WO2023162199A1 - 排気タービン及び過給機 - Google Patents
排気タービン及び過給機 Download PDFInfo
- Publication number
- WO2023162199A1 WO2023162199A1 PCT/JP2022/008207 JP2022008207W WO2023162199A1 WO 2023162199 A1 WO2023162199 A1 WO 2023162199A1 JP 2022008207 W JP2022008207 W JP 2022008207W WO 2023162199 A1 WO2023162199 A1 WO 2023162199A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flange portion
- fastening
- radial direction
- inner end
- seal
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B39/00—Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
- F02B39/005—Cooling of pump drives
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/08—Cooling; Heating; Heat-insulation
- F01D25/14—Casings modified therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/16—Arrangement of bearings; Supporting or mounting bearings in casings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B39/00—Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/40—Application in turbochargers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/50—Bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/231—Preventing heat transfer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present disclosure relates to an exhaust turbine and a supercharger including the exhaust turbine.
- Patent Documents 1 and 2 disclose a ring-shaped coupling having a truncated V-shaped cross section in a state in which a heat shield plate is sandwiched between flanges formed at abutment portions of a turbine housing and a bearing housing.
- a fastening method for fastening flanges formed on a turbine housing and a bearing housing using members is disclosed.
- the turbine housing has a tongue formed at the boundary where the exhaust gas flows from the scroll passage into the exhaust gas introduction passage in which the turbine wheel is accommodated, and non-uniform thermal deformation occurs near the tongue due to the heat of the exhaust gas. . Due to this influence, the flange portion and the coupling member formed at the contact portion between the turbine housing and the bearing housing may be deformed unevenly. There is a problem of disappearance. In addition, there is a problem that the fastening force of the coupling member becomes uneven in the circumferential direction of the rotating shaft, or the fastening force is insufficient, so that the sealing performance cannot be ensured.
- the present invention aims to solve the above problems and to ensure sealing performance between the turbine housing and the bearing housing against thermal deformation in the vicinity of the tongue due to the heat of the exhaust gas.
- one aspect of the exhaust turbine according to the present disclosure is a rotating shaft, a turbine wheel attached to one end side of the rotating shaft, and a turbine housing that houses the turbine wheel.
- a fastening member for fastening a first flange portion of the turbine housing and a second flange portion of the bearing housing; and a heat shield plate disposed between the turbine housing and the bearing housing, and a heat shield plate having an outer peripheral edge of the heat shield plate sandwiched between the first flange portion and the second flange portion, the heat shield plate having a first cross section along the axial direction of the rotating shaft.
- the radial direction of the rotating shaft within the contact surface between the first flange portion and the outer peripheral edge portion of the heat shield plate (hereinafter also simply referred to as "radial direction")
- the innermost position in the first seal inner end, the radial direction of the contact surface between the second flange portion and the outer peripheral edge portion of the heat shield plate is the seal inner end
- the seal inner end is the seal inner end of the first seal inner end and the second seal inner end, whichever is located on the outer side in the radial direction. is arranged outside the tongue portion in the radial direction.
- the exhaust turbine and the supercharger even if uneven thermal deformation occurs near the tongue formed in the turbine housing through which the exhaust gas flows, the contact between the turbine housing and the bearing housing is prevented.
- the sealing performance of the sealing surface formed between the flange portion and the heat shield plate can be maintained at a high level.
- FIG. 1 is a schematic configuration diagram of an engine equipped with a supercharger according to one embodiment; FIG. It is a longitudinal section showing a part of a supercharger concerning one embodiment.
- FIG. 3 is a longitudinal sectional view enlarging a part of the exhaust turbine section according to one embodiment;
- FIG. 4 is a plan view of a structural example of a tongue formed on the turbine housing viewed from above;
- FIG. 4 is a plan view of another configuration example of the tongue portion viewed from above;
- FIG. 11 is a plan view of still another configuration example of the tongue portion viewed from above;
- FIG. 3 is a longitudinal sectional view enlarging a part of the exhaust turbine section according to one embodiment;
- 1 is a front view of a fastening member according to one embodiment;
- FIG. FIG. 3 is a longitudinal sectional view enlarging a part of the exhaust turbine section according to one embodiment;
- expressions that express shapes such as squares and cylinders do not only represent shapes such as squares and cylinders in a geometrically strict sense, but also include irregularities and chamfers to the extent that the same effect can be obtained. Shapes including parts etc. shall also be represented.
- the expressions “comprising”, “comprising”, “having”, “including”, or “having” one component are not exclusive expressions excluding the presence of other components.
- FIG. 1 is a schematic configuration diagram of an engine equipped with a supercharger according to one embodiment
- FIG. 2 is a longitudinal sectional view showing part of the supercharger.
- an engine 10 equipped with a supercharger 30 has, for example, four cylinders 12a, 12b, 12c and 12d inside an engine body 14. These four cylinders are connected to an air supply manifold 18. Compressed air is supplied via This compressed air is supplied from a compressor section 32 forming part of the supercharger 30 . Air for fuel a is supplied to the compressor portion 32, the air for fuel a is compressed by the compressor portion 32, and the compressed air is supplied to each of the cylinders 12a to 12d through the air supply pipe 16 and the air supply manifold 18. .
- Exhaust gas e discharged from each cylinder 12a to 12d is sent to an exhaust turbine section 34 that constitutes a part of the supercharger 30 via an exhaust manifold 20 and an exhaust pipe 22, and is housed inside a turbine housing 42.
- Turbine wheel 40 is rotated.
- the supercharger 30 includes an exhaust turbine section 34 provided on one end side of a rotary shaft 36 (end side in the direction indicated by arrow b in FIG. 2).
- the exhaust turbine section 34 includes a turbine wheel 40 attached to one end of the rotating shaft 36 and a turbine housing 42 that houses the turbine wheel 40 .
- the compressor portion 32 is provided on the other end side of the rotating shaft 36 (the end portion side in the direction indicated by the arrow c in FIG. 2), and the turbine wheel 40 is accommodated inside the compressor housing 32a via the rotating shaft 36. 32b.
- the rotation of the turbine wheel 40 causes the compressor wheel 32b to rotate, and the rotation of the compressor wheel 32b draws fuel air a into the compressor housing 32a, compresses it in the compressor wheel 32b, and delivers the compressed air to each of the cylinders 12a-12d. supplied.
- the turbine housing 42 has a scroll portion 44 formed on the outer peripheral side of the turbine wheel 40 .
- the turbine housing 42 has an exhaust gas introducing portion 46 inside the scroll portion 44 .
- a plurality of blades 48 are radially provided on the outer peripheral surface of the turbine wheel 40 along the circumferential direction of the rotating shaft 36 (hereinafter also simply referred to as the "circumferential direction").
- An exhaust gas introduction passage 50 is formed between 48 .
- the exhaust gas e flows into the exhaust gas introduction passage 50 from the flow path formed in the scroll portion 44 , rotates the turbine wheel 40 , and then flows out from the exhaust gas introduction passage 50 .
- a bearing housing 38 is provided adjacent to the turbine housing 42 on the other side of the turbine housing 42 (the side in the direction indicated by the arrow c in FIG. 2).
- the bearing housing 38 accommodates a bearing 52 that rotatably supports the rotating shaft 36 .
- a compressor portion 32 is provided on the other side of the bearing housing 38 .
- symbol O indicates the central axis of rotation of the rotating shaft 36 .
- the turbocharger 30 is a twin scroll turbocharger, and the scroll portion 44 is formed with two rear exhaust gas flow paths 54 and a front exhaust gas flow path 56.
- the exhaust manifold 20 and the exhaust pipe 22 are divided into two systems, and the exhaust gas flow path formed by the exhaust manifold and the exhaust pipe of one system communicates with the rear exhaust gas flow path 54, and the exhaust gas of the other system.
- An exhaust gas channel formed by the manifold and the exhaust pipe communicates with the front exhaust gas channel 56 .
- the exhaust gas flowing through these exhaust gas passages is controlled so as not to cause a pressure difference between the pressure of the exhaust gas flowing through the rear exhaust gas passage 54 and the pressure of the exhaust gas flowing through the front exhaust gas passage 56. Designed to be equal in capacity.
- the flue gas flow path formed in a spiral gradually narrows toward the downstream side, so that the flue gas flows into the flue gas introduction passage 50 in an accelerated state.
- a rear-side tongue portion 58 and a front-side tongue portion 60 are provided at the end portions (winding end portions) of the rear-side exhaust gas passage 54 and the front-side exhaust gas passage 56 and serving as the inlet of the exhaust gas introduction passage 50, respectively. is formed.
- the exhaust turbine according to the present disclosure can also be applied to a single-scroll turbocharger.
- a first flange portion 62 is formed at the other end of the turbine housing 42 (the end in the direction indicated by the arrow c in FIG. 2), and one end of the bearing housing 38 (the A second flange portion 64 is formed at the end portion in the direction indicated by the arrow b). Both flange portions 62 and 64 are fastened with a fastening member 66, thereby coupling the turbine housing 42 and the bearing housing 38 together.
- a heat shield plate 68 is arranged between the first flange portion 62 and the second flange portion 64 which are fastened together by the fastening member 66 . That is, the outer peripheral edge portion 68a of the heat shield plate 68 is sandwiched between the two flange portions 62 and 64. As shown in FIG.
- FIG. 3 corresponds to a longitudinal sectional view further enlarging the vicinity of part A in FIG. 2, and shows an exhaust turbine section 34a according to one embodiment. That is, FIG. 3 is a cross section along the axial direction of the rotating shaft 36 (the direction along the central axis O; hereinafter simply referred to as the “axial direction”). A cross section (first cross section) passing through the rear tongue portion 58 is illustrated. 3, the illustration of the rotating shaft 36 and the turbine wheel 40 is omitted, and the symbol O indicates the position of the central axis O of the rotating shaft 36 when the rotating shaft 36 is arranged.
- first flange portion 62 and the outer peripheral edge portion 68a of the heat shield plate 68 are in contact with each other in a partial area in the radial direction, and the mutual contact surfaces form a first sealing surface S1.
- the first sealing surface S1 is on the opposite side of the outer peripheral edge portion 68a, and the second flange portion 64 and the outer peripheral edge portion 68a of the heat shield plate 68 are in contact with each other in a partial area in the radial direction. forms the second sealing surface S2.
- the point Si1 is the radially innermost position (first seal inner end).
- a point Si2 indicates the radially innermost position (second seal inner end) of the contact surface (second sealing surface S2) between the second flange portion 64 and the outer peripheral edge portion 68a of the heat shield plate 68.
- the radially outer seal inner end Si0 (corresponding to the first seal inner end Si1 in this embodiment) is the rear tongue. It is arranged radially outside of the portion 58 .
- the seal inner end Si0 is a region where the seal surfaces S1 and S2 respectively formed on both side surfaces of the outer peripheral edge portion 68a of the heat shield plate 68 overlap in the radial direction, i. is the radially inner end of the region where is high (hereinafter also referred to as “high seal pressure region”).
- the high seal pressure region is indicated by symbol Rhs.
- the radial outer end of the first seal surface S1 first seal outer end So1 described later
- the radial outer end of the second seal surface S2 second seal outer end So2 described later
- the seal inner end Si0 first seal inner end Si1
- the high seal pressure region Rhs is uneven in the rear tongue portion 58. It is located radially outwardly away from the site affected by the thermal deformation.
- the influence of uneven thermal deformation of the rear-side tongue portion 58 on the sealing surfaces S1 and S2 formed on both side surfaces of the outer peripheral edge portion 68a of the heat shield plate 68 can be suppressed. Therefore, the sealing performance of the sealing surfaces S1 and S2 can be maintained.
- the front-side exhaust gas channel 56 is located behind the rear-side exhaust gas channel 54 with respect to the heat shield plate 68, and is separated from the first flange portion 62 via the rear-side exhaust gas channel 54 in the axial direction. position. Therefore, thermal deformation near the front tongue portion 60 hardly affects the first flange portion 62 . Therefore, in this embodiment, thermal deformation of the turbine housing 42 that occurs near the front tongue portion 60 is not taken into consideration.
- the rear tongue portion 58 is positioned on the side of the bearing housing 38, and the lower portion D near the partition wall surface (partition wall surface 54a described later) of the scroll portion 44 is used as a comparison reference,
- the inner end Si0 is arranged radially outside the lower portion D.
- the heat shield plate 68 has an annular shape and is arranged over the entire circumferential direction so as to surround the turbine wheel 40 .
- the configuration according to the present embodiment is applied only to a region near the first cross section where the rear-side tongue portion 58 is formed at least, and does not necessarily have to be applied to the entire circumferential direction.
- reference numeral 54a indicates a partition wall located on the other side (arrow c direction side) of the partition walls of the scroll portion 44 forming the rear exhaust gas flow path 54
- reference numeral 45a indicates the rear exhaust gas flow path.
- the partition wall faces the rear exhaust gas flow path 54 .
- Reference numeral 59 indicates the downstream end in the flow direction of the exhaust gas e
- reference character Tn indicates a reference line that serves as a reference for determining the radial position of the rear tongue portion 58.
- the position of the reference line Tn is the position of the exhaust gas e. It is determined from the viewpoint of the portion where the heat flux increases when the retained heat is transferred to the turbine housing 42 via the rear-side tongue portion 58 . In this embodiment, it can be said that the radial position of the rear tongue portion 58 is based on the position of the reference line Tn.
- the downstream end 59 is located on the most downstream side in the direction of flow of the exhaust gas e between the partition walls 45a and 54a, and is the middle point (flow direction) between the partition walls 45a and 54a. It has an arcuate shape located on the most upstream side at the central portion M, and the reference line Tn is determined to pass through the intermediate point M.
- the downstream end 59 is at the same position across the width direction of the rear exhaust gas passage 54 with respect to the flow direction of the exhaust gas e, and the reference line Tn is the downstream end 59 is determined to pass through That is, the downstream end 59 coincides with the reference line Tn.
- the downstream end 59 is positioned at points X and Y on both partition walls 45a and 54a on the most upstream side in the direction of flow of the exhaust gas e.
- the reference line Tn is defined to pass through the most upstream positions (points X and Y) of the rear tongue portion 58c. That is, the reference line Tn has a direction (the width direction of the rear-side exhaust gas flow path 54) perpendicular to the flow direction of the exhaust gas e and passes through the most upstream position of the downstream end 59 in the flow direction of the exhaust gas e. is.
- FIG. 6 is a vertical cross-sectional view (first cross section) enlarging a part of the exhaust turbine section 34b according to another embodiment.
- a fastening member 66a according to one embodiment includes a base portion 70 arranged on the outer peripheral side of the first flange portion 62 and the second flange portion 64, and from the base portion 70 along the back surface 62a of the first flange portion 62.
- a first fastening portion 72 extending radially inward and a second fastening portion 74 extending radially inward along the back surface 64 a of the second flange portion 64 from the base portion 70 are provided. .
- the point So1 is the most radially inner contact surface (first sealing surface S1) between the first flange portion 62 and the outer peripheral edge portion 68a of the heat shield plate 68.
- the outer position (first seal outer edge) is shown.
- a point So2 is the radially outermost position (second seal outer edge).
- the seal outer end So0 is the one positioned radially inward.
- the first seal outer end So1 and the second seal outer end So2 are located at substantially the same position in the radial direction. Applicable.
- reference numeral Ti1 indicates the radially innermost position (first fastening surface Ps1) of the contact surface (first pressure surface Ps1) between the first fastening portion 72 and the back surface 62a of the first flange portion 62. inner edge).
- Reference numeral Ti2 indicates the radially innermost position (second fastening inner end) of the contact surface (second pressure surface Ps2) between the second fastening portion 74 and the back surface 64a of the second flange portion 64.
- the fastening inner end Ti0 is a radial region where fastening forces are applied from both the first fastening portion 72 and the second fastening portion 74 to the first flange portion 62 and the second flange portion 64 (hereinafter also referred to as a "high fastening pressure area"). ) is the inner edge of the In FIG. 6, the high engagement pressure region is indicated by symbol Rht.
- the first fastening inner end Ti1 and the second fastening inner end Ti2 are located at substantially the same position in the radial direction, so that the first fastening inner end Ti1 or the second fastening inner end Ti2 It becomes the fastening inner end Ti0.
- the same position in the radial direction means a position where the distances from the central axis O of the rotating shaft 36 on a straight line orthogonal to the central axis O are equal.
- the radially outer end of the first pressure surface Ps1 (a first fastening outer end To1 described later) is located radially inside the radially outer end of the second pressure surface Ps2 (a second fastening outer end To2 described later). Therefore, the first pressure surface Ps1 forms a high engagement pressure region Rht.
- the seal outer end So0 (the first seal outer end So1 or the second seal outer end So2; the radial outer end of the high sealing pressure region Rhs) is the fastening inner end Ti0 (the inner side of the high fastening pressure region Rht). end) in the radial direction. Therefore, the high seal pressure region Rhs is located radially inward and away from the high fastening pressure region Rht where both the flange portions 62 and 64 receive the most fastening force from the fastening member 66a.
- the base portion 70 is provided in substantially the entire circumferential direction so as to surround the first flange portion 62 and the second flange portion 64 from the outer peripheral side.
- the base 70 has an abutment (opening) formed in a part in the circumferential direction, and flange portions (not shown) are provided at both ends of the base 70 in the circumferential direction across the abutment. These flange portions protrude radially outward and are arranged so as to face each other.
- the fastening member 66 fastens the first flange portion 62 and the second flange portion 64 by bringing these flange portions closer to each other with a fastener such as a bolt.
- first fastening portion 72 and the second fastening portion 74 of the fastening member 66 do not necessarily have to be provided over the entire circumferential direction. At least, it is sufficient to provide only the vicinity of the first cross section where the rear side tongue portion 58 exists.
- the base 70a of the fastening member 66a has an extension extending linearly along the axial direction.
- the back surface 62a of the first flange portion 62 and the back surface 64a of the second flange portion 64 are sloped surfaces that are inclined in directions that are radially inward and away from each other.
- the first fastening portion 72 extends radially inward along the back surface 62 a of the first flange portion 62
- the second fastening portion 74 extends radially inward along the back surface 64 a of the second flange portion 64 . extends to
- a fastener such as a bolt is used to narrow the joint (opening) formed in a part of the base 70 in the circumferential direction, and as the diameter of the base 70 shrinks, the first fastening portion 72 slides radially inward on the rear surface 62a of the first flange portion 62, and the second fastening portion 74 slides radially inward on the rear surface 64a of the second flange portion 64.
- Fastening force can be efficiently applied, and uneven fastening force of the fastening member 66 in the circumferential direction can be suppressed.
- a fastening member 66b is used according to the shapes of the distal end portions of the first flange portion 62 and the second flange portion 64. As shown in FIG. Fastening member 66b has a base portion 70b with no axial extension. The fastening member 66b has a V shape as a whole. In another embodiment (not shown), the fastening member includes a base portion extending along the axial direction and a second portion extending radially inward from both ends of the base portion along a direction perpendicular to the axial direction. It has a first fastening portion and a second fastening portion.
- the angles of the first fastening portion and the second fastening portion with respect to the base portion are It does not need to be machined to fit the rear faces 62a and 64a of both flanges. Therefore, processing is facilitated.
- one of the first flange portion 62 and the second flange portion 64 has two flange portions radially outward of the outer peripheral edge portion 68 a of the heat shield plate 68 .
- At least one inner projection 80 projecting toward the other of the flanges 62 and 64 is formed, and the other flange is radially outward of the inner projection 80 and extends from the inner projection 80 .
- At least one outer convex portion 82 is formed with which the outer peripheral surface and the inner peripheral surface thereof abut.
- the inner convex portion 80 and the outer convex portion 82 are provided on the radially outer side of the outer peripheral edge portion 68a of the heat shield plate 68, and the outer peripheral surface 80a of the inner convex portion 80 and the inner peripheral surface of the outer convex portion 82 are provided.
- 82a have contact surfaces that contact each other, and this contact surface forms a sealing surface, so that the sealing performance can be further improved.
- the presence of the inner convex portion 80 and the outer convex portion 82 can prevent axial misalignment between the turbine housing 42 and the bearing housing 38 .
- an inner projection 80 projects from the second flange portion 64 toward the first flange portion 62 and an outer projection 82 projects from the first flange portion 62 toward the second flange portion 64. Protruding.
- the inner protrusion 80 projects from the first flange 62 toward the second flange 64 and the outer protrusion 82 projects from the second flange 64 toward the first flange 62 . may be formed.
- the inner projection 80 and the outer projection 82 have rectangular cross sections in the first cross section.
- the protrusion amount of the inner convex portion 80 has approximately the same dimension as the plate thickness of the outer peripheral edge portion 68 a of the heat shield plate 68 .
- the inner convex portion 80 and the outer convex portion 82 may have cross sections other than rectangular in the first cross section.
- the outer projection 82 is formed on the first flange portion 62, as shown in FIG.
- the outer convex portion 82 is formed on the first flange portion 62, and the outer peripheral surface of the outer convex portion 82 is an open surface. Thermal deformation of the outer convex portion 82 due to heat transmitted from the side to the first flange portion 62 is hardly transmitted to the second flange portion 64 side. Therefore, it is possible to suppress deterioration of the sealing performance of the second sealing surface S2 on the second flange portion 64 side due to thermal deformation of the first flange portion 62 .
- a convex portion 65 is formed so as to protrude radially outward from the outer peripheral side of the second flange portion 64 .
- the convex portion 65 has an end face 65b that faces the end face 82b of the outer convex portion 82 .
- the radial length of the region (first seal surface S1) between the first seal outer end So1 and the first seal inner end Si1 is It is smaller than the radial length of the region (second seal surface S2) between the second seal outer end So2 and the second seal inner end Si2 (S1 ⁇ S2).
- the bearing since the radial length of the first sealing surface S1 is smaller than the radial length of the second sealing surface S2, the bearing is exposed from the first flange portion 62 via the outer peripheral edge portion 68a of the heat shield plate 68.
- the amount of heat transferred to the housing 38 can be suppressed.
- the temperature rise of the bearing housing 38 is suppressed, and the thermal deformation of the bearing housing 38 is suppressed, so that the deterioration of the sealing performance of the second sealing surface S2 can be suppressed.
- the thermal stress generated in the bearing housing 38 due to temperature rise can be suppressed, the fatigue life of the bearing housing 38 is also improved.
- the area of the first sealing surface S1 becomes narrower, the contact surface pressure applied per unit area of the first sealing surface S1 increases, so the sealing performance of the first sealing surface S1 can be improved.
- FIG. 8 is a vertical cross-sectional view (first cross section) showing an exhaust turbine portion 34c according to still another embodiment.
- the point To1 is the radially outermost position (first fastening outer end ).
- a point To2 indicates the radially outermost position (second fastening outer end) of the contact surface (second pressure surface Ps2) between the second fastening portion 74 and the back surface 64a of the second flange portion 64 .
- the radially inner one is referred to as the fastening outer end To0 (the second fastening outer end To2 corresponds to this embodiment).
- the average value At2 of the thickness of the second flange portion 64 in the axial direction is equal to that of the first flange It is smaller than the average thickness At1 in the axial direction of the portion 62 (At2 ⁇ At1).
- the fastening inner end Ti ⁇ b>0 is formed on the first flange portion 62 .
- the second fastening inner end Ti2 is located radially inward of the first fastening inner end Ti1, and the second pressing surface Ps2 on the side of the second fastening portion 74 is closer to the first pressing surface Ps1 on the side of the first fastening portion 72. It extends more radially inward.
- the average thickness At2 of the second flange portion 64 ⁇ (the average thickness At1 of the first flange portion 62).
- the second sealing surface S2 which is formed between the second flange portion 64 and the outer peripheral edge portion 68a of the heat shield plate 68, is likely to receive a radially uneven load.
- the second pressure surface Ps2 extends radially inward on the second flange portion 64 side, the fastening force of the fastening member 66 is applied from the first flange portion 62 to the radially inner region.
- the first pressure surface Ps1 does not extend to the radially inner region like the second pressure surface Ps2. does not extend radially inward. Therefore, a non-uniform radial load is likely to be applied to the first sealing surface S1.
- the average thickness value At1 of the first flange portion 62 is greater than the average thickness value At2 of the second flange portion 64, the deformation of the second flange portion 64 is less likely to occur. Accordingly, a uniform load L1 is applied to the first seal surface S1 on the first flange portion 62 side as well, rather than a radially uneven load. In this way, the loads applied to the sealing surfaces S1 and S2 of both the first flange portion 62 and the second flange portion 64 are equalized in the radial direction, so that the sealing performance can be maintained.
- the average thickness value At1 of the first flange portion 62 is greater than the average thickness value At2 of the second flange portion 64, and the fastening inner end Ti0 is present in the first flange portion 62.
- the average thickness value At2 of the second flange portion 64 is greater than the average thickness value At1 of the first flange portion 62, and the fastening inner end Ti0 exists in the second flange portion 64. You may do so.
- each of the sealing surfaces S1 and S2 is sufficiently radially outwardly spaced from the rear tongue 58 to be substantially immune to uneven thermal deformation of the rear tongue 58 . Therefore, the sealing performance of these sealing surfaces S1 and S2 can be maintained.
- the turbine housing 42 has an extension portion 90 extending axially from the outer peripheral surface of the scroll portion 44 toward the first flange portion 62 . including.
- the thickness t1 of the minimum thickness portion 92 where the thickness in the radial direction of the extension portion 90 is the smallest, and the distance along the axial direction between the minimum thickness portion 92 and the first seal inner end Si1 t2 is configured to satisfy the relationship t1 ⁇ t2.
- the relationship t1 ⁇ t2 holds, and the first sealing surface S1 is distanced from the minimum thickness portion 92. Therefore, the influence of non-uniform thermal deformation of the rear tongue portion 58 less likely to receive Therefore, the sealing performance of the first sealing surface S1 can be maintained.
- An exhaust turbine comprises a rotating shaft (36), a turbine wheel (40) attached to one end of the rotating shaft (36), and a turbine housing that houses the turbine wheel (40).
- a bearing housing (38) provided adjacent to the turbine housing (42); a first flange portion (62) of the turbine housing (42); A fastening member (66) for fastening the second flange portion (64) of the bearing housing (38), and a heat shield plate disposed between the turbine housing (42) and the bearing housing (38) a heat shield plate (68) having an outer peripheral edge (68a) of the heat shield plate sandwiched between the first flange portion (62) and the second flange portion (64); In a first cross section along the axial direction of the rotating shaft (36) passing through the center (O) of the rotating shaft (36) and the tongue (58) of the turbine housing (42), The innermost position in the radial direction of the rotating shaft (36) in the contact surface (S1) between the first flange (62) and the outer peripheral edge (68a) of the heat shield (68) innermost in the radial direction of the contact surface (S2) between the first seal inner end (Si1) and the second flange portion (64) and the outer peripheral edge portion (68
- the seal inner end (Si0) positioned radially outward of the rotating shaft (36) of the first seal inner end (Si1) and the second seal inner end (Si2) (Seal surfaces (S1, S2) are provided on both sides of the outer peripheral edge (68a) of the heat shield (68) between the outer peripheral edge (68a) of the heat shield (68) and both flanges (62, 64). is formed radially outward of the tongue (58). Therefore, the sealing surfaces (S1, S2) are formed on both sides of the outer peripheral edge (68a) of the heat shield (68), and the radial region where the sealing performance is most exhibited is the uneven heat distribution of the tongue (58).
- An exhaust turbine according to another aspect is the exhaust turbine according to 1), wherein the fastening member (66) is arranged on the outer peripheral side of the first flange portion (62) and the second flange portion (64).
- a first fastening portion (72) extending inward in the radial direction from the base portion (70) along the back surface (62a) of the first flange portion (62);
- a second fastening portion (74) extending inward in the radial direction along the back surface (64a) of the second flange portion (64) from the base portion (70), , the outermost position in the radial direction of the contact surface (S1) between the first flange portion (62) and the outer peripheral edge portion (68a) of the heat shield plate (68) is defined as the first seal outer end.
- the innermost position in the radial direction of the contact surface (S1) between the fastening portion (72) and the rear surface (62a) of the first flange portion (62) is referred to as a first fastening inner end (Ti1)
- the innermost position in the radial direction of the contact surface (S2) between the second fastening portion (74) and the rear surface (64a) of the second flange portion (64) is referred to as a second fastening inner end (Ti2)
- the seal outer end (So0) is It is arranged inside the fastening inner end (Ti0) in the radial direction.
- the seal outer end (So0) (between the outer peripheral edge (68a) of the heat shield (68) and both the flanges (62, 64)) allows the outer edge of the heat shield (68).
- the seal area (Rhs) where the heat shield plate (68) exhibits the best sealing performance in the radial direction is the area (Rht) where both the flange portions (62, 64) receive the most fastening force from the fastening member (66). position away from As a result, even if the fastening force of the fastening member (66) applied to both flange portions (62, 64) is uneven in the circumferential direction of the rotating shaft (36), the fastening force applied to the seal area (Rhs) is distributed in the circumferential direction. Since the bias in is alleviated, the sealing performance of both sealing surfaces (S1, S2) can be ensured.
- one of the first flange portion (62) and the second flange portion (64) has a , outward in the radial direction of the outer peripheral edge (68a) of the heat shield (68) toward the other of the first flange (62) and the second flange (64).
- At least one inner convex portion (80) is formed to protrude through the other flange portion, and the outer peripheral surface of the inner convex portion (80) ( 80a) and at least one outer protrusion (82) with which its inner peripheral surface (82a) abuts is formed.
- the inner convex portion (80) and the outer convex portion (82) are formed radially outside the outer peripheral edge portion (68a) of the heat shield (68). Therefore, the sealing performance between the first flange portion (62) and the second flange portion (64) is improved.
- the turbine housing (42) and the bearing housing (38) are radially positioned by the inner projection (80) and the outer projection (82), axial misalignment between these housings can be prevented.
- the at least one outer convex portion (82) is formed on the first flange portion (62).
- the outer protrusion (82) is thermally deformed by the heat of the exhaust gas (e).
- the bearing housing (38) is not affected by the thermal deformation of the outer projection (82). Therefore, since the influence of thermal deformation of the turbine housing (42) on the bearing housing (38) is alleviated, the second flange (64) on the bearing housing (38) side and the heat shield (68) form A decrease in sealing performance of the sealing surface (S2) is suppressed.
- An exhaust turbine according to still another aspect is the exhaust turbine according to any one of 1) to 4), wherein the first flange portion (62) and the heat shield plate (68) are separated from each other in the first cross section.
- the length of the contact surface (S1) with the outer peripheral edge (68a) is determined by the contact surface (S1) between the second flange (64) and the outer peripheral edge (68a) of the heat shield (68) S2) less than the length.
- the area of the contact surface (S1) between the first flange portion (62) and the outer peripheral edge portion (68a) of the heat shield plate (68) is the same as that of the second flange portion (64). Since the area of the contact surface (S2) with the outer peripheral edge (68a) of the heat plate (68) is smaller than the area of the abutment surface (S2), the contact surface (S2) from the first flange (62) through the outer peripheral edge (68a) of the heat shield (68) heat transfer to the bearing housing (38) is suppressed. As a result, the temperature rise of the bearing housing (38) is suppressed, and the thermal deformation of the bearing housing (38) is suppressed. Decrease can be suppressed. Moreover, since the thermal stress generated in the bearing housing (38) due to temperature rise is suppressed, the fatigue life of the bearing housing (38) is also improved.
- An exhaust turbine according to still another aspect is the exhaust turbine according to 2), wherein in the first cross section, the first fastening portion (72) and the back surface (62a) of the first flange portion (62) The outermost position in the radial direction of the contact surface (Ps1) of the first fastening outer end (To1), the second fastening portion (74) and the back surface (64a) of the second flange portion (64) The outermost position in the radial direction of the contact surface (Ps2) with the second fastening outer end (To2), the first fastening outer end (To1), and the second fastening outer end (To2)
- the fastening region (Rht) between the fastening inner end (Ti0) and the fastening outer end (To0) in the radial direction In the above, the average thickness (At) of one of the first flange portion (62) and the second flange
- the average thickness (At) of one of the first flange (62) and the second flange (64) in the axial direction is the average thickness of the other flange. Since it is smaller than the value (At), one flange portion is deformed more than the other flange portion by the fastening force of the fastening member (66).
- the fastening inner end (Ti0) is formed on the other flange portion, the radially inner edge of the region where the fastening force of the fastening member (66) exerts on the other flange portion side is , outside the radially inner end of the region where the fastening force of the fastening member (66) is exerted. Therefore, the sealing surface formed between the other flange portion and the outer peripheral edge portion (68a) of the heat shield plate (68) is likely to be subjected to a radially uneven load from the fastening member (66).
- the fastening force applied from the fastening member (66) causes the other flange portion to Deformation is less likely to occur than one flange. Therefore, the sealing performance of the sealing surface on the other flange portion side is ensured.
- An exhaust turbine according to still another aspect is the exhaust turbine according to any one of 1) to 6), wherein the center of the rotating shaft (36) and the tongue (58) are in the first cross section.
- the radial distance Ra and the radial distance Rb between the center (O) of the rotating shaft (36) and the seal inner end (Si0) satisfy the relationship of 1.1Ra ⁇ Rb.
- the sealing surfaces (S1, S2 ) are radially well spaced outwardly from the tongue (58) so that they are substantially immune to uneven thermal deformation of the tongue (58), so that these sealing surfaces ( The sealing performance of S1, S2) can be maintained.
- the turbine housing (42) extends from the outer peripheral surface of the scroll portion (44) to the first flange portion. (62) along the axial direction (O), and in the first cross section, the radial thickness of the extending portion (90) is the smallest.
- the thickness t1 of the minimum thickness portion (92) and the distance t2 along the axial direction (O) between the minimum thickness portion (92) and the first seal inner end (Si1) are such that t1 ⁇ It satisfies the relation of t2.
- the heat flux generated in the turbine housing (42) by the heat transferred from the exhaust gas (e) to the turbine housing (42) has the highest density per unit area at the minimum thickness portion (92).
- the axial distance t2 between the minimum thickness portion (92) and the second seal inner end (Si2) is equal to or greater than the thickness t1 of the minimum thickness portion (92)
- the first flange portion ( 62) and the outer peripheral edge (68a) of the heat shield (68) is less susceptible to uneven thermal deformation of the tongue (58), resulting in improved sealing performance. can be maintained.
- the tongue portion (58) formed in the turbine housing (42) through which the exhaust gas (e) flows is provided near the tongue portion (58).
- the first flange portion (62) of the turbine housing (42) and the second flange portion (64) of the bearing housing (38) and the heat shield plate (68) and each sealing surface (S1, S2) can maintain high sealing performance.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Supercharger (AREA)
Abstract
Description
特許文献1及び2には、タービンハウジングと軸受ハウジングとの当接部に形成されたフランジ部の間に遮熱板を挟み込んだ状態で、横断面が截頭V形をしたリング状のカップリング部材を用いて、タービンハウジング及び軸受ハウジングに形成されたフランジ部を締結する締結方法が開示されている。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一つの構成要素を「備える」、「具える」、「具備する」、「含む」、又は「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
図1において、過給機30を備えたエンジン10は、エンジン本体14の内部に、例えば4つのシリンダ12a、12b、12c及び12dを有しており、これら4つのシリンダには、給気マニホールド18を介して圧縮空気が供給される。この圧縮空気は過給機30の一部を構成するコンプレッサ部32から供給される。コンプレッサ部32には燃料用空気aが供給され、燃料用空気aはコンプレッサ部32で圧縮され、圧縮された空気は給気管16及び給気マニホールド18を介して各シリンダ12a~12dに供給される。各シリンダ12a~12dから排出される排ガスeは、排気マニホールド20及び排気管22を介して過給機30の一部を構成する排気タービン部34に送られ、タービンハウジング42の内部に収容されたタービンホイール40を回転させる。
本実施形態では、第1シール面S1の径方向外側端(後述する第1シール外側端So1)と第2シール面S2の径方向外側端(後述する第2シール外側端So2)とは径方向においてほぼ同じ位置にあるため、第1シール内側端Si1と第1シール外側端So1との間の領域が高シール圧領域Rhsとなる。
なお、本実施形態に係る構成は、最低限リア側舌部58が形成される第1断面付近の領域のみに適用され、必ずしも周方向全域に適用される必要はない。
これらの図において、符号54aはリア側排ガス流路54を形成するスクロール部44の隔壁面のうち、他方側(矢印c方向側)に位置する隔壁面を示し、符号45aは、リア側排ガス流路54とフロント側排ガス流路56とを区画する隔壁45のうちのリア側排ガス流路54に面する隔壁面である。符号59は排ガスeの流れ方向における下流側端を示し、符号Tnは、リア側舌部58の径方向における位置を決める際の基準となる基準線を示し、基準線Tnの位置は排ガスeの保有熱がリア側舌部58を介してタービンハウジング42に伝わる際に、熱流束が多くなる部位という観点から定められている。本実施形態において、リア側舌部58の径方向位置は、基準線Tnの位置を基準としていると言うことができる。
図5Aに図示されたリア側舌部58bにおいて、下流側端59は、排ガスeの流れ方向に対しリア側排ガス流路54の幅方向全域で同じ位置にあり、基準線Tnは下流側端59を通るように定められている。即ち、下流側端59は基準線Tnに一致している。
図5Bに図示されているリア側舌部58cにおいて、下流側端59は、両隔壁面45a及び54aで排ガスeの流れ方向最上流側の点X及びYに位置し、中間点Mで排ガスeの流れ方向最下流側に位置する放物線状の形状を有し、基準線Tnは、リア側舌部58cの最上流側位置(点X及びY)を通るように定められている。即ち、基準線Tnは、排ガスeの流れ方向に対して直交する方向(リア側排ガス流路54の幅方向)を有し、下流側端59の排ガスeの流れ方向最上流側位置を通る線である。
そして、第1シール外側端So1及び第2シール外側端So2の内、径方向において内側に位置する方をシール外側端So0とする。本実施形態では、第1シール外側端So1と第2シール外側端So2とは、径方向でほぼ同じ位置にあるため、第1シール外側端So1又は第2シール外側端So2がシール外側端So0に該当する。
そして、第1締結内側端Ti1及び第2締結内側端Ti2の内の径方向で外側に位置する方を締結内側端Ti0とした場合に、シール外側端So0が締結内側端Ti0よりも径方向内側に配置される。
図6に図示される実施形態では、第1締結内側端Ti1と第2締結内側端Ti2とは、径方向においてほぼ同じ位置にあるため、第1締結内側端Ti1又は第2締結内側端Ti2が締結内側端Ti0となる。ここで、「径方向において同じ位置」とは、回転軸36の中心軸線Oに直交する直線上における中心軸線Oからの距離が等しくなる位置であることを意味する。また、第1加圧面Ps1の径方向外側端(後述する第1締結外側端To1)は第2加圧面Ps2の径方向外側端(後述する第2締結外側端To2)より径方向において内側にあるため、第1加圧面Ps1が高締結圧領域Rhtを形成する。
一実施形態では、基部70は、周方向の一部に合口(開口)が形成され、合口を挟んで基部70の周方向両端部に夫々フランジ部(不図示)が設けられる。これらフランジ部は径方向外側に突出し、互いに対向するように配置される。そして、ボルトなどの締付具によってこれらフランジ部を互いに接近させることで、締結部材66が第1フランジ部62及び第2フランジ部64を締結する。
また、別な実施形態(不図示)では、締結部材は、軸線方向に沿って延在する基部と、該基部の両端部から軸線方向と直交する方向に沿って径方向内側へ延在する第1締結部及び第2締結部とを有する。この実施形態によれば、第1締結部及び第2締結部を両フランジ部62及び64の背面62a及び64aに沿わせる形状ではないため、基部に対する第1締結部及び第2締結部の角度を両フランジ部の背面62a及び64aに適合するように加工する必要がない。従って、加工が容易になる。
別な実施形態では、内側凸部80は第1フランジ部62から第2フランジ部64に向かって突出し、外側凸部82は第2フランジ部64から第1フランジ部62に向かって突出するように形成してもよい。
この実施形態によれば、シール面S1及びS2の各々は、径方向外側にリア側舌部58から充分離れるため、実質的にリア側舌部58の不均一な熱変形の影響を受けなくなる。そのため、これらシール面S1及びS2のシール性能を保持できる。
12a、12b、12c、12d シリンダ
14 エンジン本体
16 給気管
18 給気マニホールド
20 排気マニホールド
22 排気管
30 過給機
32 コンプレッサ部
32a コンプレッサハウジング
32b コンプレッサホイール
34(34a、34b、34c) 排気タービン部
36 回転軸
38 軸受ハウジング
40 タービンホイール
42 タービンハウジング
44 スクロール部
45 隔壁
45a 隔壁面
46 排ガス導入部
48 ブレード
50 排ガス導入通路
52 軸受
54 リア側排ガス流路
56 フロント側排ガス流路
54a 隔壁面
58 リア側舌部
59 下流側端
60 フロント側舌部
62 第1フランジ部
62a 背面
64 第2フランジ部
64a 背面
65 凸部
65b 端面
66(66a、66b、66c) 締結部材
68 遮熱板
68a 外周縁部
70(70a、70b) 基部
72 第1締結部
74 第2締結部
80 内側凸部
80a 外周面
82 外側凸部
82a 内周面
82b 端面
90 延在部
92 最小肉厚部
L1、L2 荷重
D 舌部の下側部位
M 中間点
O 中心軸線
Ps1 第1加圧面
Ps2 第2加圧面
Rhs 高シール圧領域
Rht 高締結圧領域
S1 第1シール面
S2 第2シール面
Si1 第1シール内側端
Si2 第2シール内側端
Si0 シール内側端
So1 第1シール外側端
So2 第2シール外側端
So0 シール外側端
Ti1 第1締結内側端
Ti2 第2締結内側端
Ti0 締結内側端
Tn 舌部の基準線
To1 第1締結外側端
To2 第2締結外側端
To0 締結外側端
a 燃料用空気
Claims (9)
- 回転軸と、
前記回転軸の一端側に取り付けられたタービンホイールと、
前記タービンホイールを収容するタービンハウジングであって、排ガスを前記タービンホイールに導入するスクロール部が前記タービンホイールの外周側に形成されたタービンハウジングと、
前記回転軸を支持する軸受を収容する軸受ハウジングであって、前記タービンハウジングに隣接して設けられる軸受ハウジングと、
前記タービンハウジングの第1フランジ部と、前記軸受ハウジングの第2フランジ部とを締結するための締結部材と、
前記タービンハウジングと前記軸受ハウジングとの間に配置される遮熱板であって、前記遮熱板の外周縁部が前記第1フランジ部と前記第2フランジ部との間に挟持される遮熱板と、を備え、
前記回転軸の軸線方向に沿った第1断面であって前記回転軸の中心および前記タービンハウジングの舌部を通過する第1断面において、前記第1フランジ部と前記遮熱板の前記外周縁部との当接面の内の前記回転軸の径方向における最も内側の位置を第1シール内側端、前記第2フランジ部と前記遮熱板の前記外周縁部との当接面の内の前記径方向における最も内側の位置を第2シール内側端、前記第1シール内側端および前記第2シール内側端の内の前記径方向において外側に位置する方をシール内側端とした場合に、前記シール内側端が前記舌部よりも前記径方向における外側に配置される、
排気タービン。 - 前記締結部材は、
前記第1フランジ部および前記第2フランジ部の外周側に配置される基部と、
前記基部から前記第1フランジ部の背面に沿って前記径方向における内側に向かって延在する第1締結部と、
前記基部から前記第2フランジ部の背面に沿って前記径方向における内側に向かって延在する第2締結部と、を含み、
前記第1断面において、前記第1フランジ部と前記遮熱板の前記外周縁部との当接面の内の前記径方向における最も外側の位置を第1シール外側端、前記第2フランジ部と前記遮熱板の前記外周縁部との当接面の内の前記径方向における最も外側の位置を第2シール外側端、前記第1シール外側端および前記第2シール外側端の内の前記径方向において内側に位置する方をシール外側端とし、
前記第1締結部と前記第1フランジ部の前記背面との当接面の内の前記径方向における最も内側の位置を第1締結内側端、前記第2締結部と前記第2フランジ部の前記背面との当接面の内の前記径方向における最も内側の位置を第2締結内側端、前記第1締結内側端および前記第2締結内側端の内の前記径方向において外側に位置する方を締結内側端とした場合に、
前記シール外側端が前記締結内側端よりも前記径方向における内側に配置される、
請求項1に記載の排気タービン。 - 前記第1フランジ部および前記第2フランジ部の内の一方のフランジ部には、前記遮熱板の前記外周縁部の前記径方向における外側に、前記第1フランジ部および前記第2フランジ部の内の他方のフランジ部に向かって突出する少なくとも1つの内側凸部が形成され、前記他方のフランジ部には、前記径方向における前記内側凸部の外側に、前記内側凸部の外周面とその内周面が当接する少なくとも1つの外側凸部が形成される、
請求項1又は2に記載の排気タービン。 - 前記少なくとも1つの外側凸部は、前記第1フランジ部に形成される、
請求項3に記載の排気タービン。 - 前記第1断面において、前記第1フランジ部と前記遮熱板の前記外周縁部との当接面の長さは、前記第2フランジ部と前記遮熱板の前記外周縁部との当接面の長さより小さい、
請求項1乃至4の何れか一項に記載の排気タービン。 - 前記第1断面において、前記第1締結部と前記第1フランジ部の背面との当接面の内の前記径方向における最も外側の位置を第1締結外側端、前記第2締結部と前記第2フランジ部の背面との当接面の内の前記径方向における最も外側の位置を第2締結外側端、前記第1締結外側端および前記第2締結外側端の内の前記径方向において内側に位置する方を締結外側端とした場合に、
前記径方向における前記締結内側端と前記締結外側端との間の締結領域において、前記第1フランジ部および前記第2フランジ部の内の一方のフランジ部の前記軸線方向における肉厚の平均値が、前記第1フランジ部および前記第2フランジ部の内の他方のフランジ部の前記軸線方向における肉厚の平均値より小さく、かつ、
前記締結内側端は、前記他方のフランジ部に形成される、
請求項2に記載の排気タービン。 - 前記第1断面において、前記回転軸の中心と前記舌部との前記径方向の距離Raと、前記回転軸の中心と前記シール内側端との前記径方向の距離Rbとは、1.1Ra≦Rbの関係を満たす、
請求項1乃至6の何れか一項に記載の排気タービン。 - 前記タービンハウジングは、前記スクロール部の外周面から前記第1フランジ部に向かって前記軸線方向に沿って延在する延在部を含み、
前記第1断面において、前記延在部における前記径方向における肉厚が最小となる最小肉厚部の肉厚t1と、前記最小肉厚部と前記第1シール内側端との前記軸線方向に沿った距離t2とは、t1≦t2の関係を満たす、
請求項1乃至7の何れか一項に記載の排気タービン。 - 請求項1乃至8の何れか一項に記載の排気タービンと、
前記タービンホイールに対して前記軸受ハウジングを介して前記回転軸の他端側に取り付けられたコンプレッサホイールと、
前記コンプレッサホイールを収容するコンプレッサハウジングと、をさらに備える、
過給機。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112022006047.6T DE112022006047T5 (de) | 2022-02-28 | 2022-02-28 | Abgasturbine und Auflader |
CN202280092375.8A CN118742716A (zh) | 2022-02-28 | 2022-02-28 | 排气涡轮及增压器 |
US18/840,612 US20250198304A1 (en) | 2022-02-28 | 2022-02-28 | Exhaust turbine and supercharger |
PCT/JP2022/008207 WO2023162199A1 (ja) | 2022-02-28 | 2022-02-28 | 排気タービン及び過給機 |
JP2024502721A JPWO2023162199A1 (ja) | 2022-02-28 | 2022-02-28 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/008207 WO2023162199A1 (ja) | 2022-02-28 | 2022-02-28 | 排気タービン及び過給機 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023162199A1 true WO2023162199A1 (ja) | 2023-08-31 |
Family
ID=87765211
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/008207 WO2023162199A1 (ja) | 2022-02-28 | 2022-02-28 | 排気タービン及び過給機 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20250198304A1 (ja) |
JP (1) | JPWO2023162199A1 (ja) |
CN (1) | CN118742716A (ja) |
DE (1) | DE112022006047T5 (ja) |
WO (1) | WO2023162199A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007113501A (ja) * | 2005-10-21 | 2007-05-10 | Mitsubishi Heavy Ind Ltd | 排気ターボ式過給機 |
WO2015058839A1 (de) * | 2013-10-21 | 2015-04-30 | Ihi Charging Systems International Gmbh | Ein abgasturbolader welcher einen ersten und zweiten gehäuseabschnitt beinhaltet, wobei die flaschverbindung zwischen den gehäusen über gewinkelte flächen realisiert wird |
JP2015521713A (ja) * | 2012-06-29 | 2015-07-30 | バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフトBayerische Motoren Werke Aktiengesellschaft | ターボチャージャ |
WO2019087279A1 (ja) * | 2017-10-31 | 2019-05-09 | 三菱重工エンジン&ターボチャージャ株式会社 | タービン及びこれを備えたターボチャージャ |
JP2020118061A (ja) * | 2019-01-22 | 2020-08-06 | 三菱重工エンジン&ターボチャージャ株式会社 | 回転機械のケーシング及び回転機械 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3377587D1 (en) * | 1982-05-28 | 1988-09-08 | Holset Engineering Co | A variable inlet area turbine |
US5087176A (en) * | 1984-12-20 | 1992-02-11 | Allied-Signal Inc. | Method and apparatus to provide thermal isolation of process gas bearings |
WO2002006636A1 (fr) * | 2000-07-19 | 2002-01-24 | Honeywell Garrett Sa | Turbocompresseur a ailettes coulissantes avec ailettes graduees |
GB0227473D0 (en) * | 2002-11-25 | 2002-12-31 | Leavesley Malcolm G | Variable turbocharger apparatus with bypass apertures |
JP2009167971A (ja) | 2008-01-18 | 2009-07-30 | Ihi Corp | ハウジング締結方法及び過給機 |
JP2012117483A (ja) | 2010-12-02 | 2012-06-21 | Ihi Corp | 固定翼式ターボチャージャ |
-
2022
- 2022-02-28 JP JP2024502721A patent/JPWO2023162199A1/ja active Pending
- 2022-02-28 CN CN202280092375.8A patent/CN118742716A/zh active Pending
- 2022-02-28 WO PCT/JP2022/008207 patent/WO2023162199A1/ja active Application Filing
- 2022-02-28 DE DE112022006047.6T patent/DE112022006047T5/de active Pending
- 2022-02-28 US US18/840,612 patent/US20250198304A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007113501A (ja) * | 2005-10-21 | 2007-05-10 | Mitsubishi Heavy Ind Ltd | 排気ターボ式過給機 |
JP2015521713A (ja) * | 2012-06-29 | 2015-07-30 | バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフトBayerische Motoren Werke Aktiengesellschaft | ターボチャージャ |
WO2015058839A1 (de) * | 2013-10-21 | 2015-04-30 | Ihi Charging Systems International Gmbh | Ein abgasturbolader welcher einen ersten und zweiten gehäuseabschnitt beinhaltet, wobei die flaschverbindung zwischen den gehäusen über gewinkelte flächen realisiert wird |
WO2019087279A1 (ja) * | 2017-10-31 | 2019-05-09 | 三菱重工エンジン&ターボチャージャ株式会社 | タービン及びこれを備えたターボチャージャ |
JP2020118061A (ja) * | 2019-01-22 | 2020-08-06 | 三菱重工エンジン&ターボチャージャ株式会社 | 回転機械のケーシング及び回転機械 |
Also Published As
Publication number | Publication date |
---|---|
DE112022006047T5 (de) | 2025-03-06 |
CN118742716A (zh) | 2024-10-01 |
JPWO2023162199A1 (ja) | 2023-08-31 |
US20250198304A1 (en) | 2025-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8683806B2 (en) | Chamber-bottom baffle, combustion chamber comprising same and gas turbine engine fitted therewith | |
US8616007B2 (en) | Structural attachment system for transition duct outlet | |
JP6126246B2 (ja) | タービンハウジング | |
US6533542B2 (en) | Split ring for gas turbine casing | |
US6935416B1 (en) | Heat exchanger | |
JP5225769B2 (ja) | チャンバ端部壁熱遮蔽デフレクタを含む燃焼チャンバおよびそれを備えるガスタービンエンジン | |
US6192975B1 (en) | Heat exchanger | |
CN106968800A (zh) | 弯曲密封件及组装燃气涡轮发动机的方法 | |
US12305539B2 (en) | Turbine | |
WO2020213358A1 (ja) | タービンハウジングおよび過給機 | |
WO2023162199A1 (ja) | 排気タービン及び過給機 | |
JP7240490B2 (ja) | ターボチャージャのシール構造およびターボチャージャ | |
CN110520607B (zh) | 涡轮机以及具有该涡轮机的涡轮增压器 | |
WO1998016787A1 (fr) | Echangeur de chaleur | |
US8479524B2 (en) | Combustion chamber arrangement for operating a gas turbine | |
JP7084543B2 (ja) | タービンハウジングおよびターボチャージャ | |
US11162381B2 (en) | Turbocharger | |
US9803487B2 (en) | Converging flow joint insert system at an intersection between adjacent transitions extending between a combustor and a turbine assembly in a gas turbine engine | |
US9771813B2 (en) | Converging flow joint insert system at an intersection between adjacent transitions extending between a combustor and a turbine assembly in a gas turbine engine | |
WO2019097947A1 (ja) | ガスタービンの燃焼筒及び燃焼器並びにガスタービン | |
JP7710111B2 (ja) | ガスタービン静翼及びガスタービン | |
JP3685888B2 (ja) | 熱交換器 | |
JP2024106584A (ja) | 可変容量型過給機 | |
CN119301346A (zh) | 具有搭接的密封部分的密封环和具有这种密封环的定子组件 | |
WO2019230994A1 (ja) | ミキシングコネクタ及びエンジン |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22928725 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024502721 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112022006047 Country of ref document: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18840612 Country of ref document: US Ref document number: 202280092375.8 Country of ref document: CN |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22928725 Country of ref document: EP Kind code of ref document: A1 |
|
WWP | Wipo information: published in national office |
Ref document number: 112022006047 Country of ref document: DE |
|
WWP | Wipo information: published in national office |
Ref document number: 18840612 Country of ref document: US |