WO2023160570A1 - 一种光纤激光器、激光雷达、光功率调节方法及存储介质 - Google Patents

一种光纤激光器、激光雷达、光功率调节方法及存储介质 Download PDF

Info

Publication number
WO2023160570A1
WO2023160570A1 PCT/CN2023/077587 CN2023077587W WO2023160570A1 WO 2023160570 A1 WO2023160570 A1 WO 2023160570A1 CN 2023077587 W CN2023077587 W CN 2023077587W WO 2023160570 A1 WO2023160570 A1 WO 2023160570A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
seed light
seed
signal
fiber
Prior art date
Application number
PCT/CN2023/077587
Other languages
English (en)
French (fr)
Inventor
杨祥辉
苏军龙
舒博正
刘佳尧
石拓
Original Assignee
北京一径科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京一径科技有限公司 filed Critical 北京一径科技有限公司
Publication of WO2023160570A1 publication Critical patent/WO2023160570A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/1001Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by controlling the optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA

Definitions

  • the present disclosure relates to but not limited to the technical field of laser radar, and in particular relates to a fiber laser, laser radar, an optical power adjustment method and a storage medium.
  • lidar as the core component of unmanned driving technology, has the advantages of long detection distance and high imaging accuracy. It is the "eye” of unmanned driving technology, and lasers belong to laser An important part of the radar.
  • the fiber laser used in lidar is the power amplifier (master oscillator power-amplifier, MOPA) laser of the master oscillator, which is mainly composed of a seed source (also can be described as a seed optical signal) and a fiber amplifier.
  • MOPA master oscillator power-amplifier
  • the seed source provides The pulse signal required by the radar, the fiber amplifier is responsible for amplifying the pulse signal.
  • the present disclosure provides a fiber laser, a laser radar, an optical power adjustment method and a storage medium, so as to realize rapid and dynamic adjustment of the optical power of the fiber laser.
  • the present disclosure provides a fiber laser, including: multiple seed light lasers with different powers and fiber amplifiers; multiple seed light lasers are the same type of laser; one seed light laser among the multiple seed light lasers is Configured to enter an excited state in response to a trigger event, and emit a first seed optical signal; couple the first seed optical signal to the fiber amplifier; other seed optical lasers in the plurality of seed optical lasers are configured to respond to the trigger event , is in a state to be excited; the fiber amplifier is configured to be in a state of gain saturation all the time, and amplifies the first sub-optical signal.
  • multiple seed light lasers are coupled to the fiber amplifier through a beam combiner or spatial coupling.
  • the fiber amplifier includes: a gain fiber and a pump laser; a seed laser configured to couple the first seed light signal to the gain fiber; a pump laser configured to always launch the target The pump light signal is coupled to the gain fiber; the gain fiber is configured to respond to the target pump light signal, and is always in a gain saturation state, and amplifies the first sub-light signal through the target pump light signal.
  • the seed light laser with the highest power among the multiple seed light lasers is configured to Before the sub-light laser enters the excited state in response to the trigger event, it emits a second seed light signal and is coupled to the fiber amplifier; other seed light lasers except the most powerful seed light laser are configured to respond to a trigger Before the event enters the excited state, it is in the state to be excited; the fiber amplifier is also configured to amplify the second seed optical signal before amplifying the first seed optical signal, and during the amplification process of the second seed optical signal, Adjust the pump power until gain saturation is reached.
  • the fiber laser further includes: a filter; a fiber amplifier, also configured to couple the amplified first seed optical signal to the filter; a filter, configured to couple the amplified first seed optical signal The optical signal is filtered.
  • the present disclosure provides a laser radar, including: a fiber laser and a controller as in any one of the first aspect and its possible implementations; the controller is coupled to a plurality of seed light lasers; the controller is configured A trigger signal is sent to a seed light laser in response to a trigger event, the trigger signal being configured to trigger a seed light laser into an excited state.
  • the present disclosure provides a method for adjusting optical power, which is applied to the laser radar as in the second aspect; the above method includes: the controller obtains a trigger event, and the trigger event is used to instruct a seed optical laser to enter an excitation state; the controller In response to a trigger event, control a seed light laser to enter an excited state, and control other seed light lasers to be in an excited state; a seed light laser emits the first seed light signal; the fiber amplifier is always in a state of gain saturation, for the second A sub-light signal is amplified.
  • the optical fiber amplifier amplifies the first sub-optical signal when it is in a gain saturation state, including: the optical fiber amplifier amplifies the first sub-optical signal through the target pumping optical signal, and the target pumping optical signal amplifies the first sub-optical signal.
  • the Pu light signal is used to keep the fiber amplifier in a state of gain saturation all the time.
  • the above method before obtaining a trigger event, further includes: the seed light laser with the highest power among the multiple seed light lasers emits a second seed light signal; the fiber amplifier amplifies the second seed light signal; And during the process of amplifying the second sub-optical signal, the pumping power is adjusted until the gain saturation state is reached.
  • the above method further includes: a filter in the fiber laser filters the amplified first seed optical signal.
  • the present disclosure provides a computer-readable storage medium, where an executable program is stored in the readable storage medium, wherein, when the executable program is executed by a processor, any one of the third aspect and its possible implementations can be implemented. optical power adjustment method.
  • FIG. 1 is a schematic structural diagram of a laser radar in the related art
  • Fig. 2 is a schematic structural diagram of a fiber laser in the related art
  • FIG. 3 is a schematic diagram of a seed optical signal and an amplified optical signal in the related art
  • FIG. 4 is a schematic structural diagram of a fiber laser in an embodiment of the present disclosure.
  • FIG. 5 is another schematic structural view of a fiber laser in an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a seed optical signal and an amplified optical signal in an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of a lidar in an embodiment of the present disclosure.
  • FIG. 8 is another schematic structural diagram of the laser radar in the embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart of an implementation of the method for adjusting optical power in an embodiment of the present disclosure.
  • LiDAR is an object detection technology.
  • the laser radar emits a laser beam through a laser.
  • the laser beam encounters a target object and undergoes diffuse reflection.
  • the detector receives the reflected beam and determines the distance, orientation, height, speed, Features such as posture and shape.
  • LiDAR has a wide range of applications. In addition to being used in the military field, it is also widely used in the field of life, including but not limited to: intelligent driving vehicles, intelligent driving aircraft, three-dimensional (3D) printing, virtual reality, augmented reality, service robots and other fields.
  • intelligent driving vehicles intelligent driving aircraft
  • 3D three-dimensional
  • virtual reality virtual reality
  • augmented reality service robots
  • the lidar is set in the smart driving vehicle, and the lidar can scan the surrounding environment by emitting laser beams quickly and repeatedly to obtain the shape, Point cloud data of position, movement, etc.
  • the above intelligent driving technology may refer to unmanned driving, automatic driving, assisted driving and other technologies.
  • FIG. 1 is a schematic structural diagram of a laser radar in the related art.
  • the laser radar 10 may include: a light emitting device 101 , a light receiving device 102 and a processor 103 . Wherein, the light emitting device 101, the light receiving device 102 are all connected with the processor 103 connect.
  • connection relationship among the above-mentioned components may be an electrical connection, and may also be an optical fiber connection.
  • the light emitting device 101 and the light receiving device 102 may also respectively include a plurality of optical devices, and the connection relationship between these optical devices may also be a spatial optical transmission connection.
  • the processor 103 is configured to control the transmitting device 101 and the light receiving device 102, so that the light emitting device 101 and the light receiving device 102 can work normally.
  • the processor 103 may provide driving voltages for the light emitting device 101 and the light receiving device 102 respectively, and the processor 103 may also provide trigger signals for the light emitting device 101 and the light receiving device 102 .
  • the processor 103 can be a general-purpose processor, such as a central processing unit (central processing unit, CPU), a network processor (network processor, NP), etc.; the processor 103 can also be a digital signal processor (digital signal processing , DSP), application specific integrated circuit (ASIC), field-programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a central processing unit central processing unit, CPU
  • NP network processor
  • DSP digital signal processing
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • the light emitting device 101 also includes a light source (not shown in FIG. 1 ).
  • a light source may refer to a laser, and the number of the laser may be one or more.
  • the laser may be a pulsed laser diode (pulsed laser diode, PLD), a semiconductor laser, a fiber laser, or the like.
  • the aforementioned light source is configured to emit a laser beam.
  • the processor 103 may send an emission trigger signal to the light source, thereby triggering the light source to emit the laser beam.
  • laser beams may also be referred to as laser pulses, lasers, emitted light beams, and the like.
  • the laser beam propagates along the emission direction.
  • the laser beam encounters the target object 104 , it is reflected on the surface of the target object 104 , and the reflected beam is received by the light receiving device 102 of the laser radar.
  • the beam reflected by the target object 104 may be referred to as an echo beam (the laser beam and the echo beam are marked by solid lines in FIG. 1 ).
  • the light receiving device 102 After the light receiving device 102 receives the echo beam, it performs photoelectric conversion on the echo beam, that is, converts the echo beam into an electrical signal, and the light receiving device 102 outputs the electrical signal corresponding to the echo beam to the processor 103, and the processor 103 can obtain the shape, position, and moving point cloud data of the target object 104 according to the electrical signal of the echo beam.
  • the laser used by lidar is a semiconductor laser with a wavelength of 905nm.
  • the power of semiconductor lasers is limited, which affects lidar ranging.
  • the 905nm wavelength does not belong to the eye-safe band, and the power is too high to meet the requirements of vehicle regulations, and the beam quality is far worse than that of fiber lasers. Therefore, based on factors such as eye-safe bands, vehicle regulations, and beam quality, high-power 1550nm fiber lasers will become the development direction of lasers in future lidars.
  • Fig. 2 is the structural representation of a kind of fiber laser in the related art, referring to shown in Fig. 2, the fiber laser in lidar is usually MOPA fiber laser, mainly consists of a seed light laser 21 (also can be described as seed source) and optical fiber amplifier 22.
  • the seed light laser 21 is configured to provide the pulse signal (ie, the seed light signal) required by the laser radar 10
  • the fiber amplifier 22 is configured to amplify the pulse signal and output an amplified light signal.
  • the fiber amplifier 22 can amplify the pulse signal in one stage or in multiple stages.
  • the one-stage amplification of the pulse signal is taken as an example for description.
  • the fiber amplifier 22 is composed of a pump laser 221 (also can be described as a pump light source) and a gain fiber 222 Composition, wherein, the pump light laser 221 is configured to transmit the pump light signal, and the pump light signal is coupled to the gain fiber 222, the gain fiber 222 amplifies the pulse signal through the pump light signal, and outputs the amplified light signal, namely The amplified pulse signal or the amplified seed light signal.
  • the pump light laser 221 also can be described as a pump light source
  • the gain fiber 222 amplifies the pulse signal through the pump light signal, and outputs the amplified light signal, namely The amplified pulse signal or the amplified seed light signal.
  • the laser radar when the laser radar is working, in order to ensure the safety of human eyes, protect the receiving end and adapt to other emergencies, it is an essential function to dynamically adjust the optical power of the laser.
  • the most ideal dynamic adjustment is realized by adjusting the magnification of the fiber amplifier, of course, it can also be realized by adjusting an adjustable attenuator or an optical switch modulator.
  • the laser needs to work at a high repetition rate, up to the MHz (megahertz) level, that is, the interval between the appearance of two pulse signals is less than 1 ⁇ s (microsecond). If the dynamic adjustment speed is greater than this time interval, there may be loss of points in the distance or damage to the detector in the vicinity, and even damage to human eyes.
  • the dynamic adjustment of laser optical power is realized by adjusting the adjustable attenuator, since the adjustable attenuator is mechanically adjusted, its response speed is in the ms (millisecond) level, which cannot meet the needs of fast dynamic adjustment at all.
  • the response speed of the optical switch modulator can range from a few ps (picosecond) level to hundreds of ns (nanosecond) level, which can fully meet the needs of fast dynamic adjustment.
  • ns nanosecond
  • adjusting the amplifier is to adjust the power of the pumping optical signal (also can be described as pumping power), so as to realize the change of the optical power of the laser.
  • Fig. 3 is a schematic diagram of the seed optical signal and the amplified optical signal in the related art, as shown in (a) in Fig. 3, since the rare earth ions doped in the gain fiber reach energy level saturation and the energy level lifetime is within 100 ⁇ s The magnitude, thus, causes the energy of the output amplified optical signal to gradually change during the dynamic adjustment process, that is, the response of the dynamic adjustment is not completely synchronous.
  • the gain fiber can also be charged in advance, that is, the pump optical signal is coupled to the gain fiber in advance, so that the gain fiber reaches the gain saturation state in advance, as shown in (b) in FIG. 3 .
  • the pulse signal cannot be coupled to the gain fiber, otherwise the energy storage will be consumed. Therefore, for fiber lasers, how to achieve rapid and dynamic adjustment of optical power is an urgent problem to be solved.
  • an embodiment of the present disclosure provides a fiber laser, which can be applied to a lidar, and the lidar is configured to perform radar ranging.
  • FIG. 4 is a schematic structural diagram of a fiber laser in an embodiment of the present disclosure.
  • the fiber laser 40 may include: a plurality of seed lasers 41 and fiber amplifiers 42 arranged in sequence according to the direction of optical signal amplification.
  • the plurality of seed lasers 41 are lasers with different powers but the same type, such as semiconductor lasers.
  • the seed light laser 41 can be realized by using a 1550nm semiconductor laser.
  • the seed light laser 41 can also be realized by semiconductor lasers with other pulse widths, as long as the seed light emitted by the seed light laser 41 can be guaranteed to be continuous, and can be applied to lidar for radar ranging.
  • the different powers of the seed light lasers can be understood as different peak powers or different average powers.
  • a plurality of seed light lasers 41 are coupled to a fiber amplifier 42 through a beam combiner 43 or through spatial coupling.
  • the two seed light lasers 41 can be coupled with the fiber amplifier 42 through a beam combiner 43 or a spatial coupling; when there are more than two seed light lasers 41, these seed light lasers
  • Optical laser 41 is coupled with fiber amplifier 42 through beam combiner 43 .
  • the seed light laser 41 can also be coupled with the fiber amplifier 42 in other ways. This is not specifically limited.
  • one seed light laser 41 of the plurality of seed light lasers 41 is configured to enter an excited state in response to a trigger event, and emit a seed light signal A (ie, the first seed light); and,
  • the seed light signal A is coupled to the fiber amplifier 42; the other seed light lasers 41 in the plurality of seed light lasers 41 are configured to enter the state to be excited in response to the trigger event; the fiber amplifier 42 is configured to be in a gain saturation In the state, the seed optical signal A is amplified.
  • different seed light lasers 41 may work at different currents, so that different seed light lasers 41 have different powers, which may also be understood as different powers of seed light signals emitted by different seed light lasers 41 .
  • each seed laser 41 in the plurality of seed lasers 41 is in a standby state.
  • one of the multiple seed lasers 41 enters the excitation state and emits the seed signal A, while the other seed lasers 41 are in standby mode. In the excited state, no seed light signal is emitted.
  • one of the seed lasers 41 is in an excited state and is emitting a seed signal B, and the other seed lasers 41 are in ready to activate state.
  • another seed light laser 41 (that is, the seed light laser 41 corresponding to the trigger event) in the plurality of seed light lasers 41 enters an excited state and emits a seed light signal A.
  • the seed light laser 41 of the signal B returns to the state of being excited, and stops emitting the seed light signal B. In this way, switching of the seed light laser is realized.
  • the seed light lasers belong to the same type of laser, it is only necessary to trigger different seed light lasers without adaptively adjusting the relevant parameters of the fiber amplifier, which improves the switching speed of the seed light laser , and then realize the rapid and dynamic adjustment of the optical power of the fiber laser.
  • the trigger event may be understood as saturation of the light receiving device.
  • the distance between the lidar and the target object changes, and reflective objects with high reflectivity, retroreflective objects, etc. appear within the scanning range of the lidar.
  • fiber laser radar needs to dynamically adjust its own optical power.
  • a target object such as a human body or an object, appears at the short-distance end of the lidar scanning range.
  • the fiber laser needs to turn off the high-power seed laser and turn on the low-power seed laser.
  • there are reflective objects with high reflectivity such as water on the ground, icy roads, snow, glass obstacles, etc.
  • retroreflective objects such as traffic signs
  • the laser beam scans the reflective object, due to strong reflection, the echo beam is enhanced, and the pulse peak value of the echo signal is increased.
  • the light-receiving device receives a high-energy pulse, saturation occurs.
  • the fiber laser needs to turn off the high-power seed laser and turn on the low-power seed laser.
  • FIG. 5 is another schematic structural view of a fiber laser in an embodiment of the present disclosure.
  • the fiber laser 40 includes a seed light laser 41a configured to emit a seed light signal A and a seed light signal B configured to emit The seed light laser 41b, the power of the seed light laser 41a is smaller than the power of the seed light laser 41b.
  • the seed light laser 41 b can be understood as the seed light laser with the highest power among the plurality of seed light lasers 41 .
  • the seed light laser 41a responds to the trigger event, enters the excited state from the state to be excited, and emits seed light Signal A.
  • the seed light laser 41b remains in the excited state or enters the ready-to-be-excited state from the excited state, and does not emit (including keeping not emitting or stopping emitting) the seed optical signal B.
  • the fiber amplifier 42 when the fiber amplifier 42 is always in the state of gain saturation, when the laser radar detects the above-mentioned trigger event, which is configured to indicate that the seed light laser 41a is controlled to perform an excitation state, the seed light laser 41a receives a response to the The trigger signal of the trigger event, and in response to the trigger signal, enters the excitation state, and emits the seed light signal A.
  • the other seed lasers 41b do not receive the trigger signal, and are in a waiting state without emitting a seed signal.
  • the structure of the fiber amplifier 42 may refer to the description of the structure of the fiber amplifier 22 in the embodiment of FIG. 2 above.
  • the seed light laser 41a (that is, a seed light laser 41 entering an excited state) is configured to couple the seed light signal A to the gain fiber 222; the pump light laser 221, configured to always transmit the target pump light signal, and coupled to the gain fiber 222; the gain fiber 222, configured to respond to the target pump light signal, has been in a gain saturation state, and passes the target pump light signal to the seed Optical signal A is amplified.
  • the seed light laser 41 a couples the seed light signal A to the gain fiber 222 .
  • the pump light laser 221 always emits target pump light information, so that the gain fiber 222 is always in a gain saturation state.
  • the gain fiber 222 amplifies the seed optical signal A through the target pump optical signal when the gain is always in a saturated state. It should be noted that the fact that the gain fiber 222 is in a gain saturation state can also be understood as that the fiber amplifier 42 is in a gain saturation state.
  • the fiber laser 40 before the fiber laser 40 is put into use (such as the above-mentioned seed light laser enters the excitation state in response to a trigger event), it is also necessary to debug the fiber laser 40, so that the fiber amplifier 42 reaches and is always in the gain Saturation state (it can also be understood as maintaining the amplification factor of the seed light signal at a specific value).
  • the seed light laser 41 (such as the fiber laser 41b) with the largest power is configured to emit the seed light signal B (ie, the second seed light signal), and is coupled to the fiber amplifier 42;
  • Other seed light lasers 41 (such as seed light lasers 41a) other than the seed light laser 41 are configured to be in the state to be excited;
  • the fiber amplifier 42 is also configured to amplify the seed light signal B and generate During the amplification process, the pump power (that is, the power of the pump optical signal) is adjusted until the gain saturation state is reached.
  • the multiple seed lasers 41 enter a standby state, waiting for the fiber laser 40 to be put into use.
  • the seed light laser 41 with the highest power can still be kept in the excited state and continuously emit the seed light signal B until one seed light laser 41 responds to a trigger event and enters the excited state with the maximum power
  • the seed light laser 41 returns to the state to be excited.
  • the other seed light lasers 41 remain in a standby state.
  • a seed light laser 41 enters the excitation state in response to the trigger event, and emits the seed light The light signal A, at this time, the seed light laser 41 with the highest power enters the state to be excited, and stops emitting the seed light signal B.
  • Other seed laser The optical device 41 remains in a ready state.
  • the seed light laser 41 is the seed light laser 41 with the highest power
  • the seed light laser 41 with the highest power can still remain in the excited state in response to the trigger event, and continuously emit the seed light signal B, at this time, the seed optical signal B is the seed optical signal A.
  • the other seed light lasers 41 remain in a standby state.
  • the seed light laser 41b can generate a seed light signal B and couple it to the fiber amplifier 42; the fiber amplifier 42 amplifies the seed light signal B.
  • the optical fiber amplifier 42 adjusts the pumping power (that is, the power of the pumping optical signal) until the optical fiber amplifier 42 reaches a gain saturation state.
  • the pumping optical signal in the optical fiber amplifier 42 is Target pump light signal. As an example, after the fiber amplifier 42 reaches the gain saturation state, it is always in the gain saturation state.
  • the seed light laser 41b first generates the seed light signal B.
  • the seed optical signal B is used as an auxiliary signal to assist debugging of the optical fiber amplifier 42 .
  • the gain fiber 222 amplifies the seed light signal B by using the pump light signal emitted by the pump light laser 221 .
  • the pump light laser 221 adjusts the pump power to emit pump light signals with different powers.
  • the gain fiber 222 reaches a gain saturation state and remains in the gain saturation state.
  • the gain fiber 222 when the gain fiber 222 is in a gain saturation state, the power of the amplified optical signal output by the gain fiber 222 further increases as the power of the seed optical signal increases.
  • the gain fiber 222 amplifies the seed optical signal when the gain is always saturated.
  • the input seed optical signal is monotonously correlated with the output amplified optical signal (it can also be understood as a positive correlation or a negative correlation).
  • the fiber laser 40 can also include a filter 44, which is arranged after the optical fiber amplifier 42 according to the optical signal amplification direction.
  • the optical fiber amplifier 42 is further configured to couple the amplified seed optical signal A (i.e., the amplified optical signal) to the filter 44; the filter 44 is configured to perform the amplified seed optical signal A filtering. In this way, an amplified optical signal can be obtained.
  • the amplified seed optical signal A i.e., the amplified optical signal
  • the filter 44 is configured to perform the amplified seed optical signal A filtering. In this way, an amplified optical signal can be obtained.
  • the fiber laser 40 may further include an isolator, one or more beam combiners, etc. (not shown in FIG. 4 ).
  • the isolator can be arranged at the output end of the seed light laser 41 , and is configured to ensure the unidirectional propagation of the seed light signal and protect the seed light laser 41 .
  • One or more beam combiners can be arranged at the output end of the pump light laser 221 and configured to couple the pump light signal to the gain fiber 222 .
  • the fiber laser 40 includes a seed light laser 41a and a seed light laser 41b.
  • the seed light laser 41a is configured to emit a seed light signal A
  • the seed light laser 41b is configured to emit a seed light signal B.
  • the power of the seed light laser 41a is smaller than the power of the light laser 41b, at this time, the seed light laser 41b can be understood as the seed light laser with the highest power among the multiple seed light lasers 41 .
  • the seed light laser 41b is excited to emit a seed light signal B.
  • the other seed light laser that is, the seed light laser 41a, does not emit the seed light signal A because it is not excited.
  • the seed light signal B is coupled to the gain fiber 222 by the seed light laser 41b.
  • the gain fiber 222 amplifies the seed optical signal B.
  • the pumping laser 221 adjusts the pumping power until the gain fiber 222 reaches a gain saturation state, at which point the pumping laser 221 emits the target pumping optical signal.
  • the pump laser 221 After the fiber amplifier 42 reaches the gain saturation state, the pump laser 221 always emits the target pump light signal, so that the gain fiber 222 is always in the gain saturation state.
  • the seed light laser 41b returns to the standby state after the fiber amplifier 42 reaches the gain saturation state. At this time, both the seed light lasers 41a and 41b are in a standby state.
  • FIG. 6 is a schematic diagram of the seed optical signal and the amplified optical signal in the embodiment of the present disclosure. Referring to FIG. Adjust the optical power.
  • the optical power of the fiber laser can be adjusted rapidly and dynamically.
  • an embodiment of the present disclosure further provides a laser radar, which is the same as the laser radar in the above-mentioned embodiment in FIG. 2 .
  • FIG. 7 is a schematic structural diagram of a laser radar in an embodiment of the present disclosure.
  • the laser radar 70 may include: a controller 71 and a fiber laser 72 .
  • the controller 71 may be the above-mentioned processor 103 or a part of the processor 103 . Certainly, the controller 71 may also be an independently configured device. As an example, the controller 71 may be implemented by using CPU, DSP, ASIC, FPGA, other programmable logic devices and the like. As an example, the controller 71 is implemented using FPGA.
  • the fiber laser 72 is consistent with the fiber laser 40 described above, and for a specific description of the fiber laser 72 , reference may be made to the description of the fiber laser 40 in FIGS. 4 to 6 . As an example, the controller 71 is coupled to a plurality of seed light lasers 41 . That is to say, different seed light lasers 41 are triggered by the controller 71 to realize rapid and dynamic power adjustment and ensure the continuity of the seed light signal.
  • the controller 71 is configured to, in response to a trigger event, send a trigger signal to the seed light laser 41a corresponding to the trigger event among the plurality of seed light lasers 41, and the trigger signal is configured to trigger the seed light laser 41a to enter the excitation .
  • seed The optical laser 41a is configured to enter the excited state in response to the trigger signal, and emit the seed optical signal A; the seed optical signal A is coupled to the fiber amplifier 62; the other seed optical lasers 41 are configured to respond to the trigger signal, in To-be-excited state: the optical fiber amplifier 42 is configured to be in a gain saturation state all the time, and amplifies the seed optical signal A.
  • the trigger signal emitted by the controller 71 is an electrical signal configured to excite the seed light laser 41 to work to emit a seed light signal.
  • the controller 71 may also respond to other trigger events before sending a trigger signal (such as denoted as trigger signal A) to the seed optical laser 41a , send another trigger signal (for example, denoted as trigger signal B) to the seed light laser 41b, and the seed light laser 41b enters an excited state in response to the trigger signal B, and emits the seed light signal B. Then, when the controller 71 sends the trigger signal A to the seed laser 41a, the controller 71 stops sending the trigger signal B to the seed laser 41b, so that the seed laser 41b returns to the standby state. In this process, the controller 71 realizes the switching of the trigger signal, and then triggers the seed light lasers with different powers, so as to realize the rapid and dynamic adjustment of the optical power of the fiber laser.
  • a trigger signal such as denoted as trigger signal A
  • trigger signal B for example, denoted as trigger signal B
  • the controller 71 may use an FPGA with a working frequency of 200 MHz. Then, the switching time of the trigger signal can reach 5ns (nanosecond), which is much lower than the pulse interval of the seed optical signal, so that the seed optical signal and the amplified optical signal can be adjusted synchronously, realizing fast and dynamic adjustment of optical power.
  • the pump laser 221 can be coupled with the controller 71 .
  • the controller 71 can adjust the power of the pump light signal.
  • the power of the pump optical signal may also be adjusted by using other controllers, which is not specifically limited in this embodiment of the present disclosure.
  • the above laser radar 70 will be specifically described below with a specific example.
  • FIG. 8 is another schematic structural diagram of the laser radar in the embodiment of the present disclosure.
  • the fiber laser 72 includes a seed light laser 41a configured to emit a seed light signal A and a seed light signal B configured to emit The seed light laser 41b, the power of the seed light laser 41a is smaller than the power of the seed light laser 41b.
  • the seed light laser 41 b can be understood as the seed light laser with the highest power among the plurality of seed light lasers 41 .
  • the controller 41 may output a trigger signal to the seed light laser 41b.
  • the seed light laser 41b is excited by a trigger signal, enters an excited state, and emits a seed light signal B in response to the trigger signal.
  • the other seed light laser that is, the seed light laser 41a, will not emit the seed light signal A because it is not excited by the trigger event.
  • the seed light signal B is coupled to the gain fiber 222 by the seed light laser 41b.
  • the gain fiber 222 amplifies the seed optical signal B.
  • the pumping laser 221 adjusts the pumping power until the gain fiber 222 reaches a gain saturation state, at which point the pumping laser 221 emits the target pumping optical signal.
  • the pump laser 221 After the fiber amplifier 42 reaches the gain saturation state, the pump laser 221 always emits the target pump light signal, so that the gain fiber 222 is always in the gain saturation state.
  • the seed light laser 41b returns to the standby state after the fiber amplifier 42 reaches the gain saturation state. At this time, both the seed light lasers 41a and 41b are in a standby state.
  • the controller 41 responds to The trigger event, A corresponding trigger signal is output to the seed light laser 41a.
  • the seed light laser 41a is excited by a trigger signal, enters an excited state, and emits a seed light signal A in response to the trigger signal.
  • the other seed light laser that is, the seed light laser 41b, will not emit the seed light signal B because it is not excited by the trigger event.
  • the seed light laser 41 a couples the seed light signal A to the gain fiber 222 .
  • the gain fiber 222 is always in a gain saturation state, and amplifies the seed optical signal A through the target pump optical signal to obtain an amplified optical signal.
  • the adjustment of the seed optical signal is synchronized with the adjustment of the amplified optical signal, and the fiber laser 72 can realize rapid and dynamic adjustment of optical power.
  • the optical power of the lidar can be quickly and dynamically adjusted.
  • embodiments of the present disclosure provide an optical power adjustment method, which is applied to the laser radar described in one or more embodiments above.
  • FIG. 9 is a schematic flowchart of an implementation of the optical power adjustment method in the embodiment of the present disclosure. Referring to FIG. 9, the method may include:
  • the controller obtains a trigger event.
  • the trigger event may be understood as saturation of the light receiving device.
  • the distance between the lidar and the target object changes, and reflective objects with high reflectivity, retroreflective objects, etc. appear within the scanning range of the lidar.
  • fiber laser radar needs to dynamically adjust its own optical power.
  • a target object such as a human body or an object, appears at the short-distance end of the lidar scanning range.
  • the fiber laser needs to turn off the high-power seed laser and turn on the low-power seed laser.
  • there are reflective objects with high reflectivity such as water on the ground, icy roads, snow, glass obstacles, etc.
  • retroreflective objects such as traffic signs
  • the laser beam scans the reflective object, due to strong reflection, the echo beam is enhanced, and the pulse peak value of the echo signal is increased.
  • the light-receiving device receives a high-energy pulse, saturation occurs.
  • the fiber laser needs to turn off the high-power seed laser and turn on the low-power seed laser.
  • the controller controls one seed light laser to enter an excitation state, and controls other seed light lasers to be in a standby state.
  • the seed light laser entering the excited state emits a first seed light signal
  • the optical fiber amplifier amplifies the first sub-optical signal under the condition that the gain is saturated all the time.
  • S904 may include: the optical fiber amplifier amplifies the first sub-optical signal by using the target pumping optical signal, and the target pumping optical signal is used to make the optical fiber amplifier in a gain saturation state.
  • control method may further include:
  • the seed light laser with the highest power transmits a second seed light signal
  • the optical fiber amplifier amplifies the second seed optical signal, and adjusts the pumping power during the process of amplifying the second seed optical signal until a gain saturation state is reached.
  • a gain saturation state is reached.
  • the foregoing control method further includes: filtering the amplified first sub-optical signal by a filter.
  • an embodiment of the present disclosure provides a computer-readable storage medium, where an executable program is stored in the readable storage medium, wherein, when the executable program is executed by a processor, the implementation as described in one or more of the above-mentioned embodiments can be realized. optical power adjustment method.
  • the embodiments of the present disclosure may be provided as methods, systems, or computer program products. Accordingly, the present disclosure can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Moreover, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein, including but not limited to USB flash drives, removable hard drives, read-only memories (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Abstract

本公开提供一种光纤激光器、激光雷达及光功率调节方法,可以应用于激光雷达领域。其中,光纤激光器,包括:功率不同的多个种子光激光器以及光纤放大器;多个种子光激光器为同一类型的激光器;种子光激光器中的一个种子光激光器,被配置为响应于一触发事件,进入激发状态,并发射第一种子光信号;将第一种子光信号耦合至光纤放大器;种子光激光器中的其他种子光激光器,被配置为响应于触发事件,处于待激发状态;光纤放大器,被配置为一直处于增益饱和状态,并对第一种子光信号进行放大。

Description

一种光纤激光器、激光雷达、光功率调节方法及存储介质
本公开要求于在2022年02月23日递交的申请号为202210164612.9、发明名称为“一种光纤激光器、激光雷达及光功率调节方法”的中国专利申请的优先权,其全部内容通过引用并入本公开。
技术领域
本公开涉及但不限于激光雷达技术领域,尤其涉及一种光纤激光器、激光雷达、光功率调节方法及存储介质。
背景技术
近年来,随着无人驾驶的兴起,激光雷达作为无人驾驶技术上最核心的零部件,有着探测距离远,成像精度高等优点,是无人驾驶技术的“眼睛”,而激光器又属于激光雷达的重要组成部。
通常,激光雷达中用的光纤激光器为主控振荡器的功率放大器(master oscillator power-amplifier,MOPA)激光器,其主要由种子源(也可以描述为种子光信号)和光纤放大器组成,种子源提供雷达所需要的脉冲信号,光纤放大器负责将脉冲信号进行放大。
对于光纤激光器来说,如何实现光功率的快速动态调节是一个亟待解决的问题。
发明内容
本公开提供了一种光纤激光器、激光雷达、光功率调节方法及存储介质,以实现快速动态调节光纤激光器的光功率。
第一方面,本公开提供一种光纤激光器,包括:功率不同的多个种子光激光器以及光纤放大器;多个种子光激光器为同一类型的激光器;多个种子光激光器中的一个种子光激光器,被配置为响应于一触发事件,进入激发状态,并发射第一种子光信号;将第一种子光信号耦合至光纤放大器;多个种子光激光器中的其他种子光激光器,被配置为响应于触发事件,处于待激发状态;光纤放大器,被配置为一直处于增益饱和状态,并对第一种子光信号进行放大。
在一些可能的实施方式中,多个种子光激光器通过合束器或空间耦合的方式耦合与光纤放大器耦合。
在一些可能的实施方式中,光纤放大器包括:增益光纤和泵浦光激光器;一个种子光激光器,被配置为将第一种子光信号耦合至增益光纤;泵浦光激光器,被配置为一直发射目标泵浦光信号,并耦合至增益光纤;增益光纤,被配置为响应于目标泵浦光信号,一直处于增益饱和状态,并通过目标泵浦光信号对第一种子光信号进行放大。
在一些可能的实施方式中,多个种子光激光器中功率最大的种子光激光器,被配置为在一个种 子光激光器响应于触发事件进入激发状态之前,发射第二种子光信号,并耦合至光纤放大器;除功率最大的种子光激光器以外的其他种子光激光器,被配置为在一个种子光激光器响应于触发事件进入激发状态之前,处于待激发状态;光纤放大器,还被配置为在对第一种子光信号进行放大之前,对第二种子光信号进行放大,并在第二种子光信号放大的过程中,调节泵浦功率,直至达到增益饱和状态。
在一些可能的实施方式中,光纤激光器还包括:滤波器;光纤放大器,还被配置为将放大后的第一种子光信号耦合至滤波器;滤波器,被配置为对放大后的第一种子光信号进行滤波。
第二方面,本公开提供一种激光雷达,包括:如第一方面及其可能的实施方式中任一项的光纤激光器以及控制器;控制器与多个种子光激光器耦合;控制器,被配置为响应于一触发事件,向一个种子光激光器发送触发信号,触发信号被配置为触发一个种子光激光器进入激发状态。
第三方面,本公开提供一种光功率调节方法,应用于如第二方面的激光雷达;上述方法包括:控制器获得一触发事件,触发事件用于指示一个种子光激光器进入激发状态;控制器响应于触发事件,控制一个种子光激光器进入激发状态,以及控制其他种子光激光器处于待激发状态;一个种子光激光器发射第一种子光信号;光纤放大器在一直处于增益饱和状态的情况下,对第一种子光信号进行放大。
在一些可能的实施方式中,光纤放大器在处于增益饱和状态的情况下,对第一种子光信号进行放大,包括:光纤放大器通过目标泵浦光信号,对第一种子光信号进行放大,目标泵浦光信号用于使光纤放大器一直处于增益饱和状态。
在一些可能的实施方式中,在获得一触发事件之前,上述方法还包括:多个种子光激光器中功率最大的种子光激光器发射第二种子光信号;光纤放大器对第二种子光信号进行放大;并在第二种子光信号进行放大的过程中,调节泵浦功率,直至达到增益饱和状态。
在一些可能的实施方式中,上述方法还包括:光纤激光器中的滤波器对放大后的第一种子光信号进行滤波。
第四方面,本公开提供一种计算机可读存储介质,可读存储介质存储有可执行程序,其中,可执行程序被处理器执行时实现如第三方面及其可能的实施方式中任一项的光功率调节方法。
本公开提供的技术方案与现有技术相比存在的有益效果是:
在本公开中,在光纤放大器处于增益饱和的状态下,通过触发光纤激光器中功率不同的种子光激光器发射不同的种子光信号,使得光纤放大器输出的放大光信号的幅值随着种子光信号的功率同步变化,从而实现光纤激光器光功率的快速动态调节。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开的保护范围。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1为相关技术中的一种激光雷达的结构示意图;
图2为相关技术中的一种光纤激光器的结构示意图;
图3为相关技术中的种子光信号与放大光信号的示意图;
图4为本公开实施例中的光纤激光器的一种结构示意图;
图5为本公开实施例中的光纤激光器的另一种结构示意图;
图6为本公开实施例中的种子光信号与放大光信号的一种示意图;
图7为本公开实施例中的激光雷达的一种结构示意图;
图8为本公开实施例中的激光雷达的另一种结构示意图;
图9为本公开实施例中的光功率调节方法的一种实施流程示意图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本公开实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本公开实施例。在其它情况中省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本公开实施例的描述。
在本公开实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本公开实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
为了说明本公开实施例的技术方案,下面通过具体实施例来进行说明。
激光雷达是一种目标探测技术。激光雷达通过激光器发出激光光束,激光光束遇到目标物体后发生漫反射,通过探测器接收反射回的光束,并根据发射的光束和反射回的光束确定目标物体的距离、方位、高度、速度、姿态、形状等特征量。
激光雷达的应用领域非常广泛。除了运用在军事领域之外,目前还被广泛应用于生活领域,包括但不限于:智能驾驶车辆、智能驾驶飞机、三维(3D)打印、虚拟现实、增强现实、服务机器人等领域。以智能家驾驶技术为例,在智能驾驶车辆中设置激光雷达,激光雷达可通过快速且重复地发射激光束来扫描周围环境,以获取反映周围环境中的一个或多个目标对象的形貌、位置、运动的点云数据等。
需要说明的是,上述智能驾驶技术可以指无人驾驶、自动驾驶、辅助驾驶等技术。
图1为相关技术中的一种激光雷达的结构示意图。参见图1所示,激光雷达10可以包括:光发射装置101、光接收装置102和处理器103。其中,光发射装置101、光接收装置102均与处理器103 连接。
其中,上述各器件之间的连接关系可以是电性连接,还可以是光纤连接。例如,在光发射装置101和光接收装置102中,还可能分别包括多个光学器件,这些光学器件之间的连接关系还可能是空间光传输连接。
处理器103被配置为实现对发射装置101和光接收装置102的控制,以使光发射装置101和光接收装置102能够正常工作。示例性的,处理器103可以为光发射装置101和光接收装置102分别提供驱动电压,处理器103还可以为光发射装置101和光接收装置102提供触发信号。
示例性的,处理器103可以是通用处理器,如中央处理器(central processing unit,CPU)、网络处理器(network processor,NP)等;处理器103还可以是数字信号处理器(digital signal processing,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。
光发射装置101中还包括光源(图1未示出)。可以理解的,上述光源可以指激光器,激光器的数量可以是一个或者多个。作为示例,激光器可以为脉冲激光二极管(pulsed laser diode,PLD)、半导体激光器、光纤激光器等。上述光源被配置为发射激光束。例如,处理器103可以向光源发送发射触发信号,从而触发光源发射激光束。
可以理解的,上述激光束也可以称为激光脉冲、激光、发射光束等。
下面结合图1所示的激光雷达的结构,简单描述激光雷达对目标物体104的探测过程。
参见图1所示,激光束沿发射方向进行传播,当激光束遇到目标物体104后,在目标物体104的表面发生反射,反射回的光束被激光雷达的光接收装置102接收。这里,可以将激光束被目标物体104反射回的光束称为回波光束(图1中激光束和回波光束采用实线标识)。
光接收装置102接收到回波光束后,对回波光束进行光电转换,即,将回波光束转换为电信号,光接收装置102将回波光束对应的电信号输出至处理器103,处理器103可以根据回波光束的电信号,获取目标物体104的形貌、位置、运动的点云数据等。
目前,激光雷达所使用的激光器为905nm波长的半导体激光器。但是半导体激光器的功率受限,影响激光雷达测距。虽然可以通过多个激光器提高功率,但是905nm波长不属于人眼安全波段,功率太高也不能满足车规的要求,且光束质量远远差于光纤激光器。所以,基于人眼安全波段、车规要求、光束质量等因素,高功率的1550nm光纤激光器成为未来激光雷达中激光器的发展方向。
图2为相关技术中的一种光纤激光器的结构示意图,参见图2所示,激光雷达中的光纤激光器通常为MOPA光纤激光器,主要由一个种子光激光器21(也可以描述为种子源)和光纤放大器22组成。其中,种子光激光器21被配置为提供激光雷达10所需要的脉冲信号(即种子光信号),光纤放大器22被配置为将脉冲信号进行放大,输出放大光信号。这里,光纤放大器22可以对脉冲信号进行一级或者多级放大。在本公开实施例,对脉冲信号进行一级放大为例进行说明。
在一实施例中,光纤放大器22由泵浦光激光器221(也可以描述为泵浦光源)和增益光纤222 组成,其中,泵浦光激光器221被配置为发射泵浦光信号,并将泵浦光信号耦合至增益光纤222,增益光纤222通过泵浦光信号对脉冲信号进行放大,输出放大光信号,即放大后的脉冲信号或放大后的种子光信号。
作为示例,在激光雷达工作时,为了保证人眼安全、保护接收端以及适应其他突发情况,动态调节激光器的光功率是必不可少的功能。基于上述光纤激光器的结构,最理想的动态调节为通过调节光纤放大器的放大倍数实现,当然也可以通过调节可调衰减片或者光开关调制器来实现。
但是,为了获得更多的点云,激光器需要工作在高重复频率下,最高达到MHz(兆赫兹)级别,即两个脉冲信号出现前后间隔小于1μs(微秒)。如果动态调节的速度大于这个时间间隔,就可能出现远处丢点或者近处损坏探测器,甚至会对人眼造成伤害。当通过调节可调衰减片实现激光器光功率的动态调时,由于可调衰减片都是采用机械调节的,其响应速度为ms(毫秒)级,完全不能满足快速动态调节的需求。当通过调节光开关调制器实现激光器光功率的动态调节时,光开关调制器的响应速度可以从数ps(皮秒)级到数百ns(纳秒)级,完全可以满足快速动态调节的需求,但是一方面因其价格昂贵而不利于车载激光雷达的量产,另一方面因其体积较大,导致激光雷达体积较大,而不符合车载雷达小体积设计要求。当通过调节光纤放大器的放大倍数实现激光器光功率的动态调节时,调节放大器即为调节泵浦光信号的功率(也可以描述为泵浦功率),从实现激光器光功率的变化。但是,图3为相关技术中的种子光信号与放大光信号的示意图,参见图3中(a)所示,由于增益光纤中掺杂的稀土离子达到能级饱和以及能级寿命都在百μs量级,如此,导致动态调节过程中,输出的放大光信号的能量是渐变的,也就是说,动态调节的响应不是完全同步的。当然,也可以提前给增益光纤充能,即提前让泵浦光信号耦合至增益光纤,让增益光纤提前达到增益饱和状态,参见图3中(b)所示。但是在增益光纤充能的时间段内,脉冲信号是不能耦合至增益光纤的,不然会消耗掉储能。所以,对于光纤激光器来说,如何实现光功率的快速动态调节是一个亟待解决的问题。
为了解决上述问题,本公开实施例提供一种光纤激光器,该光纤激光器可以应用于激光雷达中,该激光雷达被配置为进行雷达测距。
图4为本公开实施例中的光纤激光器的一种结构示意图,参见图4所示,光纤激光器40可以包括:按照光信号放大方向依次设置的多个种子光激光器41以及光纤放大器42。
这里,上述多个种子光激光器41为功率不同但类型相同的激光器,如半导体激光器。作为示例,种子光激光器41可以采用1550nm半导体激光器实现。当然,种子光激光器41还可以采用其他脉宽的半导体激光器来实现,只要能够保证种子光激光器41发射的种子光连续,并且能够应用于激光雷达进行雷达测距即可,本公开实施例对此不做具体限定。另外,种子光激光器的功率不同可以理解为峰值功率不同或者平均功率不同。
作为示例,多个种子光激光器41通过合束器43或空间耦合的方式与光纤放大器42耦合。示例性的,当种子光激光41为两个时,两个种子光激光41可以通过合束器43或空间耦合的方式与光纤放大器42耦合;当种子光激光器41为两个以上时,这些种子光激光器41通过合束器43与光纤放大器42耦合。当然,种子光激光器41还可以通过其他方式与光纤放大器42耦合,本公开实施例对 此不做具体限定。
在一些可能的实施方式中,多个种子光激光器41中的一个种子光激光器41,被配置为响应于触发事件,进入激发状态,并发射种子光信号A(即第一种子光);以及,将种子光信号A耦合至光纤放大器42;多个种子光激光器41中的其他种子光激光器41,被配置为响应于该触发事件,进入待激发状态;光纤放大器42,被配置为在处于增益饱和状态下,对种子光信号A进行放大。
作为示例,不同种子光激光器41可以在不同的电流下工作,使得不同种子光激光器41的功率不同,也可以理解为不同种子光激光器41发射的种子光信号的功率不同。
在一实施例中,在光纤放大器42一直处于增益饱和状态的前提下,上述多个种子光激光器41中每一个种子光激光器41均处于待激发状态。响应于一触发事件,多个种子光激光器41中的一个种子光激光器41(即与触发事件对应的种子光激光器41),进入激发状态,发射种子光信号A,其他种子光激光器41则处于待激发状态,不发射种子光信号。
在另一实施例中,在光纤放大器42一直处于增益饱和状态的前提下,上述多个种子光激光器41中的一个种子激光器41处于激发状态,正在发射种子光信号B,其他种子光激光器41处于待激发状态。响应于一触发事件,多个种子光激光器41中的另一个种子光激光器41(即与触发事件对应的种子光激光器41),进入激发状态,发射种子光信号A,与此同时,发射种子光信号B的种子光激光器41回到待激发状态,停止发射种子光信号B。如此,实现种子光激光器的切换。在种子光激光器的切换过程中,由于种子光激光器属于相同类型的激光器,那么,仅需触发不同的种子光激光器,而不需要适应性调节光纤放大器的相关参数,提高了种子光激光器的切换速度,进而实现光纤激光器光功率的快速动态调节。
在本公开实施例中,触发事件可以理解为光接收装置出现饱和。例如,激光雷达与目标物体之间的距离发生变化、激光雷达的扫描范围内出现反射率较高的反射物体、逆反射物体等。那么,响应于这些触发事件,光纤激光雷达需要动态调整自身的光功率。示例性的,假设目标物体,如人体或者物体,出现在激光雷达扫描范围的近距离端。当激光束扫描到该目标物体时,由于扫描距离变短,回波光束增强,回波信号的脉冲峰值增高,光接收装置接收到高能量脉冲时,出现饱和。此时,光纤激光器需要关闭高功率的种子激光器,开启低功率的种子激光器。或者,假设在激光雷达扫描范围的中距离端出现反射率较高的反射物体(如地面积水的水面、结冰的路面、雪地、玻璃障碍物等)、逆反射物体(如交通指示牌)等。当激光束扫描到该反射物体时,由于反射较强,回波光束增强,回波信号的脉冲峰值增高,光接收装置接收到高能量脉冲时,出现饱和。此时,光纤激光器需要关闭高功率的种子激光器,开启低功率的种子激光器。
下面以种子光激光器41为两个为例,对上述光纤激光器40进行说明。图5为本公开实施例中的光纤激光器的另一种结构示意图,参见图5所示,光纤激光器40包括被配置为发射种子光信号A的种子光激光器41a和被配置为发射种子光信号B的种子光激光器41b,种子光激光器41a的功率小于种子光激光器41b的功率。此时,种子光激光器41b可以理解为多个种子光激光器41中功率最大的种子光激光器。
若触发事件为目标物体出现在激光雷达的近距离端,则在光纤放大器42一直处于增益饱和的状态下,种子光激光器41a响应于该触发事件,由待激发状态进入激发状态,并发射种子光信号A。种子光激光器41b响应于该触发事件,保持处于激发状态或者由激发状态进入待激发状态,不发射(包括保持不发射或者停止发射)种子光信号B。
在实际应用中,在光纤放大器42一直处于增益饱和的状态下,当激光雷达检测上述触发事件,该触发事件被配置为指示控制种子光激光器41a进行激发状态时,种子光激光器41a接收响应于该触发事件的触发信号,并响应该触发信号,进入激发状态,发射种子光信号A。而其他种子激光器41b则没有接收到上述触发信号,进而处于待激发状态,不发射种子信号。
在一些可能的实施方式中,光纤放大器42的结构可以参考上述图2实施例中对光纤放大器22的结构描述。
在一实施例中,在光纤激光器40的使用过程中,种子光激光器41a(即进入激发状态的一个种子光激光器41),被配置为将种子光信号A耦合至增益光纤222;泵浦光激光器221,被配置为一直发射目标泵浦光信号,并耦合至增益光纤222;增益光纤222,被配置为响应于目标泵浦光信号,一直处于增益饱和状态,并通过目标泵浦光信号对种子光信号A进行放大。
可以理解的,种子光激光器41a将种子光信号A耦合至增益光纤222。以及,泵浦光激光器221一直发射目标泵浦光信息,使得增益光纤222一直处于增益饱和状态。增益光纤222在一直处于增益饱和状态的情况下,通过目标泵浦光信号对种子光信号A进行放大。需要说明的是,增益光纤222处于增益饱和状态也可以理解为光纤放大器42处于增益饱和状态。
在一些可能的实施方式中,在光纤激光器40投入使用(如上述一个种子光激光器响应于触发事件进入激发状态)之前,还需要对光纤激光器40进行调试,以使得光纤放大器42达到并一直处于增益饱和状态(也可以理解为对种子光信号的放大倍数维持在一个特定值)。那么,多个种子光激光器41中功率最大的种子光激光器41(如光纤激光器41b),被配置为发射种子光信号B(即第二种子光信号),并耦合至光纤放大器42;除功率最大的种子光激光器41以外的其他种子光激光器41(如种子光激光器41a),被配置为处于待激发状态;光纤放大器42,还被配置为对种子光信号B进行放大,并在种子光信号B放大的过程中,调节泵浦功率(即泵浦光信号的功率),直至达到增益饱和状态。
作为示例,在光纤放大器42达到增益饱和状态后,多个种子光激光器41进入待激发状态,等待光纤激光器40投入使用。或者,在光纤放大器42达到增益饱和状态后,功率最大的种子光激光器41仍可以保持处于激发状态,持续发射种子光信号B,直至一个种子光激光器41响应于触发事件,进入激发状态,功率最大的种子光激光器41回到待激发状态。其他种子光激光器41保持处于待激发状态。
在一实施例中,若上述一个种子光激光器41为非功率最大的种子光激光器41时,在光纤放大器42达到增益饱和状态后,一个种子光激光器41响应于触发事件,进入激发状态,发射种子光信号A,此时,功率最大的种子光激光器41进入待激发状态,停止发射种子光信号B。其他种子光激 光器41保持处于待激发状态。若上述一个种子光激光器41为功率最大的种子光激光器41时,在光纤放大器42达到增益饱和状态后,功率最大的种子光激光器41响应于触发事件仍可以保持处于激发状态,持续发射种子光信号B,此时,种子光信号B即为种子光信号A。其他种子光激光器41保持处于待激发状态。
可以理解的,在光纤激光器40的调试过程中,种子光激光器41b可以产生种子光信号B,并耦合至光纤放大器42;光纤放大器42对种子光信号B进行放大。光纤放大器42在对种子光信号B放大的过程中,调节泵浦功率(即泵浦光信号的功率),直至光纤放大器42达到增益饱和状态,此时,光纤放大器42中的泵浦光信号为目标泵浦光信号。作为示例,光纤放大器42在达到增益饱和状态之后,一直处于增益饱和状态。
示例性的,在光纤激光器40的调试过程中,种子光激光器41b先产生种子光信号B。此时种子光信号B作为辅助信号,以辅助对光纤放大器42的调试。增益光纤222采用泵浦光激光器221发射的泵浦光信号对种子光信号B进行放大。在种子光信号B的放大过程中,泵浦光激光器221调节泵浦功率,以发射不同的功率的泵浦光信号。当泵浦光信号调节为目标泵浦光信号时,增益光纤222达到增益饱和状态,并一直处于增益饱和状态。
需要说明的是,当增益光纤222处于增益饱和状态时,增益光纤222输出的放大光信号的功率随着种子光信号功率的增大而进一步增大。作为示例,增益光纤222在一直处于增益饱和的情况下,对种子光信号进行放大。此时,输入的种子光信号与输出的放大光信号呈单调相关(也可以理解为呈正相关或负相关)。
在一些可能的实施方式中,由于功率低的种子光信号(也可以描述为小信号)不能完全带走光纤放大器42中泵浦光信号的能量,使得多余泵浦光信号能量发射自发辐射光(amplified spontaneous emission,ASE)。那么,为了消除ASE,保留放大光信号,提高激光器的信噪比,仍参见图4所示,光纤激光器40还可以包括滤波器44,按照光信号放大方向设置于光纤放大器42之后。
在一实施例中,光纤放大器42,还被配置为将放大后的种子光信号A(即放大光信号)耦合至滤波器44;滤波器44,被配置为对放大后的种子光信号A进行滤波。如此,便能够得到放大光信号。
在一些可能的实施方式中,光纤激光器40还可以包括隔离器、其他的一个或者多个合束器等(图4未示出)。隔离器可以设置于种子光激光器41的输出端,被配置为保证种子光信号的单向传播,保护种子光激光器41。一个或者多个合束器可以设置于泵浦光激光器221的输出端,被配置为将泵浦光信号耦合至增益光纤222。
下面以具体示例对上述光纤激光器40进行具体说明。
仍参见图5所示,光纤激光器40包括种子光激光器41a和种子光激光器41b。其中,种子光激光器41a被配置为发射种子光信号A,种子光激光器41b被配置为发射种子光信号B。示例性的,种子光激光器41a的功率小于光激光器41b的功率,此时,种子光激光器41b可以理解为多个种子光激光器41中功率最大的种子光激光器。
首先,在光纤激光器40的调试过程中,种子光激光器41b受到激励,发射种子光信号B。其他种子光激光器,即种子光激光器41a,由于没有受到激励,所以不会发射种子光信号A。种子光信号B由种子光激光器41b耦合至增益光纤222。增益光纤222对种子光信号B进行放大。并且,在种子光信号B放大的过程中,泵浦光激光器221调节泵浦功率,直至增益光纤222达到增益饱和状态,此时泵浦光激光器221发射目标泵浦光信号。光纤放大器42在达到增益饱和状态之后,泵浦光激光器221一直发射目标泵浦光信号,使得增益光纤222一直处于增益饱和状态。作为示例,种子光激光器41b在光纤放大器42达到增益饱和状态后,回到待激发状态。此时,种子光激光器41a和41b均处于待激发状态。
接下来,在光纤激光器40的使用过程中,增益光纤222一直处于增益饱和状态的情况下,当激光雷达检测到一触发事件,该触发事件与种子光激光器41a对应时,种子光激光器41a受到触发事件的激励,响应于该触发事件,进入激发状态,并发射种子光信号A。其他种子光激光器,即种子光激光器41b,由于没有受到触发事件的激励,所以不会发射种子光信号B。种子光激光器41a将种子光信号A耦合至增益光纤222。增益光纤222一直处于增益饱和状态,通过目标泵浦光信号对种子光信号A进行放大,得到放大光信号。此时,图6为本公开实施例中的种子光信号与放大光信号的一种示意图,参见图6所示,种子光信号的调节与放大光信号的调节同步,光纤激光器40能够实现快速动态调节光功率。
至此,便实现快速动态调节光纤激光器的光功率。
在本公开实施例中,在光纤放大器一直处于增益饱和的情况下,通过触发光纤激光器中功率不同的种子光激光器发射不同的种子光信号,使得光纤激光器输出的放大光信号的幅值随着种子光信号的功率同步变化,从而实现光纤激光器光功率的快速动态调节。另外,由于多个种子光激光器采用同类型的激光器,那么,在进行种子光信号的调节时,仅需要触发不同的种子光激光器,而不需要对光纤放大器等其他部分进行调节,进一步加快了光纤激光器光功率的动态调节。
基于相同的发明构思,本公开实施例还提供一种激光雷达,该激光雷达如上述图2实施例中的激光雷达一致。
图7为本公开实施例中的激光雷达的一种结构示意图,参见图7所示,激光雷达70可以包括:控制器71和光纤激光器72。
其中,控制器71可以为上述处理器103或者处理器103的一部分。当然,控制器71也可以为独立设置的器件。作为示例,控制器71可以采用如CPU、DSP、ASIC、FPGA、其他可编程逻辑器件等实现。作为示例,控制器71采用FPGA实现。光纤激光器72与上述光纤激光器40一致,对光纤激光器72的具体描述可以参考图4至图6中对光纤激光器40的说明。作为示例,控制器71与多个种子光激光器41耦合。也就是说,不同的种子光激光器41由控制器71触发,才能实现功率的快速动态调节,且保证种子光信号的连续性。
可以理解的,控制器71,被配置为响应于一触发事件,向多个种子光激光器41中与触发事件对应的种子光激光器41a发送触发信号,触发信号被配置为触发种子光激光器41a进入激发。种子 光激光器41a,被配置为响应于触发信号,进入激发状态,并发射种子光信号A;将种子光信号A耦合至光纤放大器62;其他种子光激光器41,被配置为响应于该触发信号,处于待激发状态;光纤放大器42,被配置为一直处于增益饱和状态,并对种子光信号A进行放大。
在实际应用中,控制器71发射的触发信号为电信号,被配置为激励种子光激光器41工作,以发射种子光信号。
在一些可能的实施例中,在光纤放大器42一直处于增益饱和状态的情况下,控制器71在向种子光激光器41a发送触发信号(如记为触发信号A)之前,还可以响应于其他触发事件,向种子光激光器41b发送另一触发信号(如记为触发信号B),种子光激光器41b响应于该触发信号B,进入激发状态,并发射种子光信号B。那么,当控制器71向种子光激光器41a发送触发信号A时,控制器71停止向种子光激光器41b发送触发信号B,使得种子光激光器41b回到待激发状态。在这个过程中,控制器71实现了触发信号的切换,进而触发功率不同的种子光激光器,实现光纤激光器光功率的快速动态调节。
作为示例,为了缩短控制器切换触发信号的时长,控制器71可以采用工作频率为200MHz的FPGA。那么,触发信号的切换时长可以达到5ns(纳秒),远远低于种子光信号的脉冲间隔,从而使得种子光信号与放大光信号同步调节,实现光功率的快速动态调节。
在一些可能的实施方式中,仍参见图7所示,泵浦光激光器221可以与控制器71耦合。控制器71可以调节泵浦光信号的功率。当然,泵浦光信号的功率还可以采用其他的控制器进行调节,本公开实施例不做具体限定。
下面以具体示例对上述激光雷达70进行具体说明。
图8为本公开实施例中的激光雷达的另一种结构示意图,参见图8所示,光纤激光器72包括被配置为发射种子光信号A的种子光激光器41a和被配置为发射种子光信号B的种子光激光器41b,种子光激光器41a的功率小于种子光激光器41b的功率。此时,种子光激光器41b可以理解为多个种子光激光器41中功率最大的种子光激光器。
首先,在光纤激光器72的调试过程中,控制器41可以向种子光激光器41b输出一触发信号。种子光激光器41b受触发信号的激励,响应于该触发信号,进入激发状态,并发射种子光信号B。其他种子光激光器,即种子光激光器41a,由于没有受到触发事件的激励,所以不会发射种子光信号A。种子光信号B由种子光激光器41b耦合至增益光纤222。增益光纤222对种子光信号B进行放大。并且,在种子光信号B放大的过程中,泵浦光激光器221调节泵浦功率,直至增益光纤222达到增益饱和状态,此时泵浦光激光器221发射目标泵浦光信号。光纤放大器42在达到增益饱和状态之后,泵浦光激光器221一直发射目标泵浦光信号,使得增益光纤222一直处于增益饱和状态。作为示例,种子光激光器41b在光纤放大器42达到增益饱和状态后,回到待激发状态。此时,种子光激光器41a和41b均处于待激发状态。
接下来,在光纤激光器72的使用过程中,在增益光纤222一直处于增益饱和状态的情况下,当激光雷达检测到一触发事件,该触发事件与种子光激光器41a对应时,控制器41响应于该触发事件, 向种子光激光器41a输出相应的触发信号。种子光激光器41a受到触发信号的激励,响应于该触发信号,进入激发状态,并发射种子光信号A。其他种子光激光器,即种子光激光器41b,由于没有受到触发事件的激励,所以不会发射种子光信号B。种子光激光器41a将种子光信号A耦合至增益光纤222。增益光纤222一直处于增益饱和状态,通过目标泵浦光信号对种子光信号A进行放大,得到放大光信号。此时,参见图6所示,种子光信号的调节与放大光信号的调节同步,光纤激光器72能够实现快速动态调节光功率。
至此,便实现快速动态调节激光雷达的光功率。
在本公开实施例中,在光纤放大器一直处于增益饱和的情况下,通过触发光纤激光器中功率不同的种子光激光器发射不同的种子光信号,使得光纤激光器输出的放大光信号的幅值随着种子光信号的功率同步变化,从而实现光纤激光器光功率的快速动态调节,进而实现激光雷达的光功率的快速动态调节。另外,由于多个种子光激光器采用同类型的激光器,那么,在进行种子光信号的调节时,仅需要触发不同的种子光激光器,而不需要对光纤放大器等其他部分进行调节,进一步加快了光纤激光器光功率的动态调节。
基于相同的发明构思,本公开实施例提供一种光功率调节方法,应用于上述一个或者多个实施例所述的激光雷达中。
图9为本公开实施例中的光功率调节方法的一种实施流程示意图,参见图9所示,该方法可以包括:
S901,控制器获得一触发事件。
在本公开实施例中,触发事件可以理解为光接收装置出现饱和。例如,激光雷达与目标物体之间的距离发生变化、激光雷达的扫描范围内出现反射率较高的反射物体、逆反射物体等。那么,响应于这些触发事件,光纤激光雷达需要动态调整自身的光功率。示例性的,假设目标物体,如人体或者物体,出现在激光雷达扫描范围的近距离端。当激光束扫描到该目标物体时,由于扫描距离变短,回波光束增强,回波信号的脉冲峰值增高,光接收装置接收到高能量脉冲时,出现饱和。此时,光纤激光器需要关闭高功率的种子激光器,开启低功率的种子激光器。或者,假设在激光雷达扫描范围的中距离端出现反射率较高的反射物体(如地面积水的水面、结冰的路面、雪地、玻璃障碍物等)、逆反射物体(如交通指示牌)等。当激光束扫描到该反射物体时,由于反射较强,回波光束增强,回波信号的脉冲峰值增高,光接收装置接收到高能量脉冲时,出现饱和。此时,光纤激光器需要关闭高功率的种子激光器,开启低功率的种子激光器。
S902,控制器响应于触发事件,控制一个种子光激光器进入激发状态,以及控制其他种子光激光器处于待激发状态。
S903,进入激发状态的种子光激光器发射第一种子光信号;
S904,光纤放大器在一直处于增益饱和状态的情况下,对第一种子光信号进行放大。
在一些可能的实施方式中,S904,可以包括:光纤放大器通过目标泵浦光信号,对第一种子光信号进行放大,目标泵浦光信号用于使光纤放大器处于增益饱和状态。
在一些可能的实施方式中,参见图9所示,在S901之前,上述控制方法还可以包括:
S905,功率最大的种子光激光器发射第二种子光信号;
S906,光纤放大器对第二种子光信号进行放大,并在第二种子光信号进行放大的过程中,调节泵浦功率,直至达到增益饱和状态。这里,光纤放大器达到增益饱和状态后,一直处于增益饱和状态。
在一些可能的实施方式中,在S904之后,上述控制方法还包括:滤波器对放大后的第一种子光信号进行滤波。
需要说明的是,上述光功率调节方法的具体实施过程可以参见图4至图8实施例中对激光雷达70和光纤激光器40的工作过程的描述。
基于相同的发明构思,本公开实施例提供一种计算机可读存储介质,可读存储介质存储有可执行程序,其中,可执行程序被处理器执行时实现如上述一个或者多个实施例所述的光功率调节方法。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质上实施的计算机程序产品的形式,所述存储介质包括但不限于U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁盘存储器、CD-ROM、光学存储器等。
本公开是根据本公开实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上实施例仅用以说明本公开的技术方案,而非对其限制。尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行替换。而这些修改或者替换,并不使相应技术方案的本质脱离本公开实施例技术方案的精神和范围,均应包含在本公开的保护范围之内。

Claims (11)

  1. 一种光纤激光器,其中,包括:功率不同的多个种子光激光器以及光纤放大器;所述多个种子光激光器为同一类型的激光器;
    所述多个种子光激光器中的一个种子光激光器,被配置为响应于一触发事件,进入激发状态,并发射第一种子光信号;将所述第一种子光信号耦合至所述光纤放大器;
    所述多个种子光激光器中的其他种子光激光器,被配置为响应于所述触发事件,处于待激发状态;
    所述光纤放大器,被配置为一直处于增益饱和状态,并对所述第一种子光信号进行放大。
  2. 根据权利要求1所述的光纤激光器,其中,所述多个种子光激光器通过合束器或空间耦合的方式与所述光纤放大器耦合。
  3. 根据权利要求1所述的光纤激光器,其中,所述光纤放大器包括:增益光纤和泵浦光激光器;
    所述一个种子光激光器,被配置为将所述第一种子光信号耦合至所述增益光纤;
    所述泵浦光激光器,被配置为一直发射目标泵浦光信号,并耦合至所述增益光纤;
    所述增益光纤,被配置为响应于所述目标泵浦光信号,一直处于增益饱和状态,并通过所述目标泵浦光信号对所述第一种子光信号进行放大。
  4. 根据权利要求1所述的光纤激光器,其中,所述多个种子光激光器中功率最大的种子光激光器,被配置为在所述一个种子光激光器响应于所述触发事件进入激发状态之前,发射第二种子光信号,并耦合至所述光纤放大器;
    除所述功率最大的种子光激光器以外的其他种子光激光器,被配置为在所述一个种子光激光器响应于所述触发事件进入激发状态之前,处于待激发状态;
    所述光纤放大器,还被配置为对所述第二种子光信号进行放大,并在所述第二种子光信号放大的过程中,调节泵浦功率,直至达到增益饱和状态。
  5. 根据权利要求1所述的光纤激光器,其中,所述光纤激光器还包括:滤波器;
    所述光纤放大器,还被配置为将放大后的第一种子光信号耦合至所述滤波器;
    所述滤波器,被配置为对所述放大后的第一种子光信号进行滤波。
  6. 一种激光雷达,其中,包括:如权利要求1至5任一项所述的光纤激光器以及控制器;所述控制器与所述多个种子光激光器耦合;
    所述控制器,被配置为响应于一触发事件,向所述一个种子光激光器发送触发信号,所述触发信号被配置为触发所述一个种子光激光器进入激发状态。
  7. 一种光功率调节方法,其中,应用于如权利要求6所述的激光雷达;所述方法包括:
    所述控制器获得一触发事件,所述触发事件用于指示所述一个种子光激光器进入激发状态;
    所述控制器响应于所述触发事件,控制所述一个种子光激光器进入激发状态,以及控制所述其他种子光激光器处于待激发状态;
    所述一个种子光激光器发射第一种子光信号;
    所述光纤放大器在一直处于增益饱和状态的情况下,对所述第一种子光信号进行放大。
  8. 根据权利要求7所述的方法,其中,所述光纤放大器在一直处于增益饱和状态的情况下,对所述第一种子光信号进行放大,包括:
    所述光纤放大器通过目标泵浦光信号,对所述第一种子光信号进行放大,所述目标泵浦光信号用于使所述光纤放大器一直处于增益饱和状态。
  9. 根据权利要求8所述的方法,其中,在所述控制器获得一触发事件之前,所述方法还包括:
    所述多个种子光激光器中功率最大的种子光激光器发射第二种子光信号;
    所述光纤放大器对所述第二种子光信号进行放大,并在所述第二种子光信号进行放大的过程中,调节泵浦功率,直至达到增益饱和状态。
  10. 根据权利要求7所述的方法,其中,所述方法还包括:
    所述光纤激光器中的滤波器对放大后的第一种子光信号进行滤波。
  11. 一种计算机可读存储介质,其中,所述可读存储介质存储有可执行程序,其中,所述可执行程序被处理器执行时实现如权利要求7至10任一项所述的光功率调节方法。
PCT/CN2023/077587 2022-02-23 2023-02-22 一种光纤激光器、激光雷达、光功率调节方法及存储介质 WO2023160570A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210164612.9A CN114243443A (zh) 2022-02-23 2022-02-23 一种光纤激光器、激光雷达及光功率调节方法
CN202210164612.9 2022-02-23

Publications (1)

Publication Number Publication Date
WO2023160570A1 true WO2023160570A1 (zh) 2023-08-31

Family

ID=80747796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077587 WO2023160570A1 (zh) 2022-02-23 2023-02-22 一种光纤激光器、激光雷达、光功率调节方法及存储介质

Country Status (2)

Country Link
CN (1) CN114243443A (zh)
WO (1) WO2023160570A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114243443A (zh) * 2022-02-23 2022-03-25 北京一径科技有限公司 一种光纤激光器、激光雷达及光功率调节方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080642A (ja) * 2008-09-25 2010-04-08 Toshiba Corp ファイバレーザ装置、レーザ加工装置、並びにレーザ加工方法
CN103794974A (zh) * 2012-10-31 2014-05-14 福州高意通讯有限公司 一种新型光纤放大器
CN106654825A (zh) * 2016-12-27 2017-05-10 中国科学院半导体研究所 同时输出纳秒和皮秒脉冲的光纤激光器
CN108462027A (zh) * 2018-04-11 2018-08-28 深圳市镭神智能系统有限公司 一种光纤激光装置
CN108603758A (zh) * 2015-11-30 2018-09-28 卢米诺技术公司 具有分布式激光器和多个传感器头的激光雷达系统和激光雷达系统的脉冲激光器
US20180284237A1 (en) * 2017-03-30 2018-10-04 Luminar Technologies, Inc. Non-Uniform Beam Power Distribution for a Laser Operating in a Vehicle
CN113625247A (zh) * 2021-10-11 2021-11-09 北京一径科技有限公司 一种控制方法、装置及激光雷达
CN114243443A (zh) * 2022-02-23 2022-03-25 北京一径科技有限公司 一种光纤激光器、激光雷达及光功率调节方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109494553B (zh) * 2018-12-24 2020-02-07 南京牧镭激光科技有限公司 光纤放大器、光纤放大装置及控制方法
CN116338703A (zh) * 2019-04-02 2023-06-27 上海禾赛科技有限公司 用于激光雷达的激光系统
CN110233413A (zh) * 2019-07-04 2019-09-13 深圳市镭神智能系统有限公司 一种多波长脉冲光纤激光器及激光雷达系统
CN113484846B (zh) * 2021-06-30 2023-03-10 苏州一径科技有限公司 一种激光雷达多个激光器功率平衡控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080642A (ja) * 2008-09-25 2010-04-08 Toshiba Corp ファイバレーザ装置、レーザ加工装置、並びにレーザ加工方法
CN103794974A (zh) * 2012-10-31 2014-05-14 福州高意通讯有限公司 一种新型光纤放大器
CN108603758A (zh) * 2015-11-30 2018-09-28 卢米诺技术公司 具有分布式激光器和多个传感器头的激光雷达系统和激光雷达系统的脉冲激光器
CN106654825A (zh) * 2016-12-27 2017-05-10 中国科学院半导体研究所 同时输出纳秒和皮秒脉冲的光纤激光器
US20180284237A1 (en) * 2017-03-30 2018-10-04 Luminar Technologies, Inc. Non-Uniform Beam Power Distribution for a Laser Operating in a Vehicle
CN108462027A (zh) * 2018-04-11 2018-08-28 深圳市镭神智能系统有限公司 一种光纤激光装置
CN113625247A (zh) * 2021-10-11 2021-11-09 北京一径科技有限公司 一种控制方法、装置及激光雷达
CN114243443A (zh) * 2022-02-23 2022-03-25 北京一径科技有限公司 一种光纤激光器、激光雷达及光功率调节方法

Also Published As

Publication number Publication date
CN114243443A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
CN113491043B (zh) 用于激光雷达的激光系统
US9160140B2 (en) Optical pulse transmitter
CN113167873B (zh) 具有半导体光放大器的激光雷达系统
WO2023160570A1 (zh) 一种光纤激光器、激光雷达、光功率调节方法及存储介质
CN113406603B (zh) 一种用于相干激光雷达的激光器模块
CN102801089B (zh) 光放大装置及激光加工装置
CN102255229A (zh) 可调脉宽的高功率脉冲光纤激光器
CN109884662A (zh) 一种激光雷达系统及车辆
CN107093837A (zh) 一种基于频移反馈环路的射频调制脉冲激光产生装置
CN103236637B (zh) 双波段铒镱共掺光纤脉冲放大器
CN114552362A (zh) 一种用于激光雷达的激光器
CN112731428B (zh) 一种测距装置及主动三维成像系统
CN109932705B (zh) 一种超宽动态范围激光回波接收装置及其控制方法
US4355893A (en) Eye-safe laser cloud height rangefinder
CN212908503U (zh) 一种光纤式窄线宽光纤激光器
CN106961065A (zh) 掺杂光纤放大器以及工作方法
CN207730935U (zh) 一种雷达系统
CN114709705A (zh) 一种用于相干激光雷达的回波信号分时放大激光器
CN112596043B (zh) 一种高角分辨率激光雷达及探测方法
CN113777584A (zh) 自动控制直接飞行时间传感系统信号强度的设备和方法
CN209911559U (zh) 一种激光雷达系统及车辆
CN210572751U (zh) 一种多线激光雷达系统
CN110600986A (zh) 高重复频率905nm调Q微片激光器
CN210744444U (zh) 一种多脉冲的激光雷达发生装置、系统及激光雷达
CN215418966U (zh) 一种高速极窄脉冲激光驱动装置和投射及接收系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759195

Country of ref document: EP

Kind code of ref document: A1