WO2023162040A1 - Method for preparing lithium metal phosphate, lithium metal phosphate, positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery - Google Patents

Method for preparing lithium metal phosphate, lithium metal phosphate, positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery Download PDF

Info

Publication number
WO2023162040A1
WO2023162040A1 PCT/JP2022/007382 JP2022007382W WO2023162040A1 WO 2023162040 A1 WO2023162040 A1 WO 2023162040A1 JP 2022007382 W JP2022007382 W JP 2022007382W WO 2023162040 A1 WO2023162040 A1 WO 2023162040A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound containing
lithium
metal phosphate
lithium metal
positive electrode
Prior art date
Application number
PCT/JP2022/007382
Other languages
French (fr)
Japanese (ja)
Inventor
猛 伊藤
Original Assignee
株式会社オキサイド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オキサイド filed Critical 株式会社オキサイド
Priority to PCT/JP2022/007382 priority Critical patent/WO2023162040A1/en
Publication of WO2023162040A1 publication Critical patent/WO2023162040A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/10Compounds containing boron and oxygen
    • C01B35/12Borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a lithium metal phosphate, a lithium metal phosphate, a positive electrode material for lithium ion secondary batteries, a positive electrode for lithium ion secondary batteries, and a lithium ion secondary battery.
  • LiCoO 2 is known as a positive electrode material for lithium ion secondary batteries.
  • LCO has a high energy density (electromotive voltage x electric capacity), but has problems in stability and life.
  • An olivine-type lithium metal phosphate represented by the general formula LiFePO 4 has been put to practical use as a more stable material to replace LCO.
  • Li 2 FeSiO 4 which is similar to lithium metal phosphate, is expected to double the electric capacity because it has two Li in the molecule, but it cannot be used as a positive electrode material because it is an insulator. .
  • M represents a transition metal.
  • a substance having a high ratio of Li in its composition can be expected to have a high electric capacity. Further, by substituting a portion of P with another doping element, an improvement in electrical conductivity can be expected. Therefore, based on the findings of Patent Documents 3 and 4, P 5+ is replaced with B 3+ or Si 4+ with a smaller ionic radius in order to increase the ratio of Li that contributes to the electric capacity in the olivine-type lithium metal phosphate. We considered how to increase the substitution rate by using However, the inventors have found that the olivine structure tends to become unstable when the substitution rate is increased.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for producing a lithium metal phosphate that has a stable crystal structure and excellent electrical capacity and electrical conductivity.
  • the present invention also provides a lithium metal phosphate having a stable crystal structure and excellent electrical capacity and electrical conductivity, a positive electrode material for a lithium ion secondary battery using the lithium metal phosphate, and a lithium ion secondary battery.
  • An object of the present invention is to provide a positive electrode and a lithium ion secondary battery.
  • the present invention provides a compound containing Li element; a compound containing metal element M (M is at least one selected from the group consisting of Fe, Co, Ni, and Mn); a compound containing B element and Si element. at least one of the compounds containing; and a solute raw material containing a compound containing a P element containing pyrophosphate ions, a mixing step of obtaining a mixture of a flux and a mixing step of obtaining a mixture, a melting step of obtaining a melt of the mixture, and cooling the melt and a cooling step of obtaining a precipitate by means of cooling.
  • the compound containing element B may contain tetraborate ions.
  • the present invention provides a compound containing Li element; a compound containing metal element M (M represents at least one selected from the group consisting of Fe, Co, Ni, and Mn); B element containing tetraborate ion and a compound containing a P element containing a phosphate ion, a mixing step of obtaining a mixture of a solute raw material and a flux, a melting step of obtaining a melt of the mixture, and a precipitate by cooling the melt and a cooling step of obtaining
  • M represents at least one selected from the group consisting of Fe, Co, Ni, and Mn
  • B element containing tetraborate ion and a compound containing a P element containing a phosphate ion a mixing step of obtaining a mixture of a solute raw material and a flux, a melting step of obtaining a melt of the mixture, and a precipitate by cooling the melt and a cooling step of obtaining
  • the solute raw material may further contain a compound containing Si element.
  • the melting temperature in the melting step is preferably 600°C or higher.
  • the ratio of B element to P element in the mixture is preferably 1/99 to 99/1.
  • the ratio of Si element to P element in the mixture is preferably 1/99 to 99/1.
  • the present invention provides a lithium metal phosphate having an olivine-type crystal structure represented by the general formula LiM(P,Q)O 4 and an electrical conductivity of 10 ⁇ 8 S/cm or higher.
  • M represents at least one selected from the group consisting of Fe, Co, Ni, and Mn.
  • P, Q indicates that part of P is replaced with Q.
  • Q is at least one of B and Si.
  • the present invention also provides a lithium metal phosphate having an olivine-type crystal structure represented by the general formula Li 1+ ⁇ M(P 1-xy B x Si y )O 4 .
  • M represents at least one selected from the group consisting of Fe, Co, Ni, and Mn.
  • x is 0 to 0.6
  • y is 0 to 0.6
  • x + y more than 0.2 0.8 or less
  • is 0.4 to 1.2.
  • the electrical conductivity may be 10 ⁇ 8 S/cm or more.
  • the present invention provides a positive electrode material for a lithium ion secondary battery, containing the lithium metal phosphate described above.
  • the present invention provides a positive electrode for a lithium-ion secondary battery containing the positive electrode material described above.
  • the present invention provides a lithium ion secondary battery comprising the positive electrode described above.
  • a method for producing a lithium metal phosphate that has a stable crystal structure and excellent electrical capacity and electrical conductivity.
  • a lithium metal phosphate having a stable crystal structure and excellent electrical capacity and electrical conductivity, a positive electrode material for a lithium ion secondary battery using the lithium metal phosphate, and a lithium ion secondary battery can provide a positive electrode and a lithium ion secondary battery.
  • the lithium metal phosphate according to the present invention can have a crystal structure with a high Li ratio, excellent electric capacity can be expected, and because it has a stable olivine-type crystal structure (also referred to as an olivine structure). Long life of the positive electrode can be expected.
  • FIG. 1 is a powder X-ray diffraction chart in Example 1.
  • FIG. 4 is a powder X-ray diffraction chart in Example 2.
  • FIG. 4 is a powder X-ray diffraction chart in Example 3.
  • FIG. 4 is a powder X-ray diffraction chart in Example 4.
  • FIG. 2 is a powder X-ray diffraction chart in Example 5.
  • FIG. 2 is a powder X-ray diffraction chart in Example 6.
  • FIG. 2 is a powder X-ray diffraction chart in Example 7.
  • FIG. 2 is a powder X-ray diffraction chart in Example 8.
  • FIG. 4 is a powder X-ray diffraction chart in Comparative Example 1.
  • FIG. 4 is a powder X-ray diffraction chart in Comparative Example 2.
  • FIG. 4 is a graph showing the electrical conductivity evaluation results of lithium metal phosphate in Example 1.
  • FIG. 4 is a graph showing the electrical conductivity evaluation results of lithium metal phosphate in Example 2.
  • FIG. 10 is a graph showing the electrical conductivity evaluation results of lithium metal phosphate in Example 3.
  • FIG. 10 is a graph showing the electrical conductivity evaluation results of lithium metal phosphate in Example 4.
  • FIG. 10 is a graph showing the electrical conductivity evaluation results of lithium metal phosphate in Example 5.
  • FIG. 10 is a graph showing the electrical conductivity evaluation results of lithium metal phosphate in Example 6.
  • FIG. 10 is a graph showing the electrical conductivity evaluation results of lithium metal phosphate in Example 7.
  • FIG. 10 is a graph showing the electrical conductivity evaluation results of lithium metal phosphate in Example 8.
  • FIG. 4 is a graph showing electrical conductivity evaluation results of lithium metal phosphate in Comparative Example 1.
  • FIG. 4 is a graph showing the electrical conductivity evaluation results of lithium metal phosphate in Comparative Example 1.
  • a method for producing a lithium metal phosphate includes a mixing step of obtaining a mixture of a raw material compound and a flux, a melting step of obtaining a melt of the mixture, a cooling step of cooling the melt to obtain a precipitate, Prepare.
  • the above production method employs a high-temperature flux method (flux method), dopes boron or silicon to partially replace phosphorus, and replaces at least a portion of the compound containing the P element with a compound containing pyrophosphate ions.
  • flux method high-temperature flux method
  • the solute raw material contains a compound containing B element when the compound containing Li element does not contain B element (borate ion), and when the compound containing Li element does not contain Si element (silicate ion) contains a compound containing Si element, and can contain a compound containing P element when the compound containing Li element does not contain P element (pyrophosphate ion).
  • the compound containing element B may contain tetraborate ions.
  • the mixing step includes a compound containing Li element; a compound containing metal element M (M represents at least one selected from the group consisting of Fe, Co, Ni, and Mn); B element containing tetraborate ion and a compound containing P element containing phosphate ions, and a mixing step of obtaining a mixture of a flux and a solute raw material.
  • the solute raw material contains a compound containing B element containing tetraborate ions when the compound containing Li element does not contain tetraborate ions, and when the compound containing Li element does not contain phosphate ions Compounds containing the P element containing phosphate ions can be included.
  • the solute raw material may further contain a compound containing Si element, and in this case, when the compound containing Li element does not contain Si element (silicate ion), it may further contain a compound containing Si element.
  • the compound containing Li element is not particularly limited, and includes lithium carbonate, lithium acetate, lithium nitrate, lithium hydroxide, lithium phosphate, lithium pyrophosphate, lithium dihydrogen phosphate, lithium borate, lithium tetraborate, silicic acid.
  • Examples include lithium, lithium metasilicate, anhydrides or hydrates thereof, and the like.
  • lithium pyrophosphate and lithium tetraborate are preferable from the viewpoint of suppressing the formation of metal oxides as impurities due to side reactions and improving the yield of olivine.
  • the compound containing the metal element M is not particularly limited, and iron oxalate, iron chloride, iron sulfate, iron nitrate, iron oxide, iron hydroxide, anhydrides or hydrates of these compounds containing Fe element (compound The valence of Fe in may be divalent or trivalent); compounds containing Co elements such as cobalt carbonate, cobalt oxalate, cobalt chloride, anhydrides or hydrates thereof; nickel carbonate, nickel oxalate , nickel chloride, their anhydrides or hydrates; and manganese carbonate, manganese oxalate, manganese chloride, and their anhydrides or hydrates.
  • Co elements such as cobalt carbonate, cobalt oxalate, cobalt chloride, anhydrides or hydrates thereof; nickel carbonate, nickel oxalate , nickel chloride, their anhydrides or hydrates; and manganese carbonate, manganese oxalate, manganese chloride
  • the compound containing the B element is not particularly limited, and includes boron oxide; boric acid, boric anhydride, compounds containing borate ions such as lithium borate; compounds containing tetraborate ions such as lithium tetraborate, and the like. mentioned.
  • at least part of the compound containing element B is preferably a compound containing tetraborate ions, and the compound Lithium tetraborate is preferred.
  • the compound containing Si element is not particularly limited, and silicon oxide, silica gel, lithium silicate, lithium metasilicate, etc. can be used. Of these, lithium silicate is preferred from the viewpoint of purity and reactivity.
  • Compounds containing the P element include compounds containing phosphate ions (PO 4 3 ⁇ ) and compounds containing pyrophosphate ions (P 2 O 7 4 ⁇ ).
  • Compounds containing phosphate ions are not particularly limited, and ammonium phosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, lithium phosphate, lithium dihydrogen phosphate, phosphoric acid, diphosphorus pentoxide, and these Anhydrides or hydrates are mentioned.
  • Compounds containing pyrophosphate ions include pyrophosphate, lithium pyrophosphate, anhydrides and hydrates thereof.
  • the compound containing the P element is a compound containing pyrophosphate ions, and the compound is preferably lithium pyrophosphate.
  • Li element, M element, B element, Si element and P element facilitates the mixing process.
  • lithium borate can be used as a compound containing Li and B elements.
  • Lithium phosphate and lithium dihydrogen phosphate can also be used as compounds containing Li elements and phosphate ions.
  • a compound containing the Li element, a compound containing the metal element M, a compound containing the B element, a compound containing the Si element, and a compound containing the P element may be prepared and used.
  • a compound containing the P element, a compound containing the metal element M, a compound containing the B element, and a compound containing the Si element may be prepared.
  • the advantages of using tetraborate ions for some or all of the borate ions are the same as the advantages of using pyrophosphate ions for some or all of the phosphate ions. That is, for example, when lithium tetraborate is used as the compound containing element B, lithium tetraborate Li 2 B 4 O 7 reacts with excess Li 2 O to produce 4LiBO 2 . LiBO 2 in this active state suppresses the formation of metal oxides as impurities due to side reactions and improves the yield of olivine.
  • some or all of the phosphate ions are replaced with pyrophosphate ions, and some or all of the borate ions are replaced with tetraborate ions. may be used together.
  • the element ratio (molar ratio) of the M element, the P element, the B element and the Si element in the raw material weighing of each compound described above can be 0.8 to 1.2:1. From the viewpoint of the theoretical ratio of lithium metal phosphate having an olivine-type crystal structure, the ratio may be 1:1.
  • the element ratio of the B element to the P element can be 1/99 to 99/1 or 10/90 to 99/1. However, from the viewpoint of obtaining the desired crystal structure and exhibiting better electrical conductivity and capacitance, the ratio can be 15/85 to 50/50, and 10/90 to 30/70. good too.
  • the element ratio of Si element to P element can be 1/99 to 99/1 or 10/90 to 99/1. However, from the viewpoint of obtaining the desired crystal structure and exhibiting better electrical conductivity and capacitance, the ratio can be 15/85 to 50/50, and 10/90 to 30/70. good too.
  • the amount of each element of P element, B element and Si element is adjusted so that Li element is large. From the stoichiometric ratio of the lithium metal phosphate represented by LiFePO 4 , the element ratio of Li and P is 1:1, but by adjusting the respective element amounts of P element, B element and Si element, , the element ratio of Li and (P+B+Si) can be increased to about 2:1 in the subsequent melting and cooling steps. Further, the reason why the Li element is adjusted to be large is that there is evaporation loss of Li and that pyrophosphate ions are completely decomposed into phosphate ions. Excess lithium promotes the formation of olivine and has the effect of suppressing the generation of heterophases.
  • the reaction formula is as follows. Since pyrophosphate becomes active phosphoric acid, the reaction to produce olivine is dominant. Li4P2O7 + Li2O ⁇ 2Li3PO4 _ 1 / 2Li3PO4 + 1/ 2Li3BO3 + MCl2 +1/ 2Li2O ⁇ Li2M ( P0.5 , B0.5 ) O4 +2LiCl
  • the element ratio of the Li element to the B element, Si element and P element is 1.4 to 1.4 from the viewpoint of maintaining electrical neutrality and easily obtaining a stable olivine structure. It is preferably 2.2, more preferably 1.5 to 2.0.
  • Flux is a compound used in the high-temperature flux method (flux method), a type of crystal production method, and is an inorganic compound that acts as a solvent to dissolve the desired crystal.
  • the high-temperature flux method utilizes the property that the solubility of crystals, which are solutes, in a solvent changes with temperature. If a flux is used that has a high solubility at high temperatures and a low solubility at low temperatures, the solubility in the flux exceeds with cooling, and the target substance in a supersaturated state precipitates as crystals. As the flux, a compound that melts at a temperature lower than that of the target crystal may be selected.
  • Fluxes include lithium chloride, lithium carbonate, lithium fluoride, lithium vanadate, sodium dihydrogen phosphate, lead fluoride, lead oxide, bismuth oxide, molybdate, tungstate, etc., and these are one type. It can be used alone or in combination of two or more. When there are multiple solute components, a specific solute component is increased and the component ratio is intentionally deviated from the desired component ratio (stoichiometric ratio) so that the solute component also functions as a flux.
  • a self-flux method can also be used. That is, the compound containing Li element used in excess is also used as a self-flux.
  • each compound that becomes the solute is mixed with the flux to obtain a mixture.
  • Each compound is appropriately weighed so as to obtain the desired composition of lithium metal phosphate.
  • the mixing ratio of each compound and flux is preferably 1:0.1 to 1:1, more preferably 1:0.2 to 1:0.5, from the viewpoint of the melting temperature and solubility of the raw materials. more preferred.
  • the mixing method may be either a dry mixing method or a wet mixing method. Specifically, a method of mechanically mixing each raw material using a mortar, a ball mill, etc., a coprecipitation method in which each raw material is dissolved in water and then precipitated and mixed, and a sol in which each raw material is dissolved is gelled. A sol-gel method, etc., in which the components are mixed together can be used.
  • the melting step the mixture obtained in the mixing step is melted.
  • the mixture is placed in a predetermined container such as a platinum crucible as required, put into a firing furnace, and melted in an inert atmosphere or an inert atmosphere containing a small amount of oxygen.
  • the inert atmosphere include an atmosphere substituted with argon gas, nitrogen gas, helium gas, or the like. These inert gases may contain less than 100 ppm of oxygen.
  • the melt in the melting step means that the flux added as a solvent is completely melted, and most of the solute is (a compound containing the Li element, a compound containing the metal element M, a compound containing the B element, a compound containing the Si element, compounds, and compounds containing P elements including phosphate ions and pyrophosphate ions) are in a state of being melted in the flux.
  • the melt may contain unmelted solutes.
  • the melting temperature in the melting process can be set to a temperature at which most or all of the solute melts in the molten flux. For example, a high temperature of 1000° C. or more is required to melt a mixture containing SiO 2 without using a flux, but the use of a flux enables melting at a lower temperature. Although it depends on the composition of the mixture and is not necessarily limited, the melting temperature can be at least 600°C or higher since the melting point of lithium chloride, which is the main flux component, is 605°C, and may be 650°C or higher, or 700°C or higher. may be The upper limit of the melting temperature can be 1000° C.
  • the holding time at the melting temperature can be set to a time for a certain amount of solute to melt, for example, it can be at least 3 hours or more, may be 4.5 hours or more, or 6 hours or more. may be The upper limit of the holding time can be 24 hours or less from the viewpoint of suppressing decomposition and evaporation of the raw material and the lithium compound, and may be 12 hours or less.
  • the resulting lithium metal phosphate having an orthorhombic olivine-type crystal structure will not contain
  • impurities such as reaction raw materials and flux components may be mixed in and compounded. These impurities are compounds that are produced when the mixture is simply sintered, and are factors that reduce the electrical conductivity of lithium metal phosphate having an olivine-type crystal structure.
  • the sintering referred to here is a method that does not use flux, and heats the raw materials at a high temperature that does not completely melt the raw materials to cause the raw materials to react with each other, thereby obtaining a sintered product having a composition according to the raw materials. be.
  • a calcination process may be performed prior to the melting process.
  • the mixture can be calcined at about 400 to 600° C. to obtain a calcined product.
  • the calcined product can be subjected to a melting step.
  • the resulting melt is cooled to room temperature by this step.
  • the cooling rate is preferably 5° C./hour or less until solidification at the fastest. If the cooling rate is too fast, defects may occur in the crystal.
  • the recovered product (cooled product) obtained after the cooling step contains the deposit of the lithium metal phosphate having the desired olivine type crystal structure, as well as other components such as flux components, unreacted substances, and side reaction products. obtain. For example, by washing the collected material with warm water (pure water at 60° C., etc.) and filtering only the hardly soluble crystals, the remaining collected material can be visually observed to have the desired olivine-type crystal structure. Only lithium metal phosphate can be selected. From this point of view, the manufacturing method of the present embodiment may include a washing step of washing the recovered material obtained in the cooling step. It can be confirmed by X-ray diffraction method or the like that the obtained crystal is a lithium metal phosphate having an olivine type crystal structure.
  • Lithium metal phosphate is a part of P in a compound represented by the general formula Li 2 MPO 4 (wherein M is at least one selected from the group consisting of Fe, Co, Ni and Mn) is substituted with B, Si, or B and Si.
  • Lithium metal phosphate has an olivine structure.
  • the olivine structure has a hexagonal close-packed oxygen skeleton, with P ions at the tetracoordinated tetrahedral sites and Li ions and transition metal ions M at the hexacoordinated octahedral sites.
  • some of the pentavalent P ions are replaced with trivalent B ions and tetravalent Si ions.
  • the valence of M is +2 in the stoichiometric composition, and can change from +2 to +4 in order to keep the charge neutral with the elimination of Li.
  • Such lithium metal phosphates can be referred to as boron silicon-doped lithium metal phosphates or boron phosphorus-doped lithium metal silicates Li2M (P,B,Si) O4 .
  • the lithium metal phosphate of the present embodiment has an olivine-type crystal structure represented by the general formula Li 1+ ⁇ M(P 1-xy B x Si y )O 4 .
  • M represents at least one selected from the group consisting of Fe, Co, Ni and Mn.
  • x is 0 to 0.6
  • y is 0 to 0.6
  • x+y is more than 0.2 and 0.8 or less
  • is 0.4 to 1.2.
  • x may be 0, when x is more than 0, excellent electric capacity and electric conductivity can be exhibited. From this point of view, x is preferably 0.3 or more, more preferably 0.4 or more. When x is 0.6 or less, heterogeneous phases are less likely to occur and the yield is improved. From this point of view, x is preferably 0.5 or less.
  • y may be 0, when y is more than 0, excellent electric capacity and electric conductivity can be exhibited. From this point of view, y is preferably 0.2 or more, more preferably 0.3 or more. Electric conductivity improves because y is 0.6 or less. From this point of view, y is preferably 0.5 or less. In addition, it is preferable that x ⁇ y from the viewpoint of easily suppressing the generation of a different phase.
  • x+y When x+y is more than 0.2, excellent electric capacity and electric conductivity can be exhibited. From this point of view, x+y is preferably 0.3 or more, more preferably 0.4 or more. When x+y is 0.8 or less, heterogeneous phases are less likely to occur and the yield is improved. From this point of view, x+y is preferably 0.7 or less.
  • When ⁇ is 0.4 or more, excellent electric capacity and electric conductivity can be exhibited. From this point of view, ⁇ is preferably 0.5 or more. When ⁇ is 1.2 or less, heterogeneous phases are less likely to occur and the yield is improved. From this point of view, ⁇ is preferably 1 or less.
  • lithium metal phosphate Since the above lithium metal phosphate has excellent electrical conductivity, it has an olivine-type crystal structure represented by the general formula LiM(P,Q)O 4 and has an electrical conductivity of 10 ⁇ 8 S/cm or more. It can also be called lithium metal phosphate.
  • the electric conductivity is a value measured based on the fact that the electric conductivity of LiFePO 4 is 10 ⁇ 8 /cm.
  • M represents at least one selected from the group consisting of Fe, Co, Ni, and Mn.
  • P, Q) indicates that part of P is replaced with Q, and Q is B or B and Si.
  • the transition metal is in a state of equilibrium with oxygen in the atmosphere in a high-temperature molten state, and in the presence of a small amount of oxygen, divalent and trivalent transition metal ions are in a state of coexistence.
  • the crystal radius of the 4-coordination site is Si 4+ >P 5+ >B 3+ , and 0.40 of Si is the largest, and the crystal radius of the transition metal of the 6-coordination site is 0.75 to 0.83.
  • B and Si are usually not considered to enter the six-coordinated sites occupied by transition metals.
  • Si and B are substituted and solid-soluted at the position of P, which is 4-coordinate, so if the atmosphere is reducing and Li is excessive, Li ions further increase at the 6-coordinate position for charge compensation. . Or, if somewhat oxidizing, a trivalent transition metal will enter. If there are trivalent transition metal ions in the crystal, it is considered that electron transfer occurs between the divalent and trivalent transition metal ions, thereby developing electron conductivity.
  • Li 2 FeSiO 4 in which all four coordination sites are Si has very poor electrical conductivity. It is presumed that the reason for this is that Si is strongly and tightly bound to the surrounding oxygen and has no flexibility in the crystal structure, making it difficult for Li + ions to move.
  • the melting point of a solid solution is generally lower than that of a pure one because the crystal lattice is distorted, weakening the binding force between the constituent cations and oxygen ions.
  • a solid solution in which an element other than Si is mixed in the 4-coordination site has a weaker bonding force with oxygen than pure silicate, and it is considered that Li ions corresponding to the valence change of the transition metal tend to move. It is believed that this is the same for the lithium metal phosphate, and that the electron mobility is therefore increased. It is speculated that ionic conduction and electronic conduction complementarily contribute to the improvement of electrical conductivity.
  • the olivine structure is derived from the olivine X 2 SiO 4 structure, a natural silicate mineral (wherein X contains the divalent metals Mg and Fe in a ratio of about 9:1).
  • X 2 SiO 4 oxygen is nearly hexagonally densely packed, and there are 8 gaps per 4 oxygen atoms surrounded by 4 oxygen atoms, and Si occupies 1 ⁇ 8 of these gaps. There are also 4 gaps surrounded by 6 oxygen atoms per 6 oxygen atoms, and X occupies 1/2 of them.
  • a lithium-ion secondary battery includes a positive electrode that includes a positive electrode material comprising the lithium metal phosphate described above. More specifically, a lithium ion secondary battery includes the positive electrode, negative electrode, electrolyte, and the like.
  • the positive electrode can contain, in addition to the above positive electrode material, a conductive aid, a binder, and the like.
  • the conductivity aid is not particularly limited, and includes acetylene black, carbon black, graphite, carbon fiber, metal fiber, aluminum powder, fluorocarbon, zinc oxide, potassium titanate, titanium oxide, and polyphenylene derivatives. These can be used individually by 1 type or in combination of 2 or more types.
  • the binder is not particularly limited and includes polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, ethylene propylene diene polymer and the like. These can be used individually by 1 type or in combination of 2 or more types.
  • the negative electrode may consist of the negative electrode active material itself, or may contain the negative electrode active material and a binder. That is, the negative electrode may consist of metallic lithium, a lithium-aluminum alloy, a lithium-tin alloy, or may contain graphite, carbon fiber, coke, mesocarbon microbeads (MCMB), etc., and a binder.
  • the electrolyte may be liquid or solid.
  • organic solvent examples include, but are not limited to, carbonates, halogenated carbohydrates, ethers, ketones, nitriles, lactones, oxolane compounds, and the like. These can be used individually by 1 type or in combination of 2 or more types.
  • the supporting electrolyte is not particularly limited, and inorganic salts such as LiPF 6 , LiBF 4 , LiClO 4 and LiAsF 6 , LiSO 3 CF 3 , LiC(SO 3 CF 3 ) 2 , LiN(SO 2 CF 3 )(SO 2 C 4 F 9 ), and derivatives thereof.
  • inorganic salts such as LiPF 6 , LiBF 4 , LiClO 4 and LiAsF 6 , LiSO 3 CF 3 , LiC(SO 3 CF 3 ) 2 , LiN(SO 2 CF 3 )(SO 2 C 4 F 9 ), and derivatives thereof.
  • a porous synthetic resin film especially a porous film of polyolefin molecules
  • a separator When using an electrolytic solution, a porous synthetic resin film (especially a porous film of polyolefin molecules) may be used as a separator.
  • oxides and sulfides can be used.
  • the oxide compounds include La0.51Li0.34TiO2.94 , NASICON - type Li1.3Al0.3Ti1.7 ( PO4 ), and garnet - type LI7La3Zr2 .
  • sulfide-based compounds include two-component systems such as Li 2 S—SiS 2 systems, and three-component systems in which LiI, LI 3 PO 4 , etc. are added thereto. be done.
  • a lithium-ion secondary battery is manufactured, for example, as follows.
  • a coating liquid is prepared by dispersing the negative electrode active material and binder in a solvent.
  • the obtained coating liquid is uniformly applied on the negative electrode current collector and dried to obtain a laminate composed of the negative electrode current collector and the negative electrode active material layer.
  • This laminate is housed in a negative electrode member so that the negative electrode current collector and the inner surface of the negative electrode member are in contact with each other to obtain a negative electrode.
  • metallic lithium foil or the like when metallic lithium foil or the like is used, the itself may be used as the negative electrode.
  • a coating liquid is prepared by dispersing the positive electrode active material, conductive aid, and binder in a solvent.
  • the obtained coating liquid is uniformly applied on the positive electrode current collector and dried to obtain a laminate composed of the positive electrode current collector and the positive electrode active material layer.
  • a positive electrode is obtained by housing this laminate in a positive electrode member so that the positive electrode current collector and the inner surface of the positive electrode member are in contact with each other.
  • the negative electrode and the positive electrode manufactured as described above are superimposed so that a separator is interposed between the negative electrode active material layer and the positive electrode active material layer, the electrolyte is filled, and the battery is sealed with a sealing material.
  • a lithium ion secondary battery is completed by sealing the inside.
  • a solid electrolyte for example, a negative electrode raw material powder is deposited to a uniform thickness to form a negative electrode powder layer, and a solid charge layer containing a solid electrolyte powder is formed on the negative electrode powder layer.
  • the raw material powder is deposited to a uniform thickness to form a solid electrolyte powder layer
  • the positive electrode raw material powder is deposited to a uniform thickness on the solid electrolyte layer powder layer to form a positive electrode powder layer.
  • these three layers are compression-molded to obtain a powder laminate.
  • a lithium ion battery can be obtained using the obtained powder laminate.
  • a solid electrolyte, a negative electrode, and a positive electrode can also be formed separately and laminated to obtain a lithium ion secondary battery.
  • the shape of the lithium-ion secondary battery is not particularly limited, and may be cylindrical, rectangular, coin-shaped, button-shaped, or the like.
  • lithium pyrophosphate Li 4 P 2 O 7 obtained by reacting commercially available pyrophosphoric acid with lithium carbonate Li 2 CO 3 in excess of the equivalent amount (however, the excess lithium carbonate Li 2 CO 3 ), iron chloride FeCl 2 and manganese chloride MnCl 2 as compounds containing metal element M, lithium borate Li 4 B 2 O 5 as compounds containing B element, and Li 2 SiO 3 as compounds containing Si element, Prepared as a solute powder.
  • Li:Fe:Mn:P:B:Si 40:9:9:6:6:6.
  • Lithium carbonate and lithium chloride were prepared as fluxes.
  • the mixing ratio of the solute powder and the flux was adjusted to a mass ratio of 5:1.
  • the weighed solute powder and flux were thoroughly mixed using a mortar and pestle to obtain a mixed powder.
  • the mixed powder was placed in a platinum crucible and placed in an atmosphere-controlled electric furnace. Then, the temperature was raised to 890° C. while general nitrogen was circulated in the electric furnace, and the temperature was maintained for 3 hours. Thus, the mixed powder was melted to obtain a melt.
  • the oxygen concentration at the outlet of the furnace was several tens of ppm. The melt was then slowly cooled at 1°C/hr.
  • the platinum crucible was taken out.
  • the content of the platinum crucible was washed with hot water to remove flux and the like, and the hardly soluble crystals were filtered to separate and collect only granular black-brown crystals with facets of 1 mm or more. This allowed pure isolation of the desired substance only.
  • Example 2 Preparation of Li2 (Fe0.5 , Co0.5 )(P0.33 , B0.33, Si0.33 ) O4
  • Example 3 Preparation of Li2 (Fe0.33 , Mn0.33 , Co0.33 )(P0.33 , B0.33 , Si0.33 ) O4
  • metal element M iron chloride FeCl 2 , manganese chloride MnCl 2 and cobalt chloride CoCl 2
  • the experiment was carried out in the same manner as in Example 1, and black sparingly soluble granular crystals were recovered.
  • Example 4 Preparation of Li2Co (P0.5 , B0.5 ) O4
  • CoCl2 Cobalt chloride
  • CoCl2 was prepared as a compound containing metal element M.
  • Li 2 SiO 3 was not used as a compound containing Si element.
  • Example 5 Preparation of Li2 (Fe0.5 , Mn0.5 ) (P0.5 , B0.5 ) O4
  • metal element M iron chloride FeCl2 and manganese chloride MnCl2
  • Li 2 SiO 3 was not used as a compound containing Si element.
  • Example 7 Preparation of Li1.5Co (P0.5 , Si0.5 ) O4
  • Lithium chloride LiCl was prepared as a flux. A mixing ratio of the solute powder and the flux was adjusted to a weight ratio of 5:1. The weighed solute powder and flux were well mixed using a mortar and pestle to obtain a mixed powder. Except for this, the experiment was carried out in the same manner as in Example 1, and black sparingly soluble granular crystals were recovered.
  • Example 8 Preparation of Li1.5Mn (P0.75 , B0.25 ) O4
  • manganese chloride MnCl 2 as a compound containing metal element M
  • boron oxide B 2 O 3 as a compound containing B element
  • Li:Mn:P:B 10:4:3:1.
  • lithium carbonate Li 2 CO 3 and lithium chloride LiCl were prepared as fluxes.
  • the mixing ratio of the solute powder and the flux was adjusted to a mass ratio of 5:1.
  • the weighed solute powder and flux were thoroughly mixed using a mortar and pestle to obtain a mixed powder. Except for this, the experiment was carried out in the same manner as in Example 1, and black sparingly soluble granular crystals were recovered.
  • M in the lithium metal phosphate is at least one of Fe, Mn and Co, and B and Si are dissolved in P.
  • electrical conductivity comparable to or higher than that of the LiFePO 4 single crystal of Comparative Example 1 was obtained while having an olivine structure. Comparing the minimum electric field intensity at which a current of 1 ⁇ A or more flows after 5 minutes, it is 600 V/mm in Comparative Example 1 and ranges from 300 to 1200 V/mm in Examples.
  • the electrical conductivity of LiFePO 4 is on the order of 10 ⁇ 8 S/cm.
  • LiFePO 4 It can be judged that an electric conductivity of the order of 10 ⁇ 8 S/cm equivalent to that of 10 ⁇ 8 S/cm is developed.
  • Table 1 summarizes the compositions of Examples 1 to 8 and Comparative Example 1, the applied electric field (electric field strength), and the values of the detected current.
  • the lithium metal phosphate of the above example whose current was detected at a voltage as low as or lower than that of LFePO 4 , is considered to have an electrical conductivity equivalent to that of LiFePO 4 and on the order of 10 ⁇ 8 S/cm.
  • LiFePO 4 can be suitably used as a positive electrode material for lithium ion secondary batteries.
  • the lithium metal phosphate of the above example has a large content of B and Si, it contains more Li than LiMPO 4 .
  • the lithium metal phosphates of the above examples contain Co and Mn instead of Fe as metal elements, and even in this case the electrical conductivity is equivalent to that of LiFePO 4 .
  • the output voltage increases, and overall the energy density (output voltage per gram ⁇ electrical capacity) greatly exceeds that of LiFePO 4 , and may even surpass LCO.
  • the lithium metal phosphates of the above Examples can have an olivine structure, the crystal structure is less likely to break even after repeated charging and discharging, and the life and stability are considered to be superior to those of LCO.
  • a lithium metal phosphate having an olivine-type crystal structure with excellent electrical conductivity can be obtained. Since the lithium metal phosphate of the present invention has a stable olivine structure, it has a long life, and since P in the crystal is replaced with Si or B, the ratio of Li is high, compared to LiFePO4. Larger electrical capacity can be expected for
  • a lithium metal phosphate having an olivine-type crystal structure can be produced. Furthermore, the lithium metal phosphate having an olivine-type crystal structure according to the present invention can be used as a positive electrode material for lithium-ion secondary batteries, has higher energy density and electrical capacity than LCO, and similar to LFP. It is possible to provide a lithium-ion secondary battery with safety and long life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The purpose of the present invention is to provide a method for preparing a lithium metal phosphate having a stable crystal structure and excellent electric capacity and electric conductivity. The present invention pertains to a method for preparing a lithium metal phosphate having an olivine-type crystal structure, the method comprising: a mixing step for obtaining a mixture of a solute raw material and a flux, the solute raw material containing a compound containing element Li, a compound containing metal element M (M represents at least one selected from the group consisting of Fe, Co, Ni, and Mn), at least one among a compound containing element B and a compound containing element Si, and a pyrophosphate ion-containing compound containing element P; a melting step for obtaining a melt of the mixture; and a cooling step for cooling the melt to obtain precipitates. A tetraborate ion-containing compound containing element B may be used instead of or in addition to the pyrophosphate ion-containing compound containing element P.

Description

リチウム金属リン酸塩の製造方法、リチウム金属リン酸塩、リチウムイオン二次電池の正極材料、リチウムイオン二次電池の正極、及びリチウムイオン二次電池Method for producing lithium metal phosphate, lithium metal phosphate, positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
 本発明は、リチウム金属リン酸塩の製造方法、リチウム金属リン酸塩、リチウムイオン二次電池の正極材料、リチウムイオン二次電池の正極、及びリチウムイオン二次電池に関する。 The present invention relates to a method for producing a lithium metal phosphate, a lithium metal phosphate, a positive electrode material for lithium ion secondary batteries, a positive electrode for lithium ion secondary batteries, and a lithium ion secondary battery.
 リチウムイオン二次電池の正極材料としてLiCoO(LCO)が知られている。LCOは高いエネルギー密度(起電圧×電気容量)を持つが安定性や寿命に問題がある。このLCOに代わるより安定性の高い材料として、一般式LiFePOで表されるオリビン型のリチウム金属リン酸塩が実用化されている。一方、リチウム金属リン酸塩と似たLiFeSiOは、分子中に2個のLiを持つため電気容量が2倍となることが期待されているが、絶縁体のため正極材料として使用できない。 LiCoO 2 (LCO) is known as a positive electrode material for lithium ion secondary batteries. LCO has a high energy density (electromotive voltage x electric capacity), but has problems in stability and life. An olivine-type lithium metal phosphate represented by the general formula LiFePO 4 has been put to practical use as a more stable material to replace LCO. On the other hand, Li 2 FeSiO 4 , which is similar to lithium metal phosphate, is expected to double the electric capacity because it has two Li in the molecule, but it cannot be used as a positive electrode material because it is an insulator. .
 ところで、化学量論組成において+2価をとり、Liの脱離に伴って電荷中性を保つため+3価に価数が変わりうる遷移金属元素(以下「M」あるいは「M元素」と表記)として、Fe,Co,Ni,及びMnが知られている(例えば、特許文献1)。しかしながら、特許文献1に記載されているように、一般にオリビン型のリチウム金属リン酸塩の電気伝導率は低い。そのためLiFePO以外のオリビン型のリチウム金属リン酸塩(例えばLiCoPOやLiMnPO)は広く使用されていない(特許文献2)。 By the way, as a transition metal element (hereinafter referred to as "M" or "M element") that has a valence of +2 in the stoichiometric composition and can change its valence to +3 in order to maintain charge neutrality with the desorption of Li, , Fe, Co, Ni, and Mn are known (eg, Patent Document 1). However, as described in Patent Document 1, the electrical conductivity of olivine-type lithium metal phosphate is generally low. Therefore, olivine-type lithium metal phosphates other than LiFePO 4 (for example, LiCoPO 4 and LiMnPO 4 ) are not widely used (Patent Document 2).
 そこで、5価の元素であるPの一部をBやAl等の3価の元素で置換し、その電荷補償をLi添加あるいは酸素欠陥で行うことにより、この材料の導電率向上を図る試みがなされている。しかしながら、Pに対するBの比率を上げると、スピネル(M)、フォンセナイト(MBO)、ホウ酸金属塩{M(BO}、ホウ酸金属リチウム塩、リシコンLi3-2αα(P,B)O(LiPO構造のLiの一部を2価の金属元素が置換したもの)等の異相ができて電気伝導性が劣化する。また、Li1+xFe(P1-x、B)Oの粉末焼成においても異相がオリビン相に混入して電気伝導性が劣化する(特許文献3)。この現象はLi1+xM(P1-x、B)Oの粉末焼成においても起こり、B置換量は著しく制限される(特許文献4)。なお、前記組成式においてMは遷移金属を表す。 Therefore, attempts have been made to improve the electrical conductivity of this material by substituting part of the pentavalent element P with a trivalent element such as B or Al and compensating for the charge by adding Li or oxygen defects. is done. However, when the ratio of B to P is increased, spinel (M 3 O 4 ), fondenite (M 3 BO 5 ), metal borate {M 3 (BO 3 ) 2 }, lithium metal borate, lysicone Li A different phase such as 3-2αMα (P,B)O 4 (a Li in the Li 3 PO 4 structure in which part of Li is substituted with a divalent metal element) is formed, and the electrical conductivity deteriorates. Also, in powder sintering of Li 1+x Fe(P 1-x , B x )O 4 , heterogeneous phases are mixed into the olivine phase and the electrical conductivity is deteriorated (Patent Document 3). This phenomenon also occurs in powder sintering of Li 1+x M(P 1-x , B x )O 4 , and the amount of B substitution is significantly limited (Patent Document 4). In addition, in the composition formula, M represents a transition metal.
 以下に、オリビン型リチウム金属リン酸塩を製造する際に、電気伝導性と電気容量を高める上で、結晶の純度低下の観点から好ましくない副反応のいくつかを示す。なお、各組成式においてMは遷移金属を表す。
3LiO+3MCl+O→M+6LiCl  (スピネルの生成)
3/2LiO+3MCl+LiBO+1/2(O)→MBO+6LiCl  (フォンセナイトの生成)
LiPO+xMCl→Li3-2xMxPO4+2xLiCl  (LISICONの生成)
LiBO+MCl→LiMBO+2LiCl (ホウ酸金属リチウム塩の生成)
2LiBO+3MCl→M(BO+6LiCl (ホウ酸金属塩の生成)
Some of the undesirable side reactions from the viewpoint of lowering the purity of crystals in the production of olivine-type lithium metal phosphate are shown below in terms of increasing electrical conductivity and electrical capacity. In each composition formula, M represents a transition metal.
3Li 2 O+3MCl 2 +O→M 3 O 4 +6LiCl (formation of spinel)
3/2Li 2 O+3MCl 2 +Li 3 BO 3 +1/2(O)→M 3 BO 5 +6LiCl (formation of fondenite)
Li 3 PO 4 +xMCl 2 →Li 3-2x MxPO 4 +2x LiCl (formation of LISICON)
Li 3 BO 3 +MCl 2 →LiMBO 3 +2LiCl (formation of metal lithium borate salt)
2Li 3 BO 3 +3MCl 2 →M 3 (BO 3 ) 2 +6LiCl (formation of metal borate)
特開2008-184346号公報JP 2008-184346 A 特開2008-130525号公報JP 2008-130525 A 特開2004-178835号公報JP 2004-178835 A 特開2010-123339号公報JP 2010-123339 A
 一般に組成中のLiの比率が高い物質には、高い電気容量が期待できる。また、Pの一部を他のドープ元素で置換することで、電気伝導性の向上も期待できる。そこで、特許文献3及び4の知見に基づき、オリビン型のリチウム金属リン酸塩において、電気容量に寄与するLiの比率を上げるため、P5+をよりイオン半径の小さいB3+やSi4+に置換してその置換率を高めることを検討した。しかしながら、置換率を高めようとすると、オリビン型構造が不安定になる傾向があることが、発明者らの検討により分かった。 In general, a substance having a high ratio of Li in its composition can be expected to have a high electric capacity. Further, by substituting a portion of P with another doping element, an improvement in electrical conductivity can be expected. Therefore, based on the findings of Patent Documents 3 and 4, P 5+ is replaced with B 3+ or Si 4+ with a smaller ionic radius in order to increase the ratio of Li that contributes to the electric capacity in the olivine-type lithium metal phosphate. We considered how to increase the substitution rate by using However, the inventors have found that the olivine structure tends to become unstable when the substitution rate is increased.
 本発明は上記事情を鑑みてなされたものであり、結晶構造が安定でありかつ電気容量及び電気伝導性に優れる、リチウム金属リン酸塩の製造方法を提供することを目的とする。本発明はまた、結晶構造が安定でありかつ電気容量及び電気伝導性に優れるリチウム金属リン酸塩、当該リチウム金属リン酸塩を用いたリチウムイオン二次電池の正極材料、リチウムイオン二次電池の正極、及びリチウムイオン二次電池を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for producing a lithium metal phosphate that has a stable crystal structure and excellent electrical capacity and electrical conductivity. The present invention also provides a lithium metal phosphate having a stable crystal structure and excellent electrical capacity and electrical conductivity, a positive electrode material for a lithium ion secondary battery using the lithium metal phosphate, and a lithium ion secondary battery. An object of the present invention is to provide a positive electrode and a lithium ion secondary battery.
 上記課題を解決すべく発明者が鋭意検討した結果、高温融剤法(フラックス法)を採用すること、ホウ素やケイ素をドープしてリンの一部を置換すること、そして原料として用いるリン酸塩の少なくとも一部をピロリン酸塩とすること、あるいはホウ素ドープ材料の少なくとも一部を四ホウ酸塩とすることにより、優れた電気容量及び電気伝導性を維持しながら、結晶構造が安定したオリビン型構造が得られることを見出し、本発明を完成するに至った。 As a result of intensive studies by the inventors in order to solve the above problems, the adoption of a high-temperature flux method (flux method), doping of boron or silicon to partially replace phosphorus, and phosphate used as a raw material By at least part of the pyrophosphate, or at least part of the boron-doped material is tetraborate, an olivine type with a stable crystal structure while maintaining excellent electrical capacity and electrical conductivity The inventors have found that the structure can be obtained, and have completed the present invention.
 すなわち本発明は、Li元素を含む化合物;金属元素M(MはFe,Co,Ni,及びMnからなる群より選択される少なくとも一種を示す)を含む化合物;B元素を含む化合物及びSi元素を含む化合物の少なくともいずれか;ならびにピロリン酸イオンを含むP元素を含む化合物を含有する溶質原料と、フラックスとの混合物を得る混合工程と、混合物の溶融物を得る溶融工程と、溶融物を冷却して析出物を得る冷却工程と、を備える、オリビン型の結晶構造を有するリチウム金属リン酸塩の製造方法を提供する。 That is, the present invention provides a compound containing Li element; a compound containing metal element M (M is at least one selected from the group consisting of Fe, Co, Ni, and Mn); a compound containing B element and Si element. at least one of the compounds containing; and a solute raw material containing a compound containing a P element containing pyrophosphate ions, a mixing step of obtaining a mixture of a flux and a mixing step of obtaining a mixture, a melting step of obtaining a melt of the mixture, and cooling the melt and a cooling step of obtaining a precipitate by means of cooling.
 この場合、B元素を含む化合物が四ホウ酸イオンを含んでもよい。 In this case, the compound containing element B may contain tetraborate ions.
 また、本発明は、Li元素を含む化合物;金属元素M(MはFe,Co,Ni,及びMnからなる群より選択される少なくとも一種を示す)を含む化合物;四ホウ酸イオンを含むB元素を含む化合物;及びリン酸イオンを含むP元素を含む化合物を含有する溶質原料と、フラックスとの混合物を得る混合工程と、混合物の溶融物を得る溶融工程と、溶融物を冷却して析出物を得る冷却工程と、を備える、オリビン型の結晶構造を有するリチウム金属リン酸塩の製造方法を提供する。 Further, the present invention provides a compound containing Li element; a compound containing metal element M (M represents at least one selected from the group consisting of Fe, Co, Ni, and Mn); B element containing tetraborate ion and a compound containing a P element containing a phosphate ion, a mixing step of obtaining a mixture of a solute raw material and a flux, a melting step of obtaining a melt of the mixture, and a precipitate by cooling the melt and a cooling step of obtaining
 この場合、溶質原料が、Si元素を含む化合物をさらに含んでもよい。 In this case, the solute raw material may further contain a compound containing Si element.
 一態様において、溶融工程における溶融温度が600℃以上であることが好ましい。 In one aspect, the melting temperature in the melting step is preferably 600°C or higher.
 一態様において、混合物におけるP元素に対するB元素比が1/99~99/1であることが好ましい。 In one aspect, the ratio of B element to P element in the mixture is preferably 1/99 to 99/1.
 一態様において、混合物におけるP元素に対するSi元素比が1/99~99/1であることが好ましい。 In one aspect, the ratio of Si element to P element in the mixture is preferably 1/99 to 99/1.
 本発明は、一般式LiM(P、Q)Oで表されるオリビン型の結晶構造を有し、電気伝導度が10-8S/cm以上である、リチウム金属リン酸塩を提供する。
(式中、MはFe,Co,Ni,及びMnからなる群より選択される少なくとも一種を示す。また、(P、Q)とは、Pの一部がQで置換されていることを示し、QはB及びSiの少なくともいずれかである。)
The present invention provides a lithium metal phosphate having an olivine-type crystal structure represented by the general formula LiM(P,Q)O 4 and an electrical conductivity of 10 −8 S/cm or higher.
(In the formula, M represents at least one selected from the group consisting of Fe, Co, Ni, and Mn. (P, Q) indicates that part of P is replaced with Q. , Q is at least one of B and Si.)
 また、本発明は、一般式Li1+αM(P1-x-ySi)Oで表されるオリビン型の結晶構造を有する、リチウム金属リン酸塩を提供する。
(式中、MはFe,Co,Ni,及びMnからなる群より選択される少なくとも一種を示す。また、xは0~0.6、yは0~0.6、x+y=0.2超0.8以下、αは0.4~1.2である。)
The present invention also provides a lithium metal phosphate having an olivine-type crystal structure represented by the general formula Li 1+α M(P 1-xy B x Si y )O 4 .
(Wherein, M represents at least one selected from the group consisting of Fe, Co, Ni, and Mn. In addition, x is 0 to 0.6, y is 0 to 0.6, x + y = more than 0.2 0.8 or less, α is 0.4 to 1.2.)
 この場合、電気伝導度が10-8S/cm以上であってもよい。 In this case, the electrical conductivity may be 10 −8 S/cm or more.
 本発明は、上記のリチウム金属リン酸塩を含む、リチウムイオン二次電池の正極材料を提供する。 The present invention provides a positive electrode material for a lithium ion secondary battery, containing the lithium metal phosphate described above.
 本発明は、上記の正極材料を含む、リチウムイオン二次電池の正極を提供する。 The present invention provides a positive electrode for a lithium-ion secondary battery containing the positive electrode material described above.
 本発明は、上記の正極を備える、リチウムイオン二次電池を提供する。 The present invention provides a lithium ion secondary battery comprising the positive electrode described above.
 本発明によれば、結晶構造が安定でありかつ電気容量及び電気伝導性に優れる、リチウム金属リン酸塩の製造方法を提供することができる。本発明によれば、結晶構造が安定でありかつ電気容量及び電気伝導性に優れるリチウム金属リン酸塩、当該リチウム金属リン酸塩を用いたリチウムイオン二次電池の正極材料、リチウムイオン二次電池の正極、及びリチウムイオン二次電池を提供することができる。 According to the present invention, it is possible to provide a method for producing a lithium metal phosphate that has a stable crystal structure and excellent electrical capacity and electrical conductivity. According to the present invention, a lithium metal phosphate having a stable crystal structure and excellent electrical capacity and electrical conductivity, a positive electrode material for a lithium ion secondary battery using the lithium metal phosphate, and a lithium ion secondary battery can provide a positive electrode and a lithium ion secondary battery.
 本発明によるリチウム金属リン酸塩は、高Li比率の結晶構造を有することができるため優れた電気容量が期待でき、また安定したオリビン型の結晶構造(オリビン構造ともいう)を有しているため正極の高寿命化が期待できる。 Since the lithium metal phosphate according to the present invention can have a crystal structure with a high Li ratio, excellent electric capacity can be expected, and because it has a stable olivine-type crystal structure (also referred to as an olivine structure). Long life of the positive electrode can be expected.
実施例1における粉末X線回折チャートである。1 is a powder X-ray diffraction chart in Example 1. FIG. 実施例2における粉末X線回折チャートである。4 is a powder X-ray diffraction chart in Example 2. FIG. 実施例3における粉末X線回折チャートである。4 is a powder X-ray diffraction chart in Example 3. FIG. 実施例4における粉末X線回折チャートである。4 is a powder X-ray diffraction chart in Example 4. FIG. 実施例5における粉末X線回折チャートである。2 is a powder X-ray diffraction chart in Example 5. FIG. 実施例6における粉末X線回折チャートである。2 is a powder X-ray diffraction chart in Example 6. FIG. 実施例7における粉末X線回折チャートである。2 is a powder X-ray diffraction chart in Example 7. FIG. 実施例8における粉末X線回折チャートである。2 is a powder X-ray diffraction chart in Example 8. FIG. 比較例1における粉末X線回折チャートである。4 is a powder X-ray diffraction chart in Comparative Example 1. FIG. 比較例2における粉末X線回折チャートである。4 is a powder X-ray diffraction chart in Comparative Example 2. FIG. 実施例1におけるリチウム金属リン酸塩の電気導電性評価結果を示すグラフである。4 is a graph showing the electrical conductivity evaluation results of lithium metal phosphate in Example 1. FIG. 実施例2におけるリチウム金属リン塩の電気導電性評価結果を示すグラフである。4 is a graph showing the electrical conductivity evaluation results of lithium metal phosphate in Example 2. FIG. 実施例3におけるリチウム金属リン酸塩の電気導電性評価結果を示すグラフである。10 is a graph showing the electrical conductivity evaluation results of lithium metal phosphate in Example 3. FIG. 実施例4におけるリチウム金属リン酸塩の電気導電性評価結果を示すグラフである。10 is a graph showing the electrical conductivity evaluation results of lithium metal phosphate in Example 4. FIG. 実施例5におけるリチウム金属リン酸塩の電気導電性評価結果を示すグラフである。10 is a graph showing the electrical conductivity evaluation results of lithium metal phosphate in Example 5. FIG. 実施例6におけるリチウム金属リン酸塩の電気導電性評価結果を示すグラフである。10 is a graph showing the electrical conductivity evaluation results of lithium metal phosphate in Example 6. FIG. 実施例7におけるリチウム金属リン酸塩の電気導電性評価結果を示すグラフである。FIG. 10 is a graph showing the electrical conductivity evaluation results of lithium metal phosphate in Example 7. FIG. 実施例8におけるリチウム金属リン酸塩の電気導電性評価結果を示すグラフである。10 is a graph showing the electrical conductivity evaluation results of lithium metal phosphate in Example 8. FIG. 比較例1におけるリチウム金属リン酸塩の電気導電性評価結果を示すグラフである。4 is a graph showing electrical conductivity evaluation results of lithium metal phosphate in Comparative Example 1. FIG.
 以下、本発明のいくつかの実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Several embodiments of the present invention will be described in detail below. However, the present invention is not limited to the following embodiments.
<リチウム金属リン酸塩の製造方法>
 リチウム金属リン酸塩の製造方法は、原料となる化合物と、フラックスとの混合物を得る混合工程と、混合物の溶融物を得る溶融工程と、溶融物を冷却して析出物を得る冷却工程と、を備える。
<Method for Producing Lithium Metal Phosphate>
A method for producing a lithium metal phosphate includes a mixing step of obtaining a mixture of a raw material compound and a flux, a melting step of obtaining a melt of the mixture, a cooling step of cooling the melt to obtain a precipitate, Prepare.
 上記製造方法は、高温融剤法(フラックス法)を採用すること、ホウ素やケイ素をドープしてリンの一部を置換すること、P元素を含む化合物の少なくとも一部をピロリン酸イオンを含む化合物とすること、あるいはホウ素ドープのためのB元素を含む化合物の少なくとも一部を四ホウ酸イオンを含む化合物とすることを必須としており、これにより優れた電気容量及び電気伝導性を維持しながら、結晶構造が安定したオリビン構造を得ることができる。 The above production method employs a high-temperature flux method (flux method), dopes boron or silicon to partially replace phosphorus, and replaces at least a portion of the compound containing the P element with a compound containing pyrophosphate ions. Or, it is essential that at least part of the compound containing the B element for boron doping is a compound containing tetraborate ions, thereby maintaining excellent capacitance and electrical conductivity, An olivine structure with a stable crystal structure can be obtained.
(混合工程)
 混合工程は、副反応による不純物としての金属酸化物の生成を抑え、オリビン構造を有するリチウム金属リン酸塩の収率を向上させる観点から、以下の二とおりの工程を採用することができる。
(Mixing process)
From the viewpoint of suppressing the formation of metal oxides as impurities due to side reactions and improving the yield of lithium metal phosphate having an olivine structure, the following two steps can be adopted as the mixing step.
 すなわち混合工程は、Li元素を含む化合物;金属元素M(MはFe,Co,Ni,及びMnからなる群より選択される少なくとも一種を示す)を含む化合物;B元素を含む化合物及びSi元素を含む化合物の少なくともいずれか;並びにピロリン酸イオンを含むP元素を含む化合物を含有する溶質原料と、フラックスとの混合物を得る工程であってよい。この場合、溶質原料が、Li元素を含む化合物がB元素(ホウ酸イオン)を含まない場合にB元素を含む化合物を含み、Li元素を含む化合物がSi元素(ケイ酸イオン)を含まない場合にSi元素を含む化合物を含み、Li元素を含む化合物がP元素(ピロリン酸イオン)を含まない場合にP元素を含む化合物を含むことができる。なお、B元素を含む化合物が四ホウ酸イオンを含んでいてもよい。 That is, in the mixing step, a compound containing Li element; a compound containing metal element M (M is at least one selected from the group consisting of Fe, Co, Ni, and Mn); a compound containing B element and Si element. and at least one of the compounds containing P, pyrophosphate ions, and a flux. In this case, the solute raw material contains a compound containing B element when the compound containing Li element does not contain B element (borate ion), and when the compound containing Li element does not contain Si element (silicate ion) contains a compound containing Si element, and can contain a compound containing P element when the compound containing Li element does not contain P element (pyrophosphate ion). Note that the compound containing element B may contain tetraborate ions.
 また、混合工程は、Li元素を含む化合物;金属元素M(MはFe,Co,Ni,及びMnからなる群より選択される少なくとも一種を示す)を含む化合物;四ホウ酸イオンを含むB元素を含む化合物;及びリン酸イオンを含むP元素を含む化合物を含有する溶質原料と、フラックスとの混合物を得る混合工程であってよい。この場合、溶質原料が、Li元素を含む化合物が四ホウ酸イオンを含まない場合に四ホウ酸イオンを含むB元素を含む化合物を含み、Li元素を含む化合物がリン酸イオンを含まない場合にリン酸イオンを含むP元素を含む化合物を含むことができる。なお、溶質原料が、Si元素を含む化合物をさらに含んでもよく、この場合Li元素を含む化合物がSi元素(ケイ酸イオン)を含まない場合にSi元素を含む化合物をさらに含んでもよい。 In addition, the mixing step includes a compound containing Li element; a compound containing metal element M (M represents at least one selected from the group consisting of Fe, Co, Ni, and Mn); B element containing tetraborate ion and a compound containing P element containing phosphate ions, and a mixing step of obtaining a mixture of a flux and a solute raw material. In this case, the solute raw material contains a compound containing B element containing tetraborate ions when the compound containing Li element does not contain tetraborate ions, and when the compound containing Li element does not contain phosphate ions Compounds containing the P element containing phosphate ions can be included. The solute raw material may further contain a compound containing Si element, and in this case, when the compound containing Li element does not contain Si element (silicate ion), it may further contain a compound containing Si element.
 Li元素含む化合物としては、特に制限されず、炭酸リチウム、酢酸リチウム、硝酸リチウム、水酸化リチウム、リン酸リチウム、ピロリン酸リチウム、リン酸二水素リチウム、ホウ酸リチウム、四ホウ酸リチウム、ケイ酸リチウム、メタケイ酸リチウム、これらの無水物又は水和物等が挙げられる。特に副反応による不純物としての金属酸化物の生成を抑え、オリビンの収率を向上させる観点から、ピロリン酸リチウムや四ホウ酸リチウムが好ましい。 The compound containing Li element is not particularly limited, and includes lithium carbonate, lithium acetate, lithium nitrate, lithium hydroxide, lithium phosphate, lithium pyrophosphate, lithium dihydrogen phosphate, lithium borate, lithium tetraborate, silicic acid. Examples include lithium, lithium metasilicate, anhydrides or hydrates thereof, and the like. In particular, lithium pyrophosphate and lithium tetraborate are preferable from the viewpoint of suppressing the formation of metal oxides as impurities due to side reactions and improving the yield of olivine.
 金属元素Mを含む化合物としては、特に限定されず、シュウ酸鉄、塩化鉄、硫酸鉄、硝酸鉄、酸化鉄、水酸化鉄、これらの無水物又は水和物のFe元素を含む化合物(化合物中のFeの価数は2価又は3価であってよい);炭酸コバルト、シュウ酸コバルト、塩化コバルト、これらの無水物又は水和物等のCo元素を含む化合物;炭酸ニッケル、シュウ酸ニッケル、塩化ニッケル、これらの無水物又は水和物等のNi元素を含む化合物;炭酸マンガン、シュウ酸マンガン、塩化マンガン、これらの無水物又は水和物等のMn元素を含む化合物が挙げられる。 The compound containing the metal element M is not particularly limited, and iron oxalate, iron chloride, iron sulfate, iron nitrate, iron oxide, iron hydroxide, anhydrides or hydrates of these compounds containing Fe element (compound The valence of Fe in may be divalent or trivalent); compounds containing Co elements such as cobalt carbonate, cobalt oxalate, cobalt chloride, anhydrides or hydrates thereof; nickel carbonate, nickel oxalate , nickel chloride, their anhydrides or hydrates; and manganese carbonate, manganese oxalate, manganese chloride, and their anhydrides or hydrates.
 B元素を含む化合物としては、特に制限されず、酸化ホウ素;ホウ酸、無水ホウ酸、ホウ酸リチウム等のホウ酸イオンを含む化合物;四ホウ酸リチウム等の四ホウ酸イオンを含む化合物などが挙げられる。特に副反応による不純物としての金属酸化物の生成を抑え、オリビンの収率を向上させる観点から、B元素を含む化合物の少なくとも一部を四ホウ酸イオンを含む化合物とすることが好ましく、当該化合物としては四ホウ酸リチウムが好ましい。 The compound containing the B element is not particularly limited, and includes boron oxide; boric acid, boric anhydride, compounds containing borate ions such as lithium borate; compounds containing tetraborate ions such as lithium tetraborate, and the like. mentioned. In particular, from the viewpoint of suppressing the formation of metal oxides as impurities due to side reactions and improving the yield of olivine, at least part of the compound containing element B is preferably a compound containing tetraborate ions, and the compound Lithium tetraborate is preferred.
 Si元素を含む化合物としては、特に制限されず、酸化ケイ素、シリカゲル、ケイ酸リチウム、メタケイ酸リチウム等が使用できる。これらのうち、純度と反応性の観点から、ケイ酸リチウムが好ましい。 The compound containing Si element is not particularly limited, and silicon oxide, silica gel, lithium silicate, lithium metasilicate, etc. can be used. Of these, lithium silicate is preferred from the viewpoint of purity and reactivity.
 P元素を含む化合物としては、リン酸イオン(PO 3-)を含む化合物及びピロリン酸イオン(P 4-)を含む化合物が挙げられる。リン酸イオンを含む化合物としては、特に制限されず、リン酸アンモニウム、リン酸二水素アンモニウム、リン酸水素二アンモニウム、リン酸リチウム、リン酸二水素リチウム、リン酸、五酸化二リン、これらの無水物又は水和物が挙げられる。ピロリン酸イオンを含む化合物としてはピロリン酸、ピロリン酸リチウム、これらの無水物又は水和物が挙げられる。特に副反応による不純物としての金属酸化物の生成を抑え、オリビンの収率を向上させる観点から、P元素を含む化合物の少なくとも一部をピロリン酸イオンを含む化合物とすることが好ましく、当該化合物としてはピロリン酸リチウムが好ましい。 Compounds containing the P element include compounds containing phosphate ions (PO 4 3− ) and compounds containing pyrophosphate ions (P 2 O 7 4− ). Compounds containing phosphate ions are not particularly limited, and ammonium phosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, lithium phosphate, lithium dihydrogen phosphate, phosphoric acid, diphosphorus pentoxide, and these Anhydrides or hydrates are mentioned. Compounds containing pyrophosphate ions include pyrophosphate, lithium pyrophosphate, anhydrides and hydrates thereof. In particular, from the viewpoint of suppressing the formation of metal oxides as impurities due to side reactions and improving the yield of olivine, it is preferable that at least part of the compound containing the P element is a compound containing pyrophosphate ions, and the compound is preferably lithium pyrophosphate.
 Li元素、M元素、B元素、Si元素及びP元素のうち2種以上を含む化合物を用いると、混合過程が容易になる。例えばホウ酸リチウムは、Li元素とB元素を含む化合物として使用できる。またリン酸リチウム及びリン酸二水素リチウムは、Li元素とリン酸イオンを含む化合物として使用できる。このように、Li元素を含む化合物、金属元素Mを含む化合物、B元素を含む化合物、Si元素を含む化合物、及びP元素を含む化合物をそれぞれ準備して用いてもよく、例えばLi元素を含みかつP元素を組む化合物と、金属元素Mを含む化合物、B元素を含む化合物、及びSi元素を含む化合物とを準備してもよい。 Using a compound containing two or more of Li element, M element, B element, Si element and P element facilitates the mixing process. For example, lithium borate can be used as a compound containing Li and B elements. Lithium phosphate and lithium dihydrogen phosphate can also be used as compounds containing Li elements and phosphate ions. In this way, a compound containing the Li element, a compound containing the metal element M, a compound containing the B element, a compound containing the Si element, and a compound containing the P element may be prepared and used. In addition, a compound containing the P element, a compound containing the metal element M, a compound containing the B element, and a compound containing the Si element may be prepared.
 P元素を含む化合物において、リン酸イオンの一部又は全部をピロリン酸イオンにすることのメリットを述べる。例えば、P元素を含む化合物としてピロリン酸を用いる場合、ピロリン酸(H)と当量のLiOとが反応するとLiと水が生じる。しかし、そのように純粋なリン酸塩が生じる量よりも過剰にLiを加えると、ピロリン酸(H)と過剰のLiOとが反応して2LiPOが生じる。この時活性状態のLiPO、2価の遷移金属塩及び過剰のリチウムの化学反応は活性化エネルギーが下がるため促進され、Li1+αM(P,Q)Oが生じることとなる。これにより副反応による不純物としての金属酸化物である、スピネル、フォンセナイトやリシコンの生成を抑え、オリビンの収率を向上することができる。 Advantages of converting part or all of the phosphate ions to pyrophosphate ions in a compound containing the P element will be described. For example, when pyrophosphoric acid is used as the compound containing the element P, reaction between pyrophosphoric acid (H 4 P 2 O 7 ) and an equivalent amount of Li 2 O produces Li 4 P 2 O 7 and water. However, if Li is added in excess of what would produce such a pure phosphate, pyrophosphate (H 4 P 2 O 7 ) reacts with excess Li 2 O to form 2Li 3 PO 4 . At this time, the chemical reaction of Li 3 PO 4 in the active state, the divalent transition metal salt, and excess lithium is accelerated due to the decrease in activation energy, and Li 1+αM (P,Q)O 4 is produced. As a result, the production of spinel, fondenite, and lysicone, which are metal oxides as impurities due to side reactions, can be suppressed, and the yield of olivine can be improved.
 B元素を含む化合物において、ホウ酸イオンの一部又は全部を四ホウ酸イオンにすることのメリットもまた、リン酸イオンの一部又は全部をピロリン酸イオンにすることのメリットと同様である。すなわち、例えば、B元素を含む化合物として四ホウ酸リチウムを用いる場合、四ホウ酸リチウムLiと過剰のLiOとが反応して4LiBOが生じる。この活性状態のLiBOは、副反応による不純物としての金属酸化物の生成を抑制し、オリビンの収率を向上させる。 In the compound containing element B, the advantages of using tetraborate ions for some or all of the borate ions are the same as the advantages of using pyrophosphate ions for some or all of the phosphate ions. That is, for example, when lithium tetraborate is used as the compound containing element B, lithium tetraborate Li 2 B 4 O 7 reacts with excess Li 2 O to produce 4LiBO 2 . LiBO 2 in this active state suppresses the formation of metal oxides as impurities due to side reactions and improves the yield of olivine.
 副反応による不純物としての金属酸化物の生成をより抑制し易い観点から、リン酸イオンの一部又は全部をピロリン酸イオンにすることと、ホウ酸イオンの一部又は全部を四ホウ酸イオンにすることとを併用してもよい。 From the viewpoint of more easily suppressing the formation of metal oxides as impurities due to side reactions, some or all of the phosphate ions are replaced with pyrophosphate ions, and some or all of the borate ions are replaced with tetraborate ions. may be used together.
 上記の各化合物の原料秤量におけるM元素と、P元素、B元素及びSi元素と、の元素比(モル比)は、0.8~1.2:1とすることができる。オリビン型の結晶構造を有するリチウム金属リン酸塩の理論比の観点から、当該比は1:1でもよい。 The element ratio (molar ratio) of the M element, the P element, the B element and the Si element in the raw material weighing of each compound described above can be 0.8 to 1.2:1. From the viewpoint of the theoretical ratio of lithium metal phosphate having an olivine-type crystal structure, the ratio may be 1:1.
 P元素に対するB元素の元素比(B元素/P元素)は1/99~99/1又は10/90~99/1とすることができる。ただし、所望の結晶構造を得てより優れた電気伝導性と電気容量を発現する観点から、当該比は15/85~50/50とすることができ、10/90~30/70であってもよい。
 P元素に対するSi元素の元素比(Si元素/P元素)は1/99~99/1又は10/90~99/1とすることができる。ただし、所望の結晶構造を得てより優れた電気伝導性と電気容量を発現する観点から、当該比は15/85~50/50とすることができ、10/90~30/70であってもよい。
The element ratio of the B element to the P element (B element/P element) can be 1/99 to 99/1 or 10/90 to 99/1. However, from the viewpoint of obtaining the desired crystal structure and exhibiting better electrical conductivity and capacitance, the ratio can be 15/85 to 50/50, and 10/90 to 30/70. good too.
The element ratio of Si element to P element (Si element/P element) can be 1/99 to 99/1 or 10/90 to 99/1. However, from the viewpoint of obtaining the desired crystal structure and exhibiting better electrical conductivity and capacitance, the ratio can be 15/85 to 50/50, and 10/90 to 30/70. good too.
 P元素、B元素及びSi元素の各元素量はLi元素が大となるように調節する。LiFePOで表されるリチウム金属リン酸塩の化学量論比からは、LiとPの元素比は1:1であるが、P元素、B元素及びSi元素の各元素量を調節することで、後の溶融工程と冷却工程において、Liと(P+B+Si)の元素比を2:1程度に引き上げることができる。また、Li元素が大となるように調節することは、Liの蒸発減損があるためとピロリン酸イオンが完全にリン酸イオンに分解するためでもある。過剰のリチウムはオリビンの生成を促進し、異相の発生を抑制する効果がある。過剰のリチウムは単結晶を分別する洗浄過程で除去される。例えばピロリン酸リチウムを用いた場合の反応式は以下のとおりであり、ピロリン酸が活性リン酸となるのでオリビンを生成する反応が優勢になる。
Li+LiO→2LiPO
1/2LiPO+1/2LiBO+MCl+1/2LiO→LiM(P0.5,B0.5)O+2LiCl
The amount of each element of P element, B element and Si element is adjusted so that Li element is large. From the stoichiometric ratio of the lithium metal phosphate represented by LiFePO 4 , the element ratio of Li and P is 1:1, but by adjusting the respective element amounts of P element, B element and Si element, , the element ratio of Li and (P+B+Si) can be increased to about 2:1 in the subsequent melting and cooling steps. Further, the reason why the Li element is adjusted to be large is that there is evaporation loss of Li and that pyrophosphate ions are completely decomposed into phosphate ions. Excess lithium promotes the formation of olivine and has the effect of suppressing the generation of heterophases. Excess lithium is removed during the washing process that separates the single crystal. For example, when lithium pyrophosphate is used, the reaction formula is as follows. Since pyrophosphate becomes active phosphoric acid, the reaction to produce olivine is dominant.
Li4P2O7 + Li2O 2Li3PO4 _
1 / 2Li3PO4 + 1/ 2Li3BO3 + MCl2 +1/ 2Li2OLi2M ( P0.5 , B0.5 ) O4 +2LiCl
 過剰のリチウムを用いることにつき、具体的には、Li元素を含む化合物、金属元素Mを含む化合物、B元素を含む化合物、Si元素を含む化合物、及びP元素を含む化合物を混合する際に、B元素、Si元素及びP元素に対するLi元素の元素比(Li元素/(B元素+Si元素+P元素))は、電気的中性を保ちかつ安定なオリビン構造を得易い観点から、1.4~2.2であることが好ましく、1.5~2.0であることがより好ましい。 Regarding the use of excess lithium, specifically, when mixing a compound containing the Li element, a compound containing the metal element M, a compound containing the B element, a compound containing the Si element, and a compound containing the P element, The element ratio of the Li element to the B element, Si element and P element (Li element/(B element + Si element + P element)) is 1.4 to 1.4 from the viewpoint of maintaining electrical neutrality and easily obtaining a stable olivine structure. It is preferably 2.2, more preferably 1.5 to 2.0.
 フラックスは、結晶作製法の一種である高温融剤法(フラックス法)において用いられる化合物であって、目的とする結晶を溶かし込むための溶媒として作用する無機化合物である。高温融剤法は、溶質である結晶の溶媒に対する溶解度が、温度によって変わる性質を利用する。高温では溶解度が大きく、温度が下がると溶解度が小さくなるフラックスを用いると、冷却に伴ってフラックスへの溶解度を上回り、過飽和状態となった目的物が結晶として析出する。フラックスとしては、目的結晶よりも低い温度で溶融する化合物を選択すれば良い。フラックスとしては、塩化リチウム、炭酸リチウム、フッ化リチウム、バナジン酸リチウム、リン酸二水素ナトリウム、フッ化鉛、酸化鉛、酸化ビスマス、モリブデン酸塩、タングステン酸塩等が挙げられ、これらは1種単独で、又は2種以上を組み合わせて用いることができる。また、複数の溶質成分がある場合には、特定の溶質成分を増やしてその成分比を所望とする成分比(化学量論比)から故意にずらし、当該溶質成分にフラックスとしての働きを兼ねさせるセルフフラックス法を用いることもできる。すなわち、過剰に用いられるLi元素含む化合物は、セルフフラックスとしても用いられる。 Flux is a compound used in the high-temperature flux method (flux method), a type of crystal production method, and is an inorganic compound that acts as a solvent to dissolve the desired crystal. The high-temperature flux method utilizes the property that the solubility of crystals, which are solutes, in a solvent changes with temperature. If a flux is used that has a high solubility at high temperatures and a low solubility at low temperatures, the solubility in the flux exceeds with cooling, and the target substance in a supersaturated state precipitates as crystals. As the flux, a compound that melts at a temperature lower than that of the target crystal may be selected. Fluxes include lithium chloride, lithium carbonate, lithium fluoride, lithium vanadate, sodium dihydrogen phosphate, lead fluoride, lead oxide, bismuth oxide, molybdate, tungstate, etc., and these are one type. It can be used alone or in combination of two or more. When there are multiple solute components, a specific solute component is increased and the component ratio is intentionally deviated from the desired component ratio (stoichiometric ratio) so that the solute component also functions as a flux. A self-flux method can also be used. That is, the compound containing Li element used in excess is also used as a self-flux.
 混合工程では、溶質となる各化合物と、フラックスとを混合して混合物を得る。各化合物は、所望の組成のリチウム金属リン酸塩が得られるよう、適宜に秤量される。各化合物とフラックスとの混合割合は、原料の溶解温度と溶解度の観点から、1:0.1~1:1であることが好ましく、1:0.2~1:0.5であることがより好ましい。混合方法は乾式混合法及び湿式混合法のいずれであってもよい。具体的には、各原料を乳鉢、ボールミル等を用いて機械的に混合する方法、各原料を水に溶解させたのちに沈殿させて混同する共沈法、各原料を溶解したゾルをゲル化させて混合するゾルーゲル法、等を利用できる。 In the mixing process, each compound that becomes the solute is mixed with the flux to obtain a mixture. Each compound is appropriately weighed so as to obtain the desired composition of lithium metal phosphate. The mixing ratio of each compound and flux is preferably 1:0.1 to 1:1, more preferably 1:0.2 to 1:0.5, from the viewpoint of the melting temperature and solubility of the raw materials. more preferred. The mixing method may be either a dry mixing method or a wet mixing method. Specifically, a method of mechanically mixing each raw material using a mortar, a ball mill, etc., a coprecipitation method in which each raw material is dissolved in water and then precipitated and mixed, and a sol in which each raw material is dissolved is gelled. A sol-gel method, etc., in which the components are mixed together can be used.
(溶融工程)
 溶融工程では混合工程にて得られた混合物を溶融する。混合物は必要に応じ白金坩堝などの所定の容器に入れられて焼成炉内に投入され、不活性雰囲気又は少量の酸素を含む不活性雰囲気の中で溶融される。不活性雰囲気としてはアルゴンガス、窒素ガス、ヘリウムガス等で置換された雰囲気が挙げられる。これらの不活性ガス中には100ppm未満の酸素が含まれていてもよい。なお、溶融工程における溶融物とは、溶媒として加えたフラックスが完全に溶融し、大部分の溶質が(Li元素を含む化合物、金属元素Mを含む化合物、B元素を含む化合物、Si元素を含む化合物、及びリン酸イオンやピロリン酸イオンを含むP元素を含む化合物)がフラックス中に溶融した状態のものを言う。溶融物には融け残りの溶質が含まれていてもよい。
(melting process)
In the melting step, the mixture obtained in the mixing step is melted. The mixture is placed in a predetermined container such as a platinum crucible as required, put into a firing furnace, and melted in an inert atmosphere or an inert atmosphere containing a small amount of oxygen. Examples of the inert atmosphere include an atmosphere substituted with argon gas, nitrogen gas, helium gas, or the like. These inert gases may contain less than 100 ppm of oxygen. The melt in the melting step means that the flux added as a solvent is completely melted, and most of the solute is (a compound containing the Li element, a compound containing the metal element M, a compound containing the B element, a compound containing the Si element, compounds, and compounds containing P elements including phosphate ions and pyrophosphate ions) are in a state of being melted in the flux. The melt may contain unmelted solutes.
 溶融工程における溶融温度は、溶融したフラックス中に大部分が溶融する、あるいは全量の溶質が溶融する温度に設定することができる。例えばSiOを含む混合物をフラックスを用いずに溶融するためには1000℃以上の高温を要するが、フラックスを用いることでより低温での溶融が可能となる。混合物の構成に依存するため必ずしも限定されないが、溶融温度は主なフラックス成分である塩化リチウムの融点が605℃であるので少なくとも600℃以上にすることができ、650℃以上でもよく、700℃以上であってもよい。溶融温度の上限は、原料及びリチウム化合物の分解と蒸発を抑制する観点から1000℃以下とすることができ、900℃以下であってもよい。なお、溶融温度での保持時間は、一定量の溶質が溶融する時間に設定することができ、例えば少なくとも3時間以上とすることができ、4.5時間以上であってもよく、6時間以上であってもよい。保持時間の上限は、原料及びリチウム化合物の分解と蒸発を抑制する観点から24時間以下とすることができ、12時間以下でもよい。 The melting temperature in the melting process can be set to a temperature at which most or all of the solute melts in the molten flux. For example, a high temperature of 1000° C. or more is required to melt a mixture containing SiO 2 without using a flux, but the use of a flux enables melting at a lower temperature. Although it depends on the composition of the mixture and is not necessarily limited, the melting temperature can be at least 600°C or higher since the melting point of lithium chloride, which is the main flux component, is 605°C, and may be 650°C or higher, or 700°C or higher. may be The upper limit of the melting temperature can be 1000° C. or lower from the viewpoint of suppressing the decomposition and evaporation of the raw material and the lithium compound, and may be 900° C. or lower. The holding time at the melting temperature can be set to a time for a certain amount of solute to melt, for example, it can be at least 3 hours or more, may be 4.5 hours or more, or 6 hours or more. may be The upper limit of the holding time can be 24 hours or less from the viewpoint of suppressing decomposition and evaporation of the raw material and the lithium compound, and may be 12 hours or less.
 溶融工程時にフラックスが完全に溶融していなかったり、大部分の溶質がフラックスに溶解していなかったりすると、冷却後に得られる斜方晶系オリビン型の結晶構造を有するリチウム金属リン酸塩中に未反応原料やフラックス成分等の不純物が混入し、複合化される虞がある。これらの不純物は混合物に対して単なる焼成を実施した際に生じる化合物であり、オリビン型の結晶構造を有するリチウム金属リン酸塩の電気伝導性を低下させる要因になる。なお、ここで言う焼成とはフラックスを用いない方法であって、原料を完全に溶融させない程度の高温にて加熱して原料同士を反応させ、原料に応じた組成を有する焼成物を得るものである。焼成において固相拡散によって反応が進行しやすくなるために、未反応部分が残ることがあり、また、生成物中の元素分布が不均一になり易くなる。また、焼成は固相反応によるため分別することができるほどの大きさの結晶を製造することは実質的に不可能である。そのため、フラックスを用いずに焼成する場合、複雑な構造や多種の元素からなる均質物質を作るためには何度も焼成と解砕再混合を繰り返す必要がある。 If the flux is not completely melted during the melting process, or if most of the solute is not dissolved in the flux, the resulting lithium metal phosphate having an orthorhombic olivine-type crystal structure will not contain There is a possibility that impurities such as reaction raw materials and flux components may be mixed in and compounded. These impurities are compounds that are produced when the mixture is simply sintered, and are factors that reduce the electrical conductivity of lithium metal phosphate having an olivine-type crystal structure. The sintering referred to here is a method that does not use flux, and heats the raw materials at a high temperature that does not completely melt the raw materials to cause the raw materials to react with each other, thereby obtaining a sintered product having a composition according to the raw materials. be. Since the solid-phase diffusion during firing facilitates the progress of the reaction, unreacted portions may remain, and the distribution of elements in the product tends to become non-uniform. Also, since calcination is based on a solid state reaction, it is practically impossible to produce crystals large enough to be separated. Therefore, when sintering without using flux, it is necessary to repeat sintering, pulverization, and re-mixing many times in order to produce a homogeneous material with a complicated structure and a variety of elements.
 未反応原料やフラックス成分等の不純物の生成を抑制する観点から、溶融工程に先立ち仮焼成工程を実施してもよい。仮焼成工程では、混合物を400~600℃程度で焼成して仮焼成物を得ることができる。当該仮焼成物を溶融工程に供することができる。 From the viewpoint of suppressing the generation of impurities such as unreacted raw materials and flux components, a calcination process may be performed prior to the melting process. In the calcination step, the mixture can be calcined at about 400 to 600° C. to obtain a calcined product. The calcined product can be subjected to a melting step.
(冷却工程)
 得られた溶融物は本工程により室温まで冷却される。冷却速度は速くとも固化するまでは5℃/時間以下の速度で実施することが好ましい。冷却速度が早すぎると結晶内に欠陥が生じる虞がある。
(Cooling process)
The resulting melt is cooled to room temperature by this step. The cooling rate is preferably 5° C./hour or less until solidification at the fastest. If the cooling rate is too fast, defects may occur in the crystal.
 冷却工程後に得られる回収物(冷却物)は所望とするオリビン型の結晶構造を有するリチウム金属リン酸塩の析出物の他、フラックス成分、未反応物、副反応物等の他の成分を含み得る。例えば回収物を温水(60℃の純水等)で洗浄するなどして、難溶性の結晶のみを濾取等することにより、残った回収物から目視で所望とするオリビン型の結晶構造を有するリチウム金属リン酸塩のみを選び得ることができる。この観点から、本実施形態の製造方法は、冷却工程にて得られた回収物を洗浄する洗浄工程を備えていてもよい。なお、得られた結晶がオリビン型の結晶構造を有するリチウム金属リン酸塩であることは、X線回折法等により確認することができる。 The recovered product (cooled product) obtained after the cooling step contains the deposit of the lithium metal phosphate having the desired olivine type crystal structure, as well as other components such as flux components, unreacted substances, and side reaction products. obtain. For example, by washing the collected material with warm water (pure water at 60° C., etc.) and filtering only the hardly soluble crystals, the remaining collected material can be visually observed to have the desired olivine-type crystal structure. Only lithium metal phosphate can be selected. From this point of view, the manufacturing method of the present embodiment may include a washing step of washing the recovered material obtained in the cooling step. It can be confirmed by X-ray diffraction method or the like that the obtained crystal is a lithium metal phosphate having an olivine type crystal structure.
<リチウム金属リン酸塩>
 本実施形態のリチウム金属リン酸塩は、一般式LiMPO(式中、MはFe,Co,Ni及びMnからなる群より選択される少なくとも一種)で表される化合物におけるPの一部がBやSi、またはB及びSiに置換されてなるものである。リチウム金属リン酸塩はオリビン構造を有する。
<Lithium metal phosphate>
The lithium metal phosphate of the present embodiment is a part of P in a compound represented by the general formula Li 2 MPO 4 (wherein M is at least one selected from the group consisting of Fe, Co, Ni and Mn) is substituted with B, Si, or B and Si. Lithium metal phosphate has an olivine structure.
 一般にオリビン構造は六方細密充填酸素骨格を有しており、四配位四面体サイトにはPイオンが、六配位八面体サイトにはLiイオン及び遷移金属イオンMが存在する。本実施形態のリチウム金属リン酸塩においては、5価のPイオンの一部が3価のBイオンや4価のSiイオンで置換されている。なお、Mの価数は化学量論組成においては+2価をとり、Liの脱離に伴って電荷を中性に保つため+2~+4価に価数が変わりうる。 In general, the olivine structure has a hexagonal close-packed oxygen skeleton, with P ions at the tetracoordinated tetrahedral sites and Li ions and transition metal ions M at the hexacoordinated octahedral sites. In the lithium metal phosphate of this embodiment, some of the pentavalent P ions are replaced with trivalent B ions and tetravalent Si ions. The valence of M is +2 in the stoichiometric composition, and can change from +2 to +4 in order to keep the charge neutral with the elimination of Li.
 このようなリチウム金属リン酸塩を、ホウ素ケイ素ドープリチウム金属リン酸塩、またはホウ素リンドープ金属リチウムシリケートLiM(P,B,Si)Oと言うことができる。 Such lithium metal phosphates can be referred to as boron silicon-doped lithium metal phosphates or boron phosphorus-doped lithium metal silicates Li2M (P,B,Si) O4 .
 本実施形態のリチウム金属リン酸塩は、一般式Li1+αM(P1-x-ySi)Oで表されるオリビン型の結晶構造を有する。
 上記式中、MはFe,Co,Ni,及びMnからなる群より選択される少なくとも一種を示す。また、xは0~0.6、yは0~0.6、x+y=0.2超0.8以下、αは0.4~1.2である。
The lithium metal phosphate of the present embodiment has an olivine-type crystal structure represented by the general formula Li 1+α M(P 1-xy B x Si y )O 4 .
In the above formula, M represents at least one selected from the group consisting of Fe, Co, Ni and Mn. Further, x is 0 to 0.6, y is 0 to 0.6, x+y is more than 0.2 and 0.8 or less, and α is 0.4 to 1.2.
 xは0であってもよいが、xが0超であることで、優れた電気容量及び電気伝導性を発現することができる。この観点から、xは0.3以上であることが好ましく、0.4以上であることがより好ましい。
 xが0.6以下であることで、異相が生じ難く歩留まりが向上する。この観点から、xは0.5以下であることが好ましい。
Although x may be 0, when x is more than 0, excellent electric capacity and electric conductivity can be exhibited. From this point of view, x is preferably 0.3 or more, more preferably 0.4 or more.
When x is 0.6 or less, heterogeneous phases are less likely to occur and the yield is improved. From this point of view, x is preferably 0.5 or less.
 yは0であってもよいが、yが0超であることで、優れた電気容量及び電気伝導性を発現することができる。この観点から、yは0.2以上であることが好ましく、0.3以上であることがより好ましい。
 yが0.6以下であることで、電気伝導性が向上する。この観点から、yは0.5以下であることが好ましい。
 なお、異相が生じることを抑制し易い観点から、x<yであることが好ましい。
Although y may be 0, when y is more than 0, excellent electric capacity and electric conductivity can be exhibited. From this point of view, y is preferably 0.2 or more, more preferably 0.3 or more.
Electric conductivity improves because y is 0.6 or less. From this point of view, y is preferably 0.5 or less.
In addition, it is preferable that x<y from the viewpoint of easily suppressing the generation of a different phase.
 x+yが0.2超であることで、優れた電気容量及び電気伝導性を発現することができる。この観点から、x+yは0.3以上であることが好ましく、0.4以上であることがより好ましい。
 x+yが0.8以下であることで、異相が生じ難く歩留まりが向上する。この観点から、x+yは0.7以下であることが好ましい。
When x+y is more than 0.2, excellent electric capacity and electric conductivity can be exhibited. From this point of view, x+y is preferably 0.3 or more, more preferably 0.4 or more.
When x+y is 0.8 or less, heterogeneous phases are less likely to occur and the yield is improved. From this point of view, x+y is preferably 0.7 or less.
 αが0.4以上であることで、優れた電気容量及び電気伝導性を発現することができる。この観点から、αは0.5以上であることが好ましい。
 αが1.2以下であることで、異相が生じ難く歩留まりが向上する。この観点から、αは1以下であることが好ましい。
When α is 0.4 or more, excellent electric capacity and electric conductivity can be exhibited. From this point of view, α is preferably 0.5 or more.
When α is 1.2 or less, heterogeneous phases are less likely to occur and the yield is improved. From this point of view, α is preferably 1 or less.
 上記のリチウム金属リン酸塩は電気伝導性に優れるため、一般式LiM(P、Q)Oで表されるオリビン型の結晶構造を有し、電気伝導度が10-8S/cm以上である、リチウム金属リン酸塩ということもできる。ここで、電気伝導度はLiFePOの電気伝導度が10-8/cmであることに準拠して測定される値である。
 式中、MはFe,Co,Ni,及びMnからなる群より選択される少なくとも一種を示す。また、(P、Q)とは、Pの一部がQで置換されていることを示し、QはB又はB及びSiである。
Since the above lithium metal phosphate has excellent electrical conductivity, it has an olivine-type crystal structure represented by the general formula LiM(P,Q)O 4 and has an electrical conductivity of 10 −8 S/cm or more. It can also be called lithium metal phosphate. Here, the electric conductivity is a value measured based on the fact that the electric conductivity of LiFePO 4 is 10 −8 /cm.
In the formula, M represents at least one selected from the group consisting of Fe, Co, Ni, and Mn. (P, Q) indicates that part of P is replaced with Q, and Q is B or B and Si.
 オリビン型の結晶構造を有する、ホウ素やケイ素をドープしたリチウム金属リン酸塩において電気導電性が向上する理由は定かではないが、発明者は次のように推察する。 The reason why the electrical conductivity is improved in the boron- or silicon-doped lithium metal phosphate having an olivine-type crystal structure is not clear, but the inventor speculates as follows.
 まず、遷移金属は高温の融液状態で雰囲気中の酸素と平衡状態にあり、微量の酸素があると2価と3価の遷移金属イオンが共存状態にある。結晶構造において4配位サイトの結晶半径はSi4+>P5+>B3+でありSiの0.40が最も大きく、6配位サイトの遷移金属の結晶半径は0.75~0.83であり、BやSiが遷移金属の占有する6配位サイトに入ることは通常考えられない。結晶構造において4配位であるPの位置にSiやBが置換固溶することにより、雰囲気が還元性でありLiが過剰にあれば、電荷補償のため6配位位置にさらにLiイオンが増える。あるいはいくらか酸化性であれば3価の遷移金属が入ることになる。結晶中の3価の遷移金属イオンがあれば、遷移金属イオンの2価と3価との間に電子の移動が起こり、電子伝導性が発現すると考えられる。 First, the transition metal is in a state of equilibrium with oxygen in the atmosphere in a high-temperature molten state, and in the presence of a small amount of oxygen, divalent and trivalent transition metal ions are in a state of coexistence. In the crystal structure, the crystal radius of the 4-coordination site is Si 4+ >P 5+ >B 3+ , and 0.40 of Si is the largest, and the crystal radius of the transition metal of the 6-coordination site is 0.75 to 0.83. , B and Si are usually not considered to enter the six-coordinated sites occupied by transition metals. In the crystal structure, Si and B are substituted and solid-soluted at the position of P, which is 4-coordinate, so if the atmosphere is reducing and Li is excessive, Li ions further increase at the 6-coordinate position for charge compensation. . Or, if somewhat oxidizing, a trivalent transition metal will enter. If there are trivalent transition metal ions in the crystal, it is considered that electron transfer occurs between the divalent and trivalent transition metal ions, thereby developing electron conductivity.
 また4配位サイトがすべてSiであるLiFeSiOは電気伝導性が非常に悪いことが知られている。その理由としてSiは周りの酸素と強く固く結合し結晶構造の柔軟性がないためLiイオンが移動し難いためと推察される。一般に純粋なものに比べて固溶体の融点が下がるのは、結晶格子が歪むことで、構成する陽イオンと酸素イオンの結合力が弱まるためである。4配位サイトにSi以外の元素が混じる固溶体は、純粋なシリケートに比べて酸素との結合力が弱くなり遷移金属の価数変化に対応するLiイオンが移動し易くなると考えられる。このことはリン酸金属リチウム塩でも同様であると考えられ、そのため電子の移動度が上がると考えられる。イオン伝導と電子伝導が相補的に電気伝導性の向上に寄与していると推察される。 It is also known that Li 2 FeSiO 4 in which all four coordination sites are Si has very poor electrical conductivity. It is presumed that the reason for this is that Si is strongly and tightly bound to the surrounding oxygen and has no flexibility in the crystal structure, making it difficult for Li + ions to move. The melting point of a solid solution is generally lower than that of a pure one because the crystal lattice is distorted, weakening the binding force between the constituent cations and oxygen ions. A solid solution in which an element other than Si is mixed in the 4-coordination site has a weaker bonding force with oxygen than pure silicate, and it is considered that Li ions corresponding to the valence change of the transition metal tend to move. It is believed that this is the same for the lithium metal phosphate, and that the electron mobility is therefore increased. It is speculated that ionic conduction and electronic conduction complementarily contribute to the improvement of electrical conductivity.
 なお、絶縁体であるLiSiOのSiの一部がPに置き換わると電気導電性が現れ、全部PになるとLiFePOとなる。LiFePOのPの一部をBに置き換えると、さらに電気導電性が上がるが結晶構造が不安定になりオリビン構造を保ち難くなる。LiFePOのPをSiに置換する場合、Bの場合ほど結晶構造は歪まず、Pの一部をSiとBで置換するとBの固溶域が増すため、オリビンでありながら電気伝導性が増す。すなわち4配位サイトの元素の種類が混合固溶すると酸素との結合が弱くなってLiイオンが移動しやすくなると考えられる。 When part of Si in Li 2 SiO 4 , which is an insulator, is replaced with P, electrical conductivity appears. When part of P in LiFePO 4 is replaced with B, the electrical conductivity is further increased, but the crystal structure becomes unstable and it becomes difficult to maintain the olivine structure. When replacing P in LiFePO4 with Si, the crystal structure is not as distorted as in the case of B, and when part of the P is replaced with Si and B, the solid solution region of B increases, so the electrical conductivity increases despite being olivine. . That is, it is considered that when the types of elements at the 4-coordination sites are mixed and solid-dissolved, the bond with oxygen is weakened and the Li 2 + ions are more likely to move.
 オリビン構造は、天然のシリケート鉱物であるオリビンXSiO構造に由来する(同式中、Xは2価金属のMgとFeが約9:1の比で含まれる)。XSiOにおいて酸素はほぼ六方細密に充填されており、酸素4個に囲まれた隙間が酸素4個につき8か所あって、その1/8をSiが占める。酸素6個に囲まれた隙間も酸素6個につき4か所あって、その1/2をXが占める。一方、PとBが添加されたLiMSiO(M=Fe,Co,Ni,Mn)では、Siの一部にPとBが、そしてXにはLi2個とMが入ることになる。LiMSiOに当量のPとBが置換すると、4価のSiを5価のPと3価のBが置換することにより分子中のLiの比率は変わらない。 The olivine structure is derived from the olivine X 2 SiO 4 structure, a natural silicate mineral (wherein X contains the divalent metals Mg and Fe in a ratio of about 9:1). In X 2 SiO 4 , oxygen is nearly hexagonally densely packed, and there are 8 gaps per 4 oxygen atoms surrounded by 4 oxygen atoms, and Si occupies ⅛ of these gaps. There are also 4 gaps surrounded by 6 oxygen atoms per 6 oxygen atoms, and X occupies 1/2 of them. On the other hand, in Li 2 MSiO 4 (M=Fe, Co, Ni, Mn) to which P and B are added, P and B are included in part of Si, and two Li and M are included in X. When equivalent amounts of P and B are substituted for Li 2 MSiO 4 , the ratio of Li in the molecule does not change due to the substitution of pentavalent P and trivalent B for tetravalent Si.
<リチウムイオン二次電池>
 リチウムイオン二次電池は、上記リチウム金属リン酸塩からなる正極材料を含む正極を備えている。より具体的には、リチウムイオン二次電池は当該正極、負極、電解質等を備えている。
<Lithium ion secondary battery>
A lithium-ion secondary battery includes a positive electrode that includes a positive electrode material comprising the lithium metal phosphate described above. More specifically, a lithium ion secondary battery includes the positive electrode, negative electrode, electrolyte, and the like.
(正極)
 正極は、上記正極材料に加え、導電助剤、結着剤等を含むことができる。
(positive electrode)
The positive electrode can contain, in addition to the above positive electrode material, a conductive aid, a binder, and the like.
 導電助剤として特に制限されず、アセチレンブラック、カーボンブラック、黒鉛、炭素繊維、金属繊維、アルミニウム粉、フッ化炭素、酸化亜鉛、チタン酸カリウム、酸化チタン、ポリフェニレン誘導体等が挙げられる。これらは、1種単独で、又は2種以上を組み合わせて用いうることができる。 The conductivity aid is not particularly limited, and includes acetylene black, carbon black, graphite, carbon fiber, metal fiber, aluminum powder, fluorocarbon, zinc oxide, potassium titanate, titanium oxide, and polyphenylene derivatives. These can be used individually by 1 type or in combination of 2 or more types.
 結着剤としては特に制限されず、ポリテトラフルオロエチレン、ポリビニリデンプルオライド、ポリビニルクロライド、エチレンプロピレンジエンポリマー等が挙げられる。これらは、1種単独で、又は2種以上を組み合わせて用いることができる。 The binder is not particularly limited and includes polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, ethylene propylene diene polymer and the like. These can be used individually by 1 type or in combination of 2 or more types.
(負極)
 負極は、負極活性物質自体からなるものであってもよく、負極活物質及び結着剤を含むものであってもよい。すなわち、負極は、金属リチウム、リチウムーアルミニウム合金、リチウムースズ合金からなるものでもよく、黒鉛、炭素繊維、コークス、メソカーボンマイクロビーズ(MCMB)等及び結着剤を含むものであってもよい。
(negative electrode)
The negative electrode may consist of the negative electrode active material itself, or may contain the negative electrode active material and a binder. That is, the negative electrode may consist of metallic lithium, a lithium-aluminum alloy, a lithium-tin alloy, or may contain graphite, carbon fiber, coke, mesocarbon microbeads (MCMB), etc., and a binder.
(電解質)
 電解質は液状であってもよく、固体状であってもよい。
(Electrolytes)
The electrolyte may be liquid or solid.
 電解質が液状である(すなわち電解液を用いる)場合、有機溶媒に支持電解質を溶解させたものを用いることができる。有機溶媒としては時に制限されず、カーボネート類、ハロゲン化炭水化物、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等が挙げられる。これらは、1種単独で、又は2種以上を組み合わせて用いることができる。 When the electrolyte is liquid (that is, an electrolytic solution is used), it is possible to use an organic solvent in which the supporting electrolyte is dissolved. Examples of organic solvents include, but are not limited to, carbonates, halogenated carbohydrates, ethers, ketones, nitriles, lactones, oxolane compounds, and the like. These can be used individually by 1 type or in combination of 2 or more types.
 支持電解質としては特に制限されず、LiPF、LiBF,LiClO,LiAsF等の無機塩、LiSOCF,LiC(SOCF,LiN(SOCF)(SO)等の有機塩、これらの誘導体などが挙げられる。 The supporting electrolyte is not particularly limited, and inorganic salts such as LiPF 6 , LiBF 4 , LiClO 4 and LiAsF 6 , LiSO 3 CF 3 , LiC(SO 3 CF 3 ) 2 , LiN(SO 2 CF 3 )(SO 2 C 4 F 9 ), and derivatives thereof.
 電解液を用いる場合は、セパレータとして多孔性合成樹脂膜(特にポリオレフィン分子の多孔膜)を用いればよい。 When using an electrolytic solution, a porous synthetic resin film (especially a porous film of polyolefin molecules) may be used as a separator.
 電解液が固体状である(すなわち固体電解質を用いる)場合は、例えば酸化物系、硫化物系等の化合物を用いることができる。酸化物系の化合物としては、La0.51Li0.34TiO2.94, NASICON型のLi1.3Al0.3Ti1.7(PO)、ガーネット型のLILaZr12等の材料が挙げられ、硫化物系の化合物としては、LiS-SiS系等の二成分系や、そこにLiI,LIPO等を加えた三成分系の材料が挙げられる。 When the electrolytic solution is solid (that is, when a solid electrolyte is used), compounds such as oxides and sulfides can be used. The oxide compounds include La0.51Li0.34TiO2.94 , NASICON - type Li1.3Al0.3Ti1.7 ( PO4 ), and garnet - type LI7La3Zr2 . Examples of sulfide-based compounds include two-component systems such as Li 2 S—SiS 2 systems, and three-component systems in which LiI, LI 3 PO 4 , etc. are added thereto. be done.
 リチウムイオン二次電池は、例えば次のようにして製造される。 A lithium-ion secondary battery is manufactured, for example, as follows.
 負極活物質及び結着剤を溶媒中に分散させて塗液を調整する。得られた塗液を負極集電体上に均一に塗布し、乾燥することで、負極集電体及び負極活物質層からなる積層体を得る。この積層体を負極部材内に負極集電体と負極部材内面が接するように収容し、負極が得られる。なお、金属リチウム箔等を用いる場合はそれ自体を負極とすればよい。 A coating liquid is prepared by dispersing the negative electrode active material and binder in a solvent. The obtained coating liquid is uniformly applied on the negative electrode current collector and dried to obtain a laminate composed of the negative electrode current collector and the negative electrode active material layer. This laminate is housed in a negative electrode member so that the negative electrode current collector and the inner surface of the negative electrode member are in contact with each other to obtain a negative electrode. In addition, when metallic lithium foil or the like is used, the itself may be used as the negative electrode.
 次に、正極活物質、導電助剤及び結着剤を溶媒中に分散させて塗液を調製する。得られた塗液を正極集電体上に均一に塗布し、乾燥することで、正極集電体及び正極活物質層からなる積層体を得る。この積層体を正極部材内に正極集電体と正極部材内面が接するように収容して、正極が得られる。 Next, a coating liquid is prepared by dispersing the positive electrode active material, conductive aid, and binder in a solvent. The obtained coating liquid is uniformly applied on the positive electrode current collector and dried to obtain a laminate composed of the positive electrode current collector and the positive electrode active material layer. A positive electrode is obtained by housing this laminate in a positive electrode member so that the positive electrode current collector and the inner surface of the positive electrode member are in contact with each other.
 電解液を用いる場合、上述のようにして製造された負極及び正極を、負極活物質層と正極活物質層との間にセパレータが介するように重ね合わせ、電解質を充填し、封止材により電池内部を密封することにより、リチウムイオン二次電池が完成する。 When using an electrolytic solution, the negative electrode and the positive electrode manufactured as described above are superimposed so that a separator is interposed between the negative electrode active material layer and the positive electrode active material layer, the electrolyte is filled, and the battery is sealed with a sealing material. A lithium ion secondary battery is completed by sealing the inside.
 一方、固体電解質を用いる場合は、例えば、負極用の原料粉末を均一な厚みに堆積して負極用粉末層を成形し、その負極用粉末層の上に固体電解質粉末を含む固体電荷質層用の原料粉末を均一な厚みに堆積して固体電解質用粉末層を成形し、その固体電解質層用粉末層の上に、正極用の原料粉末を均一な厚みに堆積して正極用粉末層を成形した後、これら3層を圧縮成形し、粉末積層体を得る。得られた粉末積層体を用いて、リチウムイオン電池を得ることができる。なお、固体電解質、負極、及び、正極を別々に成形し、これらを積層してリチウムイオン二次電池を得ることもできる。 On the other hand, when a solid electrolyte is used, for example, a negative electrode raw material powder is deposited to a uniform thickness to form a negative electrode powder layer, and a solid charge layer containing a solid electrolyte powder is formed on the negative electrode powder layer. The raw material powder is deposited to a uniform thickness to form a solid electrolyte powder layer, and the positive electrode raw material powder is deposited to a uniform thickness on the solid electrolyte layer powder layer to form a positive electrode powder layer. After that, these three layers are compression-molded to obtain a powder laminate. A lithium ion battery can be obtained using the obtained powder laminate. A solid electrolyte, a negative electrode, and a positive electrode can also be formed separately and laminated to obtain a lithium ion secondary battery.
 リチウムイオン二次電池の形状としては特に制限されず、円筒、角形、コイン型、ボタン型等が挙げられる。 The shape of the lithium-ion secondary battery is not particularly limited, and may be cylindrical, rectangular, coin-shaped, button-shaped, or the like.
 以下、実施例を挙げて本発明についてさらに具体的に説明する。ただし本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
(実施例1:Li(Fe0.5、Mn0.5)(P0.33、0.33、Si0.33)Oの作製)
 Li元素とP元素を含む化合物として、市販のピロリン酸に当量より過剰の炭酸リチウムLiCOを反応させたピロリン酸リチウムLi(ただし過剰分の炭酸リチウムLiCOとの混合物)、金属元素Mを含む化合物として塩化鉄FeCl、塩化マンガンMnCl、B元素を含む化合物としてホウ酸リチウムLi、並びにSi元素を含む化合物としてLiSiOを、溶質粉末として準備した。これらを、Li:Fe:Mn:P:B:Si=40:9:9:6:6:6の元素比(モル比)になるように秤量した。また、フラックスとしては炭酸リチウムと塩化リチウムを準備した。溶質粉末とフラックスとの混合割合は、5:1の質量比となるように調整した。秤量した溶質粉末及びフラックスを乳鉢及び乳棒を用いてよく混合し、混合粉末を得た。
(Example 1: Preparation of Li2 (Fe0.5 , Mn0.5 )(P0.33 , B0.33 , Si0.33 ) O4 )
As a compound containing Li element and P element, lithium pyrophosphate Li 4 P 2 O 7 obtained by reacting commercially available pyrophosphoric acid with lithium carbonate Li 2 CO 3 in excess of the equivalent amount (however, the excess lithium carbonate Li 2 CO 3 ), iron chloride FeCl 2 and manganese chloride MnCl 2 as compounds containing metal element M, lithium borate Li 4 B 2 O 5 as compounds containing B element, and Li 2 SiO 3 as compounds containing Si element, Prepared as a solute powder. These were weighed so that the elemental ratio (molar ratio) of Li:Fe:Mn:P:B:Si=40:9:9:6:6:6. Lithium carbonate and lithium chloride were prepared as fluxes. The mixing ratio of the solute powder and the flux was adjusted to a mass ratio of 5:1. The weighed solute powder and flux were thoroughly mixed using a mortar and pestle to obtain a mixed powder.
 混合粉末を白金坩堝に入れ、雰囲気制御電気炉に静置した。そして電気炉内に一般窒素を流通させながら890℃まで昇温し、その温度で3時間保持した。これにより混合粉末を溶融させて溶融物を得た。炉の出口の酸素濃度は数十ppmだった。その後、溶融物を1℃/hrで徐冷した。 The mixed powder was placed in a platinum crucible and placed in an atmosphere-controlled electric furnace. Then, the temperature was raised to 890° C. while general nitrogen was circulated in the electric furnace, and the temperature was maintained for 3 hours. Thus, the mixed powder was melted to obtain a melt. The oxygen concentration at the outlet of the furnace was several tens of ppm. The melt was then slowly cooled at 1°C/hr.
 溶融物を室温まで冷却した後、白金坩堝を取り出した。白金坩堝の内容物を温水を用いて洗浄してフラックス等を除去し、難溶性の結晶を濾過して1mm以上の大きさのファセットの出た粒状の黒茶色結晶のみを分別回収した。これにより目的の物質のみを純粋に単離した。 After cooling the melt to room temperature, the platinum crucible was taken out. The content of the platinum crucible was washed with hot water to remove flux and the like, and the hardly soluble crystals were filtered to separate and collect only granular black-brown crystals with facets of 1 mm or more. This allowed pure isolation of the desired substance only.
(実施例2:Li(Fe0.5、Co0.5)(P0.33、0.33、Si0.33)Oの作製)
 金属元素Mを含む化合物として、塩化鉄FeCl及び塩化コバルトCoClを準備した。そして、各化合物を、元素比がLi:Fe:Co:P:B:Si=40:9:9:6:6:6となるように秤量した。このこと以外は実施例1と同様にして実験を行い黒色の難溶性の粒状結晶を回収した。
(Example 2: Preparation of Li2 (Fe0.5 , Co0.5 )(P0.33 , B0.33, Si0.33 ) O4 )
As compounds containing metal element M, iron chloride FeCl2 and cobalt chloride CoCl2 were prepared. Then, each compound was weighed so that the element ratio was Li:Fe:Co:P:B:Si=40:9:9:6:6:6. Except for this, the experiment was carried out in the same manner as in Example 1, and black sparingly soluble granular crystals were recovered.
(実施例3:Li(Fe0.33、Mn0.33、Co0.33)(P0.33、0.33、Si0.33)Oの作製)
 金属元素Mを含む化合物として、塩化鉄FeCl、塩化マンガンMnCl及び塩化コバルトCoClを準備した。そして、各化合物を、元素比がLi:Fe:Co:Mn:P:B:Si=40:6:6:6:6:6:6となるように秤量した。このこと以外は実施例1と同様にして実験を行い黒色の難溶性の粒状結晶を回収した。
(Example 3: Preparation of Li2 (Fe0.33 , Mn0.33 , Co0.33 )(P0.33 , B0.33 , Si0.33 ) O4 )
As compounds containing metal element M, iron chloride FeCl 2 , manganese chloride MnCl 2 and cobalt chloride CoCl 2 were prepared. Then, each compound was weighed so that the element ratio was Li:Fe:Co:Mn:P:B:Si=40:6:6:6:6:6:6. Except for this, the experiment was carried out in the same manner as in Example 1, and black sparingly soluble granular crystals were recovered.
(実施例4:LiCo(P0.5、0.5)Oの作製)
 金属元素Mを含む化合物として、塩化コバルトCoClを準備した。また、Si元素を含む化合物としてLiSiOを用いなかった。そして、各化合物を、元素比がLi:Co:P:B=27:10:5:5となるように秤量した。このこと以外は実施例1と同様にして実験を行い黒色の難溶性の粒状結晶を回収した。
(Example 4: Preparation of Li2Co (P0.5 , B0.5 ) O4 )
Cobalt chloride CoCl2 was prepared as a compound containing metal element M. Also, Li 2 SiO 3 was not used as a compound containing Si element. Then, each compound was weighed so that the element ratio was Li:Co:P:B=27:10:5:5. Except for this, the experiment was carried out in the same manner as in Example 1, and black sparingly soluble granular crystals were recovered.
(実施例5:Li(Fe0.5、Mn0.5)(P0.5、0.5)Oの作製)
 金属元素Mを含む化合物として、塩化鉄FeCl及び塩化マンガンMnClを準備した。また、Si元素を含む化合物としてLiSiOを用いなかった。そして、各化合物を、元素比がLi:Fe:Mn:P:B=27:5:5:5:5となるように秤量した。このこと以外は実施例1と同様にして実験を行い黒色の難溶性の粒状結晶を回収した。
(Example 5: Preparation of Li2 (Fe0.5 , Mn0.5 ) (P0.5 , B0.5 ) O4 )
As compounds containing metal element M, iron chloride FeCl2 and manganese chloride MnCl2 were prepared. Also, Li 2 SiO 3 was not used as a compound containing Si element. Then, each compound was weighed so that the element ratio was Li:Fe:Mn:P:B=27:5:5:5:5. Except for this, the experiment was carried out in the same manner as in Example 1, and black sparingly soluble granular crystals were recovered.
(実施例6:Li(Fe0.5、Mn0.5)(P0.5、0.5)Oの作製)
 Li元素とP元素を含む化合物としてリン酸リチウムLiPO、金属元素Mを含む化合物として塩化鉄FeCl及び塩化マンガンMnCl、B元素を含む化合物として四ホウ酸リチウムLiを、溶質粉末として準備した。これらを、Li:Fe:Mn:P:B=24:5:5:5:5の結晶の元素比になるように秤量した。また、フラックスとしては塩化リチウムLiClを準備した。溶質粉末とフラックスとの混合割合は、5:1の質量比となるように調製した。秤量した溶質粉末及びフラックスを乳鉢及び乳棒を用いて良く混合し、混合粉末を得た。このこと以外は実施例1と同様にして実験を行い黒色の難溶性の粒状結晶を回収した。
(Example 6: Preparation of Li2 (Fe0.5 , Mn0.5 )(P0.5 , B0.5 ) O4 )
Lithium phosphate Li 3 PO 4 as a compound containing Li element and P element, iron chloride FeCl 2 and manganese chloride MnCl 2 as a compound containing metal element M, and lithium tetraborate Li 2 B 4 O 7 as a compound containing B element. was prepared as a solute powder. These were weighed so that the elemental ratio of the crystal was Li:Fe:Mn:P:B=24:5:5:5:5. Lithium chloride LiCl was prepared as a flux. The mixing ratio of the solute powder and the flux was adjusted to a mass ratio of 5:1. The weighed solute powder and flux were well mixed using a mortar and pestle to obtain a mixed powder. Except for this, the experiment was carried out in the same manner as in Example 1, and black sparingly soluble granular crystals were recovered.
(実施例7:Li1.5Co(P0.5、Si0.5)Oの作製)
 Li元素とP元素を含む化合物としてピロリン酸リチウムLi、金属元素Mを含む化合物として塩化コバルトCoCl、Si元素を含む化合物としてSiOを、溶質粉末として準備した。これらを、Li:Co:P:Si=22:10:5:5の結晶の元素比になるように秤量した。また、フラックスとしては塩化リチウムLiClを準備した。溶質粉末とフラックスとの混合割合は、5:1の重量比となるように調製した。秤量した溶質粉末及びフラックスを乳鉢及び乳棒を用いて良く混合し、混合粉末を得た。このこと以外は実施例1と同様にして実験を行い黒色の難溶性の粒状結晶を回収した。
(Example 7: Preparation of Li1.5Co (P0.5 , Si0.5 ) O4 )
Lithium pyrophosphate Li 4 P 2 O 7 as a compound containing Li element and P element, cobalt chloride CoCl 2 as a compound containing metal element M, and SiO 2 as a compound containing Si element were prepared as solute powders. These were weighed so as to obtain a crystal element ratio of Li:Co:P:Si=22:10:5:5. Lithium chloride LiCl was prepared as a flux. A mixing ratio of the solute powder and the flux was adjusted to a weight ratio of 5:1. The weighed solute powder and flux were well mixed using a mortar and pestle to obtain a mixed powder. Except for this, the experiment was carried out in the same manner as in Example 1, and black sparingly soluble granular crystals were recovered.
(実施例8:Li1.5Mn(P0.75、0.25)Oの作製)
 Li元素とP元素を含む化合物としてピロリン酸リチウムLi、金属元素Mを含む化合物として塩化マンガンMnCl、B元素を含む化合物として酸化ホウ素Bを、溶質粉末として準備した。これらを、Li:Mn:P:B=10:4:3:1の結晶の元素比になるように秤量した。また、フラックスとして炭酸リチウムLiCOと塩化リチウムLiClを準備した。溶質粉末とフラックスとの混合割合は、5:1の質量比となるように調製した。秤量した溶質粉末及びフラックスを乳鉢及び乳棒を用いてよく混合し、混合粉末を得た。このこと以外は実施例1と同様にして実験を行い黒色の難溶性の粒状結晶を回収した。
(Example 8: Preparation of Li1.5Mn (P0.75 , B0.25 ) O4 )
Lithium pyrophosphate Li 4 P 2 O 5 as a compound containing Li element and P element, manganese chloride MnCl 2 as a compound containing metal element M, and boron oxide B 2 O 3 as a compound containing B element were prepared as solute powders. . These were weighed so that the elemental ratio of the crystal was Li:Mn:P:B=10:4:3:1. Also, lithium carbonate Li 2 CO 3 and lithium chloride LiCl were prepared as fluxes. The mixing ratio of the solute powder and the flux was adjusted to a mass ratio of 5:1. The weighed solute powder and flux were thoroughly mixed using a mortar and pestle to obtain a mixed powder. Except for this, the experiment was carried out in the same manner as in Example 1, and black sparingly soluble granular crystals were recovered.
(比較例1:LiFePOの作製)
 Li元素とリン酸イオンを含む化合物としてリン酸リチウムLiPO、及び金属元素Mを含む化合物として塩化鉄FeClを、溶質粉末として準備した。これらを、Li:Fe:P=1:1:1の結晶の元素比になるように秤量した。また、フラックスとして炭酸リチウムLiCOと塩化リチウムLiClを準備した。溶質粉末とフラックスとの混合割合は、5:1の質量比となるように調製した。秤量した溶質粉末及びフラックスを乳鉢及び乳棒を用いてよく混合し、混合粉末を得た。このこと以外は実施例1と同様にして実験を行い難溶性の粒状結晶を得た。
(Comparative Example 1: Preparation of LiFePO4 )
Lithium phosphate Li 3 PO 4 as a compound containing Li element and phosphate ions, and iron chloride FeCl 2 as a compound containing metal element M were prepared as solute powders. These were weighed so as to obtain a crystal element ratio of Li:Fe:P=1:1:1. Also, lithium carbonate Li 2 CO 3 and lithium chloride LiCl were prepared as fluxes. The mixing ratio of the solute powder and the flux was adjusted to a mass ratio of 5:1. The weighed solute powder and flux were thoroughly mixed using a mortar and pestle to obtain a mixed powder. Except for this, the experiment was carried out in the same manner as in Example 1 to obtain sparingly soluble granular crystals.
(比較例2)
 ピロリン酸リチウムの代わりにリン酸リチウムを準備した。そして、各化合物を、元素比がLi:Co:B:P=27:10:5:5となるように秤量した。このこと以外は実施例1と同様にして実験を行い青黒色の難溶性の粒状結晶を回収した。
(Comparative example 2)
Lithium phosphate was prepared instead of lithium pyrophosphate. Then, each compound was weighed so that the element ratio was Li:Co:B:P=27:10:5:5. Except for this, the experiment was carried out in the same manner as in Example 1, and bluish-black insoluble granular crystals were recovered.
(粉末X線回折分析)
 実施例1~8で回収した析出物についてX線回折法(特性X線:CuKα)により結晶構造を確認したところ、当該析出物(粒状結晶)はオリビン構造の単結晶であると同定された。
 比較例1で回収した析出物についてX線回折法により結晶構造を確認したところ、当該析出物はLiFePOの単結晶であると同定された。
 比較例2で回収した析出物についてX線回折法により結晶構造を確認したところ、当該析出物はホウ酸コバルトとオリビンの混合物であると同定された。ピロリン酸イオンを含む化合物や四ホウ酸イオンを含む化合物を用いなかったため、Bの比率が増えるにつれてオリビン構造が不安定になり、オリビン以外の異相が生成したものと思われる。
(Powder X-ray diffraction analysis)
When the crystal structure of the precipitates collected in Examples 1 to 8 was confirmed by X-ray diffraction method (characteristic X-ray: CuKα), the precipitates (granular crystals) were identified as single crystals with an olivine structure.
When the crystal structure of the precipitate collected in Comparative Example 1 was confirmed by X-ray diffraction, the precipitate was identified as a single crystal of LiFePO 4 .
When the crystal structure of the precipitate recovered in Comparative Example 2 was confirmed by X-ray diffraction, the precipitate was identified as a mixture of cobalt borate and olivine. Since no compound containing pyrophosphate ions or compounds containing tetraborate ions was used, the olivine structure became unstable as the ratio of B increased, and it is believed that a heterophase other than olivine was produced.
 図1~10は、それぞれ実施例1~8及び比較例1~2における粉末X線回折チャートである。 1 to 10 are powder X-ray diffraction charts in Examples 1 to 8 and Comparative Examples 1 and 2, respectively.
(電気伝導性評価)
 各例で得られた結晶(厚さ0.5~2mm)の対向する二面における電気伝導性を、直流電圧発生器(1V~2.5KV)、電流測定器(1~110μA)及び制御用PCを備えるシステムを用いて室温にて評価した。測定用端子として、陽極にはφ0.5mmの白金線、陰極にはアルミニウム箔をそれぞれ用いた。結果を図に示す。図11~19は、それぞれ実施例1~8及び比較例1のリチウム金属リン酸塩の電気伝導性評価結果を示すグラフである。図中、破線が印加電界(縦軸左:V/mm)を示し、実線が検出電流(縦軸右:μA)を示す。グラフの横軸は経過時間(×0.1秒)を示す。
(Evaluation of electrical conductivity)
The electrical conductivity on the two opposing surfaces of the crystal (0.5-2 mm thick) obtained in each example was measured using a DC voltage generator (1 V-2.5 KV), a current measuring instrument (1-110 μA) and a control A system with a PC was used to evaluate at room temperature. As terminals for measurement, a platinum wire with a diameter of 0.5 mm was used for the anode, and an aluminum foil was used for the cathode. The results are shown in the figure. 11 to 19 are graphs showing the electrical conductivity evaluation results of the lithium metal phosphates of Examples 1 to 8 and Comparative Example 1, respectively. In the figure, the dashed line indicates the applied electric field (left vertical axis: V/mm), and the solid line indicates the detected current (right vertical axis: μA). The horizontal axis of the graph indicates elapsed time (×0.1 sec).
 実施例1~8では、リチウム金属リン酸塩中のMがFe、Mn及びCoの少なくとも一種であり、PにBやSiが固溶している。これにより、オリビン構造を有しながら比較例1のLiFePO単結晶と同程度又はそれ以上の電気伝導性が得られた。
 5分後に1μA以上の電流が流れる最低電界強度を比較すると、比較例1では600V/mmであり、実施例では300~1200V/mmの範囲である。非特許文献1によればLiFePOの電気導電性は10-8S/cmオーダーであることに鑑みると、5分後に1μA以上の電流が流れる最低電界強度が上記範囲である場合は、LiFePOと同等の10-8S/cmオーダーの電気伝導性が発現されると判断できる。
In Examples 1 to 8, M in the lithium metal phosphate is at least one of Fe, Mn and Co, and B and Si are dissolved in P. As a result, electrical conductivity comparable to or higher than that of the LiFePO 4 single crystal of Comparative Example 1 was obtained while having an olivine structure.
Comparing the minimum electric field intensity at which a current of 1 μA or more flows after 5 minutes, it is 600 V/mm in Comparative Example 1 and ranges from 300 to 1200 V/mm in Examples. According to Non-Patent Document 1, the electrical conductivity of LiFePO 4 is on the order of 10 −8 S/cm. Therefore, when the minimum electric field strength at which a current of 1 μA or more flows after 5 minutes is within the above range, LiFePO 4 It can be judged that an electric conductivity of the order of 10 −8 S/cm equivalent to that of 10 −8 S/cm is developed.
 表1に実施例1~8及び比較例1の組成と、印加電界(電界の強さ)及び検出電流の値をまとめて示す。 Table 1 summarizes the compositions of Examples 1 to 8 and Comparative Example 1, the applied electric field (electric field strength), and the values of the detected current.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 BやSi置換していないLiCoPO、及びLiMnPOは、直流電圧発生装置の印加電圧の上限2500Vでも全く電流を検知できなかった。一方、LFePOと同等又はそれ以下の低い電圧で電流を検知した上記実施例のリチウム金属リン酸塩は、電気伝導度がLiFePOと同等でおおよそ10-8S/cmオーダーであると考えられ、LiFePOと同様にリチウムイオン二次電池の正極材料として好適に用いることが可能と考えられる。
 また、上記実施例のリチウム金属リン酸塩は、BやSiの含有量が多いため、LiがLiMPOより多く含まれる。これにより電気容量の増加が期待される(PとBが同量入った場合Liの含有量はLiFePOの2倍)。
 さらに、上記実施例のリチウム金属リン酸塩は、金属元素としてFeの代わりにCoやMnが含まれており、この場合においても電気伝導性がLiFePOと同等である。このため出力電圧が上昇し、総じてエネルギー密度(1g当たりの出力電圧×電気容量)がLiFePOを大きく上回り、LCOさえ凌駕する可能性がある。
 また、上記実施例のリチウム金属リン酸塩はオリビン構造を有することができるため、充放電を繰り返しても結晶構造が壊れ難く、寿命や安定性もLCOより優れていると考えられる。
With LiCoPO 4 and LiMnPO 4 without B or Si substitution, no current could be detected even at the upper limit of 2500 V applied to the DC voltage generator. On the other hand, the lithium metal phosphate of the above example, whose current was detected at a voltage as low as or lower than that of LFePO 4 , is considered to have an electrical conductivity equivalent to that of LiFePO 4 and on the order of 10 −8 S/cm. , LiFePO 4 , can be suitably used as a positive electrode material for lithium ion secondary batteries.
Moreover, since the lithium metal phosphate of the above example has a large content of B and Si, it contains more Li than LiMPO 4 . This is expected to increase the electric capacity (when the same amount of P and B is added, the Li content is twice that of LiFePO 4 ).
Furthermore, the lithium metal phosphates of the above examples contain Co and Mn instead of Fe as metal elements, and even in this case the electrical conductivity is equivalent to that of LiFePO 4 . As a result, the output voltage increases, and overall the energy density (output voltage per gram×electrical capacity) greatly exceeds that of LiFePO 4 , and may even surpass LCO.
In addition, since the lithium metal phosphates of the above Examples can have an olivine structure, the crystal structure is less likely to break even after repeated charging and discharging, and the life and stability are considered to be superior to those of LCO.
 本発明によれば、電気伝導性に優れるオリビン型の結晶構造を有するリチウム金属リン酸塩を得ることがきる。本発明のリチウム金属リン酸塩は安定したオリビン構造を有しているため高寿命であり、かつ結晶中のPがSiやBで置換されているためLiの比率が高く、LiFePOに比してより大きな電気容量が期待できる。 According to the present invention, a lithium metal phosphate having an olivine-type crystal structure with excellent electrical conductivity can be obtained. Since the lithium metal phosphate of the present invention has a stable olivine structure, it has a long life, and since P in the crystal is replaced with Si or B, the ratio of Li is high, compared to LiFePO4. Larger electrical capacity can be expected for
 また、本発明の製造方法によれば、オリビン型の結晶構造を有するリチウム金属リン酸塩を製造することができる。さらに、本発明によるオリビン型の結晶構造を有するリチウム金属リン酸塩はリチウムイオン二次電池の正極材料として使用することができ、LCOより高いエネルギー密度と電気容量を有し、かつLFPと同様の安全性と寿命を有するリチウムイオン二次電池を提供することができる。 Further, according to the production method of the present invention, a lithium metal phosphate having an olivine-type crystal structure can be produced. Furthermore, the lithium metal phosphate having an olivine-type crystal structure according to the present invention can be used as a positive electrode material for lithium-ion secondary batteries, has higher energy density and electrical capacity than LCO, and similar to LFP. It is possible to provide a lithium-ion secondary battery with safety and long life.

Claims (13)

  1.  Li元素を含む化合物;金属元素M(MはFe,Co,Ni,及びMnからなる群より選択される少なくとも一種を示す)を含む化合物;B元素を含む化合物及びSi元素を含む化合物の少なくともいずれか;ならびにピロリン酸イオンを含むP元素を含む化合物を含有する溶質原料と、フラックスとの混合物を得る混合工程と、
     前記混合物の溶融物を得る溶融工程と、
     前記溶融物を冷却して析出物を得る冷却工程と、
    を備える、オリビン型の結晶構造を有するリチウム金属リン酸塩の製造方法。
    A compound containing Li element; a compound containing metal element M (M represents at least one selected from the group consisting of Fe, Co, Ni, and Mn); at least one of a compound containing B element and a compound containing Si element and a mixing step of obtaining a mixture of a solute raw material containing a compound containing a P element containing pyrophosphate ions and a flux,
    a melting step of obtaining a melt of the mixture;
    a cooling step of cooling the melt to obtain a precipitate;
    A method for producing a lithium metal phosphate having an olivine-type crystal structure, comprising:
  2.  Li元素を含む化合物;金属元素M(MはFe,Co,Ni,及びMnからなる群より選択される少なくとも一種を示す)を含む化合物;四ホウ酸イオンを含むB元素を含む化合物;及びリン酸イオンを含むP元素を含む化合物を含有する溶質原料と、フラックスとの混合物を得る混合工程と、
     前記混合物の溶融物を得る溶融工程と、
     前記溶融物を冷却して析出物を得る冷却工程と、
    を備える、オリビン型の結晶構造を有するリチウム金属リン酸塩の製造方法。
    compound containing Li element; compound containing metal element M (M represents at least one selected from the group consisting of Fe, Co, Ni, and Mn); compound containing B element containing tetraborate ion; and phosphorus a mixing step of obtaining a mixture of a solute raw material containing a compound containing P element containing acid ions and a flux;
    a melting step of obtaining a melt of the mixture;
    a cooling step of cooling the melt to obtain a precipitate;
    A method for producing a lithium metal phosphate having an olivine-type crystal structure, comprising:
  3.  前記B元素を含む化合物が四ホウ酸イオンを含む、請求項1に記載の製造方法。 The production method according to claim 1, wherein the compound containing element B contains a tetraborate ion.
  4.  前記溶質原料が、Si元素を含む化合物をさらに含む、請求項2に記載の製造方法。 The production method according to claim 2, wherein the solute raw material further contains a compound containing Si element.
  5.  前記溶融工程における溶融温度が600℃以上である、請求項1~4のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 4, wherein the melting temperature in the melting step is 600°C or higher.
  6.  前記混合物におけるP元素に対するB元素比が1/99~99/1である、請求項1~5のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 5, wherein the ratio of B element to P element in the mixture is 1/99 to 99/1.
  7.  前記混合物におけるP元素に対するSi元素比が1/99~99/1である、請求項1又は4に記載の製造方法。 The production method according to claim 1 or 4, wherein the ratio of Si element to P element in the mixture is 1/99 to 99/1.
  8.  一般式LiM(P、Q)Oで表されるオリビン型の結晶構造を有し、電気伝導度が10-8S/cm以上である、リチウム金属リン酸塩。
    (式中、MはFe,Co,Ni,及びMnからなる群より選択される少なくとも一種を示す。また、(P、Q)とは、Pの一部がQで置換されていることを示し、QはB及びSiの少なくともいずれかである。)
    A lithium metal phosphate having an olivine-type crystal structure represented by the general formula LiM(P,Q)O 4 and having an electrical conductivity of 10 −8 S/cm or more.
    (In the formula, M represents at least one selected from the group consisting of Fe, Co, Ni, and Mn. (P, Q) indicates that part of P is replaced with Q. , Q is at least one of B and Si.)
  9.  一般式Li1+αM(P1-x-ySi)Oで表されるオリビン型の結晶構造を有する、リチウム金属リン酸塩。
    (式中、MはFe,Co,Ni,及びMnからなる群より選択される少なくとも一種を示す。また、xは0~0.6、yは0~0.6、x+y=0.2超0.8以下、αは0.4~1.2である。)
    A lithium metal phosphate having an olivine-type crystal structure represented by the general formula Li 1+α M(P 1-xy B x Si y )O 4 .
    (Wherein, M represents at least one selected from the group consisting of Fe, Co, Ni, and Mn. In addition, x is 0 to 0.6, y is 0 to 0.6, x + y = more than 0.2 0.8 or less, α is 0.4 to 1.2.)
  10.  電気伝導度が10-8S/cm以上である、請求項9に記載のリチウム金属リン酸塩。 10. The lithium metal phosphate of claim 9, having an electrical conductivity of 10-8 S/cm or higher.
  11.  請求項8~10のいずれか一項に記載のリチウム金属リン酸塩を含む、リチウムイオン二次電池の正極材料。 A positive electrode material for a lithium ion secondary battery, comprising the lithium metal phosphate according to any one of claims 8 to 10.
  12.  請求項11に記載の正極材料を含む、リチウムイオン二次電池の正極。 A positive electrode for a lithium ion secondary battery, comprising the positive electrode material according to claim 11.
  13.  請求項12に記載の正極を備える、リチウムイオン二次電池。 A lithium ion secondary battery comprising the positive electrode according to claim 12.
PCT/JP2022/007382 2022-02-22 2022-02-22 Method for preparing lithium metal phosphate, lithium metal phosphate, positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery WO2023162040A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/007382 WO2023162040A1 (en) 2022-02-22 2022-02-22 Method for preparing lithium metal phosphate, lithium metal phosphate, positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/007382 WO2023162040A1 (en) 2022-02-22 2022-02-22 Method for preparing lithium metal phosphate, lithium metal phosphate, positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery

Publications (1)

Publication Number Publication Date
WO2023162040A1 true WO2023162040A1 (en) 2023-08-31

Family

ID=87765205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007382 WO2023162040A1 (en) 2022-02-22 2022-02-22 Method for preparing lithium metal phosphate, lithium metal phosphate, positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery

Country Status (1)

Country Link
WO (1) WO2023162040A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216201A (en) * 2010-03-31 2011-10-27 Sumitomo Osaka Cement Co Ltd Electrode active material and lithium ion battery
WO2012057340A1 (en) * 2010-10-29 2012-05-03 旭硝子株式会社 Silicate-phosphate compound, secondary-battery positive electrode, secondary battery, and manufacturing methods therefor
JP2014056722A (en) * 2012-09-13 2014-03-27 Asahi Glass Co Ltd Phosphate compound, positive electrode material for secondary battery, and method for producing secondary battery
JP2020105053A (en) * 2018-12-27 2020-07-09 株式会社オキサイド Manufacturing method of lithium metal phosphate, lithium metal phosphate, positive electrode material of lithium ion secondary battery, and lithium ion secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216201A (en) * 2010-03-31 2011-10-27 Sumitomo Osaka Cement Co Ltd Electrode active material and lithium ion battery
WO2012057340A1 (en) * 2010-10-29 2012-05-03 旭硝子株式会社 Silicate-phosphate compound, secondary-battery positive electrode, secondary battery, and manufacturing methods therefor
JP2014056722A (en) * 2012-09-13 2014-03-27 Asahi Glass Co Ltd Phosphate compound, positive electrode material for secondary battery, and method for producing secondary battery
JP2020105053A (en) * 2018-12-27 2020-07-09 株式会社オキサイド Manufacturing method of lithium metal phosphate, lithium metal phosphate, positive electrode material of lithium ion secondary battery, and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP6611949B2 (en) Solid electrolyte materials
EP1518284B1 (en) Carbon-coated li-containing powders and process for production thereof
CA2636694C (en) Methods of making lithium metal compounds useful as cathode active materials
JP4387401B2 (en) Method for producing lithium metal-containing substance, product, composition and battery
JP4191467B2 (en) Electrochemical electrode active material, electrode using the same, and lithium ion battery
KR101501958B1 (en) Process for preparing electroactive insertion compounds and electrode materials obtained therefrom
US9315390B2 (en) Production process for lithium-silicate-based compound
US20110210288A1 (en) Method of Making Active Materials for Use in Secondary Electrochemical Cells
JP5099737B2 (en) Electrode active material, method for producing the same, and non-aqueous electrolyte secondary battery
US20110008678A1 (en) Electrode materials for secondary (rechargeable) electrochemical cells and their method of preparation
US10205168B2 (en) Sodium transition metal silicates
JP4773964B2 (en) Boron-substituted lithium insertion compounds, electrode active materials, batteries and electrochromic devices
CA2510880A1 (en) Process for the preparation of a composite
WO2012133730A1 (en) Active material, method for manufacturing active material, electrode, and lithium-ion rechargeable battery
JP5765780B2 (en) Lithium silicate compound, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery using the same
US20180076456A1 (en) Silicate materials having an olivine structure
JP5442915B1 (en) Cathode active material for non-aqueous electrolyte secondary battery, cathode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US20180097220A1 (en) Method for fabricating a silicate material having an olivine structure
JP7164178B2 (en) lithium metal phosphate, positive electrode material for lithium ion secondary battery, lithium ion secondary battery
WO2023162040A1 (en) Method for preparing lithium metal phosphate, lithium metal phosphate, positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
KR101233410B1 (en) Cathode active material for lithium secondary battery, method for preparing same, and lithium battery comprising same
Yan et al. Phase relations of Li2O–MnO–P2O5 system and the electrochemical properties of Li1+ xMn1− xPO4 compounds
JP2018152315A (en) Negative electrode active material, negative electrode, nonaqueous electrolyte power storage device, and method for manufacturing negative electrode active material
Kalanur et al. Polyanion Materials for K‐Ion Batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928571

Country of ref document: EP

Kind code of ref document: A1