b8, pads c1 to c4, and pads d1 to d4.
  • pads a1 and b1 are connected to one end of the secondary coil L1s forming the first transformer 301, and pads c1 and d1 are connected to the other end of the secondary coil L1s. ing.
  • Pads a2 and b2 are connected to one end of the secondary coil L2s forming the second transformer 302, and pads c1 and d1 are connected to the other end of the secondary coil L2s.
  • Pads a3 and b3 are connected to one end of the secondary coil L3s forming the third transformer 303, and pads c2 and d2 are connected to the other end of the secondary coil L3s.
  • Pads a4 and b4 are connected to one end of the secondary coil L4s forming the fourth transformer 304, and pads c2 and d2 are connected to the other end of the secondary coil L4s.
  • the primary side coil forming the first transformer 301, the primary side coil forming the second transformer 302, the primary side coil forming the third transformer 303, and the primary side coil forming the fourth transformer 304 are also not shown in this figure.
  • the primary side coils basically have the same configuration as the secondary side coils L1s to L4s, respectively, and face the secondary side coils L1s to L4s, respectively. located directly below each.
  • one end of the primary coil forming the first transformer 301 is connected to pads a5 and b5, and the other end of the primary coil is connected to pads c3 and d3.
  • Pads a6 and b6 are connected to one end of the primary coil forming the second transformer 302, and pads c3 and d3 are connected to the other end of the primary coil.
  • Pads a7 and b7 are connected to one end of the primary coil forming the third transformer 303, and pads c4 and d4 are connected to the other end of the primary coil.
  • Pads a8 and b8 are connected to one end of the primary coil forming the fourth transformer 304, and pads c4 and d4 are connected to the other end of the primary coil.
  • pads a5 to a8, pads b5 to b8, pads c3 and c4, and pads d3 and d4 are drawn from the inside of the transformer chip 300 to the surface via vias (not shown).
  • pads a1 to a8 respectively correspond to first current supply pads
  • pads b1 to b8 respectively correspond to first voltage measurement pads
  • Pads c1 to c4 respectively correspond to second current supply pads
  • pads d1 to d4 respectively correspond to second voltage measurement pads.
  • the series resistance component of each coil can be accurately measured during the defective product inspection. Therefore, in addition to rejecting defective products in which each coil is disconnected, it is also necessary to appropriately reject defective products in which the resistance value of each coil is abnormal (for example, a short circuit between coils). is possible, and by extension, it becomes possible to prevent the outflow of defective products to the market.
  • the plurality of pads may be used as connection means with the primary side chip and the secondary side chip (for example, the controller chip 210 and the driver chip 220 described above). .
  • pads a1 and b1, pads a2 and b2, pads a3 and b3, and pads a4 and b4 may be connected to the signal input end or signal output end of the secondary chip, respectively.
  • Pads c1 and d1 and pads c2 and d2 may be connected to the common voltage application terminal (GND2) of the secondary chip, respectively.
  • pads a5 and b5, pads a6 and b6, pads a7 and b7, and pads a8 and b8 may be connected to the signal input end or signal output end of the primary chip, respectively.
  • Pads c3 and d3 and pads c4 and d4 may be connected to the common voltage application terminal (GND1) of the primary chip, respectively.
  • the first to fourth transformers 301 to 304 are coupled and arranged for each signal transmission direction.
  • a first transformer 301 and a second transformer 302 that transmit signals from the primary chip to the secondary chip are formed into a first pair by a first guard ring 305 .
  • a third transformer 303 and a fourth transformer 304 that transmit signals from the secondary chip to the primary chip are formed into a second pair by a second guard ring 306 .
  • the reason for such coupling is that when the primary side coils and secondary side coils forming the first to fourth transformers 301 to 304 are laminated in the vertical direction of the substrate of the transformer chip 300, This is to ensure a withstand voltage between the primary coil and the secondary coil.
  • the first guard ring 305 and the second guard ring 306 are not necessarily essential components.
  • first guard ring 305 and the second guard ring 306 may be connected to low-impedance wiring such as ground terminals via pads e1 and e2, respectively.
  • the pads c1 and d1 are shared between the secondary coil L1s and the secondary coil L2s.
  • the pads c2 and d2 are shared between the secondary coil L3s and the secondary coil L4s.
  • the pads c3 and d3 are shared between the primary coil L1p and the primary coil L2p.
  • the pads c4 and d4 are shared with the corresponding primary coils.
  • the primary coils and secondary coils forming the first to fourth transformers 301 to 304 are rectangular (or tracks with rounded corners) in plan view of the transformer chip 300 . shape). With such a configuration, the area of the portion where the primary side coil and the secondary side coil overlap becomes large, and it is possible to improve the transmission efficiency of the transformer.
  • transformer arrangement in this figure is only an example, and the number, shape, and arrangement of coils and arrangement of pads are arbitrary. Also, the chip structure and transformer arrangement described so far can be applied to general semiconductor devices in which coils are integrated on a semiconductor chip.
  • FIG. 10 is a diagram showing a configuration example of an electronic device in which the signal transmission device 200 is installed.
  • the electronic device A of this configuration example includes an upper gate driver IC 1H (u/v/w), a lower gate driver IC 1L (u/v/w), an upper power transistor 2H (u/v/w), and a lower gate driver IC 1L (u/v/w). It has a side power transistor 2L (u/v/w), an ECU 3, and a motor 4.
  • the upper gate driver IC1H (u/v/w) provides insulation between the ECU 3 and the upper power transistor 2H (u/v/w), and operates the upper gate according to an upper gate control signal input from the ECU 3. By generating a drive signal, the upper power transistor 2H (u/v/w) is driven.
  • the lower gate driver IC1L (u/v/w) provides insulation between the ECU 3 and the lower power transistor 2L (u/v/w), and responds to the lower gate control signal input from the ECU 3. to drive the lower power transistor 2L (u/v/w) by generating a lower gate drive signal.
  • the aforementioned signal transmission device 200 can be suitably used.
  • the above upper gate control signal corresponds to the aforementioned input pulse signal IN
  • the aforementioned upper gate drive signal corresponds to the aforementioned gate signal VG. corresponds to
  • the upper power transistors 2H serve as upper switches forming a three-phase (U-phase/V-phase/W-phase) half-bridge output stage, respectively. application end) and each phase input end of the motor 4 .
  • the lower power transistor 2L (u/v/w) is used as a lower switch forming a three-phase (U-phase/V-phase/W-phase) half-bridge output stage, and is connected to each phase input terminal of the motor 4. It is connected between the system ground terminal.
  • IGBTs insulated gate bipolar transistors
  • MOSFET metal oxide semiconductor field effect transistor
  • the ECU 3 generates the aforementioned input pulse signal IN and outputs it to the upper power transistor 2H (u/v /w) and the lower power transistor 2L (u/v/w) to control the rotation of the motor 4 .
  • the motor 4 is a three-phase motor that is rotationally driven according to three-phase drive voltages U/V/W respectively input from three-phase (U-phase/V-phase/W-phase) half bridge output stages.
  • buffers 212 and 213 in this figure, inverters
  • buffer 221 and 222 inverters in this figure
  • latches 225 and 226, and transformers 231 and 232 are depicted.
  • the transformer 231 includes a primary side coil 231p and a secondary side coil 231s.
  • the transformer 232 includes a primary side coil 232p and a secondary side coil 232s.
  • the first node of the primary coil 231p is connected to the external terminal T21. Both the second node of the primary coil 231p and the first node of the primary coil 232p are connected to the external terminal T22. A second node of the primary coil 232p is connected to the external terminal T23. A first node of the secondary coil 231s is connected to the external terminal T24. A second node of the secondary coil 231s and a first node of the secondary coil 232s are both connected to the external terminal T25. A second node of the secondary coil 232s is connected to the external terminal T26.
  • the external terminal T21 is connected to the output terminal of the buffer 212.
  • the external terminal T22 is connected to the ground terminal GND1.
  • the external terminal T23 is connected to the output terminal of the buffer 213 .
  • the external terminal T24 is connected to the input terminal of the buffer 221 .
  • the external terminal T25 is connected to the ground terminal GND2.
  • the external terminal T26 is connected to the input terminal of the buffer 222 .
  • the buffers 221 and 222 receive inputs of induced voltages generated in the secondary coils 231s and 232s by pulse-driving the primary coils 231p and 232p, respectively.
  • Latches 225 and 226 latch the logic levels of the received pulse signals output from buffers 221 and 222, respectively.
  • the signal transmission device 200 of this comparative example transmits the rising edge and the falling edge of the input pulse signal IN with the two transformers 231 and 232 .
  • Such signal transmission operation is as described in detail so far.
  • the signal transmission device 200 of this comparative example uses a so-called CMOS buffer circuit as pulse drive means for the primary coils 231p and 232p. Therefore, there is room for further study on common-mode noise immunity.
  • FIG. 12 is a diagram showing a first embodiment of the signal transmission device 200.
  • the signal transmission device 200 of this embodiment includes a pulse receiving circuit 227 as means for receiving induced pulse signals generated in the secondary coils 231s and 232s. It should be noted that the same reference numerals as in FIGS. 1, 2 and 11 are assigned to the components that have already been described to omit redundant description.
  • the pulse receiving circuit 227 includes constant current sources CC1r and CC1f, receivers RXr and RXf, a hysteresis comparator HC, resistors R2r and R2f, and capacitors Cr and Cf.
  • a first end of the capacitor Cr is connected to the external terminal T24 of the transformer chip 230.
  • Capacitor Cf is connected to external terminal T26 of transformer chip 230 .
  • An external terminal T2 of the transformer chip 230 is connected to the ground terminal GND2.
  • a resistor may be provided between the external terminal T24 and the capacitor Cr and between the external terminal T26 and the capacitor Cf.
  • the constant current source CC1r is connected between the application end of the power supply voltage VCC2 and the application end of the node voltage VAr, and generates a reference current I1r independent of the power supply voltage VCC2.
  • the constant current source CC1f is connected between the application terminal of the power supply voltage VCC2 and the application terminal of the node voltage VAf, and generates a reference current I1f independent of the power supply voltage VCC2.
  • Receiver RXr receives input of added current I2r obtained by adding reception current Ir induced in secondary coil 231s of transformer 231 and reference current I1r generated by constant current source CC1r, and generates current signal I3r.
  • receiver RXr includes transistors N1r and N2r (for example, N-channel MISFET) and transistors P1r and P2r (for example, P-channel MISFET).
  • the gate of the transistor N1r and the gate and drain of the transistor N2r are all connected to the node voltage VAr application end.
  • the sources of the transistors N1r and N2r are both connected to the ground terminal GND2.
  • the drain of transistor N1r is connected to the drain of transistor P1r.
  • the sources of the transistors P1r and P2r are both connected to the application terminal of the power supply voltage VCC2.
  • the gates of the transistors P1r and P2r are both connected to the drain of the transistor P1r.
  • the drain of the transistor P2r is connected to the application terminal of the voltage signal Vr.
  • the transistors P1r and P2r connected in this manner function as a current mirror that generates a current signal I3r proportional to the drain current of the transistor P1r and outputs it from the drain of the transistor P2r.
  • Receiver RXf receives input of added current I2f obtained by adding reception current If induced in secondary coil 232s of transformer 232 and reference current I1f generated by constant current source CC1f, and generates current signal I3f.
  • the receiver RXf includes transistors N1f and N2f (for example, N-channel MISFET) and transistors P1f and P2f (for example, P-channel MISFET).
  • the gate of the transistor N1f and the gate and drain of the transistor N2f are both connected to the node voltage VAf application end.
  • the sources of the transistors N1f and N2f are both connected to the ground terminal GND2.
  • the drain of transistor N1f is connected to the drain of transistor P1f.
  • the sources of the transistors P1f and P2f are both connected to the application terminal of the power supply voltage VCC2.
  • the gates of the transistors P1f and P2f are both connected to the drain of the transistor P1f.
  • the drain of the transistor P2f is connected to the application terminal of the voltage signal Vf.
  • the transistors P1f and P2f connected in this way function as a current mirror that generates a current signal I3f proportional to the drain current of the transistor P1f and outputs it from the drain of the transistor P2f.
  • the hysteresis comparator HC includes a comparator CMP, resistors R3r and R3f, and transistors N3r and N3f (eg N-channel MISFET).
  • the non-inverting input terminal of the comparator CMP is connected to the application terminal of the voltage signal Vr.
  • the inverting input terminal of the comparator CMP is connected to the application terminal of the voltage signal Vf.
  • a non-inverting output terminal of the comparator CMP is connected to an application terminal of the output pulse signal OUT.
  • the inverted output terminal of the comparator CMP is connected to the application terminal of the inverted output pulse signal OUTB.
  • a first end of the resistor R3r is connected to the non-inverting input end of the comparator CMP.
  • a second end of the resistor R3r is connected to the drain of the transistor N3r.
  • the source of the transistor N3r is connected to the ground terminal GND2.
  • the gate of the transistor N3r is connected to the application end of the inverted output pulse signal OUTB.
  • a first end of the resistor R3f is connected to the inverting input end of the comparator CMP.
  • a second end of the resistor R3f is connected to the drain of the transistor N3f.
  • the source of the transistor N3f is connected to the ground terminal GND2.
  • the gate of the transistor N3f is connected to the application end of the output pulse signal OUT.
  • the hysteresis comparator HC sets the output pulse signal OUT to high level and the inverted output pulse signal OUTB to low level when the voltage signal Vr is higher than the voltage signal Vf.
  • the hysteresis comparator HC sets the output pulse signal OUT to low level and the inverted output pulse signal OUTB to high level when the voltage signal Vr is lower than the voltage signal Vf.
  • the hysteresis comparator HC has hysteresis such that the threshold voltage is switched according to the output pulse signal OUT.
  • the latches 225 and 226 of the comparative example can be omitted.
  • FIG. 13 is a diagram showing an example of the pulse reception operation in the pulse reception circuit 217 of the first embodiment. From top to bottom, input pulse signal IN, received current Ir, received current If, voltage signals Vr (solid line) and Vf. (broken line) and the output pulse signal OUT are depicted.
  • the reception current Ir flows in a pulse shape.
  • the added current I2r which is the sum of the received current Ir and the reference current I1r, increases and the node voltage VAr rises. Therefore, the transistor N1r becomes more conductive and the current signal I3r increases.
  • the transistor N3r turns off and the transistor N3f turns on. Therefore, in the hysteresis comparator HC, the state in which the voltage signal Vr is lowered is released, and the state is switched to the state in which the voltage signal Vf is lowered.
  • the reception current If flows in a pulse shape.
  • the added current I2f obtained by adding the received current If and the reference current I1f increases, and the node voltage VAf rises. Therefore, the conductivity of the transistor N1f increases and the current signal I3f increases.
  • the transistor N3r turns on and the transistor N3f turns off. Therefore, in the hysteresis comparator HC, the state in which the voltage signal Vf is lowered is released, and the state is switched to the state in which the voltage signal Vr is lowered.
  • the pulse receiving circuit 227 of this embodiment generates the voltage signals Vr and Vf according to the sum of the received currents Ir and If and the reference currents I1r and I1f, compares them, and outputs the pulse signal OUT. to generate
  • FIG. 14 is a diagram showing how undershoot occurs in the node voltages VAr and VAf. From top to bottom, the output pulse signal OUT, the ground voltage GND1, the node voltage VAr (solid line), and the node voltage VAf (broken line). Depicted.
  • undershoot may occur in the node voltages VAr and VAf when receiving a regular pulse based on the pulse edge of the input pulse signal IN (see dashed frame ⁇ ).
  • common-mode noise for example, common-mode noise associated with fluctuations in ground voltage GND1
  • node voltages VAr and VAf may undershoot (see dashed frame ⁇ ).
  • FIG. 15 is a diagram showing a second embodiment of the signal transmission device 200.
  • the signal transmission device 200 of this embodiment is based on the above-described first embodiment (FIG. 12), and further includes high-pass filters HPFr and HPFf and a subtractor SUB as components of the pulse receiving circuit 227 .
  • description is abbreviate
  • the high-pass filter HPFr is provided between the gates of the transistors P1r and P2r, and reduces the low frequency components of the received current Ir.
  • the high-pass filter HPFf is provided between the gates of the transistors P1f and P2f to reduce the low frequency components of the received current If.
  • the subtractor SUB subtracts the current signal I3f from the current signal I3f to generate a differential current signal (I3f-I3r) and differentially output it.
  • the resistor R2r converts the absolute value of the negative component of the differential current signal (I3f-I3r) into the voltage signal Vr.
  • the resistor R2f converts the positive component of the differential current signal (I3f-I3r) into the voltage signal Vf.
  • FIG. 16 is a diagram showing how the undershoot of the node voltages VAr and VAf is improved. Similar to FIG. A voltage VAf (dashed line) is depicted.
  • both the undershoots of the node voltages VAr and VAf are low frequency components compared to the regular pulse based on the pulse edge of the input pulse signal IN. Therefore, the undershoot of the node voltages VAr and VAf can be suppressed by providing the high-pass filters HPFr and HPFf having appropriate cutoff frequencies fc.
  • the aforementioned receivers RXr and RXf receive inputs of the node voltages VAr and VAf at the respective gates of the N-channel type transistors N1r and N1f.
  • the node voltages VAr and VAf swing to a negative potential lower than the ground voltage GND2, which interferes with the receiving operations of the receivers RXr and RXf. (see dashed box ⁇ ).
  • FIG. 17 is a diagram showing a third embodiment of the signal transmission device 200.
  • the signal transmission device 200 of this embodiment is based on the above-described first embodiment (FIG. 12), but the receivers RXr and RXf are modified.
  • description is abbreviate
  • receiver RXr includes transistors N4r and N5r (for example, N-channel MISFET), transistors P3r to P6r (for example, P channel type MISFET).
  • a capacitor Cr2 and a constant current source CC1r2 are added to the front stage of the receiver RXr.
  • a first end of the capacitor Cr2 is connected to the external terminal T24 of the transformer chip 230.
  • the second end of the capacitor Cr2 and the first end of the constant current source CC1r2 are both connected to the gate of the transistor P5r and the gate and drain of the transistor P6r.
  • a second end of the constant current source CC1r2 is connected to the ground terminal GND2.
  • the sources of the transistors P5r and P6r are both connected to the application terminal of the power supply voltage VCC2.
  • the drain of transistor P5r is connected to the drain of transistor N4r.
  • the sources of the transistors N4r and N5r are both connected to the application terminal of the ground terminal GND2.
  • the gates of the transistors N4r and N5r are both connected to the drain of the transistor N4r.
  • the drain of transistor N5r is connected to the drain of transistor P3r.
  • the sources of the transistors P3r and P4r are both connected to the application terminal of the power supply voltage VCC2.
  • the gates of the transistors P3r and P4r are both connected to the drain of the transistor P3r.
  • the drain of the transistor P4r is connected to the application terminal of the voltage signal Vr.
  • the receiver RXf includes transistors N4f and N5f (for example, N-channel MISFET) and transistors P3f to P6f (for example, P-channel MISFET) in addition to the transistors N1f and N2f and the transistors P1f and P2f. include. Also, a capacitor Cf2 and a constant current source CC1f2 are added to the front stage of the receiver RXf.
  • a first end of the capacitor Cf2 is connected to the external terminal T26 of the transformer chip 230.
  • the second end of the capacitor Cf2 and the first end of the constant current source CC1f2 are both connected to the gate of the transistor P5f and the gate and drain of the transistor P6f.
  • a second end of the constant current source CC1f2 is connected to the ground terminal GND2.
  • the sources of the transistors P5f and P6f are both connected to the application terminal of the power supply voltage VCC2.
  • the drain of transistor P5f is connected to the drain of transistor N4f.
  • the sources of the transistors N4f and N5f are both connected to the application terminal of the ground terminal GND2.
  • the gates of the transistors N4f and N5f are both connected to the drain of the transistor N4f.
  • the drain of transistor N5f is connected to the drain of transistor P3f.
  • the sources of the transistors P3f and P4f are both connected to the application terminal of the power supply voltage VCC2.
  • the gates of the transistors P3f and P4f are both connected to the drain of the transistor P3f.
  • the drain of the transistor P4f is connected to the application terminal of the voltage signal Vf.
  • the receiver RXr receives the received pressure signal induced at the external terminal T24 at the gates of both the parallel-connected N-channel transistor N1r and P-channel transistor P5r. accept. Similarly, the receiver RXf receives the reception signal induced at the external terminal T26 at the gates of both the parallel-connected N-channel transistor N1f and P-channel transistor P5f.
  • FIG. 18 is a diagram showing how an erroneous output of the output pulse signal OUT occurs. From the top, the input pulse signal IN, the received current If, the node voltage VAf, the voltage signal Vr (solid line), and the voltage signal Vf (broken line). , as well as the output pulse signal OUT.
  • the node voltages VAr and VAf may undershoot due to the capacitors Cr and Cf provided for input coupling.
  • the vertical relationship between the voltage signals Vr and Vf is unintentionally inverted, which may cause an abnormality in the logic level of the output pulse signal OUT.
  • FIG. 19 is a diagram showing a fourth embodiment of the signal transmission device 200.
  • the signal transmission device 200 of this embodiment is based on the above-described first embodiment (FIG. 12), and further includes undershoot suppressors USSr and USSf as components of the pulse receiving circuit 227 .
  • description is abbreviate
  • the undershoot suppression unit USSr includes a constant current source CC2r, a delay unit DLYr, transistors N6r and N7r (N-channel MISFETs in this figure), and an AND gate ANDr.
  • a first end of the constant current source CC2r is connected to the application end of the power supply voltage VCC2.
  • a second end of the constant current source CC2r is connected to the drain of the transistor N6r and the gate and drain of the transistor N7r.
  • the source of the transistor N6r is connected to the application terminal of the node voltage VAr.
  • the source of the transistor N7r is connected to the ground terminal GND2.
  • the gate of the transistor N6r is connected to the application terminal of the node voltage VBr.
  • the constant current source CC2r may be replaced with a resistor, for example.
  • the delay unit DLYr generates a delayed inverted output pulse signal OUTBd by delaying the inverted output pulse signal OUTB by the delay time tdr. That is, the delayed inverted output pulse signal OUTBd rises to a high level when the delay time tdr has passed since the inverted output pulse signal OUTB rises to a high level, and the delayed inverted output pulse signal OUTBd rises to a high level after the inverted output pulse signal OUTB has fallen to a low level. Falls to a low level when tdr has elapsed.
  • the transistor N6r When the node voltage VBr is at low level, the transistor N6r is turned off, so that the constant current source CC2r is disconnected from the node voltage VAr application terminal. On the other hand, when the node voltage VBr is at a high level, the transistor N6r is turned on, so that the constant current source CC2r is electrically connected to the application end of the node voltage VAr.
  • the undershoot suppression unit USSf includes a constant current source CC2f, a delay unit DLYf, transistors N6f and N7f (N-channel MISFETs in this figure), and a logical AND gate ANDf.
  • a first end of the constant current source CC2f is connected to the application end of the power supply voltage VCC2.
  • a second end of the constant current source CC2f is connected to the drain of the transistor N6f and the gate and drain of the transistor N7f.
  • the source of the transistor N6f is connected to the application terminal of the node voltage VAf.
  • the source of the transistor N7f is connected to the ground terminal GND2.
  • the gate of the transistor N6f is connected to the application end of the node voltage VBf.
  • the constant current source CC2f may be replaced with a resistor, for example.
  • the delay unit DLYf generates a delayed output pulse signal OUTd by delaying the output pulse signal OUT by the delay time tdf. That is, the delayed output pulse signal OUTd rises to high level when the delay time tdf elapses after the output pulse signal OUT rises to high level, and the delay time tdf elapses after the output pulse signal OUT falls to low level. Falls to low level when
  • the transistor N6f When the node voltage VBf is at low level, the transistor N6f is turned off, so that the constant current source CC2f is cut off from the node voltage VAf application end. On the other hand, when the node voltage VBf is at a high level, the transistor N6f is turned on, so that the constant current source CC2f is electrically connected to the application end of the node voltage VAf.
  • the first embodiment (FIG. 12) is used as the basis, but the second embodiment (FIG. 15) or the third embodiment (FIG. 17) may be used as the basis.
  • FIG. 20 is a diagram showing how the erroneous output of the output pulse signal OUT is improved. From the top, the input pulse signal IN, the received current If, the node voltage VAf, the voltage signal Vr (solid line), and the voltage signal Vf (broken line). , the output pulse signal OUT, and the node voltage VBf are depicted.
  • the solid line indicates the behavior when the undershoot suppression unit USSf is provided, and the dashed line indicates the behavior when the undershoot suppression unit USSf is not provided.
  • FIG. 21 is a diagram showing how in-phase noise is superimposed at the reception timing of regular pulses, and depicts reception currents Ir and If. Note that the solid line in the figure indicates the common-mode noise, and the broken line indicates the normal pulse.
  • FIG. 22 is a diagram showing a fifth embodiment of the signal transmission device 200.
  • the signal transmission device 200 of the present embodiment includes a pulse receiving circuit 228 as means for receiving inputs of received currents Ir and If and generating an output pulse signal OUT.
  • the pulse receiving circuit 228 includes high-pass filters HPFr and HPFf, subtractors SUBr and SUBf, positive component extractors PEXr and PEXf, and a hysteresis comparator HC.
  • a subtractor SUBr subtracts the second filter output signal IfF from the first filter output signal IrF to generate a first difference signal IrF-IfF.
  • a subtractor SUBf subtracts the first filter output signal IrF from the second filter output signal IfF to generate a second difference signal IfF-IrF.
  • subtractors SUBr and SUBf and the positive component extractors PEXr and PEXf may be collectively understood as the subtractor SUB in FIG.
  • the hysteresis comparator HC compares the voltage signal Vr input to the non-inverting input terminal (+) and the voltage signal Vf input to the inverting input terminal (-) to generate the output pulse signal OUT.
  • FIG. 23 is an external view showing one configuration example of the vehicle X10.
  • a vehicle X10 of this configuration example is equipped with a battery (not shown in the figure) and various electronic devices X11 to X18 that operate with power supplied from the battery.
  • the vehicle X10 includes an electric vehicle (BEV [battery electric vehicle], HEV [hybrid electric vehicle], PHEV/PHV (plug-in hybrid electric vehicle/plug-in hybrid vehicle), or FCEV/FCV (xEV such as fuel cell electric vehicle/fuel cell vehicle]) is also included.
  • BEV battery electric vehicle
  • HEV hybrid electric vehicle
  • PHEV/PHV plug-in hybrid electric vehicle/plug-in hybrid vehicle
  • FCEV/FCV xEV such as fuel cell electric vehicle/fuel cell vehicle
  • the electronic device X11 performs engine-related control (injection control, electronic throttle control, idling control, oxygen sensor heater control, auto-cruise control, etc.) or motor-related control (torque control, power regeneration control, etc.). It is an electronic control unit that performs
  • the electronic device X12 is a lamp control unit that controls lighting and extinguishing of HID [high intensity discharged lamp] and DRL [daytime running lamp].
  • the electronic device X13 is a transmission control unit that performs controls related to the transmission.
  • the electronic device X14 is a braking unit that performs control related to the movement of the vehicle X10 (ABS [anti-lock brake system] control, EPS [electric power steering] control, electronic suspension control, etc.).
  • ABS anti-lock brake system
  • EPS electric power steering
  • electronic suspension control etc.
  • the electronic device X15 is a security control unit that controls the driving of door locks and security alarms.
  • the electronic equipment X16 includes wipers, electric door mirrors, power windows, dampers (shock absorbers), electric sunroofs, electric seats, etc., which are built into the vehicle X10 at the factory shipment stage as standard equipment or manufacturer options. is.
  • the electronic device X17 is an electronic device arbitrarily attached to the vehicle X10 as a user option, such as an in-vehicle A/V [audio/visual] device, a car navigation system, and an ETC [electronic toll collection system].
  • the electronic device X18 is an electronic device equipped with a high withstand voltage motor, such as an in-vehicle blower, oil pump, water pump, and battery cooling fan.
  • a high withstand voltage motor such as an in-vehicle blower, oil pump, water pump, and battery cooling fan.
  • the electronic devices X11 to X18 can be understood as specific examples of the electronic device A described above. That is, the signal transmission device 200 described above can be incorporated in any of the electronic devices X11 to X18.
  • the pulse receiver circuit disclosed herein includes a first constant current source configured to generate a first reference current and a second constant current source configured to generate a second reference current.
  • a first receiver configured to sum a first received current induced in a secondary coil of the first transformer and the first reference current to produce a first current signal; and a second transformer.
  • a second receiver configured to sum a second received current induced in the secondary coil of the second receiver and the second reference current to generate a second current signal;
  • a first signal converter configured to convert the second current signal into a signal;
  • a second signal converter configured to convert the second current signal into a second voltage signal; the first voltage signal and the second voltage signal;
  • a configuration (first configuration) is provided with a comparator configured to compare voltage signals and generate an output pulse signal.
  • the comparator may have a configuration (second configuration) having hysteresis so that the threshold is switched according to the output pulse signal.
  • the pulse receiving circuit having the first or second configuration includes a first high-pass filter configured to reduce low-frequency components of the first received current, and a low-frequency component of the second received current.
  • a configuration (third configuration) further including a second high-pass filter configured to reduce low-frequency components of the first received current, and a low-frequency component of the second received current.
  • a configuration (third configuration) further including a second high-pass filter configured to reduce low-frequency components of the first received current, and a low-frequency component of the second received current.
  • a configuration (third configuration) further including a second high-pass filter configured to
  • the first receiver and the second receiver are gates of both N-channel transistors and P-channel transistors connected in parallel, respectively, from the previous stage. may be configured (fourth configuration) to receive the signal of .
  • the input node in the first receiver is maintained for a predetermined period after the output pulse signal is switched from the first logic level to the second logic level.
  • a first undershoot suppressor configured to reduce impedance; and an input node in the second receiver for a predetermined period after the output pulse signal switches from the second logic level to the first logic level.
  • a configuration (fifth configuration) that further includes a second undershoot suppressing section that is configured to lower the impedance may be employed.
  • the pulse receiving circuit disclosed in this specification reduces the low frequency component of the first received current induced in the secondary coil of the first transformer to generate the first filter output signal. and a second high-pass filter configured to reduce low-frequency components of the second received current induced in the secondary coil of the second transformer to generate a second filter output signal.
  • a highpass filter a highpass filter
  • a first subtractor configured to subtract the second filter output signal from the first filter output signal to produce a first difference signal
  • the first filter output from the second filter output signal and the first filter output from the second filter output signal.
  • a second subtractor configured to subtract a signal to produce a second difference signal; and a first subtractor configured to extract only the positive component of the first difference signal to produce a first extracted signal.
  • a positive component extraction unit configured to generate a second extraction signal by extracting only a positive component of the second difference signal; the first extraction signal and the second extraction; and a comparator configured to generate an output pulse signal by comparing with the signal (sixth configuration).
  • the signal transmission device disclosed in this specification includes a pulse transmission circuit configured to receive an input pulse signal and generate a transmission pulse signal; a pulse receiving circuit according to any one of the first to sixth configurations configured to generate an output pulse signal; and the receiving of the transmission pulse signal while insulating between the pulse transmitting circuit and the pulse receiving circuit. and a transformer configured to transmit as a pulse signal (seventh configuration).
  • the signal transmission device includes a first chip integrated with the pulse transmission circuit, a second chip integrated with the pulse reception circuit, a third chip integrated with the transformer, may be sealed in a single package (eighth configuration).
  • an electronic device disclosed in this specification includes a switch element configured to be driven by the output pulse signal, and a signal transmission device according to the seventh or eighth configuration. configuration (ninth configuration).
  • the vehicle disclosed in this specification is configured to include the electronic device according to the ninth configuration (tenth configuration).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

A pulse reception circuit 227 comprises: a first constant current source CC1r that generates a first reference current I1r; a second constant current source CC1f that generates a second reference current I1f; a first receiver RXr that adds together a first reception current Ir induced by a secondary-side coil 231s of a first transformer 231 and the first reference current I1r to generate a first current signal I3r; a second receiver RXf that adds together a second reception current If induced by a secondary-side coil 232s of a second transformer 232 and the second reference current I2f to generate a second current signal I3f; a first signal conversion unit R2r that converts the first current signal I3r to a first voltage signal Vr; a second signal conversion unit R2f that converts the second current signal I3f to a second voltage signal Vf; and a comparator HC that compares the first voltage signal Vr with the second voltage signal Vf and generates an output pulse signal OUT.

Description

パルス受信回路、信号伝達装置、電子機器、車両Pulse receiver circuit, signal transmission device, electronic equipment, vehicle
 本明細書中に開示されている発明は、パルス受信回路、信号伝達装置、電子機器及び車両に関する。 The inventions disclosed in this specification relate to pulse receiving circuits, signal transmission devices, electronic devices, and vehicles.
 従来、入出力間を絶縁しつつパルス信号を伝達する信号伝達装置は、様々なアプリケーション(電源装置またはモータ駆動装置など)に用いられている。 Conventionally, signal transmission devices that transmit pulse signals while insulating input and output have been used in various applications (power supply devices, motor drive devices, etc.).
 なお、上記に関連する従来技術の一例としては、特許文献1を挙げることができる。 Patent Document 1 can be cited as an example of conventional technology related to the above.
特開2017-188903号公報JP 2017-188903 A
 しかしながら、従来の信号伝達装置に用いられるパルス受信回路は、同相ノイズ耐性について、さらなる検討の余地があった。 However, the pulse receiving circuit used in the conventional signal transmission device has room for further investigation regarding common-mode noise immunity.
 本明細書中に開示されている発明は、本願の発明者らにより見出された上記の課題に鑑み、同相ノイズ耐性に優れたパルス受信回路、信号伝達装置、電子機器及び車両を提供することを目的とする。 The invention disclosed in the present specification provides a pulse receiver circuit, a signal transmission device, an electronic device, and a vehicle that are excellent in common-mode noise immunity in view of the above-described problems found by the inventors of the present application. With the goal.
 例えば本明細書中に開示されているパルス受信回路は、第1基準電流を生成するように構成された第1定電流源と、第2基準電流を生成するように構成された第2定電流源と、第1トランスの二次側コイルに誘起される第1受信電流と前記第1基準電流とを足し合わせて第1電流信号を生成するように構成された第1レシーバと、第2トランスの二次側コイルに誘起される第2受信電流と前記第2基準電流とを足し合わせて第2電流信号を生成するように構成された第2レシーバと、前記第1電流信号を第1電圧信号に変換するように構成された第1信号変換部と、前記第2電流信号を第2電圧信号に変換するように構成された第2信号変換部と、前記第1電圧信号と前記第2電圧信号とを比較して出力パルス信号を生成するように構成されたコンパレータと、を備える。 For example, the pulse receiver circuit disclosed herein includes a first constant current source configured to generate a first reference current and a second constant current source configured to generate a second reference current. a first receiver configured to sum a first received current induced in a secondary coil of the first transformer and the first reference current to produce a first current signal; and a second transformer. a second receiver configured to sum a second received current induced in the secondary coil of the second receiver and the second reference current to generate a second current signal; a first signal converter configured to convert the second current signal into a signal; a second signal converter configured to convert the second current signal into a second voltage signal; the first voltage signal and the second voltage signal; a comparator configured to compare the voltage signal to generate an output pulse signal.
 また、例えば、本明細書中に開示されているパルス受信回路は、第1トランスの二次側コイルに誘起される第1受信電流の低周波成分を低減して第1フィルタ出力信号を生成するように構成された第1ハイパスフィルタと、第2トランスの二次側コイルに誘起される第2受信電流の低周波成分を低減して第2フィルタ出力信号を生成するように構成された第2ハイパスフィルタと、前記第1フィルタ出力信号から前記第2フィルタ出力信号を差し引いて第1差分信号を生成するように構成された第1減算器と、前記第2フィルタ出力信号から前記第1フィルタ出力信号を差し引いて第2差分信号を生成するように構成された第2減算器と、前記第1減算器と前記コンパレータの第1入力端との間に設けられて前記第1差分信号の正成分のみを抽出することにより第1抽出信号を生成するように構成された第1正成分抽出部と、前記第2減算器と前記コンパレータの第2入力端との間に設けられて前記第2差分信号の正成分のみを抽出することにより第2抽出信号を生成するように構成された第2正成分抽出部と、を備える。 Also, for example, the pulse receiving circuit disclosed in this specification reduces the low frequency component of the first received current induced in the secondary coil of the first transformer to generate the first filter output signal. and a second high-pass filter configured to reduce low-frequency components of the second received current induced in the secondary coil of the second transformer to generate a second filter output signal. a highpass filter; a first subtractor configured to subtract the second filter output signal from the first filter output signal to produce a first difference signal; and the first filter output from the second filter output signal. a second subtractor configured to subtract a signal to produce a second difference signal; and a positive component of said first difference signal interposed between said first subtractor and a first input of said comparator. a first positive component extraction unit configured to generate a first extraction signal by extracting only the second difference, provided between the second subtractor and a second input terminal of the comparator; a second positive component extractor configured to generate a second extracted signal by extracting only the positive component of the signal.
 なお、その他の特徴、要素、ステップ、利点、及び、特性については、以下に続く発明を実施するための形態及びこれに関する添付の図面によって、さらに明らかとなる。 In addition, other features, elements, steps, advantages, and characteristics will become clearer with the following detailed description and accompanying drawings.
 本明細書中に開示されている発明によれば、同相ノイズ耐性に優れたパルス受信回路、信号伝達装置、電子機器及び車両を提供することが可能となる。 According to the invention disclosed in this specification, it is possible to provide a pulse receiving circuit, a signal transmission device, an electronic device, and a vehicle with excellent common-mode noise immunity.
図1は、信号伝達装置の基本構成を示す図である。FIG. 1 is a diagram showing the basic configuration of a signal transmission device. 図2は、トランスチップの基本構造を示す図である。FIG. 2 is a diagram showing the basic structure of a transformer chip. 図3は、2チャンネル型のトランスチップとして用いられる半導体装置の斜視図である。FIG. 3 is a perspective view of a semiconductor device used as a two-channel transformer chip. 図4は、図3に示す半導体装置の平面図である。4 is a plan view of the semiconductor device shown in FIG. 3. FIG. 図5は、図3の半導体装置において低電位コイルが形成された層を示す平面図である。5 is a plan view showing a layer in which a low potential coil is formed in the semiconductor device of FIG. 3. FIG. 図6は、図3の半導体装置において高電位コイルが形成された層を示す平面図である。6 is a plan view showing a layer in which a high-potential coil is formed in the semiconductor device of FIG. 3. FIG. 図7は、図6に示すVIII-VIII線に沿う断面図である。FIG. 7 is a cross-sectional view taken along line VIII-VIII shown in FIG. 図8は、図7に示す領域XIIIの拡大図(分離構造)を示す図である。FIG. 8 is an enlarged view (separation structure) of region XIII shown in FIG. 図9は、トランスチップのレイアウト例を模式的に示す図である。FIG. 9 is a diagram schematically showing a layout example of a transformer chip. 図10は、電子機器の一構成例を示す図である。FIG. 10 is a diagram illustrating a configuration example of an electronic device. 図11は、信号伝達装置の比較例を示す図である。FIG. 11 is a diagram showing a comparative example of the signal transmission device. 図12は、信号伝達装置の第1実施形態を示す図である。FIG. 12 is a diagram showing a first embodiment of the signal transmission device. 図13は、パルス受信動作の一例を示す図である。FIG. 13 is a diagram illustrating an example of pulse reception operation. 図14は、アンダーシュートが発生する様子を示す図である。FIG. 14 is a diagram showing how undershoot occurs. 図15は、信号伝達装置の第2実施形態を示す図である。FIG. 15 is a diagram showing a second embodiment of the signal transmission device. 図16は、アンダーシュートが改善する様子を示す図である。FIG. 16 is a diagram showing how undershoot is improved. 図17は、信号伝達装置の第3実施形態を示す図である。FIG. 17 is a diagram showing a third embodiment of the signal transmission device. 図18は、出力パルス信号の誤出力が発生する様子を示す図である。FIG. 18 is a diagram showing how an erroneous output of the output pulse signal occurs. 図19は、信号伝達装置の第4実施形態を示す図である。FIG. 19 is a diagram showing a fourth embodiment of the signal transmission device. 図20は、出力パルス信号の誤出力が改善する様子を示す図である。FIG. 20 is a diagram showing how the erroneous output of the output pulse signal is improved. 図21は、正規パルスの受信タイミングで同相ノイズが重畳する様子を示す図である。FIG. 21 is a diagram showing how in-phase noise is superimposed at the reception timing of regular pulses. 図22は、信号伝達装置の第5実施形態を示す図である。FIG. 22 is a diagram showing a fifth embodiment of the signal transmission device. 図23は、車両の一構成例を示す図である。FIG. 23 is a diagram showing a configuration example of a vehicle.
<信号伝達装置(基本構成)>
 図1は、信号伝達装置の基本構成を示す図である。本構成例の信号伝達装置200は、一次回路系200p(VCC1-GND1系)と二次回路系200s(VCC2-GND2系)との間を絶縁しつつ、一次回路系200pから二次回路系200sにパルス信号を伝達し、二次回路系200sに設けられたスイッチ素子(不図示)のゲートを駆動する半導体集積回路装置(いわゆる絶縁ゲートドライバIC)である。例えば、信号伝達装置200は、コントローラチップ210と、ドライバチップ220と、トランスチップ230と、を単一のパッケージに封止して成る。
<Signal transmission device (basic configuration)>
FIG. 1 is a diagram showing the basic configuration of a signal transmission device. The signal transmission device 200 of this configuration example provides insulation between the primary circuit system 200p (VCC1-GND1 system) and the secondary circuit system 200s (VCC2-GND2 system), and the secondary circuit system 200s from the primary circuit system 200p A semiconductor integrated circuit device (a so-called insulated gate driver IC) that transmits a pulse signal to the secondary circuit system 200s and drives the gate of a switch element (not shown) provided in the secondary circuit system 200s. For example, the signal transmission device 200 is formed by sealing a controller chip 210, a driver chip 220, and a transformer chip 230 in a single package.
 コントローラチップ210は、電源電圧VCC1(例えばGND1基準で最大7V)の供給を受けて動作する半導体チップである。コントローラチップ210には、例えば、パルス送信回路211と、バッファ212及び213が集積されている。 The controller chip 210 is a semiconductor chip that operates by being supplied with a power supply voltage VCC1 (for example, a maximum of 7 V based on GND1). For example, a pulse transmission circuit 211 and buffers 212 and 213 are integrated in the controller chip 210 .
 パルス送信回路211は、入力パルス信号INに応じて送信パルス信号S11及びS21を生成するパルスジェネレータである。より具体的に述べると、パルス送信回路211は、入力パルス信号INがハイレベルである旨を通知するときには、送信パルス信号S11のパルス駆動(単発または複数発の送信パルス出力)を行い、入力パルス信号INがローレベルである旨を通知するときには、送信パルス信号S21のパルス駆動を行う。すなわち、パルス送信回路211は、入力パルス信号INの論理レベルに応じて、送信パルス信号S11及びS21のいずれか一方をパルス駆動する。 The pulse transmission circuit 211 is a pulse generator that generates transmission pulse signals S11 and S21 according to the input pulse signal IN. More specifically, when the pulse transmission circuit 211 notifies that the input pulse signal IN is at a high level, the transmission pulse signal S11 is pulse-driven (single-shot or multiple-shot transmission pulse output) and the input pulse signal S11 is output. When notifying that the signal IN is at low level, the transmission pulse signal S21 is pulse-driven. That is, the pulse transmission circuit 211 pulse-drives one of the transmission pulse signals S11 and S21 according to the logic level of the input pulse signal IN.
 バッファ212は、パルス送信回路211から送信パルス信号S11の入力を受けて、トランスチップ230(具体的にはトランス231)をパルス駆動する。 The buffer 212 receives the input of the transmission pulse signal S11 from the pulse transmission circuit 211 and pulse-drives the transformer chip 230 (specifically, the transformer 231).
 バッファ213は、パルス送信回路211から送信パルス信号S21の入力を受けて、トランスチップ230(具体的にはトランス232)をパルス駆動する。 The buffer 213 receives the input of the transmission pulse signal S21 from the pulse transmission circuit 211 and pulse-drives the transformer chip 230 (specifically, the transformer 232).
 ドライバチップ220は、電源電圧VCC2(例えばGND2基準で最大30V)の供給を受けて動作する半導体チップである。ドライバチップ220には、例えば、バッファ221及び222と、パルス受信回路223と、ドライバ224が集積されている。 The driver chip 220 is a semiconductor chip that operates by being supplied with a power supply voltage VCC2 (for example, 30 V maximum based on GND2). Buffers 221 and 222, a pulse receiving circuit 223, and a driver 224 are integrated in the driver chip 220, for example.
 バッファ221は、トランスチップ230(具体的にはトランス231)に誘起される受信パルス信号S12を波形整形してパルス受信回路223に出力する。 The buffer 221 waveform-shapes the received pulse signal S12 induced in the transformer chip 230 (specifically, the transformer 231 ) and outputs it to the pulse receiving circuit 223 .
 バッファ222は、トランスチップ230(具体的にはトランス232)に誘起される受信パルス信号S22を波形整形してパルス受信回路223に出力する。 The buffer 222 waveform-shapes the received pulse signal S22 induced in the transformer chip 230 (specifically, the transformer 232) and outputs it to the pulse receiving circuit 223.
 パルス受信回路223は、バッファ221及び222を介して入力される受信パルス信号S12及びS22に応じてドライバ224を駆動することにより出力パルス信号OUTを生成する。より具体的に述べると、パルス受信回路223は、受信パルス信号S12のパルス駆動を受けて出力パルス信号OUTをハイレベルに立ち上げる一方、受信パルス信号S22のパルス駆動を受けて出力パルス信号OUTをローレベルに立ち下げるようにドライバ224を駆動する。すなわち、パルス受信回路223は、入力パルス信号INの論理レベルに応じて出力パルス信号OUTの論理レベルを切り替える。なお、パルス受信回路223としては、例えば、RSフリップフロップを好適に用いることができる。 The pulse receiving circuit 223 generates the output pulse signal OUT by driving the driver 224 according to the received pulse signals S12 and S22 input via the buffers 221 and 222. More specifically, the pulse receiving circuit 223 raises the output pulse signal OUT to a high level in response to the pulse drive of the reception pulse signal S12, and raises the output pulse signal OUT in response to the pulse drive of the reception pulse signal S22. Driver 224 is driven to fall to low level. That is, the pulse receiving circuit 223 switches the logic level of the output pulse signal OUT according to the logic level of the input pulse signal IN. As the pulse receiving circuit 223, for example, an RS flip-flop can be preferably used.
 ドライバ224は、パルス受信回路223の駆動制御に基づいて出力パルス信号OUTを生成する。 The driver 224 generates the output pulse signal OUT based on the driving control of the pulse receiving circuit 223.
 トランスチップ230は、トランス231及び232を用いてコントローラチップ210とドライバチップ220との間を直流的に絶縁しつつ、パルス送信回路211から入力される送信パルス信号S11及びS21をそれぞれ受信パルス信号S12及びS22としてパルス受信回路223に出力する。なお、本明細書中において、「直流的に絶縁する」とは、絶縁すべき対象物が導体では接続されていないということである。 The transformer chip 230 uses transformers 231 and 232 to provide DC isolation between the controller chip 210 and the driver chip 220, while transforming the transmission pulse signals S11 and S21 input from the pulse transmission circuit 211 into the reception pulse signal S12. and output to the pulse receiving circuit 223 as S22. In this specification, the phrase "directly insulate" means that objects to be insulated are not connected by a conductor.
 より具体的に述べると、トランス231は、一次側コイル231pに入力される送信パルス信号S11に応じて、二次側コイル231sから受信パルス信号S12を出力する。一方、トランス232は、一次側コイル232pに入力される送信パルス信号S21に応じて、二次側コイル232sから受信パルス信号S22を出力する。 More specifically, the transformer 231 outputs the reception pulse signal S12 from the secondary coil 231s in response to the transmission pulse signal S11 input to the primary coil 231p. On the other hand, the transformer 232 outputs a reception pulse signal S22 from the secondary coil 232s according to the transmission pulse signal S21 input to the primary coil 232p.
 このように、絶縁間通信に用いられるスパイラルコイルの特性上、入力パルス信号INは、2本の送信パルス信号S11及びS21(=ライズ信号及びフォール信号に相当)に分離された後、2つのトランス231及び232を介して一次回路系200pから二次回路系200sに伝達される。 Thus, due to the characteristics of the spiral coil used for inter-insulation communication, the input pulse signal IN is separated into two transmission pulse signals S11 and S21 (=rise signal and fall signal), and then sent to two transformers. 231 and 232 from the primary circuit system 200p to the secondary circuit system 200s.
 なお、本構成例の信号伝達装置200は、コントローラチップ210及びドライバチップ220とは別に、トランス231及び232のみを搭載するトランスチップ230を独立に有しており、これら3つのチップを単一のパッケージに封止して成る。 The signal transmission device 200 of this configuration example independently has a transformer chip 230 on which only the transformers 231 and 232 are mounted separately from the controller chip 210 and the driver chip 220, and these three chips are integrated into a single chip. It is sealed in a package.
 このような構成とすることにより、コントローラチップ210、及び、ドライバチップ220については、いずれも一般の低耐圧~中耐圧プロセス(数V~数十V耐圧)で形成することができるので、専用の高耐圧プロセス(数kV耐圧)を用いる必要がなくなり、製造コストを低減することが可能となる。 With such a configuration, both the controller chip 210 and the driver chip 220 can be formed by a general low-to-medium-voltage process (withstand voltage of several V to several tens of V). It is no longer necessary to use a high withstand voltage process (several kV withstand voltage), making it possible to reduce manufacturing costs.
 なお、信号伝達装置200は、例えば、車両に搭載される車載機器の電源装置またはモータ駆動装置などで好適に利用することができる。上記の車両には、エンジン車のほか、電動車(BEV[battery electric vehicle]、HEV[hybrid electric vehicle」、PHEV/PHV(plug-in hybrid electric vehicle/plug-in hybrid vehicle]、又は、FCEV/FCV(fuel cell electric vehicle/fuel cell vehicle]などのxEV)も含まれる。 It should be noted that the signal transmission device 200 can be suitably used, for example, as a power supply device or a motor drive device for in-vehicle equipment mounted in a vehicle. In addition to engine vehicles, the above vehicles include electric vehicles (BEV [battery electric vehicle], HEV [hybrid electric vehicle], PHEV / PHV (plug-in hybrid electric vehicle / plug-in hybrid vehicle), or FCEV / FCV (xEV such as fuel cell electric vehicle/fuel cell vehicle) is also included.
<トランスチップ(基本構造)>
 次に、トランスチップ230の基本構造について説明する。図2は、トランスチップ230の基本構造を示す図である。本図のトランスチップ230において、トランス231は、上下方向に対向する一次側コイル231pと二次側コイル231sを含む。トランス232は、上下方向に対向する一次側コイル232pと二次側コイル232sを含む。
<Transformer chip (basic structure)>
Next, the basic structure of the transformer chip 230 will be described. FIG. 2 is a diagram showing the basic structure of the transformer chip 230. As shown in FIG. In the transformer chip 230 of this figure, the transformer 231 includes a primary side coil 231p and a secondary side coil 231s facing each other in the vertical direction. The transformer 232 includes a primary side coil 232p and a secondary side coil 232s facing each other in the vertical direction.
 一次側コイル231p及び232pは、いずれも、トランスチップ230の第1配線層(下層)230aに形成されている。二次側コイル231s及び232sは、いずれも、トランスチップ230の第2配線層(本図では上層)230bに形成されている。なお、二次側コイル231sは、一次側コイル231pの直上に配置され、一次側コイル231pに対向している。また、二次側コイル232sは、一次側コイル232pの直上に配置され、一次側コイル232pに対向している。 Both the primary side coils 231p and 232p are formed on the first wiring layer (lower layer) 230a of the transformer chip 230 . The secondary coils 231 s and 232 s are both formed on the second wiring layer (upper layer in this figure) 230 b of the transformer chip 230 . The secondary coil 231s is arranged directly above the primary coil 231p and faces the primary coil 231p. In addition, the secondary coil 232s is arranged directly above the primary coil 232p and faces the primary coil 232p.
 一次側コイル231pは、内部端子X21に接続された第1端を始点として、内部端子X21の周囲を時計回りで取り囲むように螺旋状に敷設されており、その終点に相当する第2端が内部端子X22に接続されている。一方、一次側コイル232pは、内部端子X23に接続された第1端を始点として、内部端子X23の周囲を反時計回りで取り囲むように螺旋状に敷設されており、その終点に相当する第2端が内部端子X22に接続されている。内部端子X21、X22及びX23は、図示の順で直線的に配列されている。 The primary coil 231p is spirally laid so as to surround the internal terminal X21 in a clockwise direction, starting from the first end connected to the internal terminal X21, and the second end corresponding to the end point is the internal terminal X21. It is connected to the terminal X22. On the other hand, the primary coil 232p is spirally laid so as to surround the internal terminal X23 in a counterclockwise direction, starting from the first end connected to the internal terminal X23, and the second coil 232p corresponds to the end point. The end is connected to the internal terminal X22. The internal terminals X21, X22 and X23 are linearly arranged in the order shown.
 内部端子X21は、導電性の配線Y21及びビアZ21を介して、第2層230bの外部端子T21に接続されている。内部端子X22は、導電性の配線Y22及びビアZ22を介して、第2層230bの外部端子T22に接続されている。内部端子X23は、導電性の配線Y23及びビアZ23を介して、第2層230bの外部端子T23に接続されている。なお、外部端子T21~T23は、直線的に並べて配置されており、コントローラチップ210とのワイヤボンディングに用いられる。 The internal terminal X21 is connected to the external terminal T21 of the second layer 230b via the conductive wiring Y21 and via Z21. The internal terminal X22 is connected to the external terminal T22 of the second layer 230b through a conductive wiring Y22 and via Z22. The internal terminal X23 is connected to the external terminal T23 of the second layer 230b through the conductive wiring Y23 and via Z23. The external terminals T21 to T23 are linearly arranged and used for wire bonding with the controller chip 210. FIG.
 二次側コイル231sは、外部端子T24に接続された第1端を始点として、外部端子T24の周囲を反時計回りで取り囲むように螺旋状に敷設されており、その終点に相当する第2端が外部端子T25に接続されている。一方、二次側コイル232sは、外部端子T26に接続された第1端を始点として、外部端子T26の周囲を時計回りで取り囲むように螺旋状に敷設されており、その終点に相当する第2端が外部端子T25に接続されている。なお、外部端子T24、T25及びT26は、図示の順で直線的に並べて配置されており、ドライバチップ220とのワイヤボンディングに用いられる。 The secondary coil 231s is spirally laid so as to surround the external terminal T24 in a counterclockwise direction, with a first end connected to the external terminal T24 as a starting point, and a second end corresponding to the end point. is connected to the external terminal T25. On the other hand, the secondary coil 232s is spirally laid so as to surround the periphery of the external terminal T26 clockwise, starting from the first end connected to the external terminal T26. The end is connected to the external terminal T25. The external terminals T24, T25 and T26 are linearly arranged in the order shown in the figure and used for wire bonding with the driver chip 220. FIG.
 二次側コイル231s及び232sは、それぞれ、磁気結合によって一次側コイル231p及び232pに交流接続されると共に、一次側コイル231p及び232pから直流絶縁されている。すなわち、ドライバチップ220は、トランスチップ230を介してコントローラチップ210に交流接続されると共に、トランスチップ230によりコントローラチップ210から直流絶縁されている。 The secondary coils 231s and 232s are AC-connected to the primary coils 231p and 232p by magnetic coupling, respectively, and are DC-insulated from the primary coils 231p and 232p. That is, the driver chip 220 is AC-connected to the controller chip 210 via the transformer chip 230 and DC-insulated from the controller chip 210 by the transformer chip 230 .
<トランスチップ(2チャンネル型)>
 図3は、2チャンネル型のトランスチップとして用いられる半導体装置5を示す斜視図である。図4は、図3に示す半導体装置5の平面図である。図5は、図3に示す半導体装置5において低電位コイル22(=トランスの一次側コイルに相当)が形成された層を示す平面図である。図6は、図3に示す半導体装置5において高電位コイル23(=トランスの二次側コイルに相当)が形成された層を示す平面図である。図7は、図6に示すVIII-VIII線に沿う断面図である。
<Transformer chip (2-channel type)>
FIG. 3 is a perspective view showing a semiconductor device 5 used as a two-channel transformer chip. 4 is a plan view of the semiconductor device 5 shown in FIG. 3. FIG. FIG. 5 is a plan view showing a layer in which the low-potential coil 22 (corresponding to the primary side coil of the transformer) is formed in the semiconductor device 5 shown in FIG. FIG. 6 is a plan view showing a layer in which the high potential coil 23 (=corresponding to the secondary side coil of the transformer) is formed in the semiconductor device 5 shown in FIG. FIG. 7 is a cross-sectional view taken along line VIII-VIII shown in FIG.
 図3~図7を参照して、半導体装置5は、直方体形状の半導体チップ41を含む。半導体チップ41は、シリコン、ワイドバンドギャップ半導体および化合物半導体のうちの少なくとも1つを含む。 3 to 7, the semiconductor device 5 includes a semiconductor chip 41 having a rectangular parallelepiped shape. Semiconductor chip 41 includes at least one of silicon, a wide bandgap semiconductor, and a compound semiconductor.
 ワイドバンドギャップ半導体は、シリコンのバンドギャップ(約1.12eV)を超える半導体からなる。ワイドバンドギャップ半導体のバンドギャップは、2.0eV以上であることが好ましい。ワイドバンドギャップ半導体は、SiC(炭化シリコン)であってもよい。化合物半導体は、III-V族化合物半導体であってもよい。化合物半導体は、AlN(窒化アルミニウム)、InN(窒化インジウム)、GaN(窒化ガリウム)およびGaAs(ヒ化ガリウム)のうちの少なくとも1つを含んでいてもよい。 A wide bandgap semiconductor consists of a semiconductor that exceeds the bandgap of silicon (approximately 1.12 eV). The bandgap of the wide bandgap semiconductor is preferably 2.0 eV or more. The wide bandgap semiconductor may be SiC (silicon carbide). The compound semiconductor may be a III-V compound semiconductor. The compound semiconductor may contain at least one of AlN (aluminum nitride), InN (indium nitride), GaN (gallium nitride) and GaAs (gallium arsenide).
 半導体チップ41は、この形態では、シリコン製の半導体基板を含む。半導体チップ41は、シリコン製の半導体基板およびシリコン製のエピタキシャル層を含む積層構造を有するエピタキシャル基板であってもよい。半導体基板の導電型は、n型またはp型であってもよい。エピタキシャル層は、n型またはp型であってもよい。 The semiconductor chip 41 includes a semiconductor substrate made of silicon in this form. The semiconductor chip 41 may be an epitaxial substrate having a laminated structure including a semiconductor substrate made of silicon and an epitaxial layer made of silicon. The conductivity type of the semiconductor substrate may be n-type or p-type. The epitaxial layer may be n-type or p-type.
 半導体チップ41は、一方側の第1主面42、他方側の第2主面43、並びに、第1主面42及び第2主面43を接続するチップ側壁44A~44Dを有している。第1主面42及び第2主面43は、それらの法線方向Zから見た平面視(以下、単に「平面視」という)において、四角形状(この形態では長方形状)に形成されている。 The semiconductor chip 41 has a first main surface 42 on one side, a second main surface 43 on the other side, and chip side walls 44A to 44D connecting the first main surface 42 and the second main surface 43. The first main surface 42 and the second main surface 43 are formed in a quadrangular shape (rectangular shape in this embodiment) in plan view (hereinafter simply referred to as "plan view") as seen from their normal direction Z. .
 チップ側壁44A~44Dは、第1チップ側壁44A、第2チップ側壁44B、第3チップ側壁44Cおよび第4チップ側壁44Dを含む。第1チップ側壁44Aおよび第2チップ側壁44Bは、半導体チップ41の長辺を形成している。第1チップ側壁44Aおよび第2チップ側壁44Bは、第1方向Xに沿って延び、第2方向Yに対向している。第3チップ側壁44Cおよび第4チップ側壁44Dは、半導体チップ41の短辺を形成している。第3チップ側壁44Cおよび第4チップ側壁44Dは、第2方向Yに延び、第1方向Xに対向している。チップ側壁44A~44Dは、研削面からなる。 The chip sidewalls 44A-44D include a first chip sidewall 44A, a second chip sidewall 44B, a third chip sidewall 44C and a fourth chip sidewall 44D. The first chip side wall 44A and the second chip side wall 44B form long sides of the semiconductor chip 41 . The first chip sidewall 44A and the second chip sidewall 44B extend along the first direction X and face the second direction Y. As shown in FIG. The third chip side wall 44C and the fourth chip side wall 44D form short sides of the semiconductor chip 41 . The third chip side wall 44C and the fourth chip side wall 44D extend in the second direction Y and face the first direction X. As shown in FIG. Chip side walls 44A-44D are ground surfaces.
 半導体装置5は、半導体チップ41の第1主面42の上に形成された絶縁層51をさらに含む。絶縁層51は、絶縁主面52および絶縁側壁53A~53Dを有している。絶縁主面52は、平面視において第1主面42に整合する四角形状(この形態では長方形状)に形成されている。絶縁主面52は、第1主面42に対して平行に延びている。 The semiconductor device 5 further includes an insulating layer 51 formed on the first main surface 42 of the semiconductor chip 41 . The insulating layer 51 has an insulating main surface 52 and insulating sidewalls 53A-53D. The insulating main surface 52 is formed in a quadrangular shape (rectangular shape in this embodiment) matching the first main surface 42 in plan view. The insulating main surface 52 extends parallel to the first main surface 42 .
 絶縁側壁53A~53Dは、第1絶縁側壁53A、第2絶縁側壁53B、第3絶縁側壁53Cおよび第4絶縁側壁53Dを含む。絶縁側壁53A~53Dは、絶縁主面52の周縁から半導体チップ41に向けて延び、チップ側壁44A~44Dに連なっている。絶縁側壁53A~53Dは、具体的には、チップ側壁44A~44Dに対して面一に形成されている。絶縁側壁53A~53Dは、チップ側壁44A~44Dに面一な研削面を形成している。 The insulating sidewalls 53A-53D include a first insulating sidewall 53A, a second insulating sidewall 53B, a third insulating sidewall 53C and a fourth insulating sidewall 53D. The insulating side walls 53A to 53D extend from the peripheral edge of the insulating main surface 52 toward the semiconductor chip 41 and connect to the chip side walls 44A to 44D. Specifically, the insulating sidewalls 53A-53D are formed flush with the chip sidewalls 44A-44D. The insulating sidewalls 53A-53D form ground surfaces flush with the chip sidewalls 44A-44D.
 絶縁層51は、最下絶縁層55、最上絶縁層56および複数(この形態では11層)の層間絶縁層57を含む多層絶縁積層構造からなる。最下絶縁層55は、第1主面42を直接被覆する絶縁層である。最上絶縁層56は、絶縁主面52を形成する絶縁層である。複数の層間絶縁層57は、最下絶縁層55および最上絶縁層56の間に介在する絶縁層である。最下絶縁層55は、この形態では、酸化シリコンを含む単層構造を有している。最上絶縁層56は、この形態では、酸化シリコンを含む単層構造を有している。最下絶縁層55の厚さおよび最上絶縁層56の厚さは、それぞれ1μm以上3μm以下(たとえば2μm程度)であってもよい。 The insulating layer 51 has a multi-layer insulating laminate structure including a bottom insulating layer 55 , a top insulating layer 56 and a plurality of (eleven layers in this embodiment) interlayer insulating layers 57 . The bottom insulating layer 55 is an insulating layer that directly covers the first major surface 42 . The top insulating layer 56 is an insulating layer that forms the insulating main surface 52 . A plurality of interlayer insulating layers 57 are insulating layers interposed between the bottom insulating layer 55 and the top insulating layer 56 . The bottom insulating layer 55 has a single layer structure containing silicon oxide in this embodiment. The top insulating layer 56 has a single layer structure containing silicon oxide in this form. The thickness of the bottom insulating layer 55 and the thickness of the top insulating layer 56 may each be 1 μm or more and 3 μm or less (for example, about 2 μm).
 複数の層間絶縁層57は、最下絶縁層55側の第1絶縁層58および最上絶縁層56側の第2絶縁層59を含む積層構造をそれぞれ有している。第1絶縁層58は、窒化シリコンを含んでいてもよい。第1絶縁層58は、第2絶縁層59に対するエッチングストッパ層として形成されている。第1絶縁層58の厚さは、0.1μm以上1μm以下(たとえば0.3μm程度)であってもよい。 The plurality of interlayer insulating layers 57 each have a laminated structure including a first insulating layer 58 on the bottom insulating layer 55 side and a second insulating layer 59 on the top insulating layer 56 side. The first insulating layer 58 may contain silicon nitride. The first insulating layer 58 is formed as an etching stopper layer for the second insulating layer 59 . The thickness of the first insulating layer 58 may be 0.1 μm or more and 1 μm or less (for example, about 0.3 μm).
 第2絶縁層59は、第1絶縁層58の上に形成されている。第1絶縁層58とは異なる絶縁材料を含む。第2絶縁層59は、酸化シリコンを含んでいてもよい。第2絶縁層59の厚さは、1μm以上3μm以下(たとえば2μm程度)であってもよい。第2絶縁層59の厚さは、第1絶縁層58の厚さを超えていることが好ましい。 A second insulating layer 59 is formed on the first insulating layer 58 . It contains an insulating material different from the first insulating layer 58 . The second insulating layer 59 may contain silicon oxide. The thickness of the second insulating layer 59 may be 1 μm or more and 3 μm or less (for example, about 2 μm). The thickness of the second insulating layer 59 preferably exceeds the thickness of the first insulating layer 58 .
 絶縁層51の総厚さDTは、5μm以上50μm以下であってもよい。絶縁層51の総厚さDT及び層間絶縁層57の積層数は任意であって、実現すべき絶縁耐圧(絶縁破壊耐量)に応じて調整される。また、最下絶縁層55、最上絶縁層56および層間絶縁層57の絶縁材料は任意であり、特定の絶縁材料に限定されない。 The total thickness DT of the insulating layer 51 may be 5 μm or more and 50 μm or less. The total thickness DT of the insulating layers 51 and the number of layers of the interlayer insulating layers 57 are arbitrary, and are adjusted according to the dielectric breakdown voltage (dielectric breakdown tolerance) to be achieved. Insulating materials for the lowermost insulating layer 55, the uppermost insulating layer 56, and the interlayer insulating layer 57 are arbitrary, and are not limited to specific insulating materials.
 半導体装置5は、絶縁層51に形成された第1機能デバイス45を含む。第1機能デバイス45は、1つ又は複数(この形態では複数)の変圧器21(先出のトランスに相当)を含む。つまり、半導体装置5は、複数の変圧器21を含むマルチチャネル型デバイスである。複数の変圧器21は、絶縁側壁53A~53Dから間隔を空けて絶縁層51の内方部に形成されている。複数の変圧器21は、第1方向Xに間隔を空けて形成されている。 The semiconductor device 5 includes a first functional device 45 formed in an insulating layer 51. The first functional device 45 includes one or more (in this form, more than one) transformers 21 (corresponding to the previously mentioned transformers). In other words, the semiconductor device 5 is a multi-channel device including multiple transformers 21 . A plurality of transformers 21 are formed in the inner portion of the insulating layer 51 spaced apart from the insulating sidewalls 53A-53D. A plurality of transformers 21 are formed at intervals in the first direction X. As shown in FIG.
 複数の変圧器21は、具体的には、平面視において絶縁側壁53C側から絶縁側壁53D側に向けてこの順に形成された第1変圧器21A、第2変圧器21B、第3変圧器21Cおよび第4変圧器21Dを含む。複数の変圧器21A~21Dは、同様の構造をそれぞれ有している。以下では、第1変圧器21Aの構造を例にとって説明する。第2変圧器21B、第3変圧器21Cおよび第4変圧器21Dの構造の説明については、第1変圧器21Aの構造の説明が準用されるものとし、省略する。 Specifically, the plurality of transformers 21 are, in plan view, a first transformer 21A, a second transformer 21B, a third transformer 21C, and a first transformer 21A, a second transformer 21B, and a A fourth transformer 21D is included. A plurality of transformers 21A-21D each have a similar structure. The structure of the first transformer 21A will be described below as an example. Descriptions of the structures of the second transformer 21B, the third transformer 21C, and the fourth transformer 21D are omitted because the description of the structure of the first transformer 21A applies mutatis mutandis.
 図5~図7を参照して、第1変圧器21Aは、低電位コイル22および高電位コイル23を含む。低電位コイル22は、絶縁層51内に形成されている。高電位コイル23は、法線方向Zに低電位コイル22と対向するように絶縁層51内に成されている。低電位コイル22および高電位コイル23は、この形態では、最下絶縁層55および最上絶縁層56に挟まれた領域(つまり複数の層間絶縁層57)に形成されている。 With reference to FIGS. 5-7, the first transformer 21A includes a low potential coil 22 and a high potential coil 23. FIG. The low potential coil 22 is formed within the insulating layer 51 . The high-potential coil 23 is formed in the insulating layer 51 so as to face the low-potential coil 22 in the normal direction Z. As shown in FIG. The low-potential coil 22 and the high-potential coil 23 are formed in a region sandwiched between the bottom insulating layer 55 and the top insulating layer 56 (that is, the plurality of interlayer insulating layers 57) in this embodiment.
 低電位コイル22は、絶縁層51内において最下絶縁層55(半導体チップ41)側に形成されており、高電位コイル23は、絶縁層51内において低電位コイル22に対して最上絶縁層56(絶縁主面52)側に形成されている。つまり、高電位コイル23は、低電位コイル22を挟んで半導体チップ41に対向している。低電位コイル22および高電位コイル23の配置箇所は任意である。また、高電位コイル23は、1層以上の層間絶縁層57を挟んで低電位コイル22に対向していればよい。 The low potential coil 22 is formed on the lowermost insulating layer 55 (semiconductor chip 41 ) side within the insulating layer 51 , and the high potential coil 23 is formed on the uppermost insulating layer 56 with respect to the low potential coil 22 within the insulating layer 51 . It is formed on the (insulating main surface 52) side. That is, the high potential coil 23 faces the semiconductor chip 41 with the low potential coil 22 interposed therebetween. The low-potential coil 22 and the high-potential coil 23 can be arranged at any position. Also, the high-potential coil 23 may face the low-potential coil 22 with one or more interlayer insulating layers 57 interposed therebetween.
 低電位コイル22及び高電位コイル23の間の距離(つまり層間絶縁層57の積層数)は、低電位コイル22及び高電位コイル23の間の絶縁耐圧及び電界強度に応じて適宜調整される。低電位コイル22は、この形態では、最下絶縁層55側から数えて3層目の層間絶縁層57に形成されている。高電位コイル23は、この形態では、最上絶縁層56側から数えて1層目の層間絶縁層57に形成されている。 The distance between the low-potential coil 22 and the high-potential coil 23 (that is, the number of layers of the interlayer insulation layers 57) is appropriately adjusted according to the withstand voltage and electric field strength between the low-potential coil 22 and the high-potential coil 23. In this embodiment, the low-potential coil 22 is formed on the third interlayer insulating layer 57 counted from the bottom insulating layer 55 side. In this embodiment, the high-potential coil 23 is formed on the first interlayer insulating layer 57 counted from the uppermost insulating layer 56 side.
 低電位コイル22は、層間絶縁層57において第1絶縁層58及び第2絶縁層59を貫通して埋め込まれている。低電位コイル22は、第1内側末端24、第1外側末端25、ならびに、第1内側末端24および第1外側末端25の間を螺旋状に引き回された第1螺旋部26を含む。第1螺旋部26は、平面視において楕円形状(長円形状)に延びる螺旋状に引き回されている。第1螺旋部26の最内周縁を形成する部分は、平面視において楕円形状の第1内側領域66を区画している。 The low-potential coil 22 is embedded through the first insulating layer 58 and the second insulating layer 59 in the interlayer insulating layer 57 . The low potential coil 22 includes a first inner end 24 , a first outer end 25 and a first helix 26 helically routed between the first inner end 24 and the first outer end 25 . The first spiral portion 26 is wound in a spiral shape extending in an elliptical shape (oval shape) in plan view. A portion forming the innermost peripheral edge of the first spiral portion 26 defines an elliptical first inner region 66 in plan view.
 第1螺旋部26の巻回数は、5以上30以下であってもよい。第1螺旋部26の幅は、0.1μm以上5μm以下であってもよい。第1螺旋部26の幅は、1μm以上3μm以下であることが好ましい。第1螺旋部26の幅は、螺旋方向に直交する方向の幅によって定義される。第1螺旋部26の第1巻回ピッチは、0.1μm以上5μm以下であってもよい。第1巻回ピッチは、1μm以上3μm以下であることが好ましい。第1巻回ピッチは、第1螺旋部26において螺旋方向に直交する方向に隣り合う2つの部分の間の距離によって定義される。 The number of turns of the first spiral portion 26 may be 5 or more and 30 or less. The width of the first spiral portion 26 may be 0.1 μm or more and 5 μm or less. The width of the first spiral portion 26 is preferably 1 μm or more and 3 μm or less. The width of the first spiral portion 26 is defined by the width in the direction orthogonal to the spiral direction. The first winding pitch of the first spiral portion 26 may be 0.1 μm or more and 5 μm or less. The first winding pitch is preferably 1 μm or more and 3 μm or less. The first winding pitch is defined by the distance between two adjacent portions of the first helical portion 26 in a direction orthogonal to the helical direction.
 第1螺旋部26の巻回形状及び第1内側領域66の平面形状は任意であり、図5などに示される形態に限定されない。第1螺旋部26は、平面視において三角形状、四角形状等の多角形状、または、円形状に巻回されていてもよい。第1内側領域66は、第1螺旋部26の巻回形状に応じて、平面視において三角形状、四角形状等の多角形状、または、円形状に区画されていてもよい。 The winding shape of the first spiral portion 26 and the planar shape of the first inner region 66 are arbitrary, and are not limited to the shapes shown in FIG. 5 and the like. The first spiral portion 26 may be wound in a polygonal shape such as a triangular shape, a square shape, or a circular shape in a plan view. The first inner region 66 may be divided into a polygonal shape such as a triangular shape, a quadrangular shape, or a circular shape in plan view according to the winding shape of the first spiral portion 26 .
 低電位コイル22は、チタン、窒化チタン、銅、アルミニウム及びタングステンのうちの少なくとも1つを含んでいてもよい。低電位コイル22は、バリア層および本体層を含む積層構造を有していてもよい。バリア層は、層間絶縁層57内においてリセス空間を区画する。本体層は、バリア層によって区画されたリセス空間に埋設される。バリア層は、チタンおよび窒化チタンのうちの少なくとも1つを含んでいてもよい。本体層は、銅、アルミニウムおよびタングステンのうちの少なくとも1つを含んでいてもよい。 The low potential coil 22 may contain at least one of titanium, titanium nitride, copper, aluminum and tungsten. The low potential coil 22 may have a laminated structure including barrier layers and body layers. The barrier layer defines a recess space within the interlayer insulating layer 57 . A body layer is embedded in the recessed space defined by the barrier layer. The barrier layer may include at least one of titanium and titanium nitride. The body layer may include at least one of copper, aluminum and tungsten.
 高電位コイル23は、層間絶縁層57において第1絶縁層58及び第2絶縁層59を貫通して埋め込まれている。高電位コイル23は、第2内側末端27、第2外側末端28、ならびに、第2内側末端27および第2外側末端28の間を螺旋状に引き回された第2螺旋部29を含む。第2螺旋部29は、平面視において楕円形状(長円形状)に延びる螺旋状に引き回されている。第2螺旋部29の最内周縁を形成する部分は、この形態では、平面視において楕円形状の第2内側領域67を区画している。第2螺旋部29の第2内側領域67は、法線方向Zに第1螺旋部26の第1内側領域66に対向している。 The high-potential coil 23 is embedded through the first insulating layer 58 and the second insulating layer 59 in the interlayer insulating layer 57 . The high potential coil 23 includes a second inner end 27 , a second outer end 28 and a second helix 29 helically routed between the second inner end 27 and the second outer end 28 . The second spiral portion 29 is wound in a spiral shape extending in an elliptical shape (oval shape) in plan view. In this embodiment, the portion forming the innermost peripheral edge of the second spiral portion 29 defines an elliptical second inner region 67 in plan view. The second inner region 67 of the second spiral portion 29 faces the first inner region 66 of the first spiral portion 26 in the normal direction Z. As shown in FIG.
 第2螺旋部29の巻回数は、5以上30以下であってもよい。第1螺旋部26の巻回数に対する第2螺旋部29の巻回数は、昇圧すべき電圧値に応じて調整される。第2螺旋部29の巻回数は、第1螺旋部26の巻回数を超えていることが好ましい。むろん、第2螺旋部29の巻回数は、第1螺旋部26の巻回数未満であってもよいし、第1螺旋部26の巻回数と等しくてもよい。 The number of turns of the second spiral portion 29 may be 5 or more and 30 or less. The number of turns of the second spiral portion 29 relative to the number of turns of the first spiral portion 26 is adjusted according to the voltage value to be boosted. The number of turns of the second spiral portion 29 preferably exceeds the number of turns of the first spiral portion 26 . Of course, the number of turns of the second spiral portion 29 may be less than the number of turns of the first spiral portion 26 or may be equal to the number of turns of the first spiral portion 26 .
 第2螺旋部29の幅は、0.1μm以上5μm以下であってもよい。第2螺旋部29の幅は、1μm以上3μm以下であることが好ましい。第2螺旋部29の幅は、螺旋方向に直交する方向の幅によって定義される。第2螺旋部29の幅は、第1螺旋部26の幅と等しいことが好ましい。 The width of the second spiral portion 29 may be 0.1 μm or more and 5 μm or less. The width of the second spiral portion 29 is preferably 1 μm or more and 3 μm or less. The width of the second spiral portion 29 is defined by the width in the direction orthogonal to the spiral direction. The width of the second spiral portion 29 is preferably equal to the width of the first spiral portion 26 .
 第2螺旋部29の第2巻回ピッチは、0.1μm以上5μm以下であってもよい。第2巻回ピッチは、1μm以上3μm以下であることが好ましい。第2巻回ピッチは、第2螺旋部29において螺旋方向に直交する方向に隣り合う2つの部分の間の距離によって定義される。第2巻回ピッチは、第1螺旋部26の第1巻回ピッチと等しいことが好ましい。 The second winding pitch of the second spiral portion 29 may be 0.1 μm or more and 5 μm or less. The second winding pitch is preferably 1 μm or more and 3 μm or less. The second winding pitch is defined by the distance between two adjacent portions of the second helical portion 29 in a direction orthogonal to the helical direction. The second winding pitch is preferably equal to the first winding pitch of the first helix 26 .
 第2螺旋部29の巻回形状及び第2内側領域67の平面形状は任意であり、図6などに示される形態に限定されない。第2螺旋部29は、平面視において三角形状、四角形状等の多角形状、または、円形状に巻回されていてもよい。第2内側領域67は、第2螺旋部29の巻回形状に応じて、平面視において三角形状、四角形状等の多角形状、または、円形状に区画されていてもよい。 The winding shape of the second spiral portion 29 and the planar shape of the second inner region 67 are arbitrary, and are not limited to the shapes shown in FIG. 6 and the like. The second spiral portion 29 may be wound in a polygonal shape such as a triangular shape, a square shape, or a circular shape in a plan view. The second inner region 67 may be divided into a polygonal shape such as a triangular shape, a square shape, or a circular shape in plan view according to the winding shape of the second spiral portion 29 .
 高電位コイル23は、低電位コイル22と同一の導電材料によって形成されていることが好ましい。つまり、高電位コイル23は、低電位コイル22と同様に、バリア層および本体層を含むことが好ましい。 The high-potential coil 23 is preferably made of the same conductive material as the low-potential coil 22. That is, the high-potential coil 23 preferably includes barrier layers and body layers, similar to the low-potential coil 22 .
 図4を参照して、半導体装置5は、複数(本図では12個)の低電位端子11、及び、複数(本図では12個)の高電位端子12を含む。複数の低電位端子11は、対応する変圧器21A~21Dの低電位コイル22にそれぞれ電気的に接続されている。複数の高電位端子12は、対応する変圧器21A~21Dの高電位コイル23にそれぞれ電気的に接続されている。 Referring to FIG. 4, semiconductor device 5 includes a plurality of (12 in this drawing) low potential terminals 11 and a plurality of (12 in this drawing) high potential terminals 12 . A plurality of low potential terminals 11 are electrically connected to low potential coils 22 of corresponding transformers 21A to 21D, respectively. A plurality of high potential terminals 12 are electrically connected to high potential coils 23 of corresponding transformers 21A to 21D, respectively.
 複数の低電位端子11は、絶縁層51の絶縁主面52の上に形成されている。複数の低電位端子11は、具体的には、複数の変圧器21A~21Dから第2方向Yに間隔を空けて絶縁側壁53B側の領域に形成され、第1方向Xに間隔を空けて配列されている。 A plurality of low-potential terminals 11 are formed on the insulating main surface 52 of the insulating layer 51 . Specifically, the plurality of low-potential terminals 11 are formed in a region on the side of the insulating sidewall 53B at intervals in the second direction Y from the plurality of transformers 21A to 21D, and are arranged at intervals in the first direction X. It is
 複数の低電位端子11は、第1低電位端子11A、第2低電位端子11B、第3低電位端子11C、第4低電位端子11D、第5低電位端子11Eおよび第6低電位端子11Fを含む。複数の低電位端子11A~11Fは、この形態では、2個ずつそれぞれ形成されている。複数の低電位端子11A~11Fの個数は任意である。 The plurality of low potential terminals 11 includes a first low potential terminal 11A, a second low potential terminal 11B, a third low potential terminal 11C, a fourth low potential terminal 11D, a fifth low potential terminal 11E and a sixth low potential terminal 11F. include. Each of the plurality of low potential terminals 11A to 11F is formed two by two in this embodiment. The number of the plurality of low potential terminals 11A-11F is arbitrary.
 第1低電位端子11Aは、平面視において第2方向Yに第1変圧器21Aに対向している。第2低電位端子11Bは、平面視において第2方向Yに第2変圧器21Bに対向している。第3低電位端子11Cは、平面視において第2方向Yに第3変圧器21Cに対向している。第4低電位端子11Dは、平面視において第2方向Yに第4変圧器21Dに対向している。第5低電位端子11Eは、平面視において第1低電位端子11Aおよび第2低電位端子11Bの間の領域に形成されている。第6低電位端子11Fは、平面視において第3低電位端子11Cおよび第4低電位端子11Dの間の領域に形成されている。 The first low potential terminal 11A faces the first transformer 21A in the second direction Y in plan view. The second low potential terminal 11B faces the second transformer 21B in the second direction Y in plan view. The third low potential terminal 11C faces the third transformer 21C in the second direction Y in plan view. The fourth low potential terminal 11D faces the fourth transformer 21D in the second direction Y in plan view. The fifth low potential terminal 11E is formed in a region between the first low potential terminal 11A and the second low potential terminal 11B in plan view. The sixth low potential terminal 11F is formed in a region between the third low potential terminal 11C and the fourth low potential terminal 11D in plan view.
 第1低電位端子11Aは、第1変圧器21A(低電位コイル22)の第1内側末端24に電気的に接続されている。第2低電位端子11Bは、第2変圧器21B(低電位コイル22)の第1内側末端24に電気的に接続されている。第3低電位端子11Cは、第3変圧器21C(低電位コイル22)の第1内側末端24に電気的に接続されている。第4低電位端子11Dは、第4変圧器21D(低電位コイル22)の第1内側末端24に電気的に接続されている。 The first low potential terminal 11A is electrically connected to the first inner end 24 of the first transformer 21A (low potential coil 22). The second low potential terminal 11B is electrically connected to the first inner end 24 of the second transformer 21B (low potential coil 22). The third low potential terminal 11C is electrically connected to the first inner end 24 of the third transformer 21C (low potential coil 22). The fourth low potential terminal 11D is electrically connected to the first inner end 24 of the fourth transformer 21D (low potential coil 22).
 第5低電位端子11Eは、第1変圧器21A(低電位コイル22)の第1外側末端25および第2変圧器21B(低電位コイル22)の第1外側末端25に電気的に接続されている。第6低電位端子11Fは、第3変圧器21C(低電位コイル22)の第1外側末端25および第4変圧器21D(低電位コイル22)の第1外側末端25に電気的に接続されている。 The fifth low potential terminal 11E is electrically connected to the first outer terminal 25 of the first transformer 21A (low potential coil 22) and the first outer terminal 25 of the second transformer 21B (low potential coil 22). there is The sixth low potential terminal 11F is electrically connected to the first outer terminal 25 of the third transformer 21C (low potential coil 22) and the first outer terminal 25 of the fourth transformer 21D (low potential coil 22). there is
 複数の高電位端子12は、複数の低電位端子11から間隔を空けて絶縁層51の絶縁主面52の上に形成されている。複数の高電位端子12は、具体的には、複数の低電位端子11から第2方向Yに間隔を空けて絶縁側壁53A側の領域に形成され、第1方向Xに間隔を空けて配列されている。 The plurality of high-potential terminals 12 are formed on the insulating main surface 52 of the insulating layer 51 at intervals from the plurality of low-potential terminals 11 . Specifically, the plurality of high-potential terminals 12 are formed in a region on the side of the insulating sidewall 53A spaced apart from the plurality of low-potential terminals 11 in the second direction Y, and are arranged in the first direction X at intervals. ing.
 複数の高電位端子12は、平面視において対応する変圧器21A~21Dに近接する領域にそれぞれ形成されている。高電位端子12が変圧器21A~21Dに近接するとは、平面視において高電位端子12および変圧器21の間の距離が、低電位端子11および高電位端子12の間の距離未満であることを意味する。 A plurality of high-potential terminals 12 are formed in regions adjacent to the corresponding transformers 21A to 21D in plan view. The high potential terminal 12 being close to the transformers 21A to 21D means that the distance between the high potential terminal 12 and the transformer 21 in plan view is less than the distance between the low potential terminal 11 and the high potential terminal 12. means.
 複数の高電位端子12は、具体的には、平面視において第1方向Xに沿って複数の変圧器21A~21Dと対向するように第1方向Xに沿って間隔を空けて形成されている。複数の高電位端子12は、さらに具体的には、平面視において高電位コイル23の第2内側領域67および隣り合う高電位コイル23の間の領域に位置するように第1方向Xに沿って間隔を空けて形成されている。これにより、複数の高電位端子12は、平面視において第1方向Xに複数の変圧器21A~21Dと一列に並んで配列されている。 Specifically, the plurality of high-potential terminals 12 are formed at intervals along the first direction X so as to face the plurality of transformers 21A to 21D along the first direction X in plan view. . More specifically, the plurality of high potential terminals 12 are arranged along the first direction X so as to be located in the second inner region 67 of the high potential coil 23 and the region between the adjacent high potential coils 23 in plan view. formed with a gap. As a result, the plurality of high-potential terminals 12 are arranged in line with the plurality of transformers 21A to 21D in the first direction X in plan view.
 複数の高電位端子12は、第1高電位端子12A、第2高電位端子12B、第3高電位端子12C、第4高電位端子12D、第5高電位端子12Eおよび第6高電位端子12Fを含む。複数の高電位端子12A~12Fは、この形態では、2個ずつそれぞれ形成されている。複数の高電位端子12A~12Fの個数は任意である。 The plurality of high potential terminals 12 includes a first high potential terminal 12A, a second high potential terminal 12B, a third high potential terminal 12C, a fourth high potential terminal 12D, a fifth high potential terminal 12E and a sixth high potential terminal 12F. include. Each of the plurality of high-potential terminals 12A to 12F is formed two by two in this embodiment. The number of high potential terminals 12A to 12F is arbitrary.
 第1高電位端子12Aは、平面視において第1変圧器21A(高電位コイル23)の第2内側領域67に形成されている。第2高電位端子12Bは、平面視において第2変圧器21B(高電位コイル23)の第2内側領域67に形成されている。第3高電位端子12Cは、平面視において第3変圧器21C(高電位コイル23)の第2内側領域67に形成されている。第4高電位端子12Dは、平面視において第4変圧器21D(高電位コイル23)の第2内側領域67に形成されている。第5高電位端子12Eは、平面視において第1変圧器21Aおよび第2変圧器21Bの間の領域に形成されている。第6高電位端子12Fは、平面視において第3変圧器21Cおよび第4変圧器21Dの間の領域に形成されている。 The first high potential terminal 12A is formed in the second inner region 67 of the first transformer 21A (high potential coil 23) in plan view. The second high potential terminal 12B is formed in the second inner region 67 of the second transformer 21B (high potential coil 23) in plan view. The third high potential terminal 12C is formed in the second inner region 67 of the third transformer 21C (high potential coil 23) in plan view. The fourth high potential terminal 12D is formed in the second inner region 67 of the fourth transformer 21D (high potential coil 23) in plan view. The fifth high potential terminal 12E is formed in a region between the first transformer 21A and the second transformer 21B in plan view. The sixth high potential terminal 12F is formed in a region between the third transformer 21C and the fourth transformer 21D in plan view.
 第1高電位端子12Aは、第1変圧器21A(高電位コイル23)の第2内側末端27に電気的に接続されている。第2高電位端子12Bは、第2変圧器21B(高電位コイル23)の第2内側末端27に電気的に接続されている。第3高電位端子12Cは、第3変圧器21C(高電位コイル23)の第2内側末端27に電気的に接続されている。第4高電位端子12Dは、第4変圧器21D(高電位コイル23)の第2内側末端27に電気的に接続されている。 The first high potential terminal 12A is electrically connected to the second inner end 27 of the first transformer 21A (high potential coil 23). The second high potential terminal 12B is electrically connected to the second inner end 27 of the second transformer 21B (high potential coil 23). The third high potential terminal 12C is electrically connected to the second inner end 27 of the third transformer 21C (high potential coil 23). The fourth high potential terminal 12D is electrically connected to the second inner end 27 of the fourth transformer 21D (high potential coil 23).
 第5高電位端子12Eは、第1変圧器21A(高電位コイル23)の第2外側末端28および第2変圧器21B(高電位コイル23)の第2外側末端28に電気的に接続されている。第6高電位端子12Fは、第3変圧器21C(高電位コイル23)の第2外側末端28および第4変圧器21D(高電位コイル23)の第2外側末端28に電気的に接続されている。 The fifth high potential terminal 12E is electrically connected to the second outer end 28 of the first transformer 21A (high potential coil 23) and the second outer end 28 of the second transformer 21B (high potential coil 23). there is The sixth high potential terminal 12F is electrically connected to the second outer end 28 of the third transformer 21C (high potential coil 23) and the second outer end 28 of the fourth transformer 21D (high potential coil 23). there is
 図5~図7を参照して、半導体装置5は、絶縁層51内にそれぞれ形成された第1低電位配線31、第2低電位配線32、第1高電位配線33及び第2高電位配線34を含む。この形態では、複数の第1低電位配線31、複数の第2低電位配線32、複数の第1高電位配線33および複数の第2高電位配線34が形成されている。 5 to 7, semiconductor device 5 includes first low-potential wiring 31, second low-potential wiring 32, first high-potential wiring 33 and second high-potential wiring formed in insulating layer 51, respectively. 34. In this form, a plurality of first low potential wirings 31, a plurality of second low potential wirings 32, a plurality of first high potential wirings 33 and a plurality of second high potential wirings 34 are formed.
 第1低電位配線31および第2低電位配線32は、第1変圧器21Aの低電位コイル22および第2変圧器21Bの低電位コイル22を同電位に固定している。また、第1低電位配線31および第2低電位配線32は、第3変圧器21Cの低電位コイル22および第4変圧器21Dの低電位コイル22を同電位に固定している。第1低電位配線31および第2低電位配線32は、この形態では、変圧器21A~21Dの全ての低電位コイル22を同電位に固定している。 The first low potential wiring 31 and the second low potential wiring 32 fix the low potential coil 22 of the first transformer 21A and the low potential coil 22 of the second transformer 21B to the same potential. The first low potential wiring 31 and the second low potential wiring 32 fix the low potential coil 22 of the third transformer 21C and the low potential coil 22 of the fourth transformer 21D to the same potential. In this form, the first low potential wiring 31 and the second low potential wiring 32 fix all the low potential coils 22 of the transformers 21A to 21D to the same potential.
 第1高電位配線33および第2高電位配線34は、第1変圧器21Aの高電位コイル23および第2変圧器21Bの高電位コイル23を同電位に固定している。また、第1高電位配線33および第2高電位配線34は、第3変圧器21Cの高電位コイル23および第4変圧器21Dの高電位コイル23を同電位に固定している。第1高電位配線33および第2高電位配線34は、この形態では、変圧器21A~21Dの全ての高電位コイル23を同電位に固定している。 The first high-potential wiring 33 and the second high-potential wiring 34 fix the high-potential coil 23 of the first transformer 21A and the high-potential coil 23 of the second transformer 21B to the same potential. Also, the first high-potential wiring 33 and the second high-potential wiring 34 fix the high-potential coil 23 of the third transformer 21C and the high-potential coil 23 of the fourth transformer 21D to the same potential. The first high-potential wiring 33 and the second high-potential wiring 34 fix all the high-potential coils 23 of the transformers 21A to 21D at the same potential in this form.
 複数の第1低電位配線31は、対応する低電位端子11A~11Dおよび対応する変圧器21A~21D(低電位コイル22)の第1内側末端24にそれぞれ電気的に接続されている。複数の第1低電位配線31は、同様の構造を有している。以下では、第1低電位端子11Aおよび第1変圧器21Aに接続された第1低電位配線31の構造を例にとって説明する。他の第1低電位配線31の構造の説明については、第1変圧器21Aに接続された第1低電位配線31の構造の説明が準用されるものとし、省略する。 The plurality of first low potential wirings 31 are electrically connected to the corresponding low potential terminals 11A-11D and the first inner ends 24 of the corresponding transformers 21A-21D (low potential coils 22), respectively. The multiple first low-potential wirings 31 have the same structure. The structure of the first low-potential wiring 31 connected to the first low-potential terminal 11A and the first transformer 21A will be described below as an example. The description of the structure of the other first low potential wiring 31 is omitted because the description of the structure of the first low potential wiring 31 connected to the first transformer 21A applies mutatis mutandis.
 第1低電位配線31は、貫通配線71、低電位接続配線72、引き出し配線73、第1接続プラグ電極74、第2接続プラグ電極75、1つまたは複数(この形態では複数)のパッドプラグ電極76、および、1つまたは複数(この形態では複数)の基板プラグ電極77を含む。 The first low-potential wiring 31 includes a through-wiring 71, a low-potential connection wiring 72, a lead-out wiring 73, a first connection plug electrode 74, a second connection plug electrode 75, and one or more (in this embodiment, more than one) pad plug electrodes. 76 , and one or more (in this form, more than one) substrate plug electrodes 77 .
 貫通配線71、低電位接続配線72、引き出し配線73、第1接続プラグ電極74、第2接続プラグ電極75、パッドプラグ電極76および基板プラグ電極77は、低電位コイル22等と同一の導電材料によってそれぞれ形成されていることが好ましい。つまり、貫通配線71、低電位接続配線72、引き出し配線73、第1接続プラグ電極74、第2接続プラグ電極75、パッドプラグ電極76および基板プラグ電極77は、低電位コイル22等と同様に、バリア層および本体層をそれぞれ含むことが好ましい。 The through wiring 71, the low potential connection wiring 72, the lead wiring 73, the first connection plug electrode 74, the second connection plug electrode 75, the pad plug electrode 76, and the substrate plug electrode 77 are made of the same conductive material as the low potential coil 22 and the like. It is preferable that they are formed respectively. That is, the through wiring 71, the low potential connection wiring 72, the lead wiring 73, the first connection plug electrode 74, the second connection plug electrode 75, the pad plug electrode 76, and the substrate plug electrode 77 are similar to the low potential coil 22 and the like. It preferably includes a barrier layer and a body layer, respectively.
 貫通配線71は、絶縁層51において複数の層間絶縁層57を貫通し、法線方向Zに沿って延びる柱状に延びている。貫通配線71は、この形態では、絶縁層51において最下絶縁層55および最上絶縁層56の間の領域に形成されている。貫通配線71は、最上絶縁層56側の上端部、および、最下絶縁層55側の下端部を有している。貫通配線71の上端部は、高電位コイル23と同一の層間絶縁層57に形成され、最上絶縁層56によって被覆されている。貫通配線71の下端部は、低電位コイル22と同一の層間絶縁層57に形成されている。 The through wiring 71 penetrates the plurality of interlayer insulating layers 57 in the insulating layer 51 and extends in a columnar shape extending along the normal direction Z. As shown in FIG. Through wire 71 is formed in a region between lowermost insulating layer 55 and uppermost insulating layer 56 in insulating layer 51 in this embodiment. The through wire 71 has an upper end on the uppermost insulating layer 56 side and a lower end on the lowermost insulating layer 55 side. The upper end of the through wire 71 is formed in the same interlayer insulating layer 57 as the high potential coil 23 and covered with the uppermost insulating layer 56 . The lower end of the through wire 71 is formed on the same interlayer insulating layer 57 as the low potential coil 22 .
 貫通配線71は、この形態では、第1電極層78、第2電極層79、および、複数の配線プラグ電極80を含む。貫通配線71では、第1電極層78、第2電極層79および配線プラグ電極80が低電位コイル22等と同一の導電材料によってそれぞれ形成されている。つまり、第1電極層78、第2電極層79および配線プラグ電極80は、低電位コイル22等と同様に、バリア層および本体層をそれぞれ含む。 The through wiring 71 includes a first electrode layer 78, a second electrode layer 79, and a plurality of wiring plug electrodes 80 in this embodiment. In the through wire 71, the first electrode layer 78, the second electrode layer 79, and the wire plug electrode 80 are made of the same conductive material as the low potential coil 22 and the like. That is, the first electrode layer 78, the second electrode layer 79, and the wiring plug electrode 80 each include a barrier layer and a body layer, like the low-potential coil 22 and the like.
 第1電極層78は、貫通配線71の上端部を形成している。第2電極層79は、貫通配線71の下端部を形成している。第1電極層78は、アイランド状に形成され、法線方向Zに低電位端子11(第1低電位端子11A)に対向している。第2電極層79は、アイランド状に形成され、法線方向Zに第1電極層78に対向している。 The first electrode layer 78 forms the upper end of the through wire 71 . The second electrode layer 79 forms the lower end of the through wire 71 . The first electrode layer 78 is formed in an island shape and faces the low potential terminal 11 (first low potential terminal 11A) in the normal direction Z. As shown in FIG. The second electrode layer 79 is formed in an island shape and faces the first electrode layer 78 in the normal direction Z. As shown in FIG.
 複数の配線プラグ電極80は、第1電極層78および第2電極層79の間の領域に位置する複数の層間絶縁層57にそれぞれ埋設されている。複数の配線プラグ電極80は、互いに電気的に接続されるように最下絶縁層55から最上絶縁層56に向けて積層され、かつ、第1電極層78および第2電極層79を電気的に接続している。複数の配線プラグ電極80は、第1電極層78の平面積および第2電極層79の平面積未満の平面積をそれぞれ有している。 A plurality of wiring plug electrodes 80 are embedded in a plurality of interlayer insulating layers 57 positioned between the first electrode layer 78 and the second electrode layer 79, respectively. A plurality of wiring plug electrodes 80 are laminated from the bottom insulating layer 55 toward the top insulating layer 56 so as to be electrically connected to each other, and electrically connect the first electrode layer 78 and the second electrode layer 79 to each other. Connected. The plurality of wiring plug electrodes 80 each have a planar area less than the planar area of the first electrode layer 78 and the planar area of the second electrode layer 79 .
 なお、複数の配線プラグ電極80の積層数は、複数の層間絶縁層57の積層数に一致している。この形態では、6個の配線プラグ電極80が各層間絶縁層57内に埋設されているが、各層間絶縁層57内に埋設される配線プラグ電極80の個数は任意である。もちろん、複数の層間絶縁層57を貫通する1つまたは複数の配線プラグ電極80が形成されていてもよい。 Note that the number of lamination of the plurality of wiring plug electrodes 80 matches the number of lamination of the plurality of interlayer insulating layers 57 . Although six wiring plug electrodes 80 are embedded in each interlayer insulating layer 57 in this embodiment, the number of wiring plug electrodes 80 embedded in each interlayer insulating layer 57 is arbitrary. Of course, one or more wiring plug electrodes 80 may be formed penetrating the plurality of interlayer insulating layers 57 .
 低電位接続配線72は、低電位コイル22と同一の層間絶縁層57内において第1変圧器21A(低電位コイル22)の第1内側領域66に形成されている。低電位接続配線72は、アイランド状に形成され、法線方向Zに高電位端子12(第1高電位端子12A)に対向している。低電位接続配線72は、配線プラグ電極80の平面積を超える平面積を有していることが好ましい。低電位接続配線72は、低電位コイル22の第1内側末端24に電気的に接続されている。 The low-potential connection wiring 72 is formed in the first inner region 66 of the first transformer 21A (low-potential coil 22) in the same interlayer insulating layer 57 as the low-potential coil 22. The low-potential connection wiring 72 is formed in an island shape and faces the high-potential terminal 12 (first high-potential terminal 12A) in the normal direction Z. As shown in FIG. The low-potential connection wiring 72 preferably has a plane area larger than that of the wiring plug electrode 80 . A low potential connection wire 72 is electrically connected to the first inner end 24 of the low potential coil 22 .
 引き出し配線73は、層間絶縁層57内において半導体チップ41および貫通配線71の間の領域に形成されている。引き出し配線73は、この形態では、最下絶縁層55から数えて1層目の層間絶縁層57内に形成されている。引き出し配線73は、一方側の第1端部、他方側の第2端部、ならびに、第1端部および第2端部を接続する配線部を含む。引き出し配線73の第1端部は、半導体チップ41および貫通配線71の下端部の間の領域に位置している。引き出し配線73の第2端部は、半導体チップ41および低電位接続配線72の間の領域に位置している。配線部は、半導体チップ41の第1主面42に沿って延び、第1端部および第2端部の間の領域を帯状に延びている。 The lead wiring 73 is formed in a region between the semiconductor chip 41 and the through wiring 71 within the interlayer insulating layer 57 . The lead-out wiring 73 is formed in the first interlayer insulating layer 57 counted from the lowermost insulating layer 55 in this embodiment. Lead wiring 73 includes a first end on one side, a second end on the other side, and a wiring portion connecting the first end and the second end. A first end of lead-out wiring 73 is located in a region between semiconductor chip 41 and the lower end of through-wiring 71 . A second end of the lead wire 73 is located in a region between the semiconductor chip 41 and the low potential connection wire 72 . The wiring portion extends along the first main surface 42 of the semiconductor chip 41 and extends in a strip shape in a region between the first end portion and the second end portion.
 第1接続プラグ電極74は、層間絶縁層57内において貫通配線71および引き出し配線73の間の領域に形成され、貫通配線71および引き出し配線73の第1端部に電気的に接続されている。第2接続プラグ電極75は、層間絶縁層57内において低電位接続配線72および引き出し配線73の間の領域に形成され、低電位接続配線72および引き出し配線73の第2端部に電気的に接続されている。 The first connection plug electrode 74 is formed in a region between the through wire 71 and the lead wire 73 within the interlayer insulating layer 57 and is electrically connected to first ends of the through wire 71 and the lead wire 73 . The second connection plug electrode 75 is formed in a region between the low-potential connection wiring 72 and the lead-out wiring 73 within the interlayer insulating layer 57 and is electrically connected to the second ends of the low-potential connection wiring 72 and the lead-out wiring 73 . It is
 複数のパッドプラグ電極76は、最上絶縁層56内において低電位端子11(第1低電位端子11A)および貫通配線71の間の領域に形成され、低電位端子11および貫通配線71の上端部にそれぞれ電気的に接続されている。複数の基板プラグ電極77は、最下絶縁層55内において半導体チップ41および引き出し配線73の間の領域に形成されている。基板プラグ電極77は、この形態では、半導体チップ41および引き出し配線73の第1端部の間の領域に形成され、半導体チップ41および引き出し配線73の第1端部にそれぞれ電気的に接続されている。 A plurality of pad plug electrodes 76 are formed in a region between the low potential terminal 11 (first low potential terminal 11A) and the through wire 71 in the uppermost insulating layer 56, and are formed at the upper ends of the low potential terminal 11 and the through wire 71. They are electrically connected to each other. A plurality of substrate plug electrodes 77 are formed in a region between the semiconductor chip 41 and the lead wiring 73 within the lowermost insulating layer 55 . In this embodiment, the substrate plug electrode 77 is formed in a region between the semiconductor chip 41 and the first ends of the lead wires 73, and is electrically connected to the semiconductor chip 41 and the first ends of the lead wires 73, respectively. there is
 図6及び図7を参照して、複数の第1高電位配線33は、対応する高電位端子12A~12Dおよび対応する変圧器21A~21D(高電位コイル23)の第2内側末端27にそれぞれ電気的に接続されている。複数の第1高電位配線33は、同様の構造をそれぞれ有している。以下では、第1高電位端子12A及び第1変圧器21Aに接続された第1高電位配線33の構造を例にとって説明する。他の第1高電位配線33の構造の説明については、第1変圧器21Aに接続された第1高電位配線33の構造の説明が準用されるものとし、省略する。 6 and 7, a plurality of first high potential wires 33 are connected to corresponding high potential terminals 12A-12D and second inner ends 27 of corresponding transformers 21A-21D (high potential coils 23), respectively. electrically connected. The multiple first high-potential wirings 33 each have a similar structure. The structure of the first high-potential wiring 33 connected to the first high-potential terminal 12A and the first transformer 21A will be described below as an example. The description of the structure of the other first high-potential wiring 33 is omitted because the description of the structure of the first high-potential wiring 33 connected to the first transformer 21A applies mutatis mutandis.
 第1高電位配線33は、高電位接続配線81、および、1つまたは複数(この形態では複数)のパッドプラグ電極82を含む。高電位接続配線81およびパッドプラグ電極82は、低電位コイル22等と同一の導電材料によって形成されていることが好ましい。つまり、高電位接続配線81およびパッドプラグ電極82は、低電位コイル22等と同様に、バリア層および本体層を含むことが好ましい。 The first high-potential wiring 33 includes a high-potential connection wiring 81 and one or more (in this embodiment, more than one) pad plug electrodes 82 . The high potential connection wiring 81 and the pad plug electrode 82 are preferably made of the same conductive material as the low potential coil 22 and the like. That is, the high potential connection wiring 81 and the pad plug electrode 82 preferably include a barrier layer and a body layer like the low potential coil 22 and the like.
 高電位接続配線81は、高電位コイル23と同一の層間絶縁層57内において高電位コイル23の第2内側領域67に形成されている。高電位接続配線81は、アイランド状に形成され、法線方向Zに高電位端子12(第1高電位端子12A)に対向している。高電位接続配線81は、高電位コイル23の第2内側末端27に電気的に接続されている。高電位接続配線81は、平面視において低電位接続配線72から間隔を空けて形成され、法線方向Zに低電位接続配線72には対向していない。これにより、低電位接続配線72と高電位接続配線81の間の絶縁距離が増加し、絶縁層51の絶縁耐圧が高められている。 The high-potential connection wiring 81 is formed in the second inner region 67 of the high-potential coil 23 in the same interlayer insulating layer 57 as the high-potential coil 23 . The high-potential connection wiring 81 is formed in an island shape and faces the high-potential terminal 12 (first high-potential terminal 12A) in the normal direction Z. As shown in FIG. A high potential connecting wire 81 is electrically connected to the second inner end 27 of the high potential coil 23 . The high-potential connection wiring 81 is spaced from the low-potential connection wiring 72 in plan view, and does not face the low-potential connection wiring 72 in the normal direction Z. As shown in FIG. As a result, the insulation distance between the low-potential connection wiring 72 and the high-potential connection wiring 81 is increased, and the withstand voltage of the insulation layer 51 is increased.
 複数のパッドプラグ電極82は、最上絶縁層56内において高電位端子12(第1高電位端子12A)および高電位接続配線81の間の領域に形成され、高電位端子12及び高電位接続配線81にそれぞれ電気的に接続されている。複数のパッドプラグ電極82は、平面視において高電位接続配線81の平面積未満の平面積をそれぞれ有している。 A plurality of pad plug electrodes 82 are formed in a region between the high potential terminal 12 (first high potential terminal 12A) and the high potential connection wiring 81 in the uppermost insulating layer 56, are electrically connected to each other. Each of the plurality of pad plug electrodes 82 has a plane area smaller than the plane area of the high-potential connection wiring 81 in plan view.
 図7を参照して、低電位端子11および高電位端子12の間の距離D1は、低電位コイル22および高電位コイル23の間の距離D2を超えていることが好ましい(D2<D1)。距離D1は、複数の層間絶縁層57の総厚さDTを超えていることが好ましい(DT<D1)。距離D1に対する距離D2の比D2/D1は、0.01以上0.1以下であってもよい。距離D1は、100μm以上500μm以下であることが好ましい。距離D2は、1μm以上50μm以下であってもよい。距離D2は、5μm以上25μm以下であることが好ましい。距離D1および距離D2の値は任意であり、実現すべき絶縁耐圧に応じて適宜調整される。 Referring to FIG. 7, the distance D1 between the low potential terminal 11 and the high potential terminal 12 preferably exceeds the distance D2 between the low potential coil 22 and the high potential coil 23 (D2<D1). The distance D1 preferably exceeds the total thickness DT of the plurality of interlayer insulating layers 57 (DT<D1). A ratio D2/D1 of the distance D2 to the distance D1 may be 0.01 or more and 0.1 or less. The distance D1 is preferably 100 μm or more and 500 μm or less. The distance D2 may be 1 μm or more and 50 μm or less. The distance D2 is preferably 5 μm or more and 25 μm or less. The values of the distance D1 and the distance D2 are arbitrary, and are appropriately adjusted according to the dielectric breakdown voltage to be achieved.
 図6及び図7を参照して、半導体装置5は、平面視において変圧器21A~21Dの周囲に位置するように絶縁層51内に埋設されたダミーパターン85を含む。 6 and 7, semiconductor device 5 includes dummy patterns 85 embedded in insulating layer 51 so as to be positioned around transformers 21A to 21D in plan view.
 ダミーパターン85は、高電位コイル23および低電位コイル22とは異なるパターン(不連続なパターン)で形成されており、変圧器21A~21Dから独立している。つまり、ダミーパターン85は、変圧器21A~21Dとしては機能しない。ダミーパターン85は、変圧器21A~21Dにおいて低電位コイル22および高電位コイル23の間の電界を遮蔽し、高電位コイル23に対する電界集中を抑制するシールド導体層として形成されている。ダミーパターン85は、この形態では、単位面積当たりにおいて高電位コイル23のライン密度と等しいライン密度で引き回されている。ダミーパターン85のライン密度が高電位コイル23のライン密度と等しいとは、ダミーパターン85のライン密度が高電位コイル23のライン密度の±20%の範囲内に収まることを意味する。 The dummy pattern 85 is formed in a pattern (discontinuous pattern) different from that of the high-potential coil 23 and the low-potential coil 22, and is independent of the transformers 21A-21D. In other words, the dummy pattern 85 does not function as the transformers 21A-21D. The dummy pattern 85 is formed as a shield conductor layer that shields the electric field between the low-potential coil 22 and the high-potential coil 23 in the transformers 21A-21D and suppresses electric field concentration on the high-potential coil 23. FIG. In this form, the dummy pattern 85 is routed with a line density equal to the line density of the high-potential coil 23 per unit area. The fact that the line density of the dummy patterns 85 is equal to the line density of the high-potential coil 23 means that the line density of the dummy patterns 85 is within ±20% of the line density of the high-potential coil 23 .
 絶縁層51の内部におけるダミーパターン85の深さ位置は任意であり、緩和すべき電界強度に応じて調整される。ダミーパターン85は、法線方向Zに関して低電位コイル22に対して高電位コイル23に近接する領域に形成されていることが好ましい。なお、法線方向Zに関してダミーパターン85が高電位コイル23に近接するとは、法線方向Zに関して、ダミーパターン85および高電位コイル23の間の距離が、ダミーパターン85および低電位コイル22の間の距離未満であることを意味する。 The depth position of the dummy pattern 85 inside the insulating layer 51 is arbitrary, and is adjusted according to the electric field strength to be alleviated. The dummy pattern 85 is preferably formed in a region closer to the high-potential coil 23 than the low-potential coil 22 with respect to the normal direction Z. As shown in FIG. The dummy pattern 85 being close to the high-potential coil 23 in the normal direction Z means that the distance between the dummy pattern 85 and the high-potential coil 23 in the normal direction Z is equal to the distance between the dummy pattern 85 and the low-potential coil 22 in the normal direction Z. means less than the distance of
 この場合、高電位コイル23に対する電界集中を適切に抑制できる。法線方向Zに関して、ダミーパターン85及び高電位コイル23の間の距離を小さくするほど、高電位コイル23に対する電界集中を抑制できる。ダミーパターン85は、高電位コイル23と同一の層間絶縁層57内に形成されていることが好ましい。この場合、高電位コイル23に対する電界集中を更に適切に抑制できる。ダミーパターン85は、電気的状態が異なる複数のダミーパターンを含む。ダミーパターン85は高電位ダミーパターンを含んでもよい。 In this case, electric field concentration on the high-potential coil 23 can be appropriately suppressed. With respect to the normal direction Z, the smaller the distance between the dummy pattern 85 and the high-potential coil 23, the more the electric field concentration on the high-potential coil 23 can be suppressed. Dummy pattern 85 is preferably formed in the same interlayer insulating layer 57 as high-potential coil 23 . In this case, electric field concentration on the high-potential coil 23 can be suppressed more appropriately. Dummy pattern 85 includes a plurality of dummy patterns having different electrical states. The dummy pattern 85 may include a high potential dummy pattern.
 絶縁層51の内部における高電位ダミーパターン86の深さ位置は任意であり、緩和すべき電界強度に応じて調整される。高電位ダミーパターン86は、法線方向Zに関して低電位コイル22に対して高電位コイル23に近接する領域に形成されていることが好ましい。法線方向Zに関して高電位ダミーパターン86が高電位コイル23に近接するとは、法線方向Zに関して、高電位ダミーパターン86および高電位コイル23の間の距離が、高電位ダミーパターン86及び低電位コイル22の間の距離未満であることを意味する。 The depth position of the high-potential dummy pattern 86 inside the insulating layer 51 is arbitrary, and is adjusted according to the electric field strength to be alleviated. The high-potential dummy pattern 86 is preferably formed in a region closer to the high-potential coil 23 than the low-potential coil 22 with respect to the normal direction Z. As shown in FIG. The high-potential dummy pattern 86 being close to the high-potential coil 23 in the normal direction Z means that the distance between the high-potential dummy pattern 86 and the high-potential coil 23 in the normal direction Z is equal to the high-potential dummy pattern 86 and the low-potential coil 23 . It means less than the distance between the coils 22 .
 ダミーパターン85は、変圧器21A~21Dの周囲に位置するように絶縁層51内に電気的に浮遊状態に形成された浮遊ダミーパターンを含む。 The dummy pattern 85 includes floating dummy patterns formed in an electrically floating state within the insulating layer 51 so as to be positioned around the transformers 21A to 21D.
 浮遊ダミーパターンは、この形態では、平面視において高電位コイル23の周囲の領域を部分的に被覆し、かつ、部分的に露出させるように密なライン状に引き回されている。浮遊ダミーパターンは、有端状に形成されていてもよいし、無端状に形成されてもよい。 In this form, the floating dummy pattern is drawn in a dense line shape so as to partially cover and partially expose the area around the high-potential coil 23 in plan view. The floating dummy pattern may be formed in a shape with an end, or may be formed in a shape without an end.
 絶縁層51の内部における浮遊ダミーパターンの深さ位置は任意であり、緩和すべき電界強度に応じて調整される。 The depth position of the floating dummy pattern inside the insulating layer 51 is arbitrary, and is adjusted according to the electric field intensity to be relaxed.
 浮遊ラインの個数は任意であり、緩和すべき電界に応じて調整される。浮遊ダミーパターンは、複数の浮遊から構成されていてもよい。 The number of floating lines is arbitrary and adjusted according to the electric field to be relaxed. A floating dummy pattern may be composed of a plurality of floating patterns.
 図7を参照して、半導体装置5は、デバイス領域62において半導体チップ41の第1主面42に形成された第2機能デバイス60を含む。第2機能デバイス60は、半導体チップ41の第1主面42の表層部、および/または、半導体チップ41の第1主面42の上の領域を利用して形成され、絶縁層51(最下絶縁層55)によって被覆されている。図7では、第2機能デバイス60が第1主面42の表層部に示された破線によって簡略化して示されている。 Referring to FIG. 7, semiconductor device 5 includes second functional device 60 formed on first main surface 42 of semiconductor chip 41 in device region 62 . The second functional device 60 is formed using the surface layer portion of the first main surface 42 of the semiconductor chip 41 and/or the region above the first main surface 42 of the semiconductor chip 41, and includes the insulating layer 51 (lowermost It is covered by an insulating layer 55). In FIG. 7, the second functional device 60 is simply indicated by the dashed line indicated on the surface layer of the first main surface 42. As shown in FIG.
 第2機能デバイス60は、低電位配線を介して低電位端子11に電気的に接続され、高電位配線を介して高電位端子12に電気的に接続されている。低電位配線は、第2機能デバイス60に接続されるように絶縁層51内に引き回されている点を除いて、第1低電位配線31(第2低電位配線32)と同様の構造を有している。高電位配線は、第2機能デバイス60に接続されるように絶縁層51内に引き回されている点を除いて、第1高電位配線33(第2高電位配線34)と同様の構造を有している。第2機能デバイス60に係る低電位配線および高電位配線の具体的な説明は省略される。 The second functional device 60 is electrically connected to the low potential terminal 11 via the low potential wiring and electrically connected to the high potential terminal 12 via the high potential wiring. The low potential wiring has the same structure as the first low potential wiring 31 (second low potential wiring 32) except that it is routed in the insulating layer 51 so as to be connected to the second functional device 60. have. The high-potential wiring has the same structure as the first high-potential wiring 33 (second high-potential wiring 34) except that it is routed in the insulating layer 51 so as to be connected to the second functional device 60. have. A detailed description of the low-potential wiring and high-potential wiring related to the second functional device 60 is omitted.
 第2機能デバイス60は、受動デバイス、半導体整流デバイスおよび半導体スイッチングデバイスのうちの少なくとも1つを含んでいてもよい。受動デバイスは、第2機能デバイス60は、受動デバイス、半導体整流デバイスおよび半導体スイッチングデバイスのうちの任意の2種以上のデバイスが選択的に組み合わされた回路網を含んでいてもよい。回路網は、集積回路の一部または全部を形成していてもよい。 The second functional device 60 may include at least one of a passive device, a semiconductor rectifying device and a semiconductor switching device. The passive device, the second functional device 60, may include a network in which any two or more of passive devices, semiconductor rectifying devices and semiconductor switching devices are selectively combined. The circuitry may form part or all of an integrated circuit.
 受動デバイスは、半導体受動デバイスを含んでいてもよい。受動デバイスは、抵抗及びコンデンサのいずれか一方または双方を含んでいてもよい。半導体整流デバイスは、pn接合ダイオード、PINダイオード、ツェナーダイオード、ショットキーバリアダイオードおよびファーストリカバリーダイオードのうちの少なくとも1つを含んでいてもよい。半導体スイッチングデバイスは、BJT[Bipolar Junction Transistor]、MISFET[Metal Insulator Field Effect Transistor]、IGBT[Insulated Gate Bipolar Junction Transistor]およびJFET[Junction Field Effect Transistor]のうちの少なくとも1つを含んでいてもよい。 Passive devices may include semiconductor passive devices. Passive devices may include either or both resistors and capacitors. The semiconductor rectifier device may include at least one of a pn junction diode, a PIN diode, a Zener diode, a Schottky barrier diode and a fast recovery diode. The semiconductor switching device may include at least one of BJT [Bipolar Junction Transistor], MISFET [Metal Insulator Field Effect Transistor], IGBT [Insulated Gate Bipolar Junction Transistor] and JFET [Junction Field Effect Transistor].
 図5~図7を参照して、半導体装置5は、絶縁層51内に埋設されたシール導体61をさらに含む。シール導体61は、平面視において絶縁側壁53A~53Dから間隔を空けて絶縁層51内に壁状に埋設され、絶縁層51をデバイス領域62および外側領域63に区画している。シール導体61は、外側領域63からデバイス領域62への水分の進入及びクラックの進入を抑制する。 5 to 7, the semiconductor device 5 further includes a seal conductor 61 embedded within the insulating layer 51. As shown in FIG. The seal conductor 61 is embedded in the insulating layer 51 in a wall shape with a gap from the insulating side walls 53A to 53D in plan view, and partitions the insulating layer 51 into a device region 62 and an outer region 63 . The seal conductor 61 suppresses entry of moisture and cracks from the outer region 63 into the device region 62 .
 デバイス領域62は、第1機能デバイス45(複数の変圧器21)、第2機能デバイス60、複数の低電位端子11、複数の高電位端子12、第1低電位配線31、第2低電位配線32、第1高電位配線33、第2高電位配線34およびダミーパターン85を含む領域である。外側領域63は、デバイス領域62外の領域である。 The device region 62 includes a first functional device 45 (plurality of transformers 21), a second functional device 60, a plurality of low potential terminals 11, a plurality of high potential terminals 12, a first low potential wiring 31, and a second low potential wiring. 32 , first high potential wiring 33 , second high potential wiring 34 and dummy pattern 85 . The outer area 63 is an area outside the device area 62 .
 シール導体61は、デバイス領域62から電気的に切り離されている。シール導体61は、具体的には、第1機能デバイス45(複数の変圧器21)、第2機能デバイス60、複数の低電位端子11、複数の高電位端子12、第1低電位配線31、第2低電位配線32、第1高電位配線33、第2高電位配線34およびダミーパターン85から電気的に切り離されている。シール導体61は、さらに具体的には、電気的に浮遊状態に固定されている。シール導体61は、デバイス領域62に繋がる電流経路を形成しない。 The seal conductor 61 is electrically separated from the device region 62 . Specifically, the seal conductor 61 includes the first functional device 45 (the plurality of transformers 21), the second functional device 60, the plurality of low potential terminals 11, the plurality of high potential terminals 12, the first low potential wiring 31, It is electrically separated from the second low potential wiring 32 , the first high potential wiring 33 , the second high potential wiring 34 and the dummy pattern 85 . More specifically, the seal conductor 61 is fixed in an electrically floating state. Seal conductor 61 does not form a current path leading to device region 62 .
 シール導体61は、平面視において、絶縁側壁53~53Dに沿う帯状に形成されている。シール導体61は、この形態では、平面視において、四角環状(具体的には長方形環状)に形成されている。これにより、シール導体61は、平面視において四角形状(具体的には長方形状)のデバイス領域62を区画している。また、シール導体61は、平面視においてデバイス領域62を取り囲む四角環状(具体的には長方形環状)の外側領域63を区画している。 The seal conductor 61 is formed in a strip shape along the insulating side walls 53 to 53D in plan view. In this form, the seal conductor 61 is formed in a quadrangular ring shape (specifically, a rectangular ring shape) in plan view. Thereby, the seal conductor 61 defines a quadrangular (specifically rectangular) device region 62 in plan view. In addition, the seal conductor 61 defines an outer region 63 of a quadrangular ring shape (specifically, a rectangular ring shape) surrounding the device region 62 in plan view.
 シール導体61は、具体的には、絶縁主面52側の上端部、半導体チップ41側の下端部、ならびに、上端部および下端部の間を壁状に延びる壁部を有している。シール導体61の上端部は、この形態では、絶縁主面52から半導体チップ41側に間隔を空けて形成され、絶縁層51内に位置している。シール導体61の上端部は、この形態では、最上絶縁層56によって被覆されている。シール導体61の上端部は、1つまたは複数の層間絶縁層57によって被覆されていてもよい。シール導体61の上端部は、最上絶縁層56から露出していてもよい。シール導体61の下端部は、半導体チップ41から上端部側に間隔を空けて形成されている。 Specifically, the seal conductor 61 has an upper end portion on the insulating main surface 52 side, a lower end portion on the semiconductor chip 41 side, and a wall portion extending like a wall between the upper end portion and the lower end portion. In this embodiment, the upper end of the seal conductor 61 is spaced from the insulating main surface 52 toward the semiconductor chip 41 and positioned within the insulating layer 51 . The upper end of the seal conductor 61 is covered with the top insulating layer 56 in this embodiment. The upper ends of the seal conductors 61 may be covered by one or more interlayer insulation layers 57 . The top end of the seal conductor 61 may be exposed from the top insulating layer 56 . The bottom end of the seal conductor 61 is spaced from the semiconductor chip 41 toward the top end.
 このように、シール導体61は、この形態では、複数の低電位端子11および複数の高電位端子12に対して半導体チップ41側に位置するように絶縁層51内に埋設されている。また、シール導体61は、絶縁層51内において第1機能デバイス45(複数の変圧器21)、第1低電位配線31、第2低電位配線32、第1高電位配線33、第2高電位配線34およびダミーパターン85に絶縁主面52に平行な方向に対向している。シール導体61は、絶縁層51内において、第2機能デバイス60の一部に絶縁主面52に平行な方向に対向していてもよい。 Thus, in this embodiment, the seal conductor 61 is embedded in the insulating layer 51 so as to be located on the semiconductor chip 41 side with respect to the plurality of low potential terminals 11 and the plurality of high potential terminals 12 . In addition, the seal conductor 61 includes the first functional device 45 (the plurality of transformers 21), the first low-potential wiring 31, the second low-potential wiring 32, the first high-potential wiring 33, and the second high-potential wiring within the insulating layer 51. It faces the wiring 34 and the dummy pattern 85 in a direction parallel to the insulating main surface 52 . The seal conductor 61 may face a portion of the second functional device 60 in the insulating layer 51 in a direction parallel to the insulating main surface 52 .
 シール導体61は、複数のシールプラグ導体64、および、1つまたは複数(この形態では複数)のシールビア導体65を含む。シールビア導体65の個数は任意である。複数のシールプラグ導体64のうちの最上のシールプラグ導体64は、シール導体61の上端部を形成している。複数のシールビア導体65は、シール導体61の下端部をそれぞれ形成している。シールプラグ導体64およびシールビア導体65は、低電位コイル22と同一の導電材料によって形成されていることが好ましい。つまり、シールプラグ導体64およびシールビア導体65は、低電位コイル22等と同様に、バリア層および本体層を含むことが好ましい。 The seal conductor 61 includes a plurality of seal plug conductors 64 and one or more (in this embodiment, more than one) seal via conductors 65 . The number of seal via conductors 65 is arbitrary. An uppermost seal plug conductor 64 of the plurality of seal plug conductors 64 forms the upper end of the seal conductor 61 . A plurality of seal via conductors 65 form the lower ends of the seal conductors 61 respectively. Seal plug conductor 64 and seal via conductor 65 are preferably made of the same conductive material as low potential coil 22 . That is, the seal plug conductor 64 and the seal via conductor 65 preferably include a barrier layer and a body layer like the low potential coil 22 and the like.
 複数のシールプラグ導体64は、複数の層間絶縁層57にそれぞれ埋め込まれ、平面視においてデバイス領域62を取り囲む四角環状(具体的には長方形環状)にそれぞれ形成されている。複数のシールプラグ導体64は、互いに接続されるように最下絶縁層55から最上絶縁層56に向かって積層されている。複数のシールプラグ導体64の積層数は、複数の層間絶縁層57の積層数に一致している。むろん、複数の層間絶縁層57を貫通する1つまたは複数のシールプラグ導体64が形成されていてもよい。 The plurality of seal plug conductors 64 are respectively embedded in the plurality of interlayer insulating layers 57 and formed in a quadrangular ring shape (specifically, a rectangular ring shape) surrounding the device region 62 in plan view. A plurality of seal plug conductors 64 are stacked from the bottom insulating layer 55 toward the top insulating layer 56 so as to be connected to each other. The number of laminated seal plug conductors 64 matches the number of laminated interlayer insulating layers 57 . Of course, one or more seal plug conductors 64 may be formed to penetrate the multiple interlayer insulating layers 57 .
 複数のシールプラグ導体64の集合体により1つの環状のシール導体61が形成されるのであれば、複数のシールプラグ導体64の全てが環状に形成される必要はない。たとえば、複数のシールプラグ導体64の少なくとも1つが有端状に形成されていてもよい。また、複数のシールプラグ導体64の少なくとも1つが複数の有端帯状部分に分割されていてもよい。ただし、デバイス領域62への水分及びクラックの進入のリスクを鑑みると、複数のシールプラグ導体64は、無端状(環状)に形成されていることが好ましい。 If an assembly of a plurality of seal plug conductors 64 forms one ring-shaped seal conductor 61, not all of the plurality of seal plug conductors 64 need to be ring-shaped. For example, at least one of the plurality of seal plug conductors 64 may be formed with ends. Also, at least one of the plurality of seal plug conductors 64 may be divided into a plurality of band-like portions with ends. However, considering the risk of moisture and cracks entering the device region 62, it is preferable that the plurality of seal plug conductors 64 be endless (annular).
 複数のシールビア導体65は、最下絶縁層55において半導体チップ41およびシールプラグ導体64の間の領域にそれぞれ形成されている。複数のシールビア導体65は、半導体チップ41から間隔を空けて形成され、シールプラグ導体64に接続されている。複数のシールビア導体65は、シールプラグ導体64の平面積未満の平面積を有している。単一のシールビア導体65が形成されている場合、単一のシールビア導体65は、シールプラグ導体64の平面積以上の平面積を有していてもよい。 A plurality of seal via conductors 65 are formed in regions between the semiconductor chip 41 and the seal plug conductors 64 in the bottom insulating layer 55 . A plurality of seal via conductors 65 are formed spaced apart from the semiconductor chip 41 and connected to the seal plug conductors 64 . The plurality of seal via conductors 65 have plane areas less than the plane area of the seal plug conductors 64 . When a single seal via conductor 65 is formed, the single seal via conductor 65 may have a planar area equal to or larger than the planar area of the seal plug conductor 64 .
 シール導体61の幅は、0.1μm以上10μm以下であってもよい。シール導体61の幅は、1μm以上5μm以下であることが好ましい。シール導体61の幅は、シール導体61が延びる方向に直交する方向の幅によって定義される。 The width of the seal conductor 61 may be 0.1 μm or more and 10 μm or less. The width of the seal conductor 61 is preferably 1 μm or more and 5 μm or less. The width of the seal conductor 61 is defined by the width in the direction orthogonal to the extending direction of the seal conductor 61 .
 図7及び図8を参照して、半導体装置5は、半導体チップ41及びシール導体61の間に介在し、シール導体61を半導体チップ41から電気的に切り離す分離構造130を更に含む。分離構造130は、絶縁体を含むことが好ましい。分離構造130は、この形態では、半導体チップ41の第1主面42に形成されたフィールド絶縁膜131からなる。 7 and 8, the semiconductor device 5 further includes an isolation structure 130 interposed between the semiconductor chip 41 and the seal conductor 61 to electrically isolate the seal conductor 61 from the semiconductor chip 41. FIG. Isolation structure 130 preferably includes an insulator. The isolation structure 130 consists of the field insulating film 131 formed in the 1st main surface 42 of the semiconductor chip 41 in this form.
 フィールド絶縁膜131は、酸化膜(酸化シリコン膜)及び窒化膜(窒化シリコン膜)のうちの少なくとも一方を含む。フィールド絶縁膜131は、半導体チップ41の第1主面42の酸化によって形成された酸化膜の一例としてのLOCOS(local oxidation of silicon)膜からなることが好ましい。フィールド絶縁膜131の厚さは、半導体チップ41およびシール導体61を絶縁できる限り任意である。フィールド絶縁膜131の厚さは、0.1μm以上5μm以下であってもよい。 The field insulating film 131 includes at least one of an oxide film (silicon oxide film) and a nitride film (silicon nitride film). The field insulating film 131 is preferably made of a LOCOS (local oxidation of silicon) film, which is an example of an oxide film formed by oxidizing the first main surface 42 of the semiconductor chip 41 . The thickness of the field insulating film 131 is arbitrary as long as the semiconductor chip 41 and the seal conductor 61 can be insulated. Field insulating film 131 may have a thickness of 0.1 μm or more and 5 μm or less.
 分離構造130は、半導体チップ41の第1主面42に形成され、平面視においてシール導体61に沿う帯状に延びている。分離構造130は、この形態では、平面視において四角環状(具体的には長方形環状)に形成されている。分離構造130は、シール導体61の下端部(シールビア導体65)が接続された接続部132を有している。接続部132は、シール導体61の下端部(シールビア導体65)が半導体チップ41側に向けて食い込んだアンカー部を形成していてもよい。むろん、接続部132は、分離構造130の主面に対して面一に形成されていてもよい。 The isolation structure 130 is formed on the first main surface 42 of the semiconductor chip 41 and extends in a strip shape along the seal conductor 61 in plan view. In this embodiment, the separation structure 130 is formed in a quadrangular ring shape (specifically, a rectangular ring shape) in plan view. The separation structure 130 has a connection portion 132 to which the lower end portion (seal via conductor 65) of the seal conductor 61 is connected. The connection portion 132 may form an anchor portion in which the lower end portion (seal via conductor 65 ) of the seal conductor 61 bites toward the semiconductor chip 41 side. Of course, the connecting portion 132 may be formed flush with the main surface of the isolation structure 130 .
 分離構造130は、デバイス領域62側の内端部130A、外側領域63側の外端部130B、ならびに、内端部130Aおよび外端部130Bの間の本体部130Cを含む。内端部130Aは、平面視において第2機能デバイス60が形成された領域(つまり、デバイス領域62)を区画している。内端部130Aは、半導体チップ41の第1主面42に形成された絶縁膜(図示せず)と一体的に形成されていてもよい。 The isolation structure 130 includes an inner end portion 130A on the device region 62 side, an outer end portion 130B on the outer region 63 side, and a body portion 130C between the inner end portion 130A and the outer end portion 130B. The inner end portion 130A defines a region in which the second functional device 60 is formed (that is, the device region 62) in plan view. The inner end portion 130A may be formed integrally with an insulating film (not shown) formed on the first main surface 42 of the semiconductor chip 41 .
 外端部130Bは、半導体チップ41のチップ側壁44A~44Dから露出し、半導体チップ41のチップ側壁44A~44Dに連なっている。外端部130Bは、より具体的には、半導体チップ41のチップ側壁44A~44Dに対して面一に形成されている。外端部130Bは、半導体チップ41のチップ側壁44A~44Dおよび絶縁層51の絶縁側壁53A~53Dとの間で面一な研削面を形成している。むろん、他の形態において、外端部130Bは、チップ側壁44A~44Dから間隔を空けて第1主面42内に形成されていてもよい。 The outer end portion 130B is exposed from the chip side walls 44A to 44D of the semiconductor chip 41 and continues to the chip side walls 44A to 44D of the semiconductor chip 41. As shown in FIG. More specifically, the outer end portion 130B is formed flush with the chip sidewalls 44A to 44D of the semiconductor chip 41. As shown in FIG. The outer end portion 130B forms a flush ground surface between the chip side walls 44A to 44D of the semiconductor chip 41 and the insulating side walls 53A to 53D of the insulating layer 51. As shown in FIG. Of course, in another form, the outer end 130B may be formed in the first major surface 42 spaced apart from the chip sidewalls 44A-44D.
 本体部130Cは、半導体チップ41の第1主面42に対してほぼ平行に延びる平坦面を有している。本体部130Cは、シール導体61の下端部(シールビア導体65)が接続された接続部132を有している。接続部132は、本体部130Cにおいて内端部130A及び外端部130Bから間隔を空けた部分に形成されている。分離構造130は、フィールド絶縁膜131の他、種々の形態を採り得る。 The main body portion 130C has a flat surface extending substantially parallel to the first main surface 42 of the semiconductor chip 41 . The body portion 130C has a connecting portion 132 to which the lower end portion (seal via conductor 65) of the seal conductor 61 is connected. The connecting portion 132 is formed at a portion of the body portion 130C spaced apart from the inner end portion 130A and the outer end portion 130B. The isolation structure 130 can take various forms other than the field insulating film 131 .
 図7を参照して、半導体装置5は、シール導体61を被覆するように絶縁層51の絶縁主面52の上に形成された無機絶縁層140をさらに含む。無機絶縁層140は、パッシベーション層と称されてもよい。無機絶縁層140は、絶縁主面52の上から絶縁層51及び半導体チップ41を保護する。 Referring to FIG. 7, semiconductor device 5 further includes an inorganic insulating layer 140 formed on insulating main surface 52 of insulating layer 51 so as to cover seal conductor 61 . Inorganic insulating layer 140 may be referred to as a passivation layer. The inorganic insulating layer 140 protects the insulating layer 51 and the semiconductor chip 41 from above the insulating main surface 52 .
 無機絶縁層140は、この形態では、第1無機絶縁層141及び第2無機絶縁層142を含む積層構造を有する。第1無機絶縁層141は、酸化シリコンを含んでいてもよい。第1無機絶縁層141は、不純物無添加の酸化シリコンであるUSG(undoped silicate glass)を含むことが好ましい。第1無機絶縁層141の厚さは、50nm以上5000nm以下であってもよい。第2無機絶縁層142は、窒化シリコンを含んでいてもよい。第2無機絶縁層142の厚さは、500nm以上5000nm以下であってもよい。無機絶縁層140の総厚さを大きくすることにより、高電位コイル23上の絶縁耐圧を高めることができる。 The inorganic insulating layer 140 has a laminated structure including a first inorganic insulating layer 141 and a second inorganic insulating layer 142 in this embodiment. The first inorganic insulating layer 141 may contain silicon oxide. The first inorganic insulating layer 141 preferably contains USG (undoped silicate glass), which is silicon oxide with no impurity added. The thickness of the first inorganic insulating layer 141 may be 50 nm or more and 5000 nm or less. The second inorganic insulating layer 142 may contain silicon nitride. The thickness of the second inorganic insulating layer 142 may be 500 nm or more and 5000 nm or less. By increasing the total thickness of the inorganic insulating layer 140, the withstand voltage on the high-potential coil 23 can be increased.
 第1無機絶縁層141がUSGからなり、第2無機絶縁層142が窒化シリコンからなる場合、USGの絶縁破壊電圧(V/cm)は窒化シリコンの絶縁破壊電圧(V/cm)を超える。したがって、無機絶縁層140を厚化する場合、第2無機絶縁層142よりも厚い第1無機絶縁層141が形成されることが好ましい。 When the first inorganic insulating layer 141 is made of USG and the second inorganic insulating layer 142 is made of silicon nitride, the breakdown voltage (V/cm) of USG exceeds the breakdown voltage (V/cm) of silicon nitride. Therefore, when the inorganic insulating layer 140 is thickened, it is preferable to form the first inorganic insulating layer 141 thicker than the second inorganic insulating layer 142 .
 第1無機絶縁層141は、酸化シリコンの一例としてのBPSG(boron doped phosphor silicate glass)およびPSG(phosphorus silicate glass)のうちの少なくとも一方を含んでいてもよい。ただし、この場合、酸化シリコン内に不純物(ホウ素又はリン)が含まれるため、高電位コイル23上の絶縁耐圧を高める上では、USGからなる第1無機絶縁層141が形成されることが特に好ましい。むろん、無機絶縁層140は、第1無機絶縁層141および第2無機絶縁層142のいずれか一方からなる単層構造を有していてもよい。 The first inorganic insulating layer 141 may contain at least one of BPSG (boron doped phosphor silicate glass) and PSG (phosphorus silicate glass) as an example of silicon oxide. However, in this case, since silicon oxide contains impurities (boron or phosphorus), it is particularly preferable to form the first inorganic insulating layer 141 made of USG in order to increase the withstand voltage on the high-potential coil 23 . . Of course, the inorganic insulating layer 140 may have a single layer structure consisting of either the first inorganic insulating layer 141 or the second inorganic insulating layer 142 .
 無機絶縁層140は、シール導体61の全域を被覆し、シール導体61外の領域に形成された複数の低電位パッド開口143及び複数の高電位パッド開口144を有している。複数の低電位パッド開口143は、複数の低電位端子11をそれぞれ露出させている。複数の高電位パッド開口144は、複数の高電位端子12をそれぞれ露出させている。無機絶縁層140は、低電位端子11の周縁部に乗り上げたオーバラップ部を有していてもよい。無機絶縁層140は、高電位端子12の周縁部に乗り上げたオーバラップ部を有していてもよい。 The inorganic insulating layer 140 covers the entire area of the seal conductor 61 and has a plurality of low potential pad openings 143 and a plurality of high potential pad openings 144 formed outside the seal conductor 61 . A plurality of low potential pad openings 143 expose a plurality of low potential terminals 11 respectively. A plurality of high potential pad openings 144 respectively expose a plurality of high potential terminals 12 . The inorganic insulating layer 140 may have an overlapping portion that runs over the peripheral portion of the low potential terminal 11 . The inorganic insulating layer 140 may have an overlapping portion overlying the peripheral portion of the high potential terminal 12 .
 半導体装置5は、無機絶縁層140の上に形成された有機絶縁層145を更に含む。有機絶縁層145は、感光性樹脂を含んでいてもよい。有機絶縁層145は、ポリイミド、ポリアミドおよびポリベンゾオキサゾールのうちの少なくとも1つを含んでいてもよい。有機絶縁層145は、この形態では、ポリイミドを含む。有機絶縁層145の厚さは、1μm以上50μm以下であってもよい。 The semiconductor device 5 further includes an organic insulating layer 145 formed on the inorganic insulating layer 140 . The organic insulating layer 145 may contain a photosensitive resin. Organic insulating layer 145 may include at least one of polyimide, polyamide, and polybenzoxazole. Organic insulating layer 145 comprises polyimide in this form. The thickness of the organic insulating layer 145 may be 1 μm or more and 50 μm or less.
 有機絶縁層145の厚さは、無機絶縁層140の総厚さを超えていることが好ましい。さらに、無機絶縁層140および有機絶縁層145の総厚さは、低電位コイル22及び高電位コイル23の間の距離D2以上であることが好ましい。この場合、無機絶縁層140の総厚さは2μm以上10μm以下であることが好ましい。また、有機絶縁層145の厚さは5μm以上50μm以下であることが好ましい。これらの構造によれば、無機絶縁層140及び有機絶縁層145の厚化を抑制できると同時に、無機絶縁層140及び有機絶縁層145の積層膜により高電位コイル23上の絶縁耐圧を適切に高めることができる。 The thickness of the organic insulating layer 145 preferably exceeds the total thickness of the inorganic insulating layer 140 . Furthermore, the total thickness of inorganic insulating layer 140 and organic insulating layer 145 is preferably equal to or greater than distance D2 between low potential coil 22 and high potential coil 23 . In this case, the total thickness of the inorganic insulating layer 140 is preferably 2 μm or more and 10 μm or less. Also, the thickness of the organic insulating layer 145 is preferably 5 μm or more and 50 μm or less. According to these structures, it is possible to suppress the thickening of the inorganic insulating layer 140 and the organic insulating layer 145, and at the same time, the laminated film of the inorganic insulating layer 140 and the organic insulating layer 145 appropriately increases the withstand voltage of the high-potential coil 23. be able to.
 有機絶縁層145は、低電位側の領域を被覆する第1部分146及び高電位側の領域を被覆する第2部分147を含む。第1部分146は、無機絶縁層140を挟んでシール導体61を被覆している。第1部分146は、シール導体61外の領域において複数の低電位端子11(低電位パッド開口143)をそれぞれ露出させる複数の低電位端子開口148を有している。第1部分146は、低電位パッド開口143の周縁(オーバラップ部)に乗り上がったオーバラップ部を有していてもよい。 The organic insulating layer 145 includes a first portion 146 covering the low potential side region and a second portion 147 covering the high potential side region. The first portion 146 covers the seal conductor 61 with the inorganic insulating layer 140 interposed therebetween. The first portion 146 has a plurality of low potential terminal openings 148 exposing the plurality of low potential terminals 11 (low potential pad openings 143 ) respectively in a region outside the seal conductor 61 . The first portion 146 may have an overlap portion that runs over the periphery (overlap portion) of the low potential pad opening 143 .
 第2部分147は、第1部分146から間隔を空けて形成されており、第1部分146との間から無機絶縁層140を露出させている。第2部分147は、複数の高電位端子12(高電位パッド開口144)をそれぞれ露出させる複数の高電位端子開口149を有している。第2部分147は、高電位パッド開口144の周縁(オーバラップ部)に乗り上がったオーバラップ部を有していてもよい。 The second portion 147 is spaced apart from the first portion 146 and exposes the inorganic insulating layer 140 between the first portion 146 and the second portion 147 . The second portion 147 has a plurality of high potential terminal openings 149 that respectively expose a plurality of high potential terminals 12 (high potential pad openings 144). The second portion 147 may have an overlap portion that runs over the periphery (overlap portion) of the high potential pad opening 144 .
 第2部分147は、変圧器21A~21Dおよびダミーパターン85を一括して被覆している。第2部分147は、具体的には、複数の高電位コイル23、複数の高電位端子12、第1高電位ダミーパターン87、第2高電位ダミーパターン88および浮遊ダミーパターン121を一括して被覆している。 The second portion 147 collectively covers the transformers 21A to 21D and the dummy pattern 85. Specifically, the second portion 147 collectively covers the plurality of high-potential coils 23, the plurality of high-potential terminals 12, the first high-potential dummy pattern 87, the second high-potential dummy pattern 88, and the floating dummy pattern 121. are doing.
 本発明の実施形態は、さらに他の形態で実施できる。前述の実施形態では、第1機能デバイス45および第2機能デバイス60が形成された例について説明した。しかし、第1機能デバイス45を有さずに、第2機能デバイス60だけを有する形態が採用されてもよい。この場合、ダミーパターン85は取り除かれてもよい。この構造によれば、第2機能デバイス60について、第1実施形態において述べた効果(ダミーパターン85に係る効果を除く)と同様の効果を奏することができる。 Embodiments of the present invention can be implemented in other forms. In the above embodiment, an example in which the first functional device 45 and the second functional device 60 are formed has been described. However, a form having only the second functional device 60 without having the first functional device 45 may be employed. In this case, dummy pattern 85 may be removed. According to this structure, the second functional device 60 can achieve the same effects as those described in the first embodiment (excluding the effects related to the dummy pattern 85).
 つまり、低電位端子11および高電位端子12を介して第2機能デバイス60に電圧が印加された場合において、高電位端子12およびシール導体61の間の不所望な導通を抑制できる。また、低電位端子11および高電位端子12を介して第2機能デバイス60に電圧が印加された場合において、低電位端子11およびシール導体61の間の不所望な導通を抑制できる。 That is, when voltage is applied to the second functional device 60 via the low potential terminal 11 and the high potential terminal 12, unwanted conduction between the high potential terminal 12 and the seal conductor 61 can be suppressed. Also, when a voltage is applied to the second functional device 60 via the low potential terminal 11 and the high potential terminal 12, unwanted conduction between the low potential terminal 11 and the seal conductor 61 can be suppressed.
 また、前述の実施形態では、第2機能デバイス60が形成された例について説明した。しかし、第2機能デバイス60は必ずしも必要ではなく、取り除かれてもよい。 Also, in the above embodiment, an example in which the second functional device 60 is formed has been described. However, the second functional device 60 is not necessarily required and may be removed.
 また、前述の実施形態では、ダミーパターン85が形成された例について説明した。しかし、ダミーパターン85は必ずしも必要ではなく、取り除かれてもよい。 Also, in the above embodiment, an example in which the dummy pattern 85 is formed has been described. However, the dummy pattern 85 is not necessarily required and may be removed.
 また、前述の実施形態では、第1機能デバイス45が、複数の変圧器21を含むマルチチャネル型からなる例について説明した。しかし、単一の変圧器21を含むシングルチャネル型からなる第1機能デバイス45が採用されてもよい。 Also, in the above-described embodiment, an example in which the first functional device 45 is of a multi-channel type including a plurality of transformers 21 has been described. However, a single-channel first functional device 45 including a single transformer 21 may be employed.
<トランス配列>
 図9は、2チャンネル型のトランスチップ300(先出の半導体装置5に相当)におけるトランス配列の一例を模式的に示す平面図(上面図)である。本図のトランスチップ300は、第1トランス301と、第2トランス302と、第3トランス303と、第4トランス304と、第1ガードリング305と、第2ガードリング306と、パッドa1~a8と、パッドb1~b8と、パッドc1~c4と、パッドd1~d4と、を有する。
<Trans sequence>
FIG. 9 is a plan view (top view) schematically showing an example of a transformer arrangement in a two-channel transformer chip 300 (corresponding to the semiconductor device 5 described above). The transformer chip 300 in this figure includes a first transformer 301, a second transformer 302, a third transformer 303, a fourth transformer 304, a first guard ring 305, a second guard ring 306, and pads a1 to a8. , pads b1 to b8, pads c1 to c4, and pads d1 to d4.
 トランスチップ300において、第1トランス301を形成する二次側コイルL1sの一端には、パッドa1及びb1が接続されており、二次側コイルL1sの他端には、パッドc1及びd1が接続されている。第2トランス302を形成する二次側コイルL2sの一端には、パッドa2及びb2が接続されており、二次側コイルL2sの他端には、パッドc1及びd1が接続されている。 In the transformer chip 300, pads a1 and b1 are connected to one end of the secondary coil L1s forming the first transformer 301, and pads c1 and d1 are connected to the other end of the secondary coil L1s. ing. Pads a2 and b2 are connected to one end of the secondary coil L2s forming the second transformer 302, and pads c1 and d1 are connected to the other end of the secondary coil L2s.
 また、第3トランス303を形成する二次側コイルL3sの一端には、パッドa3及びb3が接続されており、二次側コイルL3sの他端には、パッドc2及びd2が接続されている。第4トランス304を形成する二次側コイルL4sの一端には、パッドa4及びb4が接続されており、二次側コイルL4sの他端には、パッドc2及びd2が接続されている。 Pads a3 and b3 are connected to one end of the secondary coil L3s forming the third transformer 303, and pads c2 and d2 are connected to the other end of the secondary coil L3s. Pads a4 and b4 are connected to one end of the secondary coil L4s forming the fourth transformer 304, and pads c2 and d2 are connected to the other end of the secondary coil L4s.
 なお、第1トランス301を形成する一次側コイル、第2トランス302を形成する一次側コイル、第3トランス303を形成する一次側コイル、及び、第4トランス304を形成する一次側コイルは、いずれも本図に明示されていない。ただし、一次側コイルは、それぞれ、基本的に二次側コイルL1s~L4sと同様の構成を有しており、二次側コイルL1s~L4sとそれぞれ対向する形で、二次側コイルL1s~L4sそれぞれの直下に配置されている。 The primary side coil forming the first transformer 301, the primary side coil forming the second transformer 302, the primary side coil forming the third transformer 303, and the primary side coil forming the fourth transformer 304 are are also not shown in this figure. However, the primary side coils basically have the same configuration as the secondary side coils L1s to L4s, respectively, and face the secondary side coils L1s to L4s, respectively. located directly below each.
 すなわち、第1トランス301を形成する一次側コイルの一端には、パッドa5及びb5が接続されており、一次側コイルの他端には、パッドc3及びd3が接続されている。また、第2トランス302を形成する一次側コイルの一端には、パッドa6及びb6が接続されており、一次側コイルの他端には、パッドc3及びd3が接続されている。 That is, one end of the primary coil forming the first transformer 301 is connected to pads a5 and b5, and the other end of the primary coil is connected to pads c3 and d3. Pads a6 and b6 are connected to one end of the primary coil forming the second transformer 302, and pads c3 and d3 are connected to the other end of the primary coil.
 また、第3トランス303を形成する一次側コイルの一端には、パッドa7及びb7が接続されており、一次側コイルの他端には、パッドc4及びd4が接続されている。また、第4トランス304を形成する一次側コイルの一端には、パッドa8及びb8が接続されており、一次側コイルの他端には、パッドc4及びd4が接続されている。 Pads a7 and b7 are connected to one end of the primary coil forming the third transformer 303, and pads c4 and d4 are connected to the other end of the primary coil. Pads a8 and b8 are connected to one end of the primary coil forming the fourth transformer 304, and pads c4 and d4 are connected to the other end of the primary coil.
 ただし、上記のパッドa5~a8、パッドb5~b8、パッドc3及びc4、並びに、パッドd3及びd4については、不図示のビアを介してトランスチップ300の内部から表面まで引き出されている。 However, the pads a5 to a8, pads b5 to b8, pads c3 and c4, and pads d3 and d4 are drawn from the inside of the transformer chip 300 to the surface via vias (not shown).
 上記複数のパッドのうち、パッドa1~a8は、それぞれ、第1の電流供給用パッドに相当し、パッドb1~b8は、それぞれ、第1の電圧測定用パッドに相当する。また、パッドc1~c4は、それぞれ、第2の電流供給用パッドに相当し、パッドd1~d4は、それぞれ、第2の電圧測定用パッドに相当する。 Of the plurality of pads, pads a1 to a8 respectively correspond to first current supply pads, and pads b1 to b8 respectively correspond to first voltage measurement pads. Pads c1 to c4 respectively correspond to second current supply pads, and pads d1 to d4 respectively correspond to second voltage measurement pads.
 従って、本構成例のトランスチップ300であれば、その不良品検査時に各コイルの直列抵抗成分を正確に測定することができる。従って、各コイルの断線が生じている不良品をリジェクトすることはもちろん、各コイルの抵抗値異常(例えば、コイル同士の中途短絡)が生じている不良品についても、これを適切にリジェクトすることが可能となり、延いては、不良品の市場流出を未然に防止することが可能となる。 Therefore, with the transformer chip 300 of this configuration example, the series resistance component of each coil can be accurately measured during the defective product inspection. Therefore, in addition to rejecting defective products in which each coil is disconnected, it is also necessary to appropriately reject defective products in which the resistance value of each coil is abnormal (for example, a short circuit between coils). is possible, and by extension, it becomes possible to prevent the outflow of defective products to the market.
 なお、上記の不良品検査を通過したトランスチップ300については、上記複数のパッドを一次側チップ及び二次側チップ(例えば先出のコントローラチップ210及びドライバチップ220)との接続手段として用いればよい。 For the transformer chip 300 that has passed the defective product inspection, the plurality of pads may be used as connection means with the primary side chip and the secondary side chip (for example, the controller chip 210 and the driver chip 220 described above). .
 具体的に述べると、パッドa1及びb1、パッドa2及びb2、パッドa3及びb3、並びに、パッドa4及びb4は、それぞれ、二次側チップの信号入力端または信号出力端に接続すればよい。また、パッドc1及びd1、並びに、パッドc2及びd2は、それぞれ、二次側チップのコモン電圧印加端(GND2)に接続すればよい。 Specifically, pads a1 and b1, pads a2 and b2, pads a3 and b3, and pads a4 and b4 may be connected to the signal input end or signal output end of the secondary chip, respectively. Pads c1 and d1 and pads c2 and d2 may be connected to the common voltage application terminal (GND2) of the secondary chip, respectively.
 一方、パッドa5及びb5、パッドa6及びb6、パッドa7及びにb7、並びに、パッドa8及びb8は、それぞれ、一次側チップの信号入力端または信号出力端に接続すればよい。また、パッドc3及びd3、並びに、パッドc4及びd4は、それぞれ、一次側チップのコモン電圧印加端(GND1)に接続すればよい。 On the other hand, pads a5 and b5, pads a6 and b6, pads a7 and b7, and pads a8 and b8 may be connected to the signal input end or signal output end of the primary chip, respectively. Pads c3 and d3 and pads c4 and d4 may be connected to the common voltage application terminal (GND1) of the primary chip, respectively.
 ここで、第1トランス301~第4トランス304は、図9に示すように、それぞれの信号伝達方向毎にカップリングして並べられている。本図に即して述べると、例えば一次側チップから二次側チップに向けて信号を伝達する第1トランス301と第2トランス302が第1ガードリング305によって第1のペアとされている。また、例えば二次側チップから一次側チップに向けて信号を伝達する第3トランス303と第4トランス304が第2ガードリング306によって第2のペアとされている。 Here, as shown in FIG. 9, the first to fourth transformers 301 to 304 are coupled and arranged for each signal transmission direction. Referring to this drawing, for example, a first transformer 301 and a second transformer 302 that transmit signals from the primary chip to the secondary chip are formed into a first pair by a first guard ring 305 . Also, for example, a third transformer 303 and a fourth transformer 304 that transmit signals from the secondary chip to the primary chip are formed into a second pair by a second guard ring 306 .
 このようなカップリングを行った理由は、第1トランス301~第4トランス304をそれぞれ形成する一次側コイルと二次側コイルをトランスチップ300の基板上下方向に積み重ねる形で積層形成した場合において、一次側コイルと二次側コイルとの間で耐圧を確保するためである。ただし、第1ガードリング305、及び、第2ガードリング306については、必ずしも必須の構成要素ではない。 The reason for such coupling is that when the primary side coils and secondary side coils forming the first to fourth transformers 301 to 304 are laminated in the vertical direction of the substrate of the transformer chip 300, This is to ensure a withstand voltage between the primary coil and the secondary coil. However, the first guard ring 305 and the second guard ring 306 are not necessarily essential components.
 なお、第1ガードリング305及び第2ガードリング306は、それぞれ、パッドe1及びe2を介して、接地端などの低インピーダンス配線に接続すればよい。 It should be noted that the first guard ring 305 and the second guard ring 306 may be connected to low-impedance wiring such as ground terminals via pads e1 and e2, respectively.
 また、トランスチップ300において、パッドc1及びd1は、二次側コイルL1sと二次側コイルL2sとの間で共有されている。また、パッドc2及びd2は、二次側コイルL3sと二次側コイルL4sとの間で共有されている。また、パッドc3及びd3は、一次側コイルL1pと一次側コイルL2pとの間で共有されている。また、パッドc4及びd4は、対応するそれぞれの一次側コイルとの間で共有されている。このような構成とすることにより、パッド数を削減して、トランスチップ300の小型化を図ることが可能となる。 Also, in the transformer chip 300, the pads c1 and d1 are shared between the secondary coil L1s and the secondary coil L2s. Moreover, the pads c2 and d2 are shared between the secondary coil L3s and the secondary coil L4s. Moreover, the pads c3 and d3 are shared between the primary coil L1p and the primary coil L2p. Also, the pads c4 and d4 are shared with the corresponding primary coils. With such a configuration, the number of pads can be reduced, and the size of the transformer chip 300 can be reduced.
 また、図9に示したように、第1トランス301~第4トランス304をそれぞれ形成する一次側コイルと二次側コイルは、トランスチップ300の平面視において、長方形状(または角を丸めたトラック状)となるように巻き回すことが望ましい。このような構成とすることにより、一次側コイルと二次側コイルが互いに重複する部分の面積が大きくなり、トランスの伝達効率を高めることが可能となる。 Further, as shown in FIG. 9, the primary coils and secondary coils forming the first to fourth transformers 301 to 304 are rectangular (or tracks with rounded corners) in plan view of the transformer chip 300 . shape). With such a configuration, the area of the portion where the primary side coil and the secondary side coil overlap becomes large, and it is possible to improve the transmission efficiency of the transformer.
 もちろん、本図のトランス配列はあくまでも一例であり、コイルの個数、形状、配置、及び、パッドの配置は任意である。また、これまでに説明してきたチップ構造及びトランス配列などについては、半導体チップ上にコイルを集積化した半導体装置全般に適用することが可能である。 Of course, the transformer arrangement in this figure is only an example, and the number, shape, and arrangement of coils and arrangement of pads are arbitrary. Also, the chip structure and transformer arrangement described so far can be applied to general semiconductor devices in which coils are integrated on a semiconductor chip.
<電子機器>
 図10は、信号伝達装置200が搭載される電子機器の一構成例を示す図である。本構成例の電子機器Aは、上側ゲートドライバIC1H(u/v/w)と、下側ゲートドライバIC1L(u/v/w)と、上側パワートランジスタ2H(u/v/w)と、下側パワートランジスタ2L(u/v/w)と、ECU3と、モータ4と、を有する。
<Electronic equipment>
FIG. 10 is a diagram showing a configuration example of an electronic device in which the signal transmission device 200 is installed. The electronic device A of this configuration example includes an upper gate driver IC 1H (u/v/w), a lower gate driver IC 1L (u/v/w), an upper power transistor 2H (u/v/w), and a lower gate driver IC 1L (u/v/w). It has a side power transistor 2L (u/v/w), an ECU 3, and a motor 4.
 上側ゲートドライバIC1H(u/v/w)は、それぞれ、ECU3と上側パワートランジスタ2H(u/v/w)との間を絶縁しつつ、ECU3から入力される上側ゲート制御信号に応じて上側ゲート駆動信号を生成することにより、上側パワートランジスタ2H(u/v/w)を駆動する。 The upper gate driver IC1H (u/v/w) provides insulation between the ECU 3 and the upper power transistor 2H (u/v/w), and operates the upper gate according to an upper gate control signal input from the ECU 3. By generating a drive signal, the upper power transistor 2H (u/v/w) is driven.
 下側ゲートドライバIC1L(u/v/w)は、それぞれ、ECU3と下側パワートランジスタ2L(u/v/w)との間を絶縁しつつ、ECU3から入力される下側ゲート制御信号に応じて下側ゲート駆動信号を生成することにより、下側パワートランジスタ2L(u/v/w)を駆動する。 The lower gate driver IC1L (u/v/w) provides insulation between the ECU 3 and the lower power transistor 2L (u/v/w), and responds to the lower gate control signal input from the ECU 3. to drive the lower power transistor 2L (u/v/w) by generating a lower gate drive signal.
 なお、上記の上側ゲートドライバIC1H(u/v/w)及び下側ゲートドライバIC1L(u/v/w)としては、先出の信号伝達装置200を好適に用いることができる。その場合、上記の上側ゲート制御信号(又は下側ゲート制御信号)が先出の入力パルス信号INに相当し、上記の上側ゲート駆動信号(又は下側ゲート駆動信号)が先出のゲート信号VGに相当する。 As the upper gate driver IC1H (u/v/w) and the lower gate driver IC1L (u/v/w), the aforementioned signal transmission device 200 can be suitably used. In that case, the above upper gate control signal (or lower gate control signal) corresponds to the aforementioned input pulse signal IN, and the aforementioned upper gate drive signal (or lower gate drive signal) corresponds to the aforementioned gate signal VG. corresponds to
 上側パワートランジスタ2H(u/v/w)は、それぞれ、3相(U相/V相/W相)のハーフブリッジ出力段を形成する上側スイッチとして、パワー系電源端(=負荷電源電圧PVDDの印加端)とモータ4の各相入力端との間に接続されている。 The upper power transistors 2H (u/v/w) serve as upper switches forming a three-phase (U-phase/V-phase/W-phase) half-bridge output stage, respectively. application end) and each phase input end of the motor 4 .
 下側パワートランジスタ2L(u/v/w)は、それぞれ、3相(U相/V相/W相)のハーフブリッジ出力段を形成する下側スイッチとして、モータ4の各相入力端とパワー系接地端との間に接続されている。 The lower power transistor 2L (u/v/w) is used as a lower switch forming a three-phase (U-phase/V-phase/W-phase) half-bridge output stage, and is connected to each phase input terminal of the motor 4. It is connected between the system ground terminal.
 本図では、上側パワートランジスタ2H(u/v/w)及び下側パワートランジスタ2L(u/v/w)として、それぞれ、IGBT[insulated gate bipolar transistor]を用いているが、例えば、IGBTに代えてMOSFET[metal oxide semiconductor field effect transistor]を用いることも可能である。 In this figure, IGBTs [insulated gate bipolar transistors] are used as the upper power transistor 2H (u/v/w) and the lower power transistor 2L (u/v/w). It is also possible to use a MOSFET [metal oxide semiconductor field effect transistor].
 ECU3は、先出の入力パルス信号INを生成し、上側ゲートドライバIC1H(u/v/w)及び下側ゲートドライバIC1L(u/v/w)を介して、上側パワートランジスタ2H(u/v/w)及び下側パワートランジスタ2L(u/v/w)をそれぞれ駆動することにより、モータ4の回転駆動を制御する。 The ECU 3 generates the aforementioned input pulse signal IN and outputs it to the upper power transistor 2H (u/v /w) and the lower power transistor 2L (u/v/w) to control the rotation of the motor 4 .
 モータ4は、3相(U相/V相/W相)のハーフブリッジ出力段からそれぞれ入力される3相の駆動電圧U/V/Wに応じて回転駆動される3相モータである。 The motor 4 is a three-phase motor that is rotationally driven according to three-phase drive voltages U/V/W respectively input from three-phase (U-phase/V-phase/W-phase) half bridge output stages.
<信号伝達装置(比較例)>
 図11は、信号伝達装置200の比較例(=後出の実施形態と対比する一般的な構成)を示す図である。本図では、信号伝達装置200の要部(=送信側と受信側の絶縁を実現するためにコイルを用いた通信回路の構成要素)として、バッファ212及び213(本図ではインバータ)と、バッファ221及び222(本図ではインバータ)と、ラッチ225及び226と、トランス231及び232とが描写されている。
<Signal transmission device (comparative example)>
FIG. 11 is a diagram showing a comparative example of the signal transmission device 200 (=general configuration for comparison with the embodiment described later). In this figure, buffers 212 and 213 (in this figure, inverters) and a buffer 221 and 222 (inverters in this figure), latches 225 and 226, and transformers 231 and 232 are depicted.
 トランス231は、一次側コイル231p及び二次側コイル231sを含む。トランス232は、一次側コイル232p及び二次側コイル232sを含む。 The transformer 231 includes a primary side coil 231p and a secondary side coil 231s. The transformer 232 includes a primary side coil 232p and a secondary side coil 232s.
 トランスチップ230の内部に着目すると、一次側コイル231pの第1ノードは、外部端子T21に接続されている。一次側コイル231pの第2ノードと一次側コイル232pの第1ノードは、いずれも外部端子T22に接続されている。一次側コイル232pの第2ノードは、外部端子T23に接続されている。二次側コイル231sの第1ノードは、外部端子T24に接続されている。二次側コイル231sの第2ノードと二次側コイル232sの第1ノードは、いずれも外部端子T25に接続されている。二次側コイル232sの第2ノードは、外部端子T26に接続されている。 Focusing on the inside of the transformer chip 230, the first node of the primary coil 231p is connected to the external terminal T21. Both the second node of the primary coil 231p and the first node of the primary coil 232p are connected to the external terminal T22. A second node of the primary coil 232p is connected to the external terminal T23. A first node of the secondary coil 231s is connected to the external terminal T24. A second node of the secondary coil 231s and a first node of the secondary coil 232s are both connected to the external terminal T25. A second node of the secondary coil 232s is connected to the external terminal T26.
 トランスチップ230の外部に着目すると、外部端子T21は、バッファ212の出力端に接続されている。外部端子T22は、接地端GND1に接続されている。外部端子T23は、バッファ213の出力端に接続されている。外部端子T24は、バッファ221の入力端に接続されている。外部端子T25は、接地端GND2に接続されている。外部端子T26は、バッファ222の入力端に接続されている。 Looking at the outside of the transformer chip 230, the external terminal T21 is connected to the output terminal of the buffer 212. The external terminal T22 is connected to the ground terminal GND1. The external terminal T23 is connected to the output terminal of the buffer 213 . The external terminal T24 is connected to the input terminal of the buffer 221 . The external terminal T25 is connected to the ground terminal GND2. The external terminal T26 is connected to the input terminal of the buffer 222 .
 バッファ212は、入力パルス信号INのライズエッジ(=ローレベルからハイレベルへの立上りエッジ)をトリガとして一次側コイル231pをパルス駆動する。一方、バッファ213は、入力パルス信号INのフォールエッジ(=ハイレベルからローレベルへの立下りエッジ)をトリガとして一次側コイル232pをパルス駆動する。 The buffer 212 pulse-drives the primary coil 231p with the rising edge (=rising edge from low level to high level) of the input pulse signal IN as a trigger. On the other hand, the buffer 213 pulse-drives the primary coil 232p using the fall edge (=falling edge from high level to low level) of the input pulse signal IN as a trigger.
 バッファ221及び222は、それぞれ、一次側コイル231p及び232pのパルス駆動により二次側コイル231s及び232sに生じる誘起電圧の入力を受け付ける。 The buffers 221 and 222 receive inputs of induced voltages generated in the secondary coils 231s and 232s by pulse-driving the primary coils 231p and 232p, respectively.
 ラッチ225及び226は、それぞれ、バッファ221及び222から出力される受信パルス信号の論理レベルをラッチする。 Latches 225 and 226 latch the logic levels of the received pulse signals output from buffers 221 and 222, respectively.
 このように、本比較例の信号伝達装置200は、入力パルス信号INのライズエッジ及びフォールエッジを2つのトランス231及び232で伝達する。このような信号伝達動作は、これまでにも詳述してきた通りである。 Thus, the signal transmission device 200 of this comparative example transmits the rising edge and the falling edge of the input pulse signal IN with the two transformers 231 and 232 . Such signal transmission operation is as described in detail so far.
<考察1>
 ところで、本比較例の信号伝達装置200は、一次側コイル231p及び232pそれぞれのパルス駆動手段として、いわゆるCMOSバッファ回路を用いている。そのため、同相ノイズ耐性について、さらなる検討の余地があった。
<Discussion 1>
By the way, the signal transmission device 200 of this comparative example uses a so-called CMOS buffer circuit as pulse drive means for the primary coils 231p and 232p. Therefore, there is room for further study on common-mode noise immunity.
 以下では、上記の考察に鑑み、信号伝達装置200の同相ノイズ耐性を向上することのできる新規な実施形態を提案する。 In the following, in view of the above considerations, a novel embodiment that can improve the common-mode noise immunity of the signal transmission device 200 will be proposed.
<信号伝達装置(第1実施形態)>
 図12は、信号伝達装置200の第1実施形態を示す図である。本実施形態の信号伝達装置200は、二次側コイル231s及び232sそれぞれに生じる誘起パルス信号の受信手段としてパルス受信回路227を備える。なお、既出の構成要素については、図1、図2及び図11と同一の符号を付すことにより、重複した説明を省略する。
<Signal transmission device (first embodiment)>
FIG. 12 is a diagram showing a first embodiment of the signal transmission device 200. As shown in FIG. The signal transmission device 200 of this embodiment includes a pulse receiving circuit 227 as means for receiving induced pulse signals generated in the secondary coils 231s and 232s. It should be noted that the same reference numerals as in FIGS. 1, 2 and 11 are assigned to the components that have already been described to omit redundant description.
 パルス受信回路227は、定電流源CC1r及びCC1fと、レシーバRXr及びRXfと、ヒステリシスコンパレータHCと、抵抗R2r及びR2fと、キャパシタCr及びCfと、を含む。 The pulse receiving circuit 227 includes constant current sources CC1r and CC1f, receivers RXr and RXf, a hysteresis comparator HC, resistors R2r and R2f, and capacitors Cr and Cf.
 キャパシタCrの第1端は、トランスチップ230の外部端子T24に接続されている。キャパシタCrの第2端は、ノード電圧VArの印加端(=レシーバRXrの入力端)に接続されている。キャパシタCfは、トランスチップ230の外部端子T26に接続されている。キャパシタCfの第2端は、ノード電圧VAfの印加端(=レシーバRXfの入力端)に接続されている。トランスチップ230の外部端子T2は、接地端GND2に接続されている。なお、外部端子T24とキャパシタCrとの間、及び、外部端子T26とキャパシタCfとの間には、それぞれ抵抗を設けてもよい。 A first end of the capacitor Cr is connected to the external terminal T24 of the transformer chip 230. The second end of the capacitor Cr is connected to the application end of the node voltage VAr (=the input end of the receiver RXr). Capacitor Cf is connected to external terminal T26 of transformer chip 230 . The second end of the capacitor Cf is connected to the application end of the node voltage VAf (=input end of the receiver RXf). An external terminal T2 of the transformer chip 230 is connected to the ground terminal GND2. A resistor may be provided between the external terminal T24 and the capacitor Cr and between the external terminal T26 and the capacitor Cf.
 定電流源CC1rは、電源電圧VCC2の印加端とノード電圧VArの印加端との間に接続されており、電源電圧VCC2に依存しない基準電流I1rを生成する。定電流源CC1fは、電源電圧VCC2の印加端とノード電圧VAfの印加端との間に接続されており、電源電圧VCC2に依存しない基準電流I1fを生成する。 The constant current source CC1r is connected between the application end of the power supply voltage VCC2 and the application end of the node voltage VAr, and generates a reference current I1r independent of the power supply voltage VCC2. The constant current source CC1f is connected between the application terminal of the power supply voltage VCC2 and the application terminal of the node voltage VAf, and generates a reference current I1f independent of the power supply voltage VCC2.
 レシーバRXrは、トランス231の二次側コイル231sに誘起される受信電流Irと定電流源CC1rで生成される基準電流I1rとを足し合わせた加算電流I2rの入力を受け付けて電流信号I3rを生成する。本図に即して具体的に述べると、レシーバRXrは、トランジスタN1r及びN2r(例えばNチャネル型MISFET)と、トランジスタP1r及びP2r(例えばPチャネル型MISFET)と、を含む。 Receiver RXr receives input of added current I2r obtained by adding reception current Ir induced in secondary coil 231s of transformer 231 and reference current I1r generated by constant current source CC1r, and generates current signal I3r. . More specifically, receiver RXr includes transistors N1r and N2r (for example, N-channel MISFET) and transistors P1r and P2r (for example, P-channel MISFET).
 トランジスタN1rのゲート、並びに、トランジスタN2rのゲート及びドレインは、いずれもノード電圧VArの印加端に接続されている。トランジスタN1r及びN2rそれぞれのソースは、いずれも接地端GND2に接続されている。トランジスタN1rのドレインは、トランジスタP1rのドレインに接続されている。 The gate of the transistor N1r and the gate and drain of the transistor N2r are all connected to the node voltage VAr application end. The sources of the transistors N1r and N2r are both connected to the ground terminal GND2. The drain of transistor N1r is connected to the drain of transistor P1r.
 トランジスタP1r及びP2rそれぞれのソースは、いずれも電源電圧VCC2の印加端に接続されている。トランジスタP1r及びP2rそれぞれのゲートは、いずれもトランジスタP1rのドレインに接続されている。トランジスタP2rのドレインは、電圧信号Vrの印加端に接続されている。このように接続されたトランジスタP1r及びP2rは、トランジスタP1rのドレイン電流に比例する電流信号I3rを生成してトランジスタP2rのドレインから出力するカレントミラーとして機能する。 The sources of the transistors P1r and P2r are both connected to the application terminal of the power supply voltage VCC2. The gates of the transistors P1r and P2r are both connected to the drain of the transistor P1r. The drain of the transistor P2r is connected to the application terminal of the voltage signal Vr. The transistors P1r and P2r connected in this manner function as a current mirror that generates a current signal I3r proportional to the drain current of the transistor P1r and outputs it from the drain of the transistor P2r.
 レシーバRXfは、トランス232の二次側コイル232sに誘起される受信電流Ifと定電流源CC1fで生成される基準電流I1fとを足し合わせた加算電流I2fの入力を受け付けて電流信号I3fを生成する。本図に即して具体的に述べると、レシーバRXfは、トランジスタN1f及びN2f(例えばNチャネル型MISFET)と、トランジスタP1f及びP2f(例えばPチャネル型MISFET)と、を含む。 Receiver RXf receives input of added current I2f obtained by adding reception current If induced in secondary coil 232s of transformer 232 and reference current I1f generated by constant current source CC1f, and generates current signal I3f. . Specifically, the receiver RXf includes transistors N1f and N2f (for example, N-channel MISFET) and transistors P1f and P2f (for example, P-channel MISFET).
 トランジスタN1fのゲート、並びに、トランジスタN2fのゲート及びドレインは、いずれもノード電圧VAfの印加端に接続されている。トランジスタN1f及びN2fそれぞれのソースは、いずれも接地端GND2に接続されている。トランジスタN1fのドレインは、トランジスタP1fのドレインに接続されている。 The gate of the transistor N1f and the gate and drain of the transistor N2f are both connected to the node voltage VAf application end. The sources of the transistors N1f and N2f are both connected to the ground terminal GND2. The drain of transistor N1f is connected to the drain of transistor P1f.
 トランジスタP1f及びP2fそれぞれのソースは、いずれも電源電圧VCC2の印加端に接続されている。トランジスタP1f及びP2fそれぞれのゲートは、いずれもトランジスタP1fのドレインに接続されている。トランジスタP2fのドレインは、電圧信号Vfの印加端に接続されている。このように接続されたトランジスタP1f及びP2fは、トランジスタP1fのドレイン電流に比例する電流信号I3fを生成してトランジスタP2fのドレインから出力するカレントミラーとして機能する。 The sources of the transistors P1f and P2f are both connected to the application terminal of the power supply voltage VCC2. The gates of the transistors P1f and P2f are both connected to the drain of the transistor P1f. The drain of the transistor P2f is connected to the application terminal of the voltage signal Vf. The transistors P1f and P2f connected in this way function as a current mirror that generates a current signal I3f proportional to the drain current of the transistor P1f and outputs it from the drain of the transistor P2f.
 抵抗R2r(=第1信号変換部に相当)は、トランジスタP2rのドレインと接地端GND2との間に接続されており、電流信号I3rを電圧信号Vr(=I3r×R2r)に変換する。 The resistor R2r (=corresponding to the first signal converter) is connected between the drain of the transistor P2r and the ground terminal GND2, and converts the current signal I3r into the voltage signal Vr (=I3r×R2r).
 抵抗R2f(=第2信号変換部に相当)は、トランジスタP2fのドレインと接地端GND2との間に接続されており、電流信号I3fを電圧信号Vf(=I3f×R2f)に変換する。 A resistor R2f (=corresponding to a second signal converter) is connected between the drain of the transistor P2f and the ground terminal GND2, and converts the current signal I3f into a voltage signal Vf (=I3f×R2f).
 ヒステリシスコンパレータHCは、比較器CMPと、抵抗R3r及びR3fと、トランジスタN3r及びN3f(例えばNチャネル型MISFET)と、を含む。 The hysteresis comparator HC includes a comparator CMP, resistors R3r and R3f, and transistors N3r and N3f (eg N-channel MISFET).
 比較器CMPの非反転入力端は、電圧信号Vrの印加端に接続されている。比較器CMPの反転入力端は、電圧信号Vfの印加端に接続されている。比較器CMPの非反転出力端は、出力パルス信号OUTの印加端に接続されている。比較器CMPの反転出力端は、反転出力パルス信号OUTBの印加端に接続されている。 The non-inverting input terminal of the comparator CMP is connected to the application terminal of the voltage signal Vr. The inverting input terminal of the comparator CMP is connected to the application terminal of the voltage signal Vf. A non-inverting output terminal of the comparator CMP is connected to an application terminal of the output pulse signal OUT. The inverted output terminal of the comparator CMP is connected to the application terminal of the inverted output pulse signal OUTB.
 抵抗R3rの第1端は、比較器CMPの非反転入力端に接続されている。抵抗R3rの第2端は、トランジスタN3rのドレインに接続されている。トランジスタN3rのソースは、接地端GND2に接続されている。トランジスタN3rのゲートは、反転出力パルス信号OUTBの印加端に接続されている。 A first end of the resistor R3r is connected to the non-inverting input end of the comparator CMP. A second end of the resistor R3r is connected to the drain of the transistor N3r. The source of the transistor N3r is connected to the ground terminal GND2. The gate of the transistor N3r is connected to the application end of the inverted output pulse signal OUTB.
 抵抗R3fの第1端は、比較器CMPの反転入力端に接続されている。抵抗R3fの第2端は、トランジスタN3fのドレインに接続されている。トランジスタN3fのソースは、接地端GND2に接続されている。トランジスタN3fのゲートは、出力パルス信号OUTの印加端に接続されている。 A first end of the resistor R3f is connected to the inverting input end of the comparator CMP. A second end of the resistor R3f is connected to the drain of the transistor N3f. The source of the transistor N3f is connected to the ground terminal GND2. The gate of the transistor N3f is connected to the application end of the output pulse signal OUT.
 このように構成されたヒステリシスコンパレータHCは、非反転入力端に入力される電圧信号Vrと反転入力端に入力される電圧信号Vfとを比較して出力パルス信号OUT及び反転出力パルス信号OUTB(=出力パルス信号OUTの論理反転信号)を生成する。 The hysteresis comparator HC configured as described above compares the voltage signal Vr input to the non-inverting input terminal and the voltage signal Vf input to the inverting input terminal to obtain the output pulse signal OUT and the inverted output pulse signal OUTB (= A logic inversion signal of the output pulse signal OUT) is generated.
 本図に即して述べると、ヒステリシスコンパレータHCは、電圧信号Vrが電圧信号Vfよりも高いときに出力パルス信号OUTをハイレベルとして反転出力パルス信号OUTBをローレベルとする。一方、ヒステリシスコンパレータHCは、電圧信号Vrが電圧信号Vfよりも低いときに出力パルス信号OUTをローレベルとして反転出力パルス信号OUTBをハイレベルとする。 In line with this diagram, the hysteresis comparator HC sets the output pulse signal OUT to high level and the inverted output pulse signal OUTB to low level when the voltage signal Vr is higher than the voltage signal Vf. On the other hand, the hysteresis comparator HC sets the output pulse signal OUT to low level and the inverted output pulse signal OUTB to high level when the voltage signal Vr is lower than the voltage signal Vf.
 ここで、出力パルス信号OUTがローレベルであり、反転出力パルス信号OUTBがハイレベルであるときには、トランジスタN3rがオン状態となり、トランジスタN3fがオフ状態となる。その結果、Vr=I3r×(R2r//R3r)となり、Vf=I3f×R2fとなる。従って、出力パルス信号OUTがローレベルからハイレベルに立ち上がるためには、I3r×(R2r//R3r)>I3f×R2fを満たす必要がある。 Here, when the output pulse signal OUT is at low level and the inverted output pulse signal OUTB is at high level, the transistor N3r is turned on and the transistor N3f is turned off. As a result, Vr=I3r*(R2r//R3r) and Vf=I3f*R2f. Therefore, in order for the output pulse signal OUT to rise from the low level to the high level, it is necessary to satisfy I3r.times.(R2r//R3r)>I3f.times.R2f.
 一方、出力パルス信号OUTがハイレベルであり、反転出力パルス信号OUTBがローレベルであるときには、トランジスタN3rがオフ状態となり、トランジスタN3fがオン状態となる。その結果、Vr=I3r×R2rとなり、Vf=I3f×(R2f//R3f)となる。従って、出力パルス信号OUTがハイレベルからローレベルに立ち下がるためには、I3r×R2r>I3f×(R2f//R3f)を満たす必要がある。 On the other hand, when the output pulse signal OUT is at high level and the inverted output pulse signal OUTB is at low level, the transistor N3r is turned off and the transistor N3f is turned on. As a result, Vr=I3r*R2r and Vf=I3f*(R2f//R3f). Therefore, in order for the output pulse signal OUT to fall from high level to low level, it is necessary to satisfy I3r×R2r>I3f×(R2f//R3f).
 すなわち、ヒステリシスコンパレータHCは、出力パルス信号OUTに応じて閾値電圧が切り替わるようにヒステリシスを持つ。このようなヒステリシスコンパレータHCを用いて出力パルス信号OUT及び反転出力パルス信号OUTBを生成する構成であれば、比較例のラッチ225及び226を省略することが可能となる。 That is, the hysteresis comparator HC has hysteresis such that the threshold voltage is switched according to the output pulse signal OUT. With a configuration that generates the output pulse signal OUT and the inverted output pulse signal OUTB using such a hysteresis comparator HC, the latches 225 and 226 of the comparative example can be omitted.
 図13は、第1実施形態のパルス受信回路217におけるパルス受信動作の一例を示す図であり、上から順に、入力パルス信号IN、受信電流Ir、受信電流If、電圧信号Vr(実線)及びVf(破線)、並びに、出力パルス信号OUTが描写されている。 FIG. 13 is a diagram showing an example of the pulse reception operation in the pulse reception circuit 217 of the first embodiment. From top to bottom, input pulse signal IN, received current Ir, received current If, voltage signals Vr (solid line) and Vf. (broken line) and the output pulse signal OUT are depicted.
 入力パルス信号INがローレベルからハイレベルに立ち上がると、受信電流Irがパルス状に流れる。このとき、受信電流Irと基準電流I1rとを足し合わせた加算電流I2rが増大してノード電圧VArが上昇する。従って、トランジスタN1rの導通度が高くなり、電流信号I3rが増大する。その結果、電圧信号Vr(=I3r×(R2r//R3r))が電圧信号Vf(=I3f×R2f)よりも高くなり、出力パルス信号OUTがローレベルからハイレベルに立ち上がる。なお、出力パルス信号OUTがハイレベルに立ち上がると、トランジスタN3rがオフしてトランジスタN3fがオンする。従って、ヒステリシスコンパレータHCでは、電圧信号Vrを引き下げた状態が解除されて、電圧信号Vfを引き下げた状態に切り替わる。 When the input pulse signal IN rises from low level to high level, the reception current Ir flows in a pulse shape. At this time, the added current I2r, which is the sum of the received current Ir and the reference current I1r, increases and the node voltage VAr rises. Therefore, the transistor N1r becomes more conductive and the current signal I3r increases. As a result, the voltage signal Vr (=I3r×(R2r//R3r)) becomes higher than the voltage signal Vf (=I3f×R2f), and the output pulse signal OUT rises from low level to high level. When the output pulse signal OUT rises to high level, the transistor N3r turns off and the transistor N3f turns on. Therefore, in the hysteresis comparator HC, the state in which the voltage signal Vr is lowered is released, and the state is switched to the state in which the voltage signal Vf is lowered.
 一方、入力パルス信号INがハイレベルからローレベルに立ち下がると、受信電流Ifがパルス状に流れる。このとき、受信電流Ifと基準電流I1fとを足し合わせた加算電流I2fが増大してノード電圧VAfが上昇する。従って、トランジスタN1fの導通度が高くなり、電流信号I3fが増大する。その結果、電圧信号Vr(=I3r×R2r)が電圧信号Vf(=I3f×(R2f//R3f))よりも高くなり、出力パルス信号OUTがハイレベルからローレベルに立ち上がる。なお、出力パルス信号OUTがローレベルに立ち下がると、トランジスタN3rがオンしてトランジスタN3fがオフする。従って、ヒステリシスコンパレータHCでは、電圧信号Vfを引き下げた状態が解除されて、電圧信号Vrを引き下げた状態に切り替わる。 On the other hand, when the input pulse signal IN falls from high level to low level, the reception current If flows in a pulse shape. At this time, the added current I2f obtained by adding the received current If and the reference current I1f increases, and the node voltage VAf rises. Therefore, the conductivity of the transistor N1f increases and the current signal I3f increases. As a result, the voltage signal Vr (=I3r×R2r) becomes higher than the voltage signal Vf (=I3f×(R2f//R3f)), and the output pulse signal OUT rises from high level to low level. When the output pulse signal OUT falls to low level, the transistor N3r turns on and the transistor N3f turns off. Therefore, in the hysteresis comparator HC, the state in which the voltage signal Vf is lowered is released, and the state is switched to the state in which the voltage signal Vr is lowered.
 このように、本実施形態のパルス受信回路227は、受信電流Ir及びIfと基準電流I1r及びI1fとの加算結果に応じて電圧信号Vr及びVfを生成し、それぞれを比較して出力パルス信号OUTを生成する。 In this manner, the pulse receiving circuit 227 of this embodiment generates the voltage signals Vr and Vf according to the sum of the received currents Ir and If and the reference currents I1r and I1f, compares them, and outputs the pulse signal OUT. to generate
 本構成を採用すれば、ヒステリシスコンパレータHCへの差動入力を介して同相ノイズを除去することができるので、同相ノイズ耐性を高めることが可能となる。また、先出の比較例(図11)と異なり、CMOSバッファを用いる必要がないので、入力パルス信号INに対する出力パルス信号OUTの応答性を高めることもできる。 By adopting this configuration, common-mode noise can be removed through differential input to the hysteresis comparator HC, so it is possible to improve common-mode noise immunity. Further, unlike the comparative example (FIG. 11) described above, it is not necessary to use a CMOS buffer, so the responsiveness of the output pulse signal OUT to the input pulse signal IN can be improved.
<考察2>
 図14は、ノード電圧VAr及びVAfにアンダーシュートが発生する様子を示す図であり、上から順番に、出力パルス信号OUT、接地電圧GND1、ノード電圧VAr(実線)及びノード電圧VAf(破線)が描写されている。
<Discussion 2>
FIG. 14 is a diagram showing how undershoot occurs in the node voltages VAr and VAf. From top to bottom, the output pulse signal OUT, the ground voltage GND1, the node voltage VAr (solid line), and the node voltage VAf (broken line). Depicted.
 ところで、第1実施形態のパルス受信回路227では、入力パルス信号INのパルスエッジに基づく正規パルスの受信時にノード電圧VAr及びVAfのアンダーシュートを生じ得る(破線枠αを参照)。また、同相ノイズ(例えば接地電圧GND1の揺れに伴う同相ノイズ)の印加時においても、ノード電圧VAr及びVAfのアンダーシュートを生じるおそれがある(破線枠βを参照)。 By the way, in the pulse receiving circuit 227 of the first embodiment, undershoot may occur in the node voltages VAr and VAf when receiving a regular pulse based on the pulse edge of the input pulse signal IN (see dashed frame α). In addition, when common-mode noise (for example, common-mode noise associated with fluctuations in ground voltage GND1) is applied, node voltages VAr and VAf may undershoot (see dashed frame β).
 以下では、上記の考察に鑑み、ノード電圧VAr及びVAfのアンダーシュートを生じにくい新規な実施形態を提案する。 In the following, in view of the above considerations, a novel embodiment is proposed in which the node voltages VAr and VAf are less likely to undershoot.
<信号伝達装置(第2実施形態)>
 図15は、信号伝達装置200の第2実施形態を示す図である。本実施形態の信号伝達装置200は、先出の第1実施形態(図12)を基本としつつ、パルス受信回路227の構成要素として、ハイパスフィルタHPFr及びHPFfと減算器SUBをさらに含む。なお、既出の構成要素については、図12と同一の符号を付すことで説明を省略する。
<Signal Transmission Device (Second Embodiment)>
FIG. 15 is a diagram showing a second embodiment of the signal transmission device 200. As shown in FIG. The signal transmission device 200 of this embodiment is based on the above-described first embodiment (FIG. 12), and further includes high-pass filters HPFr and HPFf and a subtractor SUB as components of the pulse receiving circuit 227 . In addition, description is abbreviate|omitted by attaching|subjecting the code|symbol same as FIG. 12 about an already-appearing component.
 ハイパスフィルタHPFrは、トランジスタP1r及びP2rそれぞれのゲート間に設けられており、受信電流Irの低周波成分を低減する。 The high-pass filter HPFr is provided between the gates of the transistors P1r and P2r, and reduces the low frequency components of the received current Ir.
 ハイパスフィルタHPFfは、トランジスタP1f及びP2fそれぞれのゲート間に設けられており、受信電流Ifの低周波成分を低減する。 The high-pass filter HPFf is provided between the gates of the transistors P1f and P2f to reduce the low frequency components of the received current If.
 減算器SUBは、電流信号I3fから電流信号I3fを差し引くことにより差分電流信号(I3f-I3r)を生成して差動出力する。 The subtractor SUB subtracts the current signal I3f from the current signal I3f to generate a differential current signal (I3f-I3r) and differentially output it.
 抵抗R2rは、差分電流信号(I3f-I3r)の負の成分の絶対値を電圧信号Vrに変換する。一方、抵抗R2fは、差分電流信号(I3f-I3r)の正の成分を電圧信号Vfに変換する。 The resistor R2r converts the absolute value of the negative component of the differential current signal (I3f-I3r) into the voltage signal Vr. On the other hand, the resistor R2f converts the positive component of the differential current signal (I3f-I3r) into the voltage signal Vf.
 図16は、ノード電圧VAr及びVAfのアンダーシュートが改善する様子を示す図であり、先の図14と同じく、上から順に、出力パルス信号OUT、接地電圧GND1、ノード電圧VAr(実線)及びノード電圧VAf(破線)が描写されている。 FIG. 16 is a diagram showing how the undershoot of the node voltages VAr and VAf is improved. Similar to FIG. A voltage VAf (dashed line) is depicted.
 ノード電圧VAr及びVAfのアンダーシュートは、いずれも入力パルス信号INのパルスエッジに基づく正規パルスと比べれば低周波成分である。そのため、適切なカットオフ周波数fcを持つハイパスフィルタHPFr及びHPFfを設けることにより、ノード電圧VAr及びVAfのアンダーシュートを抑制することが可能となる。 Both the undershoots of the node voltages VAr and VAf are low frequency components compared to the regular pulse based on the pulse edge of the input pulse signal IN. Therefore, the undershoot of the node voltages VAr and VAf can be suppressed by providing the high-pass filters HPFr and HPFf having appropriate cutoff frequencies fc.
<考察3>
 ところで、先出のレシーバRXr及びRXfは、Nチャネル型のトランジスタN1r及びN1fそれぞれのゲートでノード電圧VAr及びVAfの入力を受け付ける。しかし、ノード電圧VAr及びVAfに重畳する同相ノイズのレベルが大きい場合には、ノード電圧VAr及びVAfが接地電圧GND2よりも低い負電位に振れてしまい、レシーバRXr及びRXfの受信動作に支障を来すおそれがある(破線枠γを参照)。
<Discussion 3>
By the way, the aforementioned receivers RXr and RXf receive inputs of the node voltages VAr and VAf at the respective gates of the N-channel type transistors N1r and N1f. However, when the level of common-mode noise superimposed on the node voltages VAr and VAf is high, the node voltages VAr and VAf swing to a negative potential lower than the ground voltage GND2, which interferes with the receiving operations of the receivers RXr and RXf. (see dashed box γ).
 以下では、上記の考察に鑑み、ノード電圧VAr及びVAfが負電位に振れた場合でもレシーバRXr及びRXfの受信動作に支障を来しにくい新規な実施形態を提案する。 In the following, in view of the above considerations, a novel embodiment is proposed in which the receiving operations of the receivers RXr and RXf are less likely to be hindered even when the node voltages VAr and VAf swing to negative potentials.
<信号伝達装置(第3実施形態)>
 図17は、信号伝達装置200の第3実施形態を示す図である。本実施形態の信号伝達装置200は、先出の第1実施形態(図12)を基本としつつ、レシーバRXr及びRXfに変更が加えられている。なお、既出の構成要素については、図12と同一の符号を付すことで説明を省略する。
<Signal transmission device (third embodiment)>
FIG. 17 is a diagram showing a third embodiment of the signal transmission device 200. As shown in FIG. The signal transmission device 200 of this embodiment is based on the above-described first embodiment (FIG. 12), but the receivers RXr and RXf are modified. In addition, description is abbreviate|omitted by attaching|subjecting the code|symbol same as FIG. 12 about an already-appearing component.
 本図に即して述べると、レシーバRXrは、先出のトランジスタN1r及びN2rと、トランジスタP1r及びP2rに加えて、トランジスタN4r及びN5r(例えばNチャネル型MISFET)と、トランジスタP3r~P6r(例えばPチャネル型MISFET)と、を含む。また、レシーバRXrの前段には、キャパシタCr2及び定電流源CC1r2が追加されている。 Referring to this figure, receiver RXr includes transistors N4r and N5r (for example, N-channel MISFET), transistors P3r to P6r (for example, P channel type MISFET). A capacitor Cr2 and a constant current source CC1r2 are added to the front stage of the receiver RXr.
 キャパシタCr2の第1端は、トランスチップ230の外部端子T24に接続されている。キャパシタCr2の第2端と定電流源CC1r2の第1端は、いずれもトランジスタP5rのゲート、並びに、トランジスタP6rのゲート及びドレインに接続されている。定電流源CC1r2の第2端は、接地端GND2に接続されている。トランジスタP5r及びP6rそれぞれのソースは、いずれも電源電圧VCC2の印加端に接続されている。トランジスタP5rのドレインは、トランジスタN4rのドレインに接続されている。 A first end of the capacitor Cr2 is connected to the external terminal T24 of the transformer chip 230. The second end of the capacitor Cr2 and the first end of the constant current source CC1r2 are both connected to the gate of the transistor P5r and the gate and drain of the transistor P6r. A second end of the constant current source CC1r2 is connected to the ground terminal GND2. The sources of the transistors P5r and P6r are both connected to the application terminal of the power supply voltage VCC2. The drain of transistor P5r is connected to the drain of transistor N4r.
 トランジスタN4r及びN5rそれぞれのソースは、いずれも接地端GND2の印加端に接続されている。トランジスタN4r及びN5rそれぞれのゲートは、いずれもトランジスタN4rのドレインに接続されている。トランジスタN5rのドレインは、トランジスタP3rのドレインに接続されている。トランジスタP3r及びP4rそれぞれのソースは、いずれも電源電圧VCC2の印加端に接続されている。トランジスタP3r及びP4rそれぞれのゲートは、いずれもトランジスタP3rのドレインに接続されている。トランジスタP4rのドレインは、電圧信号Vrの印加端に接続されている。 The sources of the transistors N4r and N5r are both connected to the application terminal of the ground terminal GND2. The gates of the transistors N4r and N5r are both connected to the drain of the transistor N4r. The drain of transistor N5r is connected to the drain of transistor P3r. The sources of the transistors P3r and P4r are both connected to the application terminal of the power supply voltage VCC2. The gates of the transistors P3r and P4r are both connected to the drain of the transistor P3r. The drain of the transistor P4r is connected to the application terminal of the voltage signal Vr.
 一方、レシーバRXfは、先出のトランジスタN1f及びN2fと、トランジスタP1f及びP2fに加えて、トランジスタN4f及びN5f(例えばNチャネル型MISFET)と、トランジスタP3f~P6f(例えばPチャネル型MISFET)と、を含む。また、レシーバRXfの前段には、キャパシタCf2及び定電流源CC1f2が追加されている。 On the other hand, the receiver RXf includes transistors N4f and N5f (for example, N-channel MISFET) and transistors P3f to P6f (for example, P-channel MISFET) in addition to the transistors N1f and N2f and the transistors P1f and P2f. include. Also, a capacitor Cf2 and a constant current source CC1f2 are added to the front stage of the receiver RXf.
 キャパシタCf2の第1端は、トランスチップ230の外部端子T26に接続されている。キャパシタCf2の第2端と定電流源CC1f2の第1端は、いずれもトランジスタP5fのゲート、並びに、トランジスタP6fのゲート及びドレインに接続されている。定電流源CC1f2の第2端は、接地端GND2に接続されている。トランジスタP5f及びP6fそれぞれのソースは、いずれも電源電圧VCC2の印加端に接続されている。トランジスタP5fのドレインは、トランジスタN4fのドレインに接続されている。 A first end of the capacitor Cf2 is connected to the external terminal T26 of the transformer chip 230. The second end of the capacitor Cf2 and the first end of the constant current source CC1f2 are both connected to the gate of the transistor P5f and the gate and drain of the transistor P6f. A second end of the constant current source CC1f2 is connected to the ground terminal GND2. The sources of the transistors P5f and P6f are both connected to the application terminal of the power supply voltage VCC2. The drain of transistor P5f is connected to the drain of transistor N4f.
 トランジスタN4f及びN5fそれぞれのソースは、いずれも接地端GND2の印加端に接続されている。トランジスタN4f及びN5fそれぞれのゲートは、いずれもトランジスタN4fのドレインに接続されている。トランジスタN5fのドレインは、トランジスタP3fのドレインに接続されている。トランジスタP3f及びP4fそれぞれのソースは、いずれも電源電圧VCC2の印加端に接続されている。トランジスタP3f及びP4fそれぞれのゲートは、いずれもトランジスタP3fのドレインに接続されている。トランジスタP4fのドレインは、電圧信号Vfの印加端に接続されている。 The sources of the transistors N4f and N5f are both connected to the application terminal of the ground terminal GND2. The gates of the transistors N4f and N5f are both connected to the drain of the transistor N4f. The drain of transistor N5f is connected to the drain of transistor P3f. The sources of the transistors P3f and P4f are both connected to the application terminal of the power supply voltage VCC2. The gates of the transistors P3f and P4f are both connected to the drain of the transistor P3f. The drain of the transistor P4f is connected to the application terminal of the voltage signal Vf.
 上記したように、本実施形態の信号伝達装置200において、レシーバRXrは、並列接続されたNチャネル型のトランジスタN1r及びPチャネル型のトランジスタP5r双方のゲートで外部端子T24に誘起される受信圧信号を受け付ける。同様に、レシーバRXfは、並列接続されたNチャネル型のトランジスタN1f及びPチャネル型のトランジスタP5f双方のゲートで外部端子T26に誘起される受信信号を受け付ける。 As described above, in the signal transmission device 200 of the present embodiment, the receiver RXr receives the received pressure signal induced at the external terminal T24 at the gates of both the parallel-connected N-channel transistor N1r and P-channel transistor P5r. accept. Similarly, the receiver RXf receives the reception signal induced at the external terminal T26 at the gates of both the parallel-connected N-channel transistor N1f and P-channel transistor P5f.
 このような構成とすることにより、ノード電圧VAr及びVAfが負電位に振れた場合でもレシーバRXr及びRXfの受信動作に支障を来しにくくなる。 With such a configuration, even if the node voltages VAr and VAf swing to negative potentials, the receiving operations of the receivers RXr and RXf are unlikely to be disturbed.
 なお、本図では第1実施形態(図12)を基本としたが、第2実施形態(図15)を基本としてハイパスフィルタHPFr及びHPFfを設けてもよいことは言うまでもない。 Although this diagram is based on the first embodiment (FIG. 12), it goes without saying that the high-pass filters HPFr and HPFf may be provided based on the second embodiment (FIG. 15).
<考察4>
 図18は、出力パルス信号OUTの誤出力が生じる様子を示す図であり、上から順に、入力パルス信号IN、受信電流If、ノード電圧VAf、電圧信号Vr(実線)及び電圧信号Vf(破線)、並びに、出力パルス信号OUTが描写されている。
<Discussion 4>
FIG. 18 is a diagram showing how an erroneous output of the output pulse signal OUT occurs. From the top, the input pulse signal IN, the received current If, the node voltage VAf, the voltage signal Vr (solid line), and the voltage signal Vf (broken line). , as well as the output pulse signal OUT.
 先にも既に述べたが、入力パルス信号INのパルスエッジに基づく正規パルスの受信時には、入力カップリング用に設けられたキャパシタCr及びCfにより、ノード電圧VAr及びVAfのアンダーシュートを生じ得る。このようなアンダーシュートが生じると、電圧信号Vr及びVfの上下関係が意図せずに反転してしまい、出力パルス信号OUTの論理レベルに異常を来すおそれがある。 As already mentioned above, when a regular pulse based on the pulse edge of the input pulse signal IN is received, the node voltages VAr and VAf may undershoot due to the capacitors Cr and Cf provided for input coupling. When such an undershoot occurs, the vertical relationship between the voltage signals Vr and Vf is unintentionally inverted, which may cause an abnormality in the logic level of the output pulse signal OUT.
 例えば、出力パルス信号OUTの実線(=誤出力時)と破線(=正規出力時)を対比すると、出力パルス信号OUTがローレベルに立ち下がった後、ノード電圧VAfのアンダーシュートによって電圧信号Vfが電圧信号Vrを下回った結果、出力パルス信号OUTが本来よりも早いタイミングでハイレベルに戻ってしまっていることが分かる。 For example, comparing the solid line (=error output) and the broken line (=normal output) of the output pulse signal OUT, after the output pulse signal OUT falls to low level, the voltage signal Vf is reduced due to the undershoot of the node voltage VAf. It can be seen that as a result of falling below the voltage signal Vr, the output pulse signal OUT returns to high level earlier than it should.
 以下では、上記の考察に鑑み、出力パルス信号OUTの誤出力を生じにくい新規な実施形態を提案する。 In the following, in view of the above considerations, a new embodiment is proposed in which erroneous output of the output pulse signal OUT is less likely to occur.
<信号伝達装置(第4実施形態)>
 図19は、信号伝達装置200の第4実施形態を示す図である。本実施形態の信号伝達装置200は、先出の第1実施形態(図12)を基本としつつ、パルス受信回路227の構成要素として、アンダーシュート抑制部USSr及びUSSfをさらに含む。なお、既出の構成要素については、図12と同一の符号を付すことで説明を省略する。
<Signal transmission device (fourth embodiment)>
FIG. 19 is a diagram showing a fourth embodiment of the signal transmission device 200. As shown in FIG. The signal transmission device 200 of this embodiment is based on the above-described first embodiment (FIG. 12), and further includes undershoot suppressors USSr and USSf as components of the pulse receiving circuit 227 . In addition, description is abbreviate|omitted by attaching|subjecting the code|symbol same as FIG. 12 about an already-appearing component.
 アンダーシュート抑制部USSrは、定電流源CC2rと、遅延部DLYrと、トランジスタN6r及びN7r(本図ではNチャネル型MISFET)と、論理積ゲートANDrと、を含む。 The undershoot suppression unit USSr includes a constant current source CC2r, a delay unit DLYr, transistors N6r and N7r (N-channel MISFETs in this figure), and an AND gate ANDr.
 定電流源CC2rの第1端は、電源電圧VCC2の印加端に接続されている。定電流源CC2rの第2端は、トランジスタN6rのドレインとトランジスタN7rのゲート及びドレインに接続されている。トランジスタN6rのソースは、ノード電圧VArの印加端に接続されている。トランジスタN7rのソースは、接地端GND2に接続されている。トランジスタN6rのゲートは、ノード電圧VBrの印加端に接続されている。なお、定電流源CC2rは、例えば抵抗に置き換えても構わない。 A first end of the constant current source CC2r is connected to the application end of the power supply voltage VCC2. A second end of the constant current source CC2r is connected to the drain of the transistor N6r and the gate and drain of the transistor N7r. The source of the transistor N6r is connected to the application terminal of the node voltage VAr. The source of the transistor N7r is connected to the ground terminal GND2. The gate of the transistor N6r is connected to the application terminal of the node voltage VBr. Note that the constant current source CC2r may be replaced with a resistor, for example.
 遅延部DLYrは、反転出力パルス信号OUTBを遅延時間tdrだけ遅らせた遅延反転出力パルス信号OUTBdを生成する。すなわち、遅延反転出力パルス信号OUTBdは、反転出力パルス信号OUTBがハイレベルに立ち上がってから遅延時間tdrが経過したときにハイレベルに立ち上がり、反転出力パルス信号OUTBがローレベルに立ち下がってから遅延時間tdrが経過したときにローレベルに立ち下がる。 The delay unit DLYr generates a delayed inverted output pulse signal OUTBd by delaying the inverted output pulse signal OUTB by the delay time tdr. That is, the delayed inverted output pulse signal OUTBd rises to a high level when the delay time tdr has passed since the inverted output pulse signal OUTB rises to a high level, and the delayed inverted output pulse signal OUTBd rises to a high level after the inverted output pulse signal OUTB has fallen to a low level. Falls to a low level when tdr has elapsed.
 論理積ゲートANDrは、遅延反転出力パルス信号OUTBdと、反転入力される反転出力パルス信号OUTB(=出力パルス信号OUTに相当)との論理積演算により、ノード電圧VBrを生成する。すなわち、ノード電圧VBrは、遅延反転出力パルス信号OUTBd及び出力パルス信号OUTの少なくとも一方がローレベルであるときにローレベルとなり、遅延反転出力パルス信号OUTBd及び出力パルス信号OUTの双方がハイレベルであるときにハイレベルとなる。 The AND gate ANDr generates the node voltage VBr by performing a logical AND operation of the delayed inverted output pulse signal OUTBd and the inverted input inverted output pulse signal OUTB (=corresponding to the output pulse signal OUT). That is, the node voltage VBr becomes low level when at least one of the delayed inverted output pulse signal OUTBd and the output pulse signal OUT is at low level, and both the delayed inverted output pulse signal OUTBd and the output pulse signal OUT are at high level. sometimes high level.
 ノード電圧VBrがローレベルであるときには、トランジスタN6rがオフ状態となるので、定電流源CC2rがノード電圧VArの印加端から切り離される。一方、ノード電圧VBrがハイレベルであるときには、トランジスタN6rがオン状態となるので、定電流源CC2rがノード電圧VArの印加端と導通される。 When the node voltage VBr is at low level, the transistor N6r is turned off, so that the constant current source CC2r is disconnected from the node voltage VAr application terminal. On the other hand, when the node voltage VBr is at a high level, the transistor N6r is turned on, so that the constant current source CC2r is electrically connected to the application end of the node voltage VAr.
 本構成例のアンダーシュート抑制部USSrは、出力パルス信号OUTがローレベルからハイレベルに立ち上がってから所定の期間(=遅延時間tdr)に亘ってレシーバRXrにおける入力ノード(=ノード電圧VArの印加端)のインピーダンスを引き下げる。 The undershoot suppression unit USSr of this configuration example keeps the input node (=node voltage VAr application end) in the receiver RXr for a predetermined period (=delay time tdr) after the output pulse signal OUT rises from low level to high level. ) impedance.
 アンダーシュート抑制部USSfは、定電流源CC2fと、遅延部DLYfと、トランジスタN6f及びN7f(本図ではNチャネル型MISFET)と、論理積ゲートANDfと、を含む。 The undershoot suppression unit USSf includes a constant current source CC2f, a delay unit DLYf, transistors N6f and N7f (N-channel MISFETs in this figure), and a logical AND gate ANDf.
 定電流源CC2fの第1端は、電源電圧VCC2の印加端に接続されている。定電流源CC2fの第2端は、トランジスタN6fのドレインとトランジスタN7fのゲート及びドレインに接続されている。トランジスタN6fのソースは、ノード電圧VAfの印加端に接続されている。トランジスタN7fのソースは、接地端GND2に接続されている。トランジスタN6fのゲートは、ノード電圧VBfの印加端に接続されている。なお、定電流源CC2fは、例えば抵抗に置き換えても構わない。 A first end of the constant current source CC2f is connected to the application end of the power supply voltage VCC2. A second end of the constant current source CC2f is connected to the drain of the transistor N6f and the gate and drain of the transistor N7f. The source of the transistor N6f is connected to the application terminal of the node voltage VAf. The source of the transistor N7f is connected to the ground terminal GND2. The gate of the transistor N6f is connected to the application end of the node voltage VBf. Note that the constant current source CC2f may be replaced with a resistor, for example.
 遅延部DLYfは、出力パルス信号OUTを遅延時間tdfだけ遅らせた遅延出力パルス信号OUTdを生成する。すなわち、遅延出力パルス信号OUTdは、出力パルス信号OUTがハイレベルに立ち上がってから遅延時間tdfが経過したときにハイレベルに立ち上がり、出力パルス信号OUTがローレベルに立ち下がってから遅延時間tdfが経過したときにローレベルに立ち下がる。 The delay unit DLYf generates a delayed output pulse signal OUTd by delaying the output pulse signal OUT by the delay time tdf. That is, the delayed output pulse signal OUTd rises to high level when the delay time tdf elapses after the output pulse signal OUT rises to high level, and the delay time tdf elapses after the output pulse signal OUT falls to low level. Falls to low level when
 論理積ゲートANDfは、遅延出力パルス信号OUTdと、反転入力される出力パルス信号OUT(=反転出力パルス信号OUTBに相当)との論理積演算により、ノード電圧VBfを生成する。つまり、ノード電圧VBfは、遅延出力パルス信号OUTd及び反転出力パルス信号OUTBの少なくとも一方がローレベルであるときにローレベルとなり、遅延出力パルス信号OUTd及び反転出力パルス信号OUTBの双方がハイレベルであるときにハイレベルとなる。 The logical AND gate ANDf generates the node voltage VBf by logical AND operation of the delayed output pulse signal OUTd and the inverted input output pulse signal OUT (=corresponding to the inverted output pulse signal OUTB). That is, the node voltage VBf becomes low level when at least one of the delayed output pulse signal OUTd and the inverted output pulse signal OUTB is at low level, and both the delayed output pulse signal OUTd and the inverted output pulse signal OUTB are at high level. sometimes high level.
 ノード電圧VBfがローレベルであるときには、トランジスタN6fがオフ状態となるので、定電流源CC2fがノード電圧VAfの印加端から切り離される。一方、ノード電圧VBfがハイレベルであるときには、トランジスタN6fがオン状態となるので、定電流源CC2fがノード電圧VAfの印加端と導通される。 When the node voltage VBf is at low level, the transistor N6f is turned off, so that the constant current source CC2f is cut off from the node voltage VAf application end. On the other hand, when the node voltage VBf is at a high level, the transistor N6f is turned on, so that the constant current source CC2f is electrically connected to the application end of the node voltage VAf.
 本構成例のアンダーシュート抑制部USSfは、出力パルス信号OUTがハイレベルからローレベルに立ち下がってから所定の期間(=遅延時間tdf)に亘ってレシーバRXfにおける入力ノード(=ノード電圧VAfの印加端)のインピーダンスを引き下げる。 The undershoot suppression unit USSf of this configuration example applies the input node (=node voltage VAf) in the receiver RXf for a predetermined period (=delay time tdf) after the output pulse signal OUT falls from high level to low level. end) to lower the impedance.
 なお、本図では第1実施形態(図12)を基本としたが、第2実施形態(図15)又は第3実施形態(図17)を基本としても構わない。 In this figure, the first embodiment (FIG. 12) is used as the basis, but the second embodiment (FIG. 15) or the third embodiment (FIG. 17) may be used as the basis.
 図20は、出力パルス信号OUTの誤出力が改善する様子を示す図であり、上から順に入力パルス信号IN、受信電流If、ノード電圧VAf、電圧信号Vr(実線)及び電圧信号Vf(破線)、出力パルス信号OUT、並びにノード電圧VBfが描写されている。 FIG. 20 is a diagram showing how the erroneous output of the output pulse signal OUT is improved. From the top, the input pulse signal IN, the received current If, the node voltage VAf, the voltage signal Vr (solid line), and the voltage signal Vf (broken line). , the output pulse signal OUT, and the node voltage VBf are depicted.
 なお、ノード電圧VAf及び出力パルス信号OUTについて、実線はアンダーシュート抑制部USSfを備える場合の挙動を示しており、破線はアンダーシュート抑制部USSfを備えていない場合の挙動を示している。 Regarding the node voltage VAf and the output pulse signal OUT, the solid line indicates the behavior when the undershoot suppression unit USSf is provided, and the dashed line indicates the behavior when the undershoot suppression unit USSf is not provided.
 本図で示すように、入力パルス信号INがハイレベルからローレベルに立ち下がると、所定の期間(=遅延時間tdf)に亘ってノード電圧VBfがハイレベルに立ち上がる。このとき、トランジスタN6fがオン状態となるので、定電流源CC2fがノード電圧VAfの印加端と導通される。 As shown in the figure, when the input pulse signal IN falls from high level to low level, the node voltage VBf rises to high level over a predetermined period (=delay time tdf). At this time, the transistor N6f is turned on, so that the constant current source CC2f is electrically connected to the application end of the node voltage VAf.
 従って、レシーバRXfにおける入力ノード(=ノード電圧VAfの印加端)のインピーダンスが引き下げられるので、ノード電圧VAfのアンダーシュートを抑制し、速やかに電圧値を安定させることができる(ノード電圧VAfの実線と破線を参照)。 Therefore, the impedance of the input node (=the end to which the node voltage VAf is applied) in the receiver RXf is lowered, so that the undershoot of the node voltage VAf can be suppressed, and the voltage value can be stabilized quickly (the node voltage VAf and the solid line see dashed line).
 また、ノード電圧VAfのアンダーシュートを抑制することにより、電圧信号Vr及びVfの意図しない反転が生じにくくなるので、出力パルス信号OUTを防止することが可能となる(出力パルス信号OUTの実線と破線を参照)。 In addition, by suppressing the undershoot of the node voltage VAf, unintended inversion of the voltage signals Vr and Vf is less likely to occur, so it is possible to prevent the output pulse signal OUT (see the solid line and broken line of the output pulse signal OUT). ).
 なお、本図では、ノード電圧VAfのアンダーシュート抑制のみに着目して説明を行ったが、ノード電圧VArのアンダーシュートについても上記と同様である。 In addition, in this figure, the description has been given focusing only on the suppression of the undershoot of the node voltage VAf, but the same applies to the undershoot of the node voltage VAr.
<考察5>
 図21は、正規パルスの受信タイミングで同相ノイズが重畳する様子を示す図であり、受信電流Ir及びIfが描写されている。なお、図中の実線は同相ノイズを示しており、破線は正規パルスを示している。
<Discussion 5>
FIG. 21 is a diagram showing how in-phase noise is superimposed at the reception timing of regular pulses, and depicts reception currents Ir and If. Note that the solid line in the figure indicates the common-mode noise, and the broken line indicates the normal pulse.
 本図で示すように、正規パルスの受信タイミングで同相ノイズが重畳すると、受信電流Ir及びIfそれぞれの+成分と-成分が同じになり、トータル0となってしまう。そのため、受信動作に支障を来すおそれがある。 As shown in this figure, when in-phase noise is superimposed at the reception timing of regular pulses, the + and - components of the reception currents Ir and If become the same, resulting in a total of 0. Therefore, there is a possibility that the receiving operation will be hindered.
 以下では、上記の考察に鑑み、正規パルスの受信タイミングで同相ノイズが重畳した場合でも受信動作に支障を来しにくい新規な実施形態を提案する。 In the following, in view of the above considerations, a new embodiment is proposed in which reception operation is less likely to be hindered even when in-phase noise is superimposed at the reception timing of regular pulses.
<信号伝達装置(第5実施形態)>
 図22は、信号伝達装置200の第5実施形態を示す図である。本実施形態の信号伝達装置200は、受信電流Ir及びIfの入力を受け付けて出力パルス信号OUTを生成する手段としてパルス受信回路228を備える。
<Signal transmission device (fifth embodiment)>
FIG. 22 is a diagram showing a fifth embodiment of the signal transmission device 200. As shown in FIG. The signal transmission device 200 of the present embodiment includes a pulse receiving circuit 228 as means for receiving inputs of received currents Ir and If and generating an output pulse signal OUT.
 パルス受信回路228は、ハイパスフィルタHPFr及びHPFfと、減算器SUBr及びSUBfと、正成分抽出部PEXr及びPEXfと、ヒステリシスコンパレータHCと、を含む。 The pulse receiving circuit 228 includes high-pass filters HPFr and HPFf, subtractors SUBr and SUBf, positive component extractors PEXr and PEXf, and a hysteresis comparator HC.
 ハイパスフィルタHPFrは、トランス231の二次側コイル231sに誘起される受信電流Irの低周波成分を低減して第1フィルタ出力信号IrF(=図17における電流信号I3rに相当)を生成する。 The high-pass filter HPFr reduces the low-frequency component of the received current Ir induced in the secondary coil 231s of the transformer 231 to generate the first filter output signal IrF (=corresponding to the current signal I3r in FIG. 17).
 ハイパスフィルタHPFfは、トランス232の二次側コイル232sに誘起される受信電流Ifの低周波成分を低減して第2フィルタ出力信号IfF(=図17における電流信号I3fに相当)を生成する。 The high-pass filter HPFf reduces the low-frequency component of the received current If induced in the secondary coil 232s of the transformer 232 to generate the second filter output signal IfF (=corresponding to the current signal I3f in FIG. 17).
 減算器SUBrは、第1フィルタ出力信号IrFから第2フィルタ出力信号IfFを差し引いて第1差分信号IrF-IfFを生成する。 A subtractor SUBr subtracts the second filter output signal IfF from the first filter output signal IrF to generate a first difference signal IrF-IfF.
 減算器SUBfは、第2フィルタ出力信号IfFから第1フィルタ出力信号IrFを差し引いて第2差分信号IfF-IrFを生成する。 A subtractor SUBf subtracts the first filter output signal IrF from the second filter output signal IfF to generate a second difference signal IfF-IrF.
 正成分抽出部PEXrは、減算器SUBrとヒステリシスコンパレータHCの反転入力端(-)との間に設けられて第1差分信号IrF-IfFの正成分のみを抽出することにより電圧信号Vr(=第1抽出信号に相当)を生成する。 The positive component extraction unit PEXr is provided between the subtractor SUBr and the inverting input terminal (-) of the hysteresis comparator HC, and extracts only the positive component of the first difference signal IrF−IfF to obtain the voltage signal Vr (=th 1 extraction signal).
 正成分抽出部PEXfは、減算器SUBfとヒステリシスコンパレータHCの非反転入力端(+)との間に設けられて第2差分信号IfF-IrFの正成分のみを抽出することにより電圧信号Vf(=第2抽出信号に相当)を生成する。 The positive component extraction unit PEXf is provided between the subtractor SUBf and the non-inverting input terminal (+) of the hysteresis comparator HC, and extracts only the positive component of the second difference signal IfF-IrF to obtain the voltage signal Vf (= corresponding to the second extraction signal).
 なお、上記の減算器SUBr及びSUBfと正成分抽出部PEXr及びPEXfは、図7の減算器SUBとして集約して理解してもよい。 It should be noted that the subtractors SUBr and SUBf and the positive component extractors PEXr and PEXf may be collectively understood as the subtractor SUB in FIG.
 ヒステリシスコンパレータHCは、非反転入力端(+)に入力される電圧信号Vrと反転入力端(-)に入力される電圧信号Vfを比較して出力パルス信号OUTを生成する。 The hysteresis comparator HC compares the voltage signal Vr input to the non-inverting input terminal (+) and the voltage signal Vf input to the inverting input terminal (-) to generate the output pulse signal OUT.
 このように、受信電流Ir及びIfの差分演算により第1差分信号IrF-IfF及び第2差分信号IfF-IrFを取得した後で、それぞれの正成分のみを抽出することにより、正規パルスの受信タイミングで同相ノイズが重畳した場合でも、所望の正規パルス成分を取り出すことができる。従って、受信動作に支障を来すことなく正しい出力パルス信号OUTを生成することが可能となる。 In this way, after obtaining the first difference signal IrF-IfF and the second difference signal IfF-IrF by calculating the difference between the reception currents Ir and If, only the positive components of each are extracted, thereby determining the reception timing of the regular pulse. Even when in-phase noise is superimposed at , a desired regular pulse component can be extracted. Therefore, it is possible to generate a correct output pulse signal OUT without interfering with the receiving operation.
<車両への適用>
 図23は、車両X10の一構成例を示す外観図である。本構成例の車両X10は、バッテリ(本図では不図示)と、バッテリから電力供給を受けて動作する種々の電子機器X11~X18と、を搭載している。
<Application to vehicles>
FIG. 23 is an external view showing one configuration example of the vehicle X10. A vehicle X10 of this configuration example is equipped with a battery (not shown in the figure) and various electronic devices X11 to X18 that operate with power supplied from the battery.
 車両X10には、エンジン車のほか、電動車(BEV[battery electric vehicle]、HEV[hybrid electric vehicle]、PHEV/PHV(plug-in hybrid electric vehicle/plug-in hybrid vehicle]、又は、FCEV/FCV(fuel cell electric vehicle/fuel cell vehicle]などのxEV)も含まれる。 In addition to the engine vehicle, the vehicle X10 includes an electric vehicle (BEV [battery electric vehicle], HEV [hybrid electric vehicle], PHEV/PHV (plug-in hybrid electric vehicle/plug-in hybrid vehicle), or FCEV/FCV (xEV such as fuel cell electric vehicle/fuel cell vehicle]) is also included.
 なお、本図における電子機器X11~X18の搭載位置については、図示の便宜上、実際とは異なる場合がある。 Note that the mounting positions of the electronic devices X11 to X18 in this figure may differ from the actual ones for convenience of illustration.
 電子機器X11は、エンジンに関連する制御(インジェクション制御、電子スロットル制御、アイドリング制御、酸素センサヒータ制御、及び、オートクルーズ制御など)、または、モータに関する制御(トルク制御、及び、電力回生制御など)を行う電子制御ユニットである。 The electronic device X11 performs engine-related control (injection control, electronic throttle control, idling control, oxygen sensor heater control, auto-cruise control, etc.) or motor-related control (torque control, power regeneration control, etc.). It is an electronic control unit that performs
 電子機器X12は、HID[high intensity discharged lamp]及びDRL[daytime running lamp]などの点消灯制御を行うランプコントロールユニットである。 The electronic device X12 is a lamp control unit that controls lighting and extinguishing of HID [high intensity discharged lamp] and DRL [daytime running lamp].
 電子機器X13は、トランスミッションに関連する制御を行うトランスミッションコントロールユニットである。 The electronic device X13 is a transmission control unit that performs controls related to the transmission.
 電子機器X14は、車両X10の運動に関連する制御(ABS[anti-lock brake system]制御、EPS[electric power steering]制御、電子サスペンション制御など)を行う制動ユニットである。 The electronic device X14 is a braking unit that performs control related to the movement of the vehicle X10 (ABS [anti-lock brake system] control, EPS [electric power steering] control, electronic suspension control, etc.).
 電子機器X15は、ドアロック及び防犯アラームなどの駆動制御を行うセキュリティコントロールユニットである。 The electronic device X15 is a security control unit that controls the driving of door locks and security alarms.
 電子機器X16は、ワイパー、電動ドアミラー、パワーウィンドウ、ダンパー(ショックアブソーバー)、電動サンルーフ、及び、電動シートなど、標準装備品またはメーカーオプション品として、工場出荷段階で車両X10に組み込まれている電子機器である。 The electronic equipment X16 includes wipers, electric door mirrors, power windows, dampers (shock absorbers), electric sunroofs, electric seats, etc., which are built into the vehicle X10 at the factory shipment stage as standard equipment or manufacturer options. is.
 電子機器X17は、車載A/V[audio/visual]機器、カーナビゲーションシステム、及び、ETC[electronic toll collection system]など、ユーザオプション品として任意で車両X10に装着される電子機器である。 The electronic device X17 is an electronic device arbitrarily attached to the vehicle X10 as a user option, such as an in-vehicle A/V [audio/visual] device, a car navigation system, and an ETC [electronic toll collection system].
 電子機器X18は、車載ブロア、オイルポンプ、ウォーターポンプ、バッテリ冷却ファンなど、高耐圧系モータを備えた電子機器である。 The electronic device X18 is an electronic device equipped with a high withstand voltage motor, such as an in-vehicle blower, oil pump, water pump, and battery cooling fan.
 なお、電子機器X11~X18は、先に説明した電子機器Aの具体例として理解することができる。すなわち、先述の信号伝達装置200は、電子機器X11~X18のいずれにも組み込むことが可能である。 Note that the electronic devices X11 to X18 can be understood as specific examples of the electronic device A described above. That is, the signal transmission device 200 described above can be incorporated in any of the electronic devices X11 to X18.
<総括>
 以下では、上記で説明した種々の実施形態について総括的に述べる。
<Summary>
The following provides a general description of the various embodiments described above.
 例えば本明細書中に開示されているパルス受信回路は、第1基準電流を生成するように構成された第1定電流源と、第2基準電流を生成するように構成された第2定電流源と、第1トランスの二次側コイルに誘起される第1受信電流と前記第1基準電流とを足し合わせて第1電流信号を生成するように構成された第1レシーバと、第2トランスの二次側コイルに誘起される第2受信電流と前記第2基準電流とを足し合わせて第2電流信号を生成するように構成された第2レシーバと、前記第1電流信号を第1電圧信号に変換するように構成された第1信号変換部と、前記第2電流信号を第2電圧信号に変換するように構成された第2信号変換部と、前記第1電圧信号と前記第2電圧信号を比較して出力パルス信号を生成するように構成されたコンパレータを備える構成(第1の構成)とされている。 For example, the pulse receiver circuit disclosed herein includes a first constant current source configured to generate a first reference current and a second constant current source configured to generate a second reference current. a first receiver configured to sum a first received current induced in a secondary coil of the first transformer and the first reference current to produce a first current signal; and a second transformer. a second receiver configured to sum a second received current induced in the secondary coil of the second receiver and the second reference current to generate a second current signal; a first signal converter configured to convert the second current signal into a signal; a second signal converter configured to convert the second current signal into a second voltage signal; the first voltage signal and the second voltage signal; A configuration (first configuration) is provided with a comparator configured to compare voltage signals and generate an output pulse signal.
 なお、上記第1の構成によるパルス受信回路において、前記コンパレータは、前記出力パルス信号に応じて閾値が切り替わるようにヒステリシスを持つ構成(第2の構成)にしてもよい。 In the pulse receiving circuit having the first configuration, the comparator may have a configuration (second configuration) having hysteresis so that the threshold is switched according to the output pulse signal.
 また、上記第1又は第2の構成によるパルス受信回路は、前記第1受信電流の低周波成分を低減するように構成された第1ハイパスフィルタと、前記第2受信電流の低周波成分を低減するように構成された第2ハイパスフィルタとをさらに備える構成(第3の構成)にしてもよい。 Further, the pulse receiving circuit having the first or second configuration includes a first high-pass filter configured to reduce low-frequency components of the first received current, and a low-frequency component of the second received current. A configuration (third configuration) further including a second high-pass filter configured to
 また、上記第1~第3いずれかの構成によるパルス受信回路において、前記第1レシーバ及び前記第2レシーバは、それぞれ、並列接続されたNチャネル型トランジスタ及びPチャネル型トランジスタ双方のゲートで前段からの信号を受け付ける構成(第4の構成)にしてもよい。 Further, in the pulse receiving circuit having any one of the first to third configurations, the first receiver and the second receiver are gates of both N-channel transistors and P-channel transistors connected in parallel, respectively, from the previous stage. may be configured (fourth configuration) to receive the signal of .
 また、上記第1~第4いずれかの構成によるパルス受信回路は、前記出力パルス信号が第1論理レベルから第2論理レベルに切り替わってから所定の期間に亘って前記第1レシーバにおける入力ノードのインピーダンスを引き下げるように構成された第1アンダーシュート抑制部と、前記出力パルス信号が前記第2論理レベルから前記第1論理レベルに切り替わってから所定の期間に亘って前記第2レシーバにおける入力ノードのインピーダンスを引き下げるように構成された第2アンダーシュート抑制部とをさらに備える構成(第5の構成)にしてもよい。 Further, in the pulse receiving circuit having any one of the first to fourth configurations, the input node in the first receiver is maintained for a predetermined period after the output pulse signal is switched from the first logic level to the second logic level. a first undershoot suppressor configured to reduce impedance; and an input node in the second receiver for a predetermined period after the output pulse signal switches from the second logic level to the first logic level. A configuration (fifth configuration) that further includes a second undershoot suppressing section that is configured to lower the impedance may be employed.
 また、例えば、本明細書中に開示されているパルス受信回路は、第1トランスの二次側コイルに誘起される第1受信電流の低周波成分を低減して第1フィルタ出力信号を生成するように構成された第1ハイパスフィルタと、第2トランスの二次側コイルに誘起される第2受信電流の低周波成分を低減して第2フィルタ出力信号を生成するように構成された第2ハイパスフィルタと、前記第1フィルタ出力信号から前記第2フィルタ出力信号を差し引いて第1差分信号を生成するように構成された第1減算器と、前記第2フィルタ出力信号から前記第1フィルタ出力信号を差し引いて第2差分信号を生成するように構成された第2減算器と、前記第1差分信号の正成分のみを抽出することにより第1抽出信号を生成するように構成された第1正成分抽出部と、前記第2差分信号の正成分のみを抽出することにより第2抽出信号を生成するように構成された第2正成分抽出部と、前記第1抽出信号と前記第2抽出信号とを比較して出力パルス信号を生成するように構成されたコンパレータと、を備える、構成(第6の構成)とされている。 Also, for example, the pulse receiving circuit disclosed in this specification reduces the low frequency component of the first received current induced in the secondary coil of the first transformer to generate the first filter output signal. and a second high-pass filter configured to reduce low-frequency components of the second received current induced in the secondary coil of the second transformer to generate a second filter output signal. a highpass filter; a first subtractor configured to subtract the second filter output signal from the first filter output signal to produce a first difference signal; and the first filter output from the second filter output signal. a second subtractor configured to subtract a signal to produce a second difference signal; and a first subtractor configured to extract only the positive component of the first difference signal to produce a first extracted signal. a positive component extraction unit; a second positive component extraction unit configured to generate a second extraction signal by extracting only a positive component of the second difference signal; the first extraction signal and the second extraction; and a comparator configured to generate an output pulse signal by comparing with the signal (sixth configuration).
 また、例えば、本明細書中に開示されている信号伝達装置は、入力パルス信号の入力を受け付けて送信パルス信号を生成するように構成されたパルス送信回路と、受信パルス信号の入力を受け付けて出力パルス信号を生成するように構成された上記第1~第6いずれかの構成によるパルス受信回路と、前記パルス送信回路と前記パルス受信回路との間を絶縁しつつ前記送信パルス信号を前記受信パルス信号として伝達するように構成されたトランスと、を備える構成(第7の構成)とされている。 Further, for example, the signal transmission device disclosed in this specification includes a pulse transmission circuit configured to receive an input pulse signal and generate a transmission pulse signal; a pulse receiving circuit according to any one of the first to sixth configurations configured to generate an output pulse signal; and the receiving of the transmission pulse signal while insulating between the pulse transmitting circuit and the pulse receiving circuit. and a transformer configured to transmit as a pulse signal (seventh configuration).
 なお、上記第7の構成による信号伝達装置は、前記パルス送信回路を集積化した第1チップと、前記パルス受信回路を集積化した第2チップと、前記トランスを集積化した第3チップと、を単一のパッケージに封止した構成(第8の構成)にしてもよい。 The signal transmission device according to the seventh configuration includes a first chip integrated with the pulse transmission circuit, a second chip integrated with the pulse reception circuit, a third chip integrated with the transformer, may be sealed in a single package (eighth configuration).
 また、例えば、本明細書中に開示されている電子機器は、前記出力パルス信号により駆動されるように構成されたスイッチ素子と、上記第7又は第8の構成による信号伝達装置と、を備える構成(第9の構成)とされている。 Further, for example, an electronic device disclosed in this specification includes a switch element configured to be driven by the output pulse signal, and a signal transmission device according to the seventh or eighth configuration. configuration (ninth configuration).
 また、例えば、本明細書中に開示されている車両は、上記第9の構成による電子機器を備える構成(第10の構成)とされている。 Further, for example, the vehicle disclosed in this specification is configured to include the electronic device according to the ninth configuration (tenth configuration).
<その他の変形例>
 なお、本明細書中に開示されている種々の技術的特徴は、上記実施形態のほか、その技術的創作の主旨を逸脱しない範囲で種々の変更を加えることが可能である。例えば、バイポーラトランジスタとMOS電界効果トランジスタとの相互置換、及び、各種信号の論理レベル反転は任意である。すなわち、上記実施形態は、全ての点で例示であって、制限的なものではないと考えられるべきであり、本発明の技術的範囲は、特許請求の範囲により規定されるものであって、特許請求の範囲と均等の意味及び範囲内に属する全ての変更が含まれると理解されるべきである。
<Other Modifications>
In addition to the above embodiments, the various technical features disclosed in this specification can be modified in various ways without departing from the gist of the technical creation. For example, the mutual replacement of bipolar transistors with MOS field effect transistors and the logic level inversion of various signals are optional. That is, the above embodiments should be considered as examples in all respects and not restrictive, and the technical scope of the present invention is defined by the scope of the claims, It should be understood that all changes that come within the meaning and range of equivalency of the claims are included.
   1H(u/v/w)  上側ゲートドライバIC
   1L(u/v/w)  下側ゲートドライバIC
   2H(u/v/w)  上側パワートランジスタ
   2L(u/v/w)  下側パワートランジスタ
   3  ECU
   4  モータ
   5  半導体装置
   11、11A~11F  低電位端子
   12、12A~12F  高電位端子
   21、21A~21D  変圧器(トランス)
   22  低電位コイル(一次側コイル)
   23  高電位コイル(二次側コイル)
   24  第1内側末端
   25  第1外側末端
   26  第1螺旋部
   27  第2内側末端
   28  第2外側末端
   29  第2螺旋部
   31  第1低電位配線
   32  第2低電位配線
   33  第1高電位配線
   34  第2高電位配線
   41  半導体チップ
   42  第1主面
   43  第2主面
   44A~44D  チップ側壁
   45  第1機能デバイス
   51  絶縁層
   52  絶縁主面
   53A~53D  絶縁側壁
   55  最下絶縁層
   56  最上絶縁層
   57  層間絶縁層
   58  第1絶縁層
   59  第2絶縁層
   60  第2機能デバイス
   61  シール導体
   62  デバイス領域
   63  外側領域
   64  シールプラグ導体
   65  シールビア導体
   66  第1内側領域
   67  第2内側領域
   71  貫通配線
   72  低電位接続配線
   73  引き出し配線
   74  第1接続プラグ電極
   75  第2接続プラグ電極
   76  パッドプラグ電極
   77  基板プラグ電極
   78  第1電極層
   79  第2電極層
   80  配線プラグ電極
   81  高電位接続配線
   82  パッドプラグ電極
   85  ダミーパターン
   86  高電位ダミーパターン
   87  第1高電位ダミーパターン
   88  第2高電位ダミーパターン
   89  第1領域
   90  第2領域
   91  第3領域
   92  第1接続部
   93  第1パターン
   94  第2パターン
   95  第3パターン
   96  第1外周ライン
   97  第2外周ライン
   98  第1中間ライン
   99  第1接続ライン
   100  スリット
   130  分離構造
   140  無機絶縁層
   141  第1無機絶縁層
   142  第2無機絶縁層
   143  低電位パッド開口
   144  高電位パッド開口
   145  有機絶縁層
   146  第1部分
   147  第2部分
   148  低電位端子開口
   149  高電位端子開口
   200  信号伝達装置
   200p  一次回路系
   200s  二次回路系
   210  コントローラチップ(第1チップ)
   211  パルス送信回路(パルスジェネレータ)
   212、213 バッファ
   220  ドライバチップ(第2チップ)
   221、222  バッファ
   223  パルス受信回路(RSフリップフロップ)
   224  ドライバ
   225、226  ラッチ
   227  パルス受信回路
   230  トランスチップ(第3チップ)
   230a  第1配線層(下層)
   230b  第2配線層(上層)
   231、232  トランス
   231p、232p  一次側コイル
   231s、232s  二次側コイル
   300  トランスチップ
   301  第1トランス
   302  第2トランス
   303  第3トランス
   304  第4トランス
   305  第1ガードリング
   306  第2ガードリング
   a1~a8  パッド(第1の電流供給用パッドに相当)
   b1~b8  パッド(第1の電圧測定用パッドに相当)
   c1~c4  パッド(第2の電流供給用パッドに相当)
   d1~d4  パッド(第2の電圧測定用パッドに相当)
   e1、e2  パッド
   A  電子機器
   ANDr、ANDf  論理積ゲート
   Cr、Cr2、Cf、Cf2  キャパシタ
   CC1r、CC1r2、CC2r、CC1f、CC1f2、CC2f  定電流源
   CMP  比較器
   DLYr、DLYf  遅延部
   HC  ヒステリシスコンパレータ
   HPFr、HPFf  ハイパスフィルタ
   L1p、L2p  一次側コイル
   L1s、L2s、L3s、L4s  二次側コイル
   N1r~N7r、N1f~N7f  トランジスタ(Nチャネル型MISFET)
   P1r~P6r、P1f~P6f  トランジスタ(Pチャネル型MISFET)
   PEXr、PEXf  正成分抽出部
   R2r、R2f  抵抗(信号変換部に相当)
   R3r、R3f  抵抗
   RXr、Rxf  レシーバ
   SUB、SUBr、SUBf  減算器
   T21、T22、T23、T24、T25、T26  外部端子
   USSr、USSf  アンダーシュート抑制部
   X  第1方向
   X10  車両
   X11~X18  電子機器
   X21、X22、X23  内部端子
   Y  第2方向
   Y21、Y22、Y23  配線
   Z  法線方向
   Z21、Z22、Z23  ビア
1H (u/v/w) Upper gate driver IC
1L (u/v/w) lower gate driver IC
2H (u/v/w) Upper power transistor 2L (u/v/w) Lower power transistor 3 ECU
4 motor 5 semiconductor device 11, 11A to 11F low potential terminal 12, 12A to 12F high potential terminal 21, 21A to 21D transformer (transformer)
22 Low potential coil (primary coil)
23 High potential coil (secondary coil)
24 first inner end 25 first outer end 26 first helix 27 second inner end 28 second outer end 29 second helix 31 first low potential wire 32 second low potential wire 33 first high potential wire 34 second 2 high-potential wiring 41 semiconductor chip 42 first main surface 43 second main surface 44A to 44D chip sidewall 45 first functional device 51 insulating layer 52 insulating main surface 53A to 53D insulating sidewall 55 bottom insulating layer 56 top insulating layer 57 interlayer Insulating layer 58 First insulating layer 59 Second insulating layer 60 Second functional device 61 Seal conductor 62 Device region 63 Outer region 64 Seal plug conductor 65 Seal via conductor 66 First inner region 67 Second inner region 71 Penetration wire 72 Low potential connection Wiring 73 Lead Wiring 74 First Connection Plug Electrode 75 Second Connection Plug Electrode 76 Pad Plug Electrode 77 Substrate Plug Electrode 78 First Electrode Layer 79 Second Electrode Layer 80 Wiring Plug Electrode 81 High Potential Connection Wiring 82 Pad Plug Electrode 85 Dummy Pattern 86 high-potential dummy pattern 87 first high-potential dummy pattern 88 second high-potential dummy pattern 89 first region 90 second region 91 third region 92 first connecting portion 93 first pattern 94 second pattern 95 third pattern 96 second 1 outer peripheral line 97 second outer peripheral line 98 first intermediate line 99 first connection line 100 slit 130 separation structure 140 inorganic insulating layer 141 first inorganic insulating layer 142 second inorganic insulating layer 143 low potential pad opening 144 high potential pad opening 145 Organic insulating layer 146 First part 147 Second part 148 Low potential terminal opening 149 High potential terminal opening 200 Signal transmission device 200p Primary circuit system 200s Secondary circuit system 210 Controller chip (first chip)
211 pulse transmission circuit (pulse generator)
212, 213 buffer 220 driver chip (second chip)
221, 222 buffer 223 pulse receiving circuit (RS flip-flop)
224 driver 225, 226 latch 227 pulse receiving circuit 230 transformer chip (third chip)
230a First wiring layer (lower layer)
230b Second wiring layer (upper layer)
231, 232 transformers 231p, 232p primary coils 231s, 232s secondary coils 300 transformer chip 301 first transformer 302 second transformer 303 third transformer 304 fourth transformer 305 first guard ring 306 second guard ring a1 to a8 pads (Equivalent to the first current supply pad)
b1 to b8 pads (corresponding to the first voltage measurement pads)
c1 to c4 pads (equivalent to second current supply pads)
d1 to d4 pads (equivalent to second voltage measurement pads)
e1, e2 Pad A Electronic device ANDr, ANDf AND gate Cr, Cr2, Cf, Cf2 Capacitor CC1r, CC1r2, CC2r, CC1f, CC1f2, CC2f Constant current source CMP Comparator DLYr, DLYf Delay block HC Hysteresis comparator HPFr, HPFf High pass Filter L1p, L2p Primary side coil L1s, L2s, L3s, L4s Secondary side coil N1r~N7r, N1f~N7f Transistor (N channel type MISFET)
P1r-P6r, P1f-P6f Transistors (P-channel MISFET)
PEXr, PEXf Positive component extractor R2r, R2f Resistor (equivalent to signal converter)
R3r, R3f Resistance RXr, Rxf Receiver SUB, SUBr, SUBf Subtractor T21, T22, T23, T24, T25, T26 External terminal USSr, USSf Undershoot suppressor X First direction X10 Vehicle X11 to X18 Electronic device X21, X22, X23 Internal terminal Y Second direction Y21, Y22, Y23 Wiring Z Normal direction Z21, Z22, Z23 Via

Claims (10)

  1.  第1基準電流を生成するように構成された第1定電流源と、
     第2基準電流を生成するように構成された第2定電流源と、
     第1トランスの二次側コイルに誘起される第1受信電流と前記第1基準電流とを足し合わせて第1電流信号を生成するように構成された第1レシーバと、
     第2トランスの二次側コイルに誘起される第2受信電流と前記第2基準電流とを足し合わせて第2電流信号を生成するように構成された第2レシーバと、
     前記第1電流信号を第1電圧信号に変換するように構成された第1信号変換部と、
     前記第2電流信号を第2電圧信号に変換するように構成された第2信号変換部と、
     前記第1電圧信号と前記第2電圧信号とを比較して出力パルス信号を生成するように構成されたコンパレータと、
     を備える、パルス受信回路。
    a first constant current source configured to generate a first reference current;
    a second constant current source configured to generate a second reference current;
    a first receiver configured to sum a first received current induced in a secondary coil of a first transformer and the first reference current to generate a first current signal;
    a second receiver configured to sum a second received current induced in a secondary coil of a second transformer and the second reference current to generate a second current signal;
    a first signal converter configured to convert the first current signal to a first voltage signal;
    a second signal converter configured to convert the second current signal to a second voltage signal;
    a comparator configured to compare the first voltage signal and the second voltage signal to generate an output pulse signal;
    A pulse receiver circuit.
  2.  前記コンパレータは、前記出力パルス信号に応じて閾値が切り替わるようにヒステリシスを持つ、請求項1に記載のパルス受信回路。 2. The pulse receiving circuit according to claim 1, wherein said comparator has hysteresis such that a threshold is switched according to said output pulse signal.
  3.  前記第1受信電流の低周波成分を低減するように構成された第1ハイパスフィルタと、
     前記第2受信電流の低周波成分を低減するように構成された第2ハイパスフィルタと、
     をさらに備える、請求項1又は2に記載のパルス受信回路。
    a first high pass filter configured to reduce low frequency components of the first receive current;
    a second high pass filter configured to reduce low frequency components of the second receive current;
    3. The pulse receiver circuit of claim 1 or 2, further comprising:
  4.  前記第1レシーバ及び前記第2レシーバは、それぞれ、並列接続されたNチャネル型トランジスタ及びPチャネル型トランジスタ双方のゲートで前段からの信号を受け付ける、請求項1~3のいずれか一項に記載のパルス受信回路。 4. The first receiver and the second receiver according to any one of claims 1 to 3, wherein the gates of both the N-channel type transistor and the P-channel type transistor connected in parallel receive the signal from the preceding stage, respectively. Pulse receiver circuit.
  5.  前記出力パルス信号が第1論理レベルから第2論理レベルに切り替わってから所定の期間に亘って前記第1レシーバにおける入力ノードのインピーダンスを引き下げるように構成された第1アンダーシュート抑制部と、
     前記出力パルス信号が前記第2論理レベルから前記第1論理レベルに切り替わってから所定の期間に亘って前記第2レシーバにおける入力ノードのインピーダンスを引き下げるように構成された第2アンダーシュート抑制部と、
     をさらに備える、請求項1~4のいずれか一項に記載のパルス受信回路。
    a first undershoot suppression unit configured to reduce impedance of an input node in the first receiver for a predetermined period after the output pulse signal switches from the first logic level to the second logic level;
    a second undershoot suppression unit configured to reduce impedance of an input node in the second receiver for a predetermined period after the output pulse signal switches from the second logic level to the first logic level;
    The pulse receiving circuit according to any one of claims 1 to 4, further comprising:
  6.  第1トランスの二次側コイルに誘起される第1受信電流の低周波成分を低減して第1フィルタ出力信号を生成するように構成された第1ハイパスフィルタと、
     第2トランスの二次側コイルに誘起される第2受信電流の低周波成分を低減して第2フィルタ出力信号を生成するように構成された第2ハイパスフィルタと、
     前記第1フィルタ出力信号から前記第2フィルタ出力信号を差し引いて第1差分信号を生成するように構成された第1減算器と、
     前記第2フィルタ出力信号から前記第1フィルタ出力信号を差し引いて第2差分信号を生成するように構成された第2減算器と、
     前記第1差分信号の正成分のみを抽出することにより第1抽出信号を生成するように構成された第1正成分抽出部と、
     前記第2差分信号の正成分のみを抽出することにより第2抽出信号を生成するように構成された第2正成分抽出部と、
     前記第1抽出信号と前記第2抽出信号とを比較して出力パルス信号を生成するように構成されたコンパレータと、
     を備える、パルス受信回路。
    a first high-pass filter configured to reduce low-frequency components of the first received current induced in the secondary coil of the first transformer to generate a first filter output signal;
    a second high pass filter configured to reduce low frequency components of the second receive current induced in the secondary coil of the second transformer to produce a second filter output signal;
    a first subtractor configured to subtract the second filtered output signal from the first filtered output signal to produce a first difference signal;
    a second subtractor configured to subtract the first filtered output signal from the second filtered output signal to produce a second difference signal;
    a first positive component extractor configured to generate a first extracted signal by extracting only a positive component of the first difference signal;
    a second positive component extractor configured to generate a second extracted signal by extracting only the positive component of the second difference signal;
    a comparator configured to compare the first extracted signal and the second extracted signal to generate an output pulse signal;
    A pulse receiver circuit.
  7.  入力パルス信号の入力を受け付けて送信パルス信号を生成するように構成されたパルス送信回路と、
     受信パルス信号の入力を受け付けて出力パルス信号を生成するように構成された請求項1~6のいずれか一項に記載のパルス受信回路と、
     前記パルス送信回路と前記パルス受信回路との間を絶縁しつつ前記送信パルス信号を前記受信パルス信号として伝達するように構成されたトランスと、
     を備える、信号伝達装置。
    a pulse transmission circuit configured to receive an input pulse signal and generate a transmission pulse signal;
    a pulse receiving circuit according to any one of claims 1 to 6, configured to receive an input of a received pulse signal and generate an output pulse signal;
    a transformer configured to transmit the transmission pulse signal as the reception pulse signal while insulating between the pulse transmission circuit and the pulse reception circuit;
    A signaling device comprising:
  8.  前記パルス送信回路を集積化した第1チップと、
     前記パルス受信回路を集積化した第2チップと、
     前記トランスを集積化した第3チップと、
     を単一のパッケージに封止した、請求項7に記載の信号伝達装置。
    a first chip integrated with the pulse transmission circuit;
    a second chip integrated with the pulse receiving circuit;
    a third chip integrated with the transformer;
    8. The signal transmission device according to claim 7, wherein the are sealed in a single package.
  9.  前記出力パルス信号により駆動されるように構成されたスイッチ素子と、
     請求項7又は8に記載の信号伝達装置と、
     を備える、電子機器。
    a switch element configured to be driven by the output pulse signal;
    A signal transmission device according to claim 7 or 8;
    An electronic device.
  10.  請求項9に記載の電子機器を備える、車両。 A vehicle comprising the electronic device according to claim 9.
PCT/JP2023/001905 2022-02-28 2023-01-23 Pulse reception circuit, signal transmission device, electronic device, and vehicle WO2023162537A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-029026 2022-02-28
JP2022029026 2022-02-28

Publications (1)

Publication Number Publication Date
WO2023162537A1 true WO2023162537A1 (en) 2023-08-31

Family

ID=87765520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001905 WO2023162537A1 (en) 2022-02-28 2023-01-23 Pulse reception circuit, signal transmission device, electronic device, and vehicle

Country Status (1)

Country Link
WO (1) WO2023162537A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188468A (en) * 2008-02-02 2009-08-20 Keio Gijuku Integrated circuit
JP2011146934A (en) * 2010-01-14 2011-07-28 Nec Corp Transmission circuit, receiving circuit, transmitting method, receiving method, and signal transfer system
WO2012157180A1 (en) * 2011-05-18 2012-11-22 ルネサスエレクトロニクス株式会社 Reception circuit and signal reception method
WO2013084517A1 (en) * 2011-12-05 2013-06-13 三菱電機株式会社 Signal transmission circuit
JP2016046723A (en) * 2014-08-25 2016-04-04 ルネサスエレクトロニクス株式会社 Reception device, communication device, and communication method
JP2017041706A (en) * 2015-08-18 2017-02-23 パナソニックIpマネジメント株式会社 Signal transmission circuit
WO2018066165A1 (en) * 2016-10-05 2018-04-12 三菱電機株式会社 Signal transmission circuit and power conversion device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188468A (en) * 2008-02-02 2009-08-20 Keio Gijuku Integrated circuit
JP2011146934A (en) * 2010-01-14 2011-07-28 Nec Corp Transmission circuit, receiving circuit, transmitting method, receiving method, and signal transfer system
WO2012157180A1 (en) * 2011-05-18 2012-11-22 ルネサスエレクトロニクス株式会社 Reception circuit and signal reception method
WO2013084517A1 (en) * 2011-12-05 2013-06-13 三菱電機株式会社 Signal transmission circuit
JP2016046723A (en) * 2014-08-25 2016-04-04 ルネサスエレクトロニクス株式会社 Reception device, communication device, and communication method
JP2017041706A (en) * 2015-08-18 2017-02-23 パナソニックIpマネジメント株式会社 Signal transmission circuit
WO2018066165A1 (en) * 2016-10-05 2018-04-12 三菱電機株式会社 Signal transmission circuit and power conversion device

Similar Documents

Publication Publication Date Title
US10720411B2 (en) Semiconductor device
CN114762114A (en) Semiconductor device with a plurality of semiconductor chips
WO2023162537A1 (en) Pulse reception circuit, signal transmission device, electronic device, and vehicle
WO2022163347A1 (en) Transformer chip, and signal-transmitting device
WO2022070944A1 (en) Signal transmission device, electronic device and vehicle
WO2022091922A1 (en) Signal transmission device, electronic apparatus, and vehicle
WO2021215237A1 (en) Pulse receiving circuit and signal transmission device
WO2023162536A1 (en) Pulse transmission circuit, signal transmission device, electronic device, and vehicle
WO2023105943A1 (en) Signal transferring device, electronic equipment, and vehicle
WO2023032430A1 (en) Gate driver
US20230411281A1 (en) Semiconductor device, semiconductor module, motor drive device, and vehicle
WO2022065150A1 (en) Signal transmitting device, electronic instrument, and vehicle
JP7003449B2 (en) In-vehicle device
WO2023248622A1 (en) Receiving circuit and signal transmitting device
WO2023074137A1 (en) Transformer chip and signal transmission device
WO2022196092A1 (en) Insulated gate driver, traction inverter, and electric vehicle
WO2022196091A1 (en) Insulated gate driver, traction inverter, and electric vehicle
WO2023189206A1 (en) Pulse drive circuit and signal transmitting device
WO2023112492A1 (en) Signal transfer device and electronic device
US20230421348A1 (en) Signal transmission device
US20180174986A1 (en) Power device
CN116547804A (en) Transformer chip and signal transmission device
JP2024051586A (en) Signal transmission device
WO2022070749A1 (en) Semiconductor device and semiconductor module
US20240195442A1 (en) Signal Transmission Device, Industrial Apparatus and Vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759543

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024502915

Country of ref document: JP

Kind code of ref document: A