WO2023162188A1 - Signal processing device, signal processing method, and radar device - Google Patents

Signal processing device, signal processing method, and radar device Download PDF

Info

Publication number
WO2023162188A1
WO2023162188A1 PCT/JP2022/008107 JP2022008107W WO2023162188A1 WO 2023162188 A1 WO2023162188 A1 WO 2023162188A1 JP 2022008107 W JP2022008107 W JP 2022008107W WO 2023162188 A1 WO2023162188 A1 WO 2023162188A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
dimensional
radar
phase error
unit
Prior art date
Application number
PCT/JP2022/008107
Other languages
French (fr)
Japanese (ja)
Inventor
尭之 北村
聡 影目
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023570126A priority Critical patent/JP7446548B2/en
Priority to PCT/JP2022/008107 priority patent/WO2023162188A1/en
Publication of WO2023162188A1 publication Critical patent/WO2023162188A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00

Definitions

  • the present disclosure relates to a signal processing device, a signal processing method, and a radar device.
  • Non-Patent Document 1 there is a radar device (hereinafter referred to as "conventional radar device”) that is placed in a place where a security check is required and detects prohibited items possessed by a subject to be inspected.
  • conventional radar devices for example, after transmitting radio waves in the millimeter wave band toward an object to be inspected, the reflected wave, which is the radio wave after being reflected by the object, is received, and based on the received signal of the reflected wave, the object There is a radar device that generates a three-dimensional radar image of (see, for example, Non-Patent Document 1).
  • the radar device disclosed in Non-Patent Document 1 includes a plurality of transmitting antennas and a plurality of receiving antennas.
  • the radar apparatus employs a TDM (Time Division Multiplexing) method for switching, among a plurality of transmitting antennas, transmitting antennas for transmitting radio waves in a time division manner. Further, the radar device increases the resolution of the three-dimensional radar image by coherently adding received signals of reflected waves of radio waves transmitted from a plurality of transmitting antennas.
  • TDM Time Division Multiplexing
  • Non-Patent Document 1 if the object to be inspected moves while the transmitting antennas are switched, the relative azimuth direction between the respective transmitting antennas and the object to be inspected when receiving the reflected waves. Since the positions are different from each other, the received signals of the reflected waves cannot be coherently added. If the received signals of the reflected waves cannot be coherently added, blurring may occur in the three-dimensional radar image generated by the radar device. Therefore, the radar apparatus has a problem that an object that moves while the transmission antenna is being switched cannot be inspected.
  • the present disclosure has been made to solve the above problems, and provides a signal processing device and a signal processing method capable of generating a three-dimensional radar image of an inspection target while the inspection target is moving. with the aim of obtaining
  • the signal processing device After radio waves are transmitted from each of a plurality of transmitting antennas arranged in a row on the radar platform toward an inspection target that moves relatively to the radar platform, , The reflected waves of the radio waves from the test object are received by each of the plurality of receiving antennas arranged in a row at the installation position different from the installation position of the plurality of transmitting antennas, and the beat signal generated from the received signals of the reflected waves is obtained.
  • the signal processing device also includes a signal conversion unit that converts each beat signal acquired by the beat signal acquisition unit into a signal in a four-dimensional wavenumber space and outputs each signal in the four-dimensional wavenumber space; a phase error elimination unit that eliminates phase errors associated with differences between the installation positions of the plurality of transmitting antennas and the installation positions of the plurality of receiving antennas, which are contained in the respective output signals in the four-dimensional wavenumber space; and an image generation unit for generating a three-dimensional radar image of the inspection target from each signal in the four-dimensional wavenumber space after the phase error is eliminated by the elimination unit.
  • FIG. 1 is a configuration diagram showing a radar device including a signal processing device 13 according to Embodiment 1;
  • FIG. 1 is a configuration diagram showing a signal processing device 13 according to Embodiment 1;
  • FIG. 2 is a hardware configuration diagram showing hardware of the signal processing device 13 according to Embodiment 1.
  • FIG. 3 is a hardware configuration diagram of a computer when the signal processing device 13 is implemented by software, firmware, or the like;
  • FIG. FIG. 4 is an explanatory diagram showing an example of a transmission signal after initial phase setting by a phase control section 22-m; 4 is an explanatory diagram showing the relationship between the installation positions of transmitting antennas 31-1 to 31-M, the installation positions of receiving antennas 41-1 to 41-N, and the positions of targets to be inspected.
  • FIG. 4 is a schematic diagram showing the positional relationship between the horizontal directivity of an antenna and a target;
  • FIG. 2 is a schematic diagram showing how transmission signals are separated in the wavenumber domain by the DDM-MIMO system;
  • FIG. 4 is a schematic diagram showing a virtual two-dimensional antenna arrangement before transmission signal separation;
  • FIG. 4 is a schematic diagram showing a virtual two-dimensional antenna arrangement after transmission signal separation;
  • FIG. 4 is an explanatory diagram showing radio waves modulated by the TDM-MIMO system;
  • FIG. 4 is a schematic diagram showing a virtual two-dimensional antenna arrangement generated by the TDM-MIMO scheme; 4 is a flowchart showing a signal processing method, which is a processing procedure of the signal processing device 13 according to Embodiment 1; 4 is a schematic diagram showing the positional relationship between transmitting antennas 31-1 to 31-4 and receiving antennas 41-1 to 41-16 and a target.
  • FIG. 4 is an antenna layout diagram showing the layout of transmitting antennas 31-1 to 31-4 and receiving antennas 41-1 to 41-16.
  • FIG. 4 is an explanatory diagram showing a reproduced image on the xy plane of a point target whose z-coordinate position is 0; 9 is a flowchart showing a signal processing method, which is a processing procedure of the signal processing device 13 according to Embodiment 2; 10 is a flowchart showing a signal processing method, which is a processing procedure of the signal processing device 13 according to Embodiment 3.
  • FIG. 1 shows the relationship between the installation positions of transmitting antennas 31-1 to 31-M and receiving antennas 41-1 to 41-N mounted on each of a plurality of boards, and the position of a target to be inspected. It is an explanatory diagram.
  • FIG. 4 is an explanatory diagram showing an example of a transmission signal after initial phase setting by a phase control section 22-m; 10 is a flowchart showing a signal processing method, which is a processing procedure of the signal processing device 13 according to Embodiment 4;
  • FIG. 1 is a configuration diagram showing a radar device including a signal processing device 13 according to Embodiment 1.
  • FIG. 2 is a configuration diagram showing the signal processing device 13 according to the first embodiment.
  • FIG. 3 is a hardware configuration diagram showing hardware of the signal processing device 13 according to the first embodiment. The radar apparatus shown in FIG. ing.
  • the radar device shown in FIG. 1 will be described as a FMCW (Frequency Modulated Continuous Wave) radar device that continuously modulates the frequency of transmission radio waves.
  • the radar device according to the first embodiment is not limited to the FMCW type radar device.
  • An SFCW (Stepped Frequency Continuous Wave) type radar device may be used.
  • the received signal of the reflected wave can be reduced to the form of Equation (16) described later by preprocessing. can.
  • the radar signal processor 1 has a control section 11 , a data storage section 12 and a signal processing device 13 .
  • the control unit 11 outputs a VCO (Voltage Controlled Oscillator) control signal, a transmission control signal, and a phase control signal to the transmission signal generator 2, thereby controlling the operation timing of the transmission signal generator 2 and the like.
  • the control unit 11 outputs an A/D control signal to the A/D converter 6 to control the operation timing of the A/D converter 6 and the like.
  • the control unit 11 outputs a signal processing control signal to the signal processing device 13 to control operation timing and the like of the signal processing device 13 .
  • the data storage unit 12 includes, for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Non-volatile or volatile such as only memory) semiconductor memory, magnetic disk, flexible disk, optical disk, compact disk, mini disk, or DVD (Digital Versatile Disc).
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory flash memory
  • EPROM Erasable Programmable Read Only Memory
  • EEPROM Electrically Erasable Programmable Read Non-volatile or volatile such as only memory
  • semiconductor memory magnetic disk, flexible disk, optical disk, compact disk, mini disk, or DVD (Digital Versatile Disc).
  • the data storage unit 12 stores digital data output from the A/D converter 6 .
  • the signal processing device 13 includes a beat signal acquisition section 71, a signal conversion section 72, a phase error elimination section 73, and an image generation section 74, as shown in FIG.
  • the signal processing device 13 reproduces a three-dimensional radar image of the inspection target based on the digital data stored in the data storage unit 12 .
  • the inspected object is one that moves relative to the radar platform.
  • the radar platform implements a transmitter 3 and a receiver 4 respectively.
  • the transmission signal generator 2 includes a VCO 21, phase controllers 22-1 to 22-M, and power amplifiers 23-1 to 23-M.
  • M is an integer of 2 or more.
  • the VCO 21 Based on the VCO control signal output from the control unit 11, the VCO 21 generates a transmission signal whose frequency changes over time.
  • the VCO 21 outputs transmission signals to the phase control units 22-1 to 22-M and a distribution circuit 52, which will be described later.
  • the initial phases set by the phase controllers 22-1 to 22-M are different from each other.
  • the transmitter 3 has M transmitting antennas 31-1 to 31-M.
  • Each of the transmitting antennas 31-1 to 31-M is arranged in a row in a direction orthogonal to the azimuth direction of the inspection target and the vertical direction of the antenna installation plane on the radar platform.
  • the transmitting antennas 31-1 to 31-M are arranged in a straight line in orthogonal directions.
  • aligned in a line in an orthogonal direction does not mean that each of the transmitting antennas 31-1 to 31-M is strictly aligned in a straight line, and is within a range that poses no practical problem. It is a concept that includes things that are lined up on a straight line inside.
  • the radio wave associated with the transmission signal is, for example, a millimeter waveband radio wave.
  • Radio waves in the millimeter wave band have the property of penetrating the clothing of a person and the property of emitting a small amount of radiation to a person.
  • radio waves transmitted by the radar device are not limited to radio waves in the millimeter wave band, and may be radio waves other than in the millimeter wave band. Contraband items include, for example, knives or firearms.
  • the receiver 4 has N receiving antennas 41-1 to 41-N.
  • N is an integer of 2 or more.
  • Each of the receiving antennas 41-1 to 41-N is arranged in a line in a direction orthogonal to the azimuth direction of the inspection object and the vertical direction of the antenna installation plane on the radar platform.
  • the receiving antennas 41-1 to 41-N are arranged in a straight line in the orthogonal direction.
  • aligned in a line in an orthogonal direction does not mean that each of the receiving antennas 41-1 to 41-N is strictly aligned in a straight line. It is a concept that includes things that are lined up on a straight line inside.
  • the installation positions of the receiving antennas 41-1 to 41-N in the azimuth direction are different from the installation positions of the transmitting antennas 31-1 to 31-M in the azimuth direction.
  • the beat signal generator 5 includes LNAs 51-1 to 51-N, a distribution circuit 52, mixers 53-1 to 53-N and a filtering circuit .
  • the distribution circuit 52 distributes the transmission signal generated by the VCO 21 to N and outputs each of the distributed transmission signals to the mixers 53-n.
  • the filtering circuit 54 is implemented by, for example, a bandpass filter (hereinafter referred to as "BPF") and an amplifier.
  • BPF bandpass filter
  • the filtering circuit 54 filters the beat signal output from the mixer 53-n, and outputs the filtered beat signal to the A/D conversion circuit 61-n.
  • the A/D converter 6 includes N A/D conversion circuits 61-1 to 61-N.
  • the A/D conversion circuit 61-n A/D-converts the voltage value of the beat signal at a desired sampling frequency and a desired number of sampling points by controlling the operation timing by the A/D control signal.
  • the beat signal acquisition unit 71 is implemented by, for example, the beat signal acquisition circuit 81 shown in FIG.
  • the beat signal acquisition unit 71 acquires N pieces of digital data stored in the data storage unit 12 as N pieces of beat signals generated from the received signals of the reflected waves.
  • the beat signal acquisition unit 71 outputs N pieces of digital data to the signal conversion unit 72 .
  • the signal conversion unit 72 is implemented by, for example, the signal conversion circuit 82 shown in FIG.
  • the signal conversion unit 72 converts each beat signal acquired by the beat signal acquisition unit 71 into a signal in a four-dimensional wavenumber space. That is, the signal conversion unit 72 converts each beat signal into a signal in a four-dimensional wavenumber space, the dimension of the wavenumber of the radio wave, the dimension of the spatial wavenumber in the azimuth direction, and the M transmitting antennas 31-1 to 31-M. , and the spatial wavenumber dimension in the direction in which the N receiving antennas 41-1 to 41-N are arranged.
  • the signal conversion section 72 outputs each signal in the four-dimensional wavenumber space to the phase error elimination section 73 .
  • the phase error elimination unit 73 is realized by, for example, the phase error elimination circuit 83 shown in FIG.
  • the phase error canceller 73 acquires each signal in the four-dimensional wavenumber space from the signal converter 72 .
  • the phase error canceling unit 73 detects the difference between the installation positions of the transmitting antennas 31-1 to 31-M and the installation positions of the receiving antennas 41-1 to 41-N, which are included in the respective four-dimensional wave number space signals. This phase error is eliminated.
  • the phase error elimination unit 73 outputs each signal in the four-dimensional wavenumber space after phase error elimination to the image generation unit 74 .
  • the image generation unit 74 is implemented by, for example, the image generation circuit 84 shown in FIG.
  • the image generation unit 74 acquires each signal in the four-dimensional wavenumber space after phase error elimination from the phase error elimination unit 73 .
  • the image generator 74 generates a three-dimensional radar image of the inspection target from each signal in the four-dimensional wavenumber space after the phase error is eliminated.
  • each of the beat signal acquisition unit 71, the signal conversion unit 72, the phase error elimination unit 73, and the image generation unit 74 which are components of the signal processing device 13, is realized by dedicated hardware as shown in FIG. It assumes what will be done. That is, it is assumed that the signal processing device 13 is implemented by a beat signal acquisition circuit 81, a signal conversion circuit 82, a phase error elimination circuit 83, and an image generation circuit 84.
  • FIG. Each of the beat signal acquisition circuit 81, the signal conversion circuit 82, the phase error elimination circuit 83, and the image generation circuit 84 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, or an Application Specific Integrated Integrated Circuit (ASIC). Circuit), FPGA (Field-Programmable Gate Array), or a combination thereof.
  • ASIC Application Specific Integrated Integrated Circuit
  • the constituent elements of the signal processing device 13 are not limited to those realized by dedicated hardware, and the signal processing device 13 may be realized by software, firmware, or a combination of software and firmware. good too.
  • Software or firmware is stored as a program in a computer's memory.
  • a computer means hardware that executes a program, for example, a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor). do.
  • FIG. 4 is a hardware configuration diagram of a computer when the signal processing device 13 is implemented by software, firmware, or the like.
  • a program for causing a computer to execute respective processing procedures in the beat signal acquisition unit 71, the signal conversion unit 72, the phase error elimination unit 73, and the image generation unit 74. is stored in memory 91 .
  • the processor 92 of the computer executes the program stored in the memory 91 .
  • FIG. 3 shows an example in which each component of the signal processing device 13 is implemented by dedicated hardware
  • FIG. 4 shows an example in which the signal processing device 13 is implemented by software, firmware, or the like.
  • this is only an example, and some components in the signal processing device 13 may be implemented by dedicated hardware, and the remaining components may be implemented by software, firmware, or the like.
  • the VCO 21 of the transmission signal generator 2 Based on the VCO control signal output from the control section 11, the VCO 21 of the transmission signal generator 2 generates a transmission signal whose frequency changes over time.
  • the transmission signal whose frequency changes over time may be an up-chirp signal whose frequency increases over time or a down-chirp signal whose frequency decreases over time. good too.
  • the VCO 21 outputs transmission signals to the phase controllers 22-1 to 22-M and the distribution circuit 52, respectively.
  • FIG. Based on the phase control signal output from the control section 11, the phase control section 22-m sets the initial phase of the transmission signal.
  • the initial phases set by the phase controllers 22-1 to 22-M are different from each other, as shown in FIG.
  • the phase controller 22-m outputs the transmission signal after initial phase setting to the power amplifier 23-m.
  • FIG. 5 is an explanatory diagram showing an example of a transmission signal after initial phase setting by the phase control section 22-m.
  • the horizontal axis indicates time, and the vertical axis indicates frequency.
  • M 4.
  • the initial phase rotation rate which is the initial phase of the transmission signal by the phase control section 22-1, is 0 [rad], and the initial phase rotation rate of the transmission signal by the phase control section 22-2 is ⁇ /2 [rad]. be.
  • the initial phase rotation rate of the transmission signal by the phase control section 22-3 is ⁇ [rad]
  • the initial phase rotation rate of the transmission signal by the phase control section 22-4 is ⁇ /2 [rad]. .
  • the DDM-MIMO system is a system in which radio waves are simultaneously transmitted from M transmission antennas 31-1 to 31-M, and M transmission signals are separated in the Doppler frequency domain.
  • the power amplifier 23-m amplifies the transmission signal after the initial phase setting with the amplification factor indicated by the transmission control signal output from the control section 11.
  • FIG. The power amplifier 23-m outputs the amplified transmission signal to the transmission antenna 31-m.
  • each of the transmitting antennas 31-1 to 31-M is arranged in a line in a direction orthogonal to the azimuth direction of the inspection target and the vertical direction of the antenna installation plane on the radar platform.
  • FIG. 6 is an explanatory diagram showing the relationship between the installation positions of the transmitting antennas 31-1 to 31-M, the installation positions of the receiving antennas 41-1 to 41-N, and the positions of targets to be inspected.
  • a target is a subject. Subjects include, for example, people or baggage.
  • the arrows indicate the direction of movement of the radar platform on which the transmitting antennas 31-1 to 31-M and receiving antennas 41-1 to 41-N are respectively installed.
  • the radar platform moves horizontally relative to the target.
  • the target is located at the origin O of the three-dimensional coordinate system, the radar platform is in uniform linear motion in the positive direction of the x-axis, and the target is in the negative direction of the x-axis. is in uniform linear motion.
  • the symbol " ⁇ " cannot be added above the letter "y” due to electronic filing, so it is written as y m hat.
  • Each of the M transmitting antennas 31-1 to 31-M and the N receiving antennas 41-1 to 41-N constitutes a vertical linear array.
  • the direction in which the transmitting antennas 31-1 to 31-M and the receiving antennas 41-1 to 41-N are arranged is parallel to the y-axis.
  • yT is the center coordinate in the y-axis direction in the vertical linear array having M transmitting antennas 31-1 to 31-M.
  • yR is the center coordinate in the y-axis direction in the vertical linear array having N receiving antennas 41-1 to 41-N.
  • y m hat is the y-axis direction offset distance from the center coordinate y T in the y-axis direction to the position where the transmitting antenna 31-m is installed.
  • y n ' is the y-axis direction offset distance from the center coordinate y R in the y-axis direction to the position where the receiving antenna 41-n is installed.
  • z0 is the z-coordinate of the radar platform in a three-dimensional coordinate system.
  • x' is the x-coordinate of the receiving antenna 41-n as the radar platform moves horizontally relative to the target.
  • x, y, z) is transmitted from the transmitting antenna 31-m and then received as a radio wave reflected at one point (x, y, z) on the target. It represents the radio wave round-trip distance until it returns to the antenna 41-n.
  • the radio waves transmitted from each of the transmission antennas 31-1 to 31-M are reflected by the targets to be inspected. Reflected radio waves, which are radio waves after being reflected by the target, are received by the receiving antennas 41-1 to 41-N, respectively.
  • the LNA 51-n outputs the amplified received signal to the mixer 53-n.
  • the distribution circuit 52 acquires the transmission signal from the VCO 21 and distributes the transmission signal to N pieces.
  • the distribution circuit 52 outputs each distributed transmission signal to the mixer 53-n.
  • FIG. The mixer 53 - n generates a beat signal by multiplying the received signal by the distributed transmission signal, and outputs the beat signal to the filtering circuit 54 .
  • the filtering circuit 54 acquires beat signals from each of the mixers 53-1 to 53-N.
  • the filtering circuit 54 performs filtering processing on each beat signal to suppress low frequency components and high frequency components that are included in each beat signal and are unnecessary for radar detection.
  • the filtering circuit 54 outputs each beat signal after filtering to the A/D conversion circuit 61-n.
  • the A/D conversion circuit 61-n acquires each filtered beat signal from the filtering circuit .
  • the A/D conversion circuit 61-n A/D-converts the voltage value of each beat signal according to the A/D control signal output from the control section 11.
  • FIG. The A/D conversion circuit 61-n outputs digital data, which are respective signals after A/D conversion, to the data storage section 12 of the signal processing device 13.
  • the data storage unit 12 stores each digital data.
  • the signal processing device 13 reproduces a three-dimensional radar image of the inspection object based on each digital data stored in the data storage unit 12 .
  • the transmission signal s TX (t) generated by the VCO 21 is subjected to FMCW modulation as shown in FIG. 5, and the transmission signal s TX (t) is represented by Equation (1) below.
  • f 0 is the sweep start frequency and ⁇ is the modulation slope.
  • t is time, and if the modulation time of the transmission signal s TX (t) is T, then 0 ⁇ t ⁇ T.
  • the transmission signal s TXm (x', t) is a signal obtained by changing only the initial phase of the transmission signal s TX (t).
  • ⁇ m is the initial phase rotation rate
  • a reflected wave which is a radio wave reflected at one point (x, y, z) on the target, is received by the receiving antenna 41-n.
  • the received signal s RXn,TXm (x', t) of the reflected wave output from the receiving antenna 41-n is represented by the following equation (3).
  • Equation (3) c is the speed of light.
  • LPF[] represents low-pass filtering in filtering circuit 54
  • j is the imaginary unit.
  • s TX+90deg (t) is a signal obtained by advancing the phase of the transmission signal s TXm (t) generated by the VCO 21 by 90 degrees.
  • IQ detection is assumed here, a similar beat signal s IFn,m (x', t) can be generated by Hilbert transform even in non-IQ detection.
  • the range of pseudo-time ⁇ is expressed as ⁇ F s /2 ⁇ F s /2, where F s is the sampling frequency of s RXn,TXm (x′, t).
  • the signal s n By performing an inverse fast Fourier transform on the phase-corrected pseudo-time signal s quasi-comp n,m (x′, ⁇ ), the signal s n, transformed into the wavenumber domain as shown in the following equation (7): m (x',k) is obtained.
  • the range N of the frequency f is expressed as ⁇ N/2F s ⁇ N ⁇ N/2F s as the number of samples of the received signals s RXn,TXm (x′, t).
  • the inspection object is a point target, but in reality, the inspection object is a spatially spread target g(x, y, z).
  • g(x, y, z) is a function representing the reflection intensity at coordinates (x, y, z).
  • the received signal s n,m (x′, k) of the reflected wave is expressed by the following equation (8): expressed.
  • the received signal s(x', y n ', k) output from the receiving antenna 41-n is represented by the following equation (9).
  • the reception signal s (x', y n ', k) is subjected to fast Fourier processing in the x' direction.
  • the transform produces a spectrum S(k x , y n ', k) as shown in Equation (10) below.
  • the x' direction is horizontal.
  • k x is the wave number corresponding to x'.
  • the spectrum S(k x , y n ', k) is the spectrum of the radio wave transmitted from the transmitting antenna 31-m in the received signal s(x', y n ', k) output from the receiving antenna 41-n. It represents spectral components.
  • FIG. 7 is a schematic diagram showing the positional relationship between the horizontal directivity of the antenna and the target.
  • FIG. 8 is a schematic diagram showing how transmission signals are separated in the wavenumber domain by the DDM-MIMO system.
  • the horizontal axis is the wave number k x and the vertical axis is the wave number k.
  • k max is the maximum wavenumber of transmission radio waves, and k min is the minimum wavenumber of transmission radio waves.
  • the transmitted signal can be completely transmitted on the wavenumber k x- axis without overlapping the spectral support widths of adjacent transmitting antennas, as shown in FIG. can be separated into
  • the inequality sign shown in the following equation (11) must hold for the M transmission antennas 31-1 to 31-M.
  • Equation (11) the spectrum S (k x , y n ', k) of the radio wave transmitted from the transmitting antenna 31-m is cut out and subjected to an inverse fast Fourier transform. , as shown in the following equation (12), the received signal s(x′, y n ', y m hat, k ) is obtained.
  • FIG. 9 is a schematic diagram showing a virtual two-dimensional antenna arrangement before transmission signal separation.
  • FIG. 9 shows an example in which the number of transmission cycles of radio waves in the four transmission antennas 31-1 to 31-4 is 8 cycles. At this stage, multiple transmitted signals are not separated in the received signal.
  • FIG. 10 is a schematic diagram showing a virtual two-dimensional antenna arrangement after transmission signal separation.
  • FIG. 10 also shows a virtual two-dimensional antenna arrangement before transmission signal separation.
  • the virtual two-dimensional antenna arrangement before transmission signal separation is shown in lighter gray than the virtual two-dimensional antenna arrangement after transmission signal separation.
  • the radar device disclosed in Non-Patent Document 1 employs the TDM-MIMO system.
  • FIG. 11 is an explanatory diagram showing radio waves modulated by the TDM-MIMO system.
  • transmission signals are separated in the time direction. Therefore, the positional relationship between the transmitting antennas 31-1 to 31-4, the receiving antennas 41-1 to 41-N, and the target is as shown in FIG. Therefore, the receiving antennas 41-1 to 41-N form a vertical array, but the transmitting antennas 31-1 to 31-4 do not form a vertical array.
  • FIG. 12 is a schematic diagram showing a virtual two-dimensional antenna arrangement generated by the TDM-MIMO scheme.
  • the radar apparatus shown in FIG. 1 employs the DDM-MIMO system, the transmission antennas 31-1 to 31-4 and the reception antennas 41-1 to 41-N after transmission signal separation are different vertical arrays. constitutes Therefore, the radar device shown in FIG. 1 can implement high-speed image reproduction processing described below.
  • x, y, z) included in the received signal s (x', y n ', y m hat, k) of the reflected wave is given below.
  • x, y, z) is the distance from the position of the transmitting antenna 31-m to the target position (x, y, z), and is given by the following equation (14): is represented as
  • x, y, z) is the distance from the target position (x, y, z) to the position of the receiving antenna 41-n, and is given by the following equation (15): is represented as
  • the received signal s (x', y n ', y m hat, k) of the reflected wave can be represented by s (x', y', y hat, k) as in the following equation (16) .
  • a three-dimensional spectrum S (k x , k y , y hat, k) obtained by two-dimensional Fourier transforming the signal s (x ′ , y ′, y hat, k) in the x′ direction and the y′ direction is as follows. It is expressed as in Equation (17).
  • the x' direction is the horizontal direction
  • the y' direction is the vertical direction along which the receiving antennas 41-1 to 41-N are aligned.
  • kx is the wave number corresponding to x'
  • k y is the wave number corresponding to y'.
  • Equation (18) The Fourier transform in the y′ direction is approximated by Equation (18) below by applying the stationary phase method.
  • Equation (18) the three-dimensional spectrum S(k x , k y , y hat, k) is approximated as in formula (19) below.
  • ky hat, k) is obtained.
  • the y-hat direction is the vertical direction in which the transmitting antennas 31-1 to 31-M are aligned.
  • ky hat is the wavenumber corresponding to y hat.
  • Equation (21) The Fourier transform in the y-hat direction is approximated by Equation (21) below by applying the stationary phase method.
  • Equation (22) the four-dimensional spectrum S(k x , ky , ky hat, k) is approximated as in formula (22) below.
  • Equation (23) a part of the phase term ⁇ (x′) in the Fourier transform of the four-dimensional spectrum S(k x , ky , ky hat, k) in the x′ direction is defined as shown in Equation (23) below.
  • phase term ⁇ (x′) Part of the phase term ⁇ (x′) is split into two terms, the transmitter phase ⁇ T (x′) and the receiver phase ⁇ R (x′), as shown in equation (24) below. be able to.
  • the transmission-side phase ⁇ T (x′) is expressed as in Equation (25) below.
  • the receiving-side phase ⁇ R (x′) is expressed as in Equation (26) below.
  • the transmission-side phase ⁇ T (x′) is approximated by Equation (27) below by applying Taylor expansion up to second-order terms.
  • the receiving-side phase ⁇ R (x′) is approximated by Equation (28) below by applying Taylor expansion up to the second-order term.
  • equations (27) to (28) the variable k Z hat is represented by equation (29) below, and the variable k Z is represented by equation (30) below.
  • the variable k T ' is represented by the following equation (31), and the variable k R ' is represented by the following equation (32).
  • phase term ⁇ (x′) is obtained by using the transmitting side phase ⁇ T (x′) shown in Equation (27) and the receiving side phase ⁇ R (x′) shown in Equation (28). It is approximated as shown in Equation (33) below.
  • Equation (34) Equation (34)
  • Equation (35) is obtained by Fourier transforming g(x, y, z) in the three-dimensional directions of x, y, and z, and then multiplying the first five complex constants on the right side of Equation (35) to obtain a four-dimensional spectrum It means that S(k x , ky , ky hat, k) is obtained. That is, by tracing the reverse, g ( x , y , z ), which is the reflectance distribution of the target, can be obtained as the reproduced image of the target from the four-dimensional spectrum S (k x , ky, ky hat, k).
  • Equation (36) is a fast image reconstruction equation for bistatic antenna configurations.
  • the signal processing device 13 performs variable transformation processing called Stolt transformation as transformation processing from four dimensions to three dimensions.
  • Stolt transformation the signal processing device 13 transforms the variable set ⁇ kx , ky , ky hat, k ⁇ from the variable set ⁇ k x , ky, ky hat, k ⁇ with k x and ky fixed.
  • z + k z hat ⁇ A specific formulation showing the Stolt transform is Equation (37) shown below.
  • IFFT[ ] represents the three-dimensional inverse Fourier transform with the variables shown in ⁇ ⁇ .
  • Stolt ⁇ ⁇ represents the Stolt transform from ⁇ k x , ky , ky hat, k ⁇ to ⁇ k x , ky , ky hat , k z +k z hat ⁇ .
  • FIG. 13 is a flowchart showing a signal processing method, which is a processing procedure of the signal processing device 13 according to the first embodiment.
  • the beat signal acquisition unit 71 acquires N pieces of digital data stored in the data storage unit 12 as N pieces of beat signals generated from the received signals of the reflected waves.
  • the digital data is the received signal s(x', y', y, k) shown in Equation (16).
  • the beat signal acquisition unit 71 outputs the received signal s(x′, y′, y hat, k) to the signal conversion unit 72 .
  • the signal conversion unit 72 acquires the received signal s(x′, y′, y, k) from the beat signal acquisition unit 71 .
  • the signal transforming unit 72 fast Fourier transforms the received signal s(x', y', y, k) in the three-dimensional direction of x', y', y according to equations (17) to (20). (Step ST1 in FIG. 13). In FIG. 13, the fast Fourier transform is expressed like FFT.
  • a four-dimensional spectrum S(k x , ky, ky hat, k) is obtained by fast Fourier transforming the received signal s( x ′, y ′ , y hat, k) in the three-dimensional direction.
  • the signal transforming section 72 outputs the four-dimensional spectrum S(k x , ky , ky hat, k) to the phase error eliminating section 73 as a signal in the four-dimensional wavenumber space.
  • the phase error elimination unit 73 acquires the four-dimensional spectrum S(k x , ky , ky hat, k) from the signal conversion unit 72 .
  • the phase error elimination unit 73 performs the four-dimensional spectrum S (k x , ky , ky hat , k) are subjected to bulk compression processing in which complex conjugates of five complex constants are multiplied (step ST2 in FIG. 13).
  • the phase error is based on the difference between the installation positions of the transmitting antennas 31-1 to 31-M and the installation positions of the receiving antennas 41-1 to 41-N.
  • the phase error elimination unit 73 outputs the four-dimensional spectrum S (k x , ky , ky hat, k) after the bulk compression processing to the image generation unit 74 .
  • the image generator 74 acquires the bulk-compressed four-dimensional spectrum S(k x , ky , ky hat, k) from the phase error canceler 73 .
  • the image generator 74 converts the variable set ⁇ k x , ky , ky hat, k ⁇ to the variable set ⁇ k x , ky , ky hat, k z + k z hat ⁇ is performed (step ST3 in FIG. 13).
  • the image generator 74 performs inverse fast Fourier transform on the four-dimensional spectrum after the Stolt transform in three-dimensional directions of kx , ky + ky hat, and kz + kz hat (step ST4 in FIG. 13).
  • FIG. 13 The image generator 74 acquires the bulk-compressed four-dimensional spectrum S(k x , ky , ky hat, k) from the phase error canceler 73 .
  • the image generator 74 converts the variable set ⁇ k x ,
  • the inverse fast Fourier transform is expressed as IFFT.
  • a rough reconstructed image is obtained for each k y by subjecting the four-dimensional spectrum after the Stolt transform to inverse fast Fourier transform in the three-dimensional direction.
  • the image generator 74 performs phase correction by multiplying the rough reproduced image for each k y by e jkyy as shown in equation (37) (step ST5 in FIG. 13).
  • the image generating unit 74 adds the rough reconstructed images for all ky after phase correction (step ST6 in FIG. 13) to generate the target reconstructed image g(x, y, z).
  • FIG. 14 is a schematic diagram showing the positional relationship between the transmitting antennas 31-1 to 31-4 and the receiving antennas 41-1 to 41-16 and the target.
  • FIG. 15 is an antenna layout diagram showing the layout of the transmitting antennas 31-1 to 31-4 and the receiving antennas 41-1 to 41-16.
  • the object to be inspected is a point target located at the origin O of the three-dimensional coordinates.
  • the movement of the radar platform relative to the point target is uniform linear motion in the positive direction of the x-axis, as in FIG.
  • the relative velocity is 0.25 m/s.
  • the distance between the antenna plane and the point target is
  • 1.5 m in the z-axis direction.
  • the 16 receiving antennas 41-1 to 41-16 form a vertical linear array, and the distance d RX between adjacent receiving antennas is all 5.7 mm.
  • the modulation method of the transmission radio wave is FMCW, and the frequency band is 77-81 GHz.
  • the horizontal directivity width of each of the transmitting antennas 31-1 to 31-4 and the receiving antennas 41-1 to 41-16 is ⁇ 60 degrees, and each of the receiving antennas 41-1 to 41-16 is ⁇ 60 degrees. Radio waves from a wider angle range shall not be received.
  • the initial phase change pattern of each of the transmitting antennas 31-1 to 31-4 is the same as in FIG. 5, and one period is 0.5 ms.
  • the number of cycles of the received signal used for image reproduction is 14000 cycles.
  • FIG. 16 is an explanatory diagram showing a reproduced image on the xy plane of a point target whose z-coordinate position is 0. FIG. In FIG. 16, the point image is correctly reproduced at the coordinate origin, which is the position of the point target.
  • radio waves are transmitted from each of the plurality of transmitting antennas 31-1 to 31-M arranged in a row on the radar platform toward the inspection target that moves relative to the radar platform.
  • a plurality of receiving antennas 41-1 to 41-N arranged in a row at installation positions different from the installation positions of the plurality of transmitting antennas 31-1 to 31-M receive radio waves from the inspection object, respectively. is received, and the signal processing device 13 is configured to include the beat signal acquisition unit 71 that acquires the beat signal generated from the received signal of the reflected wave.
  • the signal processing device 13 also includes a signal conversion unit 72 that converts each beat signal acquired by the beat signal acquisition unit 71 into a signal in the four-dimensional wavenumber space and outputs the signal in the four-dimensional wavenumber space;
  • the object to be inspected moves.
  • a three-dimensional radar image of the inspection object can be generated in this state.
  • Embodiment 2 The signal processing device 13 according to Embodiment 1 converts the variable set ⁇ k x , ky , k y hat, k z + k z hat ⁇ .
  • the signal processing device 13 according to Embodiment 2 converts the variable set ⁇ k x , ky + ky + ky hat, k z + k z hat ⁇ is different from the signal processing device 13 according to the first embodiment.
  • a specific formulation representing the Stolt transform in the signal processing device 13 according to the second embodiment is Equation (38) shown below.
  • FIG. 17 is a flowchart showing a signal processing method, which is a processing procedure of the signal processing device 13 according to the second embodiment.
  • the configuration of the signal processing device 13 according to Embodiment 2 is the same as the configuration of the signal processing device 13 according to Embodiment 1, and the configuration diagram showing the signal processing device 13 according to Embodiment 2 is shown in FIG. be.
  • the signal conversion unit 72 acquires the received signal s(x′, y′, y, k) from the beat signal acquisition unit 71 .
  • the signal transforming unit 72 fast Fourier transforms the received signal s(x', y', y, k) in the three-dimensional direction of x', y', y according to equations (17) to (20). (Step ST1 in FIG. 17).
  • a four-dimensional spectrum S(k x , ky, ky hat, k) is obtained by fast Fourier transforming the received signal s( x ′, y ′ , y hat, k) in the three-dimensional direction.
  • the signal transforming section 72 outputs the four-dimensional spectrum S(k x , ky , ky hat, k) to the phase error eliminating section 73 as a signal in the four-dimensional wavenumber space.
  • the phase error elimination unit 73 acquires the four-dimensional spectrum S(k x , ky , ky hat, k) from the signal conversion unit 72 . In order to eliminate the phase error contained in the four-dimensional spectrum S (k x , ky , ky hat, k), the phase error elimination unit 73 performs the four-dimensional spectrum S (k x , ky , ky hat , k) are subjected to bulk compression processing in which complex conjugates of five complex constants are multiplied (step ST2 in FIG. 17). The phase error elimination unit 73 outputs the four-dimensional spectrum S (k x , ky , ky hat, k) after the bulk compression processing to the image generation unit 74 .
  • the image generator 74 acquires the bulk-compressed four-dimensional spectrum S(k x , ky , ky hat, k) from the phase error canceler 73 .
  • the image generation unit 74 performs Stolt transformation from the variable set ⁇ kx , ky , ky hat, k ⁇ to the variable set ⁇ kx , ky + ky hat, kz + kz hat ⁇ by Equation (38). (step ST7 in FIG. 17).
  • the image generating unit 74 performs an inverse fast Fourier transform on the four-dimensional spectrum after the Stolt transform in three-dimensional directions of kx , ky + ky hat, and kz + kz hat (step ST8 in FIG. 17).
  • a target reproduced image g(x, y, z) is generated by inverse fast Fourier transforming the four-dimensional spectrum after the Stolt transform in the three-dimensional direction.
  • Embodiment 3 The signal processing device 13 according to Embodiment 1 converts the variable set ⁇ k x , ky , k y hat, k z + k z hat ⁇ .
  • a specific formulation representing the Stolt transform in the signal processing device 13 according to Embodiment 3 is Equation (39) shown below.
  • FIG. 18 is a flow chart showing a signal processing method, which is a processing procedure of the signal processing device 13 according to the third embodiment.
  • the configuration of the signal processing device 13 according to Embodiment 3 is the same as the configuration of the signal processing device 13 according to Embodiment 1, and the configuration diagram showing the signal processing device 13 according to Embodiment 3 is shown in FIG. be.
  • the signal conversion unit 72 acquires the received signal s(x′, y′, y, k) from the beat signal acquisition unit 71 .
  • the signal transforming unit 72 fast Fourier transforms the received signal s(x', y', y, k) in the three-dimensional direction of x', y', y according to equations (17) to (20). (Step ST1 in FIG. 18).
  • a four-dimensional spectrum S(k x , ky, ky hat, k) is obtained by fast Fourier transforming the received signal s( x ′, y ′ , y hat, k) in the three-dimensional direction.
  • the signal transforming section 72 outputs the four-dimensional spectrum S(k x , ky , ky hat, k) to the phase error eliminating section 73 as a signal in the four-dimensional wavenumber space.
  • the phase error elimination unit 73 acquires the four-dimensional spectrum S(k x , ky , ky hat, k) from the signal conversion unit 72 . In order to eliminate the phase error contained in the four-dimensional spectrum S (k x , ky , ky hat, k), the phase error elimination unit 73 performs the four-dimensional spectrum S (k x , ky , ky hat , k) are subjected to bulk compression processing in which complex conjugates of five complex constants are multiplied (step ST2 in FIG. 18). The phase error elimination unit 73 outputs the four-dimensional spectrum S (k x , ky , ky hat, k) after the bulk compression processing to the image generation unit 74 .
  • the image generator 74 acquires the bulk-compressed four-dimensional spectrum S(k x , ky , ky hat, k) from the phase error canceler 73 .
  • the image generator 74 converts the variable set ⁇ k x , ky, ky hat , k ⁇ to the variable set ⁇ k x , ky , ky hat, k z +k z hat ⁇ is performed (step ST9 in FIG. 18).
  • the image generation unit 74 performs an inverse fast Fourier transform on the four-dimensional spectrum after the Stolt transform in the three-dimensional directions of kx , ky , kz + kz (step ST10 in FIG. 18).
  • a rough reconstructed image is obtained for each k y hat by inverse fast Fourier transforming the four-dimensional spectrum after the Stolt transform in the three-dimensional direction.
  • the image generation unit 74 performs phase correction by multiplying the rough reconstructed image for each k y hat by e jky hat y as shown in equation (39) (step ST11).
  • the image generating unit 74 adds the rough reconstructed images for all ky hats after phase correction (step ST12 in FIG. 18) to generate the target reconstructed image g(x, y, z). .
  • the radar platform has one board, and the transmitting antennas 31-1 to 31-M and the receiving antennas 41-1 to 41-N are mounted on the one board. It is In the radar device according to the fourth embodiment, the radar platform has a plurality of boards, and the transmitting antennas 31-1 to 31-M and the receiving antennas 41-1 to 41-N are mounted on the respective boards. is different from the radar apparatus according to the first to third embodiments.
  • the configuration of the signal processing device 13 according to Embodiment 4 is the same as the configuration of the signal processing device 13 according to Embodiment 1, and the configuration diagram showing the signal processing device 13 according to Embodiment 4 is shown in FIG. be.
  • FIG. 19 shows the installation positions of the transmitting antennas 31-1 to 31-M, the installation positions of the receiving antennas 41-1 to 41-N, and the positions of the targets to be inspected, which are mounted on each of a plurality of boards. is an explanatory diagram showing the relationship between.
  • the radar platform has three boards (1)-(3), on boards (1)-(3) respectively, transmitting antennas 31-1-31-M and receiving antennas 41- 1 through 41-N are implemented.
  • the virtual MIMO aperture length in the vertical direction is larger than that of the apparatus, and as a result, the vertical resolution of contraband detection is improved.
  • FIG. 20 is an explanatory diagram showing an example of a transmission signal after initial phase setting by the phase control section 22-m.
  • FIG. 20 shows an example in which four transmitting antennas 31-1 to 31-4 are mounted on each of three boards (1) to (3).
  • the horizontal axis indicates time and the vertical axis indicates frequency.
  • the initial phase rotation rate which is the initial phase of the transmission signal given to the transmission antenna 31-1 mounted on each of the substrates (1) to (4), is 0 [rad].
  • the initial phase rotation rate of the transmission signal given to 31-2 is ⁇ /2 [rad].
  • the initial phase rotation rate of the transmission signal given to the transmission antenna 31-3 mounted on each of the substrates (1) to (4) is ⁇ [rad]
  • the rate of the transmission signal given to the transmission antenna 31-4 is ⁇ [rad].
  • the initial phase rotation rate is - ⁇ /2 [rad].
  • the transmission times of the transmission antennas 31-1-1 to 31-4 mounted on the board (1) and the transmission times of the transmission antennas 31-1-1 to 31-4 mounted on the board (2) , the transmission times of the transmission antennas 31-1-1 to 31-4 mounted on the board (3) and the transmission times of the transmission antennas 31-1-1 to 31-4 mounted on the board (4) are different from each other.
  • FIG. 21 is a flowchart showing a signal processing method, which is a processing procedure of the signal processing device 13 according to the fourth embodiment.
  • the image generator 74 generates a target reproduced image g(x, y, z) for each of the plurality of substrates (step ST21 in FIG. 21). In step ST21 of FIG. 21, it is described as image reproduction processing for each substrate.
  • the image generating unit 74 finally generates the target reproduced image g(x, y, z) by adding the plurality of target reproduced images g(x, y, z) (step ST22 in FIG. 21).
  • the radar devices according to Embodiments 1 to 4 can inspect, for example, a person riding an escalator or a moving walkway. That is, by installing the transmitting antennas 31-1 to 31-M and the receiving antennas 41-1 to 41-N on both sides of the escalator or moving walkway, it is possible to ride the escalator or moving walkway. It is possible to monitor whether a person is in possession of contraband.
  • the radar devices according to Embodiments 1 to 4 can inspect baggage placed on moving bodies such as belt conveyors at, for example, airports, railway stations, or ports. That is, by installing the transmitting antennas 31-1 to 31-M and the receiving antennas 41-1 to 41-N on both sides of the moving body, it is possible to prevent prohibited items from being carried in baggage placed on the moving body. You can monitor whether it is included or not.
  • the radar devices according to Embodiments 1 to 4 can inspect, for example, cars, bicycles, or people traveling on the road. That is, by installing the transmitting antennas 31-1 to 31-M and the receiving antennas 41-1 to 41-N on both sides of the road, it is possible to detect whether or not a vehicle or the like traveling on the road carries prohibited items. can be monitored.
  • the present disclosure is suitable for signal processing devices, signal processing methods, and radar devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

This signal processing device (13) comprises a beat signal acquisition unit (71) and is configured such that after radio waves are transmitted to an object under inspection, which moves relative to a radar platform, from each of a plurality of transmitting antennas (31-1) to (31-M) arranged in a row on the radar platform, the reflected waves of the radio waves from the object under inspection are received by each of a plurality of receiving antennas (41-1) to (41-N) arranged in a row on the radar platform at installation positions different from the installation positions of the plurality of transmitting antennas (31-1) to (31-M), and the beat signal acquisition unit (71) acquires a beat signal generated from the received signal of the reflected waves. Further, the signal processing device (13) further comprises: a signal conversion unit (72) that converts each beat signal acquired by the beat signal acquisition unit (71) into a signal in a four-dimensional wavenumber space and outputs each signal in the four-dimensional wavenumber space; a phase error elimination unit (73) that eliminates a phase error associated with a difference between the installation positions of the plurality of transmitting antennas (31-1) to (31-M) and the installation positions of the plurality of receiving antennas (41-1) to (41-N), which are included in each signal in the four-dimensional wavenumber space output from the signal conversion unit (72); and an image generation unit (74) that generates a three-dimensional radar image of the object under inspection from the signal in the four-dimensional wavenumber space after the phase error is eliminated by the phase error elimination unit (73).

Description

信号処理装置、信号処理方法及びレーダ装置SIGNAL PROCESSING DEVICE, SIGNAL PROCESSING METHOD, AND RADAR DEVICE
 本開示は、信号処理装置、信号処理方法及びレーダ装置に関するものである。 The present disclosure relates to a signal processing device, a signal processing method, and a radar device.
 例えば、セキュリティチェックが必要な場所に配置され、検査対象である被写体が所持している禁制品を検出するレーダ装置(以下「従来のレーダ装置」という)がある。
 従来のレーダ装置の中には、例えば、ミリ波帯の電波を検査対象に向けて送信したのち、被写体による反射後の電波である反射波を受信し、反射波の受信信号に基づいて、被写体の3次元レーダ画像を生成するレーダ装置がある(例えば、非特許文献1を参照)。
 非特許文献1に開示されているレーダ装置は、複数の送信アンテナ及び複数の受信アンテナを備えている。当該レーダ装置は、複数の送信アンテナのうち、電波を送信する送信アンテナを時分割で切り替えるTDM(Time Division Multiplexing)方式を採用している。また、当該レーダ装置は、複数の送信アンテナから送信された電波についての反射波の受信信号をコヒーレントに加算することで、3次元レーダ画像の分解能を高めている。
For example, there is a radar device (hereinafter referred to as "conventional radar device") that is placed in a place where a security check is required and detects prohibited items possessed by a subject to be inspected.
Among conventional radar devices, for example, after transmitting radio waves in the millimeter wave band toward an object to be inspected, the reflected wave, which is the radio wave after being reflected by the object, is received, and based on the received signal of the reflected wave, the object There is a radar device that generates a three-dimensional radar image of (see, for example, Non-Patent Document 1).
The radar device disclosed in Non-Patent Document 1 includes a plurality of transmitting antennas and a plurality of receiving antennas. The radar apparatus employs a TDM (Time Division Multiplexing) method for switching, among a plurality of transmitting antennas, transmitting antennas for transmitting radio waves in a time division manner. Further, the radar device increases the resolution of the three-dimensional radar image by coherently adding received signals of reflected waves of radio waves transmitted from a plurality of transmitting antennas.
 非特許文献1に開示されているレーダ装置は、送信アンテナを切り替えている間に検査対象が移動してしまうと、反射波を受信した際のそれぞれの送信アンテナと検査対象とのアジマス方向の相対位置が互いに異なるため、反射波の受信信号をコヒーレントに加算することができない。反射波の受信信号をコヒーレントに加算することができなければ、当該レーダ装置により生成される3次元レーダ画像にぼけが発生することがある。したがって、当該レーダ装置は、送信アンテナを切り替えている間に移動してしまうものについては、検査対象とすることができないという課題があった。 In the radar device disclosed in Non-Patent Document 1, if the object to be inspected moves while the transmitting antennas are switched, the relative azimuth direction between the respective transmitting antennas and the object to be inspected when receiving the reflected waves. Since the positions are different from each other, the received signals of the reflected waves cannot be coherently added. If the received signals of the reflected waves cannot be coherently added, blurring may occur in the three-dimensional radar image generated by the radar device. Therefore, the radar apparatus has a problem that an object that moves while the transmission antenna is being switched cannot be inspected.
 本開示は、上記のような課題を解決するためになされたもので、検査対象が移動している状態で、検査対象の3次元レーダ画像を生成することができる信号処理装置及び信号処理方法を得ることを目的とする。 The present disclosure has been made to solve the above problems, and provides a signal processing device and a signal processing method capable of generating a three-dimensional radar image of an inspection target while the inspection target is moving. with the aim of obtaining
 本開示に係る信号処理装置は、レーダプラットフォーム上に一列に並んでいる複数の送信アンテナのそれぞれから、レーダプラットフォームと相対的に移動する検査対象に向けて電波が送信されたのち、レーダプラットフォーム上に、複数の送信アンテナの設置位置と異なる設置位置に一列に並んでいる複数の受信アンテナのそれぞれによって検査対象からの電波の反射波が受信され、反射波の受信信号から生成されたビート信号を取得するビート信号取得部を備えている。また、信号処理装置は、ビート信号取得部により取得されたそれぞれのビート信号を4次元波数空間の信号に変換し、それぞれの4次元波数空間の信号を出力する信号変換部と、信号変換部から出力されたそれぞれの4次元波数空間の信号に含まれている、複数の送信アンテナの設置位置と複数の受信アンテナの設置位置との相違に係る位相誤差を解消する位相誤差解消部と、位相誤差解消部による位相誤差解消後のそれぞれの4次元波数空間の信号から、検査対象の3次元レーダ画像を生成する画像生成部とを備えている。 In the signal processing device according to the present disclosure, after radio waves are transmitted from each of a plurality of transmitting antennas arranged in a row on the radar platform toward an inspection target that moves relatively to the radar platform, , The reflected waves of the radio waves from the test object are received by each of the plurality of receiving antennas arranged in a row at the installation position different from the installation position of the plurality of transmitting antennas, and the beat signal generated from the received signals of the reflected waves is obtained. It has a beat signal acquisition unit that The signal processing device also includes a signal conversion unit that converts each beat signal acquired by the beat signal acquisition unit into a signal in a four-dimensional wavenumber space and outputs each signal in the four-dimensional wavenumber space; a phase error elimination unit that eliminates phase errors associated with differences between the installation positions of the plurality of transmitting antennas and the installation positions of the plurality of receiving antennas, which are contained in the respective output signals in the four-dimensional wavenumber space; and an image generation unit for generating a three-dimensional radar image of the inspection target from each signal in the four-dimensional wavenumber space after the phase error is eliminated by the elimination unit.
 本開示によれば、検査対象が移動している状態で、検査対象の3次元レーダ画像を生成することができる。 According to the present disclosure, it is possible to generate a three-dimensional radar image of the inspection target while the inspection target is moving.
実施の形態1に係る信号処理装置13を含むレーダ装置を示す構成図である。1 is a configuration diagram showing a radar device including a signal processing device 13 according to Embodiment 1; FIG. 実施の形態1に係る信号処理装置13を示す構成図である。1 is a configuration diagram showing a signal processing device 13 according to Embodiment 1; FIG. 実施の形態1に係る信号処理装置13のハードウェアを示すハードウェア構成図である。2 is a hardware configuration diagram showing hardware of the signal processing device 13 according to Embodiment 1. FIG. 信号処理装置13が、ソフトウェア又はファームウェア等によって実現される場合のコンピュータのハードウェア構成図である。3 is a hardware configuration diagram of a computer when the signal processing device 13 is implemented by software, firmware, or the like; FIG. 位相制御部22-mによる初期位相設定後の送信信号の一例を示す説明図である。FIG. 4 is an explanatory diagram showing an example of a transmission signal after initial phase setting by a phase control section 22-m; 送信アンテナ31-1~31-Mの設置位置及び受信アンテナ41-1~41-Nの設置位置と、検査対象であるターゲットの位置との関係を示す説明図である。4 is an explanatory diagram showing the relationship between the installation positions of transmitting antennas 31-1 to 31-M, the installation positions of receiving antennas 41-1 to 41-N, and the positions of targets to be inspected. FIG. アンテナの水平指向性とターゲットとの位置関係を示す模式図である。FIG. 4 is a schematic diagram showing the positional relationship between the horizontal directivity of an antenna and a target; DDM-MIMO方式によって、波数領域で送信信号が分離される様子を示す模式図である。FIG. 2 is a schematic diagram showing how transmission signals are separated in the wavenumber domain by the DDM-MIMO system; 送信信号分離前の仮想的な2次元アンテナ配置を示す模式図である。FIG. 4 is a schematic diagram showing a virtual two-dimensional antenna arrangement before transmission signal separation; 送信信号分離後の仮想的な2次元アンテナ配置を示す模式図である。FIG. 4 is a schematic diagram showing a virtual two-dimensional antenna arrangement after transmission signal separation; TDM-MIMO方式で変調された電波を示す説明図である。FIG. 4 is an explanatory diagram showing radio waves modulated by the TDM-MIMO system; TDM-MIMO方式により生成される、仮想的な2次元アンテナ配置を示す模式図である。FIG. 4 is a schematic diagram showing a virtual two-dimensional antenna arrangement generated by the TDM-MIMO scheme; 実施の形態1に係る信号処理装置13の処理手順である信号処理方法を示すフローチャートである。4 is a flowchart showing a signal processing method, which is a processing procedure of the signal processing device 13 according to Embodiment 1; 送信アンテナ31-1~31-4及び受信アンテナ41-1~41-16と、ターゲッとの位置関係を示す模式図である。4 is a schematic diagram showing the positional relationship between transmitting antennas 31-1 to 31-4 and receiving antennas 41-1 to 41-16 and a target. FIG. 送信アンテナ31-1~31-4及び受信アンテナ41-1~41-16におけるそれぞれの配置を示すアンテナ配置図である。4 is an antenna layout diagram showing the layout of transmitting antennas 31-1 to 31-4 and receiving antennas 41-1 to 41-16. FIG. z座標の位置が0である点ターゲットのxy平面における再生画像を示す説明図である。FIG. 4 is an explanatory diagram showing a reproduced image on the xy plane of a point target whose z-coordinate position is 0; 実施の形態2に係る信号処理装置13の処理手順である信号処理方法を示すフローチャートである。9 is a flowchart showing a signal processing method, which is a processing procedure of the signal processing device 13 according to Embodiment 2; 実施の形態3に係る信号処理装置13の処理手順である信号処理方法を示すフローチャートである。10 is a flowchart showing a signal processing method, which is a processing procedure of the signal processing device 13 according to Embodiment 3. FIG. 複数の基板のそれぞれに実装されている、送信アンテナ31-1~31-Mの設置位置及び受信アンテナ41-1~41-Nの設置位置と、検査対象であるターゲットの位置との関係を示す説明図である。1 shows the relationship between the installation positions of transmitting antennas 31-1 to 31-M and receiving antennas 41-1 to 41-N mounted on each of a plurality of boards, and the position of a target to be inspected. It is an explanatory diagram. 位相制御部22-mによる初期位相設定後の送信信号の一例を示す説明図である。FIG. 4 is an explanatory diagram showing an example of a transmission signal after initial phase setting by a phase control section 22-m; 実施の形態4に係る信号処理装置13の処理手順である信号処理方法を示すフローチャートである。10 is a flowchart showing a signal processing method, which is a processing procedure of the signal processing device 13 according to Embodiment 4;
 以下、本開示をより詳細に説明するために、本開示を実施するための形態について、添付の図面に従って説明する。 Hereinafter, in order to describe the present disclosure in more detail, embodiments for carrying out the present disclosure will be described according to the attached drawings.
実施の形態1.
 図1は、実施の形態1に係る信号処理装置13を含むレーダ装置を示す構成図である。
 図2は、実施の形態1に係る信号処理装置13を示す構成図である。
 図3は、実施の形態1に係る信号処理装置13のハードウェアを示すハードウェア構成図である。
 図1に示すレーダ装置は、レーダ信号処理器1、送信信号生成器2、送信機3、受信機4、ビート信号生成器5及びアナログデジタル(以下「A/D」という)変換器6を備えている。
Embodiment 1.
FIG. 1 is a configuration diagram showing a radar device including a signal processing device 13 according to Embodiment 1. As shown in FIG.
FIG. 2 is a configuration diagram showing the signal processing device 13 according to the first embodiment.
FIG. 3 is a hardware configuration diagram showing hardware of the signal processing device 13 according to the first embodiment.
The radar apparatus shown in FIG. ing.
 図1に示すレーダ装置は、送信電波の周波数を連続的に変調するFMCW(Frequency Modulated Continuous Wave)方式のレーダ装置であるものとして説明する。しかしながら、実施の形態1に係るレーダ装置は、FMCW方式のレーダ装置に限るものではなく、例えば、送信電波がパルスであるレーダ装置であってもよいし、送信電波の周波数を段階的に変調するSFCW(Steppde Frequency Continuous Wave)方式のレーダ装置であってもよい。FMCW方式のレーダ装置、送信電波がパルスであるレーダ装置及びSFCW方式のレーダ装置のいずれであっても、前処理によって、反射波の受信信号を後述する式(16)の形に帰着することができる。 The radar device shown in FIG. 1 will be described as a FMCW (Frequency Modulated Continuous Wave) radar device that continuously modulates the frequency of transmission radio waves. However, the radar device according to the first embodiment is not limited to the FMCW type radar device. An SFCW (Stepped Frequency Continuous Wave) type radar device may be used. In any of the FMCW system radar system, the radar system in which the transmitted radio wave is a pulse, and the SFCW system radar system, the received signal of the reflected wave can be reduced to the form of Equation (16) described later by preprocessing. can.
 レーダ信号処理器1は、制御部11、データ記憶部12及び信号処理装置13を備えている。
 制御部11は、VCO(Voltage Controlled Oscillator)制御信号、送信制御信号及び位相制御信号のそれぞれを送信信号生成器2に出力することで、送信信号生成器2の動作タイミング等を制御する。
 制御部11は、A/D制御信号をA/D変換器6に出力することで、A/D変換器6の動作タイミング等を制御する。
 制御部11は、信号処理制御信号を信号処理装置13に出力することで、信号処理装置13の動作タイミング等を制御する。
The radar signal processor 1 has a control section 11 , a data storage section 12 and a signal processing device 13 .
The control unit 11 outputs a VCO (Voltage Controlled Oscillator) control signal, a transmission control signal, and a phase control signal to the transmission signal generator 2, thereby controlling the operation timing of the transmission signal generator 2 and the like.
The control unit 11 outputs an A/D control signal to the A/D converter 6 to control the operation timing of the A/D converter 6 and the like.
The control unit 11 outputs a signal processing control signal to the signal processing device 13 to control operation timing and the like of the signal processing device 13 .
 データ記憶部12は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)等の不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、あるいは、DVD(Digital Versatile Disc)によって実現される。
 データ記憶部12は、A/D変換器6から出力されたデジタルデータを記憶する。
The data storage unit 12 includes, for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Non-volatile or volatile such as only memory) semiconductor memory, magnetic disk, flexible disk, optical disk, compact disk, mini disk, or DVD (Digital Versatile Disc).
The data storage unit 12 stores digital data output from the A/D converter 6 .
 信号処理装置13は、図2に示すように、ビート信号取得部71、信号変換部72、位相誤差解消部73及び画像生成部74を備えている。
 信号処理装置13は、データ記憶部12に記憶されているデジタルデータに基づいて、検査対象の3次元レーダ画像を再生する。検査対象は、レーダプラットフォームと相対的に移動するものである。レーダプラットフォームは、送信機3及び受信機4のそれぞれを実装している。
The signal processing device 13 includes a beat signal acquisition section 71, a signal conversion section 72, a phase error elimination section 73, and an image generation section 74, as shown in FIG.
The signal processing device 13 reproduces a three-dimensional radar image of the inspection target based on the digital data stored in the data storage unit 12 . The inspected object is one that moves relative to the radar platform. The radar platform implements a transmitter 3 and a receiver 4 respectively.
 送信信号生成器2は、VCO21、位相制御部22-1~22-M及びパワーアンプ23-1~23-Mを備えている。Mは、2以上の整数である。
 VCO21は、制御部11から出力されたVCO制御信号に基づいて、時間の経過に伴って周波数が変化する送信信号を生成する。
 VCO21は、送信信号を位相制御部22-1~22-M及び後述する分配回路52のそれぞれに出力する。
The transmission signal generator 2 includes a VCO 21, phase controllers 22-1 to 22-M, and power amplifiers 23-1 to 23-M. M is an integer of 2 or more.
Based on the VCO control signal output from the control unit 11, the VCO 21 generates a transmission signal whose frequency changes over time.
The VCO 21 outputs transmission signals to the phase control units 22-1 to 22-M and a distribution circuit 52, which will be described later.
 位相制御部22-m(m=1,・・・,M)は、制御部11から出力された位相制御信号に基づいて、VCO21により生成された送信信号の初期位相を設定し、初期位相設定後の送信信号をパワーアンプ23-mに出力する。
 位相制御部22-1~22-Mのそれぞれにより設定される初期位相は、互いに異なっている。
 パワーアンプ23-m(m=1,・・・,M)は、制御部11から出力された送信制御信号が示す増幅率で、位相制御部22-mから出力された初期位相設定後の送信信号を増幅し、増幅後の送信信号を送信アンテナ31-mに出力する。
Phase control unit 22-m (m=1, . . . , M) sets the initial phase of the transmission signal generated by VCO 21 based on the phase control signal output from control unit 11, The subsequent transmission signal is output to the power amplifier 23-m.
The initial phases set by the phase controllers 22-1 to 22-M are different from each other.
The power amplifier 23-m (m=1, . It amplifies the signal and outputs the amplified transmission signal to the transmission antenna 31-m.
 送信機3は、M個の送信アンテナ31-1~31-Mを備えている。
 送信アンテナ31-1~31-Mのそれぞれは、検査対象のアジマス方向及びレーダプラットフォームにおけるアンテナ設置面の垂直方向のそれぞれと直交する方向に一列に並んでいる。
 ここでは、送信アンテナ31-1~31-Mのそれぞれが、直交する方向に一直線上に並んでいるものを想定している。ただし、「直交する方向に一列に並んでいる」とは、送信アンテナ31-1~31-Mのそれぞれが、一直線上に厳密に並んでいるものに限るものではなく、実用上問題のない範囲内で、一直線上にからずれて並んでいるものも含む概念である。
 送信アンテナ31-m(m=1,・・・,M)は、パワーアンプ23-mから出力された増幅後の送信信号に係る電波を検査対象に向けて送信する。送信信号に係る電波は、例えば、ミリ波帯の電波である。ミリ波帯の電波は、人の服装を透過するという性質と、人に対する放射量が小さいという性質とを有している。レーダ装置がミリ波帯の電波を送信することで、金属製の禁制品及び非属製の禁制品のそれぞれを検出することが可能である。ただし、レーダ装置が送信する電波は、ミリ波帯の電波に限るものではなく、ミリ波帯以外の電波であってもよい。禁制品としては、例えば、ナイフ、又は、銃器がある。
The transmitter 3 has M transmitting antennas 31-1 to 31-M.
Each of the transmitting antennas 31-1 to 31-M is arranged in a row in a direction orthogonal to the azimuth direction of the inspection target and the vertical direction of the antenna installation plane on the radar platform.
Here, it is assumed that the transmitting antennas 31-1 to 31-M are arranged in a straight line in orthogonal directions. However, "aligned in a line in an orthogonal direction" does not mean that each of the transmitting antennas 31-1 to 31-M is strictly aligned in a straight line, and is within a range that poses no practical problem. It is a concept that includes things that are lined up on a straight line inside.
The transmission antenna 31-m (m=1, . . . , M) transmits radio waves related to the amplified transmission signal output from the power amplifier 23-m toward the inspection object. The radio wave associated with the transmission signal is, for example, a millimeter waveband radio wave. Radio waves in the millimeter wave band have the property of penetrating the clothing of a person and the property of emitting a small amount of radiation to a person. By transmitting radio waves in the millimeter wave band from the radar device, it is possible to detect both metallic prohibited items and non-metallic prohibited items. However, radio waves transmitted by the radar device are not limited to radio waves in the millimeter wave band, and may be radio waves other than in the millimeter wave band. Contraband items include, for example, knives or firearms.
 受信機4は、N個の受信アンテナ41-1~41-Nを備えている。Nは、2以上の整数である。
 受信アンテナ41-1~41-Nのそれぞれは、検査対象のアジマス方向及びレーダプラットフォームにおけるアンテナ設置面の垂直方向のそれぞれと直交する方向に一列に並んでいる。
 ここでは、受信アンテナ41-1~41-Nのそれぞれが、直交する方向に一直線上に並んでいるものを想定している。ただし、「直交する方向に一列に並んでいる」とは、受信アンテナ41-1~41-Nのそれぞれが、一直線上に厳密に並んでいるものに限るものではなく、実用上問題のない範囲内で、一直線上にからずれて並んでいるものも含む概念である。
 受信アンテナ41-1~41-Nにおけるそれぞれのアジマス方向の設置位置は、送信アンテナ31-1~31-Mにおけるそれぞれのアジマス方向の設置位置と異なっている。
 受信アンテナ41-n(n=1,・・・,N)は、検査対象による反射後の電波である反射波を受信し、反射波の受信信号をビート信号生成器5の低雑音増幅器(以下「LNA」という)51-nに出力する。
The receiver 4 has N receiving antennas 41-1 to 41-N. N is an integer of 2 or more.
Each of the receiving antennas 41-1 to 41-N is arranged in a line in a direction orthogonal to the azimuth direction of the inspection object and the vertical direction of the antenna installation plane on the radar platform.
Here, it is assumed that the receiving antennas 41-1 to 41-N are arranged in a straight line in the orthogonal direction. However, "aligned in a line in an orthogonal direction" does not mean that each of the receiving antennas 41-1 to 41-N is strictly aligned in a straight line. It is a concept that includes things that are lined up on a straight line inside.
The installation positions of the receiving antennas 41-1 to 41-N in the azimuth direction are different from the installation positions of the transmitting antennas 31-1 to 31-M in the azimuth direction.
The receiving antenna 41-n (n=1, . 51-n (referred to as "LNA").
 ビート信号生成器5は、LNA51-1~51-N、分配回路52、ミキサ53-1~53-N及びフィルタリング回路54を備えている。
 LNA51-n(n=1,・・・,N)は、受信アンテナ41-nから出力された反射波の受信信号を増幅し、増幅後の受信信号をミキサ53-nに出力する。
 分配回路52は、VCO21により生成された送信信号をN個に分配し、分配後のそれぞれの送信信号をミキサ53-nに出力する。
The beat signal generator 5 includes LNAs 51-1 to 51-N, a distribution circuit 52, mixers 53-1 to 53-N and a filtering circuit .
The LNA 51-n (n=1, . . . , N) amplifies the received signal of the reflected wave output from the receiving antenna 41-n and outputs the amplified received signal to the mixer 53-n.
The distribution circuit 52 distributes the transmission signal generated by the VCO 21 to N and outputs each of the distributed transmission signals to the mixers 53-n.
 ミキサ53-n(n=1,・・・,N)は、LNA51-nから出力された受信信号に、分配回路52から出力された分配後の送信信号を乗算することで、ビート信号を生成し、ビート信号をフィルタリング回路54に出力する。
 フィルタリング回路54は、例えば、帯域通過フィルタ(以下「BPF」という)及びアンプによって実現される。
 フィルタリング回路54は、ミキサ53-nから出力されたビート信号に対するフィルタリング処理を実施し、フィルタリング処理後のビート信号をA/D変換回路61-nに出力する。BPFによって、ビート信号に対するフィルタリング処理が行われることで、ビート信号に含まれている、レーダの検知に不要な低い周波数成分と高い周波数成分とが抑圧される。
The mixer 53-n (n=1, . . . , N) generates a beat signal by multiplying the received signal output from the LNA 51-n by the distributed transmission signal output from the distribution circuit 52. and outputs the beat signal to the filtering circuit 54 .
The filtering circuit 54 is implemented by, for example, a bandpass filter (hereinafter referred to as "BPF") and an amplifier.
The filtering circuit 54 filters the beat signal output from the mixer 53-n, and outputs the filtered beat signal to the A/D conversion circuit 61-n. By filtering the beat signal with the BPF, the low frequency component and high frequency component unnecessary for radar detection, which are included in the beat signal, are suppressed.
 A/D変換器6は、N個のA/D変換回路61-1~61-Nを備えている。
 A/D変換回路61-n(n=1,・・・,N)は、制御部11から出力されたA/D制御信号に従って、フィルタリング回路54から出力されたフィルタリング処理後のそれぞれのビート信号の電圧値をA/D変換し、A/D変換後の信号であるデジタルデータを信号処理装置13のデータ記憶部12に出力する。A/D変換回路61-nは、A/D制御信号によって動作タイミングが制御されることで、所望のサンプリング周波数及び所望のサンプリング点数で、ビート信号の電圧値をA/D変換する。
The A/D converter 6 includes N A/D conversion circuits 61-1 to 61-N.
A/D conversion circuits 61-n (n=1, . is A/D-converted, and digital data, which is a signal after A/D conversion, is output to the data storage unit 12 of the signal processing device 13 . The A/D conversion circuit 61-n A/D-converts the voltage value of the beat signal at a desired sampling frequency and a desired number of sampling points by controlling the operation timing by the A/D control signal.
 ビート信号取得部71は、例えば、図3に示すビート信号取得回路81によって実現される。
 ビート信号取得部71は、反射波の受信信号から生成されたN個のビート信号として、データ記憶部12に記憶されているN個のデジタルデータを取得する。
 ビート信号取得部71は、N個のデジタルデータを信号変換部72に出力する。
The beat signal acquisition unit 71 is implemented by, for example, the beat signal acquisition circuit 81 shown in FIG.
The beat signal acquisition unit 71 acquires N pieces of digital data stored in the data storage unit 12 as N pieces of beat signals generated from the received signals of the reflected waves.
The beat signal acquisition unit 71 outputs N pieces of digital data to the signal conversion unit 72 .
 信号変換部72は、例えば、図3に示す信号変換回路82によって実現される。
 信号変換部72は、ビート信号取得部71により取得されたそれぞれのビート信号を4次元波数空間の信号に変換する。
 即ち、信号変換部72は、それぞれのビート信号を、4次元波数空間の信号として、電波の波数の次元と、アジマス方向の空間波数の次元と、M個の送信アンテナ31-1~31-Mが並んでいる方向の空間波数の次元と、N個の受信アンテナ41-1~41-Nが並んでいる方向の空間波数の次元とを有する信号に変換する。
 信号変換部72は、それぞれの4次元波数空間の信号を位相誤差解消部73に出力する。
The signal conversion unit 72 is implemented by, for example, the signal conversion circuit 82 shown in FIG.
The signal conversion unit 72 converts each beat signal acquired by the beat signal acquisition unit 71 into a signal in a four-dimensional wavenumber space.
That is, the signal conversion unit 72 converts each beat signal into a signal in a four-dimensional wavenumber space, the dimension of the wavenumber of the radio wave, the dimension of the spatial wavenumber in the azimuth direction, and the M transmitting antennas 31-1 to 31-M. , and the spatial wavenumber dimension in the direction in which the N receiving antennas 41-1 to 41-N are arranged.
The signal conversion section 72 outputs each signal in the four-dimensional wavenumber space to the phase error elimination section 73 .
 位相誤差解消部73は、例えば、図3に示す位相誤差解消回路83によって実現される。
 位相誤差解消部73は、信号変換部72から、それぞれの4次元波数空間の信号を取得する。
 位相誤差解消部73は、それぞれの4次元波数空間の信号に含まれている、送信アンテナ31-1~31-Mの設置位置と受信アンテナ41-1~41-Nの設置位置との相違に係る位相誤差を解消する。
 位相誤差解消部73は、位相誤差解消後のそれぞれの4次元波数空間の信号を画像生成部74に出力する。
The phase error elimination unit 73 is realized by, for example, the phase error elimination circuit 83 shown in FIG.
The phase error canceller 73 acquires each signal in the four-dimensional wavenumber space from the signal converter 72 .
The phase error canceling unit 73 detects the difference between the installation positions of the transmitting antennas 31-1 to 31-M and the installation positions of the receiving antennas 41-1 to 41-N, which are included in the respective four-dimensional wave number space signals. This phase error is eliminated.
The phase error elimination unit 73 outputs each signal in the four-dimensional wavenumber space after phase error elimination to the image generation unit 74 .
 画像生成部74は、例えば、図3に示す画像生成回路84によって実現される。
 画像生成部74は、位相誤差解消部73から、位相誤差解消後のそれぞれの4次元波数空間の信号を取得する。
 画像生成部74は、位相誤差解消後のそれぞれの4次元波数空間の信号から、検査対象の3次元レーダ画像を生成する。
The image generation unit 74 is implemented by, for example, the image generation circuit 84 shown in FIG.
The image generation unit 74 acquires each signal in the four-dimensional wavenumber space after phase error elimination from the phase error elimination unit 73 .
The image generator 74 generates a three-dimensional radar image of the inspection target from each signal in the four-dimensional wavenumber space after the phase error is eliminated.
 図2では、信号処理装置13の構成要素であるビート信号取得部71、信号変換部72、位相誤差解消部73及び画像生成部74のそれぞれが、図3に示すような専用のハードウェアによって実現されるものを想定している。即ち、信号処理装置13が、ビート信号取得回路81、信号変換回路82、位相誤差解消回路83及び画像生成回路84によって実現されるものを想定している。
 ビート信号取得回路81、信号変換回路82、位相誤差解消回路83及び画像生成回路84のそれぞれは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。
In FIG. 2, each of the beat signal acquisition unit 71, the signal conversion unit 72, the phase error elimination unit 73, and the image generation unit 74, which are components of the signal processing device 13, is realized by dedicated hardware as shown in FIG. It assumes what will be done. That is, it is assumed that the signal processing device 13 is implemented by a beat signal acquisition circuit 81, a signal conversion circuit 82, a phase error elimination circuit 83, and an image generation circuit 84. FIG.
Each of the beat signal acquisition circuit 81, the signal conversion circuit 82, the phase error elimination circuit 83, and the image generation circuit 84 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, or an Application Specific Integrated Integrated Circuit (ASIC). Circuit), FPGA (Field-Programmable Gate Array), or a combination thereof.
 信号処理装置13の構成要素は、専用のハードウェアによって実現されるものに限るものではなく、信号処理装置13が、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせによって実現されるものであってもよい。
 ソフトウェア又はファームウェアは、プログラムとして、コンピュータのメモリに格納される。コンピュータは、プログラムを実行するハードウェアを意味し、例えば、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、あるいは、DSP(Digital Signal Processor)が該当する。
The constituent elements of the signal processing device 13 are not limited to those realized by dedicated hardware, and the signal processing device 13 may be realized by software, firmware, or a combination of software and firmware. good too.
Software or firmware is stored as a program in a computer's memory. A computer means hardware that executes a program, for example, a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor). do.
 図4は、信号処理装置13が、ソフトウェア又はファームウェア等によって実現される場合のコンピュータのハードウェア構成図である。
 信号処理装置13が、ソフトウェア又はファームウェア等によって実現される場合、ビート信号取得部71、信号変換部72、位相誤差解消部73及び画像生成部74におけるそれぞれの処理手順をコンピュータに実行させるためのプログラムがメモリ91に格納される。そして、コンピュータのプロセッサ92がメモリ91に格納されているプログラムを実行する。
FIG. 4 is a hardware configuration diagram of a computer when the signal processing device 13 is implemented by software, firmware, or the like.
When the signal processing device 13 is realized by software, firmware, etc., a program for causing a computer to execute respective processing procedures in the beat signal acquisition unit 71, the signal conversion unit 72, the phase error elimination unit 73, and the image generation unit 74. is stored in memory 91 . Then, the processor 92 of the computer executes the program stored in the memory 91 .
 また、図3では、信号処理装置13の構成要素のそれぞれが専用のハードウェアによって実現される例を示し、図4では、信号処理装置13がソフトウェア又はファームウェア等によって実現される例を示している。しかし、これは一例に過ぎず、信号処理装置13における一部の構成要素が専用のハードウェアによって実現され、残りの構成要素がソフトウェア又はファームウェア等によって実現されるものであってもよい。 3 shows an example in which each component of the signal processing device 13 is implemented by dedicated hardware, and FIG. 4 shows an example in which the signal processing device 13 is implemented by software, firmware, or the like. . However, this is only an example, and some components in the signal processing device 13 may be implemented by dedicated hardware, and the remaining components may be implemented by software, firmware, or the like.
 次に、図1に示すレーダ装置の動作について説明する。
 送信信号生成器2のVCO21は、制御部11から出力されたVCO制御信号に基づいて、時間の経過に伴って周波数が変化する送信信号を生成する。時間の経過に伴って周波数が変化する送信信号は、時間の経過に伴って周波数が上昇するアップチャープ信号であってもよいし、時間の経過に伴って周波数が下降するダウンチャープ信号であってもよい。
 VCO21は、送信信号を位相制御部22-1~22-M及び分配回路52のそれぞれに出力する。
Next, the operation of the radar device shown in FIG. 1 will be described.
Based on the VCO control signal output from the control section 11, the VCO 21 of the transmission signal generator 2 generates a transmission signal whose frequency changes over time. The transmission signal whose frequency changes over time may be an up-chirp signal whose frequency increases over time or a down-chirp signal whose frequency decreases over time. good too.
The VCO 21 outputs transmission signals to the phase controllers 22-1 to 22-M and the distribution circuit 52, respectively.
 位相制御部22-m(m=1,・・・,M)は、VCO21から、送信信号を取得する。
 位相制御部22-mは、制御部11から出力された位相制御信号に基づいて、送信信号の初期位相を設定する。
 位相制御部22-1~22-Mのそれぞれにより設定される初期位相は、図5に示すように、互いに異なっている。
 位相制御部22-mは、初期位相設定後の送信信号をパワーアンプ23-mに出力する。
The phase controller 22-m (m=1, . . . , M) acquires a transmission signal from the VCO 21. FIG.
Based on the phase control signal output from the control section 11, the phase control section 22-m sets the initial phase of the transmission signal.
The initial phases set by the phase controllers 22-1 to 22-M are different from each other, as shown in FIG.
The phase controller 22-m outputs the transmission signal after initial phase setting to the power amplifier 23-m.
 図5は、位相制御部22-mによる初期位相設定後の送信信号の一例を示す説明図である。
 図5において、横軸は、時間を示し、縦軸は、周波数を示している。
 図5の例では、M=4である。位相制御部22-1による送信信号の初期位相である初期位相回転率は、0[rad]であり、位相制御部22-2による送信信号の初期位相回転率は、π/2[rad]である。
 また、位相制御部22-3による送信信号の初期位相回転率は、π[rad]であり、位相制御部22-4による送信信号の初期位相回転率は、-π/2[rad]である。
 位相制御部22-1~22-Mのそれぞれにより設定される初期位相が互いに異なっているため、図1に示すレーダ装置は、DDM-MIMO(Doppler Division Multiplexing- Multi Input Multi Output)方式を実現することができる。DDM-MIMO方式は、M個の送信アンテナ31-1~31-Mからの電波の送信を同時に行い、M個の送信信号の分離をドップラー周波数領域で行う方式である。
FIG. 5 is an explanatory diagram showing an example of a transmission signal after initial phase setting by the phase control section 22-m.
In FIG. 5, the horizontal axis indicates time, and the vertical axis indicates frequency.
In the example of FIG. 5, M=4. The initial phase rotation rate, which is the initial phase of the transmission signal by the phase control section 22-1, is 0 [rad], and the initial phase rotation rate of the transmission signal by the phase control section 22-2 is π/2 [rad]. be.
The initial phase rotation rate of the transmission signal by the phase control section 22-3 is π [rad], and the initial phase rotation rate of the transmission signal by the phase control section 22-4 is −π/2 [rad]. .
Since the initial phases set by the phase controllers 22-1 to 22-M are different from each other, the radar apparatus shown in FIG. be able to. The DDM-MIMO system is a system in which radio waves are simultaneously transmitted from M transmission antennas 31-1 to 31-M, and M transmission signals are separated in the Doppler frequency domain.
 パワーアンプ23-m(m=1,・・・,M)は、位相制御部22-mから、初期位相設定後の送信信号を取得する。
 パワーアンプ23-mは、制御部11から出力された送信制御信号が示す増幅率で、初期位相設定後の送信信号を増幅する。
 パワーアンプ23-mは、増幅後の送信信号を送信アンテナ31-mに出力する。
The power amplifier 23-m (m=1, . . . , M) acquires the transmission signal after the initial phase setting from the phase controller 22-m.
The power amplifier 23-m amplifies the transmission signal after the initial phase setting with the amplification factor indicated by the transmission control signal output from the control section 11. FIG.
The power amplifier 23-m outputs the amplified transmission signal to the transmission antenna 31-m.
 送信アンテナ31-1~31-Mのそれぞれは、図6に示すように、検査対象のアジマス方向及びレーダプラットフォームにおけるアンテナ設置面の垂直方向のそれぞれと直交する方向に一列に並んでいる。
 送信アンテナ31-m(m=1,・・・,M)は、パワーアンプ23-mから出力された増幅後の送信信号に係る電波を検査対象に向けて送信する。
 図6は、送信アンテナ31-1~31-Mの設置位置及び受信アンテナ41-1~41-Nの設置位置と、検査対象であるターゲットの位置との関係を示す説明図である。ターゲットは、被写体のことである。被写体としては、例えば、人、又は、手荷物がある。
 図6において、矢印は、送信アンテナ31-1~31-M及び受信アンテナ41-1~41-Nのそれぞれが設置されているレーダプラットフォームの移動方向を示している。レーダプラットフォームは、ターゲットに対して相対的に水平移動する。
 図6の例では、ターゲットが3次元座標系の原点Oに位置しており、レーダプラットフォームは、x軸正方向に向かって等速直線運動をしており、ターゲットは、x軸負方向に向かって等速直線運動をしている。
As shown in FIG. 6, each of the transmitting antennas 31-1 to 31-M is arranged in a line in a direction orthogonal to the azimuth direction of the inspection target and the vertical direction of the antenna installation plane on the radar platform.
The transmission antenna 31-m (m=1, . . . , M) transmits radio waves related to the amplified transmission signal output from the power amplifier 23-m toward the inspection object.
FIG. 6 is an explanatory diagram showing the relationship between the installation positions of the transmitting antennas 31-1 to 31-M, the installation positions of the receiving antennas 41-1 to 41-N, and the positions of targets to be inspected. A target is a subject. Subjects include, for example, people or baggage.
In FIG. 6, the arrows indicate the direction of movement of the radar platform on which the transmitting antennas 31-1 to 31-M and receiving antennas 41-1 to 41-N are respectively installed. The radar platform moves horizontally relative to the target.
In the example of FIG. 6, the target is located at the origin O of the three-dimensional coordinate system, the radar platform is in uniform linear motion in the positive direction of the x-axis, and the target is in the negative direction of the x-axis. is in uniform linear motion.
 Tx(m=1,・・・,M)は、送信アンテナ31-mを示しており、Txの設置位置の座標は、(x’+Δx,y+yハット,z)である。
 Rx(n=1,・・・,N)は、受信アンテナ41-nを示しており、Rxの設置位置の座標は、(x’,y+y’,z)である。
 明細書の文章中では、電子出願の関係上、文字“y”の上に“^”の記号を付することができないため、yハットのように表記している。
Tx m (m=1, . . . , M) indicates the transmitting antenna 31-m, and the coordinates of the installation position of Tx m are (x′+Δx, y T +y m hat, z 0 ). .
Rx n (n=1, . . . , N) indicates the receiving antenna 41-n, and the coordinates of the installation position of Rx n are (x', y R +y n ', z 0 ).
In the text of the specification, the symbol "^" cannot be added above the letter "y" due to electronic filing, so it is written as y m hat.
 M個の送信アンテナ31-1~31-M及びN個の受信アンテナ41-1~41-Nのそれぞれは、垂直リニアアレイを構成している。送信アンテナ31-1~31-M及び受信アンテナ41-1~41-Nのそれぞれが並んでいる方向は、y軸と平行な方向である。
 送信アンテナ31-m(m=1,・・・,M)と受信アンテナ41-n(n=1,・・・,N)とは、x軸と平行な方向に、Δxだけ離れている。
 yは、M個の送信アンテナ31-1~31-Mを有する垂直リニアアレイにおけるy軸方向の中心座標である。yは、N個の受信アンテナ41-1~41-Nを有する垂直リニアアレイにおけるy軸方向の中心座標である。
 yハットは、y軸方向の中心座標yから送信アンテナ31-mが設置されている位置までのy軸方向オフセット距離である。y’は、y軸方向の中心座標yから受信アンテナ41-nが設置されている位置までのy軸方向オフセット距離である。
 zは、3次元座標系におけるレーダプラットフォームのz座標である。
 x’は、レーダプラットフォームがターゲットに対して相対的に水平移動していく際の受信アンテナ41-nのx座標である。
 l(x’,y’,yハット|x,y,z)は、送信アンテナ31-mから送信されたのち、ターゲット上の一点(x,y,z)に反射された電波が受信アンテナ41-nに戻ってくるまでの電波往復距離を表している。
Each of the M transmitting antennas 31-1 to 31-M and the N receiving antennas 41-1 to 41-N constitutes a vertical linear array. The direction in which the transmitting antennas 31-1 to 31-M and the receiving antennas 41-1 to 41-N are arranged is parallel to the y-axis.
The transmitting antenna 31-m (m=1, . . . , M) and the receiving antenna 41-n (n=1, . . . , N) are separated by Δx in the direction parallel to the x-axis.
yT is the center coordinate in the y-axis direction in the vertical linear array having M transmitting antennas 31-1 to 31-M. yR is the center coordinate in the y-axis direction in the vertical linear array having N receiving antennas 41-1 to 41-N.
y m hat is the y-axis direction offset distance from the center coordinate y T in the y-axis direction to the position where the transmitting antenna 31-m is installed. y n ' is the y-axis direction offset distance from the center coordinate y R in the y-axis direction to the position where the receiving antenna 41-n is installed.
z0 is the z-coordinate of the radar platform in a three-dimensional coordinate system.
x' is the x-coordinate of the receiving antenna 41-n as the radar platform moves horizontally relative to the target.
l(x', y n ', y m hat|x, y, z) is transmitted from the transmitting antenna 31-m and then received as a radio wave reflected at one point (x, y, z) on the target. It represents the radio wave round-trip distance until it returns to the antenna 41-n.
 図1に示す信号処理装置13では、高速な画像再生処理をフーリエ変換によって実現できるようにするため、送信アンテナ31-(m-1)と送信アンテナ31-m(m=2,・・・,M)との間隔が、特定距離間隔dTx(第1の長さ)の整数倍である。また、受信アンテナ41-(n-1)と受信アンテナ41-n(n=2,・・・,N)との間隔が、特定距離間隔dRx(第2の長さ)の整数倍である。ただし、送信アンテナ31-(m-1)と送信アンテナ31-m(m=2,・・・,M)との間隔の全てが等間隔である必要はない。また、受信アンテナ41-(n-1)と受信アンテナ41-n(n=2,・・・,N)との間隔の全てが等間隔である必要はない。 In the signal processing device 13 shown in FIG. 1, the transmission antenna 31-(m−1) and the transmission antenna 31-m (m=2, . M) is an integral multiple of the specific distance interval d Tx (first length). Further, the interval between the receiving antenna 41-(n−1) and the receiving antenna 41-n (n=2, . . . , N) is an integral multiple of the specific distance interval d Rx (second length). . However, not all the intervals between the transmitting antennas 31-(m−1) and the transmitting antennas 31-m (m=2, . . . , M) are equal. Moreover, not all the intervals between the receiving antennas 41-(n−1) and the receiving antennas 41-n (n=2, . . . , N) are equal.
 送信アンテナ31-1~31-Mのそれぞれから送信された電波は、検査対象であるターゲットに反射される。
 ターゲットによる反射後の電波である反射電波は、受信アンテナ41-1~41-Nのそれぞれに受信される。
 受信アンテナ41-n(n=1,・・・,N)は、反射波の受信信号をLNA51-nに出力する。
The radio waves transmitted from each of the transmission antennas 31-1 to 31-M are reflected by the targets to be inspected.
Reflected radio waves, which are radio waves after being reflected by the target, are received by the receiving antennas 41-1 to 41-N, respectively.
The receiving antenna 41-n (n=1, . . . , N) outputs the received signal of the reflected wave to the LNA 51-n.
 LNA51-n(n=1,・・・,N)は、受信アンテナ41-nから、反射波の受信信号を取得し、受信信号を増幅する。
 LNA51-nは、増幅後の受信信号をミキサ53-nに出力する。
 分配回路52は、VCO21から、送信信号を取得し、送信信号をN個に分配する。
 分配回路52は、分配後のそれぞれの送信信号をミキサ53-nに出力する。
The LNA 51-n (n=1, . . . , N) acquires the received signal of the reflected wave from the receiving antenna 41-n and amplifies the received signal.
The LNA 51-n outputs the amplified received signal to the mixer 53-n.
The distribution circuit 52 acquires the transmission signal from the VCO 21 and distributes the transmission signal to N pieces.
The distribution circuit 52 outputs each distributed transmission signal to the mixer 53-n.
 ミキサ53-n(n=1,・・・,N)は、LNA51-nから受信信号を取得し、分配回路52から分配後の送信信号を取得する。
 ミキサ53-nは、受信信号に対して分配後の送信信号を乗算することで、ビート信号を生成し、ビート信号をフィルタリング回路54に出力する。
 フィルタリング回路54は、ミキサ53-1~53-Nのそれぞれから、ビート信号を取得する。
 フィルタリング回路54は、それぞれのビート信号に対するフィルタリング処理を実施することで、それぞれのビート信号に含まれている、レーダの検知に不要な低い周波数成分と高い周波数成分とを抑圧する。
 フィルタリング回路54は、フィルタリング処理後のそれぞれのビート信号をA/D変換回路61-nに出力する。
The mixer 53-n (n=1, . . . , N) acquires the reception signal from the LNA 51-n and acquires the distributed transmission signal from the distribution circuit 52. FIG.
The mixer 53 - n generates a beat signal by multiplying the received signal by the distributed transmission signal, and outputs the beat signal to the filtering circuit 54 .
The filtering circuit 54 acquires beat signals from each of the mixers 53-1 to 53-N.
The filtering circuit 54 performs filtering processing on each beat signal to suppress low frequency components and high frequency components that are included in each beat signal and are unnecessary for radar detection.
The filtering circuit 54 outputs each beat signal after filtering to the A/D conversion circuit 61-n.
 A/D変換回路61-n(n=1,・・・,N)は、フィルタリング回路54から、フィルタリング処理後のそれぞれのビート信号を取得する。
 A/D変換回路61-nは、制御部11から出力されたA/D制御信号に従って、それぞれのビート信号の電圧値をA/D変換する。
 A/D変換回路61-nは、A/D変換後のそれぞれの信号であるデジタルデータを信号処理装置13のデータ記憶部12に出力する。
The A/D conversion circuit 61-n (n=1, . . . , N) acquires each filtered beat signal from the filtering circuit .
The A/D conversion circuit 61-n A/D-converts the voltage value of each beat signal according to the A/D control signal output from the control section 11. FIG.
The A/D conversion circuit 61-n outputs digital data, which are respective signals after A/D conversion, to the data storage section 12 of the signal processing device 13. FIG.
 データ記憶部12は、それぞれのデジタルデータを記憶する。
 信号処理装置13は、データ記憶部12に記憶されているそれぞれのデジタルデータに基づいて、検査対象の3次元レーダ画像を再生する。
The data storage unit 12 stores each digital data.
The signal processing device 13 reproduces a three-dimensional radar image of the inspection object based on each digital data stored in the data storage unit 12 .
 次に、図1に示すレーダ装置における3次元レーダ画像の再生原理を説明する。
 VCO21により生成される送信信号sTX(t)は、図5に示すようなFMCW変調が施されており、送信信号sTX(t)は、以下の式(1)のように表される。
Next, the principle of reproducing a three-dimensional radar image in the radar apparatus shown in FIG. 1 will be described.
The transmission signal s TX (t) generated by the VCO 21 is subjected to FMCW modulation as shown in FIG. 5, and the transmission signal s TX (t) is represented by Equation (1) below.

Figure JPOXMLDOC01-appb-I000001
 式(1)において、fは、掃引開始周波数、μは、変調傾きである。tは、時刻であり、送信信号sTX(t)の変調時間がTであれば、0≦t≦Tのように表される。

Figure JPOXMLDOC01-appb-I000001
In equation (1), f 0 is the sweep start frequency and μ is the modulation slope. t is time, and if the modulation time of the transmission signal s TX (t) is T, then 0≦t≦T.
 レーダプラットフォームに実装されている受信アンテナ41-n(n=1,・・・,N)の位置のx座標がx’であるときに、パワーアンプ23-m(m=1,・・・,M)から送信アンテナ31-m(m=1,・・・,M)に与えられる送信信号sTXm(x’,t)は、以下の式(2)のように表される。送信信号sTXm(x’,t)は、送信信号sTX(t)の初期位相だけが変更された信号である。 When the x-coordinate of the position of the receiving antenna 41-n (n=1, . . . , N) mounted on the radar platform is x′, the power amplifier 23-m (m=1, . M) to the transmitting antenna 31-m (m=1, . . . , M) is given by the following equation (2). The transmission signal s TXm (x', t) is a signal obtained by changing only the initial phase of the transmission signal s TX (t).

Figure JPOXMLDOC01-appb-I000002
 式(2)において、ωは、初期位相回転率である。

Figure JPOXMLDOC01-appb-I000002
In equation (2), ω m is the initial phase rotation rate.
 送信アンテナ31-mから送信されたのち、ターゲット上の一点(x,y,z)に反射された電波である反射波が受信アンテナ41-nによって受信される。このとき、受信アンテナ41-nから出力される反射波の受信信号sRXn,TXm(x’,t)は、以下の式(3)のように表される。 After being transmitted from the transmitting antenna 31-m, a reflected wave, which is a radio wave reflected at one point (x, y, z) on the target, is received by the receiving antenna 41-n. At this time, the received signal s RXn,TXm (x', t) of the reflected wave output from the receiving antenna 41-n is represented by the following equation (3).

Figure JPOXMLDOC01-appb-I000003
 式(3)において、cは、光速である。

Figure JPOXMLDOC01-appb-I000003
In equation (3), c is the speed of light.
 ミキサ53-n(n=1,・・・,N)において、反射波の受信信号sRXn,TXm(x’,t)と送信信号sTXm(t)とがミキシングされると、式(4)に示すようなビート信号sIFn,m(x’,t)が生成される。 In the mixer 53-n (n=1, . . . , N), when the reception signal s RXn,TXm (x′, t) of the reflected wave and the transmission signal s TXm (t) are mixed, Equation (4) ), a beat signal s IFn,m (x′,t) is generated.
Figure JPOXMLDOC01-appb-I000004
 式(4)において、LPF[]は、フィルタリング回路54におけるローパスフィルタ処理を表し、jは、虚数単位である。sTX+90deg(t)は、VCO21により生成された送信信号sTXm(t)の位相を90deg進めた信号である。
 ここでは、IQ検波を仮定して説明するが、非IQ検波においても、ヒルベルト変換によって同様のビート信号sIFn,m(x’,t)を生成することができる。
Figure JPOXMLDOC01-appb-I000004
In equation (4), LPF[] represents low-pass filtering in filtering circuit 54, and j is the imaginary unit. s TX+90deg (t) is a signal obtained by advancing the phase of the transmission signal s TXm (t) generated by the VCO 21 by 90 degrees.
Although IQ detection is assumed here, a similar beat signal s IFn,m (x', t) can be generated by Hilbert transform even in non-IQ detection.
 ビート信号sIFn,m(x’,t)が高速フーリエ変換されると、以下の式(5)で表される、パルスレーダの受信信号のような疑似時間信号squasin,m(x’,τ)が得られる。 When the beat signal s IFn,m (x′, t) is fast Fourier transformed, a pseudo-time signal s quasin,m (x′, t), such as a received signal of a pulse radar, represented by the following equation (5): τ) is obtained.
Figure JPOXMLDOC01-appb-I000005

 式(5)において、sinc関数は、sinc(x)=(sin(πx))/πxのように定義される。疑似時間τの範囲は、FをsRXn,TXm(x’,t)のサンプリング周波数とすれば、-F/2≦τ≦F/2のように表される。
Figure JPOXMLDOC01-appb-I000005

In Equation (5), the sinc function is defined as sinc(x)=(sin(πx))/πx. The range of pseudo-time τ is expressed as −F s /2≦τ≦F s /2, where F s is the sampling frequency of s RXn,TXm (x′, t).
 疑似時間信号squasin,m(x’,t)には、距離に関する余分な位相項exp(-j2π(lμ/2c))が存在している。このため、疑似時間信号squasin,m(x’,τ)にexp(j2π(lμT/2c))を乗算して、余分な位相項exp(-j2π(lμ/2c))をキャンセルする位相補正が行われることで、以下の式(6)に示すような位相補正済疑似時間信号squasi-compn,m(x’,τ)が生成される。 There is an extra phase term exp(-j2π(l 2 μ/2c 2 )) related to range in the pseudo-time signal s quasin,m (x′,t). Therefore, the pseudo-time signal s quasin,m (x′, τ) is multiplied by exp(j2π(lμT/2c)) to cancel the extra phase term exp(−j2π(l 2 μ/2c 2 )). A phase-corrected pseudo-time signal s quasi-compn,m (x′, τ) as shown in the following equation (6) is generated by performing the phase correction.
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000006
 位相補正済疑似時間信号squasi-comp n,m(x’,τ)に対する高速逆フーリエ変換を実施することで、以下の式(7)に示すような波数領域に変換された信号sn,m(x’,k)が得られる。このとき、周波数fの範囲Nは、受信信号sRXn,TXm(x’,t)のサンプリング数として、-N/2F≦N≦N/2Fのように表される。 By performing an inverse fast Fourier transform on the phase-corrected pseudo-time signal s quasi-comp n,m (x′, τ), the signal s n, transformed into the wavenumber domain as shown in the following equation (7): m (x',k) is obtained. At this time, the range N of the frequency f is expressed as −N/2F s ≦N≦N/2F s as the number of samples of the received signals s RXn,TXm (x′, t).

Figure JPOXMLDOC01-appb-I000007

Figure JPOXMLDOC01-appb-I000007
 ここまでは、検査対象が点ターゲットであると仮定しているが、実際には、空間的に広がりのあるターゲットg(x,y,z)が検査対象である。g(x,y,z)は、座標(x,y,z)での反射強度を表す関数である。
 図6において、空間的に広がりのあるターゲットg(x,y,z)が存在する場合、反射波の受信信号sn,m(x’,k)は、以下の式(8)のように表される。
Up to this point, it is assumed that the inspection object is a point target, but in reality, the inspection object is a spatially spread target g(x, y, z). g(x, y, z) is a function representing the reflection intensity at coordinates (x, y, z).
In FIG. 6, when there is a target g (x, y, z) that spreads spatially, the received signal s n,m (x′, k) of the reflected wave is expressed by the following equation (8): expressed.

Figure JPOXMLDOC01-appb-I000008

Figure JPOXMLDOC01-appb-I000008
 DDM-MIMO方式では、全ての送信アンテナ31-1~31-Mが、電波を同時に送信するため、受信アンテナ41-n(n=1,・・・,N)により受信される反射波は、全ての送信アンテナ31-1~31-Mからの電波に係る反射波の重ね合わせである。したがって、受信アンテナ41-nから出力される受信信号s(x’,y’,k)は、以下の式(9)のように表される。 In the DDM-MIMO system, since all the transmitting antennas 31-1 to 31-M transmit radio waves simultaneously, the reflected waves received by the receiving antennas 41-n (n=1, . . . , N) are This is a superposition of reflected waves related to radio waves from all the transmitting antennas 31-1 to 31-M. Therefore, the received signal s(x', y n ', k) output from the receiving antenna 41-n is represented by the following equation (9).
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000009
 次に、受信信号s(x’,y’,k)に重畳されている複数の送信信号を分離するため、受信信号s(x’,y’,k)をx’方向に高速フーリエ変換することで、以下の式(10)に示すようなスペクトルS(k,y’,k)が生成される。図6の例では、x’方向は、水平方向である。 Next, in order to separate a plurality of transmission signals superimposed on the reception signal s(x', y n ', k), the reception signal s (x', y n ', k) is subjected to fast Fourier processing in the x' direction. The transform produces a spectrum S(k x , y n ', k) as shown in Equation (10) below. In the example of FIG. 6, the x' direction is horizontal.
Figure JPOXMLDOC01-appb-I000010
 式(10)において、kは、x’に対応する波数である。スペクトルS(k,y’,k)は、受信アンテナ41-nから出力された受信信号s(x’,y’,k)のうち、送信アンテナ31-mから送信された電波のスペクトル成分を表している。
Figure JPOXMLDOC01-appb-I000010
In equation (10), k x is the wave number corresponding to x'. The spectrum S(k x , y n ', k) is the spectrum of the radio wave transmitted from the transmitting antenna 31-m in the received signal s(x', y n ', k) output from the receiving antenna 41-n. It represents spectral components.
 送信アンテナ31-m及び受信アンテナ41-nにおけるそれぞれの水平指向性3dB片側半値幅がθ3dB(rad)であるとすれば、ターゲットに対してレーダプラットフォームが相対的にx軸正方向にP1からP2へ移動する間の送信電波とターゲットの位置関係とは図7のように描かれる。
 図7は、アンテナの水平指向性とターゲットとの位置関係を示す模式図である。
Assuming that the horizontal directivity 3 dB one-sided half-value width of each of the transmitting antenna 31-m and the receiving antenna 41-n is θ 3 dB (rad), the radar platform is positioned relative to the target from P1 in the positive x-axis direction. The positional relationship between the transmitted radio wave and the target while moving to P2 is depicted as in FIG.
FIG. 7 is a schematic diagram showing the positional relationship between the horizontal directivity of the antenna and the target.
 送信アンテナ31-mから送信された電波のスペクトルS(k,y’,k)のスペクトルサポートは、図8に示すように、波数k軸上で、[ω-2kmaxsinθ3dB,ω+2kmaxsinθ3dB]の範囲に制限されることが分かる.
 図8は、DDM-MIMO方式によって、波数領域で送信信号が分離される様子を示す模式図である。
 図8において、横軸は波数k、縦軸は波数kである。kmaxは、送信電波の最大の波数であり、kminは、送信電波の最小の波数である。
 送信アンテナ31-mからのスペクトルサポート幅が十分に小さければ、図8に示すように、隣り合う送信アンテナ同士のスペクトルサポート幅がオーバーラップすることなく、波数k軸上で、送信信号を完全に分離することが可能である。
 波数k軸上で、送信信号を分離するには、M個の送信アンテナ31-1~31-Mにおいて、以下の式(11)に示す不等号が成立している必要がある。
As shown in FIG. 8, the spectrum support of the spectrum S (k x , y n ', k) of the radio wave transmitted from the transmitting antenna 31-m is [ω m −2k max sin θ 3 dB on the wave number k x axis. , ω m +2k max sin θ 3 dB ].
FIG. 8 is a schematic diagram showing how transmission signals are separated in the wavenumber domain by the DDM-MIMO system.
In FIG. 8, the horizontal axis is the wave number k x and the vertical axis is the wave number k. k max is the maximum wavenumber of transmission radio waves, and k min is the minimum wavenumber of transmission radio waves.
If the spectral support width from the transmitting antenna 31-m is sufficiently small, the transmitted signal can be completely transmitted on the wavenumber k x- axis without overlapping the spectral support widths of adjacent transmitting antennas, as shown in FIG. can be separated into
In order to separate the transmission signals on the wavenumber k x- axis, the inequality sign shown in the following equation (11) must hold for the M transmission antennas 31-1 to 31-M.
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000011
 式(11)に示す不等号が成立していると仮定して、送信アンテナ31-mから送信された電波のスペクトルS(k,y’,k)を切り出して逆高速フーリエ変換することで、以下の式(12)に示すように、送信アンテナ31-mから送信されて、受信アンテナ41-nにより受信された反射波の受信信号s(x’,y’,yハット,k)が得られる。 Assuming that the inequality sign shown in Equation (11) holds, the spectrum S (k x , y n ', k) of the radio wave transmitted from the transmitting antenna 31-m is cut out and subjected to an inverse fast Fourier transform. , as shown in the following equation (12), the received signal s(x′, y n ', y m hat, k ) is obtained.
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000012
 ここで、送信信号が分離された後の、送信アンテナ31-m及び受信アンテナ41-nにおけるそれぞれの仮想的な位置を想定する。例えば、M=4であって、4つの送信アンテナ31-1~31-4が、図5に示すDDM-MIMO方式で電波を送信するものとする。
 図9は、送信信号分離前の仮想的な2次元アンテナ配置を示す模式図である。図9では、4つの送信アンテナ31-1~31-4における電波の送信周期の数が8周期である例を示している。
 この段階では、受信信号において、複数の送信信号が分離されていない。送信信号の分離処理が実施されることで、送信アンテナ31-m及び受信アンテナ41-nにおけるそれぞれの仮想的な位置は、図10のようになる。
 図10は、送信信号分離後の仮想的な2次元アンテナ配置を示す模式図である。
 図10では、送信信号分離後の仮想的な2次元アンテナ配置のほかに、送信信号分離前の仮想的な2次元アンテナ配置も表記している。送信信号分離前の仮想的な2次元アンテナ配置は、送信信号分離後の仮想的な2次元アンテナ配置よりも薄いグレーで表記している。
 送信信号の分離処理が実施されることで、仮想的に2周期の送受信動作が行われたことになる。また、その1周期内では、レーダプラットフォームがターゲットに対して相対的に静止していたことと等価となる。このことは、送信信号分離後の送信アンテナ31-1~31-4と受信アンテナ41-1~41-Nとが、互いに異なる垂直アレイを構成することを意味し、高速な画像再生処理を実現することが可能になる。
Here, assume the respective virtual positions of the transmitting antenna 31-m and the receiving antenna 41-n after the transmission signals are separated. For example, it is assumed that M=4 and four transmitting antennas 31-1 to 31-4 transmit radio waves in the DDM-MIMO scheme shown in FIG.
FIG. 9 is a schematic diagram showing a virtual two-dimensional antenna arrangement before transmission signal separation. FIG. 9 shows an example in which the number of transmission cycles of radio waves in the four transmission antennas 31-1 to 31-4 is 8 cycles.
At this stage, multiple transmitted signals are not separated in the received signal. By performing the transmission signal separation processing, virtual positions of the transmission antenna 31-m and the reception antenna 41-n become as shown in FIG.
FIG. 10 is a schematic diagram showing a virtual two-dimensional antenna arrangement after transmission signal separation.
In addition to the virtual two-dimensional antenna arrangement after transmission signal separation, FIG. 10 also shows a virtual two-dimensional antenna arrangement before transmission signal separation. The virtual two-dimensional antenna arrangement before transmission signal separation is shown in lighter gray than the virtual two-dimensional antenna arrangement after transmission signal separation.
By performing the separation processing of the transmission signal, virtually two cycles of transmission and reception operations are performed. Also, within that one period, the radar platform is equivalent to being stationary relative to the target. This means that the transmitting antennas 31-1 to 31-4 and the receiving antennas 41-1 to 41-N after the transmission signal separation constitute vertical arrays different from each other, realizing high-speed image reproduction processing. it becomes possible to
 非特許文献1に開示されているレーダ装置は、TDM-MIMO方式を採用している。例えば、M=4であって、4つの送信アンテナ31-1~31-4が、図11に示すように、TDM-MIMO方式で電波を送信するものとする。
 図11は、TDM-MIMO方式で変調された電波を示す説明図である。
 TDM-MIMO方式では、送信信号が時間方向に分離されている。そのため、送信アンテナ31-1~31-4及び受信アンテナ41-1~41-Nと、ターゲッとの位置関係は、図12のようになる。したがって、受信アンテナ41-1~41-Nは、垂直アレイを構成するが、送信アンテナ31-1~31-4は、垂直アレイを構成しない。
 図12は、TDM-MIMO方式により生成される、仮想的な2次元アンテナ配置を示す模式図である。
The radar device disclosed in Non-Patent Document 1 employs the TDM-MIMO system. For example, it is assumed that M=4 and four transmitting antennas 31-1 to 31-4 transmit radio waves in the TDM-MIMO scheme as shown in FIG.
FIG. 11 is an explanatory diagram showing radio waves modulated by the TDM-MIMO system.
In the TDM-MIMO system, transmission signals are separated in the time direction. Therefore, the positional relationship between the transmitting antennas 31-1 to 31-4, the receiving antennas 41-1 to 41-N, and the target is as shown in FIG. Therefore, the receiving antennas 41-1 to 41-N form a vertical array, but the transmitting antennas 31-1 to 31-4 do not form a vertical array.
FIG. 12 is a schematic diagram showing a virtual two-dimensional antenna arrangement generated by the TDM-MIMO scheme.
 図1に示すレーダ装置は、DDM-MIMO方式を採用しているため、送信信号分離後の送信アンテナ31-1~31-4と受信アンテナ41-1~41-Nとが、互いに異なる垂直アレイを構成している。このため、図1に示すレーダ装置は、以下に示す高速な画像再生処理を実現することができる。
 反射波の受信信号s(x’,y’,yハット,k)に含まれている電波往復距離l(x’,y’,yハット|x,y,z)は、以下の式(13)に示すように、往路距離l(x’,yハット|x,y,z)と、復路距離l(x’,y’|x,y,z)とに分けることができる。
 往路距離l(x’,yハット|x,y,z)は、送信アンテナ31-mの位置からターゲットの位置(x,y,z)までの距離であり、以下の式(14)のように表される。
 復路距離l(x’,y’|x,y,z)は、ターゲットの位置(x,y,z)から受信アンテナ41-nの位置までの距離であり、以下の式(15)のように表される。
Since the radar apparatus shown in FIG. 1 employs the DDM-MIMO system, the transmission antennas 31-1 to 31-4 and the reception antennas 41-1 to 41-N after transmission signal separation are different vertical arrays. constitutes Therefore, the radar device shown in FIG. 1 can implement high-speed image reproduction processing described below.
The radio wave round-trip distance l (x', yn ', y m hat|x, y, z) included in the received signal s (x', y n ', y m hat, k) of the reflected wave is given below. As shown in equation (13), it can be divided into an outward distance l T (x', y hat|x, y, z) and a return distance l R (x', y'|x, y, z) can be done.
Outbound distance l T (x′, y hat|x, y, z) is the distance from the position of the transmitting antenna 31-m to the target position (x, y, z), and is given by the following equation (14): is represented as
The return distance l R (x′, y′|x, y, z) is the distance from the target position (x, y, z) to the position of the receiving antenna 41-n, and is given by the following equation (15): is represented as
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000013
 反射波の受信信号s(x’,y’,yハット,k)は、以下の式(16)のように、s(x’,y’,yハット,k)で表すことができる。 The received signal s (x', y n ', y m hat, k) of the reflected wave can be represented by s (x', y', y hat, k) as in the following equation (16) .

Figure JPOXMLDOC01-appb-I000014

Figure JPOXMLDOC01-appb-I000014
 信号s(x’,y’,yハット,k)を、x’方向とy’方向とに2次元フーリエ変換した3次元スペクトルS(k,k,yハット,k)は、以下の式(17)のように表される。図6において、x’方向は、水平方向であり、y’方向は、受信アンテナ41-1~41-Nが一列に並んでいる垂直方向である。kは、x’に対応する波数、kは、y’に対応する波数である。 A three-dimensional spectrum S (k x , k y , y hat, k) obtained by two-dimensional Fourier transforming the signal s (x , y ′, y hat, k) in the x′ direction and the y′ direction is as follows. It is expressed as in Equation (17). In FIG. 6, the x' direction is the horizontal direction, and the y' direction is the vertical direction along which the receiving antennas 41-1 to 41-N are aligned. kx is the wave number corresponding to x', and k y is the wave number corresponding to y'.
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000015
 y’方向のフーリエ変換は、停留位相法を適用することで、以下の式(18)のように近似される。
 式(18)に示す近似式を用いることで、3次元スペクトルS(k,k,yハット,k)は、以下の式(19)のように近似される。
The Fourier transform in the y′ direction is approximated by Equation (18) below by applying the stationary phase method.
Using the approximation formula shown in formula (18), the three-dimensional spectrum S(k x , k y , y hat, k) is approximated as in formula (19) below.
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000016
 3次元スペクトルS(k,k,yハット,k)を更にyハット方向にフーリエ変換することで、以下の式(20)に示すように、4次元スペクトルS(k,k,kハット,k)が得られる。図6において、yハット方向は、送信アンテナ31-1~31-Mが一列に並んでいる垂直方向である。kハットは、yハットに対応する波数である。 Fourier transforming the three-dimensional spectrum S (k x , k y , y hat, k) in the y hat direction yields a four-dimensional spectrum S (k x , k y , k) as shown in Equation (20) below. ky hat, k) is obtained. In FIG. 6, the y-hat direction is the vertical direction in which the transmitting antennas 31-1 to 31-M are aligned. ky hat is the wavenumber corresponding to y hat.
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000017
 yハット方向のフーリエ変換は、停留位相法を適用することで、以下の式(21)のように近似される。
 式(21)に示す近似式を用いることで、4次元スペクトルS(k,k,kハット,k)は、以下の式(22)のように近似される。
The Fourier transform in the y-hat direction is approximated by Equation (21) below by applying the stationary phase method.
Using the approximation formula shown in formula (21), the four-dimensional spectrum S(k x , ky , ky hat, k) is approximated as in formula (22) below.
Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-I000018
 4次元スペクトルS(k,k,kハット,k)を解析的に解くには、x’方向のフーリエ変換の解析解を得る必要がある。しかし、フーリエ変換の位相項の中には、2つの平方根の和の形が含まれているため、停留位相法では解くことができない。そこで、以下に示す近似計算を行う。
 まず、4次元スペクトルS(k,k,kハット,k)のx’方向のフーリエ変換における位相項の一部φ(x’)を以下の式(23)にように定義する。
To analytically solve the four-dimensional spectrum S(k x , k y , k y hat, k), it is necessary to obtain an analytical solution of the Fourier transform in the x′ direction. However, since the phase term of the Fourier transform contains the form of the sum of two square roots, it cannot be solved by the stationary phase method. Therefore, the approximate calculation shown below is performed.
First, a part of the phase term φ(x′) in the Fourier transform of the four-dimensional spectrum S(k x , ky , ky hat, k) in the x′ direction is defined as shown in Equation (23) below.
Figure JPOXMLDOC01-appb-I000019
Figure JPOXMLDOC01-appb-I000019
 位相項の一部φ(x’)は、以下の式(24)に示すように、送信側位相φ(x’)と受信側位相φ(x’)との2つの項に分割することができる。
 送信側位相φ(x’)は、以下の式(25)のように表される。受信側位相φ(x’)は、以下の式(26)のように表される。
Part of the phase term φ(x′) is split into two terms, the transmitter phase φ T (x′) and the receiver phase φ R (x′), as shown in equation (24) below. be able to.
The transmission-side phase φ T (x′) is expressed as in Equation (25) below. The receiving-side phase φ R (x′) is expressed as in Equation (26) below.
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-I000020
 送信側位相φ(x’)は、2次の項までのテーラー展開を適用すると、以下の式(27)のように近似される。
 受信側位相φ(x’)は、2次の項までのテーラー展開を適用すると、以下の式(28)のように近似される。
The transmission-side phase φ T (x′) is approximated by Equation (27) below by applying Taylor expansion up to second-order terms.
The receiving-side phase φ R (x′) is approximated by Equation (28) below by applying Taylor expansion up to the second-order term.
Figure JPOXMLDOC01-appb-I000021
Figure JPOXMLDOC01-appb-I000021
 式(27)~(28)において、変数kハットは、以下の式(29)のように表され、変数kは、以下の式(30)のように表される。
 変数k’は、以下の式(31)のように表され、変数k’は、以下の式(32)のように表される。
In equations (27) to (28), the variable k Z hat is represented by equation (29) below, and the variable k Z is represented by equation (30) below.
The variable k T ' is represented by the following equation (31), and the variable k R ' is represented by the following equation (32).
Figure JPOXMLDOC01-appb-I000022
             
Figure JPOXMLDOC01-appb-I000022
             
 位相項の一部φ(x’)は、式(27)に示す送信側位相φ(x’)と、式(28)に示す受信側位相φ(x’)とを用いることで、以下の式(33)に示すように近似される。 A part of the phase term φ(x′) is obtained by using the transmitting side phase φ T (x′) shown in Equation (27) and the receiving side phase φ R (x′) shown in Equation (28). It is approximated as shown in Equation (33) below.

Figure JPOXMLDOC01-appb-I000023

Figure JPOXMLDOC01-appb-I000023
 最後に、式(33)の右辺の第4項と第5項との和を更に1次のテーラー展開で近似することで、以下の式(34)に示す近似式が導出される。 Finally, by further approximating the sum of the fourth and fifth terms on the right side of Equation (33) with a first-order Taylor expansion, the approximate expression shown in Equation (34) below is derived.
Figure JPOXMLDOC01-appb-I000024

Figure JPOXMLDOC01-appb-I000024

 以上より、4次元スペクトルS(k,k,kハット,k)は、以下の式(35)によって、解析的に近似表現される。 From the above, the four-dimensional spectrum S(k x , ky , ky hat, k) is analytically approximated by the following equation (35).
Figure JPOXMLDOC01-appb-I000025
Figure JPOXMLDOC01-appb-I000025
 式(35)は、g(x,y,z)をx,y,zの3次元方向にフーリエ変換した後、式(35)の右辺最初の5つの複素定数を掛けることで、4次元スペクトルS(k,k,kハット,k)が得られることを意味する。
 つまり、逆を辿ることで、4次元スペクトルS(k,k,kハット,k)から、ターゲット再生画像として、ターゲットの反射率分布であるg(x,y,z)が得られることを意味する。
 要するに、4次元スペクトルS(k,k,kハット,k)に対して、式(35)の右辺最初の5つの複素定数の複素共役を掛けた後、k,k+kハット,k+kハットの3次元方向に逆フーリエ変換すれば、ターゲット再生画像g(x,y,z)が得られることを意味する。4次元スペクトルS(k,k,kハット,k)に対して、5つの複素定数の複素共役を掛ける処理は、“バルク圧縮処理”、又は、“Huygens-Frenel変換処理”と呼ばれる。
 これを数式で表現すると、以下の式(36)のようになる。式(36)は、バイスタティックなアンテナ構成での高速な画像再生式である。
Equation (35) is obtained by Fourier transforming g(x, y, z) in the three-dimensional directions of x, y, and z, and then multiplying the first five complex constants on the right side of Equation (35) to obtain a four-dimensional spectrum It means that S(k x , ky , ky hat, k) is obtained.
That is, by tracing the reverse, g ( x , y , z ), which is the reflectance distribution of the target, can be obtained as the reproduced image of the target from the four-dimensional spectrum S (k x , ky, ky hat, k). means that
In short, for the four-dimensional spectrum S(k x , ky , ky hat, k), after multiplying the complex conjugate of the first five complex constants on the right side of Equation (35), k x , ky + ky This means that the target reproduced image g( x , y, z) can be obtained by inverse Fourier transform in the three-dimensional direction of hat, k z +k z hat. The process of multiplying the 4-dimensional spectrum S (k x , ky , ky hat, k) by the complex conjugate of five complex constants is called "bulk compression process" or "Huygens-Frennel transform process". .
If this is expressed by a formula, it becomes like the following Formula (36). Equation (36) is a fast image reconstruction equation for bistatic antenna configurations.

Figure JPOXMLDOC01-appb-I000026

Figure JPOXMLDOC01-appb-I000026
 信号処理装置13が、式(36)に示す処理を実装するには注意するべき点がある。入力である4次元スペクトルS(k,k,kハット,k)は、4次元であるのに対して、出力であるg(x,y,z)は、3次元であることが注意点である。
 信号処理装置13は、4次元から3次元への変換処理として、Stolt変換と呼ばれる変数変換処理を行う。
 信号処理装置13は、Stolt変換として、k,kを固定した状態で変数組{k,k,kハット,k}から変数組{k,k,kハット,k+kハット}への変数変換を行う。Stolt変換を示す具体的な定式化は、以下に示す式(37)である。
When the signal processor 13 implements the processing shown in equation (36), there are some points to be noted. The input 4-dimensional spectrum S(k x , ky , ky hat, k) is 4-dimensional, whereas the output g(x, y, z) is 3-dimensional. A point to note.
The signal processing device 13 performs variable transformation processing called Stolt transformation as transformation processing from four dimensions to three dimensions.
As the Stolt transformation, the signal processing device 13 transforms the variable set { kx , ky , ky hat, k} from the variable set { k x , ky, ky hat, k } with k x and ky fixed. z + k z hat}. A specific formulation showing the Stolt transform is Equation (37) shown below.
Figure JPOXMLDOC01-appb-I000027
 式(37)において、IFFT[]は、{}内に示した変数による3次元逆フーリエ変換を表している。Stolt{}は、{k,k,kハット,k}から{k,k,kハット,k+kハット}へのStolt変換を表している。
Figure JPOXMLDOC01-appb-I000027
In Equation (37), IFFT[ ] represents the three-dimensional inverse Fourier transform with the variables shown in { }. Stolt { } represents the Stolt transform from {k x , ky , ky hat, k} to {k x , ky , ky hat , k z +k z hat}.
 次に、図1に示す信号処理装置13の動作について説明する。
 図13は、実施の形態1に係る信号処理装置13の処理手順である信号処理方法を示すフローチャートである。
 ビート信号取得部71は、反射波の受信信号から生成されたN個のビート信号として、データ記憶部12に記憶されているN個のデジタルデータを取得する。デジタルデータは、式(16)に示す受信信号s(x’,y’,yハット,k)である。
 ビート信号取得部71は、受信信号s(x’,y’,yハット,k)を信号変換部72に出力する。
Next, the operation of the signal processing device 13 shown in FIG. 1 will be described.
FIG. 13 is a flowchart showing a signal processing method, which is a processing procedure of the signal processing device 13 according to the first embodiment.
The beat signal acquisition unit 71 acquires N pieces of digital data stored in the data storage unit 12 as N pieces of beat signals generated from the received signals of the reflected waves. The digital data is the received signal s(x', y', y, k) shown in Equation (16).
The beat signal acquisition unit 71 outputs the received signal s(x′, y′, y hat, k) to the signal conversion unit 72 .
 信号変換部72は、ビート信号取得部71から、受信信号s(x’,y’,yハット,k)を取得する。
 信号変換部72は、式(17)~(20)によって、受信信号s(x’,y’,yハット,k)を、x’,y’,yハットの3次元方向に高速フーリエ変換する(図13のステップST1)。図13では、高速フーリエ変換をFFTのように表記している。受信信号s(x’,y’,yハット,k)が3次元方向に高速フーリエ変換されることで、4次元スペクトルS(k,k,kハット,k)が得られる。
 信号変換部72は、4次元波数空間の信号として、4次元スペクトルS(k,k,kハット,k)を位相誤差解消部73に出力する。
The signal conversion unit 72 acquires the received signal s(x′, y′, y, k) from the beat signal acquisition unit 71 .
The signal transforming unit 72 fast Fourier transforms the received signal s(x', y', y, k) in the three-dimensional direction of x', y', y according to equations (17) to (20). (Step ST1 in FIG. 13). In FIG. 13, the fast Fourier transform is expressed like FFT. A four-dimensional spectrum S(k x , ky, ky hat, k) is obtained by fast Fourier transforming the received signal s( x ′, y , y hat, k) in the three-dimensional direction.
The signal transforming section 72 outputs the four-dimensional spectrum S(k x , ky , ky hat, k) to the phase error eliminating section 73 as a signal in the four-dimensional wavenumber space.
 位相誤差解消部73は、信号変換部72から、4次元スペクトルS(k,k,kハット,k)を取得する。
 位相誤差解消部73は、4次元スペクトルS(k,k,kハット,k)に含まれている位相誤差を解消するため、4次元スペクトルS(k,k,kハット,k)に対して、5つの複素定数の複素共役を掛けるバルク圧縮処理を行う(図13のステップST2)。位相誤差は、送信アンテナ31-1~31-Mの設置位置と受信アンテナ41-1~41-Nの設置位置との相違に基づくものである。
 位相誤差解消部73は、バルク圧縮処理後の4次元スペクトルS(k,k,kハット,k)を画像生成部74に出力する。
The phase error elimination unit 73 acquires the four-dimensional spectrum S(k x , ky , ky hat, k) from the signal conversion unit 72 .
In order to eliminate the phase error contained in the four-dimensional spectrum S (k x , ky , ky hat, k), the phase error elimination unit 73 performs the four-dimensional spectrum S (k x , ky , ky hat , k) are subjected to bulk compression processing in which complex conjugates of five complex constants are multiplied (step ST2 in FIG. 13). The phase error is based on the difference between the installation positions of the transmitting antennas 31-1 to 31-M and the installation positions of the receiving antennas 41-1 to 41-N.
The phase error elimination unit 73 outputs the four-dimensional spectrum S (k x , ky , ky hat, k) after the bulk compression processing to the image generation unit 74 .
 画像生成部74は、位相誤差解消部73から、バルク圧縮処理後の4次元スペクトルS(k,k,kハット,k)を取得する。
 画像生成部74は、式(37)によって、それぞれのkについて、変数組{k,k,kハット,k}から変数組{k,k,kハット,k+kハット}へのStolt変換を行う(図13のステップST3)。
 次に、画像生成部74は、Stolt変換後の4次元スペクトルを、k,k+kハット,k+kハットの3次元方向に逆高速フーリエ変換する(図13のステップST4)。図13では、逆高速フーリエ変換をIFFTのように表記している。Stolt変換後の4次元スペクトルが3次元方向に逆高速フーリエ変換することで、それぞれのkについて、粗い再生画像が得られる。
 次に、画像生成部74は、式(37)に示すように、それぞれのkについての粗い再生画像に対して、ejkyyを乗算することによる位相補正を行う(図13のステップST5)。
 最後に、画像生成部74は、位相補正後の全てのkについての粗い再生画像を加算することで(図13のステップST6)、ターゲット再生画像g(x,y,z)を生成する。
 因みに、それぞれのkについての処理は、互いに独立に処理することが可能であるため、マルチコアCPU、又は、マルチコアGPUを用いて、並列に処理することが可能である。
The image generator 74 acquires the bulk-compressed four-dimensional spectrum S(k x , ky , ky hat, k) from the phase error canceler 73 .
The image generator 74 converts the variable set {k x , ky , ky hat, k} to the variable set {k x , ky , ky hat, k z + k z hat} is performed (step ST3 in FIG. 13).
Next, the image generator 74 performs inverse fast Fourier transform on the four-dimensional spectrum after the Stolt transform in three-dimensional directions of kx , ky + ky hat, and kz + kz hat (step ST4 in FIG. 13). In FIG. 13, the inverse fast Fourier transform is expressed as IFFT. A rough reconstructed image is obtained for each k y by subjecting the four-dimensional spectrum after the Stolt transform to inverse fast Fourier transform in the three-dimensional direction.
Next, the image generator 74 performs phase correction by multiplying the rough reproduced image for each k y by e jkyy as shown in equation (37) (step ST5 in FIG. 13).
Finally, the image generating unit 74 adds the rough reconstructed images for all ky after phase correction (step ST6 in FIG. 13) to generate the target reconstructed image g(x, y, z).
By the way, since the processing for each k y can be processed independently of each other, it is possible to perform parallel processing using a multi-core CPU or multi-core GPU.
 以下、ターゲット再生画像g(x,y,z)の再生例について説明する。
 図14は、送信アンテナ31-1~31-4及び受信アンテナ41-1~41-16と、ターゲッとの位置関係を示す模式図である。図14の例では、M=4、N=16である。
 図15は、送信アンテナ31-1~31-4及び受信アンテナ41-1~41-16におけるそれぞれの配置を示すアンテナ配置図である。
 検査対象は、3次元座標の原点Oに位置している点ターゲットである
 レーダプラットフォームの点ターゲットに対する相対的な動きは、図6と同様に、x軸正方向への等速直線運動であり、相対速度は、0.25m/sである。
 アンテナ面と点ターゲットまでの距離は、z軸方向に|z|=1.5mである。4つの送信アンテナ31-1~31-4は、垂直リニアアレイを構成しており、隣り合う送信アンテナの間隔dTXは、全て8.55mmの整数倍となっている。具体的には、送信アンテナ31-1と送信アンテナ31-2との間隔dTXは、8.55mmであり、送信アンテナ31-3と送信アンテナ31-4との間隔dTXは、8.55mmである。また、送信アンテナ31-2と送信アンテナ31-3との間隔dTXは、68.4(=8.55×8)mmである。
 16個の受信アンテナ41-1~41-16は、垂直リニアアレイを構成しており、隣り合う受信アンテナの間隔dRXは、全て5.7mmとなっている。
An example of reproduction of the target reproduction image g(x, y, z) will be described below.
FIG. 14 is a schematic diagram showing the positional relationship between the transmitting antennas 31-1 to 31-4 and the receiving antennas 41-1 to 41-16 and the target. In the example of FIG. 14, M=4 and N=16.
FIG. 15 is an antenna layout diagram showing the layout of the transmitting antennas 31-1 to 31-4 and the receiving antennas 41-1 to 41-16.
The object to be inspected is a point target located at the origin O of the three-dimensional coordinates. The movement of the radar platform relative to the point target is uniform linear motion in the positive direction of the x-axis, as in FIG. The relative velocity is 0.25 m/s.
The distance between the antenna plane and the point target is |z 0 |=1.5 m in the z-axis direction. The four transmitting antennas 31-1 to 31-4 form a vertical linear array, and the intervals d TX between adjacent transmitting antennas are all integral multiples of 8.55 mm. Specifically, the distance d TX between the transmitting antennas 31-1 and 31-2 is 8.55 mm, and the distance d TX between the transmitting antennas 31-3 and 31-4 is 8.55 mm. is. Also, the distance d TX between the transmitting antenna 31-2 and the transmitting antenna 31-3 is 68.4 (=8.55×8) mm.
The 16 receiving antennas 41-1 to 41-16 form a vertical linear array, and the distance d RX between adjacent receiving antennas is all 5.7 mm.
 送信電波の変調方式はFMCWであり、周波数帯域は77~81GHzである。送信アンテナ31-1~31-4及び受信アンテナ41-1~41-16におけるそれぞれの水平指向性幅は、±60度であり、受信アンテナ41-1~41-16のそれぞれは、±60度よりも広角の範囲からの電波は、受信しないものとする。
 送信アンテナ31-1~31-4におけるそれぞれの初期位相の変化パターンは、図5と同様であり、1周期は、0.5msである。画像再生に用いる受信信号の周期の数は、14000周期分である。
 図16は、z座標の位置が0である点ターゲットのxy平面における再生画像を示す説明図である。
 図16では、点ターゲットの位置である座標原点において、正しく点像が再生されている。
The modulation method of the transmission radio wave is FMCW, and the frequency band is 77-81 GHz. The horizontal directivity width of each of the transmitting antennas 31-1 to 31-4 and the receiving antennas 41-1 to 41-16 is ±60 degrees, and each of the receiving antennas 41-1 to 41-16 is ±60 degrees. Radio waves from a wider angle range shall not be received.
The initial phase change pattern of each of the transmitting antennas 31-1 to 31-4 is the same as in FIG. 5, and one period is 0.5 ms. The number of cycles of the received signal used for image reproduction is 14000 cycles.
FIG. 16 is an explanatory diagram showing a reproduced image on the xy plane of a point target whose z-coordinate position is 0. FIG.
In FIG. 16, the point image is correctly reproduced at the coordinate origin, which is the position of the point target.
 以上の実施の形態1では、レーダプラットフォーム上に一列に並んでいる複数の送信アンテナ31-1~31-Mのそれぞれから、レーダプラットフォームと相対的に移動する検査対象に向けて電波が送信されたのち、レーダプラットフォーム上に、複数の送信アンテナ31-1~31-Mの設置位置と異なる設置位置に一列に並んでいる複数の受信アンテナ41-1~41-Nのそれぞれによって検査対象からの電波の反射波が受信され、反射波の受信信号から生成されたビート信号を取得するビート信号取得部71を備えるように、信号処理装置13を構成した。また、信号処理装置13は、ビート信号取得部71により取得されたそれぞれのビート信号を4次元波数空間の信号に変換し、それぞれの4次元波数空間の信号を出力する信号変換部72と、信号変換部72から出力されたそれぞれの4次元波数空間の信号に含まれている、複数の送信アンテナ31-1~31-Mの設置位置と複数の受信アンテナ41-1~41-Nの設置位置との相違に係る位相誤差を解消する位相誤差解消部73と、位相誤差解消部73による位相誤差解消後のそれぞれの4次元波数空間の信号から、検査対象の3次元レーダ画像を生成する画像生成部74とを備えている。したがって、信号処理装置13は、検査対象が移動している状態で、検査対象の3次元レーダ画像を生成することができる。つまり、複数の送信アンテナ31-1~31-Mと複数の受信アンテナ41-1~41-Nとを備えるレーダ装置から、ビート信号を取得する信号処理装置13においては、検査対象が移動している状態で、検査対象の3次元レーダ画像を生成することができる。 In the first embodiment described above, radio waves are transmitted from each of the plurality of transmitting antennas 31-1 to 31-M arranged in a row on the radar platform toward the inspection target that moves relative to the radar platform. After that, on the radar platform, a plurality of receiving antennas 41-1 to 41-N arranged in a row at installation positions different from the installation positions of the plurality of transmitting antennas 31-1 to 31-M receive radio waves from the inspection object, respectively. is received, and the signal processing device 13 is configured to include the beat signal acquisition unit 71 that acquires the beat signal generated from the received signal of the reflected wave. The signal processing device 13 also includes a signal conversion unit 72 that converts each beat signal acquired by the beat signal acquisition unit 71 into a signal in the four-dimensional wavenumber space and outputs the signal in the four-dimensional wavenumber space; The installation positions of the plurality of transmitting antennas 31-1 to 31-M and the installation positions of the plurality of receiving antennas 41-1 to 41-N included in the respective four-dimensional wavenumber space signals output from the conversion unit 72. Image generation for generating a three-dimensional radar image of the inspection object from the phase error elimination unit 73 that eliminates the phase error related to the difference between the a portion 74; Therefore, the signal processing device 13 can generate a three-dimensional radar image of the inspection target while the inspection target is moving. In other words, in the signal processing device 13 that acquires beat signals from a radar device having a plurality of transmitting antennas 31-1 to 31-M and a plurality of receiving antennas 41-1 to 41-N, the object to be inspected moves. A three-dimensional radar image of the inspection object can be generated in this state.
実施の形態2.
 実施の形態1に係る信号処理装置13は、Stolt変換として、k,kを固定した状態で変数組{k,k,kハット,k}から変数組{k,k,kハット,k+kハット}への変数変換を行っている。
 実施の形態2に係る信号処理装置13は、Stolt変換として、kのみを固定した状態で変数組{k,k,kハット,k}から変数組{k,k+kハット,k+kハット}への変数変換を行う点で、実施の形態1に係る信号処理装置13と相違している。
 実施の形態2に係る信号処理装置13での、Stolt変換を示す具体的な定式化は、以下に示す式(38)である。
Embodiment 2.
The signal processing device 13 according to Embodiment 1 converts the variable set {k x , ky , k y hat, k z + k z hat}.
As the Stolt transformation, the signal processing device 13 according to Embodiment 2 converts the variable set {k x , ky + ky + ky hat, k z + k z hat} is different from the signal processing device 13 according to the first embodiment.
A specific formulation representing the Stolt transform in the signal processing device 13 according to the second embodiment is Equation (38) shown below.

Figure JPOXMLDOC01-appb-I000028

Figure JPOXMLDOC01-appb-I000028
 図17は、実施の形態2に係る信号処理装置13の処理手順である信号処理方法を示すフローチャートである。
 実施の形態2に係る信号処理装置13の構成は、実施の形態1に係る信号処理装置13の構成と同様であり、実施の形態2に係る信号処理装置13を示す構成図は、図2である。
FIG. 17 is a flowchart showing a signal processing method, which is a processing procedure of the signal processing device 13 according to the second embodiment.
The configuration of the signal processing device 13 according to Embodiment 2 is the same as the configuration of the signal processing device 13 according to Embodiment 1, and the configuration diagram showing the signal processing device 13 according to Embodiment 2 is shown in FIG. be.
 信号変換部72は、ビート信号取得部71から、受信信号s(x’,y’,yハット,k)を取得する。
 信号変換部72は、式(17)~(20)によって、受信信号s(x’,y’,yハット,k)を、x’,y’,yハットの3次元方向に高速フーリエ変換する(図17のステップST1)。受信信号s(x’,y’,yハット,k)が3次元方向に高速フーリエ変換されることで、4次元スペクトルS(k,k,kハット,k)が得られる。
 信号変換部72は、4次元波数空間の信号として、4次元スペクトルS(k,k,kハット,k)を位相誤差解消部73に出力する。
The signal conversion unit 72 acquires the received signal s(x′, y′, y, k) from the beat signal acquisition unit 71 .
The signal transforming unit 72 fast Fourier transforms the received signal s(x', y', y, k) in the three-dimensional direction of x', y', y according to equations (17) to (20). (Step ST1 in FIG. 17). A four-dimensional spectrum S(k x , ky, ky hat, k) is obtained by fast Fourier transforming the received signal s( x ′, y , y hat, k) in the three-dimensional direction.
The signal transforming section 72 outputs the four-dimensional spectrum S(k x , ky , ky hat, k) to the phase error eliminating section 73 as a signal in the four-dimensional wavenumber space.
 位相誤差解消部73は、信号変換部72から、4次元スペクトルS(k,k,kハット,k)を取得する。
 位相誤差解消部73は、4次元スペクトルS(k,k,kハット,k)に含まれている位相誤差を解消するため、4次元スペクトルS(k,k,kハット,k)に対して、5つの複素定数の複素共役を掛けるバルク圧縮処理を行う(図17のステップST2)。
 位相誤差解消部73は、バルク圧縮処理後の4次元スペクトルS(k,k,kハット,k)を画像生成部74に出力する。
The phase error elimination unit 73 acquires the four-dimensional spectrum S(k x , ky , ky hat, k) from the signal conversion unit 72 .
In order to eliminate the phase error contained in the four-dimensional spectrum S (k x , ky , ky hat, k), the phase error elimination unit 73 performs the four-dimensional spectrum S (k x , ky , ky hat , k) are subjected to bulk compression processing in which complex conjugates of five complex constants are multiplied (step ST2 in FIG. 17).
The phase error elimination unit 73 outputs the four-dimensional spectrum S (k x , ky , ky hat, k) after the bulk compression processing to the image generation unit 74 .
 画像生成部74は、位相誤差解消部73から、バルク圧縮処理後の4次元スペクトルS(k,k,kハット,k)を取得する。
 画像生成部74は、式(38)によって、変数組{k,k,kハット,k}から変数組{k,k+kハット,k+kハット}へのStolt変換を行う(図17のステップST7)。
 次に、画像生成部74は、Stolt変換後の4次元スペクトルを、k,k+kハット,k+kハットの3次元方向に逆高速フーリエ変換する(図17のステップST8)。Stolt変換後の4次元スペクトルが3次元方向に逆高速フーリエ変換されることで、ターゲット再生画像g(x,y,z)が生成される。
The image generator 74 acquires the bulk-compressed four-dimensional spectrum S(k x , ky , ky hat, k) from the phase error canceler 73 .
The image generation unit 74 performs Stolt transformation from the variable set { kx , ky , ky hat, k} to the variable set { kx , ky + ky hat, kz + kz hat} by Equation (38). (step ST7 in FIG. 17).
Next, the image generating unit 74 performs an inverse fast Fourier transform on the four-dimensional spectrum after the Stolt transform in three-dimensional directions of kx , ky + ky hat, and kz + kz hat (step ST8 in FIG. 17). A target reproduced image g(x, y, z) is generated by inverse fast Fourier transforming the four-dimensional spectrum after the Stolt transform in the three-dimensional direction.
実施の形態3.
 実施の形態1に係る信号処理装置13は、Stolt変換として、k,kを固定した状態で変数組{k,k,kハット,k}から変数組{k,k,kハット,k+kハット}への変数変換を行っている。
 実施の形態3に係る信号処理装置13は、Stolt変換として、k,kハットを固定した状態で変数組{k,k,kハット,k}から変数組{k,k,kハット,k+kハット}への変数変換を行う点で、実施の形態1に係る信号処理装置13と相違している。
 実施の形態3に係る信号処理装置13での、Stolt変換を示す具体的な定式化は、以下に示す式(39)である。
Embodiment 3.
The signal processing device 13 according to Embodiment 1 converts the variable set {k x , ky , k y hat, k z + k z hat}.
The signal processing device 13 according to Embodiment 3 converts the variable set { k x , k y , k y hat, k z + k z hat} is different from the signal processing device 13 according to the first embodiment.
A specific formulation representing the Stolt transform in the signal processing device 13 according to Embodiment 3 is Equation (39) shown below.
Figure JPOXMLDOC01-appb-I000029
Figure JPOXMLDOC01-appb-I000029
 図18は、実施の形態3に係る信号処理装置13の処理手順である信号処理方法を示すフローチャートである。
 実施の形態3に係る信号処理装置13の構成は、実施の形態1に係る信号処理装置13の構成と同様であり、実施の形態3に係る信号処理装置13を示す構成図は、図2である。
FIG. 18 is a flow chart showing a signal processing method, which is a processing procedure of the signal processing device 13 according to the third embodiment.
The configuration of the signal processing device 13 according to Embodiment 3 is the same as the configuration of the signal processing device 13 according to Embodiment 1, and the configuration diagram showing the signal processing device 13 according to Embodiment 3 is shown in FIG. be.
 信号変換部72は、ビート信号取得部71から、受信信号s(x’,y’,yハット,k)を取得する。
 信号変換部72は、式(17)~(20)によって、受信信号s(x’,y’,yハット,k)を、x’,y’,yハットの3次元方向に高速フーリエ変換する(図18のステップST1)。受信信号s(x’,y’,yハット,k)が3次元方向に高速フーリエ変換されることで、4次元スペクトルS(k,k,kハット,k)が得られる。
 信号変換部72は、4次元波数空間の信号として、4次元スペクトルS(k,k,kハット,k)を位相誤差解消部73に出力する。
The signal conversion unit 72 acquires the received signal s(x′, y′, y, k) from the beat signal acquisition unit 71 .
The signal transforming unit 72 fast Fourier transforms the received signal s(x', y', y, k) in the three-dimensional direction of x', y', y according to equations (17) to (20). (Step ST1 in FIG. 18). A four-dimensional spectrum S(k x , ky, ky hat, k) is obtained by fast Fourier transforming the received signal s( x ′, y , y hat, k) in the three-dimensional direction.
The signal transforming section 72 outputs the four-dimensional spectrum S(k x , ky , ky hat, k) to the phase error eliminating section 73 as a signal in the four-dimensional wavenumber space.
 位相誤差解消部73は、信号変換部72から、4次元スペクトルS(k,k,kハット,k)を取得する。
 位相誤差解消部73は、4次元スペクトルS(k,k,kハット,k)に含まれている位相誤差を解消するため、4次元スペクトルS(k,k,kハット,k)に対して、5つの複素定数の複素共役を掛けるバルク圧縮処理を行う(図18のステップST2)。
 位相誤差解消部73は、バルク圧縮処理後の4次元スペクトルS(k,k,kハット,k)を画像生成部74に出力する。
The phase error elimination unit 73 acquires the four-dimensional spectrum S(k x , ky , ky hat, k) from the signal conversion unit 72 .
In order to eliminate the phase error contained in the four-dimensional spectrum S (k x , ky , ky hat, k), the phase error elimination unit 73 performs the four-dimensional spectrum S (k x , ky , ky hat , k) are subjected to bulk compression processing in which complex conjugates of five complex constants are multiplied (step ST2 in FIG. 18).
The phase error elimination unit 73 outputs the four-dimensional spectrum S (k x , ky , ky hat, k) after the bulk compression processing to the image generation unit 74 .
 画像生成部74は、位相誤差解消部73から、バルク圧縮処理後の4次元スペクトルS(k,k,kハット,k)を取得する。
 画像生成部74は、式(39)によって、それぞれのkハットについて、変数組{k,k,kハット,k}から変数組{k,k,kハット,k+kハット}へのStolt変換を行う(図18のステップST9)。
 次に、画像生成部74は、Stolt変換後の4次元スペクトルを、k,k,k+kハットの3次元方向に逆高速フーリエ変換する(図18のステップST10)。Stolt変換後の4次元スペクトルが3次元方向に逆高速フーリエ変換することで、それぞれのkハットについて、粗い再生画像が得られる。
 次に、画像生成部74は、式(39)に示すように、それぞれのkハットについての粗い再生画像に対して、ejkyハットyを乗算することによる位相補正を行う(図18のステップST11)。
 最後に、画像生成部74は、位相補正後の全てのkハットについての粗い再生画像を加算することで(図18のステップST12)、ターゲット再生画像g(x,y,z)を生成する。
The image generator 74 acquires the bulk-compressed four-dimensional spectrum S(k x , ky , ky hat, k) from the phase error canceler 73 .
The image generator 74 converts the variable set {k x , ky, ky hat , k} to the variable set {k x , ky , ky hat, k z +k z hat} is performed (step ST9 in FIG. 18).
Next, the image generation unit 74 performs an inverse fast Fourier transform on the four-dimensional spectrum after the Stolt transform in the three-dimensional directions of kx , ky , kz + kz (step ST10 in FIG. 18). A rough reconstructed image is obtained for each k y hat by inverse fast Fourier transforming the four-dimensional spectrum after the Stolt transform in the three-dimensional direction.
Next, the image generation unit 74 performs phase correction by multiplying the rough reconstructed image for each k y hat by e jky hat y as shown in equation (39) (step ST11).
Finally, the image generating unit 74 adds the rough reconstructed images for all ky hats after phase correction (step ST12 in FIG. 18) to generate the target reconstructed image g(x, y, z). .
実施の形態4.
 実施の形態1~3に係るレーダ装置では、レーダプラットフォームが1つの基板を有し、1つの基板上に送信アンテナ31-1~31-M及び受信アンテナ41-1~41-Nのそれぞれが実装されている。
 実施の形態4に係るレーダ装置では、レーダプラットフォームが複数の基板を有し、それぞれの基板上に送信アンテナ31-1~31-M及び受信アンテナ41-1~41-Nのそれぞれが実装されている点で、実施の形態1~3に係るレーダ装置と相違している。
 実施の形態4に係る信号処理装置13の構成は、実施の形態1に係る信号処理装置13の構成と同様であり、実施の形態4に係る信号処理装置13を示す構成図は、図2である。
Embodiment 4.
In the radar devices according to the first to third embodiments, the radar platform has one board, and the transmitting antennas 31-1 to 31-M and the receiving antennas 41-1 to 41-N are mounted on the one board. It is
In the radar device according to the fourth embodiment, the radar platform has a plurality of boards, and the transmitting antennas 31-1 to 31-M and the receiving antennas 41-1 to 41-N are mounted on the respective boards. is different from the radar apparatus according to the first to third embodiments.
The configuration of the signal processing device 13 according to Embodiment 4 is the same as the configuration of the signal processing device 13 according to Embodiment 1, and the configuration diagram showing the signal processing device 13 according to Embodiment 4 is shown in FIG. be.
 図19は、複数の基板のそれぞれに実装されている、送信アンテナ31-1~31-Mの設置位置及び受信アンテナ41-1~41-Nの設置位置と、検査対象であるターゲットの位置との関係を示す説明図である。
 図19の例では、レーダプラットフォームが3つの基板(1)~(3)を有し、基板(1)~(3)上のそれぞれに、送信アンテナ31-1~31-M及び受信アンテナ41-1~41-Nのそれぞれが実装されている。
 3つの基板(1)~(3)のそれぞれに送信アンテナ31-1~31-M及び受信アンテナ41-1~41-Nのそれぞれが実装されることで、実施の形態1~3に係るレーダ装置よりも、垂直方向のMIMO仮想開口長が大きくなり、その結果、禁制品検知の垂直分解能が向上する。
FIG. 19 shows the installation positions of the transmitting antennas 31-1 to 31-M, the installation positions of the receiving antennas 41-1 to 41-N, and the positions of the targets to be inspected, which are mounted on each of a plurality of boards. is an explanatory diagram showing the relationship between.
In the example of FIG. 19, the radar platform has three boards (1)-(3), on boards (1)-(3) respectively, transmitting antennas 31-1-31-M and receiving antennas 41- 1 through 41-N are implemented.
By mounting the transmitting antennas 31-1 to 31-M and the receiving antennas 41-1 to 41-N on the three substrates (1) to (3), respectively, the radar according to the first to third embodiments The virtual MIMO aperture length in the vertical direction is larger than that of the apparatus, and as a result, the vertical resolution of contraband detection is improved.
 図20は、位相制御部22-mによる初期位相設定後の送信信号の一例を示す説明図である。
 図20では、3つの基板(1)~(3)のそれぞれに4つの送信アンテナ31-1~31-4が実装されている例を示している。
 図20において、横軸は、時間を示し、縦軸は、周波数を示している。
 図20の例では、基板(1)~(4)のそれぞれに実装されている送信アンテナ31-1に与える送信信号の初期位相である初期位相回転率は、0[rad]であり、送信アンテナ31-2に与える送信信号の初期位相回転率は、π/2[rad]である。
 また、基板(1)~(4)のそれぞれに実装されている送信アンテナ31-3に与える送信信号の初期位相回転率は、π[rad]であり、送信アンテナ31-4に与える送信信号の初期位相回転率は、-π/2[rad]である。
 ただし、基板(1)に実装されている送信アンテナ31-1-1~31-4の送信時刻と、基板(2)に実装されている送信アンテナ31-1-1~31-4の送信時刻と、基板(3)に実装されている送信アンテナ31-1-1~31-4の送信時刻と、基板(4)に実装されている送信アンテナ31-1-1~31-4の送信時刻とが互いに異なっている。
FIG. 20 is an explanatory diagram showing an example of a transmission signal after initial phase setting by the phase control section 22-m.
FIG. 20 shows an example in which four transmitting antennas 31-1 to 31-4 are mounted on each of three boards (1) to (3).
In FIG. 20, the horizontal axis indicates time and the vertical axis indicates frequency.
In the example of FIG. 20, the initial phase rotation rate, which is the initial phase of the transmission signal given to the transmission antenna 31-1 mounted on each of the substrates (1) to (4), is 0 [rad]. The initial phase rotation rate of the transmission signal given to 31-2 is π/2 [rad].
Further, the initial phase rotation rate of the transmission signal given to the transmission antenna 31-3 mounted on each of the substrates (1) to (4) is π [rad], and the rate of the transmission signal given to the transmission antenna 31-4 is π [rad]. The initial phase rotation rate is -π/2 [rad].
However, the transmission times of the transmission antennas 31-1-1 to 31-4 mounted on the board (1) and the transmission times of the transmission antennas 31-1-1 to 31-4 mounted on the board (2) , the transmission times of the transmission antennas 31-1-1 to 31-4 mounted on the board (3) and the transmission times of the transmission antennas 31-1-1 to 31-4 mounted on the board (4) are different from each other.
 図21は、実施の形態4に係る信号処理装置13の処理手順である信号処理方法を示すフローチャートである。
 画像生成部74は、複数の基板のそれぞれについて、ターゲット再生画像g(x,y,z)を生成する(図21のステップST21)。図21のステップST21では、基板毎の画像再生処理と表記している。
 画像生成部74は、複数のターゲット再生画像g(x,y,z)を加算することで(図21のステップST22)、最終的にターゲット再生画像g(x,y,z)を生成する。
FIG. 21 is a flowchart showing a signal processing method, which is a processing procedure of the signal processing device 13 according to the fourth embodiment.
The image generator 74 generates a target reproduced image g(x, y, z) for each of the plurality of substrates (step ST21 in FIG. 21). In step ST21 of FIG. 21, it is described as image reproduction processing for each substrate.
The image generating unit 74 finally generates the target reproduced image g(x, y, z) by adding the plurality of target reproduced images g(x, y, z) (step ST22 in FIG. 21).
 実施の形態1~4に係るレーダ装置は、例えば、エスカレータ、又は、動く歩道に乗っている人を検査対象とすることができる。即ち、エスカレータ、又は、動く歩道の両サイドに、送信アンテナ31-1~31-M及び受信アンテナ41-1~41-Nのそれぞれを設置することで、エスカレータ、又は、動く歩道に乗っている人が禁制品を保持しているか否かをモニタリングすることができる。 The radar devices according to Embodiments 1 to 4 can inspect, for example, a person riding an escalator or a moving walkway. That is, by installing the transmitting antennas 31-1 to 31-M and the receiving antennas 41-1 to 41-N on both sides of the escalator or moving walkway, it is possible to ride the escalator or moving walkway. It is possible to monitor whether a person is in possession of contraband.
 実施の形態1~4に係るレーダ装置は、例えば、空港、鉄道駅、又は、港において、ベルトコンベア等の移動体の上に置かれている手荷物を検査対象とすることができる。即ち、移動体の両サイドに、送信アンテナ31-1~31-M及び受信アンテナ41-1~41-Nのそれぞれを設置することで、移動体の上に置かれている手荷物に禁制品が含まれているか否かをモニタリングすることができる。 The radar devices according to Embodiments 1 to 4 can inspect baggage placed on moving bodies such as belt conveyors at, for example, airports, railway stations, or ports. That is, by installing the transmitting antennas 31-1 to 31-M and the receiving antennas 41-1 to 41-N on both sides of the moving body, it is possible to prevent prohibited items from being carried in baggage placed on the moving body. You can monitor whether it is included or not.
 実施の形態1~4に係るレーダ装置は、例えば、道路を通行する車、自転車、又は、人等を検査対象とすることができる。即ち、道路の両サイドに、送信アンテナ31-1~31-M及び受信アンテナ41-1~41-Nのそれぞれを設置することで、道路を通行する車等が禁制品を保持しているか否かをモニタリングすることができる。 The radar devices according to Embodiments 1 to 4 can inspect, for example, cars, bicycles, or people traveling on the road. That is, by installing the transmitting antennas 31-1 to 31-M and the receiving antennas 41-1 to 41-N on both sides of the road, it is possible to detect whether or not a vehicle or the like traveling on the road carries prohibited items. can be monitored.
 なお、本開示は、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 It should be noted that the present disclosure allows free combination of each embodiment, modification of arbitrary constituent elements of each embodiment, or omission of arbitrary constituent elements in each embodiment.
 本開示は、信号処理装置、信号処理方法及びレーダ装置に適している。 The present disclosure is suitable for signal processing devices, signal processing methods, and radar devices.
 1 レーダ信号処理器、2 送信信号生成器、3 送信機、4 受信機、5 ビート信号生成器、6 A/D変換器、11 制御部、12 データ記憶部、13 信号処理装置、21 VCO、22-1~22-M 位相制御部、23-1~23-M パワーアンプ、31-1~31-M 送信アンテナ、41-1~41-N 受信アンテナ、51-1~51-N LNA、52 分配回路、53-1~53-N ミキサ、54 フィルタリング回路、61-1~61-N A/D変換回路、71 ビート信号取得部、72 信号変換部、73 位相誤差解消部、74 画像生成部、81 ビート信号取得回路、82 信号変換回路、83 位相誤差解消回路、84 画像生成回路、91 メモリ、92 プロセッサ。 1 radar signal processor, 2 transmission signal generator, 3 transmitter, 4 receiver, 5 beat signal generator, 6 A/D converter, 11 control section, 12 data storage section, 13 signal processing device, 21 VCO, 22-1 to 22-M phase control unit, 23-1 to 23-M power amplifier, 31-1 to 31-M transmitting antenna, 41-1 to 41-N receiving antenna, 51-1 to 51-N LNA, 52 distribution circuit, 53-1 to 53-N mixer, 54 filtering circuit, 61-1 to 61-N A/D conversion circuit, 71 beat signal acquisition unit, 72 signal conversion unit, 73 phase error elimination unit, 74 image generation Section, 81 beat signal acquisition circuit, 82 signal conversion circuit, 83 phase error elimination circuit, 84 image generation circuit, 91 memory, 92 processor.

Claims (8)

  1.  レーダプラットフォーム上に一列に並んでいる複数の送信アンテナのそれぞれから、前記レーダプラットフォームと相対的に移動する検査対象に向けて電波が送信されたのち、前記レーダプラットフォーム上に、前記複数の送信アンテナの設置位置と異なる設置位置に一列に並んでいる複数の受信アンテナのそれぞれによって前記検査対象からの前記電波の反射波が受信され、それぞれの反射波の受信信号から生成されたビート信号を取得するビート信号取得部と、
     前記ビート信号取得部により取得されたそれぞれのビート信号を4次元波数空間の信号に変換し、それぞれの4次元波数空間の信号を出力する信号変換部と、
     前記信号変換部から出力されたそれぞれの4次元波数空間の信号に含まれている、前記複数の送信アンテナの設置位置と前記複数の受信アンテナの設置位置との相違に係る位相誤差を解消する位相誤差解消部と、
     前記位相誤差解消部による位相誤差解消後のそれぞれの4次元波数空間の信号から、前記検査対象の3次元レーダ画像を生成する画像生成部と
     を備えた信号処理装置。
    After radio waves are transmitted from each of a plurality of transmitting antennas arranged in a row on a radar platform toward an inspection target that moves relative to the radar platform, the plurality of transmitting antennas are transmitted onto the radar platform. A beat for obtaining a beat signal generated from a received signal of each reflected wave by receiving the reflected wave of the radio wave from the inspection object by each of a plurality of receiving antennas arranged in a row at an installation position different from the installation position. a signal acquisition unit;
    a signal conversion unit that converts each beat signal acquired by the beat signal acquisition unit into a signal in a four-dimensional wavenumber space and outputs each signal in the four-dimensional wavenumber space;
    A phase that eliminates a phase error associated with differences between the installation positions of the plurality of transmitting antennas and the installation positions of the plurality of receiving antennas, which are included in the respective signals in the four-dimensional wavenumber space output from the signal conversion unit. an error elimination unit;
    A signal processing apparatus comprising: an image generation unit that generates a three-dimensional radar image of the inspection object from each signal in the four-dimensional wavenumber space after the phase error is eliminated by the phase error elimination unit.
  2.  前記複数の送信アンテナ及び前記複数の受信アンテナのそれぞれは、前記検査対象のアジマス方向及び前記レーダプラットフォームにおけるアンテナ設置面の垂直方向のそれぞれと直交する方向に一列に並んでおり、かつ、前記複数の送信アンテナにおけるアジマス方向の設置位置と前記複数の受信アンテナにおけるアジマス方向の設置位置とが異なっていることを特徴とする請求項1記載の信号処理装置。 Each of the plurality of transmitting antennas and the plurality of receiving antennas are arranged in a row in a direction orthogonal to the azimuth direction of the inspection object and the vertical direction of the antenna installation surface on the radar platform, and 2. The signal processing apparatus according to claim 1, wherein the installation position of the transmission antenna in the azimuth direction is different from the installation position of the plurality of reception antennas in the azimuth direction.
  3.  前記信号変換部は、
     前記ビート信号取得部により取得されたそれぞれのビート信号を、4次元波数空間の信号として、前記電波の波数の次元と、前記アジマス方向の空間波数の次元と、前記複数の送信アンテナが並んでいる方向の空間波数の次元と、前記複数の受信アンテナが並んでいる方向の空間波数の次元とを有する信号に変換することを特徴とする請求項2記載の信号処理装置。
    The signal conversion unit is
    Each beat signal acquired by the beat signal acquisition unit is used as a signal in a four-dimensional wavenumber space, and the dimension of the wavenumber of the radio waves, the dimension of the spatial wavenumber in the azimuth direction, and the plurality of transmitting antennas are arranged. 3. The signal processing apparatus according to claim 2, wherein the signal is converted into a signal having a spatial wavenumber dimension in a direction and a spatial wavenumber dimension in the direction in which the plurality of receiving antennas are arranged.
  4.  前記位相誤差解消部は、
     前記信号変換部から出力されたそれぞれの4次元波数空間の信号に含まれている位相誤差をテーラー展開によって近似することを特徴とする請求項1記載の信号処理装置。
    The phase error elimination unit
    2. The signal processing apparatus according to claim 1, wherein the phase error contained in each of the four-dimensional wavenumber space signals output from the signal conversion unit is approximated by Taylor expansion.
  5.  レーダプラットフォーム上に一列に並んでいる複数の送信アンテナのそれぞれから、前記レーダプラットフォームと相対的に移動する検査対象に向けて電波が送信されたのち、前記レーダプラットフォーム上に、前記複数の送信アンテナの設置位置と異なる設置位置に一列に並んでいる複数の受信アンテナのそれぞれによって前記検査対象からの前記電波の反射波が受信され、
     ビート信号取得部が、前記反射波の受信信号から生成されたビート信号を取得し、
     信号変換部が、前記ビート信号取得部により取得されたそれぞれのビート信号を4次元波数空間の信号に変換し、それぞれの4次元波数空間の信号を出力し、
     位相誤差解消部が、前記信号変換部から出力されたそれぞれの4次元波数空間の信号に含まれている、前記複数の送信アンテナの設置位置と前記複数の受信アンテナの設置位置との相違に係る位相誤差を解消し、
     画像生成部が、前記位相誤差解消部による位相誤差解消後のそれぞれの4次元波数空間の信号から、前記検査対象の3次元レーダ画像を生成する
     信号処理方法。
    After radio waves are transmitted from each of a plurality of transmitting antennas arranged in a row on a radar platform toward an inspection target that moves relative to the radar platform, the plurality of transmitting antennas are transmitted onto the radar platform. each of a plurality of receiving antennas arranged in a row at an installation position different from the installation position receives the reflected wave of the radio wave from the inspection object;
    A beat signal acquisition unit acquires a beat signal generated from the received signal of the reflected wave,
    A signal conversion unit converts each beat signal acquired by the beat signal acquisition unit into a signal in a four-dimensional wavenumber space, and outputs each signal in a four-dimensional wavenumber space;
    A phase error elimination unit relates to differences between the installation positions of the plurality of transmitting antennas and the installation positions of the plurality of receiving antennas, which are included in the respective signals in the four-dimensional wavenumber space output from the signal conversion unit. Eliminate phase error,
    The signal processing method, wherein an image generation unit generates a three-dimensional radar image of the inspection target from each signal in a four-dimensional wavenumber space after the phase error is eliminated by the phase error elimination unit.
  6.  初期位相回転率が互いに異なる複数の送信信号を生成する送信信号生成器と、
     レーダプラットフォーム上に一列に並んでおり、前記レーダプラットフォームと相対的に移動する検査対象に向けて、それぞれの送信信号に係る電波を送信する複数の送信アンテナと、
     前記レーダプラットフォーム上に、前記複数の送信アンテナの設置位置と異なる設置位置に一列に並んでおり、前記検査対象からの前記電波の反射波を受信する複数の受信アンテナと、
     それぞれの受信アンテナにより受信された反射波の受信信号からビート信号を生成するビート信号生成器と、
     前記ビート信号生成器により生成されたそれぞれのビート信号を取得するビート信号取得部と、
     前記ビート信号取得部により取得されたそれぞれのビート信号を4次元波数空間の信号に変換し、それぞれの4次元波数空間の信号を出力する信号変換部と、
     前記信号変換部から出力されたそれぞれの4次元波数空間の信号に含まれている、前記複数の送信アンテナの設置位置と前記複数の受信アンテナの設置位置との相違に係る位相誤差を解消する位相誤差解消部と、
     前記位相誤差解消部による位相誤差解消後のそれぞれの4次元波数空間の信号から、前記検査対象の3次元レーダ画像を生成する画像生成部と
     を備えたレーダ装置。
    a transmission signal generator that generates a plurality of transmission signals having different initial phase rotation rates;
    a plurality of transmitting antennas arranged in a row on a radar platform and transmitting radio waves associated with respective transmission signals toward an inspection target that moves relative to the radar platform;
    a plurality of receiving antennas arranged in a line on the radar platform at installation positions different from the installation positions of the plurality of transmitting antennas and receiving reflected waves of the radio waves from the inspection object;
    a beat signal generator that generates a beat signal from the received signal of the reflected wave received by each receiving antenna;
    a beat signal acquisition unit that acquires each beat signal generated by the beat signal generator;
    a signal conversion unit that converts each beat signal acquired by the beat signal acquisition unit into a signal in a four-dimensional wavenumber space and outputs each signal in the four-dimensional wavenumber space;
    A phase that eliminates a phase error associated with differences between the installation positions of the plurality of transmitting antennas and the installation positions of the plurality of receiving antennas, which are included in the respective signals in the four-dimensional wavenumber space output from the signal conversion unit. an error elimination unit;
    and an image generation unit that generates a three-dimensional radar image of the inspection object from each signal in the four-dimensional wavenumber space after the phase error is eliminated by the phase error elimination unit.
  7.  前記複数の送信アンテナは、それぞれの送信信号に係る電波を同時に送信し、
     前記信号変換部は、それぞれのビート信号に重畳されている複数の送信信号を波数領域で分離することを特徴とする請求項6記載のレーダ装置。
    The plurality of transmitting antennas simultaneously transmit radio waves associated with respective transmission signals,
    7. The radar apparatus according to claim 6, wherein the signal conversion section separates a plurality of transmission signals superimposed on each beat signal in a wavenumber domain.
  8.  それぞれの送信アンテナの間隔は、第1の長さの整数倍であり、
     それぞれの受信アンテナの間隔は、第2の長さの整数倍であることを特徴とする請求項7記載のレーダ装置。
    the spacing of each transmit antenna is an integer multiple of the first length;
    8. The radar apparatus according to claim 7, wherein the distance between each receiving antenna is an integral multiple of the second length.
PCT/JP2022/008107 2022-02-28 2022-02-28 Signal processing device, signal processing method, and radar device WO2023162188A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023570126A JP7446548B2 (en) 2022-02-28 2022-02-28 Signal processing device, signal processing method and radar device
PCT/JP2022/008107 WO2023162188A1 (en) 2022-02-28 2022-02-28 Signal processing device, signal processing method, and radar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/008107 WO2023162188A1 (en) 2022-02-28 2022-02-28 Signal processing device, signal processing method, and radar device

Publications (1)

Publication Number Publication Date
WO2023162188A1 true WO2023162188A1 (en) 2023-08-31

Family

ID=87765188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008107 WO2023162188A1 (en) 2022-02-28 2022-02-28 Signal processing device, signal processing method, and radar device

Country Status (2)

Country Link
JP (1) JP7446548B2 (en)
WO (1) WO2023162188A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120280851A1 (en) * 2010-01-11 2012-11-08 Bae Systems Plc Pulse radar range profile motion compensation
JP2017223575A (en) * 2016-06-16 2017-12-21 日本信号株式会社 Object detection device
JP2020530562A (en) * 2017-08-09 2020-10-22 ジョージア テック リサーチ コーポレイション Sensor array imaging device
JP6921339B1 (en) * 2020-06-11 2021-08-18 三菱電機株式会社 Radar device and radar image generation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120280851A1 (en) * 2010-01-11 2012-11-08 Bae Systems Plc Pulse radar range profile motion compensation
JP2017223575A (en) * 2016-06-16 2017-12-21 日本信号株式会社 Object detection device
JP2020530562A (en) * 2017-08-09 2020-10-22 ジョージア テック リサーチ コーポレイション Sensor array imaging device
JP6921339B1 (en) * 2020-06-11 2021-08-18 三菱電機株式会社 Radar device and radar image generation method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOICHI KOBAYASHI: "On near-field far transformation for antenna and radar scattering cross sections", IEICE TECHNICAL REPORT, vol. 115, no. 144 (EMT2015-41), 9 July 2015 (2015-07-09), pages 185 - 190, XP009548817, ISSN: 0913-5685 *
MODI ANUJ Y.; BALANIS CONSTANTINE A.; BIRTCHER CRAIG R.; SHAMAN HUSSEIN N.: "New Class of RCS-Reduction Metasurfaces Based on Scattering Cancellation Using Array Theory", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, IEEE, USA, vol. 67, no. 1, 1 January 2019 (2019-01-01), USA, pages 298 - 308, XP011705887, ISSN: 0018-926X, DOI: 10.1109/TAP.2018.2878641 *

Also Published As

Publication number Publication date
JP7446548B2 (en) 2024-03-08
JPWO2023162188A1 (en) 2023-08-31

Similar Documents

Publication Publication Date Title
WO2021250866A1 (en) Radar device and radar image generation method
US20210184367A1 (en) Radar apparatus
Yanik et al. Development and demonstration of MIMO-SAR mmWave imaging testbeds
JP4665590B2 (en) Interferometric radar
US20220163623A1 (en) Radar device
CN108603928B (en) Method and system for reducing interference caused by phase noise in radar systems
US11079471B2 (en) Apparatus and method for cancelling interference signals
EP3729130A1 (en) Methods and apparatus to realize scalable antenna arrays with large aperture
JP4496954B2 (en) Interferometric radar
US20170176583A1 (en) Method in a Radar System, Radar System, and/or Device of a Radar System
JP5630034B2 (en) Radar apparatus and target detection method
Feger et al. A frequency-division MIMO FMCW radar system based on delta–sigma modulated transmitters
Jeon et al. W-band FMCW MIMO radar system for high-resolution multimode imaging with time-and frequency-division multiplexing
US7719457B1 (en) Digitally tuned digital radio frequency memory
WO2023162188A1 (en) Signal processing device, signal processing method, and radar device
Niu et al. A novel transmitter-interpulse phase coding MIMO-radar for range ambiguity separation
WO2018225250A1 (en) Radar device
KR20190113159A (en) Radar apparatus
Wojaczek et al. Range compression strategies for passive radar on airborne platforms
JP7117557B2 (en) radar equipment
JP5737441B2 (en) Radar apparatus and target detection method
CN112965061A (en) Imaging system and imaging method based on cylindrical surface MIMO area array
Peng et al. Study on transmitting mode and imaging algorithm of MIMO-SAR
Garry Imaging methods for passive radar
JP7249546B2 (en) radar equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928714

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023570126

Country of ref document: JP