WO2023160284A1 - 面向区域综合能源系统的碳排放流计算方法及装置 - Google Patents

面向区域综合能源系统的碳排放流计算方法及装置 Download PDF

Info

Publication number
WO2023160284A1
WO2023160284A1 PCT/CN2023/071313 CN2023071313W WO2023160284A1 WO 2023160284 A1 WO2023160284 A1 WO 2023160284A1 CN 2023071313 W CN2023071313 W CN 2023071313W WO 2023160284 A1 WO2023160284 A1 WO 2023160284A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
flow
carbon emission
energy
output
Prior art date
Application number
PCT/CN2023/071313
Other languages
English (en)
French (fr)
Inventor
张宁
余扬昊
程耀华
王鹏
魏招毅
李姚旺
杜尔顺
康重庆
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2023160284A1 publication Critical patent/WO2023160284A1/zh
Priority to US18/490,744 priority Critical patent/US20240054262A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/80Management or planning
    • Y02P90/84Greenhouse gas [GHG] management systems

Definitions

  • the present application relates to the technical field of low-carbon energy systems, in particular to a method and device for calculating carbon emission flows for regional integrated energy systems.
  • the energy system is the largest source of carbon emissions, and the low-carbon transformation and sustainable development of the energy system is crucial to achieving my country's carbon emission control goals.
  • an integrated energy system has emerged as the times require.
  • Integrated energy system also known as multi-energy system or energy Internet
  • multi-energy system or energy Internet is a comprehensive system composed of multiple types of energy such as electricity, heat, natural gas, water energy, solar energy, and wind energy.
  • the regional integrated energy system also known as the energy hub (Energy hub, EH), is the core of the integrated energy system for energy conversion and storage.
  • the regional comprehensive energy system refers to the multi-energy integrated system within a small space, such as industrial parks, urban energy systems, etc., which mainly realize the conversion, distribution and storage of energy. network, gas distribution network and district heating network.
  • the carbon emission calculation methods of the energy system mainly include three types: the macro-statistical method, the whole life cycle method, and the carbon emission flow method.
  • the application scenarios are also different.
  • both the macro-statistical method and the full life cycle method are out of touch with the actual physical characteristics of the regional integrated energy system, and cannot clarify the spatiotemporal transfer mechanism of carbon emissions in the regional integrated energy system. Need to improve.
  • the analysis and calculation of carbon emissions is the basic and key work for the realization of low-carbonization of the integrated energy system.
  • the carbon emission flow method uses the analysis idea of network flow and uses the trend tracking method for carbon flow tracking, revealing the virtual carbon in the energy network.
  • the related technology proposes a carbon emission flow calculation method by establishing a carbon emission flow model combined with the grid network structure and physical characteristics.
  • This application provides a carbon emission flow calculation method and device for regional integrated energy systems to solve the problem that the related technologies are out of touch with the actual physical characteristics of regional integrated energy systems, and the time-space transfer mechanism of carbon emissions in regional integrated energy systems cannot be clarified. Issues such as the limited guidance of regional comprehensive energy system optimization decision-making.
  • the embodiment of the first aspect of the present application provides a carbon emission flow calculation method for regional integrated energy systems, including the following steps: respectively modeling the carbon emissions of single-input-single-output conversion equipment and single-input-multiple-output conversion equipment, Establish a single-period steady-state carbon emission flow model of the energy conversion equipment; obtain the matrix expression of the carbon emission flow based on the single-period steady-state carbon emission flow model of the energy conversion equipment, and establish a single-period steady-state carbon emission flow model of the regional comprehensive energy system Emission flow model; and combining the multi-period coupled steady-state carbon emission flow model of the energy storage device and the single-period steady-state carbon emission flow model of the regional comprehensive energy system to establish the multi-period carbon emission flow of the regional comprehensive energy system A standardized model to solve the multi-period carbon emission flow standardized model to obtain the actual carbon emission flow of the regional integrated energy system.
  • the first carbon flow density relationship between the input port and the output port of the single-input-single-output conversion device is:
  • the second carbon flow density relationship between the input port and the output port of the single-input-multi-output conversion device is:
  • ⁇ W is the electric energy conversion efficiency
  • ⁇ Q is the thermal energy conversion efficiency
  • is the working fluid ratio to energy
  • the matrix expression of the carbon emission flow is obtained based on the single-period steady-state carbon emission flow model based on the energy conversion equipment, and the single-period steady-state of the regional integrated energy system is established
  • the carbon emission flow model includes: respectively determining the first carbon emission coupling matrix and the second carbon emission coupling matrix of the regional comprehensive energy system from the first carbon flow density relationship and the second carbon flow density relationship; according to the The first carbon emission coupling matrix and the second carbon emission coupling matrix are used to calculate the carbon flow rates of all output ports.
  • the calculating the carbon flow rates of all output ports according to the first carbon emission coupling matrix and the second carbon emission coupling matrix includes: The carbon flow density vector at the output end is obtained from the emission coupling matrix and the second carbon emission coupling matrix; the carbon flow rates of all output ports are obtained according to the carbon flow density vector at the output end, wherein the calculation formula of the carbon flow rate for:
  • ⁇ o is the carbon flow density vector at the output port
  • V o is the output energy column vector
  • o represents the corresponding multiplication of the two vector elements (Hadamard product).
  • the multi-period coupled steady-state carbon emission flow model of the energy storage device and the single-period steady-state carbon emission flow model of the regional integrated energy system are used to establish the
  • the multi-period carbon emission flow standardization model of the regional comprehensive energy system includes: determining the internal storage energy according to the current working state of the energy storage equipment, and obtaining the corresponding carbon emission, and determining the storage carbon flow rate; establishing the storage carbon flow rate according to the storage carbon flow rate
  • the time-period coupling relationship of the carbon flow rate determines the carbon flow density of the energy storage input port and the carbon flow density of the output port at any time period, and generates the multi-period carbon emission flow standardized model.
  • the embodiment of the second aspect of the present application provides a carbon emission flow calculation device for regional integrated energy systems, including: a first modeling unit, which is used to separately analyze the single-input-single-output conversion equipment and single-input-multiple-output conversion equipment Carry out carbon emission modeling, establish a single-period steady-state carbon emission flow model of the energy conversion equipment; the second modeling unit is used to obtain the matrix expression of the carbon emission flow based on the single-period steady-state carbon emission flow model of the energy conversion equipment formula, and establish a single-period steady-state carbon emission flow model of the regional integrated energy system; and a calculation unit, combining the multi-period coupling steady-state carbon emission flow model An emission flow model, establishing a multi-period carbon emission flow standardized model of the regional comprehensive energy system to solve the multi-period carbon emission flow standardized model to obtain the actual carbon emission flow of the regional integrated energy system.
  • a first modeling unit which is used to separately analyze the single-input-single
  • the first carbon flow density relationship between the input port and the output port of the single-input-single-output conversion device is:
  • the second carbon flow density relationship between the input port and the output port of the single-input-multi-output conversion device is:
  • ⁇ W is the electric energy conversion efficiency
  • ⁇ Q is the thermal energy conversion efficiency
  • is the working fluid ratio to energy
  • the second modeling unit includes: a conversion subunit, configured to determine the first carbon flow density relationship and the second carbon flow density relationship respectively.
  • the first carbon emission coupling matrix and the second carbon emission coupling matrix of the regional integrated energy system; the calculation subunit is used to calculate the carbon emissions of all output ports according to the first carbon emission coupling matrix and the second carbon emission coupling matrix flow rate.
  • the calculation subunit is further configured to: obtain the carbon flow density vector at the output terminal according to the first carbon emission coupling matrix and the second carbon emission coupling matrix; and According to the carbon flow density vector of the output end, the carbon flow rate of all the output ports is obtained, wherein the calculation formula of the carbon flow rate is:
  • ⁇ o is the carbon flow density vector at the output port
  • V o is the output energy column vector
  • o represents the corresponding multiplication of the two vector elements (Hadamard product).
  • the calculation unit is further configured to: determine the internal storage energy according to the current working state of the energy storage device, obtain the corresponding carbon emission, and determine the storage carbon flow rate; and The storage carbon flow rate establishes a period coupling relationship of the storage carbon flow rate, determines the carbon flow density of the energy storage input port and the carbon flow density of the output port at any time period, and generates the multi-period carbon emission flow standardized model.
  • the embodiment of the third aspect of the present application provides an electronic device, including: a memory, a processor, and a computer program stored on the memory and operable on the processor, and the processor executes the program to realize The carbon emission flow calculation method for regional integrated energy systems as described in the above embodiments.
  • the embodiment of the fourth aspect of the present application provides a computer-readable storage medium, on which a computer program is stored.
  • the program is executed by a processor, the above-mentioned carbon emission flow calculation method for regional integrated energy systems is realized.
  • the embodiment of this application establishes the steady-state carbon emission flow model of the regional comprehensive energy system, and realizes its standardized modeling according to the matrix expression of the carbon emission flow, and then obtains the actual carbon emission flow of the regional comprehensive energy system, which is the regional comprehensive energy Systematic carbon emission analysis and measurement provides an accurate and effective method, providing a basis for downstream to clarify the carbon emission responsibilities of different energy systems, measure the emission reduction contributions of different entities, and discover and identify low-carbon weak links in the system.
  • the relevant technologies are out of touch with the actual physical characteristics of the regional integrated energy system, the time-space transfer mechanism of carbon emissions in the regional integrated energy system cannot be clarified, and the guidance for optimal decision-making of the regional integrated energy system is limited.
  • Fig. 1 is a flow chart of a carbon emission flow calculation method for a regional integrated energy system provided according to an embodiment of the present application
  • Fig. 2 is a simple energy pivot diagram illustrating the solution process of the carbon emission coupling matrix according to a specific embodiment of the present application
  • FIG. 3 is a schematic diagram of the principle of a carbon emission flow calculation method for a regional integrated energy system according to a specific embodiment of the present application;
  • Fig. 4 is a schematic structural diagram of a carbon emission flow calculation device for a regional integrated energy system provided according to an embodiment of the present application
  • Fig. 5 is a schematic structural diagram of an electronic device provided according to an embodiment of the present application.
  • the steady-state carbon emission flow model of the regional integrated energy system is established, and its standardization is realized according to the matrix expression of the carbon emission flow Modeling, and then obtaining the actual carbon emission flow of the regional integrated energy system, provides an accurate and effective method for the carbon emission analysis and measurement of the regional integrated energy system, and clarifies the carbon emission responsibilities of different energy systems for the downstream and measures the emission reduction of different entities Provides a basis for contributing, discovering and identifying low-carbon weaknesses in the system. As a result, it solves the problems that the relevant technologies are out of touch with the actual physical characteristics of the regional integrated energy system, the time-space transfer mechanism of carbon emissions in the regional integrated energy system cannot be clarified, and the guidance for the optimal decision-making of the regional integrated energy system is limited.
  • Fig. 1 is a schematic flowchart of a carbon emission flow calculation method for regional integrated energy systems provided by the embodiment of the present application.
  • the carbon emission flow calculation method for regional integrated energy systems includes the following steps:
  • step S101 the carbon emissions of the single-input-single-output conversion equipment and the single-input-multiple-output conversion equipment are modeled respectively, and a single-period steady-state carbon emission flow model of the energy conversion equipment is established.
  • the energy conversion equipment in the multi-energy system (such as combined heat and power (CHP), electric boiler (Electric boiler, EB), Gas boilers (Auxiliary boiler, AB), compressor refrigerators (Compression electrical refrigeration group, CERG), absorption refrigerators (Water absorption refrigeration group, WARG), etc.) are divided into two categories: single input-single output equipment and single input - Multiple output devices. Among them, most devices belong to the first category, and a few devices such as CHP belong to the second category.
  • the embodiments of the present application can separately model the carbon emissions of these two types of equipment, thereby realizing full coverage of energy conversion equipment in a multi-energy system, and further ensuring the accuracy of the results.
  • the first carbon flow density relationship between the input port and the output port of the single-input-single-output conversion device is:
  • the second carbon flow density relationship between the input port and the output port of the single-input-multi-output conversion device is:
  • ⁇ W is the electric energy conversion efficiency
  • ⁇ Q is the thermal energy conversion efficiency
  • is the working fluid ratio to energy
  • the carbon emissions corresponding to input energy are equal to the carbon emissions corresponding to output energy:
  • V i I are the input and output energy flows, respectively.
  • the efficiency ⁇ 1 can be used to represent the relationship between the output energy flow and the input energy flow of the equipment, that is:
  • the embodiment of the present application can define the electric energy conversion efficiency ⁇ W and the thermal energy conversion efficiency ⁇ Q respectively, so as to calculate the CHP
  • the electrical and thermal outputs are:
  • V i CHP represents the energy value of the input natural gas, and are the electrical output and thermal output of CHP, respectively.
  • the embodiment of this application can adopt The analysis method allocates the total input carbon emissions among multiple output ports, defining Coefficient of working fluid Ratio to energy, electrical energy with a factor of 1, the thermal The coefficient is related to the temperature of the working medium and is denoted as ⁇ .
  • the carbon emissions of different output ports should be compared with the output port Proportional, then there are:
  • step S102 the matrix expression of the carbon emission flow is obtained based on the single-period steady-state carbon emission flow model of the energy conversion equipment, and a single-period steady-state carbon emission flow model of the regional integrated energy system is established.
  • the embodiment of the present application can obtain the matrix expression of carbon emission flow according to the single-period steady-state carbon emission flow model of energy conversion equipment, and then establish the single-period steady-state carbon emission flow model of the regional integrated energy system .
  • the embodiment of the present application establishes a single-period steady-state carbon emission flow model of the regional comprehensive energy system to provide a basis for the subsequent establishment of a multi-period steady-state carbon emission flow model of the regional comprehensive energy system, making the calculation result of the carbon emission flow more accurate. Accurate, it is conducive to solving the coupling problem of carbon emissions in the energy dimension and time dimension in the regional comprehensive energy system.
  • the matrix expression of the carbon emission flow is obtained based on the single-period steady-state carbon emission flow model of the energy conversion equipment, and the single-period steady-state carbon emission flow model of the regional integrated energy system is established , including: respectively determining the first carbon emission coupling matrix and the second carbon emission coupling matrix of the regional comprehensive energy system by the first carbon flow density relationship and the second carbon flow density relationship; according to the first carbon emission coupling matrix and the second carbon emission
  • the coupling matrix calculates the carbon flow rate at all output ports.
  • the embodiment of the present application can respectively determine the first carbon emission coupling matrix and the second carbon emission coupling matrix of the regional integrated energy system according to the first carbon flow density relationship and the second carbon flow density relationship, and according to the first carbon emission
  • the coupling matrix and the second carbon emission coupling matrix calculate the carbon flow rate of all output ports, wherein the calculation method of the carbon flow rate of all output ports will be described in detail below.
  • the carbon flow rates of all output ports are calculated according to the carbon flow densities of single-input-single-output energy conversion equipment and single-input-multiple-output energy conversion equipment, realizing the full control of energy conversion equipment in a multi-energy system.
  • Coverage provides a basis for the subsequent establishment of a multi-period steady-state carbon emission flow model for regional integrated energy systems, making the calculation results of carbon emission flows more accurate, and is conducive to solving the problem of carbon emissions in energy dimensions and time in regional integrated energy systems. Dimensional coupling issues.
  • calculating the carbon flow rates of all output ports according to the first carbon emission coupling matrix and the second carbon emission coupling matrix includes: according to the first carbon emission coupling matrix and the second carbon emission The carbon flow density vector at the output end is obtained by the coupling matrix; the carbon flow rate of all output ports is obtained according to the carbon flow density vector at the output end, and the calculation formula of the carbon flow rate is:
  • ⁇ o is the carbon flow density vector at the output port
  • V o is the output energy column vector
  • o represents the corresponding multiplication of the two vector elements (Hadamard product).
  • the embodiment of the present application uses the input-output port model to define and describe the coupling relationship between different energy conversion devices in the regional integrated energy system.
  • the relationship between the input energy column vector V i and the output energy column vector V o is represented by the coupling matrix C, namely:
  • V o CV i .
  • the embodiment of this application can define the carbon emission coupling matrix D of the regional comprehensive energy system, which is used to describe the relationship between the carbon flow density vector at the input port and the carbon flow density vector at the output port, as shown in the following formula:
  • ⁇ i represents the carbon flow density vector of the input port
  • ⁇ o represents the carbon flow density vector of the output port.
  • the carbon emission coupling matrix D can be obtained by using the above model, and then the carbon flow density vector of the output port can be obtained. Finally, the carbon flow rate at all output ports can be calculated as follows:
  • the solution process of the carbon emission coupling matrix D takes the simple energy hub shown in Figure 2 as an example.
  • the energy hub has one input port and three output ports, and arrows of different colors are used to distinguish different forms of energy flow.
  • the carbon flow density vector of the input port and the carbon flow density vector of the output port are respectively:
  • ⁇ i and Respectively represent the carbon flow density of the input port, the carbon flow density of the electrical output port, the carbon flow density of the heat output port and the carbon flow density of the cold output port.
  • the carbon flow density of the input port is a model parameter
  • step S103 combined with the multi-period coupled steady-state carbon emission flow model of energy storage equipment and the single-period steady-state carbon emission flow model of the regional integrated energy system, a multi-period carbon emission flow standardized model of the regional integrated energy system is established to Solve the multi-period carbon emission flow standardized model to obtain the actual carbon emission flow of the regional integrated energy system.
  • the embodiment of the present application can combine the single-period steady-state carbon emission flow model of the regional comprehensive energy system obtained in the above steps and the multi-period coupling point steady-state carbon emission flow model of the energy storage device to establish a regional comprehensive energy
  • the multi-period carbon emission flow model of the energy storage equipment in the system can be used to obtain the multi-period carbon emission flow model of the regional integrated energy system, and then the actual carbon emission flow of the regional integrated energy system can be obtained.
  • the embodiment of this application establishes the steady-state carbon emission flow model of the regional comprehensive energy system, and realizes its standardized modeling according to the matrix expression of the carbon emission flow, and then obtains the actual carbon emission flow of the regional comprehensive energy system, which is the regional comprehensive energy Systematic carbon emission analysis and measurement provides an accurate and effective method, providing a basis for downstream to clarify the carbon emission responsibilities of different energy systems, measure the emission reduction contributions of different entities, and discover and identify low-carbon weak links in the system.
  • the multi-period coupled steady-state carbon emission flow model of the energy storage device and the single-period steady-state carbon emission flow model of the regional integrated energy system are combined to establish a multi-period integrated energy system.
  • the standardization model of carbon emission flow in time period includes: determining the internal storage energy according to the current working state of the energy storage device, and obtaining the corresponding carbon emission, and determining the storage carbon flow rate; establishing the time-period coupling relationship of the storage carbon flow rate according to the storage carbon flow rate, Determine the carbon flow density of the energy storage input port and the carbon flow density of the output port for any period of time, and generate a multi-period carbon emission flow standardized model.
  • various energy storage devices can be abstracted into a single-input-single-output model, where the input port represents energy absorption (charging), and the output port represents energy release (discharging).
  • the input energy is mixed with the energy stored inside the energy storage device, and the corresponding carbon emissions of the two are also mixed together; when working in the discharged state, the internal stored energy is combined with the corresponding carbon emissions output.
  • the input/output energy flow of the energy storage device at time period t is V t
  • V t >0 indicates that the energy storage device is working in a charging state
  • V t ⁇ 0 indicates that the energy storage device is working in a discharging state.
  • ⁇ s represents the overall efficiency of the energy storage device, and its expression is:
  • ⁇ C and ⁇ D represent the charging efficiency and energy discharging efficiency of the energy storage device, respectively.
  • the carbon emission corresponding to the energy stored in the energy storage device can be defined as the storage carbon flow rate
  • the period coupling relationship for establishing storage carbon flow rate is:
  • the carbon flow density corresponding to the energy stored in the energy storage device is equal to the ratio of the coupled carbon emission to the energy value of this part of energy, namely:
  • the carbon flow density at the output port is equal to the carbon flow density corresponding to the internal energy stored in the previous period, that is:
  • the embodiment of this application is based on the carbon emission flow technology, which can expand the perspective of carbon emission analysis from the pure energy production side to the whole link from energy production to energy consumption, and combine CO2 with real-time energy flow, and then It can more comprehensively, clearly and accurately describe the carbon emissions of the regional integrated energy system.
  • the carbon emission flow theory of the regional integrated energy system can realize the conversion, distribution and storage of various heterogeneous energy sources by attaching corresponding "carbon labels" to different forms of energy flows.
  • the emission flow is calculated in real time to better solve the coupling problem of carbon emissions in the energy dimension and time dimension in the regional comprehensive energy system.
  • the embodiment of the present application includes the following steps:
  • Step S301 Establish a single-period steady-state carbon emission flow model of the energy conversion equipment.
  • the energy conversion equipment in the multi-energy system such as combined heat and power (CHP), electric boiler (Electric boiler, EB), Gas boilers (Auxiliary boiler, AB), compressor refrigerators (Compression electrical refrigeration group, CERG), absorption refrigerators (Water absorption refrigeration group, WARG), etc.
  • CHP combined heat and power
  • EB Electric boiler
  • Gas boilers Auxiliary boiler, AB
  • compressor refrigerators Compression electrical refrigeration group, CERG
  • absorption refrigerators Water absorption refrigeration group, WARG
  • the embodiments of the present application can separately model the carbon emissions of these two types of equipment, thereby realizing full coverage of energy conversion equipment in a multi-energy system, and further ensuring the accuracy of the results.
  • the energy conversion equipment in the multi-energy system is a single-input-single-output conversion equipment, there is no carbon emission injection other than input or carbon emission outflow other than output during the operation of the embodiment of the present application.
  • the carbon emissions corresponding to the input energy are equal to the carbon emissions corresponding to the output energy:
  • V i I are the input and output energy flows, respectively.
  • the embodiment of the present application can define the electric energy conversion efficiency ⁇ W and the thermal energy conversion efficiency ⁇ Q respectively, so as to calculate the CHP
  • the electrical and thermal outputs are:
  • V i CHP represents the energy value of the input natural gas, and are the electrical output and thermal output of CHP, respectively.
  • the embodiment of this application can adopt The analysis method allocates the total input carbon emissions among multiple output ports, defining Coefficient of working fluid Ratio to energy, electrical energy with a factor of 1, the thermal The coefficient is related to the temperature of the working medium and is denoted as ⁇ .
  • the carbon emissions of different output ports should be compared with the output port Proportional, then there are:
  • Step S302 Establish a single-period steady-state carbon emission flow model of the regional integrated energy system.
  • the input-output port model is used to define and describe the coupling relationship between different energy conversion devices in the regional comprehensive energy system.
  • the relationship between the input energy column vector V i and the output energy column vector V o is represented by the coupling matrix C, namely:
  • V o CV i .
  • ⁇ i represents the carbon flow density vector of the input port
  • ⁇ o represents the carbon flow density vector of the output port.
  • the carbon emission coupling matrix D can be obtained by using the above model, and then the carbon flow density vector of the output port can be obtained. Finally, the carbon flow rate at all output ports can be calculated as follows:
  • the solution process of the carbon emission coupling matrix D takes the simple energy hub shown in Figure 2 as an example.
  • the energy hub has one input port and three output ports, and arrows of different colors are used to distinguish different forms of energy flow.
  • the carbon flow density vector of the input port and the carbon flow density vector of the output port are respectively:
  • ⁇ i and Respectively represent the carbon flow density of the input port, the carbon flow density of the electrical output port, the carbon flow density of the heat output port and the carbon flow density of the cold output port.
  • the carbon flow density of the input port is a model parameter
  • Step S303 Establish a multi-period carbon emission flow model of the energy storage equipment in the regional integrated energy system.
  • various energy storage devices can be abstracted into a single-input-single-output model, where the input port represents energy absorption (charging), and the output port represents energy release (discharging).
  • the input energy is mixed with the energy stored inside the energy storage device, and the corresponding carbon emissions of the two are also mixed together; when working in the discharged state, the internal stored energy is combined with the corresponding carbon emissions output.
  • the input/output energy flow of the energy storage device at time period t is V t
  • V t >0 indicates that the energy storage device is working in a charging state
  • V t ⁇ 0 indicates that the energy storage device is working in a discharging state.
  • ⁇ s represents the overall efficiency of the energy storage device, and its expression is:
  • ⁇ C and ⁇ D represent the charging efficiency and energy discharging efficiency of the energy storage device, respectively.
  • the carbon emission corresponding to the energy stored in the energy storage device can be defined as the storage carbon flow rate
  • the period coupling relationship for establishing storage carbon flow rate is:
  • the carbon flow density corresponding to the energy stored in the energy storage device is equal to the ratio of the coupled carbon emission to the energy value of this part of energy, namely:
  • the carbon flow density at the output port is equal to the carbon flow density corresponding to the internal energy stored in the previous period, that is:
  • Step S304 Establish a multi-period steady-state carbon emission flow model of the regional integrated energy system.
  • a multi-period carbon emission flow model of the energy storage device is formed. Since only the energy storage device has the energy period coupling relationship in the energy conversion and storage link, it is combined with the established in step S301 and step S302.
  • the matrix single-period steady-state carbon emission flow model is to obtain the multi-period carbon emission flow model of the regional comprehensive energy system.
  • Step S305 Solve the model to obtain the calculation result of the carbon emission flow of the regional integrated energy system.
  • the carbon emission flow calculation oriented to the regional integrated energy system proposes the steady-state carbon emission flow model of the regional integrated energy system, and according to the matrix expression of the carbon emission flow, realize its standardized modeling, and then obtain
  • the actual carbon emission flow of the regional integrated energy system provides an accurate and effective method for the analysis and measurement of carbon emissions of the regional integrated energy system, and clarifies the carbon emission responsibilities of different energy systems for the downstream, and measures the emission reduction contribution, discovery and identification of different entities Low-carbon weak links in the system provide the basis.
  • Fig. 4 is a schematic block diagram of a carbon emission flow calculation device for a regional integrated energy system according to an embodiment of the present application.
  • the carbon emission flow calculation device 10 for regional integrated energy systems includes: a first modeling unit 100 , a second modeling unit 200 and a calculation unit 300 .
  • the first modeling unit 100 is configured to model the carbon emissions of the single-input-single-output conversion equipment and the single-input-multiple-output conversion equipment respectively, and establish a single-period steady-state carbon emission flow model of the energy conversion equipment.
  • the second modeling unit 200 is configured to obtain a matrix expression of carbon emission flow based on the single-period steady-state carbon emission flow model of the energy conversion equipment, and establish a single-period steady-state carbon emission flow model of the regional integrated energy system.
  • the calculation unit 300 is used to combine the multi-period coupled steady-state carbon emission flow model of the energy storage device and the single-period steady-state carbon emission flow model of the regional comprehensive energy system to establish a multi-period carbon emission flow standardized model of the regional comprehensive energy system, To solve the multi-period carbon emission flow standardized model, the actual carbon emission flow of the regional integrated energy system is obtained.
  • the first carbon flow density relationship between the input port and the output port of the single-input-single-output conversion device is:
  • the second carbon flow density relationship between the input port and the output port of the single-input-multi-output conversion device is:
  • ⁇ W is the electric energy conversion efficiency
  • ⁇ Q is the thermal energy conversion efficiency
  • is the working fluid ratio to energy
  • the second modeling unit 200 includes: a conversion subunit and a calculation subunit.
  • the conversion sub-unit is used to respectively determine the first carbon emission coupling matrix and the second carbon emission coupling matrix of the regional comprehensive energy system based on the first carbon flow density relationship and the second carbon flow density relationship.
  • the calculation subunit is used to calculate the carbon flow rates of all output ports according to the first carbon emission coupling matrix and the second carbon emission coupling matrix.
  • the calculation subunit is further used to: obtain the carbon flow density vector at the output end according to the first carbon emission coupling matrix and the second carbon emission coupling matrix; and obtain the carbon flow density vector at the output end according to the carbon flow density vector at the output end
  • the carbon flow rate of all output ports is obtained, and the calculation formula of the carbon flow rate is:
  • ⁇ o is the carbon flow density vector at the output port
  • V o is the output energy column vector
  • o represents the corresponding multiplication of the two vector elements (Hadamard product).
  • the calculation unit 300 is further used to: determine the internal storage energy according to the current working state of the energy storage device, obtain the corresponding carbon emission, and determine the storage carbon flow rate; and according to the storage carbon
  • the flow rate establishes the period coupling relationship of the storage carbon flow rate, determines the carbon flow density of the energy storage input port and the carbon flow density of the output port at any time period, and generates a multi-period carbon emission flow standardized model.
  • the carbon emission flow calculation device for the regional integrated energy system proposed in the embodiment of this application, by establishing the steady-state carbon emission flow model of the regional integrated energy system, and according to the matrix expression of the carbon emission flow, realize its standardized modeling, and then Obtaining the actual carbon emission flow of the regional integrated energy system provides an accurate and effective method for the analysis and measurement of carbon emissions in the regional integrated energy system. Provides a basis for identifying low-carbon weak links in the system. As a result, it solves the problems that the relevant technologies are out of touch with the actual physical characteristics of the regional integrated energy system, the time-space transfer mechanism of carbon emissions in the regional integrated energy system cannot be clarified, and the guidance for the optimal decision-making of the regional integrated energy system is limited.
  • FIG. 5 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • This electronic equipment can include:
  • a memory 501 a memory 501 , a processor 502 , and computer programs stored in the memory 501 and executable on the processor 502 .
  • the processor 502 executes the program, it realizes the carbon emission flow calculation method oriented to the regional integrated energy system provided in the above-mentioned embodiments.
  • the electronic equipment also includes:
  • the communication interface 503 is used for communication between the memory 501 and the processor 502 .
  • the memory 501 is used to store computer programs that can run on the processor 502 .
  • the memory 501 may include a high-speed RAM memory, and may also include a non-volatile memory (non-volatile memory), such as at least one disk memory.
  • the bus may be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus, or an Extended Industry Standard Architecture (EISA) bus.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 5 , but it does not mean that there is only one bus or one type of bus.
  • the memory 501, processor 502, and communication interface 503 are integrated on one chip, then the memory 501, processor 502, and communication interface 503 can communicate with each other through the internal interface.
  • Processor 502 may be a central processing unit (Central Processing Unit, referred to as CPU), or a specific integrated circuit (Application Specific Integrated Circuit, referred to as ASIC), or is configured to implement one or more of the embodiments of the present application integrated circuit.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • This embodiment also provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, the above method for calculating carbon emission flow oriented to a regional integrated energy system is realized.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “N” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • Any process or method description in a flowchart or otherwise described herein may be understood to represent a module, segment or portion of code comprising one or more executable instructions for implementing a custom logical function or step of a process , and the scope of preferred embodiments of the present application includes additional implementations in which functions may be performed out of the order shown or discussed, including substantially concurrently or in reverse order depending on the functions involved, which shall It should be understood by those skilled in the art to which the embodiments of the present application belong.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate or transmit a program for use in or in conjunction with an instruction execution system, device or device.
  • Non-exhaustive list of computer readable media include the following: electrical connection with one or N wires (electronic device), portable computer disk case (magnetic device), random access memory (RAM), Read Only Memory (ROM), Erasable and Editable Read Only Memory (EPROM or Flash Memory), Fiber Optic Devices, and Portable Compact Disc Read Only Memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, as it may be possible, for example, by optically scanning the paper or other medium, followed by editing, interpreting, or other suitable processing if necessary.
  • the program is processed electronically and stored in computer memory.
  • each part of the present application may be realized by hardware, software, firmware or a combination thereof.
  • the N steps or methods may be implemented by software or firmware stored in memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware as in another embodiment, it can be implemented by any one or a combination of the following techniques known in the art: a discrete Logic circuits, ASICs with suitable combinational logic gates, Programmable Gate Arrays (PGA), Field Programmable Gate Arrays (FPGA), etc.
  • each functional unit in each embodiment of the present application may be integrated into one processing module, each unit may exist separately physically, or two or more units may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. If the integrated modules are implemented in the form of software function modules and sold or used as independent products, they can also be stored in a computer-readable storage medium.
  • the storage medium mentioned above may be a read-only memory, a magnetic disk or an optical disk, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本申请公开了一种面向区域综合能源系统的碳排放流计算方法及装置,其中,方法包括:分别对单输入-单输出转化设备和单输入-多输出转化设备的碳排放进行建模,建立能量转化设备的单时段稳态碳排放流模型,基于能量转化设备的单时段稳态碳排放流模型得到碳排放流的矩阵表达式,建立区域综合能源系统的单时段稳态碳排放流模型,并结合储能设备的多时段耦合的稳态碳排放流模型,建立区域综合能源系统的多时段碳排放流标准化模型,以求解多时段碳排放流标准化模型,得到区域综合能源系统的实际碳排放流。由此,解决了相关技术与区域综合能源系统的实际物理特性脱节,无法明晰碳排放在区域综合能源系统中的时空转移机理,对区域综合能源系统优化决策的指导性有限等问题。

Description

面向区域综合能源系统的碳排放流计算方法及装置
相关申请的交叉引用
本申请基于申请号为202210172385.4,申请日为2022年02月24日申请的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及低碳能源系统技术领域,特别涉及一种面向区域综合能源系统的碳排放流计算方法及装置。
背景技术
在主要国民经济生产部门中,能源系统是最大的碳排放源,能源系统的低碳转型与可持续发展对于实现我国的碳排放控制目标至关重要。为了降低能源碳排放、促进能源高效清洁利用,综合能源系统应运而生。
综合能源系统,又称为多能源系统或能源互联网,是由电力、热力、天然气、水能、太阳能、风能等多种类型能源进行耦合而组成的综合系统。区域综合能源系统,又称为能量枢纽(Energy hub,EH),是综合能源系统进行能源转化与存储的核心。区域综合能源系统是指较小空间范围内的多能集成系统,如工业园区、城镇能源系统等,主要实现能源的转化、分配和存储,涉及到的能源网络规模很小,多以低压配电网、配气网和区域热网为主。
在气候变化和可持续发展的背景下,碳排放的分析与计算是综合能源系统实现低碳化的基础性与关键性工作。能源系统的碳排放计算方法主要包括宏观统计法、全生命周期法以及碳排放流方法等三类,这些方法在计算结果精细度、对基础数据的要求以及出发点上均有较大差异,因此适合的应用场景也有所不同。然而,宏观统计法与全生命周期法均与区域综合能源系统的实际物理特性脱节,无法明晰碳排放在区域综合能源系统中的时空转移机理,对区域综合能源系统优化决策的指导性有限,亟需改善。
发明内容
本申请是基于发明人对以下问题的认知和发现作出的:
碳排放的分析与计算是综合能源系统实现低碳化的基础性与关键性工作,碳排放流方法是利用网络流的分析思想,将潮流追踪法用于碳流追踪,揭示了能源网络中虚拟碳排放 流的基本特征与规律。相关技术通过建立与电网网络结构和物理特性相结合的碳排放流模型,提出了碳排放流计算方法。
综上所述,在低碳能源系统领域,需要提出一种面向区域综合能源系统的碳排放流计算方法,在现有电力系统碳排放流方法的基础上进行一定的外推与改进,以精确计算区域综合能源系统中能量转化、分配、存储等环节的碳排放,为综合能源系统的低碳分析与优化决策提供基础理论。
本申请提供一种面向区域综合能源系统的碳排放流计算方法及装置,以解决相关技术与区域综合能源系统的实际物理特性脱节,无法明晰碳排放在区域综合能源系统中的时空转移机理,对区域综合能源系统优化决策的指导性有限等问题。
本申请第一方面实施例提供一种面向区域综合能源系统的碳排放流计算方法,包括以下步骤:分别对单输入-单输出转化设备和单输入-多输出转化设备的碳排放进行建模,建立能量转化设备的单时段稳态碳排放流模型;基于所述能量转化设备的单时段稳态碳排放流模型得到碳排放流的矩阵表达式,并建立区域综合能源系统的单时段稳态碳排放流模型;以及结合储能设备的多时段耦合的稳态碳排放流模型和所述区域综合能源系统的单时段稳态碳排放流模型,建立所述区域综合能源系统的多时段碳排放流标准化模型,以求解所述多时段碳排放流标准化模型,得到所述区域综合能源系统的实际碳排放流。
可选地,在本申请的一个实施例中,其中,所述单输入-单输出转化设备的输入端口与输出端口之间的第一碳流密度关系为:
Figure PCTCN2023071313-appb-000001
其中,
Figure PCTCN2023071313-appb-000002
Figure PCTCN2023071313-appb-000003
为分别为单输入-单输出转化设备和单输入-多输出转化设备的输入端口碳流密度和输出端口碳流密度,V i I
Figure PCTCN2023071313-appb-000004
分别为输入能量流和输出能量流,η I为效率;
所述单输入-多输出转化设备的输入端口与输出端口之间的第二碳流密度关系为:
Figure PCTCN2023071313-appb-000005
Figure PCTCN2023071313-appb-000006
其中,
Figure PCTCN2023071313-appb-000007
Figure PCTCN2023071313-appb-000008
分别表示输入端口碳流密度、电输出端口碳流密度和热输出端口碳流密度,η W为电能转化效率,η Q为热能转化效率,∈为工质的
Figure PCTCN2023071313-appb-000009
与能量的比值。
可选地,在本申请的一个实施例中,所述基于所述能量转化设备的单时段稳态碳排放流模型得到碳排放流的矩阵表达式,并建立区域综合能源系统的单时段稳态碳排放流模型, 包括:由所述第一碳流密度关系和所述第二碳流密度关系分别确定所述区域综合能源系统的第一碳排放耦合矩阵和第二碳排放耦合矩阵;根据所述第一碳排放耦合矩阵和所述第二碳排放耦合矩阵计算所有输出端口的碳流率。
可选地,在本申请的一个实施例中,所述根据所述第一碳排放耦合矩阵和所述第二碳排放耦合矩阵计算所有输出端口的碳流率,包括:根据所述第一碳排放耦合矩阵和所述第二碳排放耦合矩阵得到输出端的碳流密度向量;根据所述输出端的碳流密度向量得到所述所有输出端口的碳流率,其中,所述碳流率的计算公式为:
R o=ρ o o V o
其中,ρ o为输出端口的碳流密度向量,V o为输出能源列向量,o表示两个向量元素的对应相乘(哈达玛积)。
可选地,在本申请的一个实施例中,所述结合储能设备的多时段耦合的稳态碳排放流模型和所述区域综合能源系统的单时段稳态碳排放流模型,建立所述区域综合能源系统的多时段碳排放流标准化模型,包括:根据储能设备的当前工作状态确定内部存储能量,并得到对应的碳排放,确定存储碳流率;根据所述存储碳流率建立存储碳流率的时段耦合关系,确定任一时段的储能输入端口的碳流密度和输出端口的碳流密度,生成所述多时段碳排放流标准化模型。
本申请第二方面实施例提供一种面向区域综合能源系统的碳排放流计算装置,包括:第一建模单元,用于分别对单输入-单输出转化设备和单输入-多输出转化设备的碳排放进行建模,建立能量转化设备的单时段稳态碳排放流模型;第二建模单元,用于基于所述能量转化设备的单时段稳态碳排放流模型得到碳排放流的矩阵表达式,并建立区域综合能源系统的单时段稳态碳排放流模型;以及计算单元,结合储能设备的多时段耦合的稳态碳排放流模型和所述区域综合能源系统的单时段稳态碳排放流模型,建立所述区域综合能源系统的多时段碳排放流标准化模型,以求解所述多时段碳排放流标准化模型,得到所述区域综合能源系统的实际碳排放流。
可选地,在本申请的一个实施例中,其中,所述单输入-单输出转化设备的输入端口与输出端口之间的第一碳流密度关系为:
Figure PCTCN2023071313-appb-000010
其中,
Figure PCTCN2023071313-appb-000011
Figure PCTCN2023071313-appb-000012
为分别为单输入-单输出转化设备和单输入-多输出转化设备的输入端口碳流密度和输出端口碳流密度,V i I
Figure PCTCN2023071313-appb-000013
分别为输入能量流和输出能量流,η I为效率;
所述单输入-多输出转化设备的输入端口与输出端口之间的第二碳流密度关系为:
Figure PCTCN2023071313-appb-000014
Figure PCTCN2023071313-appb-000015
其中,
Figure PCTCN2023071313-appb-000016
Figure PCTCN2023071313-appb-000017
分别表示输入端口碳流密度、电输出端口碳流密度和热输出端口碳流密度,η W为电能转化效率,η Q为热能转化效率,∈为工质的
Figure PCTCN2023071313-appb-000018
与能量的比值。
可选地,在本申请的一个实施例中,所述第二建模单元,包括:转化子单元,用于由所述第一碳流密度关系和所述第二碳流密度关系分别确定所述区域综合能源系统的第一碳排放耦合矩阵和第二碳排放耦合矩阵;计算子单元,用于根据所述第一碳排放耦合矩阵和所述第二碳排放耦合矩阵计算所有输出端口的碳流率。
可选地,在本申请的一个实施例中,所述计算子单元,进一步用于:根据所述第一碳排放耦合矩阵和所述第二碳排放耦合矩阵得到输出端的碳流密度向量;并根据所述输出端的碳流密度向量得到所述所有输出端口的碳流率,其中,所述碳流率的计算公式为:
R o=ρ o o V o
其中,ρ o为输出端口的碳流密度向量,V o为输出能源列向量,o表示两个向量元素的对应相乘(哈达玛积)。
可选地,在本申请的一个实施例中,所述计算单元,进一步用于:根据储能设备的当前工作状态确定内部存储能量,并得到对应的碳排放,确定存储碳流率;并根据所述存储碳流率建立存储碳流率的时段耦合关系,确定任一时段的储能输入端口的碳流密度和输出端口的碳流密度,生成所述多时段碳排放流标准化模型。
本申请第三方面实施例提供一种电子设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述程序,以实现如上述实施例所述的面向区域综合能源系统的碳排放流计算方法。
本申请第四方面实施例提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如上的面向区域综合能源系统的碳排放流计算方法。
本申请实施例通过建立区域综合能源系统的稳态碳排放流模型,并根据碳排放流的矩阵表达式,实现其标准化建模,进而获得区域综合能源系统的实际碳排放流,为区域综合能源系统的碳排放分析与计量提供了准确有效的方法,为下游厘清不同能源系统的碳排放责任、衡量不同主体的减排贡献、发现和辨识系统中的低碳薄弱环节提供基础。由此,解决了相关技术与区域综合能源系统的实际物理特性脱节,无法明晰碳排放在区域综合能源 系统中的时空转移机理,对区域综合能源系统优化决策的指导性有限等问题。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本申请实施例提供的一种面向区域综合能源系统的碳排放流计算方法的流程图;
图2为根据本申请一个具体实施例的说明碳排放耦合矩阵求解过程的简单能量枢纽图;
图3为根据本申请一个具体实施例的面向区域综合能源系统的碳排放流计算方法的原理示意图;
图4为根据本申请实施例提供的一种面向区域综合能源系统的碳排放流计算装置的结构示意图;
图5为根据本申请实施例提供的电子设备的结构示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面参考附图描述本申请实施例的面向区域综合能源系统的碳排放流计算方法及装置。针对上述背景技术中心提到的相关技术与区域综合能源系统的实际物理特性脱节,无法明晰碳排放在区域综合能源系统中的时空转移机理,对区域综合能源系统优化决策的指导性有限的问题,本申请提供了一种面向区域综合能源系统的碳排放流计算方法,在该方法中,通过建立区域综合能源系统的稳态碳排放流模型,并根据碳排放流的矩阵表达式,实现其标准化建模,进而获得区域综合能源系统的实际碳排放流,为区域综合能源系统的碳排放分析与计量提供了准确有效的方法,为下游厘清不同能源系统的碳排放责任、衡量不同主体的减排贡献、发现和辨识系统中的低碳薄弱环节提供基础。由此,解决了相关技术与区域综合能源系统的实际物理特性脱节,无法明晰碳排放在区域综合能源系统中的时空转移机理,对区域综合能源系统优化决策的指导性有限等问题。
具体而言,图1为本申请实施例所提供的一种面向区域综合能源系统的碳排放流计算 方法的流程示意图。
如图1所示,该面向区域综合能源系统的碳排放流计算方法包括以下步骤:
在步骤S101中,分别对单输入-单输出转化设备和单输入-多输出转化设备的碳排放进行建模,建立能量转化设备的单时段稳态碳排放流模型。
具体地,本申请实施例可以根据输入端口和输出端口的数目,将多能源系统中的能源转化设备(如热电联产机组(Combined heat and power,CHP)、电锅炉(Electric boiler,EB)、燃气锅炉(Auxiliary boiler,AB)、压缩机制冷机(Compression electrical refrigeration group,CERG)、吸收式制冷机(Water absorption refrigeration group,WARG)等)分为两类:单输入-单输出设备和单输入-多输出设备。其中,大部分设备属于第一类,少数设备如CHP则属于第二类。本申请实施例可以分别对这两类设备的碳排放进行建模,进而实现对多能源系统中的能源转化设备的全覆盖,进而保证其结果的准确性。
可选地,在本申请的一个实施例中,其中,单输入-单输出转化设备的输入端口与输出端口之间的第一碳流密度关系为:
Figure PCTCN2023071313-appb-000019
其中,
Figure PCTCN2023071313-appb-000020
Figure PCTCN2023071313-appb-000021
为分别为单输入-单输出转化设备和单输入-多输出转化设备的输入端口碳流密度和输出端口碳流密度,V i I
Figure PCTCN2023071313-appb-000022
分别为输入能量流和输出能量流,η I为效率;
单输入-多输出转化设备的输入端口与输出端口之间的第二碳流密度关系为:
Figure PCTCN2023071313-appb-000023
Figure PCTCN2023071313-appb-000024
其中,
Figure PCTCN2023071313-appb-000025
Figure PCTCN2023071313-appb-000026
分别表示输入端口碳流密度、电输出端口碳流密度和热输出端口碳流密度,η W为电能转化效率,η Q为热能转化效率,∈为工质的
Figure PCTCN2023071313-appb-000027
与能量的比值。
在实际执行过程中,当多能源系统中的能源转化设备为单输入-单输出转化设备时,本申请实施例在运行过程中不存在除输入以外的碳排放注入或除输出以外的碳排放流出,根据碳排放守恒,输入能源对应的碳排放等于输出能源对应的碳排放:
Figure PCTCN2023071313-appb-000028
其中,
Figure PCTCN2023071313-appb-000029
Figure PCTCN2023071313-appb-000030
为分别为能源转化设备I(I=EB,AB,CERG,WARG等)的输入端口碳流密度和输出端口碳流密度,V i I
Figure PCTCN2023071313-appb-000031
分别为输入能量流和输出能量流。
本申请实施例可以用效率η I表示设备的输出能量流与输入能量流之间的关系,即:
Figure PCTCN2023071313-appb-000032
进而得到单输入-单输出能源转化设备的输入端口碳流密度和输出端口碳流密度之间的关系,如下式所示:
Figure PCTCN2023071313-appb-000033
当多能源系统中的能源转化设备为单输入-多输出转化设备时,以CHP为例进行分析,本申请实施例可以分别定义电能转化效率η W和热能转化效率η Q,从而计算得到CHP的电输出和热输出分别为:
Figure PCTCN2023071313-appb-000034
Figure PCTCN2023071313-appb-000035
其中,V i CHP表示输入天然气的能量值,
Figure PCTCN2023071313-appb-000036
Figure PCTCN2023071313-appb-000037
分别为CHP的电输出和热输出。
对于这类设备,由碳排放守恒可知,输入端口碳排放等于输出端口碳排放之和,因此有:
Figure PCTCN2023071313-appb-000038
其中,
Figure PCTCN2023071313-appb-000039
Figure PCTCN2023071313-appb-000040
分别表示输入端口碳流密度、电输出端口碳流密度和热输出端口碳流密度。
本申请实施例可以采用
Figure PCTCN2023071313-appb-000041
分析方法对输入总碳排放在多个输出端口之间进行分配,定义
Figure PCTCN2023071313-appb-000042
系数为工质的
Figure PCTCN2023071313-appb-000043
与能量的比值,电能的
Figure PCTCN2023071313-appb-000044
系数为1,热能的
Figure PCTCN2023071313-appb-000045
系数与工质温度有关,记为∈。根据
Figure PCTCN2023071313-appb-000046
分析方法,不同输出端口的碳排放应该与输出端口的
Figure PCTCN2023071313-appb-000047
成正比,则有:
Figure PCTCN2023071313-appb-000048
结合上述公式,可得到CHP的输入端口与输出端口之间的碳流密度关系为:
Figure PCTCN2023071313-appb-000049
Figure PCTCN2023071313-appb-000050
在步骤S102中,基于能量转化设备的单时段稳态碳排放流模型得到碳排放流的矩阵表达式,并建立区域综合能源系统的单时段稳态碳排放流模型。
作为一种可能实现的方式,本申请实施例可以根据能量转化设备的单时段稳态碳排放流模型得到碳排放流的矩阵表达式,进而建立区域综合能源系统的单时段稳态碳排放流模型。本申请实施例通过建立区域综合能源系统的单时段稳态碳排放流模型,为后续对区域综合能源系统的多时段稳态碳排放流模型的建立提供基础,使得碳排放流的计算结果更为精确,有利于解决区域综合能源系统中,碳排放在能源维度和时间维度的耦合问题。
可选地,在本申请的一个实施例中,基于能量转化设备的单时段稳态碳排放流模型得到碳排放流的矩阵表达式,并建立区域综合能源系统的单时段稳态碳排放流模型,包括:由第一碳流密度关系和第二碳流密度关系分别确定区域综合能源系统的第一碳排放耦合矩阵和第二碳排放耦合矩阵;根据第一碳排放耦合矩阵和第二碳排放耦合矩阵计算所有输出端口的碳流率。
举例而言,本申请实施例可以根据第一碳流密度关系和第二碳流密度关系分别确定区域综合能源系统的第一碳排放耦合矩阵和第二碳排放耦合矩阵,并根据第一碳排放耦合矩阵和第二碳排放耦合矩阵计算所有输出端口的碳流率,其中,所有输出端口的碳流率的计算方法会在下文进行详细阐述。本申请实施例分别根据单输入-单输出能源转化设备和单输入-多输出能源转化设备的碳流密度,计算所有输出端口的碳流率,实现了对多能源系统中的能源转化设备的全覆盖,为后续对区域综合能源系统的多时段稳态碳排放流模型的建立提供基础,使得碳排放流的计算结果更为精确,有利于解决区域综合能源系统中,碳排放在能源维度和时间维度的耦合问题。
可选地,在本申请的一个实施例中,根据第一碳排放耦合矩阵和第二碳排放耦合矩阵计算所有输出端口的碳流率,包括:根据第一碳排放耦合矩阵和第二碳排放耦合矩阵得到输出端的碳流密度向量;根据输出端的碳流密度向量得到所有输出端口的碳流率,其中,碳流率的计算公式为:
R o=ρ o o V o
其中,ρ o为输出端口的碳流密度向量,V o为输出能源列向量,o表示两个向量元素的对应相乘(哈达玛积)。
具体地,本申请实施例用输入-输出端口模型来定义和描述区域综合能源系统中不同的能源转化设备相互连接的耦合关系。用耦合矩阵C表征输入能源列向量V i和输出能源列向量V o之间的关系,即:
V o=CV i
本申请实施例可以定义区域综合能源系统的碳排放耦合矩阵D,用于描述其输入端口 碳流密度向量与输出端口碳流密度向量之间的关系,如下式所示:
ρ o=Dρ i
其中,ρ i表示输入端口的碳流密度向量,ρ o表示输出端口的碳流密度向量。
碳排放耦合矩阵D中的每一个元素d ij定义了第i个输出端口的碳流密度ρ o,i与第j个输入端口的碳流密度ρ i,j之间的关系,因此ρ o=Dρ i也可以展开为:
Figure PCTCN2023071313-appb-000051
根据能量枢纽的能量流,即可利用上述模型得到碳排放耦合矩阵D,然后得到输出端口的碳流密度向量。最后可计算所有输出端口的碳流率,如下式所示:
R o=ρ o o V o
其中,o表示两个向量元素的对应相乘(哈达玛积)。
其中,碳排放耦合矩阵D的求解过程,以图2所示的简单能量枢纽为例,该能量枢纽有一个输入端口和三个输出端口,以不同颜色的箭头区分不同形式的能量流。本申请实施例在计算所有输出端口的碳流率时,首先,输入端口的碳流密度向量和输出端口的碳流密度向量分别为:
ρ i=[ρ i],
Figure PCTCN2023071313-appb-000052
其中,ρ i
Figure PCTCN2023071313-appb-000053
Figure PCTCN2023071313-appb-000054
分别表示输入端口碳流密度、电输出端口碳流密度、热输出端口碳流密度和冷输出端口碳流密度。
根据步骤S101建立的CHP和WARG的碳排放流模型,可得到如下关系式:
Figure PCTCN2023071313-appb-000055
Figure PCTCN2023071313-appb-000056
Figure PCTCN2023071313-appb-000057
Figure PCTCN2023071313-appb-000058
综合式上述公式,可得到输入输出端口的碳流密度向量关系为:
Figure PCTCN2023071313-appb-000059
其中,输入端口碳流密度为模型参数,根据上式即可得到每个输出端口的碳流密度,进而结合R o=ρ o o V o,可计算每个输出端口的碳流率。
在步骤S103中,结合储能设备的多时段耦合的稳态碳排放流模型和区域综合能源系统的单时段稳态碳排放流模型,建立区域综合能源系统的多时段碳排放流标准化模型,以求解多时段碳排放流标准化模型,得到区域综合能源系统的实际碳排放流。
在实际执行过程中,本申请实施例可以结合上述步骤中得到的区域综合能源系统的单时段稳态碳排放流模型以及储能设备的多时段耦合点稳态碳排放流模型,建立区域综合能源系统中储能设备的多时段碳排放流模型,从而得到区域综合能源系统的多时段碳排放流模型,进而得到区域综合能源系统的实际碳排放流。本申请实施例通过建立区域综合能源系统的稳态碳排放流模型,并根据碳排放流的矩阵表达式,实现其标准化建模,进而获得区域综合能源系统的实际碳排放流,为区域综合能源系统的碳排放分析与计量提供了准确有效的方法,为下游厘清不同能源系统的碳排放责任、衡量不同主体的减排贡献、发现和辨识系统中的低碳薄弱环节提供基础。
可选地,在本申请的一个实施例中,结合储能设备的多时段耦合的稳态碳排放流模型和区域综合能源系统的单时段稳态碳排放流模型,建立区域综合能源系统的多时段碳排放流标准化模型,包括:根据储能设备的当前工作状态确定内部存储能量,并得到对应的碳排放,确定存储碳流率;根据存储碳流率建立存储碳流率的时段耦合关系,确定任一时段的储能输入端口的碳流密度和输出端口的碳流密度,生成多时段碳排放流标准化模型。
具体地,本申请实施例可以将各类储能设备抽象为一个单输入-单输出的模型,其中,输入端口表示吸收能量(充能),输出端口表示释放能量(放能)。当工作于充能状态时,输入的能量与储能设备内部存储的能量混合,二者对应的碳排放也混合到一起;当工作于放能状态时,内部存储的能量与对应的碳排放一起输出。
本申请实施例可以假设时段t储能设备的输入/输出能量流为V t,V t>0表示储能设备为工作于充能状态,V t<0表示储能设备工作于放能状态。则储能的内部存储能量变化为:
ΔE s,t=η sV t
其中,η s表示储能设备的综合效率,其表达式为:
Figure PCTCN2023071313-appb-000060
其中,η C和η D分别表示储能设备的充能效率和放能效率。
本申请实施例可以定义储能设备内部存储能量所对应的碳排放为存储碳流率
Figure PCTCN2023071313-appb-000061
建立存储碳流率的时段耦合关系为:
Figure PCTCN2023071313-appb-000062
其中,
Figure PCTCN2023071313-appb-000063
表示存储碳流率
Figure PCTCN2023071313-appb-000064
在时段t的变化量,与充放能功率及其对应的碳流密度有关,其表达式为:
Figure PCTCN2023071313-appb-000065
其中,
Figure PCTCN2023071313-appb-000066
Figure PCTCN2023071313-appb-000067
分别为时段t储能输入端口的碳流密度和输出端口的碳流密度。
储能设备内部存储能量对应的碳流密度等于这部分能量的耦合碳排放与能量值之比,即:
Figure PCTCN2023071313-appb-000068
特别地,当储能设备工作于放能状态时,根据能源分配准则,输出端口的碳流密度等于上一时段内部存储能量对应的碳流密度,即:
Figure PCTCN2023071313-appb-000069
而当储能工作于充能状态时,输入端口的碳流密度
Figure PCTCN2023071313-appb-000070
由外部注入能量流决定,是模型的参数。
综上,本申请实施例基于碳排放流技术,可以将碳排放分析的视角从单纯的能源生产侧拓展到从能源生产到能源消费的全环节,并将CO 2与实时能源流动相结合,进而可以更加全面、清晰、准确地刻画区域综合能源系统的碳排放。相比于传统碳排放流技术,区域综合能源系统的碳排放流理论可以通过对不同形式的能量流附着相应的“碳标签”,实现对多种异质能源转化、分配和存储等环节的碳排放流实时计算,进而更好地解决区域综合能源系统中,碳排放在能源维度和时间维度的耦合问题。
下面结合图2和图3对本申请的一个具体实施例进行详细阐述。
如图3所示,本申请实施例包括以下步骤:
步骤S301:建立能量转化设备的单时段稳态碳排放流模型。具体地,本申请实施例可 以根据输入端口和输出端口的数目,将多能源系统中的能源转化设备(如热电联产机组(Combined heat and power,CHP)、电锅炉(Electric boiler,EB)、燃气锅炉(Auxiliary boiler,AB)、压缩机制冷机(Compression electrical refrigeration group,CERG)、吸收式制冷机(Water absorption refrigeration group,WARG)等)分为两类:单输入-单输出设备和单输入-多输出设备。其中,大部分设备属于第一类,少数设备如CHP则属于第二类。本申请实施例可以分别对这两类设备的碳排放进行建模,进而实现对多能源系统中的能源转化设备的全覆盖,进而保证其结果的准确性。
当多能源系统中的能源转化设备为单输入-单输出转化设备时,本申请实施例在运行过程中不存在除输入以外的碳排放注入或除输出以外的碳排放流出,根据碳排放守恒,输入能源对应的碳排放等于输出能源对应的碳排放:
Figure PCTCN2023071313-appb-000071
其中,
Figure PCTCN2023071313-appb-000072
Figure PCTCN2023071313-appb-000073
为分别为能源转化设备I(I=EB,AB,CERG,WARG等)的输入端口碳流密度和输出端口碳流密度,V i I
Figure PCTCN2023071313-appb-000074
分别为输入能量流和输出能量流。
用效率η I表示设备的输出能量流与输入能量流之间的关系,即:
Figure PCTCN2023071313-appb-000075
进而得到单输入-单输出能源转化设备的输入端口碳流密度和输出端口碳流密度之间的关系,如下式所示:
Figure PCTCN2023071313-appb-000076
当多能源系统中的能源转化设备为单输入-多输出转化设备时,以CHP为例进行分析,本申请实施例可以分别定义电能转化效率η W和热能转化效率η Q,从而计算得到CHP的电输出和热输出分别为:
Figure PCTCN2023071313-appb-000077
Figure PCTCN2023071313-appb-000078
其中,V i CHP表示输入天然气的能量值,
Figure PCTCN2023071313-appb-000079
Figure PCTCN2023071313-appb-000080
分别为CHP的电输出和热输出。
对于这类设备,由碳排放守恒可知,输入端口碳排放等于输出端口碳排放之和,因此有:
Figure PCTCN2023071313-appb-000081
其中,
Figure PCTCN2023071313-appb-000082
Figure PCTCN2023071313-appb-000083
分别表示输入端口碳流密度、电输出端口碳流密度和热输出 端口碳流密度。
本申请实施例可以采用
Figure PCTCN2023071313-appb-000084
分析方法对输入总碳排放在多个输出端口之间进行分配,定义
Figure PCTCN2023071313-appb-000085
系数为工质的
Figure PCTCN2023071313-appb-000086
与能量的比值,电能的
Figure PCTCN2023071313-appb-000087
系数为1,热能的
Figure PCTCN2023071313-appb-000088
系数与工质温度有关,记为∈。根据
Figure PCTCN2023071313-appb-000089
分析方法,不同输出端口的碳排放应该与输出端口的
Figure PCTCN2023071313-appb-000090
成正比,则有:
Figure PCTCN2023071313-appb-000091
结合上述公式,可得到CHP的输入端口与输出端口之间的碳流密度关系为:
Figure PCTCN2023071313-appb-000092
Figure PCTCN2023071313-appb-000093
步骤S302:建立区域综合能源系统的单时段稳态碳排放流模型。本申请实施例用输入-输出端口模型来定义和描述区域综合能源系统中不同的能源转化设备相互连接的耦合关系。用耦合矩阵C表征输入能源列向量V i和输出能源列向量V o之间的关系,即:
V o=CV i
定义区域综合能源系统的碳排放耦合矩阵D,用于描述其输入端口碳流密度向量与输出端口碳流密度向量之间的关系,如下式所示:
ρ o=Dρ i
其中,ρ i表示输入端口的碳流密度向量,ρ o表示输出端口的碳流密度向量。
碳排放耦合矩阵D中的每一个元素d ij定义了第i个输出端口的碳流密度ρ o,i与第j个输入端口的碳流密度ρ i,j之间的关系,因此ρ o=Dρ i也可以展开为:
Figure PCTCN2023071313-appb-000094
根据能量枢纽的能量流,即可利用上述模型得到碳排放耦合矩阵D,然后得到输出端口的碳流密度向量。最后可计算所有输出端口的碳流率,如下式所示:
R o=ρ o o V o
其中,o表示两个向量元素的对应相乘(哈达玛积)。
其中,碳排放耦合矩阵D的求解过程,以图2所示的简单能量枢纽为例,该能量枢纽有一个输入端口和三个输出端口,以不同颜色的箭头区分不同形式的能量流。本申请实施例在计算所有输出端口的碳流率时,首先,输入端口的碳流密度向量和输出端口的碳流密度向量分别为:
ρ i=[ρ i],
Figure PCTCN2023071313-appb-000095
其中,ρ i
Figure PCTCN2023071313-appb-000096
Figure PCTCN2023071313-appb-000097
分别表示输入端口碳流密度、电输出端口碳流密度、热输出端口碳流密度和冷输出端口碳流密度。
根据步骤S101建立的CHP和WARG的碳排放流模型,可得到如下关系式:
Figure PCTCN2023071313-appb-000098
Figure PCTCN2023071313-appb-000099
Figure PCTCN2023071313-appb-000100
Figure PCTCN2023071313-appb-000101
综合式上述公式,可得到输入输出端口的碳流密度向量关系为:
Figure PCTCN2023071313-appb-000102
其中,输入端口碳流密度为模型参数,根据上式即可得到每个输出端口的碳流密度,进而结合R o=ρ o o V o,可计算每个输出端口的碳流率。
步骤S303:建立区域综合能源系统中储能设备的多时段碳排放流模型。本申请实施例可以将各类储能设备抽象为一个单输入-单输出的模型,其中,输入端口表示吸收能量(充能),输出端口表示释放能量(放能)。当工作于充能状态时,输入的能量与储能设备内部存储的能量混合,二者对应的碳排放也混合到一起;当工作于放能状态时,内部存储的能量与对应的碳排放一起输出。
本申请实施例可以假设时段t储能设备的输入/输出能量流为V t,V t>0表示储能设备为工作于充能状态,V t<0表示储能设备工作于放能状态。则储能的内部存储能量变化为:
ΔE s,t=η sV t
其中,η s表示储能设备的综合效率,其表达式为:
Figure PCTCN2023071313-appb-000103
其中,η C和η D分别表示储能设备的充能效率和放能效率。
本申请实施例可以定义储能设备内部存储能量所对应的碳排放为存储碳流率
Figure PCTCN2023071313-appb-000104
建立存储碳流率的时段耦合关系为:
Figure PCTCN2023071313-appb-000105
其中,
Figure PCTCN2023071313-appb-000106
表示存储碳流率
Figure PCTCN2023071313-appb-000107
在时段t的变化量,与充放能功率及其对应的碳流密度有关,其表达式为:
Figure PCTCN2023071313-appb-000108
其中,
Figure PCTCN2023071313-appb-000109
Figure PCTCN2023071313-appb-000110
分别为时段t储能输入端口的碳流密度和输出端口的碳流密度。
储能设备内部存储能量对应的碳流密度等于这部分能量的耦合碳排放与能量值之比,即:
Figure PCTCN2023071313-appb-000111
特别地,当储能设备工作于放能状态时,根据能源分配准则,输出端口的碳流密度等于上一时段内部存储能量对应的碳流密度,即:
Figure PCTCN2023071313-appb-000112
而当储能工作于充能状态时,输入端口的碳流密度
Figure PCTCN2023071313-appb-000113
由外部注入能量流决定,是模型的参数。
步骤S304:建立区域综合能源系统的多时段稳态碳排放流模型。本申请实施例在步骤S303中,构成了储能设备的多时段碳排放流模型,由于能量转化、存储环节中只有储能设备存在能量的时段耦合关系,因此结合步骤S301和步骤S302中建立的矩阵化单时段稳态碳排放流模型,即得到区域综合能源系统的多时段碳排放流模型。
步骤S305:求解模型得到区域综合能源系统的碳排放流计算结果。
根据本申请实施例提出的面向区域综合能源系统的碳排放流计算,通过建立区域综合能源系统的稳态碳排放流模型,并根据碳排放流的矩阵表达式,实现其标准化建模,进而获得区域综合能源系统的实际碳排放流,为区域综合能源系统的碳排放分析与计量提供了 准确有效的方法,为下游厘清不同能源系统的碳排放责任、衡量不同主体的减排贡献、发现和辨识系统中的低碳薄弱环节提供基础。由此,解决了相关技术与区域综合能源系统的实际物理特性脱节,无法明晰碳排放在区域综合能源系统中的时空转移机理,对区域综合能源系统优化决策的指导性有限等问题。
其次参照附图描述根据本申请实施例提出的面向区域综合能源系统的碳排放流计算装置。
图4是本申请实施例的面向区域综合能源系统的碳排放流计算装置的方框示意图。
如图4所示,该面向区域综合能源系统的碳排放流计算装置10包括:第一建模单元100、第二建模单元200和计算单元300。
具体地,第一建模单元100,用于分别对单输入-单输出转化设备和单输入-多输出转化设备的碳排放进行建模,建立能量转化设备的单时段稳态碳排放流模型。
第二建模单元200,用于基于能量转化设备的单时段稳态碳排放流模型得到碳排放流的矩阵表达式,并建立区域综合能源系统的单时段稳态碳排放流模型。
计算单元300,用于结合储能设备的多时段耦合的稳态碳排放流模型和区域综合能源系统的单时段稳态碳排放流模型,建立区域综合能源系统的多时段碳排放流标准化模型,以求解多时段碳排放流标准化模型,得到区域综合能源系统的实际碳排放流。
可选地,在本申请的一个实施例中,其中,单输入-单输出转化设备的输入端口与输出端口之间的第一碳流密度关系为:
Figure PCTCN2023071313-appb-000114
其中,
Figure PCTCN2023071313-appb-000115
Figure PCTCN2023071313-appb-000116
为分别为单输入-单输出转化设备和单输入-多输出转化设备的输入端口碳流密度和输出端口碳流密度,V i I
Figure PCTCN2023071313-appb-000117
分别为输入能量流和输出能量流,η I为效率;
单输入-多输出转化设备的输入端口与输出端口之间的第二碳流密度关系为:
Figure PCTCN2023071313-appb-000118
Figure PCTCN2023071313-appb-000119
其中,
Figure PCTCN2023071313-appb-000120
Figure PCTCN2023071313-appb-000121
分别表示输入端口碳流密度、电输出端口碳流密度和热输出端口碳流密度,η W为电能转化效率,η Q为热能转化效率,∈为工质的
Figure PCTCN2023071313-appb-000122
与能量的比值。
可选地,在本申请的一个实施例中,第二建模单元200,包括:转化子单元和计算子单 元。
其中,转化子单元,用于由第一碳流密度关系和第二碳流密度关系分别确定区域综合能源系统的第一碳排放耦合矩阵和第二碳排放耦合矩阵。
计算子单元,用于根据第一碳排放耦合矩阵和第二碳排放耦合矩阵计算所有输出端口的碳流率。
可选地,在本申请的一个实施例中,计算子单元进一步用于:根据第一碳排放耦合矩阵和第二碳排放耦合矩阵得到输出端的碳流密度向量;并根据输出端的碳流密度向量得到所有输出端口的碳流率,其中,碳流率的计算公式为:
R o=ρ o o V o
其中,ρ o为输出端口的碳流密度向量,V o为输出能源列向量,o表示两个向量元素的对应相乘(哈达玛积)。
可选地,在本申请的一个实施例中,计算单元300进一步用于:根据储能设备的当前工作状态确定内部存储能量,并得到对应的碳排放,确定存储碳流率;并根据存储碳流率建立存储碳流率的时段耦合关系,确定任一时段的储能输入端口的碳流密度和输出端口的碳流密度,生成多时段碳排放流标准化模型。
需要说明的是,前述对面向区域综合能源系统的碳排放流计算方法实施例的解释说明也适用于该实施例的面向区域综合能源系统的碳排放流计算装置,此处不再赘述。
根据本申请实施例提出的面向区域综合能源系统的碳排放流计算装置,通过建立区域综合能源系统的稳态碳排放流模型,并根据碳排放流的矩阵表达式,实现其标准化建模,进而获得区域综合能源系统的实际碳排放流,为区域综合能源系统的碳排放分析与计量提供了准确有效的方法,为下游厘清不同能源系统的碳排放责任、衡量不同主体的减排贡献、发现和辨识系统中的低碳薄弱环节提供基础。由此,解决了相关技术与区域综合能源系统的实际物理特性脱节,无法明晰碳排放在区域综合能源系统中的时空转移机理,对区域综合能源系统优化决策的指导性有限等问题。
图5为本申请实施例提供的电子设备的结构示意图。该电子设备可以包括:
存储器501、处理器502及存储在存储器501上并可在处理器502上运行的计算机程序。
处理器502执行程序时实现上述实施例中提供的面向区域综合能源系统的碳排放流计算方法。
进一步地,电子设备还包括:
通信接口503,用于存储器501和处理器502之间的通信。
存储器501,用于存放可在处理器502上运行的计算机程序。
存储器501可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。
如果存储器501、处理器502和通信接口503独立实现,则通信接口503、存储器501和处理器502可以通过总线相互连接并完成相互间的通信。总线可以是工业标准体系结构(Industry Standard Architecture,简称为ISA)总线、外部设备互连(Peripheral Component,简称为PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,简称为EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图5中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
可选的,在具体实现上,如果存储器501、处理器502及通信接口503,集成在一块芯片上实现,则存储器501、处理器502及通信接口503可以通过内部接口完成相互间的通信。
处理器502可能是一个中央处理器(Central Processing Unit,简称为CPU),或者是特定集成电路(Application Specific Integrated Circuit,简称为ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路。
本实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如上的面向区域综合能源系统的碳排放流计算方法。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或N个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“N个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更N个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序, 包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或N个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,N个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (12)

  1. 一种面向区域综合能源系统的碳排放流计算方法,其特征在于,包括以下步骤:
    分别对单输入-单输出转化设备和单输入-多输出转化设备的碳排放进行建模,建立能量转化设备的单时段稳态碳排放流模型;
    基于所述能量转化设备的单时段稳态碳排放流模型得到碳排放流的矩阵表达式,并建立区域综合能源系统的单时段稳态碳排放流模型;以及
    结合储能设备的多时段耦合的稳态碳排放流模型和所述区域综合能源系统的单时段稳态碳排放流模型,建立所述区域综合能源系统的多时段碳排放流标准化模型,以求解所述多时段碳排放流标准化模型,得到所述区域综合能源系统的实际碳排放流。
  2. 根据权利要求1所述的方法,其特征在于,其中,
    所述单输入-单输出转化设备的输入端口与输出端口之间的第一碳流密度关系为:
    Figure PCTCN2023071313-appb-100001
    其中,
    Figure PCTCN2023071313-appb-100002
    Figure PCTCN2023071313-appb-100003
    为分别为单输入-单输出转化设备和单输入-多输出转化设备的输入端口碳流密度和输出端口碳流密度,V i I
    Figure PCTCN2023071313-appb-100004
    分别为输入能量流和输出能量流,η I为效率;
    所述单输入-多输出转化设备的输入端口与输出端口之间的第二碳流密度关系为:
    Figure PCTCN2023071313-appb-100005
    Figure PCTCN2023071313-appb-100006
    其中,
    Figure PCTCN2023071313-appb-100007
    Figure PCTCN2023071313-appb-100008
    分别表示输入端口碳流密度、电输出端口碳流密度和热输出端口碳流密度,η W为电能转化效率,η Q为热能转化效率,∈为工质的
    Figure PCTCN2023071313-appb-100009
    与能量的比值。
  3. 根据权利要求2所述的方法,其特征在于,所述基于所述能量转化设备的单时段稳态碳排放流模型得到碳排放流的矩阵表达式,并建立区域综合能源系统的单时段稳态碳排放流模型,包括:
    由所述第一碳流密度关系和所述第二碳流密度关系分别确定所述区域综合能源系统的第一碳排放耦合矩阵和第二碳排放耦合矩阵;
    根据所述第一碳排放耦合矩阵和所述第二碳排放耦合矩阵计算所有输出端口的碳流率。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述第一碳排放耦合矩阵和所 述第二碳排放耦合矩阵计算所有输出端口的碳流率,包括:
    根据所述第一碳排放耦合矩阵和所述第二碳排放耦合矩阵得到输出端的碳流密度向量;
    根据所述输出端的碳流密度向量得到所述所有输出端口的碳流率,其中,所述碳流率的计算公式为:
    R o=ρ o o V o
    其中,ρ o为输出端口的碳流密度向量,V o为输出能源列向量,o表示两个向量元素的对应相乘(哈达玛积)。
  5. 根据权利要求1所述的方法,其特征在于,所述结合储能设备的多时段耦合的稳态碳排放流模型和所述区域综合能源系统的单时段稳态碳排放流模型,建立所述区域综合能源系统的多时段碳排放流标准化模型,包括:
    根据储能设备的当前工作状态确定内部存储能量,并得到对应的碳排放,确定存储碳流率;
    根据所述存储碳流率建立存储碳流率的时段耦合关系,确定任一时段的储能输入端口的碳流密度和输出端口的碳流密度,生成所述多时段碳排放流标准化模型。
  6. 一种面向区域综合能源系统的碳排放流计算装置,其特征在于,包括:
    第一建模单元,用于分别对单输入-单输出转化设备和单输入-多输出转化设备的碳排放进行建模,建立能量转化设备的单时段稳态碳排放流模型;
    第二建模单元,用于基于所述能量转化设备的单时段稳态碳排放流模型得到碳排放流的矩阵表达式,并建立区域综合能源系统的单时段稳态碳排放流模型;以及
    计算单元,结合储能设备的多时段耦合的稳态碳排放流模型和所述区域综合能源系统的单时段稳态碳排放流模型,建立所述区域综合能源系统的多时段碳排放流标准化模型,以求解所述多时段碳排放流标准化模型,得到所述区域综合能源系统的实际碳排放流。
  7. 根据权利要求6所述的装置,其特征在于,其中,
    所述单输入-单输出转化设备的输入端口与输出端口之间的第一碳流密度关系为:
    Figure PCTCN2023071313-appb-100010
    其中,
    Figure PCTCN2023071313-appb-100011
    Figure PCTCN2023071313-appb-100012
    为分别为单输入-单输出转化设备和单输入-多输出转化设备的输入端口碳流密度和输出端口碳流密度,V i I
    Figure PCTCN2023071313-appb-100013
    分别为输入能量流和输出能量流,η I为效率;
    所述单输入-多输出转化设备的输入端口与输出端口之间的第二碳流密度关系为:
    Figure PCTCN2023071313-appb-100014
    Figure PCTCN2023071313-appb-100015
    其中,
    Figure PCTCN2023071313-appb-100016
    Figure PCTCN2023071313-appb-100017
    分别表示输入端口碳流密度、电输出端口碳流密度和热输出端口碳流密度,η W为电能转化效率,η Q为热能转化效率,∈为工质的
    Figure PCTCN2023071313-appb-100018
    与能量的比值。
  8. 根据权利要求7所述的装置,其特征在于,所述第二建模单元,包括:
    转化子单元,用于由所述第一碳流密度关系和所述第二碳流密度关系分别确定所述区域综合能源系统的第一碳排放耦合矩阵和第二碳排放耦合矩阵;
    计算子单元,用于根据所述第一碳排放耦合矩阵和所述第二碳排放耦合矩阵计算所有输出端口的碳流率。
  9. 根据权利要求8所述的装置,其特征在于,所述计算子单元,进一步用于:
    根据所述第一碳排放耦合矩阵和所述第二碳排放耦合矩阵得到输出端的碳流密度向量;并根据所述输出端的碳流密度向量得到所述所有输出端口的碳流率,其中,所述碳流率的计算公式为:
    R o=ρ o o V o
    其中,ρ o为输出端口的碳流密度向量,V o为输出能源列向量,o表示两个向量元素的对应相乘(哈达玛积)。
  10. 根据权利要求6所述的装置,其特征在于,所述计算单元,进一步用于:
    根据储能设备的当前工作状态确定内部存储能量,并得到对应的碳排放,确定存储碳流率;并根据所述存储碳流率建立存储碳流率的时段耦合关系,确定任一时段的储能输入端口的碳流密度和输出端口的碳流密度,生成所述多时段碳排放流标准化模型。
  11. 一种电子设备,其特征在于,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述程序,以实现如权利要求1-5任一项所述的面向区域综合能源系统的碳排放流计算方法。
  12. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行,以用于实现如权利要求1-5任一项所述的面向区域综合能源系统的碳排放流计算方法。
PCT/CN2023/071313 2022-02-24 2023-01-09 面向区域综合能源系统的碳排放流计算方法及装置 WO2023160284A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/490,744 US20240054262A1 (en) 2022-02-24 2023-10-19 Carbon emission flow calculation method and apparatus for regional integrated energy system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210172385.4A CN114547894B (zh) 2022-02-24 2022-02-24 面向区域综合能源系统的碳排放流计算方法及装置
CN202210172385.4 2022-02-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/490,744 Continuation US20240054262A1 (en) 2022-02-24 2023-10-19 Carbon emission flow calculation method and apparatus for regional integrated energy system

Publications (1)

Publication Number Publication Date
WO2023160284A1 true WO2023160284A1 (zh) 2023-08-31

Family

ID=81677586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071313 WO2023160284A1 (zh) 2022-02-24 2023-01-09 面向区域综合能源系统的碳排放流计算方法及装置

Country Status (3)

Country Link
US (1) US20240054262A1 (zh)
CN (1) CN114547894B (zh)
WO (1) WO2023160284A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116894354A (zh) * 2023-09-11 2023-10-17 国网浙江省电力有限公司 一种多能源耦合环节的碳流计算方法及系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114547894B (zh) * 2022-02-24 2024-10-01 清华大学 面向区域综合能源系统的碳排放流计算方法及装置
CN115577479B (zh) * 2022-10-08 2023-05-16 国网浙江省电力有限公司宁波供电公司 一种区域冷、热、气碳素流计算模型的构建方法
CN117171942B (zh) * 2023-05-19 2024-07-05 天津大学 基于碳能协同枢纽的能源系统高碳环节辨识方法
CN117688277B (zh) * 2024-01-31 2024-04-16 国网上海能源互联网研究院有限公司 一种热电联供系统电能与热能碳流分配计算方法和装置
CN117879046B (zh) * 2024-03-12 2024-05-17 华北电力大学 一种用于风光氢储系统的低碳调控方法及装置
CN118674230A (zh) * 2024-08-20 2024-09-20 山东大学 需求响应机制优化方法、系统、电子设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160091904A1 (en) * 2014-09-29 2016-03-31 International Business Machines Corporation Hvac system control integrated with demand response, on-site energy storage system and on-site energy generation system
CN109830957A (zh) * 2019-02-22 2019-05-31 南方电网科学研究院有限责任公司 一种面向区域综合能源系统的节点运算负荷计算方法
CN112257294A (zh) * 2020-11-24 2021-01-22 山东大学 一种综合能源系统的能源集线器分部建模方法及系统
CN113221325A (zh) * 2021-04-13 2021-08-06 西华大学 计及电转气的多源储能型区域综合能源低碳运行优化方法
CN113554289A (zh) * 2021-07-12 2021-10-26 国网天津市电力公司 一种电力系统碳排放流实时计算系统及计算方法
CN114547894A (zh) * 2022-02-24 2022-05-27 清华大学 面向区域综合能源系统的碳排放流计算方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108615192B (zh) * 2017-08-18 2019-11-15 赫普科技发展(北京)有限公司 一种基于区块链的碳交易系统
CN109102104B (zh) * 2018-06-29 2022-02-18 清华大学 一种基于碳排放流的多能源系统协同低碳规划方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160091904A1 (en) * 2014-09-29 2016-03-31 International Business Machines Corporation Hvac system control integrated with demand response, on-site energy storage system and on-site energy generation system
CN109830957A (zh) * 2019-02-22 2019-05-31 南方电网科学研究院有限责任公司 一种面向区域综合能源系统的节点运算负荷计算方法
CN112257294A (zh) * 2020-11-24 2021-01-22 山东大学 一种综合能源系统的能源集线器分部建模方法及系统
CN113221325A (zh) * 2021-04-13 2021-08-06 西华大学 计及电转气的多源储能型区域综合能源低碳运行优化方法
CN113554289A (zh) * 2021-07-12 2021-10-26 国网天津市电力公司 一种电力系统碳排放流实时计算系统及计算方法
CN114547894A (zh) * 2022-02-24 2022-05-27 清华大学 面向区域综合能源系统的碳排放流计算方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116894354A (zh) * 2023-09-11 2023-10-17 国网浙江省电力有限公司 一种多能源耦合环节的碳流计算方法及系统
CN116894354B (zh) * 2023-09-11 2023-12-26 国网浙江省电力有限公司 一种多能源耦合环节的碳流计算方法及系统

Also Published As

Publication number Publication date
US20240054262A1 (en) 2024-02-15
CN114547894B (zh) 2024-10-01
CN114547894A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
WO2023160284A1 (zh) 面向区域综合能源系统的碳排放流计算方法及装置
Li et al. Advances in the research of building energy saving
Wang et al. Distributed energy system for sustainability transition: A comprehensive assessment under uncertainties based on interval multi-criteria decision making method by coupling interval DEMATEL and interval VIKOR
CN111626587B (zh) 一种计及能流延迟特性的综合能源系统拓扑优化方法
CN111401665B (zh) 协同优化的综合能源系统设计方案的获取方法和系统
CN107025334A (zh) 集中供热系统热用户整体动态模型建立方法和装置
WO2024041578A1 (zh) 数据中心的能效及碳排放计算方法、装置及电子设备
CN112560160B (zh) 模型和数据驱动的暖通空调最优设定温度获取方法及设备
Lv et al. Digital twins for secure thermal energy storage in building
CN107871058A (zh) 电热联合系统的潮流计算方法、装置、设备及存储介质
CN110137953A (zh) 基于分布式能源站多能源系统的协同运行优化方法
CN111898856A (zh) 基于极限学习机的物理-数据融合楼宇的分析方法
CN117196211A (zh) 多储能协同的城市综合能源系统应急调控方法及系统
Zhao et al. Analysis of Energy conservation big data of embedded large public buildings and construction of the information model by 5G
JP5143238B2 (ja) 運転状態シミュレーション装置及びヒートポンプ式給湯システムの設計方法及びヒートポンプ式給湯システム
CN114462163B (zh) 一种考虑能源品质的㶲集线器模型
Meng et al. A fast solar architecture design method towards zero heating energy: A SHF-SLR-based model and its parameters
Zhuang et al. A bi-level optimization for an HVAC system
Cao et al. Energy-aware design: predicting building performance from layout graphs
CN102542164B (zh) 增强型系统热工水力行为模拟方法
CN205334265U (zh) 一种室内温度变化计时器
Yao et al. Fast and Generic Quasi-dynamic Energy Flow Calculation of the Electricity-Heat Integrated Energy System
Yatsenko et al. Methods and tools for minimizing the power consumption of wireless sensor network
Fan et al. Ultrashort-term heat load prediction for heat exchange stations based on dual-source data feature fusion
Lu et al. Regional Phase Change Storage Station Optimal Operation Considering Dynamic Temperature Estimation Based on BP Neural Network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23758909

Country of ref document: EP

Kind code of ref document: A1