WO2023160367A1 - 一种数据流转方法和系统 - Google Patents

一种数据流转方法和系统 Download PDF

Info

Publication number
WO2023160367A1
WO2023160367A1 PCT/CN2023/074684 CN2023074684W WO2023160367A1 WO 2023160367 A1 WO2023160367 A1 WO 2023160367A1 CN 2023074684 W CN2023074684 W CN 2023074684W WO 2023160367 A1 WO2023160367 A1 WO 2023160367A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
node
data context
component
injected
Prior art date
Application number
PCT/CN2023/074684
Other languages
English (en)
French (fr)
Inventor
周勋
李青
胡云坤
李鹏飞
Original Assignee
杭州未名信科科技有限公司
浙江省北大信息技术高等研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州未名信科科技有限公司, 浙江省北大信息技术高等研究院 filed Critical 杭州未名信科科技有限公司
Publication of WO2023160367A1 publication Critical patent/WO2023160367A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/31Indexing; Data structures therefor; Storage structures
    • G06F16/316Indexing structures
    • G06F16/322Trees

Definitions

  • the embodiments of the present application relate to the technical field of program development, and in particular to a data transfer method and system.
  • Low-code development platform is a development platform that can quickly generate applications without coding (0 code) or with a small amount of code.
  • An approach to application development through visualization see Visual Programming Languages, which enables developers of various experience levels to create web and mobile applications through a graphical user interface, using drag-and-drop components and model-driven logic.
  • the low-code market is growing rapidly.
  • the low-code platforms on the market can customize pages to complete system construction through rich component styles and drag-and-drop capabilities.
  • the current data flow capability in the low-code platform is very limited, and data interaction in fixed scenarios can only be realized in a fixed format or agreed rules; the degree of data coupling with the back-end interface Higher, the backend needs to adjust the code or configuration to realize the conversion to replace a data structure, and the development cost is relatively high; the communication between components cannot be communicated or the communication is not flexible enough, and the business requirements in complex scenarios are difficult to realize.
  • the embodiments of the present application provide a data transfer method and system, which can effectively improve the data transfer capability in a low-code platform, and flexibly realize data interaction requirements in complex business scenarios.
  • a data flow method comprising:
  • the data to be injected includes target node identification and data to be injected;
  • the data context node corresponding to the target node identifier does not exist in the data context tree, then create a new data context node corresponding to the target node identifier, store the target node identifier in the parent node, and inject the required The data is injected into the newly created data context node.
  • the method also includes:
  • the source of the data to be injected includes at least a backend interface, a static file or a component module; if the source is a component module, then the data to be injected is a basic attribute of the component module.
  • the attributes of the data context node include self attributes and reference attributes
  • the reference attribute is empty
  • the reference attribute is a collection of self attributes and reference attributes of the parent node to which the child node belongs.
  • the method includes:
  • the data context module receives the data to be injected of the first component, and the data to be injected of the first component includes the target node identifier and the basic attributes of the first component;
  • the data context module determines that there is no data context node corresponding to the target node identifier in the data context tree, then create a data context node corresponding to the target node identifier and store the target node identifier in the parent node, Inject the basic attribute of the first component into the self attribute of the established data context node; if it is determined that there is a data context node corresponding to the target node identifier in the data context tree, then inject the first component Inject the basic attributes of the data context node into its own attributes;
  • the data context module calls the basic attribute of the first component from the data context node where the basic attribute of the first component is located according to the data path corresponding to the basic attribute of the first component in the data context tree attribute, sending the invoked basic attribute of the first component to the second component.
  • a data transfer system includes:
  • the data context tree setting module is used to set the data context tree in the global variable of the low-code platform, and the data context tree includes at least a root node;
  • a data acquisition module configured to acquire data to be injected, the data to be injected includes target node identification and data to be injected;
  • a first data injection module configured to inject the data to be injected into the data context node if there is a data context node corresponding to the target node identifier in the data context tree;
  • the second data injection module is configured to create a new data context node corresponding to the target node identifier if the data context node corresponding to the target node identifier does not exist in the data context tree, and store the target node in the parent node identify, and inject the data to be injected into the newly created data context node.
  • the system also includes:
  • the data acquisition module is configured to determine the data context node where the data to be acquired is located and the corresponding data path; and acquire the data to be acquired from the data context node according to the data path.
  • the source of the data to be injected includes at least a backend interface, a static file or a component module; if the source is a component module, then the data to be injected is a basic attribute of the component module.
  • an electronic device including: a memory, a processor, and a computer program stored in the memory and operable on the processor, and the processor runs the The computer program is executed to implement the method described in the first aspect above.
  • a computer-readable storage medium on which computer-readable instructions are stored, and the computer-readable instructions can be executed by a processor to implement the method described in the above-mentioned first aspect .
  • the embodiment of the present application provides a data flow method and system, by setting a data context tree in the global variables of the low-code platform, the data context tree includes at least a root node; to obtain the data to be injected, the The data to be injected includes the target node identifier and the data to be injected; if there is a data context node corresponding to the target node identifier in the data context tree, inject the data to be injected into the data context node; if the If there is no data context node corresponding to the target node identifier in the data context tree, then create a new data context node corresponding to the target node identifier, store the target node identifier in the parent node, and inject the data that needs to be injected into In the newly created said data context node. Effectively improve the data flow capability in the low-code platform, and flexibly realize the data interaction requirements in complex business scenarios.
  • FIG. 1 is a schematic flow chart of a data transfer method provided in an embodiment of the present application
  • FIG. 2 is an example diagram of a data-driven model provided by an embodiment of the present application
  • FIG. 3 is an example diagram of a data context model provided by an embodiment of the present application.
  • FIG. 4 is an example diagram of a data context tree binding data model provided by an embodiment of the present application.
  • FIG. 5 is an example diagram of a component model provided by an embodiment of the present application.
  • FIG. 6 is a block diagram of a data transfer system provided by an embodiment of the present application.
  • FIG. 7 shows a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • Fig. 8 shows a schematic diagram of a computer-readable storage medium provided by an embodiment of the present application.
  • Figure 1 shows a data flow method provided by the embodiment of the present application, the method includes:
  • Step 101 setting a data context tree in a global variable of the low-code platform, the data context tree including at least a root node;
  • Step 102 Obtain the data to be injected, the data to be injected includes the target node identifier and the data to be injected;
  • Step 103 If there is a data context node corresponding to the target node identifier in the data context tree, inject the data to be injected into the data context node;
  • Step 104 If the data context node corresponding to the target node identifier does not exist in the data context tree, create a new data context node corresponding to the target node identifier, store the target node identifier in the parent node, and save the The data to be injected is injected into the newly created data context node.
  • the method further includes: determining a data context node where the data to be acquired is located and a corresponding data path; and acquiring the data to be acquired from the data context node according to the data path.
  • the source of the data to be injected includes at least a backend interface, a static file, or a component module; if the source is a component module, the data to be injected is a basic attribute of the component module.
  • the attributes of the data context node include self attributes and reference attributes; if the data context node is a parent node, the reference attribute is empty; if the data context node is a child node, then The reference attribute is a collection of the own attribute and the reference attribute of the parent node to which the child node belongs.
  • the method includes:
  • the data context module receives the data to be injected of the first component, and the data to be injected of the first component includes the target node identifier and the basic attributes of the first component;
  • the data context module determines that the data context corresponding to the target node identifier does not exist in the data context tree node, then establish the data context node corresponding to the target node identifier and store the target node identifier in the parent node, and inject the basic attribute of the first component into the self attribute of the established data context node; if determining that there is a data context node corresponding to the target node identifier in the data context tree, injecting the basic attribute of the first component into the own attribute of the data context node;
  • the data context module calls the basic attribute of the first component from the data context node where the basic attribute of the first component is located according to the data path corresponding to the basic attribute of the first component in the data context tree attribute, sending the invoked basic attribute of the first component to the second component.
  • a component can call the data attributes of other components through the data context module.
  • the data context module receives data according to a global variable receiving function, and the global variable receiving function is determined according to the target data context node identifier and the injected data.
  • the data context module calls data according to a global variable calling function, and the global variable calling function is determined according to a target data context node identifier and a data path for calling data.
  • the data transfer method provided by the embodiment of the present application binds the data nodes in the data context module by the component, effectively realizes the design mode of the data-driven component, and improves the data transfer capability in the low-code platform.
  • FIG. 2 shows a schematic diagram of a data-driven model provided by an embodiment of the present application.
  • the whole model revolves around the data context module.
  • the data context module is used for data collection on low-code platforms, and its data sources can be in any way such as back-end interfaces, static files, and component modules.
  • the external data structure of the data context module can provide components with the only path to bind data, and the properties of the component module also support inputting data into the data context module.
  • Other components input data into the data context module by binding any component.
  • the component module is a module of the low-code platform itself. The embodiment of the present application focuses on the parts related to data flow in the component modules.
  • the complete data transfer process involves the following aspects:
  • the data context tree is initialized.
  • the data context tree is the basic data structure in the data context module.
  • FIG. 3 shows a schematic diagram of a data context model provided by an embodiment of the present application.
  • each dataset has its own child dataset and parent dataset.
  • a tree-type context model structure is formed through the parent-child relationship.
  • the data set without a parent is a root data set, and the data set without a child is a leaf data set.
  • each identifiable data set has two attributes: self attribute and reference attribute.
  • the data in its own attributes is owned or set by the dataset when it is initially created, representing the data owned by the dataset.
  • the reference attribute refers to the set of own attributes and reference attributes owned by the parent dataset that the sub-dataset refers to.
  • an empty root data set is generated.
  • the node of the data set in the data context is identified as D 0 .
  • This node has the attribute data for storing its own attributes, and also has children of the neighbor relationship for storing Child dataset ID. The child children are used by the parent to store the subset ID.
  • data is entered into the data context tree.
  • the data context module defines the way of data input as set, and the method of global access to data input is $TREE.set.
  • the input data can come from data sets such as backend interfaces and static files, or from component input, etc.
  • the process of data input needs to specify the corresponding data context node, which is described as the expression of the function $TREE.set(D n , Tdata), where D n is the data context node, and Tdata is the data to be input.
  • Figure 3 shows an internal diagram of the data context model.
  • data2 and data3 are subsets of data1, data3 is a subset of data1 and data2, and data4 is a subset of data1 and data3.
  • data2 also has reference attributes in addition to its own attributes.
  • the reference attribute of data2 is a collection of its own attributes (a, b) and reference attributes (none) owned by the parent dataset data1 referenced by the sub-dataset data2. All datasets are a selectable node.
  • the data context module has a special case when inputting data. As shown in Figure 3, when the self-attribute and the reference attribute in a data set in data3 have the same name, the self-attribute will override the reference attribute during parsing, and the reference attribute a in data4 The value of will be the value of its own attribute a in data3, and its own attribute a in data1 will not be affected, and the data will be transmitted in a chain structure.
  • the data in the data context tree is obtained.
  • the data context tree needs to define the data acquisition method get, and the global data acquisition method is $TREE.get.
  • the global data acquisition method is $TREE.get.
  • any data set (a collection of its own attributes plus reference attributes) is stored in the data context module in a tree structure. Brackets are used to express the hierarchical structure within the dataset. When it is necessary to obtain a certain attribute value in the data context node, it can be obtained by specifying the data node identifier D 1 and the data path path.
  • the method of binding attribute values in Figure 4 is expressed as the function $TREE.get(D 1 ,b,f,h). The data path path is (b, f, h). Similarly, the global data acquisition method $TREE.get can also be used in the component to bind to the required data value.
  • the fourth aspect is communication between components.
  • the own attributes in the component can be input into the data context.
  • the component application can optionally input its own unique basic attributes into the data context module.
  • Other components can bind this property through the global data acquisition method $TREE.get to achieve inter-component communication.
  • the property can be transferred to the internal logic of the component in real time, that is, the property can be called by other components. Therefore, in this process, the component does not need to pay attention to the specific definition, source, and reference method of the binding attribute, but only needs to pay attention to the logic of the component itself, breaking through the limitation of fixed formats or agreed rules that can only implement fixed scenarios.
  • the embodiment of the present application provides a data flow method, by setting a data context tree in the global variable of the low-code platform, the data context tree includes at least a root node; obtaining the data to be injected, the to-be-injected
  • the data includes a target node identifier and data that needs to be injected; if there is a data context node corresponding to the target node identifier in the data context tree, inject the data that needs to be injected into the data context node; if the data context If there is no data context node corresponding to the target node identifier in the tree, create a new data context node corresponding to the target node identifier, store the target node identifier in the parent node, and inject the data to be injected into the newly created in the data context node. Effectively improve the data flow capability in the low-code platform, and flexibly realize the data interaction requirements in complex business scenarios.
  • the embodiment of the present application also provides a data transfer system, as shown in Figure 6, the system includes:
  • the data context tree setting module 601 is used to set the data context tree in the global variables of the low-code platform, the data
  • the context tree includes at least a root node
  • a data acquisition module 602 configured to acquire data to be injected, the data to be injected includes a target node identifier and data to be injected;
  • the first data injection module 603 is configured to inject the data to be injected into the data context node if there is a data context node corresponding to the target node identifier in the data context tree;
  • the second data injection module 604 is configured to create a new data context node corresponding to the target node identifier if there is no data context node corresponding to the target node identifier in the data context tree, and store the target in the parent node node identifier, and inject the data to be injected into the newly created data context node.
  • the system further includes: a data acquisition module, configured to determine the data context node where the data to be acquired is located and the corresponding data path; according to the data path, obtain from the data context node The data to be acquired.
  • a data acquisition module configured to determine the data context node where the data to be acquired is located and the corresponding data path; according to the data path, obtain from the data context node The data to be acquired.
  • the source of the data to be injected includes at least a backend interface, a static file, or a component module; if the source is a component module, the data to be injected is a basic attribute of the component module.
  • the embodiments of the present application also provide an electronic device corresponding to the method provided in the foregoing embodiments.
  • FIG. 7 shows a schematic diagram of an electronic device provided by some embodiments of the present application.
  • the electronic device 20 may include: a processor 200, a memory 201, a bus 202 and a communication interface 203, the processor 200, the communication interface 203 and the memory 201 are connected through the bus 202;
  • a computer program running on the processor 200 when the processor 200 runs the computer program, executes the method provided in any one of the foregoing embodiments of the present application.
  • the memory 201 may include a high-speed random access memory (RAM: Random Access Memory), and may also include a non-volatile memory (non-volatile memory), such as at least one disk memory.
  • RAM Random Access Memory
  • non-volatile memory such as at least one disk memory.
  • the communication connection between the system network element and at least one other network element is realized through at least one physical port 203 (which may be wired or wireless), and the Internet, wide area network, local network, metropolitan area network, etc. can be used.
  • the bus 202 may be an ISA bus, a PCI bus, or an EISA bus, etc.
  • the bus can be divided into address bus, data bus, control bus and so on.
  • the memory 201 is used to store a program, and the processor 200 executes the program after receiving an execution instruction.
  • the method disclosed in any implementation manner of the foregoing embodiments of the present application can be applied to the processor 200, or by The processor 200 implements.
  • the processor 200 may be an integrated circuit chip with signal processing capability. In the implementation process, each step of the above method may be implemented by an integrated logic circuit of hardware in the processor 200 or instructions in the form of software.
  • the above-mentioned processor 200 may be a general-purpose processor, including a central processing unit (Central Processing Unit, referred to as CPU), a network network processor (Network Processor, referred to as NP), etc.; it can also be a digital signal processor (DSP), an application-specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • Various methods, steps, and logic block diagrams disclosed in the embodiments of the present application may be implemented or executed.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory 201, and the processor 200 reads the information in the memory 201, and completes the steps of the above method in combination with its hardware.
  • the electronic device provided in the embodiment of the present application is based on the same inventive concept as the method provided in the embodiment of the present application, and has the same beneficial effect as the method adopted, operated or implemented.
  • the embodiment of the present application also provides a computer-readable storage medium corresponding to the method provided in the foregoing embodiment. Please refer to FIG. program product), when the computer program is executed by a processor, it will execute the method provided in any of the foregoing implementation manners.
  • examples of the computer-readable storage medium may also include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random Access memory (RAM), read only memory (ROM), electrically erasable programmable read only memory (EEPROM), flash memory or other optical and magnetic storage media will not be repeated here.
  • PRAM phase change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random Access memory
  • ROM read only memory
  • EEPROM electrically erasable programmable read only memory
  • flash memory or other optical and magnetic storage media will not be repeated here.
  • the computer-readable storage medium provided by the above embodiments of the present application is based on the same inventive concept as the method provided by the embodiments of the present application, and has the same beneficial effect as the method adopted, executed or implemented by the stored application program.
  • modules in the device in the embodiment can be adaptively changed and arranged in one or more devices different from the embodiment.
  • Modules or units or components in the embodiments may be combined into one module or unit or component, and furthermore may be divided into a plurality of sub-modules or sub-units or sub-assemblies.
  • All features disclosed in this specification including accompanying claims, abstract and drawings), as well as any method or method so disclosed, may be used in any combination, except that at least some of such features and/or processes or units are mutually exclusive. All processes or units of equipment are combined.
  • Each feature disclosed in this specification may be replaced by alternative features serving the same, equivalent or similar purpose, unless expressly stated otherwise.
  • the various component embodiments of the present application may be realized in hardware, or in software modules running on one or more processors, or in a combination thereof.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all functions of some or all components in the device for creating a virtual machine according to the embodiment of the present application.
  • DSP digital signal processor
  • the present application can also be implemented as an apparatus or apparatus program (eg, computer program and computer program product) for performing a part or all of the methods described herein.
  • Such a program implementing the present application may be stored on a computer-readable medium, or may be in the form of one or more signals.
  • Such a signal may be downloaded from an Internet site, or provided on a carrier signal, or provided in any other form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Information Transfer Between Computers (AREA)

Abstract

本申请实施例公开了一种数据流转方法和系统,所述方法包括:数据上下文模块根据全局变量接收函数接收数据,所述全局变量接收函数是根据目标数据上下文节点和输入数据确定;若所述目标数据上下文节点为根节点,将所述输入数据合并至所述根节点的自身属性中;若所述目标数据上下文节点为未知节点,新建所述未知节点的标识且在父节点中存储所述标识,并将所述输入数据合并至所述新建节点的自身属性中。有效提高低代码平台内数据流转能力,灵活实现复杂业务场景下的数据交互需求。

Description

一种数据流转方法和系统 技术领域
本申请实施例涉及程序开发技术领域,具体涉及一种数据流转方法和系统。
背景技术
低代码开发平台(LCDP)是无需编码(0代码)或通过少量代码就可以快速生成应用程序的开发平台。通过可视化进行应用程序开发的方法(参考可视编程语言),使具有不同经验水平的开发人员可以通过图形化的用户界面,使用拖拽组件和模型驱动的逻辑来创建网页和移动应用程序。
随着企业数字化、信息化规模的扩展,低代码市场增长迅速。基于低代码平台方式开发的信息化系统,特别是前端业务系统,越来越多。低代码系统由于其良好的模型抽象能力,前端能够获得更加底层、更加丰富的元数据信息。目前,市面上的低代码平台能通过丰富的组件样式,以及拖拽能力,能自定义页面完成系统搭建。
但是,面向开发者而言,仍然存在以下问题:目前低代码平台内的数据流转能力非常有限,往往只能以固定的格式或约定规则实现固定场景下的数据交互;与后端的接口数据耦合度较高,后端替换一种数据结构就需要调整代码或配置实现转换,开发成本较大;组件之间不可通信或通信不够灵活多变,复杂场景下的业务需求难以实现。
发明内容
为此,本申请实施例提供一种数据流转方法和系统,有效提高低代码平台内数据流转能力,灵活实现复杂业务场景下的数据交互需求。
为了实现上述目的,本申请实施例提供如下技术方案:
根据本申请实施例的第一方面,提供了一种数据流转方法,所述方法包括:
在低代码平台的全局变量中设置数据上下文树,所述数据上下文树至少包括根节点;
获取待注入数据,所述待注入数据包括目标节点标识和需要注入的数据;
若所述数据上下文树中存在所述目标节点标识对应的数据上下文节点,则将所述需要注入的数据注入所述数据上下文节点;
若所述数据上下文树中不存在所述目标节点标识对应的数据上下文节点,则新建所述目标节点标识对应的数据上下文节点,在父节点中存储所述目标节点标识,并将所述需要注入的数据注入新建的所述数据上下文节点中。
可选地,所述方法还包括:
确定待获取数据所在的数据上下文节点及对应的数据路径;
根据所述数据路径,从所述数据上下文节点中获取所述待获取数据。
可选地,所述待注入数据的来源至少包括后端接口、静态文件或组件模块;若来源是组件模块,则所述待注入数据为组件模块的基础属性。
可选地,所述数据上下文节点的属性包括自身属性和引用属性;
若所述数据上下文节点为父节点,则引用属性为空;
若所述数据上下文节点为子节点,则引用属性为子节点所属父节点的自身属性和引用属性的合集。
可选地,若组件模块中的第二组件需要获取第一组件的基础属性,所述方法包括:
数据上下文模块接收第一组件的待注入数据,所述第一组件的待注入数据包括目标节点标识和第一组件的基础属性;
所述数据上下文模块若确定所述数据上下文树中不存在所述目标节点标识对应的数据上下文节点,则建立所述目标节点标识对应的数据上下文节点并在父节点中存储所述目标节点标识,将所述第一组件的基础属性注入至所述建立的数据上下文节点的自身属性中;若确定所述数据上下文树中存在所述目标节点标识对应的数据上下文节点,则将所述第一组件的基础属性注入所述数据上下文节点的自身属性中;
所述数据上下文模块根据所述第一组件的基础属性在所述数据上下文树中对应的数据路径,从所述第一组件的基础属性所在的数据上下文节点中调取所述第一组件的基础属性,将调取的所述第一组件的基础属性发送至所述第二组件。
根据本申请实施例的第二方面,提供了一种数据流转系统,所述系统包括:
数据上下文树设置模块,用于在低代码平台的全局变量中设置数据上下文树,所述数据上下文树至少包括根节点;
数据获取模块,用于获取待注入数据,所述待注入数据包括目标节点标识和需要注入的数据;
第一数据注入模块,用于若所述数据上下文树中存在所述目标节点标识对应的数据上下文节点,则将所述需要注入的数据注入所述数据上下文节点;
第二数据注入模块,用于若所述数据上下文树中不存在所述目标节点标识对应的数据上下文节点,则新建所述目标节点标识对应的数据上下文节点,在父节点中存储所述目标节点标识,并将所述需要注入的数据注入新建的所述数据上下文节点中。
可选地,所述系统还包括:
数据获取模块,用于确定待获取数据所在的数据上下文节点及对应的数据路径;根据所述数据路径,从所述数据上下文节点中获取所述待获取数据。
可选地,所述待注入数据的来源至少包括后端接口、静态文件或组件模块;若来源是组件模块,则所述待注入数据为组件模块的基础属性。
根据本申请实施例的第三方面,提供了一种电子设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行以实现上述第一方面所述的方法。
根据本申请实施例的第四方面,提供了一种计算机可读存储介质,其上存储有计算机可读指令,所述计算机可读指令可被处理器执行以实现上述第一方面所述的方法。
综上所述,本申请实施例提供了一种数据流转方法和系统,通过在低代码平台的全局变量中设置数据上下文树,所述数据上下文树至少包括根节点;获取待注入数据,所述待注入数据包括目标节点标识和需要注入的数据;若所述数据上下文树中存在所述目标节点标识对应的数据上下文节点,则将所述需要注入的数据注入所述数据上下文节点;若所述数据上下文树中不存在所述目标节点标识对应的数据上下文节点,则新建所述目标节点标识对应的数据上下文节点,在父节点中存储所述目标节点标识,并将所述需要注入的数据注入新建的所述数据上下文节点中。有效提高低代码平台内数据流转能力,灵活实现复杂业务场景下的数据交互需求。
附图说明
为了更清楚地说明本发明的实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是示例性的,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图引伸获得其它的实施附图。
本说明书所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容能涵盖的范围内。
图1为本申请实施例提供的一种数据流转方法流程示意图;
图2为本申请实施例提供的数据驱动模型示例图;
图3为本申请实施例提供的数据上下文模型示例图;
图4为本申请实施例提供的数据上下文树绑定数据模型示例图;
图5为本申请实施例提供的组件模型示例图;
图6为本申请实施例提供的一种数据流转系统框图;
图7示出了本申请实施例所提供的一种电子设备的结构示意图;
图8示出了本申请实施例所提供的一种计算机可读存储介质的示意图。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1示出了本申请实施例提供的一种数据流转方法,所述方法包括:
步骤101:在低代码平台的全局变量中设置数据上下文树,所述数据上下文树至少包括根节点;
步骤102:获取待注入数据,所述待注入数据包括目标节点标识和需要注入的数据;
步骤103:若所述数据上下文树中存在所述目标节点标识对应的数据上下文节点,则将所述需要注入的数据注入所述数据上下文节点;
步骤104:若所述数据上下文树中不存在所述目标节点标识对应的数据上下文节点,则新建所述目标节点标识对应的数据上下文节点,在父节点中存储所述目标节点标识,并将所述需要注入的数据注入新建的所述数据上下文节点中。
在一种可能的实施方式中,所述方法还包括:确定待获取数据所在的数据上下文节点及对应的数据路径;根据所述数据路径,从所述数据上下文节点中获取所述待获取数据。
在一种可能的实施方式中,所述待注入数据的来源至少包括后端接口、静态文件或组件模块;若来源是组件模块,则所述待注入数据为组件模块的基础属性。
在一种可能的实施方式中,所述数据上下文节点的属性包括自身属性和引用属性;若所述数据上下文节点为父节点,则引用属性为空;若所述数据上下文节点为子节点,则引用属性为子节点所属父节点的自身属性和引用属性的合集。
在一种可能的实施方式中,若组件模块中的第二组件需要获取第一组件的基础属性,所述方法包括:
数据上下文模块接收第一组件的待注入数据,所述第一组件的待注入数据包括目标节点标识和第一组件的基础属性;
所述数据上下文模块若确定所述数据上下文树中不存在所述目标节点标识对应的数据上下文 节点,则建立所述目标节点标识对应的数据上下文节点并在父节点中存储所述目标节点标识,将所述第一组件的基础属性注入至所述建立的数据上下文节点的自身属性中;若确定所述数据上下文树中存在所述目标节点标识对应的数据上下文节点,则将所述第一组件的基础属性注入所述数据上下文节点的自身属性中;
所述数据上下文模块根据所述第一组件的基础属性在所述数据上下文树中对应的数据路径,从所述第一组件的基础属性所在的数据上下文节点中调取所述第一组件的基础属性,将调取的所述第一组件的基础属性发送至所述第二组件。
在现有技术中,组件之间无法直接进行通信,在本申请实施例提供的数据组件模块中,组件可以通过对数据上下文模块调取其他组件的数据属性。
在一种可能的实施方式中,数据上下文模块根据全局变量接收函数接收数据,所述全局变量接收函数是根据目标数据上下文节点标识和注入数据确定。
在一种可能的实施方式中,所述数据上下文模块根据全局变量调取函数调取数据,所述全局变量调取函数是根据目标数据上下文节点标识和调取数据的数据路径确定。
可以看出,本申请实施例提供的数据流转方法,该方法通过组件绑定数据上下文模块中的数据节点,有效的实现以数据驱动组件的设计模式,提高了低代码平台内的数据流转能力。
通过在选取组件时绑定对应属性的数据上下文标识,并解析具体标识内数据的具体结构,指定唯一的数据绑定路径。可以降低组件和数据接口之间的耦合度,无关后端如何设计接口的数据结构,组件都可以指定唯一的数据绑定路径。同时组件可以将自身属性放入数据上下文模块中,以被其他组件使用。当该属性发生变化时,已绑定该数据的组件可以同时接收到该变化,大大提高了组件之间通信的灵活性,便于实现复杂业务场景下的业务需求。
下面结合附图对本申请实施例提供的基于低代码平台的数据流转方法进行详细描述。
图2示出了本申请实施例提供的数据驱动模型示意图。整个模型围绕数据上下文模块进行。
数据上下文模块用于低代码平台的数据收集工作,它的数据来源可以是后端接口、静态文件和组件模块等任意方式。同时,数据上下文模块对外的数据结构可以为组件提供绑定数据的唯一路径,组件模块的属性也支持向数据上下文模块中输入数据,其他组件通过绑定任意组件输入到数据上下文模块中的数据,来实现组件间的通信。其中,组件模块是低代码平台本身具有的模块。本申请实施例重点阐述组件模块中与数据流转有关的部分。
完整的数据流转过程涉及以下几个方面:
第一方面,初始化数据上下文树。
数据上下文树是数据上下文模块中基础的数据结构。图3示出了本申请实施例提供的数据上下文模型示意图。在数据上下文模型中,每个数据集拥有各自的子数据集和父数据集。通过该父子级关系形成树型的上下文模型结构,没有父数据集的为根数据集,没有子数据集的为叶子数据集。同时每一个可标识的数据集有两个属性:自身属性和引用属性。自身属性内的数据为该数据集在初始创建时拥有或者设置的,代表该数据集下拥有的数据。引用属性为子数据集引用父数据集所拥有的自身属性和引用属性的集合。
初始化数据上下文树的过程中,生成一个空的根数据集,该数据集在数据上下文中的节点标识为D0,该节点拥有属性data用于存储自身属性,也拥有邻居关系孩子children用于存储子级数据集标识。孩子children用于父级存放子集标识。最后将数据上下文树定义在低代码平台的全局变量中,定义名称为$TREE,下文提到的该名称皆代表数据上下文树。
第二方面,向数据上下文树中输入数据。
数据上下文模块将数据输入的方式定义为set,全局获取到数据输入的方法为$TREE.set。输入的数据可以来源于后端接口、静态文件等数据集,也可以来源于组件输入等。
数据输入的过程需要指定对应的数据上下文节点,描述为函数的表达$TREE.set(Dn,Tdata),其中Dn为数据上下文节点,Tdata为需要输入的数据。
未选择输入节点时默认从根节点输入数据。当选择根节点D0输入数据时,只需将数据合并至其属性data上;当需要创建新的数据节点时,可以将新的节点标识为D1,并在其data属性内输入数据,同时在D1的父节点D0的孩子children的邻居关系内标识D1
当数据上下文中输入的数据的来源是组件时,需在组件中调用全局的输入方法,将组件自身独有的基础属性输入,描述该函数为$TREE.set(Dn,PropertyData),其中Dn为自行指定的数据上下文节点,PropertyData为组件属性。
图3示出了数据上下文模型的内部示意图。data2和data3是data1的子集,data3是data1和data2的子集,data4是data1和data3的子集。拿data2来说,data2除了自身属性以外还拥有引用属性,data2的引用属性为子数据集data2引用父数据集data1所拥有的自身属性(a,b)和引用属性(无)的集合。所有的数据集都是一个可选择的节点。
该数据上下文模块输入数据时有一种特殊情况,如图3所示,data3中当某一个数据集内的自身属性和引用属性重名时,解析时自身属性会覆盖引用属性,data4中引用属性a 的值将会是data3中自身属性a的值,data1中自身属性a不受影响,数据呈链式结构传递。
第三方面,获取数据上下文树中的数据。
数据上下文树需要定义数据的获取方法get,全局获取到数据的获取方法为$TREE.get。获取数据时需要指定获取的数据节点Dn以及获取的数据路径path,描述函数为$TREE.get(Dn,path)。
如图4所示,任意数据集(自身属性加引用属性的集合)以树型结构存储在数据上下文模块中。中括号为了表达数据集内部的层级结构。当需要获取数据上下文节点内的某一个属性值时,可以用过指定该数据节点标识D1、数据路径path来获取。图4中绑定属性值的方式表达为函数$TREE.get(D1,b,f,h)。数据路径path为(b,f,h)。同理组件内同样可用过全局的数据获取方法$TREE.get绑定到需要的数据值。
数据节点的指定和路径标识的具体过程在低代码平台需要以可视化形式实现,不同的平台的实现方式不同,因此本申请实施例在这方面不进一步展开讨论。
第四方面,组件间通信。
上述第二方面已经提及组件内的自身属性可被输入到数据上下文中,如有需要,组件本申请可选择性的将自身独有的基础属性输入至数据上下文模块。其他组件可通过全局的数据获取方法$TREE.get绑定该属性,以此实现组件间通信。如图5所示,组件绑定了数据上下文树内的某一个属性时,该属性可以实现实时流转至组件内部逻辑使用,也就是该属性可以被其他的组件所调取。因此该过程中,组件无需关注绑定属性的具体定义、来源和引用方式等,只需关注组件自身逻辑,突破了固定的格式或约定规则只能实现固定场景的限制。
综上所述,本申请实施例提供了一种数据流转方法,通过在低代码平台的全局变量中设置数据上下文树,所述数据上下文树至少包括根节点;获取待注入数据,所述待注入数据包括目标节点标识和需要注入的数据;若所述数据上下文树中存在所述目标节点标识对应的数据上下文节点,则将所述需要注入的数据注入所述数据上下文节点;若所述数据上下文树中不存在所述目标节点标识对应的数据上下文节点,则新建所述目标节点标识对应的数据上下文节点,在父节点中存储所述目标节点标识,并将所述需要注入的数据注入新建的所述数据上下文节点中。有效提高低代码平台内数据流转能力,灵活实现复杂业务场景下的数据交互需求。
基于相同的技术构思,本申请实施例还提供了一种数据流转系统,如图6所示,所述系统包括:
数据上下文树设置模块601,用于在低代码平台的全局变量中设置数据上下文树,所述数据 上下文树至少包括根节点;
数据获取模块602,用于获取待注入数据,所述待注入数据包括目标节点标识和需要注入的数据;
第一数据注入模块603,用于若所述数据上下文树中存在所述目标节点标识对应的数据上下文节点,则将所述需要注入的数据注入所述数据上下文节点;
第二数据注入模块604,用于若所述数据上下文树中不存在所述目标节点标识对应的数据上下文节点,则新建所述目标节点标识对应的数据上下文节点,在父节点中存储所述目标节点标识,并将所述需要注入的数据注入新建的所述数据上下文节点中。
在一种可能的实施方式中,所述系统还包括:数据获取模块,用于确定待获取数据所在的数据上下文节点及对应的数据路径;根据所述数据路径,从所述数据上下文节点中获取所述待获取数据。
在一种可能的实施方式中,所述待注入数据的来源至少包括后端接口、静态文件或组件模块;若来源是组件模块,则所述待注入数据为组件模块的基础属性。
本申请实施方式还提供一种与前述实施方式所提供的方法对应的电子设备。请参考图7,其示出了本申请的一些实施方式所提供的一种电子设备的示意图。所述电子设备20可以包括:处理器200,存储器201,总线202和通信接口203,所述处理器200、通信接口203和存储器201通过总线202连接;所述存储器201中存储有可在所述处理器200上运行的计算机程序,所述处理器200运行所述计算机程序时执行本申请前述任一实施方式所提供的方法。
其中,存储器201可能包含高速随机存取存储器(RAM:Random Access Memory),也可能还包括非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。通过至少一个物理端口203(可以是有线或者无线)实现该系统网元与至少一个其他网元之间的通信连接,可以使用互联网、广域网、本地网、城域网等。
总线202可以是ISA总线、PCI总线或EISA总线等。所述总线可以分为地址总线、数据总线、控制总线等。其中,存储器201用于存储程序,所述处理器200在接收到执行指令后,执行所述程序,前述本申请实施例任一实施方式揭示的所述方法可以应用于处理器200中,或者由处理器200实现。
处理器200可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器200中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器200可以是通用处理器,包括中央处理器(Central Processing Unit,简称CPU)、网 络处理器(Network Processor,简称NP)等;还可以是数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器201,处理器200读取存储器201中的信息,结合其硬件完成上述方法的步骤。
本申请实施例提供的电子设备与本申请实施例提供的方法出于相同的发明构思,具有与其采用、运行或实现的方法相同的有益效果。
本申请实施方式还提供一种与前述实施方式所提供的方法对应的计算机可读存储介质,请参考图8,其示出的计算机可读存储介质为光盘30,其上存储有计算机程序(即程序产品),所述计算机程序在被处理器运行时,会执行前述任意实施方式所提供的方法。
需要说明的是,所述计算机可读存储介质的例子还可以包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他光学、磁性存储介质,在此不再一一赘述。
本申请的上述实施例提供的计算机可读存储介质与本申请实施例提供的方法出于相同的发明构思,具有与其存储的应用程序所采用、运行或实现的方法相同的有益效果。
需要说明的是:
在此提供的算法和显示不与任何特定计算机、虚拟装置或者其它设备有固有相关。各种通用装置也可以与基于在此的示教一起使用。根据上面的描述,构造这类装置所要求的结构是显而易见的。此外,本申请也不针对任何特定编程语言。应当明白,可以利用各种编程语言实现在此描述的本申请的内容,并且上面对特定语言所做的描述是为了披露本申请的最佳实施方式。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本申请并帮助理解各个发明方面中的一个或多个,在上面对本申请的示例性实施例的描述中,本申请的各个特征有时被一起分组到单个实施例、 图、或者对其的描述中。然而,并不应将该公开的方法解释成反映如下意图:即所要求保护的本申请要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如下面的权利要求书所反映的那样,发明方面在于少于前面公开的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本申请的单独实施例。
本领域那些技术人员可以理解,可以对实施例中的设备中的模块进行自适应性地改变并且把它们设置在与该实施例不同的一个或多个设备中。可以把实施例中的模块或单元或组件组合成一个模块或单元或组件,以及此外可以把它们分成多个子模块或子单元或子组件。除了这样的特征和/或过程或者单元中的至少一些是相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本申请的范围之内并且形成不同的实施例。例如,在下面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本申请的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本申请实施例的虚拟机的创建装置中的一些或者全部部件的一些或者全部功能。本申请还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本申请的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
应该注意的是上述实施例对本申请进行说明而不是对本申请进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本申请可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
以上所述,仅为本申请较佳的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种数据流转方法,其特征在于,所述方法包括:
    在低代码平台的全局变量中设置数据上下文树,所述数据上下文树至少包括根节点;
    获取待注入数据,所述待注入数据包括目标节点标识和需要注入的数据;
    若所述数据上下文树中存在所述目标节点标识对应的数据上下文节点,则将所述需要注入的数据注入所述数据上下文节点;
    若所述数据上下文树中不存在所述目标节点标识对应的数据上下文节点,则新建所述目标节点标识对应的数据上下文节点,在父节点中存储所述目标节点标识,并将所述需要注入的数据注入新建的所述数据上下文节点中。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    确定待获取数据所在的数据上下文节点及对应的数据路径;
    根据所述数据路径,从所述数据上下文节点中获取所述待获取数据。
  3. 如权利要求1所述的方法,其特征在于,所述待注入数据的来源至少包括后端接口、静态文件或组件模块;若来源是组件模块,则所述待注入数据为组件模块的基础属性。
  4. 如权利要求1所述的方法,其特征在于,所述数据上下文节点的属性包括自身属性和引用属性;
    若所述数据上下文节点为父节点,则引用属性为空;
    若所述数据上下文节点为子节点,则引用属性为子节点所属父节点的自身属性和引用属性的合集。
  5. 如权利要求1到4任一项所述的方法,其特征在于,若组件模块中的第二组件需要获取第一组件的基础属性,所述方法包括:
    数据上下文模块接收第一组件的待注入数据,所述第一组件的待注入数据包括目标节点标识和第一组件的基础属性;
    所述数据上下文模块若确定所述数据上下文树中不存在所述目标节点标识对应的数据上下文节点,则建立所述目标节点标识对应的数据上下文节点并在父节点中存储所述目标节点标识,将所述第一组件的基础属性注入至所述建立的数据上下文节点的自身属性中;若确定所述数据上下文树中存在所述目标节点标识对应的数据上下文节点,则将所述第一组件的基础属性注入所述数据上下文节点的自身属性中;
    所述数据上下文模块根据所述第一组件的基础属性在所述数据上下文树中对应的数据路径,从所述第一组件的基础属性所在的数据上下文节点中调取所述第一组件的基础属性,将调取的所述第一组件的基础属性发送至所述第二组件。
  6. 一种数据流转系统,其特征在于,所述系统包括:
    数据上下文树设置模块,用于在低代码平台的全局变量中设置数据上下文树,所述数据上下文树至少包括根节点;
    数据获取模块,用于获取待注入数据,所述待注入数据包括目标节点标识和需要注入的数据;
    第一数据注入模块,用于若所述数据上下文树中存在所述目标节点标识对应的数据上下文节点,则将所述需要注入的数据注入所述数据上下文节点;
    第二数据注入模块,用于若所述数据上下文树中不存在所述目标节点标识对应的数据上下文节点,则新建所述目标节点标识对应的数据上下文节点,在父节点中存储所述目标节点标识,并将所述需要注入的数据注入新建的所述数据上下文节点中。
  7. 如权利要求6所述的系统,其特征在于,所述系统还包括:
    数据获取模块,用于确定待获取数据所在的数据上下文节点及对应的数据路径;根据所述数据路径,从所述数据上下文节点中获取所述待获取数据。
  8. 如权利要求6所述的系统,其特征在于,所述待注入数据的来源至少包括后端接口、静态文件或组件模块;若来源是组件模块,则所述待注入数据为组件模块的基础属性。
  9. 一种电子设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器运行所述计算机程序时执行以实现如权利要求1-5任一项所述的方法。
  10. 一种计算机可读存储介质,其特征在于,其上存储有计算机可读指令,所述计算机可读指令可被处理器执行以实现如权利要求1-5任一项所述的方法。
PCT/CN2023/074684 2022-02-28 2023-02-07 一种数据流转方法和系统 WO2023160367A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210190410.1A CN114254068B (zh) 2022-02-28 2022-02-28 一种数据流转方法和系统
CN202210190410.1 2022-02-28

Publications (1)

Publication Number Publication Date
WO2023160367A1 true WO2023160367A1 (zh) 2023-08-31

Family

ID=80800157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/074684 WO2023160367A1 (zh) 2022-02-28 2023-02-07 一种数据流转方法和系统

Country Status (2)

Country Link
CN (1) CN114254068B (zh)
WO (1) WO2023160367A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114254068B (zh) * 2022-02-28 2022-08-09 杭州未名信科科技有限公司 一种数据流转方法和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112395483A (zh) * 2020-11-13 2021-02-23 郑州阿帕斯数云信息科技有限公司 基于树形结构的页面渲染方法及装置
CN112905847A (zh) * 2021-01-13 2021-06-04 浪潮云信息技术股份公司 树状结构的构建方法和装置
US20210263834A1 (en) * 2020-02-20 2021-08-26 4Logik LLC Code Generation Platform
CN114089986A (zh) * 2021-11-23 2022-02-25 浩云科技股份有限公司 低代码开发平台函数表达式配置方法、系统、设备及介质
CN114254068A (zh) * 2022-02-28 2022-03-29 杭州未名信科科技有限公司 一种数据流转方法和系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106570017A (zh) * 2015-10-09 2017-04-19 北大方正集团有限公司 一种数据缓存方法及系统
CN107679049A (zh) * 2016-08-02 2018-02-09 北京京东尚科信息技术有限公司 获取树形结构数据两节点间路径的方法、装置及系统
CN108255895A (zh) * 2016-12-29 2018-07-06 孙翔 一种使用上下文环境规则的网页数据获取方法
CN108932137B (zh) * 2018-07-17 2022-09-27 西安航空学院 一种基于推测多线程的汇编级过程间指针分析方法
CN110162525B (zh) * 2019-04-17 2023-09-26 平安科技(深圳)有限公司 基于b+树的读写冲突解决方法、装置及存储介质
CN112698831B (zh) * 2020-12-25 2022-08-09 昆明理工大学 一种代码自动生成质量评估方法
CN112988599B (zh) * 2021-04-29 2021-07-23 腾讯科技(深圳)有限公司 一种页面调试方法、装置、电子设备和存储介质
CN113392068A (zh) * 2021-06-28 2021-09-14 上海商汤科技开发有限公司 数据处理方法、装置和系统
CN113612818B (zh) * 2021-07-09 2023-09-01 中国汽车技术研究中心有限公司 一种低代码平台的工业app发布系统
CN113918151A (zh) * 2021-10-12 2022-01-11 平安国际智慧城市科技股份有限公司 低代码的页面开发方法、装置、设备及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210263834A1 (en) * 2020-02-20 2021-08-26 4Logik LLC Code Generation Platform
CN112395483A (zh) * 2020-11-13 2021-02-23 郑州阿帕斯数云信息科技有限公司 基于树形结构的页面渲染方法及装置
CN112905847A (zh) * 2021-01-13 2021-06-04 浪潮云信息技术股份公司 树状结构的构建方法和装置
CN114089986A (zh) * 2021-11-23 2022-02-25 浩云科技股份有限公司 低代码开发平台函数表达式配置方法、系统、设备及介质
CN114254068A (zh) * 2022-02-28 2022-03-29 杭州未名信科科技有限公司 一种数据流转方法和系统

Also Published As

Publication number Publication date
CN114254068B (zh) 2022-08-09
CN114254068A (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
US10579344B2 (en) Converting visual diagrams into code
WO2018019232A1 (zh) 流计算方法、装置及系统
KR101572599B1 (ko) 그래프에 기초한 연산에서 데이터 흐름을 관리하는 방법 및 시스템
Heckel et al. Graph Transformation for Software Engineers
Selonen et al. Validating UML models against architectural profiles
WO2019233293A1 (zh) 一种应用程序的开发方法和装置
WO2022141724A1 (zh) 基于 Vue 组件化的可视化配置渲染方法、系统、终端
CN109739494B (zh) 一种基于Tree-LSTM的API使用代码生成式推荐方法
US20070006196A1 (en) Methods and systems for extracting information from computer code
CN105511873A (zh) 用户界面控件展示方法及装置
JP2010518516A (ja) 要素型の型フローを可能にするためのクエリパターン
CN111249736B (zh) 代码处理方法及装置
US8839186B2 (en) Entity morphing in metamodel-based tools
WO2023160367A1 (zh) 一种数据流转方法和系统
US8688752B2 (en) Method and system for deploying a model-based application to an application server
Lu et al. Model-based incremental conformance checking to enable interactive product configuration
WO2019071928A1 (zh) 列表视图的实现方法、装置、可读存储介质及设备
CN113946321A (zh) 计算逻辑的处理方法、电子设备和可读存储介质
WO2020009943A1 (en) System optimized for performing source code analysis
JP7250009B2 (ja) クライアントエンドのプログラミングツールにより実行される方法
CN115756433A (zh) 代码平台的迁移方法、装置、电子设备及可读存储介质
Rivero et al. Improving user involvement through a model-driven requirements approach
CN109960503A (zh) 基于Django框架的组件开发方法及装置
CN107832046A (zh) 数据生成方法及装置
US11704117B2 (en) System optimized for performing source code analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23758992

Country of ref document: EP

Kind code of ref document: A1