WO2023160433A1 - 用于电动工具的电池及电动工具 - Google Patents

用于电动工具的电池及电动工具 Download PDF

Info

Publication number
WO2023160433A1
WO2023160433A1 PCT/CN2023/075882 CN2023075882W WO2023160433A1 WO 2023160433 A1 WO2023160433 A1 WO 2023160433A1 CN 2023075882 W CN2023075882 W CN 2023075882W WO 2023160433 A1 WO2023160433 A1 WO 2023160433A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
signal
controller
output
indication signal
Prior art date
Application number
PCT/CN2023/075882
Other languages
English (en)
French (fr)
Inventor
夏丽娟
包磊
陈志强
姜韫
鲍驰晨
Original Assignee
罗伯特·博世有限公司
夏丽娟
包磊
陈志强
姜韫
鲍驰晨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 罗伯特·博世有限公司, 夏丽娟, 包磊, 陈志强, 姜韫, 鲍驰晨 filed Critical 罗伯特·博世有限公司
Publication of WO2023160433A1 publication Critical patent/WO2023160433A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/247Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for portable devices, e.g. mobile phones, computers, hand tools or pacemakers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to a battery usable in a power tool, and also to a power tool comprising such a battery.
  • Power tools are commonly used to perform work tasks such as wall drilling, cutting, fastening, impacting, etc.
  • work tasks such as wall drilling, cutting, fastening, impacting, etc.
  • power tools may also have problems such as life expectancy or failure, so it is also very useful to be able to easily collect power tool information.
  • the present application aims to provide a protection mechanism for electric tools realized by a smart battery.
  • a battery for an electric tool including: a battery unit; a control device integrated into the battery unit, the control device including an inertial measurement unit and a communication and control module, wherein the The inertial measurement unit includes: at least one sensor configured to measure at least one motion parameter of the electric tool, and a controller configured to receive the motion parameter output by the at least one sensor and generate a motion indicating the motion state of the electric tool
  • the communication and control module includes: a communication unit configured to communicate with external devices, and a processor configured to receive the status indication signal and generate a switch control signal; and a switch network configured to receive The switch control signal is generated by the control device and controls the electrical energy output of the battery based on the switch control signal.
  • the inertial measurement unit further comprises a timer configured to measure a duration of the motion state; wherein the controller is configured to generate a state different from the duration based on the motion parameter indication signals; wherein the processor is configured to generate different switch control signals based on the different status indication signals.
  • the controller is configured to output a state indication signal when the duration exceeds a preset time threshold, so that the processor generates a switch control signal based on the state indication signal to control the switch
  • the network cuts off the electrical energy output of the battery.
  • the controller is configured to output a first state indication signal when the duration exceeds a first time threshold, so that the processor generates a first switch control based on the first state indication signal a signal to control the switching network to reduce the electrical energy output of the battery; and the controller is further configured to output a second status indicating signal when the duration exceeds a second time threshold greater than the first time threshold, making the processor generate a second switch control signal based on the second state indication signal to control the switch network to cut off the electric energy output of the battery.
  • the processor is configured to generate a switch control signal for restoring power output to control the switch network based on the motion parameter indicating a normal motion state after reducing or cutting off the power output of the battery The electrical energy output of the battery is restored.
  • the motion parameters include 3-axis accelerations ( ⁇ x , ⁇ y , ⁇ z ) from the sensors, and the controller is configured to operate at ( ⁇ x 2 + ⁇ y 2 + ⁇ z 2 ) When 1/2 is less than a preset acceleration threshold, the state indication signal is generated and output, and the state indication signal represents that the electric tool has fallen.
  • the controller is further configured to confirm the state when the integral of (1-( ⁇ x 2 + ⁇ y 2 + ⁇ z 2 ) 1/2 ) over time reaches a preset speed threshold
  • the indication signal is valid, and only when the status indication signal is confirmed to be valid, the status indication signal representing the fall of the electric tool is generated and output.
  • the motion parameters further include 3-axis angular velocities ( ⁇ x , ⁇ y , ⁇ z ) from the sensors, and the controller is configured to operate at one of the 3-axis angular velocities or ( ⁇ x 2 + When the value of ⁇ y 2 + ⁇ z 2 ) 1/2 or the sudden change reaches a preset angular velocity threshold, the state indication signal is generated and output, and the state indication signal represents the recoil of the electric tool.
  • the controller is further configured to confirm the specified angular velocity when one of the 3-axis angular velocities or the integral of ( ⁇ x 2 + ⁇ y 2 + ⁇ z 2 ) 1/2 over time reaches a preset angle threshold
  • the status indication signal is valid, and the status indication signal representing the kickback of the electric tool is generated and output only when the status indication signal is confirmed to be valid.
  • the controller is configured to be able to generate different state indication signals having a uniform parameter format but different signal parameter values to respectively indicate different motion states.
  • the controller is a dedicated sensor fusion and motion recognition algorithm Optimized custom programmable microcontrollers.
  • control device further includes: an update unit configured to receive a control command for updating or extending the functions of the electric tool from the external device through the communication unit.
  • the update unit is set in the communication and control module, or in the inertial measurement unit.
  • the update unit is implemented by the processor or the controller.
  • the processor is configured to send data related to the electric tool or the battery to an external device and receive data related to the electric tool or the battery from the external device. commands, or modify operating parameters related to the power tool or the battery.
  • the communication unit includes at least one of the following:
  • the senor is integrated with the controller in a single chip package.
  • the processor is configured to monitor the temperature of the battery unit, and reduce or cut off the power of the battery unit when the monitored temperature of the battery unit is higher than a preset temperature threshold output.
  • the processor is configured to monitor the temperature of the battery unit through the resistance value of the NTC resistor in the temperature monitoring circuit of the battery unit.
  • the present application provides an electric power tool, including: an electric motor; the battery of the present application, configured to output electric energy to the electric motor; wherein, the switch network in the battery is configured based on the switch control signal The electric energy output of the battery to the electric motor is controlled.
  • the battery used in the electric tool is integrated with communication and control functions, provides a protection mechanism for the electric tool, and can control the power supply of the battery to prevent the electric tool or other objects from being damaged when an accident occurs.
  • the battery of the present application is suitable for different electric tools and is easy to maintain and manage.
  • Fig. 1 shows a block diagram of an IMU configuration according to an example of the present application
  • Figure 2 shows a block diagram of a battery configuration according to an example
  • Figure 3 shows a fall monitoring program according to an example
  • Figure 4 shows a recoil monitoring program according to an example
  • FIG. 5 shows a communication diagram of a power tool according to an example.
  • the inertial measurement unit (IMU) integrated in the power tool is usually used to measure the motion parameters of the power tool, for example, the accelerometer or gyroscope in the IMU is used to measure the acceleration or angular velocity, and the measured motion
  • the parameters are supplied to the central processing unit (CPU) of the power tool.
  • the IMU is electrically coupled with the CPU and located on the power tool body, so that the CPU can detect the abnormal state of the power tool such as recoil or fall by processing the measurement parameters received from the sensor based on the pre-programmed and installed motion detection program, And control accordingly, such as cutting off or reducing the power supply of the battery to the electric motor.
  • the IMU is integrated in the electric tool and the motion detection program is implemented by the CPU on the electric tool body, this motion detection mechanism can only be applied to the current electric Other power tools for testing procedures.
  • the CPU as a general-purpose processor also needs to perform other preset functions, such as control or networking according to a certain communication protocol, the execution of the motion detection program by the CPU on the power tool body not only increases the burden on the CPU, Moreover, it brings unnecessary burden to the software update of the CPU. For example, when updating or adding a new motion detection program, the communication protocol of the CPU may need to be considered.
  • the present application provides a motion detection solution that can be flexibly adapted to different electric tools.
  • Fig. 1 shows a kind of improved inertial measurement unit IMU that can adopt in the power tool of the present application, besides including traditional one or more motion sensors SNS, inertial measurement unit IMU also includes A programmable embedded controller such as a data signal processing module (Fuser Core) or other types of microcontrollers, hereinafter collectively referred to as FUS.
  • FUS data signal processing module
  • a motion detection program based on multiple sensor SNSs such as a drop detection program DropProgram, a recoil detection program Kick-BackProgram, etc.
  • the FUS is integrated with the sensor SNS, eg forming a single chip-scale package.
  • the sensors integrated in the IMU include but not limited to a 3-axis gyroscope, a 3-axis accelerometer, etc.
  • the FUS is implemented using a programmable microcontroller such as a 32-bit microcontroller with ultra-low power consumption.
  • the microcontroller can be optimized and customized for sensor fusion and motion recognition algorithms, while consuming significantly less power than standard microcontrollers.
  • a 3-axis accelerometer may be used to acquire acceleration ⁇ in 3-axis directions
  • a 3-axis gyroscope may be used to acquire angular velocity ⁇ around 3 axes.
  • the FUS performs motion detection operations, such as a fall detection program and a recoil detection program, and generates an indication signal about the current motion state of the power tool by processing motion parameters such as acceleration or angular velocity output by multiple sensors in the IMU.
  • the inertial measurement unit IMU including the programmable embedded controller FUS can be installed in a power tool or a battery of the power tool as a separate component, and powered by the battery.
  • the controller FUS in the inertial measurement unit IMU detects an abnormal state such as falling or recoil
  • the generated state indicating signal is provided as an interrupt to the CPU located inside the power tool or battery, so that the CPU can directly Take appropriate response actions. Thereby, it is possible to release the burden of directly performing the detection of the drop or kickback by the CPU.
  • the convenience of the battery of the electric tool and the characteristics of being adaptable to different standard tools are fully utilized here.
  • a battery with safety control and communication functions is provided, whereby the battery can be used to realize the safety protection of the electric tool and the communication with the outside world.
  • the IMU is integrated with the communication module and the general purpose processor CPU so that the integrated CPU completes the Preset functions for power tool control.
  • FIG. 2 shows a battery 100 suitable for a power tool according to an embodiment of the present application.
  • the battery 100 is configured to be detachably attachable to the power tool body.
  • the battery 100 includes one or more sets of battery cells 101, a switch network 102 for controlling the output power or current of the battery cells 101, wherein the switch network 102 is configured to be electrically coupled to the motor SWN of the electric tool , to provide the output power of the battery unit 101 to the motor SWN. Therefore, when the user triggers the switch of the electric tool, the battery unit 101 can be used to supply power to the electric motor SWN, so that the electric motor SWN drives the tool head of the electric tool to rotate to perform corresponding operations.
  • the battery 100 also includes a control device 200 , and the control device 200 is integrated into the battery unit 101 , that is, permanently or detachably assembled on the battery unit 101 .
  • the control device 200 includes two parts, namely an inertial measurement unit (IMU) 300 and a communication/control module 400 .
  • IMU inertial measurement unit
  • the IMU 300 includes a plurality of sensors SNS, such as a 3-axis accelerometer 301, a 3-axis gyroscope 302, and a timer 303 for timing the motion state.
  • the IMU 300 is also integrated with a microcontroller (FUS) 304 .
  • the FUS 304 is implemented by a programmable microcontroller such as a 32-bit single-chip microcomputer, wherein the 3-axis accelerometer 302 obtains the acceleration ⁇ in the 3-axis direction, and the 3-axis gyroscope obtains the angular velocity ⁇ around the 3 axes.
  • the FUS 304 executes a motion detection operation, such as a fall detection program or a recoil detection program, and diagnoses the motion state of the device through motion parameters such as acceleration output by at least a part of the multiple sensors in the IMU 300, thereby generating an indication signal about the current motion state .
  • the communication/control module 400 includes a central processing unit or processor 401 for general control and a general communication module or communication unit, such as a WiFi module 402, a narrowband-Internet of Things (NB-IoT) module 403, and a positioning module 404.
  • the processor 401 is configured to be able to send data related to the electric tool or the battery to the external device through the communication unit, receive instructions related to the electric tool or the battery from the external device, or modify working parameters related to the electric tool or the battery .
  • the communication module integrated in the control device 200 is not limited to the above examples, and may also include a Bluetooth module or a wireless cellular module, for example.
  • the battery 100 when the battery 100 is attached to the power tool body, all control and communication functions of the power tool can be implemented on the battery 100 to form a smart battery.
  • the battery 100 can perform safety functions such as a fall monitoring program and a recoil monitoring program during the operation of the electric tool.
  • a fall monitoring program that can be executed by the battery 100 according to an example of the present application will be described below with reference to FIG. 3 . As shown in FIG. 3 , the fall monitoring procedure starts at step S301.
  • step S303 the FUS 304 receives the acceleration information ⁇ in the three axes at the current moment from the output of the 3-axis accelerometer 301 .
  • step S305 necessary filtering and standardization processing are performed on the acceleration information ⁇ to obtain the processed acceleration information ⁇ corresponding to the current moment.
  • step S307 the FUS 304 determines whether the electric tool is in a falling state based on the processed acceleration information ⁇ .
  • the acceleration information ⁇ output by the 3-axis accelerometer 301 is included in these three axes.
  • Acceleration information in the axial direction that is, acceleration components ( ⁇ x , ⁇ y , ⁇ z ).
  • an acceleration threshold ⁇ TH less than 1, such as 0.5, 0.3, 0.2, 0.1 or such a value, when ( ⁇ x 2 + ⁇ y 2 + ⁇ z 2 ) 1/2 ⁇ TH , it can be judged that electric The tool is in a dropped state.
  • the acceleration threshold ⁇ TH can be set according to experimental tests.
  • step S307 if the judgment result is "Yes”, that is, it is judged that the power tool is in a dropped state, then the program proceeds to step S309. If the judgment result in step S307 is "No", that is, it is judged that the electric tool is not in a falling state, then the procedure goes back to step S303.
  • step S309 the timer 303 counts time.
  • step S311 it is judged whether the counting of the timer 303 reaches a preset time threshold T TH1 and continues to satisfy ( ⁇ x 2 + ⁇ y 2 + ⁇ z 2 ) 1/2 ⁇ TH .
  • step S311 If the judgment result in step S311 is "Yes", proceed to step S313.
  • step S311 when it is judged that the timing of the timer 303 has not yet reached the preset time threshold TTH1 , then return to step S303, thereby realizing the continuous monitoring of the acceleration information ⁇ through steps S303 to S307 and If the judgment result in S307 is " Yes" , the timer 303 is continuously counted through step S309 ; Satisfying ⁇ TH but becomes close to or equal to 1, it indicates that the power tool may return to normal state If the state or the risk is reduced, reset the timer 303 and return to step S303 to continue monitoring the output of the 3-axis accelerometer 301.
  • step S313 the FUS 304 outputs a status indicating signal Stat_SIG 1 representing the occurrence of a fall, and continues to monitor timing and acceleration information.
  • the status indication signal Stat_SIG 1 is provided to the CPU 401 as an interrupt, and the CPU 401 generates the switch control signal SIG CTR1 after receiving the status indication signal Stat_SIG 1 , so as to control the switch network 102 to reduce the power supply current of the battery unit 101 to the motor SWN, thereby reducing the motor SWN.
  • Speed and torque output of SWN is a preventive step to reduce possible risks.
  • step S315 it is judged whether the timing reaches another preset time threshold T TH2 (T TH2 is greater than T TH1 ). If the judgment result is "Yes”, the procedure proceeds to step S317; if the judgment result is "No”, the procedure goes back to step S303.
  • step S317 it is judged whether ( ⁇ x 2 + ⁇ y 2 + ⁇ z 2 ) 1/2 ⁇ TH is still satisfied; if the judgment result is "Yes", the program proceeds to step S319.
  • step S319 the FUS 304 outputs a status indication signal Stat_SIG 2 representing the continuation of the fall, and the CPU 401 generates a switch control signal SIG CTR2 after receiving the status indication signal Stat_SIG 2 , so as to control the switch network 102 to cut off the power supply from the battery unit 101 to the motor SWN, thereby Stopping motor SWN to avoid damage to power tools or other objects.
  • step S317 If the judgment result in step S317 is "No", then FUS 304 outputs the state indication signal Stat_SIG 3 representing the end of the fall, the signal Stat_SIG 3 can be a reset signal, for example, and the CPU 401 generates the control signal SIG CTR3 after receiving Stat_SIG 3 to control
  • the switch network 102 restores the normal power supply from the battery unit 101 to the motor SWN, so that the motor SWN returns to normal speed, and resets the timer 303 at the same time, and then the procedure goes back to step S303.
  • the time thresholds T TH1 and T TH2 represent the falling time of the electric tool. Obviously, the longer the time, the greater the height of the fall, and therefore the greater the possible damage to the motor SWN. For example, this situation may occur in electric tools. In the case of a tool falling from a worker working at a high place (such as a ladder), T TH1 can usually be set as the fall time exceeding 0.5 seconds, and T TH2 as the fall time exceeding 2 seconds.
  • the speed information obtained from the acceleration information ⁇ can also be combined as an auxiliary validity judgment basis to improve the accuracy of the fall judgment sex and reliability.
  • V (1-( ⁇ x 2 + ⁇ y 2 + ⁇ z 2 ) 1/2 ) integrated over time is used as velocity characterization.
  • a certain time threshold such as T TH1 and/or T TH2
  • the power supply from the battery unit 101 to the motor SWN is reduced and cut off at the time thresholds T TH1 , T TH2 , respectively.
  • monitoring the angle signal output by, for example, the 3-axis gyroscope 302 can also be used as an auxiliary validity judgment basis to improve the accuracy and reliability of the fall judgment. For example, at a certain time threshold, the falling state is determined based on the acceleration information ⁇ and whether the change in angular velocity on one or more axes of the 3-axis gyroscope 302 exceeds the angular velocity threshold.
  • a recoil monitoring program that can be executed by the battery 100 according to an example of the present application will be described below with reference to FIG. 4 .
  • Kickback of a power tool is when, during operation of the power tool, the worker releases his hand, causing the power tool to turn in the opposite direction to the direction of rotation of the tool head.
  • the backflush monitoring program starts at step 401 .
  • step S403 the FUS 304 receives the current angular velocity information ⁇ output from the 3-axis gyroscope 302 .
  • step S405 necessary filtering and standardization processing are performed on the angular velocity information ⁇ .
  • step S407 it is judged based on the processed angular velocity information ⁇ whether the electric tool is in a recoil state.
  • the angular velocity information ⁇ output by the 3-axis gyroscope 302 includes angular velocity components ( ⁇ x , ⁇ y , ⁇ z ).
  • the 3-axis gyroscope 302 can be installed such that one of its axes (for example, the Y axis) is substantially parallel to or even coincides with the rotation axis of the tool head of the electric tool.
  • one of its axes for example, the Y axis
  • the value (absolute value) or sudden change of the angular velocity (eg ⁇ y ) around the axis (eg Y-axis) is greater than a preset angular velocity threshold, it can be judged that the electric tool is in the recoil state.
  • step S407 if the judgment result is "Yes”, that is, it is judged that the electric tool is in the recoil state, then the program proceeds to step S409. If the judgment result in step S407 is "No", that is, it is judged that the electric tool is not in the recoil state, then the procedure goes back to step S403.
  • step S409 the timer 303 counts time.
  • step S411 it is determined whether the counting time of the timer 303 reaches a preset time threshold. If the judgment result in step S411 is "Yes”, proceed to step S413. If the judgment result in step S411 is "No", then return to step S407.
  • step S413 the FUS 304 outputs a status indication signal representing the occurrence of backlash, and the status indication signal is provided to the CPU 401 as an interrupt.
  • step S415 the CPU 401 generates a switch control signal based on the state indication signal representing the kickback, so as to control the switch network 102 to cut off the supply current from the battery unit 101 to the motor SWN.
  • the angle obtained from the angular velocity can also be combined as an auxiliary validity judgment basis to improve the accuracy and reliability of the recoil judgment.
  • the time integral of angular velocity can be used as an angle representation.
  • a certain time threshold (which may be the same as the time threshold in step S411 ) if the angular velocity is greater than the angular velocity threshold and the angle is greater than a preset angle threshold, it can be determined that the electric tool is in a recoil state. If at this time threshold, although the angular velocity is greater than the angular velocity threshold, but the angle does not reach the angle threshold, the above judgment can be repeated at another time threshold after the time threshold.
  • the recoil monitoring program example described above it is also possible to set different time thresholds similarly to the fall monitoring program, and after the recoil state reaches the corresponding time threshold, the battery unit 101 is respectively reduced and cut off to the motor SWN power supply.
  • the switch Network 102 it is also possible to judge the end of the recoil through the change of the angular velocity over time (for example, becoming less than a preset threshold close to 0) similar to that in the fall monitoring program, and control the switch Network 102 restores electricity
  • the battery unit 101 supplies normal power to the motor SWN.
  • the falling or recoil status of the electric tool can also be prompted through video and/or audio output.
  • the present application may also use other forms of sensors to provide 3-axis acceleration and 3-axis angular velocity information.
  • the application of the present application is described by taking the fall and recoil monitoring as an example.
  • multiple motion detection programs can be integrated in the FUS 304 of the IMU 300, and through the output Motion state signals having different signal values indicate a corresponding plurality of different motion states.
  • the motion states that can be indicated by the motion state signal include the fall and recoil states described above, and other abnormal motion states that need to be dealt with, as well as normal motion states that do not need to be processed (such as the operator moving the electric tool controllably, etc.).
  • the aforementioned state indication signals have a uniform parameter format but different signal parameter values to indicate different motion states respectively.
  • the CPU 401 can perform corresponding control only based on the signal value, thus greatly simplifying the calculation burden of the CPU of the power tool itself.
  • the electric tool installed with the battery 100 can realize communication with an external communication terminal.
  • the electric tool 10 can be registered to an external communication terminal such as a user's mobile phone 500, and communicate therewith.
  • the WiFi module 402 can be used to communicate with the mobile phone 500, so that the battery 100 can transmit data related to the electric tool or battery to the mobile phone 500, such as the state of the electric tool, the operation of the electric tool Statistics, electric tool identification, stored electric tool usage information, electric tool maintenance data, etc., these data can be stored in the memory located in the battery 100, can also be stored in the memory on the electric tool body and can be controlled by the processor of the battery 100 401 access.
  • the user can access stored power tool usage information or power tool maintenance data.
  • the mobile phone 500 can also communicate with the remote server 600 such as the server of the service provider of the electric tool 100 through the cellular network, such as registering the electric tool 100 to the remote server by using the mobile phone 500 .
  • the control device 200 may also to register directly to the remote server.
  • an update unit 405 may also be provided in the control device 200, and the update unit 405 is used to receive power tool configurations from external devices such as mobile phones, such as operating parameters, safety parameters, Select a tool mode, etc., to control the power tool to operate in a predetermined configuration. Further, the update unit 405 may be configured to receive a control command for updating or extending the functions of the electric tool from an external device through the communication unit. For example, the update unit 405 can reprogram or burn the software update, upgrade or increased motion detection program of the electric tool received from the server 600, such as a fall detection program and a recoil detection program, into the FUS 304, so as to realize the update of the electric tool Functional extension.
  • the update unit 405 may also be provided in the IMU 300.
  • the update unit 405 may be implemented by the processor 401 or the FUS 304.
  • the FUS 304 is implemented with a programmable controller, but in another example, it can also be implemented by a general-purpose processor, which implements the present invention by executing a program located in a memory in the IMU 300.
  • the motion state detection proposed by the application.
  • the CPU 401 is configured to also be able to monitor the temperature of the battery unit 101, such as realizing temperature monitoring through the resistance value of an NTC (negative temperature coefficient) resistor in the temperature monitoring circuit of the battery unit 101.
  • NTC negative temperature coefficient
  • the protection mechanism for the electric tool is integrated in the battery of the electric tool, which can control the power supply of the battery to prevent damage to the tool or other objects in case of an accident.
  • the battery of the present application is suitable for different electric tools and is easy to maintain and manage.
  • the controller and processor on the battery side take on a large amount of processing work, the burden on the CPU of the power tool itself is greatly simplified.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

一种电动工具(10)包括电动机和用于向电动机输出电能的电池(100)。电池包括:电池单元(101);控制设备(200),其集成于电池单元,控制设备包括惯性测量单元(300)和通信与控制模块(400),其中惯性测量单元包括:至少一个传感器(301,302),配置为测量电动工具的至少一个运动参数,以及控制器(304),配置为接收至少一个传感器输出的运动参数,并生成指示电动工具的运动状态的状态指示信号;通信与控制模块包括:通信单元(402,403,404),配置为与外部设备通信,以及处理器(401),配置为接收状态指示信号及生成开关控制信号;以及开关网络(102),其配置为能够接收由处理器生成的开关控制信号并且基于开关控制信号控制电池的电能输出。

Description

用于电动工具的电池及电动工具 技术领域
本申请涉及一种可用于电动工具的电池,还涉及包含这种电池的电动工具。
背景技术
电动工具通常用于执行工作任务,例如墙面钻孔、切割、紧固、冲击等。而在实际使用中,由于任务的特殊性以及工作操作失误或握持不住,偶而会存在一些安全问题,例如在作业时可能电动工具发生反冲或者坠落。如果电机此时仍处于电机旋转的工作状态,则电动工具反冲或坠落时有可能导致工具损坏或对其它对象(例如人或物)造成损伤。因此,需要对电动工具的潜在风险进行安全防范。此外,由于作业性质等原因,电动工具也会存在着寿命或故障等问题,能方便地收集电动工具信息也是非常有用的。
发明内容
本申请旨在提供一种通过智能电池实现的电动工具保护机制。
根据本申请的一个方面,提供了一种用于电动工具的电池,包括:电池单元;控制设备,其集成于所述电池单元,所述控制设备包括惯性测量单元和通信与控制模块,其中所述惯性测量单元包括:至少一个传感器,配置为测量所述电动工具的至少一个运动参数,以及控制器,配置为接收所述至少一个传感器输出的运动参数,并生成指示所述电动工具的运动状态的状态指示信号;所述通信与控制模块包括:通信单元,配置为与外部设备通信,以及处理器,配置为接收所述状态指示信号及生成开关控制信号;以及开关网络,其配置为能够接收由所述控制设备生成的所述开关控制信号并且基于所述开关控制信号控制所述电池的电能输出。
在一种实施方式中,所述惯性测量单元还包括定时器,配置为测量所述运动状态的持续时间;其中,所述控制器配置为基于所述运动参数与所述持续时间生成不同的状态指示信号;其中,所述处理器配置为基于所述不同的状态指示信号而生成不同开关控制信号。
在一种实施方式中,所述控制器配置为当所述持续时间超出预设的时间阈值时输出状态指示信号,使得所述处理器基于所述状态指示信号生成开关控制信号来控制所述开关网络切断所述电池的电能输出。
在一种实施方式中,所述控制器配置为当所述持续时间超出第一时间阈值时,输出第一状态指示信号,使得所述处理器基于所述第一状态指示信号生成第一开关控制信号来控制所述开关网络减小所述电池的电能输出;以及所述控制器进一步配置为当所述持续时间超出大于所述第一时间阈值的第二时间阈值时输出第二状态指示信号,使得所述处理器基于所述第二状态指示信号生成第二开关控制信号来控制所述开关网络切断所述电池的电能输出。
在一种实施方式中,所述处理器配置为在减小或切断所述电池的电能输出之后,基于所述运动参数指示正常运动状态,生成恢复电能输出的开关控制信号以控制所述开关网络恢复所述电池的电能输出。
在一种实施方式中,所述运动参数包括来自所述传感器的3轴加速度(αx、αy、αz),并且所述控制器配置为在(αx 2y 2z 2)1/2小于预设的加速度阈值时生成并输出所述状态指示信号,所述状态指示信号代表电动工具坠落。
在一种实施方式中,所述控制器进一步配置为在(1-(αx 2y 2z 2)1/2)对时间的积分达到预设的速度阈值时确认所述状态指示信号有效,并且仅在确认所述状态指示信号有效时生成并输出代表电动工具坠落的所述状态指示信号。
在一种实施方式中,所述运动参数还包括来自所述传感器的3轴角速度(ωx、ωy、ωz),所述控制器配置为在3轴角速度之一或(ωx 2y 2z 2)1/2的数值或突变量达到预设的角速度阈值时生成并输出所述状态指示信号,所述状态指示信号代表电动工具反冲。
在一种实施方式中,所述控制器进一步配置为在3轴角速度之一或(ωx 2y 2z 2)1/2对时间的积分达到预设的角度阈值时确认所述状态指示信号有效,并且仅在确认所述状态指示信号有效时生成并输出代表电动工具反冲的所述状态指示信号。
在一种实施方式中,所述控制器,配置为能够生成具有统一参数格式但不同信号参数值的不同的状态指示信号以分别指示不同的运动状态。
在一种实施方式中,所述控制器为专门针对传感器融合和运动识别算法 优化定制的可编程微控制器。
在一种实施方式中,所述控制设备还包括:更新单元,配置为通过所述通信单元从所述外部设备接收更新或扩展电动工具功能的控制命令。
在一种实施方式中,所述更新单元设置于所述通信与控制模块内,或者设置于所述惯性测量单元内。
在一种实施方式中,所述更新单元由所述处理器或所述控制器来实现。
在一种实施方式中,所述处理器配置为通过所述通信单元向外部设备发送与所述电动工具或所述电池相关的数据以及从外部设备接收与所述电动工具或所述电池相关的指令,或者修改与所述电动工具或所述电池相关的工作参数。
在一种实施方式中,所述通信单元包括以下中的至少一个:
蓝牙模块;
NB-IoT模块;
无线蜂窝模块;
定位模块。
在一种实施方式中,所述传感器与所述控制器集成在单个芯片封装内。
在一种实施方式中,所述处理器配置为监控所述电池单元的温度,并且在监控到所述电池单元的温度高于预设的温度阈值时,减小或切断所述电池单元的电能输出。
在一种实施方式中,所述处理器配置为通过所述电池单元的温度监控电路中的NTC电阻的电阻值监控所述电池单元的温度。
本申请在其另一方面提供了一种电动工具,包括:电动机;本申请的电池,配置为向所述电动机输出电能;其中,所述电池中的所述开关网络基于所述开关控制信号来控制所述电池向所述电动机的电能输出。
根据本申请,用于电动工具的电池集成有通信与控制功能,提供了电动工具保护机制,能够在发生意外时控制电池供电以防止电动工具或其它对象受损。此外,本申请的电池适用于不同的电动工具,并且易于维护与管理。
附图说明
通过考虑详细描述和附图,本申请的其它特征、实施方式和方面将容易 理解。在附图中:
图1示出了根据本申请一个示例的IMU配置方框图;
图2示出了根据一个示例的电池配置方框图;
图3示出了按照一个示例的坠落监控程序;
图4示出了按照一个示例的反冲监控程序;
图5示出了按照一个示例的电动工具的通信示意图。
具体实施方式
在详细解释本申请的任何实施方式之前,应理解,本申请的应用不限于在以下描述中阐述或在附图中示出的构造细节和部件布置。本申请能够具有其它实施方式并且能够以各种方式实践或实施。在适当和适用的情况下,本申请关于一个方面或实施方式描述的任何特征可以与本申请关于任何其它方面或实施方式描述的任何其它特征组合。另外,应理解,本申请所使用的措词和术语是出于描述的目的,而不应被认为是限制性的。
在常规的电动工具中,通常利用集成在电动工具中的惯性测量单元(IMU)来测量电动工具的运动参数,例如利用IMU中的加速度计或陀螺仪来测量加速度或角速度,并将测量的运动参数提供给电动工具的中央处理单元(CPU)。IMU与CPU电气耦合并位于电动工具本体上,由此CPU可以基于预先编程并安装的运动检测程序,通过处理从传感器接收到的测量参数来实现对电动工具异常状态例如反冲或坠落的检测,并相应地执行控制,例如切断或减小电池对电动机的供电。然而,由于IMU是集成在电动工具中并且运动检测程序是由电动工具本体上的CPU实现的,因此导致这种运动检测机制只能适用于当前的电动工具,而不能适配于未安装有运动检测程序的其它电动工具。特别地,由于CPU作为通用处理器还需要执行预设的其它功能,例如按照某一通信协议的控制或联网等,因此由电动工具本体上的CPU来执行运动检测程序不但增加了CPU的负担,而且为CPU的软件更新带来不必要的负担,例如在更新或增加新的运动检测程序时,可能需要考虑CPU的通信协议等。而本申请提供可灵活地适配于不同电动工具的运动检测方案。
图1示出本申请的电动工具中可以采用的一种改进的惯性测量单元IMU,除了包含传统的一种或多种运动传感器SNS之外,惯性测量单元IMU还包括 一个可编程的嵌入式控制器例如数据信号处理模块(Fuser Core)或其它类型微型控制器,以下统一简称为FUS。按照本申请的示例,将基于多个传感器SNS的运动检测程序例如坠落检测程序DropProgram、反冲检测程序Kick-BackProgram等编程到FUS上。在本例中,FUS与传感器SNS集成在一起,例如形成单芯片级封装。IMU中的多个传感器SNS用于检测电动工具的当前状态并输出运动参数MotionVar。在一个示例中,集成在IMU中的传感器包括但不限于3轴陀螺仪、3轴加速度计等,并且FUS采用可编程微控制器例如超低功耗的32位单片机实现。这里微控制器可以专门针对传感器融合和运动识别算法优化定制,与标准微控制器相比,其耗电显著降低。在该示例中,可利用3轴加速度计获取3轴方向上的加速度α,并且利用3轴陀螺仪获取围绕3轴的角速度ω。FUS执行运动检测操作,例如执行坠落检测程序、反冲检测程序,通过对IMU中的多个传感器输出的运动参数例如加速度或角速度等进行处理,从而生成关于电动工具的当前运动状态的指示信号。
在一个示例中,包含有可编程嵌入式控制器FUS的惯性测量单元IMU作为一个单独的部件可安装于电动工具或电动工具的电池中,并由电池供电。由此,当惯性测量单元IMU中的控制器FUS检测到异常状态例如坠落或反冲时,将生成的状态指示信号作为中断提供给位于电动工具或电池内部的CPU,从而CPU可以直接基于信号而做出相应的响应动作。由此,可以解除由CPU直接执行坠落或反冲检测的负担。
在电动工具的实际使用中,通常用户需要收集关于他们的电动工具设备的信息,例如工具的使用效率、故障统计、电量监测以及定位等。这些信息通常是通过位于电动工具上的无线接口(例如无线收发器,包括蓝牙等)来实现信息的收集或控制指令的发送。然而这些通信模块位于电动工具本体上为通信的扩展带来不便,同时对于不具有无线接口的电动工具而言,则无法实现信息采集。
因此,在本申请一个优选实施方式中,为了可在不同的电动工具上实现安全控制与通信,这里充分地利用电动工具的电池的便利性和可适配到不同的标准工具的特性,本实例提供一种具有安全控制与通信功能的电池,由此可利用电池来实现对电动工具的安全保护以及与外界的通信。在本例中,将IMU与通信模块以及通用处理器CPU集成在一起,从而由集成的CPU完成 为实现电动工具控制所预设的功能。
图2示出根据本申请的一种实施方式的适用于电动工具的电池100。电池100配置为能够被可拆卸地附接到电动工具本体。如图2所示,电池100包括一组或多组电池单元101、用于控制电池单元101的输出功率或电流的开关网络102,其中开关网络102配置为能够电气地耦合到电动工具的电动机SWN,以向电动机SWN提供电池单元101的输出功率。由此在用户触发电动工具的开关时,可利用电池单元101为电动机SWN供电,以使得电动机SWN驱动电动工具的工具头转动进行相应作业。此外,电池100还包括控制设备200,控制设备200集成于电池单元101,即永久性或可拆卸地装配在电池单元101上。如图2所示,控制设备200包括二个部分,即惯性测量单元(IMU)300以及通信/控制模块400。
如图2所示,IMU 300包括多个传感器SNS,例如3轴加速度计301、3轴陀螺仪302,以及用于对运动状态进行计时的定时器303。此外,IMU 300还集成有微控制器(FUS)304。在本例中,FUS 304例如采用可编程微控制器例如32位单片机实现,其中3轴加速度计302获取3轴方向的加速度α,并且3轴陀螺仪获取围绕3轴的角速度ω。FUS 304执行运动检测操作,例如坠落检测程序或反冲检测程序,通过对IMU 300中的多个传感器至少一部分输出的运动参数例如加速度来诊断设备的运动状态,从而生成关于当前运动状态的指示信号。通信/控制模块400包括实现通用控制的中央处理单元或处理器401以及通用通信模块或通信单元,例如WiFi模块402、窄带-物联网(NB-IoT)模块403以及定位模块404等。所述处理器401配置为能够通过所述通信单元向外部设备发送与电动工具或电池相关的数据以及从外部设备接收与电动工具或电池相关的指令,或者修改与电动工具或电池相关的工作参数。当然集成在控制设备200中的通信模块不限于上述示例,例如还可以包括蓝牙模块或无线蜂窝模块等。由此,在将电池100附接到电动工具本体上时,电动工具的全部控制与通信功能可实现在电池100上以形成智能电池。在电池100组合于电动工具上时,在电动工具作业过程中,电池100可执行坠落监控程序、反冲监控程序等安全功能。
以下结合图3来说明根据本申请的一个示例的可由电池100执行的坠落监控程序。如图3所示,坠落监控程序起始于步骤S301。
在步骤S303,FUS 304接收到来自3轴加速度计301输出的当前时刻的三个轴向上的加速度信息α。
在步骤S305,对加速度信息α进行必要的过滤和标准化处理,得到对应于当前时刻的处理后的加速度信息α。
在步骤S307,FUS 304基于处理后的加速度信息α判断电动工具是否处在坠落状态。
这里需要指出,假定3轴加速度计301自身的三个轴线为X(横向)轴、Y(纵向)轴、Z(垂向)轴,3轴加速度计301输出的加速度信息α包含在这三个轴线方向上的加速度信息、即加速度分量(αx、αy、αz)。在3轴加速度计301以水平姿势处在静止状态时,三个加速度分量为(0、0、1),单位为重力加速度。在3轴加速度计301以其它姿势处在静止状态时,满足(αx 2y 2z 2)1/2=1。在3轴加速度计301由静止状态坠落时,考虑到风阻或其它阻力,输出的三个加速度分量满足(αx 2y 2z 2)1/2接近于0。因此,可以基于作为加速度表征的(αx 2y 2z 2)1/2的值来判断电动工具的坠落状态。例如,设置一个小于1的加速度阈值αTH,例如0.5、0.3、0.2、0.1或诸如此类的值,当(αx 2y 2z 2)1/2TH时,可以判断电动工具处在坠落状态。加速度阈值αTH可以根据实验测试来设置。
在步骤S307中如果判断结果为“是”,即判断电动工具处在坠落状态,则程序前进到步骤S309。如果步骤S307中判断结果为“否”,即判断电动工具不是处在坠落状态,则程序转回步骤S303。
在步骤S309,定时器303计时。
在步骤S311,判断定时器303的计时是否达到一预先设定的时间阈值TTH1、并且在定时器303开始计时到达到时间阈值TTH1期间持续满足(αx 2y 2z 2)1/2TH
如果步骤S311中判断结果为“是”,则前进到步骤S313。
在步骤S311中判断结果为定时器303的计时尚未达到所述预先设定的时间阈值TTH1的情况下,则返回步骤S303,由此经步骤S303至S307实现对加速度信息α的持续监测并在S307中的判断结果为“是”的情况下经步骤S309实现定时器303持续计时;如果在计时达到时间阈值TTH1时,(αx 2y 2z 2)1/2不再满足<αTH而是变为接近或等于1,则表明电动工具可能恢复至正常状 态或风险降低,则复位定时器303,同时返回步骤S303,继续监测3轴加速度计301的输出。
在步骤S313,FUS 304输出代表发生坠落的状态指示信号Stat_SIG1,并继续监测计时与加速度信息。状态指示信号Stat_SIG1作为中断提供给CPU 401,CPU 401在接收到状态指示信号Stat_SIG1后生成开关控制信号SIGCTR1,以便控制开关网络102减小电池单元101向电动机SWN的供电电流,从而降低电动机SWN的转速和扭矩输出。这里降低电动机SWN转速的目的在于降低可能发生风险的预防步骤。
在步骤S315,判断计时是否达到另一预先设定的时间阈值TTH2(TTH2大于TTH1)。如果判断结果为“是”,则程序前进到步骤S317;如果判断结果为“否”,则程序转回步骤S303。
在步骤S317,判断是否仍满足(αx 2y 2z 2)1/2TH;如果判断结果为“是”,则程序前进到步骤S319。
在步骤S319,FUS 304输出代表坠落持续的状态指示信号Stat_SIG2,CPU 401接收到状态指示信号Stat_SIG2后生成开关控制信号SIGCTR2,以便控制开关网络102切断电池单元101向电动机SWN的供电,从而使电动机SWN停止工作,从而避免对电动工具或其它对象的损坏。
如果在步骤S317中判断结果为“否”,则FUS 304输出代表坠落结束的状态指示信号Stat_SIG3,该信号Stat_SIG3例如可以是一个复位信号,CPU 401接收到Stat_SIG3后生成控制信号SIGCTR3控制开关网络102恢复电池单元101向电动机SWN的正常供电,从而使电动机SWN恢复正常转速,同时复位定时器303,然后程序转回步骤S303。
在本例中,时间阈值TTH1、TTH2代表了电动工具坠落的时间,显然时间越长,则坠落高度越大,因此对电动机SWN可能造成的损伤越大,例如这种情况可能发生于电动工具从高处(例如梯子上)作业的工人手中坠落的情形,通常可以设定TTH1为坠落时间超过0.5秒,而TTH2为坠落时间超过2秒。
本领域技术人员可以根据具体应用对上面描述的坠落监控程序作出各种适应性修改。例如,对于上面通过3轴加速度计301输出的加速度信息α判断电动工具的坠落状态的方案来说,还可以组合由加速度信息α得到的速度信息作为辅助的有效性判断依据以提高坠落判断的准确性和可靠性。例如,可以 利用V=(1-(αx 2y 2z 2)1/2)对时间积分作为速度表征。在某个时间阈值(例如TTH1和/或TTH2),如果(αx 2y 2z 2)1/2TH且V大于一预设的速度阈值VTH,可以判断电动工具处在坠落状态。如果在这个时间阈值,虽然(αx 2y 2z 2)1/2TH、但V没有达到速度阈值VTH,可以在该时间阈值之后的时间点重复上述判断。
此外,在前面描述的示例中,在时间阈值TTH1、TTH2分别减小和切断电池单元101向电动机SWN的供电。然而,也可以仅设置一个时间阈值,在达到该时间阈值后直接切断电池单元101向电动机SWN的供电。
此外,在前面描述的示例中,存在恢复电池单元101向电动机SWN正常供电的选项。然而,这一选项是可以取消的。
此外,还可以将监测例如3轴陀螺仪302输出的角度信号作为辅助的有效性判断依据以提高坠落判断的准确性和可靠性。例如,在某个时间阈值基于加速度信息α、并佐以3轴陀螺仪302的某条或多条轴线上的角速度变化是否超过角速度阈值,来判断坠落状态。
以下结合图4来说明根据本申请的一个示例的可由电池100执行的反冲监控程序。电动工具的反冲是指,在电动工具操作中,工作人员脱手,导致电动工具沿着与其工具头的旋转方向相反的方向转动。如图4所示,反冲监控程序起始于步骤401。
在步骤S403,FUS 304接收到来自3轴陀螺仪302输出的当前时刻的角速度信息ω。
在步骤S405,对角速度信息ω进行必要的过滤和标准化处理。
在步骤S407,基于处理后的角速度信息ω判断电动工具是否处在反冲状态。
这里需要指出,假定3轴陀螺仪302自身的三个轴线为X、Y、Z轴,3轴陀螺仪302输出的角速度信息ω包含绕这三个轴线的角速度分量(ωx、ωy、ωz)。
在电动工具中,可以将3轴陀螺仪302安装成使得其某个轴线(例如Y轴)与电动工具的工具头的旋转轴线大致上平行甚至重合。在这种情况下,可以在绕该轴线(例如Y轴)的角速度(例如ωy)的数值(绝对值)或突变量大于一预设的角速度阈值时,判断电动工具处在反冲状态。
然而,很多情况下,受电动工具中各元件布局所限,不能保证3轴陀螺仪302的某一个轴线与电动工具的工具头的旋转轴线大致平行或重合。在这种情况下,可将(ωx 2y 2z 2)1/2作为角速度表征,在(ωx 2y 2z 2)1/2的数值或突变量大于一预设的角速度阈值时,判断电动工具处在反冲状态。
在步骤S407中如果判断结果为“是”,即判断电动工具处在反冲状态,则程序前进到步骤S409。如果步骤S407中判断结果为“否”,即判断电动工具不是处在反冲状态,则程序转回步骤S403。
在步骤S409,定时器303计时。
在步骤S411,判断定时器303的计时是否达到一预先设定的时间阈值。如果步骤S411中判断结果为“是”,则前进到步骤S413。在步骤S411中判断结果为“否”,则返回步骤S407。
在步骤S413,FUS 304输出代表发生反冲的状态指示信号,该状态指示信号作为中断提供给CPU 401。
在步骤S415,CPU 401基于代表反冲的状态指示信号生成开关控制信号,以便控制开关网络102切断电池单元101向电动机SWN的供电电流。
本领域技术人员可以根据具体应用对上面描述的反冲监控程序作出各种适应性修改。例如,对于上面通过来自3轴陀螺仪302的角速度(采用绕3轴陀螺仪302某个轴线的角速度的绝对值,或是采用(ωx 2y 2z 2)1/2)判断电动工具的反冲状态的方案来说,还可以组合由角速度得到的角度作为辅助的有效性判断依据以提高反冲判断的准确性和可靠性。例如,可以利用角速度对时间积分作为角度表征。在某个时间阈值(可以与步骤S411中的时间阈值相同),如果角速度大于角速度阈值且角度大于一预设的角度阈值,可以判断电动工具处在反冲状态。如果在这个时间阈值,虽然角速度大于角速度阈值、但角度没有达到角度阈值,可以在该时间阈值之后的另一时间阈值重复上述判断。
此外,在前面描述的反冲监控程序示例中,也可以类似于坠落监控程序中那样设置不同的时间阈值,在反冲状态达到相应的时间阈值后,分别减小和切断电池单元101向电动机SWN的供电。此外,作为备选项(非必要项),也可以类似于坠落监控程序中那样,通过角速度随时间的变化(例如变为小于一个预设的接近于0的阈值)而判断反冲结束,控制开关网络102恢复电 池单元101向电动机SWN的正常供电。
此外,对于在坠落监控程序和反冲监控程序中,还可以通过视频和/或音频输出来提示电动工具的坠落或反冲状态。
此外,本申请也可以采用其它形式的传感器来提供3轴加速度和3轴角速度信息。
在上述示例中,以坠落和反冲监控为例来多说明了本申请的应用,然而利用电池100集成的控制设备200,可以在IMU 300的FUS 304中集成多个运动检测程序,并且通过输出具有不同的信号值的运动状态信号来指示相应的多个不同的运动状态。运动状态信号所能指示的运动状态包括前面描述的坠落和反冲状态、以及其它需要处理的异常运动状态,还包括不需要处理的正常运动状态(诸如操作人员可控地移动电动工具等)。
前面提及的各状态指示信号具有统一参数格式但不同信号参数值以分别指示不同的运动状态。
在本申请的方案中,CPU 401可仅基于信号值来执行相应的控制,因此极大地简化了电动工具本身CPU的计算负担。
按照本申请的进一步的示例,利用控制设备200中的通信模块,安装有电池100的电动工具可实现与外部通信终端的通信。如图5所示,利用装配有控制设备200的电池,电动工具10可注册到外部通信终端例如用户手机500,并与其进行通信。例如在利用近距离通信的网络例如WiFi情况下,可以利用WiFi模块402实现与手机500的通信,从而电池100可以向手机500传送与电动工具或电池有关的数据,例如电动工具状态、电动工具操作统计、电动工具标识、存储的电动工具使用信息、电动工具维护数据等,这些数据可以存储于位于电池100内的存储器内,也可以存储于电动工具本体上的存储器内并可由电池100的处理器401访问。因此,使用手机,用户可以访问存储的电动工具使用信息或电动工具维护数据。使用该工具数据,用户可以确定电动工具设备100至今的使用方式,是否建议维护或过去已经进行了维护,并且识别故障部件或某些性能问题的其它原因。此外,通过手机500,还可以通过蜂窝网络实现与远程服务器600例如电动工具100的服务商服务器的通信,例如利用手机500将电动工具100注册到远程服务器上。在另一示例中,在模块400配置有远程通信模块例如NB-IoT模块情况下,控制设备200还可 以直接注册到远程服务器上。
回到图2,在本申请的进一步示例中,在控制设备200中还可以提供有一个更新单元405,该更新单元405用于从外部设备例如手机接收电动工具配置,例如操作参数、安全参数、选择工具模式等,从而控制电动工具按预定配置操作。进一步,更新单元405可以配置为通过所述通信单元从外部设备接收更新或扩展电动工具功能的控制命令。例如,更新单元405可以将从服务器600接收的电动工具的软件更新、升级或增加的运动检测程序例如坠落检测程序、反冲检测程序重新编程或烧录到FUS 304中,从而实现对电动工具的功能的扩展。这里,虽然示出的更新单元405是位于模块400内,但在另一示例中,更新单元405也可设置于IMU 300内。作为一种实现方式,更新单元405可以由处理器401或FUS 304来实现。在本申请的上述示例中,FUS 304是以可编程的控制器实现的,但在另一示例中,也可以由通用处理器实现,其通过执行位于IMU 300内的存储器中的程序来实现本申请提出的运动状态检测。
在本申请的进一步示例中,CPU 401配置为还能够监控测电池单元101的温度,例如通过电池单元101的温度监控电路中的NTC(负温度系数)电阻的电阻值实现温度监控。当CPU 401监控到电池单元101的温度高于预设的温度阈值时,能够控制减小或切断电池单元101的输出电流,以使电池单元101降温到允许范围内。
根据本申请,用于电动工具的保护机制集成于电动工具的电池,能够在发生意外时控制电池供电以防止工具或其它对象受损。此外,本申请的电池适用于不同的电动工具,并且易于维护与管理。此外,由于电池一侧的控制器和处理器承担了大量的处理工作,极大地简化了电动工具本身CPU的负担。
虽然这里参考具体的实施方式描述了本申请,但是本申请的范围并不局限于所示的细节。在不偏离本申请的基本原理的情况下,可针对这些细节做出各种修改。

Claims (20)

  1. 一种用于电动工具的电池,包括:
    电池单元(101);
    控制设备(200),其集成于所述电池单元(101),所述控制设备(200)包括惯性测量单元(300)和通信与控制模块(400),其中所述惯性测量单元(300)包括:至少一个传感器(301,302),配置为测量所述电动工具的至少一个运动参数,以及控制器(304),配置为接收所述至少一个传感器(301,302)输出的运动参数,并生成指示所述电动工具的运动状态的状态指示信号;所述通信与控制模块(400)包括:通信单元(402,403,404),配置为与外部设备通信,以及处理器(401),配置为接收所述状态指示信号及生成开关控制信号;以及
    开关网络(102),其配置为能够接收由所述控制设备(200)生成的所述开关控制信号并且基于所述开关控制信号控制所述电池的电能输出。
  2. 如权利要求1所述的电池,其中,所述惯性测量单元(300)还包括定时器(303),配置为测量所述运动状态的持续时间;
    其中,所述控制器(304)配置为基于所述运动参数与所述持续时间生成不同的状态指示信号;
    其中,所述处理器(401)配置为基于所述不同的状态指示信号而生成不同开关控制信号。
  3. 如权利要求2所述的电池,其中,所述控制器(304)配置为当所述持续时间超出预设的时间阈值时输出状态指示信号,使得所述处理器(401)基于所述状态指示信号生成开关控制信号来控制所述开关网络(102)切断所述电池的电能输出。
  4. 如权利要求2所述的电池,其中,所述控制器(304)配置为当所述持续时间超出第一时间阈值时,输出第一状态指示信号,使得所述处理器(401)基于所述第一状态指示信号生成第一开关控制信号来控制所述开关网络(102) 减小所述电池的电能输出;以及
    所述控制器(304)进一步配置为当所述持续时间超出大于所述第一时间阈值的第二时间阈值时输出第二状态指示信号,使得所述处理器(401)基于所述第二状态指示信号生成第二开关控制信号来控制所述开关网络(102)切断所述电池的电能输出。
  5. 如权利要求3或4所述的电池,其中,所述处理器(401)配置为在减小或切断所述电池的电能输出之后,基于所述运动参数指示正常运动状态,生成恢复电能输出的开关控制信号以控制所述开关网络(102)恢复所述电池的电能输出。
  6. 如权利要求1-5中任一项所述的电池,其中,所述运动参数包括来自所述传感器的3轴加速度(αx、αy、αz),并且所述控制器(304)配置为在(αx 2y 2z 2)1/2小于预设的加速度阈值时生成并输出所述状态指示信号,所述状态指示信号代表电动工具坠落。
  7. 如权利要求6所述的电池,其中,所述控制器(304)进一步配置为在(1-(αx 2y 2z 2)1/2)对时间的积分达到预设的速度阈值时确认所述状态指示信号有效,并且仅在确认所述状态指示信号有效时生成并输出代表电动工具坠落的所述状态指示信号。
  8. 如权利要求1-7中任一项所述的电池,其中,所述运动参数还包括来自所述传感器的3轴角速度(ωx、ωy、ωz),所述控制器(304)配置为在3轴角速度之一或(ωx 2y 2z 2)1/2的数值或突变量达到预设的角速度阈值时生成并输出所述状态指示信号,所述状态指示信号代表电动工具反冲。
  9. 如权利要求8所述的电池,其中,所述控制器(304)进一步配置为在3轴角速度之一或(ωx 2y 2z 2)1/2对时间的积分达到预设的角度阈值时确认所述状态指示信号有效,并且仅在确认所述状态指示信号有效时生成并输出代表电动工具反冲的所述状态指示信号。
  10. 如权利要求1-9中任一项所述的电池,其中,所述控制器(304),配置为能够生成具有统一参数格式但不同信号参数值的不同的状态指示信号以分别指示不同的运动状态。
  11. 如权利要求1-10中任一项所述的电池,其中,所述控制器(304)为专门针对传感器融合和运动识别算法优化定制的可编程微控制器。
  12. 如权利要求1-11中任一项所述的电池,其中,所述控制设备(200)还包括:更新单元(405),配置为通过所述通信单元从所述外部设备接收更新或扩展电动工具功能的控制命令。
  13. 如权利要求12所述的电池,其中,所述更新单元(405)设置于所述通信与控制模块(400)内,或者设置于所述惯性测量单元(300)内。
  14. 如权利要求12所述的电池,其中,所述更新单元(405)由所述处理器(401)或所述控制器(304)来实现。
  15. 如权利要求1-14中任一项所述的电池,其中,所述处理器(401)配置为通过所述通信单元向外部设备发送与所述电动工具或所述电池相关的数据以及从外部设备接收与所述电动工具或所述电池相关的指令,或者修改与所述电动工具或所述电池相关的工作参数。
  16. 如权利要求1-15中任一项所述的电池,其中,所述通信单元包括以下中的至少一个:
    蓝牙模块;
    NB-IoT模块;
    无线蜂窝模块;
    定位模块。
  17. 如权利要求1-16中任一项所述的电池,其中,所述传感器(301,302)与所述控制器(304)集成在单个芯片封装内。
  18. 如权利要求1-17中任一项所述的电池,其中,所述处理器(401)配置为监控所述电池单元(101)的温度,并且在监控到所述电池单元(101)的温度高于预设的温度阈值时,减小或切断所述电池单元(101)的电能输出。
  19. 如权利要求18所述的电池,其中,所述处理器(401)配置为通过所述电池单元(101)的温度监控电路中的NTC电阻的电阻值监控所述电池单元(101)的温度。
  20. 一种电动工具,包括:
    电动机;
    如权利要求1-19中任一项所述的电池,配置为向所述电动机输出电能;
    其中,所述电池(100)中的所述开关网络(102)基于所述开关控制信号来控制所述电池向所述电动机的电能输出。
PCT/CN2023/075882 2022-02-25 2023-02-14 用于电动工具的电池及电动工具 WO2023160433A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202220391878.2U CN218827629U (zh) 2022-02-25 2022-02-25 电动工具及其可拆卸地适配于电动工具的电池
CN202220391878.2 2022-02-25

Publications (1)

Publication Number Publication Date
WO2023160433A1 true WO2023160433A1 (zh) 2023-08-31

Family

ID=87253588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075882 WO2023160433A1 (zh) 2022-02-25 2023-02-14 用于电动工具的电池及电动工具

Country Status (2)

Country Link
CN (1) CN218827629U (zh)
WO (1) WO2023160433A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111226626A (zh) * 2018-11-28 2020-06-05 南京德朔实业有限公司 链锯、电动工具以及电动工具的控制方法
CN111615368A (zh) * 2018-01-16 2020-09-01 德普伊爱尔兰无限公司 用于外科动力工具的可替换电池组
CN213616506U (zh) * 2017-10-26 2021-07-06 米沃奇电动工具公司 电动工具
CN113169574A (zh) * 2020-01-13 2021-07-23 深圳市大疆创新科技有限公司 电池、可移动装置和组件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN213616506U (zh) * 2017-10-26 2021-07-06 米沃奇电动工具公司 电动工具
CN111615368A (zh) * 2018-01-16 2020-09-01 德普伊爱尔兰无限公司 用于外科动力工具的可替换电池组
CN111226626A (zh) * 2018-11-28 2020-06-05 南京德朔实业有限公司 链锯、电动工具以及电动工具的控制方法
CN113169574A (zh) * 2020-01-13 2021-07-23 深圳市大疆创新科技有限公司 电池、可移动装置和组件

Also Published As

Publication number Publication date
CN218827629U (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
JP5564955B2 (ja) 保護監視回路、電池パック、二次電池監視回路、及び保護回路
CN104714577B (zh) 温湿度测控装置、系统及温湿度测控方法
JP4321616B2 (ja) 電池パックおよび通信方法
CN203416007U (zh) 一种移动电源
WO2014180243A1 (zh) 一种移动终端
KR101616545B1 (ko) 야외운동기구의 모니터링 단말장치 및 이를 이용한 야외운동기구의 관리 시스템
EP3223202A1 (en) Power tool system
JP6002959B1 (ja) ルーター
RU2698281C2 (ru) Устройство дистанционного управления
JP4771548B2 (ja) 2次電池の寿命を延長させる無線通信端末及び送信制御プログラム
WO2023160433A1 (zh) 用于电动工具的电池及电动工具
CN106654410A (zh) 一种电池智能化控制系统
KR102582028B1 (ko) 안전모용 충격감지장치
CN106959622B (zh) 控制电动工具的系统
CN111011968A (zh) 一种智能安全帽及控制智能安全帽的操作系统
JP5254655B2 (ja) 充電装置、電子機器、二次電池パック、二次電池パック保安管理システム、および、二次電池パック保安管理方法
CN113295325B (zh) 一种电池包压力监测装置及方法
CN211237052U (zh) 无线火灾集中监控报警装置
CN113038439A (zh) 电动工具的数据传输方法、装置、电动工具及存储介质
CN207982769U (zh) 一种数控机床设备
TW201803247A (zh) 不斷電的電源控制方法及具不斷電之電源的電子裝置
CN217083980U (zh) 一种便携式无线测温终端
CN218008272U (zh) 一种髋部保护器传感装置
CN215660083U (zh) 电池包及电动工具
US20240210441A1 (en) Wall-mounted controller with anti-tamper feature

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759058

Country of ref document: EP

Kind code of ref document: A1