WO2023160193A1 - 一种pdcch监测方法、装置及存储介质 - Google Patents

一种pdcch监测方法、装置及存储介质 Download PDF

Info

Publication number
WO2023160193A1
WO2023160193A1 PCT/CN2022/141079 CN2022141079W WO2023160193A1 WO 2023160193 A1 WO2023160193 A1 WO 2023160193A1 CN 2022141079 W CN2022141079 W CN 2022141079W WO 2023160193 A1 WO2023160193 A1 WO 2023160193A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
signal
signals
network
missed detection
Prior art date
Application number
PCT/CN2022/141079
Other languages
English (en)
French (fr)
Inventor
王涛
Original Assignee
哲库科技(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哲库科技(北京)有限公司 filed Critical 哲库科技(北京)有限公司
Publication of WO2023160193A1 publication Critical patent/WO2023160193A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to communication technologies, and in particular to a PDCCH monitoring method, device and storage medium.
  • PDCCH Physical Downlink Control Channel
  • the PDCCH monitoring process directly determines the triggering of monitoring the Physical Downlink Share Channel (PDSCH)/Physical Uplink Share Channel (PUSCH) process, and the PDCCH monitoring performance determines the paging success rate of the wireless communication system And an important basis for various business performance.
  • the monitoring performance of PDCCH is generally measured by the probability of missed detection Pm.
  • the terminal side usually needs to design a high-performance PDCCH receiver to ensure the receiving capability of PDCCH in various scenarios.
  • a high-performance PDCCH receiver will increase the number of PDCCH monitoring power consumption. Therefore, the existing PDCCH monitoring method needs to be optimized.
  • the present application expects to provide a PDCCH monitoring method, device and storage medium.
  • a PDCCH monitoring method comprising:
  • a PDCCH monitoring device in the second aspect, can be a terminal device, or a chip applied to a terminal device.
  • the PDCCH monitoring device can also be a network device, or a chip applied to a network device.
  • the PDCCH monitoring device can realize the functions of multiple units through software, or hardware, or a combination of software and hardware, so that the device can execute the PDCCH provided by any one of the above-mentioned first aspects. monitoring method.
  • the device includes:
  • the communication unit is configured to receive part of the PDCCH signals when the PDCCH channel quality is greater than a predetermined threshold.
  • a PDCCH monitoring device may be a terminal device, or a chip applied to a terminal device.
  • the PDCCH monitoring device may also be a network device, or a chip applied to a network device.
  • the PDCCH monitoring device may include: a processor and a memory configured to store a computer program that can run on the processor, wherein, when the processor is configured to run the computer program, the PDCCH monitoring device Performing the steps of the method described in any one of the aforementioned first aspects.
  • a computer-readable storage medium on which a computer program is stored.
  • the computer program When the computer program is executed by a computer, the computer implements the steps of the method described in any one of the foregoing first aspects.
  • a communication system including terminal equipment and network equipment;
  • the network device is configured to send a PDCCH signal to the terminal device, and the terminal device is configured to implement the steps in the above method.
  • a computer program product including a plurality of computer program instructions, and when the computer program product is run on a computer, it can cause the computer to execute the method provided in any one of the above first aspects.
  • FIG. 1 is a schematic diagram of a communication system framework in an embodiment of the present application
  • FIG. 2 is a first schematic flow diagram of a PDCCH monitoring method in an embodiment of the present application
  • FIG. 3 is a schematic flow diagram of a method for evaluating the second missed detection probability in an embodiment of the present application
  • FIG. 4 is a comparative schematic diagram of the PDCCH monitoring scheme in the embodiment of the present application.
  • FIG. 5 is a second schematic flowchart of a PDCCH monitoring method in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a first component structure of a PDCCH monitoring device in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a second component structure of the PDCCH monitoring device in the embodiment of the present application.
  • a PDCCH monitoring method comprising:
  • the method further includes: when the PDCCH channel quality is less than a predetermined threshold, receiving all PDCCH signals.
  • the receiving part of the PDCCH signals includes: acquiring the number of PDCCH signals allocated by the network; and receiving the first PDCCH signal when the number of PDCCH signals allocated by the network is greater than or equal to 2.
  • the receiving part of the PDCCH signals further includes: when the number of PDCCH signals allocated by the network is greater than 2, receiving the first plurality of PDCCH signals.
  • the receiving part of the PDCCH signal includes: when receiving the first PDCCH signal, verifying the first PDCCH signal; the verification of the first PDCCH signal fails , stop receiving the PDCCH signal after the first PDCCH signal; when the first PDCCH signal is verified successfully, continue to receive the PDCCH signal after the first PDCCH signal until the received PDCCH signal verification failed.
  • the method further includes: when all PDCCH signals are verified successfully, receiving a Physical Downlink Shared Channel (PDSCH).
  • PDSCH Physical Downlink Shared Channel
  • the method further includes: acquiring a first missed detection probability of the PDCCH within a first time range; the first missed detection probability is less than a probability threshold, and determining that the PDCCH channel quality is greater than a predetermined threshold.
  • the method further includes: evaluating a second missed detection probability of the PDCCH when receiving part of the PDCCH signal; the second missed detection probability is less than the probability threshold, and determining that the PDCCH channel quality is greater than a predetermined threshold .
  • the evaluation of the second missed detection probability of the PDCCH when receiving part of the PDCCH signal includes: within the second preset time range, the aggregation level combination obtained when the PDCCH is successfully demodulated is counted; based on the aggregation level Combining and determining the target aggregation level of PDCCH when receiving some PDCCH signals; determining the target code rate of PDCCH when receiving some PDCCH signals based on the target aggregation level; The missed detection probability corresponding to the code rate is used as the second missed detection probability.
  • the channel quality is represented by a signal-to-noise ratio, signal-to-interference-to-noise ratio or signal-to-noise-distortion ratio index.
  • the PDCCH signal is a time-domain OFDM symbol.
  • the method includes: the terminal device works in a discontinuous reception mode in an idle state or a connected state, and receives part of PDCCH signals when the quality of the PDCCH channel is greater than a predetermined threshold.
  • a PDCCH monitoring device in the second aspect, can be a terminal device, or a chip applied to a terminal device.
  • the PDCCH monitoring device can also be a network device, or a chip applied to a network device.
  • the PDCCH monitoring device can realize the functions of multiple units through software, or hardware, or a combination of software and hardware, so that the device can execute the PDCCH provided by any one of the above-mentioned first aspects. monitoring method.
  • the device includes:
  • the communication unit is configured to receive part of the PDCCH signals when the PDCCH channel quality is greater than a predetermined threshold.
  • the communication unit is configured to: acquire the number of PDCCH signals allocated by the network; when the number of PDCCH signals allocated by the network is greater than or equal to 2, receive the first PDCCH signal.
  • the communication unit is configured to receive the first plurality of PDCCH signals when the number of PDCCH signals allocated by the network is greater than 2.
  • the communication unit is configured to: when receiving the first PDCCH signal, check the first PDCCH signal;
  • a PDCCH monitoring device may be a terminal device, or a chip applied to a terminal device.
  • the PDCCH monitoring device may also be a network device, or a chip applied to a network device.
  • the PDCCH monitoring device may include: a processor and a memory configured to store a computer program that can run on the processor, wherein, when the processor is configured to run the computer program, the PDCCH monitoring device Performing the steps of the method described in any one of the aforementioned first aspects.
  • a computer-readable storage medium on which a computer program is stored.
  • the computer program When the computer program is executed by a computer, the computer implements the steps of the method described in any one of the foregoing first aspects.
  • a communication system including terminal equipment and network equipment;
  • the network device is configured to send a PDCCH signal to the terminal device, and the terminal device is configured to implement the steps in the above method.
  • a computer program product including a plurality of computer program instructions, and when the computer program product is run on a computer, it can cause the computer to execute the method provided in any one of the above first aspects.
  • PDCCH monitoring can be realized only by receiving part of the PDCCH signals, and there is no need to wait for all PDCCH signals to be received before monitoring, reducing the number of received PDCCH signals, that is, shortening the work of the radio frequency path time, reducing power consumption.
  • the more PDCCH signals distributed by the network the more obvious the effect of reducing power consumption when this solution is applied.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, such as: Global System of Mobile communication (Global System of Mobile communication, GSM) system, code division multiple access (Code Division Multiple Access, CDMA) system, broadband code division multiple access (Wideband Code Division Multiple Access, WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, LTE Frequency Division Duplex (FDD) system, LTE Time Division Duplex (TDD), Universal Mobile Telecommunication System (UMTS), Worldwide Interoperability for Microwave Access (WiMAX) communication system or 5G NR system, etc.
  • GSM Global System of Mobile communication
  • CDMA code division multiple access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the communication system 100 applied in the embodiment of the present application may be as shown in FIG. 1 .
  • the communication system 100 may include a network device 110, and the network device 110 may be a device for communicating with a terminal device 120 (or called a communication terminal, terminal).
  • the network device 110 can provide communication coverage for a specific geographical area, and can communicate with the terminal device 120 located in the coverage area.
  • the network device 110 can be a network device (Base Transceiver Station, BTS) in the GSM system or a CDMA system, or a network device (NodeB, NB) in the WCDMA system, or an evolution in the LTE system type network device (Evolutional Node B, eNB or eNodeB), or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or the network device can be a mobile switching center, a relay station, an access point, Vehicle-mounted devices, wearable devices, hubs, switches, bridges, routers, core networks in 5G networks, base stations and other network-side devices, or network devices in the future evolving Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB network device
  • Evolutional Node B, eNB or eNodeB evolution in the LTE system type network device
  • a wireless controller in a cloud radio access network Cloud Radio Access Network, CRAN
  • the network device can be
  • the communication system 100 also includes at least one terminal device 120 located within the coverage of the network device 110 .
  • a terminal device used herein is a terminal device configured to communicate through a wireless interface, it may be called a “wireless communication terminal”, a “wireless terminal”, or a “mobile terminal”.
  • Examples of mobile terminals include, but are not limited to, satellite or cellular telephones; Personal Communications System (PCS) terminals that may combine cellular radiotelephones with data processing, facsimile, and data communication capabilities; may include radiotelephones, pagers, Internet/Internet Personal Digital Assistant (PDA) with network access, Web browser, organizer, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receiver Transceivers or other electronic devices including radiotelephone transceivers.
  • PCS Personal Communications System
  • PDA Internet/Internet Personal Digital Assistant
  • GPS Global Positioning System
  • the terminal equipment 120 may refer to an access terminal, a user equipment (User Equipment, UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent or user device.
  • An access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a PDA, a wireless-enabled handheld device, a computing device, or a connected Other processing devices to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks or terminal devices in future evolved PLMNs, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • the 3GPP protocol stipulates that the terminal device 120 monitors the PDCCH to determine whether the network side has scheduling for itself, and then further performs downlink and uplink data transmission.
  • the PDCCH monitoring process directly determines the triggering of the PDSCH/PUSCH monitoring process, and the PDCCH monitoring performance is an important basis for determining the paging success rate and various service performances of the wireless communication system.
  • the monitoring performance of PDCCH is generally measured by the probability of missed detection Pm.
  • the terminal side usually needs to design a high-performance PDCCH receiver to ensure the receiving capability of PDCCH in various scenarios.
  • a high-performance PDCCH receiver will increase the number of PDCCH monitoring power consumption.
  • the embodiment of the present application provides a PDCCH monitoring method, which only needs to judge whether the network side has scheduling for itself according to the received part of the PDCCH signal, and does not need to wait for all PDCCH signals to be received before monitoring, reducing the PDCCH
  • the number of received signals means shortening the working time of the radio frequency path and reducing power consumption.
  • the PDCCH monitoring method provided in the embodiment of the present application mainly includes the following steps as shown in FIG. 2:
  • Step 201 Receive some PDCCH signals when the PDCCH channel quality is greater than a predetermined threshold.
  • the receiving end decodes the PDCCH signal in advance to reduce the received amount of the PDCCH signal.
  • channel quality can be expressed by indicators such as Signal Noise Rate (SNR), Signal to Interference plus Noise Ratio (SINR), and Signal Noise Distortion Rate (SNR) .
  • SNR Signal Noise Rate
  • SINR Signal to Interference plus Noise Ratio
  • SNR Signal Noise Distortion Rate
  • the receiving part of the PDCCH signals includes: obtaining the number of PDCCH signals allocated by the network; when the number of PDCCH signals allocated by the network is greater than or equal to 2, performing the first PDCCH signal take over.
  • the number of PDCCH signals configured by the network is greater than or equal to 2
  • only by monitoring the PDCCH based on the first PDCCH signal can the number of received PDCCH signals be reduced.
  • the load of the control channel will become heavier and heavier, the capacity of the PDCCH needs to be further improved, and the number of PDCCH signals configured in the network will also increase. This is based on the first The PDCCH signal monitors the PDCCH, which can effectively reduce power consumption.
  • the receiving part of the PDCCH signals further includes: when the number of PDCCH signals allocated by the network is greater than 2, receiving the first multiple PDCCH signals.
  • the number of PDCCH signals allocated by the network is 3 or more, if it is impossible to determine whether the network side has scheduling for itself based on the first PDCCH signal, the second PDCCH signal and the third PDCCH signal can also be received. To judge, as long as it is determined according to any PDCCH signal before the last PDCCH signal that the network side has no scheduling for itself, there is no need to continue to receive subsequent PDCCH signals, and the number of received PDCCH signals is also reduced overall.
  • the PDCCH signal may be a PDCCH time domain signal or a frequency domain signal.
  • the PDCCH signal may be a time-domain OFDM symbol.
  • the number of OFDM symbols can be obtained through the duration field in the control resource set (CORESET) of the NR RRC protocol, which represents the number of OFDM symbols configured by the network for the terminal to monitor the PDCCH.
  • CORESET control resource set
  • the terminal device works in the idle state (IDLE) or the discontinuous reception (Connected mode DRX, CDRX) mode in the connected state, and when the PDCCH channel quality is greater than a predetermined threshold, some PDCCH signals to receive.
  • IDLE idle state
  • CDRX discontinuous reception
  • the terminal device works in the IDLE state or the CDRX mode, since most of the power consumption is generated by PDCCH monitoring, receiving part of the PDCCH signal can more effectively reduce power consumption.
  • the terminal device works in a discontinuous reception mode in an idle state or a connected state, and receives part of the PDCCH signals when the PDCCH channel quality is greater than a predetermined threshold.
  • the method further includes: receiving all PDCCH signals when the PDCCH channel quality is less than a predetermined threshold. That is to say, when the PDCCH channel quality is lower, the probability of missing detection is higher when some PDCCH signals are received, and the terminal side needs to receive all PDCCH signals to monitor the PDCCH to ensure the PDCCH demodulation performance requirements.
  • the method further includes: acquiring a first missed detection probability of the PDCCH within a first time range; the first missed detection probability is less than a probability threshold, and it is determined that the PDCCH channel quality is greater than a predetermined threshold.
  • the first missed detection probability is used to characterize the actual missed detection probability of the terminal equipment on the PDCCH, and the first missed detection probability is used as an indicator to characterize the quality of the PDCCH channel.
  • the first missed detection probability is less than the probability threshold, it indicates that the PDCCH channel quality is better , receiving part of the PDCCH signal and monitoring the PDCCH can ensure the PDCCH demodulation performance requirement.
  • the first missed detection probability is greater than or equal to the probability threshold, it indicates that the PDCCH channel quality is poor, and the high probability of receiving some PDCCH signals to monitor the PDCCH will increase the missed detection probability, which cannot guarantee the PDCCH demodulation performance requirements.
  • the number of PDCCH signal receptions is reduced, the working time of the radio frequency path is shortened, and thus the power consumption of the modem is reduced.
  • the method further includes: evaluating a second missed detection probability of the PDCCH when receiving part of the PDCCH signal; the second missed detection probability is less than the probability threshold, and determining the PDCCH channel quality greater than the predetermined threshold.
  • the second missed detection probability is used to represent the estimated missed detection probability of the terminal device when monitoring the PDCCH based on receiving part of the PDCCH signal, and when the second missed detection probability is less than the probability threshold, it indicates that the receiving part of the PDCCH signal monitors the PDCCH and can ensure the PDCCH demodulation performance Require.
  • the second missed detection probability is greater than or equal to the probability threshold, it means that monitoring the PDCCH of the received part of the PDCCH signal cannot guarantee the PDCCH demodulation performance requirement.
  • whether to receive part of the PDCCH signal can be judged solely based on the second missed detection probability, or further judged based on the second missed detection probability on the basis of the first missed detection probability.
  • the method further includes: acquiring a first missed detection probability of a PDCCH within a first time range; evaluating a second missed detection probability of a PDCCH when a part of the PDCCH signal is received; the first missed detection probability If the detection probability is less than a probability threshold, and the second missed detection probability is less than the probability threshold, it is determined that the PDCCH channel quality is greater than a predetermined threshold.
  • the evaluation of the second missed detection probability of the PDCCH when receiving some PDCCH signals includes:
  • Step 301 Count the aggregation level combinations allocated and obtained when the PDCCH is successfully demodulated within the second preset time range;
  • the aggregation level indicates the number of CCEs used by the DCI, and the aggregation level combination includes: one or more of 1, 2, 4, 8, and 16.
  • Step 302 Determine the target aggregation level of the PDCCH when receiving some PDCCH signals based on the combination of aggregation levels;
  • Step 303 Determine the target code rate of the PDCCH when receiving some PDCCH signals based on the target aggregation level
  • the target code rate is based on the target value of the code rate when the PDCCH is monitored by part of the PDCCH signal.
  • the PDCCH signal as an OFDM symbol as an example, the method for determining the target code rate is further exemplified.
  • exemplary take the minimum value of the aggregation level in the aggregation level combination as the first aggregation level, or take the middle value of the aggregation level as the first aggregation level, or take the aggregation level corresponding to the most used number according to the usage quantity of the aggregation level as the first degree of polymerization level.
  • AL tar is the second aggregation level
  • AL rec is the first aggregation level
  • nrofSym is the number of OFDM symbols.
  • Step 304 Based on the mapping relationship between the code rate and the probability of missed detection, use the probability of missed detection corresponding to the target code rate as the second probability of missed detection.
  • the second missed detection probability is used to characterize the estimated missed detection probability when the terminal device monitors the PDCCH based on receiving the PDCCH partial signal
  • the second missed detection probability can also be understood as the missed detection when evaluating the PDCCH channel quality and demodulating the target code rate
  • Probability when the second missed detection probability is less than the probability threshold, it indicates that the PDCCH signal monitoring of the received part of the PDCCH can guarantee the PDCCH demodulation performance requirement.
  • the second missed detection probability is greater than or equal to the probability threshold, it means that monitoring the PDCCH of the received part of the PDCCH signal cannot guarantee the PDCCH demodulation performance requirement.
  • the receiving part of the PDCCH signal includes: when receiving the first PDCCH signal, verifying the first PDCCH signal; the first PDCCH signal When the verification fails, stop receiving the PDCCH signal after the first PDCCH signal; when the first PDCCH signal is successfully verified, continue to receive the PDCCH signal after the first PDCCH signal until The received PDCCH signal verification fails.
  • the receiving of subsequent PDCCH signals is stopped by closing the radio frequency path.
  • the method further includes: when all PDCCH signals are verified successfully, receiving the physical downlink shared channel PDSCH.
  • checking the first OFDM symbol includes: performing a cyclic redundancy check (Cyclic Redundancy Check, CRC) check on the first OFDM symbol Check to get the CRC check result.
  • CRC Cyclic Redundancy Check
  • Fig. 4 is a comparative schematic diagram of the PDCCH monitoring scheme in the embodiment of the present application, as shown in Fig. 4, when the number of OFDM symbols is 2, including Sym#1 and Sym#2, Rx RF On represents the radio frequency path (Radio Frequency, RF) turn-on time, Rx RF Off indicates the turn-off time of the radio frequency channel.
  • Rx RF On represents the radio frequency path (Radio Frequency, RF) turn-on time
  • Rx RF Off indicates the turn-off time of the radio frequency channel.
  • Scheme 1 (that is, the existing PDCCH monitoring method) the terminal device needs to receive two OFDM symbols before performing CRC verification, and determine whether there is a PDSCH that needs to be received by the terminal according to the verification result.
  • the CRC verification fails, it is judged that there is no PDSCH this time.
  • the terminal needs to receive the PDSCH, and ends the PDCCH monitoring.
  • the CRC check is successful, it is determined that there is a PDSCH that the terminal needs to receive this time.
  • Scheme 2 (that is, the PDCCH monitoring method of this application) the terminal device needs to perform a CRC check after receiving the first OFDM symbol, and determine whether there is a PDSCH that needs to be received by the terminal according to the check result.
  • the CRC check of the first OFDM symbol fails , judging that there is no PDSCH that the terminal needs to receive this time, and ending PDCCH monitoring.
  • the CRC check of the first OFDM symbol is successful, it is judged that there may be a PDSCH that the terminal needs to receive this time, and continue to receive the second OFDM symbol.
  • the CRC check of the second OFDM symbol fails, it is judged that there is no terminal to receive this time.
  • PDSCH when the CRC check of the second OFDM symbol succeeds, it is judged that there is a PDSCH that the terminal needs to receive this time.
  • the PDCCH monitoring method is further illustrated. As shown in FIG. 5, when the terminal device receives the PDSCH using the PDCCH monitoring method, it may specifically include:
  • Step 501 Obtain the number of OFDM symbols configured by the network device for the PDCCH;
  • the number of OFDM symbols configured by the network device for the PDCCH is obtained.
  • the number of OFDM symbols can be obtained through the duration field in the control resource set (CORESET), which represents the number of OFDM symbols configured by the network for the terminal to monitor the PDCCH.
  • CORESET control resource set
  • the number of OFDM symbols is 1, 2 or 3.
  • Step 502 judging whether the number of OFDM symbols is greater than 1; if yes, execute step 503; if not, execute step 510;
  • Step 503 Obtain the first missed detection probability Pm1 of the PDCCH within the preset time range
  • the terminal device monitors the specific PDCCH given by the network device within the preset time range (for example, in the case of IDLE state, monitors the IMSI scrambled paging of the terminal device), and judges the connection between the terminal device and the network device.
  • Abnormal interaction monitoring downlink scheduling indications (such as abnormal scheduling RV and DAI in DCI), can infer whether there is a PDCCH missed detection, and count the number of missed detections to further infer the missed detection probability.
  • Step 504 Determine whether the first missed detection probability Pm1 is less than the probability threshold Pm_tar; if yes, execute step 505; if not, execute step 510;
  • Step 505 Evaluate the second missed detection probability Pm2 of monitoring the PDCCH based on the first OFDM symbol
  • the second missed detection probability Pm2 of monitoring the PDCCH based on the previous multiple OFDM symbols may also be evaluated.
  • Step 506 Determine whether the second missed detection probability Pm2 is less than the probability threshold Pm_tar; if yes, execute step 507; if not, execute step 510;
  • Step 507 monitor the PDCCH based on the first OFDM symbol of the PDCCH
  • Step 508 When the first OFDM symbol is received, check the first OFDM symbol; when the check is successful, execute step 511; when the check fails, execute step 509;
  • Step 509 Stop PDCCH monitoring, close the radio frequency path and stop receiving subsequent OFDM symbols;
  • Step 510 monitor PDCCH based on all OFDM symbols
  • Step 511 Receive all OFDM symbols and perform verification; when the verification is successful, execute step 512; when the verification fails, execute step 509;
  • Step 512 Receive PDSCH.
  • Fig. 5 can be understood as a PDCCH monitoring method when the number of OFDM symbols is 2, and when the number of OFDM symbols is 3, when the first OFDM symbol is verified successfully in step 508, the second OFDM symbol is received OFDM symbols, if the second OFDM symbol verification fails, also perform step 509; when the second OFDM symbol verification successfully receives the third OFDM symbol, and the third OFDM symbol verification fails, also perform step 509, and the third OFDM symbol If the verification is successful, step 512 is executed.
  • the terminal device may also upload the PUSCH by using the PDCCH monitoring method.
  • the PDCCH demodulation performance can be monitored.
  • the PDCCH can be monitored according to the first OFDM symbol received. , there is no need to wait for all symbols to be received before monitoring the PDCCH, which reduces the number of OFDM symbols to be monitored, that is, shortens the working time of the radio frequency path and reduces power consumption.
  • the more OFDM symbols the network equipment configures with the PDCCH the more obvious the effect of reducing power consumption when this solution is applied.
  • the embodiment of the present application also provides a device.
  • the PDCCH monitoring device may be the terminal device 120, or a chip applied to the terminal device 120.
  • the PDCCH monitoring device may also be a network device 110, may also be a chip applied to the network device 110.
  • the PDCCH monitoring device can realize the functions of multiple units through software, or hardware, or a combination of software and hardware, so that the device can execute the PDCCH provided by any one of the above-mentioned first aspects. monitoring method.
  • the technical solutions in the second aspect reference may be made to the corresponding technical solutions in the first aspect, which will not be repeated in this application.
  • the apparatus includes: a communication unit 601 and a processing unit 602 .
  • a communication unit 601 and a processing unit 602 .
  • the division of the communication unit 601 and the processing unit 602 is only a logical function division.
  • Unit 602 may be incorporated or may be integrated into another system, or some features may be omitted, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the communication unit 601 and the processing unit 602 described as separate components may or may not be physically separated, and the communication unit 601 and the processing unit 602 shown as units may or may not be physical units, that is, they may be located in one place, Or it can also be distributed to multiple network elements. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the communication unit 601 and the processing unit 602 may be integrated into one processor, or may exist separately physically.
  • the communication unit 601 is configured to receive part of PDCCH signals when the channel quality of the PDCCH is greater than a predetermined threshold.
  • PDCCH monitoring can be realized only by receiving part of the PDCCH signals, and there is no need to wait for all PDCCH signals to be received before monitoring, reducing the number of received PDCCH signals, that is, shortening the work of the radio frequency path time, reducing power consumption.
  • the more PDCCH signals distributed by the network the more obvious the effect of reducing power consumption when this solution is applied.
  • the communication unit 601 is configured to receive all PDCCH signals when the PDCCH channel quality is less than a predetermined threshold.
  • the communication unit 601 is configured to: the terminal device works in a discontinuous reception mode in an idle state or a connected state, and receives part of PDCCH signals when the PDCCH channel quality is greater than a predetermined threshold. In this way, when the terminal device works in the discontinuous reception mode in the idle state or the connected state, since most of the power consumption is generated by PDCCH monitoring, it receives part of the PDCCH signal to monitor the PDCCH, which reduces the number of received PDCCH signals. This solution can more effectively reduce power consumption.
  • the communication unit 601 is configured to: acquire the number of PDCCH signals allocated by the network; and receive the first PDCCH signal when the number of PDCCH signals allocated by the network is greater than or equal to 2.
  • the communication unit 601 is configured to: when the number of PDCCH signals allocated by the network is greater than 2, receive the first multiple PDCCH signals.
  • the processing unit 602 is configured to: check the first PDCCH signal when receiving the first PDCCH signal; the communication unit 601 is configured to: the first PDCCH signal When the signal verification fails, stop receiving the PDCCH signal after the first PDCCH signal; when the first PDCCH signal verification succeeds, continue to receive the PDCCH signal after the first PDCCH signal, Until the received PDCCH signal verification fails.
  • the communication unit 601 is configured to receive the physical downlink shared channel PDSCH when all PDCCH signals are successfully verified.
  • the processing unit 602 is configured to: acquire a first missed detection probability of the PDCCH within a first time range; the first missed detection probability is less than a probability threshold, and determine that the PDCCH channel quality is greater than a predetermined threshold.
  • the first missed detection probability is used to represent the actual missed detection probability of the terminal equipment for the PDCCH, and by monitoring the actual missed detection probability, the real-time missed detection probability is controlled below the probability threshold to ensure the PDCCH demodulation performance requirements when receiving some PDCCH signals.
  • the processing unit 602 is configured to: evaluate the second missed detection probability of the PDCCH when receiving part of the PDCCH signal; the second missed detection probability is less than the probability threshold, and determine the PDCCH channel quality greater than the predetermined threshold.
  • the second missed detection probability is used to represent the estimated missed detection probability of the terminal device when monitoring the PDCCH based on receiving the PDCCH part of the signal, and when the second missed detection probability is less than the probability threshold, it indicates that the receiving part of the PDCCH signal monitors the PDCCH and can ensure the PDCCH demodulation performance Require.
  • the second missed detection probability is greater than or equal to the probability threshold, it means that monitoring the PDCCH of the received part of the PDCCH signal cannot guarantee the PDCCH demodulation performance requirement. Restricted from both actual and estimated aspects, the PDCCH demodulation performance requirements can be better guaranteed, and the accuracy of PDCCH monitoring based on the first OFDM symbol can be ensured.
  • the processing unit 602 is configured to: within the second preset time range, collect statistics on the aggregation level combination obtained when the PDCCH is successfully demodulated; Target aggregation level; determine the target code rate of the PDCCH when receiving part of the PDCCH signal based on the target aggregation level; based on the mapping relationship between the code rate and the probability of missed detection, use the probability of missed detection corresponding to the target code rate as the second Second, the probability of missed detection.
  • the embodiment of the present application also provides another PDCCH monitoring device.
  • the PDCCH monitoring device may be the terminal device 120 or the A chip applied to the terminal device 120 .
  • the PDCCH monitoring device may also be the network device 110 , or may be a chip applied to the network device 110 .
  • the device includes: a processor 701 and a memory 702 configured to store a computer program that can run on the processor;
  • the processor 701 is configured to execute the method steps in the foregoing embodiments when running the computer program.
  • the memory 702 may be an independent device independent of the processor 701 , or may be integrated in the processor 701 .
  • the device may further include an input interface (not shown in FIG. 7 ).
  • the processor 701 may control the input interface to communicate with other devices or chips, specifically, may obtain information or data sent by other devices or chips.
  • the device may further include an output interface (not shown in FIG. 7 ).
  • the processor 701 may control the output interface to communicate with other devices or chips, specifically, may output information or data to other devices or chips.
  • bus system 703 various components in the device are coupled together through a bus system 703 .
  • the bus system 703 is used to realize connection and communication between these components.
  • the bus system 703 also includes a power bus, a control bus and a status signal bus.
  • the various buses are labeled bus system 703 in FIG. 7 for clarity of illustration.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be an application specific integrated circuit (ASIC, Application Specific Integrated Circuit), a digital signal processing device (DSPD, Digital Signal Processing Device), a programmable logic device (PLD, Programmable Logic Device), a field programmable gate array (Field - At least one of Programmable Gate Array, FPGA), controller, microcontroller, and microprocessor.
  • ASIC Application Specific Integrated Circuit
  • DSPD digital signal processing device
  • PLD Programmable Logic Device
  • FPGA field programmable gate array
  • controller microcontroller
  • microprocessor microprocessor
  • memory can be volatile memory (volatile memory), such as random access memory (RAM, Random-Access Memory); Or non-volatile memory (non-volatile memory), such as read-only memory (ROM, Read-Only Memory), flash memory (flash memory), hard disk (HDD, Hard Disk Drive) or solid-state drive (SSD, Solid-State Drive); or a combination of the above types of memory, and provide instructions and data to the processor.
  • volatile memory such as random access memory (RAM, Random-Access Memory
  • non-volatile memory such as read-only memory (ROM, Read-Only Memory), flash memory (flash memory), hard disk (HDD, Hard Disk Drive) or solid-state drive (SSD, Solid-State Drive); or a combination of the above types of memory, and provide instructions and data to the processor.
  • the communication system 100 may include a network device 110 , and the network device 110 may be a device for communicating with a terminal device 120 .
  • the terminal device 120 is configured to implement the corresponding functions implemented by the terminal device in the above method, and the network device 110 is configured to respond to the RRC connection operation of the terminal device 120 .
  • the embodiment of the present application also provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a computer, the computer implements the steps of the foregoing method.
  • first, second, third, etc. may be used in this application to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another and are not necessarily used to describe a specific order or sequence.
  • first information may also be called second information, and similarly, second information may also be called first information.
  • the present application provides a PDCCH monitoring method, device and storage medium.
  • the method includes: receiving part of PDCCH signals when the PDCCH channel quality is greater than a predetermined threshold.
  • PDCCH monitoring can be realized only by receiving part of the PDCCH signals, and there is no need to wait for all PDCCH signals to be received before monitoring, reducing the number of received PDCCH signals, that is, shortening the work of the radio frequency path time, reducing power consumption.
  • the more PDCCH signals distributed by the network the more obvious the effect of reducing power consumption when this solution is applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种PDCCH监测方法、装置及存储介质,该方法包括:在PDCCH信道质量大于预定阈值的情况下,对部分PDCCH信号进行接收。这样,当网络分配两个以上PDCCH信号时,只需要接收部分PDCCH信号便可实现PDCCH监测,不需要等待全部PDCCH信号均接收到再监测,减少了PDCCH信号的接收数量,即缩短射频通路的工作时间,降低功耗。而且网络分配的PDCCH信号越多,应用本方案时降低功耗效果越明显。

Description

一种PDCCH监测方法、装置及存储介质
相关申请的交叉引用
本申请基于申请号为202210162465.1、申请日为2022年02月22日、发明创造名称为“一种PDCCH监测方法、装置及存储介质”的在先中国专利申请提出,并要求该在先中国专利申请的优先权,该在先中国专利申请的全部内容在此以全文引入的方式引入本申请作为参考。
技术领域
本申请涉及通信技术,尤其涉及一种PDCCH监测方法、装置及存储介质。
背景技术
第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)的协议规定,终端设备通过监测物理下行控制信道(Physical Downlink Control Channel,PDCCH)来判断网络侧是否有针对自身的调度,然后进一步进行下行和上行的数据传输。
PDCCH的监测过程直接决定了监测物理下行共享信道(Physical Downlink Share Channel,PDSCH)/物理上行共享信道(Physical Uplink Share Channel,PUSCH)过程的触发,PDCCH的监测性能是决定无线通信系统寻呼成功率和各种业务性能的重要基础。PDCCH的监测性能一般以漏检概率Pm来衡量,终端侧为保证Pm通常需要设计高性能的PDCCH接收机,以确保各种场景下的PDCCH的接收能力,但过高性能的PDCCH接收机会增加PDCCH的监测功耗。因此,现有的PDCCH的监测方法有待优化。
发明内容
本申请期望提供一种PDCCH监测方法、装置及存储介质。
本申请的技术方案是这样实现的:
第一方面,提供了一种PDCCH监测方法,所述方法包括:
在PDCCH信道质量大于预定阈值的情况下,对部分PDCCH信号进行接收。
第二方面、提供了一种PDCCH监测装置,该PDCCH监测装置可以是终端设备,也可以是应用于终端设备的芯片,该PDCCH监测装置还可以是网络设备,也可以是应用于网络设备的芯片。在本申请中,PDCCH监测装置可以通过或软件、或硬件、或软件与硬件相结合的方式,实现多个单元 的功能,使该装置可以执行如上述第一方面中任一项所提供的PDCCH监测方法。第二方面中各技术方案的效果可以参考第一方面中相应的技术方案,本申请对此不再一一赘述。
示例性的,所述装置包括:
通信单元配置为:在PDCCH信道质量大于预定阈值的情况下,对部分PDCCH信号进行接收。
第三方面、提供了一种PDCCH监测装置,该PDCCH监测装置可以是终端设备,也可以是应用于终端设备的芯片,该PDCCH监测装置还可以是网络设备,也可以是应用于网络设备的芯片。示例性的,该PDCCH监测装置可以包括:处理器和配置为存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器配置为运行所述计算机程序时,使所述PDCCH监测装置执行前述第一方面任一项所述方法的步骤。
第四方面、提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时,使得计算机实现前述第一方面任一项所述的方法的步骤。
第五方面、提供了一种通信系统,包括终端设备和网络设备;
所述网络设备用于向所述终端设备发送PDCCH信号,所述终端设备用于实现上述方法中的步骤。
第六方面、提供了一种计算机程序产品,包括多个计算机程序指令,当该计算机程序产品在计算机上运行时,可以使计算机执行如上述第一方面中任一项所提供的方法。
附图说明
图1为本申请实施例中一种通信系统框架示意图;
图2为本申请实施例中PDCCH监测方法的第一流程示意图;
图3为本申请实施例中第二漏检概率的评估方法的流程示意图;
图4为本申请实施例中PDCCH监测方案的对比示意图;
图5为本申请实施例中PDCCH监测方法的第二流程示意图;
图6为本申请实施例中PDCCH监测装置的第一组成结构示意图;
图7为本申请实施例中PDCCH监测装置的第二组成结构示意图。
具体实施方式
本申请的技术方案是这样实现的:
第一方面,提供了一种PDCCH监测方法,所述方法包括:
在PDCCH信道质量大于预定阈值的情况下,对部分PDCCH信号进行接收。
在一些实施例中,所述方法还包括:在PDCCH信道质量小于预定阈值 的情况下,对全部PDCCH信号进行接收。
在一些实施例中,所述对部分PDCCH信号进行接收,包括:获取网络分配的PDCCH信号数目;在网络分配的PDCCH信号数目大于或者等于2的情况下,对第一个PDCCH信号进行接收。
在一些实施例中,所述对部分PDCCH信号进行接收,还包括:在网络分配的PDCCH信号数目大于2的情况下,对前多个PDCCH信号进行接收。
在一些实施例中,所述对部分PDCCH信号进行接收,包括:接收到所述第一个PDCCH信号时,对所述第一个PDCCH信号进行校验;所述第一个PDCCH信号校验失败时,停止对所述第一个PDCCH信号之后的PDCCH信号进行接收;所述第一个PDCCH信号校验成功时,继续对所述第一个PDCCH信号之后的PDCCH信号进行接收,直到接收到的PDCCH信号校验失败。
在一些实施例中,所述方法还包括:全部PDCCH信号校验成功时,接收物理下行共享信道PDSCH。
在一些实施例中,所述方法还包括:获取第一时间范围内PDCCH的第一漏检概率;所述第一漏检概率小于概率阈值,确定所述PDCCH信道质量大于预定阈值。
在一些实施例中,所述方法还包括:评估对部分PDCCH信号进行接收时PDCCH的第二漏检概率;所述第二漏检概率小于所述概率阈值,确定所述PDCCH信道质量大于预定阈值。
在一些实施例中,所述评估对部分PDCCH信号进行接收时PDCCH的第二漏检概率,包括:在第二预设时间范围内统计成功解调PDCCH时分配获得的聚合等级组合;基于聚合等级组合确定对部分PDCCH信号进行接收时PDCCH的目标聚合等级;基于所述目标聚合等级确定对部分PDCCH信号进行接收时PDCCH的目标码率;基于码率和漏检概率的映射关系,将所述目标码率对应的漏检概率作为所述第二漏检概率。
在一些实施例中,所述信道质量通过信噪比、信干噪比或者信噪失真比指标来表示。
在一些实施例中,所述PDCCH信号为时域OFDM符号。
在一些实施例中,所述方法包括:终端设备工作在空闲态或者连接态下的非连续接收模式,在PDCCH信道质量大于预定阈值的情况下,对部分PDCCH信号进行接收。
第二方面、提供了一种PDCCH监测装置,该PDCCH监测装置可以是终端设备,也可以是应用于终端设备的芯片,该PDCCH监测装置还可以是网络设备,也可以是应用于网络设备的芯片。在本申请中,PDCCH监测装置可以通过或软件、或硬件、或软件与硬件相结合的方式,实现多个单元的功能,使该装置可以执行如上述第一方面中任一项所提供的PDCCH监测方法。第二方面中各技术方案的效果可以参考第一方面中相应的技术方案, 本申请对此不再一一赘述。
示例性的,所述装置包括:
通信单元配置为:在PDCCH信道质量大于预定阈值的情况下,对部分PDCCH信号进行接收。
在一些实施例中,所述通信单元配置为:获取网络分配的PDCCH信号数目;在网络分配的PDCCH信号数目大于或者等于2的情况下,对第一个PDCCH信号进行接收。
在一些实施例中,所述通信单元配置为:在网络分配的PDCCH信号数目大于2的情况下,对前多个PDCCH信号进行接收。
在一些实施例中,所述通信单元配置为:接收到所述第一个PDCCH信号时,对所述第一个PDCCH信号进行校验;
所述第一个PDCCH信号校验失败时,停止对所述第一个PDCCH信号之后的PDCCH信号进行接收;
所述第一个PDCCH信号校验成功时,继续对所述第一个PDCCH信号之后的PDCCH信号进行接收,直到接收到的PDCCH信号校验失败。
第三方面、提供了一种PDCCH监测装置,该PDCCH监测装置可以是终端设备,也可以是应用于终端设备的芯片,该PDCCH监测装置还可以是网络设备,也可以是应用于网络设备的芯片。示例性的,该PDCCH监测装置可以包括:处理器和配置为存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器配置为运行所述计算机程序时,使所述PDCCH监测装置执行前述第一方面任一项所述方法的步骤。
第四方面、提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时,使得计算机实现前述第一方面任一项所述的方法的步骤。
第五方面、提供了一种通信系统,包括终端设备和网络设备;
所述网络设备用于向所述终端设备发送PDCCH信号,所述终端设备用于实现上述方法中的步骤。
第六方面、提供了一种计算机程序产品,包括多个计算机程序指令,当该计算机程序产品在计算机上运行时,可以使计算机执行如上述第一方面中任一项所提供的方法。
这样,当网络分配两个以上PDCCH信号时,只需要接收部分PDCCH信号便可实现PDCCH监测,不需要等待全部PDCCH信号均接收到再监测,减少了PDCCH信号的接收数量,即缩短射频通路的工作时间,降低功耗。而且网络分配的PDCCH信号越多,应用本方案时降低功耗效果越明显。
进一步的,终端设备工作在空闲态或者连接态下的非连续接收模式时,由于大部分功耗是由于PDCCH监测产生的,对部分PDCCH信号进行接收来监测PDCCH,减少了PDCCH信号的接收数量,应用本方案更能有效的降低功耗。
为了能够更加详尽地了解本申请实施例的特点与技术内容,下面结合附图对本申请实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本申请实施例。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统或5G NR系统等。
示例性的,本申请实施例应用的通信系统100可以如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备120进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的网络设备(Base Transceiver Station,BTS),也可以是WCDMA系统中的网络设备(NodeB,NB),还可以是LTE系统中的演进型网络设备(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的核心网、基站等网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”被设置成通过无线接口通信的终端设备,其可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的个人数字处理(Personal Digital Assistant,PDA);以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备120可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、PDA、具有无线通信功能的手持设 备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
3GPP协议规定,终端设备120通过监测PDCCH来判断网络侧是否有针对自身的调度,然后进一步进行下行和上行的数据传输。
PDCCH的监测过程直接决定了监测PDSCH/PUSCH过程的触发,PDCCH的监测性能是决定无线通信系统寻呼成功率和各种业务性能的重要基础。PDCCH的监测性能一般以漏检概率Pm来衡量,终端侧为保证Pm通常需要设计高性能的PDCCH接收机,以确保各种场景下的PDCCH的接收能力,但过高性能的PDCCH接收机会增加PDCCH的监测功耗。有鉴于此,本申请实施例提供一种PDCCH监测方法,只需要根据接收到对部分PDCCH信号来判断网络侧是否有针对自身的调度,不需要等待全部PDCCH信号均接收到再监测,减少了PDCCH信号的接收数量,即缩短射频通路的工作时间,降低功耗。示例性的,本申请实施例所提供的PDCCH监测方法主要包括如图2所示的以下步骤:
步骤201:在PDCCH信道质量大于预定阈值的情况下,对部分PDCCH信号进行接收。
这里,通过检测PDCCH信道质量判断是否可以对部分PDCCH信号进行接收来判断网络侧是否有针对自身的调度,当PDCCH信道质量越高表示对部分PDCCH信号进行接收时漏检概率越低,当PDCCH信道质量越低表示对部分PDCCH信号进行接收时漏检概率越高。在PDCCH信道质量良好的情况下接收端提前解码PDCCH信号,减少PDCCH信号的接收量。
实际应用中,信道质量可以通过信噪比(Signal Noise Rate,SNR)、信干噪比(Signal to Interference plus Noise Ratio,SINR)、信噪失真比(Signal Noise Distortion Rate,SNR)等指标来表示。
在一种可能的实现方式中,所述对部分PDCCH信号进行接收,包括:获取网络分配的PDCCH信号数目;在网络分配的PDCCH信号数目大于或者等于2的情况下,对第一个PDCCH信号进行接收。
需要说明的是,当网络配置的PDCCH信号数目大于或者等于2的情况下,基于第一个PDCCH信号监测PDCCH才能减少PDCCH信号接收数量。随着5G在网终端设备的增加以及商用网络的业务强度增加,控制信道的负荷会越来越重,PDCCH的容量需要进一步提升,网络配置的PDCCH信号数目也会增加,这种基于第一个PDCCH信号监测PDCCH,能够有效的减少功耗。
在一种可能的实现方式中,所述对部分PDCCH信号进行接收,还包括:在网络分配的PDCCH信号数目大于2的情况下,对前多个PDCCH信号进行接收。
也就是说,当网络分配的PDCCH信号数目为3或更多时,若基于第一个PDCCH信号无法判断网络侧是否有针对自身的调度,还可以接收第二个 PDCCH信号、第三个PDCCH信号来判断,只要根据最后一个PDCCH信号之前的任意一个PDCCH信号确定网络侧没有针对自身的调度,就不用继续接收后续PDCCH信号,整体而言也减少了PDCCH信号的接收数量。
示例性的,PDCCH信号可以为PDCCH时域信号或频域信号。具体地,在NR网络中,PDCCH信号可以为时域OFDM符号。OFDM符号数目可以通过NR RRC协议的控制资源集(CORESET)中的duration字段获得,该字段表征网络配置给终端监测PDCCH的OFDM符号数目。
在一种可能的实现方式中,终端设备工作在空闲态(IDLE)或者连接态下的非连续接收(Connected mode DRX,CDRX)模式,在PDCCH信道质量大于预定阈值的情况下,对部分PDCCH信号进行接收。当终端设备工作在IDLE态或CDRX模式,由于大部分功耗是由于PDCCH监测产生的,对部分PDCCH信号进行接收,更能有效的降低功耗。
具体地,PDCCH信号数目大于1,终端设备工作在空闲态或者连接态下的非连续接收模式,在PDCCH信道质量大于预定阈值的情况下,对部分PDCCH信号进行接收。
在一种可能的实现方式中,所述方法还包括:在PDCCH信道质量小于预定阈值的情况下,对全部PDCCH信号进行接收。也就是说,当PDCCH信道质量越低表示对部分PDCCH信号进行接收时漏检概率越高,终端侧需要对全部PDCCH信号进行接收来监测PDCCH,保证PDCCH解调性能要求。
在一种可能的实现方式中,所述方法还包括:获取第一时间范围内PDCCH的第一漏检概率;所述第一漏检概率小于概率阈值,确定所述PDCCH信道质量大于预定阈值。其中,第一漏检概率用于表征终端设备对PDCCH的实际漏检概率,第一漏检概率作为一种表征PDCCH信道质量的指标,当第一漏检概率小于概率阈值表征PDCCH信道质量较好,接收部分PDCCH信号监测PDCCH能够保证PDCCH解调性能要求。当第一漏检概率大于或者等于概率阈值表征PDCCH信道质量较差,接收部分PDCCH信号监测PDCCH大概率会增加漏检概率,无法保证PDCCH解调性能要求。通过设置这一判断条件,在保证PDCCH解调性能要求的前提下,减少PDCCH信号接收数目,缩短射频通路的工作时间,从而减少调制解调器的功耗。
在一种可能的实现方式中,所述方法还包括:评估对部分PDCCH信号进行接收时PDCCH的第二漏检概率;所述第二漏检概率小于所述概率阈值,确定所述PDCCH信道质量大于预定阈值。其中,第二漏检概率用于表征终端设备基于接收部分PDCCH信号时监测PDCCH时的预估漏检概率,当第二漏检概率小于概率阈值表征接收部分PDCCH信号监测PDCCH能够保证PDCCH解调性能要求。当第二漏检概率大于或者等于概率阈值表征接收部分PDCCH信号监测PDCCH无法保证PDCCH解调性能要求。
实际应用中,可以单独根据第二漏检概率来判断是否接收部分PDCCH信号,或者在第一漏检概率的基础上进一步根据第二漏检概率进行判断,从实际和预估两方面限制,能更好的保证PDCCH解调性能要求,确保基于部分PDCCH信号监测PDCCH的准确性。
在一种可能的实现方式中,所述方法还包括:获取第一时间范围内PDCCH的第一漏检概率;评估对部分PDCCH信号进行接收时PDCCH的第二漏检概率;所述第一漏检概率小于概率阈值,且所述第二漏检概率小于所述概率阈值,确定所述PDCCH信道质量大于预定阈值。
如图3所示,在一种可能的实现方式中,所述评估对部分PDCCH信号进行接收时PDCCH的第二漏检概率,包括:
步骤301:在第二预设时间范围内统计成功解调PDCCH时分配获得的聚合等级组合;
示例性的,聚合等级(Aggregation Level,AL)指示DCI使用的CCE数量,聚合等级组合包括:1、2、4、8、16中的一个或多个。
步骤302:基于聚合等级组合确定对部分PDCCH信号进行接收时PDCCH的目标聚合等级;
步骤303:基于所述目标聚合等级确定对部分PDCCH信号进行接收时PDCCH的目标码率;
这里,目标码率为基于部分PDCCH信号监测PDCCH时码率的目标值,下面以PDCCH信号为OFDM符号为例,对目标码率的确定方法进行进一步的举例。
1、从聚合等级组合确定第一聚合等级;
示例性,取聚合等级组合中聚合度等级的最小值作为第一聚合等级,或者取聚合等级的中间值作为第一聚合度等级,或者根据聚合等级的使用数量,取最多使用数量对应的聚合等级作为第一聚合度等级。
2、基于第一聚合等级确定基于第一个OFDM符号监测PDCCH的第二聚合等级,将第二聚合等级作为目标聚合等级;具体计算公式为:
Figure PCTCN2022141079-appb-000001
其中,AL tar为第二聚合等级,AL rec为第一聚合等级,nrofSym为OFDM符号数目。
3、基于目标聚合等级AL tar确定可用于映射PDCCH的RE数目nrofRE;
4、基于RE数目nrofRE和当前PDCCH监测时的最大下行控制信息(Downlink Control Information,DCI)长度maxDciSize,确定基于第一个OFDM符号监测PDCCH的目标码率r_tar。
具体计算公式为:r_tar=maxDciSize/nrofRE。
步骤304:基于码率和漏检概率的映射关系,将所述目标码率对应的漏检概率作为所述第二漏检概率。
这里,第二漏检概率用于表征终端设备基于接收PDCCH部分信号时监测PDCCH时的预估漏检概率,第二漏检概率还可以理解为评估PDCCH信道质量解调目标码率时的漏检概率,当第二漏检概率小于概率阈值表征接收部分PDCCH信号监测PDCCH能够保证PDCCH解调性能要求。当第二漏检概率大于或者等于概率阈值表征接收部分PDCCH信号监测PDCCH无法保证PDCCH解调性能要求。
实际应用中,终端设备大多数时间处于低移动性,无线信道条件稳定的环境下。在此环境下有足够时间评估第二漏检概率,使该方法具备较高可靠性。
在一种可能的实现方式中,所述对部分PDCCH信号进行接收,包括:接收到所述第一个PDCCH信号时,对所述第一个PDCCH信号进行校验;所述第一个PDCCH信号校验失败时,停止对所述第一个PDCCH信号之后的PDCCH信号进行接收;所述第一个PDCCH信号校验成功时,继续对所述第一个PDCCH信号之后的PDCCH信号进行接收,直到接收到的PDCCH信号校验失败。
示例性的,通过关闭射频通路停止接收后续PDCCH信号。
在一种可能的实现方式中,该方法还包括:全部PDCCH信号校验成功时,接收物理下行共享信道PDSCH。
示例性的,在NR网络中当PDCCH信号为OFDM符号时,对所述第一个OFDM符号进行校验,包括:对第一个OFDM符号进行循环冗余校验(Cyclic Redundancy Check,CRC)校验,得到CRC校验结果。
示例性的,图4为本申请实施例中PDCCH监测方案的对比示意图,如图4所示,当OFDM符号数目为2时,包括Sym#1和Sym#2,Rx RF On表示射频通路(Radio Frequency,RF)的开启时间,Rx RF Off表示射频通路的关闭时间。
方案1(即现有PDCCH监测方法)终端设备需要接收到两个OFDM符号后才进行CRC校验,根据校验结果确定是否存在需要终端接收的PDSCH,当CRC校验失败时,判断此次没有终端需要接收的PDSCH,结束PDCCH监测。CRC校验成功时,判断此次有终端需要接收的PDSCH。
方案2(即本申请PDCCH监测方法)终端设备需要接收到第一个OFDM符号后进行CRC校验,根据校验结果确定是否存在需要终端接收的PDSCH,当第一个OFDM符号CRC校验失败时,判断此次没有终端需要接收的PDSCH,结束PDCCH监测。当第一个OFDM符号CRC校验成功时,判断此次可能有终端需要接收的PDSCH,继续接收第二个OFDM符号,当第二个OFDM符号CRC校验失败时,判断此次没有终端需要接收的PDSCH,当第二个OFDM符号CRC校验成功时,判断此次有终端需要接收的PDSCH。
比较方案1和方案2可以看出,当没有终端需要接收的PDSCH,只监测第一OFDM符号不需要等待所有符号均接收到再监测PDCCH,减少了 OFDM符号的监测数量,即缩短射频通路的工作时间,降低功耗。而且网络设备配置PDCCH的OFDM符号数越多,降低功耗效果越明显。
在上述实施例的基础上,对PDCCH监测方法进行进一步的举例说明,如图5所示,终端设备应用PDCCH监测方法接收PDSCH时,具体可以包括:
步骤501:获取网络设备为PDCCH配置的OFDM符号数目;
示例性的,获取网络设备配置PDCCH的OFDM符号数目。所述OFDM符号数目可以通过控制资源集(CORESET)中的duration字段获得,该字段表征网络配置给终端监测PDCCH的OFDM符号数目。
示例性的,OFDM符号数目为1、2或3。
步骤502:判断所述OFDM符号数目是否大于1;如果是,执行步骤503;如果否,执行步骤510;
步骤503:获取在预设时间范围内所述PDCCH的第一漏检概率Pm1;
示例性的,终端设备在预设时间范围内,通过监测网络设备给出的特定PDCCH(比如IDLE态的情况下,监测到终端设备的IMSI加扰的寻呼),通过判断终端设备与网络设备的异常交互,监测下行调度的指示(比如DCI中异常的调度RV和DAI),可以推断出是否有PDCCH漏检,统计漏检次数进一步推断漏检概率。
步骤504:判断第一漏检概率Pm1是否小于概率阈值Pm_tar;如果是,执行步骤505;如果否,执行步骤510;
步骤505:评估基于第一个OFDM符号监测所述PDCCH的第二漏检概率Pm2;
这里,还可以是评估基于前多个OFDM符号监测所述PDCCH的第二漏检概率Pm2。
步骤506:判断第二漏检概率Pm2是否小于概率阈值Pm_tar;如果是,执行步骤507;如果否,执行步骤510;
步骤507:基于所述PDCCH的第一个OFDM符号监测所述PDCCH;
步骤508:接收到第一个OFDM符号时,对第一个OFDM符号进行校验;校验成功时,执行步骤511;校验失败时,执行步骤509;
步骤509:停止PDCCH监测,关闭射频通路停止接收后续OFDM符号;
步骤510:基于全部OFDM符号监测PDCCH;
步骤511:接收全部OFDM符号,进行校验;校验成功时,执行步骤512;校验失败时,执行步骤509;
步骤512:接收PDSCH。
需要说明的是,图5可以理解为当OFDM符号数目为2时的一种PDCCH的监测方法,当OFDM符号数目为3时,步骤508中当第一个OFDM符号校验成功,接收第二个OFDM符号,第二个OFDM符号校验失败同样 执行步骤509;当第二个OFDM符号校验成功接收第三个OFDM符号,第三个OFDM符号校验失败同样执行步骤509,第三个OFDM符号校验成功执行步骤512。
需要说明的是,终端设备也可以应用PDCCH监测方法上传PUSCH。
采用上述技术方案,通过将第一漏检概率和第二漏检概率与概率阈值进行比较,可以监控PDCCH解调性能,在保证PDCCH解调性能基础上,根据接收到第一个OFDM符号监测PDCCH,不需要等待所有符号均接收到再监测PDCCH,减少了OFDM符号的监测数量,即缩短射频通路的工作时间,降低功耗。而且网络设备配置PDCCH的OFDM符号数越多,应用本方案时降低功耗效果越明显。
为实现本申请实施例的方法,本申请实施例还提供了一种装置,该PDCCH监测装置可以是终端设备120,也可以是应用于终端设备120的芯片,该PDCCH监测装置还可以是网络设备110,也可以是应用于网络设备110的芯片。在本申请中,PDCCH监测装置可以通过或软件、或硬件、或软件与硬件相结合的方式,实现多个单元的功能,使该装置可以执行如上述第一方面中任一项所提供的PDCCH监测方法。第二方面中各技术方案的效果可以参考第一方面中相应的技术方案,本申请对此不再一一赘述。
示例性的,如图6所示,该装置包括:通信单元601和处理单元602。应理解,下述装置实施例仅仅是示意性的,例如,通信单元601和处理单元602的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如通信单元601和处理单元602可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的通信单元601和处理单元602可以是或者也可以不是物理上分开的,作为单元显示的通信单元601和处理单元602是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中通信单元601和处理单元602可以集成在一个处理器中,也可以是单独物理存在。
通信单元601配置为:在PDCCH信道质量大于预定阈值的情况下,对部分PDCCH信号进行接收。
这样,当网络分配两个以上PDCCH信号时,只需要接收部分PDCCH信号便可实现PDCCH监测,不需要等待全部PDCCH信号均接收到再监测,减少了PDCCH信号的接收数量,即缩短射频通路的工作时间,降低功耗。而且网络分配的PDCCH信号越多,应用本方案时降低功耗效果越明显。
在一种可能的实现方式中,通信单元601配置为:在PDCCH信道质量 小于预定阈值的情况下,对全部PDCCH信号进行接收。
在一种可能的实现方式中,通信单元601配置为:终端设备工作在空闲态或者连接态下的非连续接收模式,在PDCCH信道质量大于预定阈值的情况下,对部分PDCCH信号进行接收。这样,终端设备工作在空闲态或者连接态下的非连续接收模式时,由于大部分功耗是由于PDCCH监测产生的,对部分PDCCH信号进行接收来监测PDCCH,减少了PDCCH信号的接收数量,应用本方案更能有效的降低功耗。
在一种可能的实现方式中,通信单元601配置为:获取网络分配的PDCCH信号数目;在网络分配的PDCCH信号数目大于或者等于2的情况下,对第一个PDCCH信号进行接收。
在一种可能的实现方式中,通信单元601配置为:在网络分配的PDCCH信号数目大于2的情况下,对前多个PDCCH信号进行接收。
在一种可能的实现方式中,处理单元602配置为:接收到所述第一个PDCCH信号时,对所述第一个PDCCH信号进行校验;通信单元601配置为:所述第一个PDCCH信号校验失败时,停止对所述第一个PDCCH信号之后的PDCCH信号进行接收;所述第一个PDCCH信号校验成功时,继续对所述第一个PDCCH信号之后的PDCCH信号进行接收,直到接收到的PDCCH信号校验失败。
在一种可能的实现方式中,通信单元601配置为:全部PDCCH信号校验成功时,接收物理下行共享信道PDSCH。
在一种可能的实现方式中,处理单元602配置为:获取第一时间范围内PDCCH的第一漏检概率;所述第一漏检概率小于概率阈值,确定所述PDCCH信道质量大于预定阈值。其中,第一漏检概率用于表征终端设备对PDCCH的实际漏检概率,通过监控实际漏检概率,将实时漏检概率控制在概率阈值以下,保证接收PDCCH部分信号时PDCCH解调性能要求。
在一种可能的实现方式中,处理单元602配置为:评估对部分PDCCH信号进行接收时PDCCH的第二漏检概率;所述第二漏检概率小于所述概率阈值,确定所述PDCCH信道质量大于预定阈值。其中,第二漏检概率用于表征终端设备基于接收PDCCH部分信号时监测PDCCH时的预估漏检概率,当第二漏检概率小于概率阈值表征接收部分PDCCH信号监测PDCCH能够保证PDCCH解调性能要求。当第二漏检概率大于或者等于概率阈值表征接收部分PDCCH信号监测PDCCH无法保证PDCCH解调性能要求。从实际和预估两方面限制,能更好的保证PDCCH解调性能要求,确保基于第一个OFDM符号监测PDCCH的准确性。
在一种可能的实现方式中,处理单元602配置为:在第二预设时间范围内统计成功解调PDCCH时分配获得的聚合等级组合;基于聚合等级组合 确定对部分PDCCH信号进行接收时PDCCH的目标聚合等级;基于所述目标聚合等级确定对部分PDCCH信号进行接收时PDCCH的目标码率;基于码率和漏检概率的映射关系,将所述目标码率对应的漏检概率作为所述第二漏检概率。
基于上述PDCCH监测装置中各单元的硬件实现,本申请实施例还提供了另一种PDCCH监测装置,该PDCCH监测装置应用到终端设备120时,该PDCCH监测装置可以是终端设备120,也可以是应用于终端设备120的芯片。该PDCCH监测装置应用到网络设备110时,该PDCCH监测装置还可以是网络设备110,也可以是应用于网络设备110的芯片。示例性的,如图7所示,该装置包括:处理器701和配置为存储能够在处理器上运行的计算机程序的存储器702;
其中,处理器701配置为运行计算机程序时,执行前述实施例中的方法步骤。
其中,存储器702可以是独立于处理器701的一个单独的器件,也可以集成在处理器701中。
可选地,该装置还可以包括输入接口(图7中未示出)。其中,处理器701可以控制该输入接口与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该装置还可以包括输出接口(图7中未示出)。其中,处理器701可以控制该输出接口与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
当然,实际应用时,如图7所示,该装置中的各个组件通过总线系统703耦合在一起。可理解,总线系统703用于实现这些组件之间的连接通信。总线系统703除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图7中将各种总线都标为总线系统703。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述处理器可以为特定用途集成电路(ASIC,Application Specific Integrated Circuit)、数字信号处理装置(DSPD,Digital Signal Processing Device)、可编程逻辑装置(PLD,Programmable Logic Device)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、控制器、微控制器、微处理器中的至少一种。可以理解地,对于不同的设备,用于实现上述处理器功能的电子器件还可以为其它,本申请实施例不作具体限定。
上述存储器可以是易失性存储器(volatile memory),例如随机存取存储器(RAM,Random-Access Memory);或者非易失性存储器(non-volatile memory),例如只读存储器(ROM,Read-Only Memory),快闪存储器(flash memory),硬盘(HDD,Hard Disk Drive)或固态硬盘(SSD,Solid-State Drive); 或者上述种类的存储器的组合,并向处理器提供指令和数据。
本申请实施例还提供了一种通信系统,通信系统100可以如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120通信的设备。
所述终端设备120用于实现上述方法中由终端设备实现的相应的功能,以及所述网络设备110用于响应所述终端设备120的RRC连接操作。
本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时,使得计算机实现前述方法的步骤。
应当理解,在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。本申请中表述“具有”、“可以具有”、“包括”和“包含”、或者“可以包括”和“可以包含”在本文中可以用于指示存在对应的特征(例如,诸如数值、功能、操作或组件等元素),但不排除附加特征的存在。
应当理解,尽管在本申请可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开,不必用于描述特定的顺序或先后次序。例如,在不脱离本发明范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。
本申请实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
在本申请所提供的几个实施例中,应该理解到,所揭露的方法、装置和设备,可以通过其它的方式实现,以上所描述的实施例仅仅是示意性的。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。
工业实用性
本申请提供了一种PDCCH监测方法、装置及存储介质,该方法包括:在PDCCH信道质量大于预定阈值的情况下,对部分PDCCH信号进行接收。这样,当网络分配两个以上PDCCH信号时,只需要接收部分PDCCH信号便可实现PDCCH监测,不需要等待全部PDCCH信号均接收到再监测,减少了PDCCH信号的接收数量,即缩短射频通路的工作时间,降低功耗。而且网络分配的PDCCH信号越多,应用本方案时降低功耗效果越明显。

Claims (20)

  1. 一种PDCCH监测方法,其中,所述方法包括:
    在PDCCH信道质量大于预定阈值的情况下,对部分PDCCH信号进行接收。
  2. 如权利要求1所述的方法,其中,所述方法还包括:
    在PDCCH信道质量小于预定阈值的情况下,对全部PDCCH信号进行接收。
  3. 如权利要求1所述的方法,其中,所述对部分PDCCH信号进行接收,包括:
    获取网络分配的PDCCH信号数目;
    在网络分配的PDCCH信号数目大于或者等于2的情况下,对第一个PDCCH信号进行接收。
  4. 如权利要求3所述的方法,其中,所述对部分PDCCH信号进行接收,还包括:
    在网络分配的PDCCH信号数目大于2的情况下,对前多个PDCCH信号进行接收。
  5. 如权利要求1-4任一项所述的方法,其中,所述对部分PDCCH信号进行接收,包括:
    接收到所述第一个PDCCH信号时,对所述第一个PDCCH信号进行校验;
    所述第一个PDCCH信号校验失败时,停止对所述第一个PDCCH信号之后的PDCCH信号进行接收;
    所述第一个PDCCH信号校验成功时,继续对所述第一个PDCCH信号之后的PDCCH信号进行接收,直到接收到的PDCCH信号校验失败。
  6. 如权利要求5所述的方法,其中,所述方法还包括:
    全部PDCCH信号校验成功时,接收物理下行共享信道PDSCH。
  7. 如权利要求1所述的方法,其中,所述方法还包括:
    获取第一时间范围内PDCCH的第一漏检概率;
    所述第一漏检概率小于概率阈值,确定所述PDCCH信道质量大于预定阈值。
  8. 如权利要求1或7所述的方法,其中,所述方法还包括:
    评估对部分PDCCH信号进行接收时PDCCH的第二漏检概率;
    所述第二漏检概率小于所述概率阈值,确定所述PDCCH信道质量大于预定阈值。
  9. 如权利要求8所述的方法,其中,所述评估对部分PDCCH信号进行接收时PDCCH的第二漏检概率,包括:
    在第二预设时间范围内统计成功解调PDCCH时分配获得的聚合等级组合;
    基于聚合等级组合确定对部分PDCCH信号进行接收时PDCCH的目标聚合等级;
    基于所述目标聚合等级确定对部分PDCCH信号进行接收时PDCCH的目标码率;
    基于码率和漏检概率的映射关系,将所述目标码率对应的漏检概率作为所述第二漏检概率。
  10. 如权利要求1所述的方法,其中,所述信道质量通过信噪比、信干噪比或者信噪失真比指标来表示。
  11. 如权利要求1所述的方法,其中,所述PDCCH信号为时域OFDM符号。
  12. 如权利要求1所述的方法,其中,所述方法包括:
    终端设备工作在空闲态或者连接态下的非连续接收模式,在PDCCH信道质量大于预定阈值的情况下,对部分PDCCH信号进行接收。
  13. 一种PDCCH监测装置,其中,所述装置包括:
    通信单元配置为:在PDCCH信道质量大于预定阈值的情况下,对部分PDCCH信号进行接收。
  14. 如权利要求13所述的装置,其中,
    所述通信单元配置为:获取网络分配的PDCCH信号数目;在网络分配的PDCCH信号数目大于或者等于2的情况下,对第一个PDCCH信号进行接收。
  15. 如权利要求14所述的装置,其中,
    所述通信单元配置为:在网络分配的PDCCH信号数目大于2的情况下,对前多个PDCCH信号进行接收。
  16. 如权利要求13-15任一项所述的装置,其中,
    所述通信单元配置为:接收到所述第一个PDCCH信号时,对所述第一个PDCCH信号进行校验;
    所述第一个PDCCH信号校验失败时,停止对所述第一个PDCCH信号之后的PDCCH信号进行接收;
    所述第一个PDCCH信号校验成功时,继续对所述第一个PDCCH信号之后的PDCCH信号进行接收,直到接收到的PDCCH信号校验失败。
  17. 一种PDCCH监测装置,其中,包括:处理器和配置为存储能够在处理器上运行的计算机程序的存储器,
    其中,所述处理器配置为运行所述计算机程序时,使所述PDCCH监测装置执行权利要求1至12任一项所述方法的步骤。
  18. 一种计算机可读存储介质,其上存储有计算机程序,其中,该计算机程序被计算机执行时,使得计算机实现权利要求1至12任一项所述的方法的步骤。
  19. 一种计算机程序产品,包括多个计算机程序指令,所述计算机程序产品在计算机上运行时,使得计算机执行如权利要求1至12任一项所述的方法的步骤。
  20. 一种通信系统,包括终端设备和网络设备;
    所述网络设备用于向所述终端设备发送PDCCH信号;
    所述终端设备用于实现如权利要求1至12任一项所述的方法的步骤。
PCT/CN2022/141079 2022-02-22 2022-12-22 一种pdcch监测方法、装置及存储介质 WO2023160193A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210162465.1 2022-02-22
CN202210162465.1A CN116684909A (zh) 2022-02-22 2022-02-22 一种pdcch监测方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2023160193A1 true WO2023160193A1 (zh) 2023-08-31

Family

ID=87764642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141079 WO2023160193A1 (zh) 2022-02-22 2022-12-22 一种pdcch监测方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN116684909A (zh)
WO (1) WO2023160193A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109644356A (zh) * 2018-02-12 2019-04-16 Oppo广东移动通信有限公司 传输信息的方法和设备
CN110048973A (zh) * 2015-03-26 2019-07-23 苹果公司 用于自适应信道估计的设备和方法
WO2020091422A1 (ko) * 2018-11-02 2020-05-07 엘지전자 주식회사 무선 통신 시스템에서 단말에 의해 수행되는 pdcch 모니터링 수행 방법 및 상기 방법을 이용하는 단말
CN113055124A (zh) * 2021-03-09 2021-06-29 展讯通信(上海)有限公司 Pdcch的检测方法、装置及用户设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110048973A (zh) * 2015-03-26 2019-07-23 苹果公司 用于自适应信道估计的设备和方法
CN109644356A (zh) * 2018-02-12 2019-04-16 Oppo广东移动通信有限公司 传输信息的方法和设备
WO2020091422A1 (ko) * 2018-11-02 2020-05-07 엘지전자 주식회사 무선 통신 시스템에서 단말에 의해 수행되는 pdcch 모니터링 수행 방법 및 상기 방법을 이용하는 단말
CN113055124A (zh) * 2021-03-09 2021-06-29 展讯通信(上海)有限公司 Pdcch的检测方法、装置及用户设备

Also Published As

Publication number Publication date
CN116684909A (zh) 2023-09-01

Similar Documents

Publication Publication Date Title
US10075278B2 (en) Restrictions on transmissions of control plane data with carrier aggregation
TWI745779B (zh) 在非授權頻譜上處理通訊方法及相關通訊裝置
CN108464037B (zh) 语音呼叫切换到/自长期演进语音(volte)方法和装置
KR101799720B1 (ko) 강화된 간섭 관리 및 트래픽 적응화에서 제한된 비주기적 csi 측정 보고
CN108370294B (zh) 用于harq重传跳过的方法和装置
CN114337972B (zh) 用于传输数据的方法和终端设备
CN112803979B (zh) 无线通信方法和终端
US20160262144A1 (en) Method and apparatus for dynamic device capability signaling in wireless communications
CN110999426B (zh) 执行测量的方法和执行测量的终端
TWI644586B (zh) 用於高增益行動設備的偵測技術
WO2013060937A1 (en) Allocating control data to user equipment
KR101107484B1 (ko) 선택적 하이브리드 arq
WO2020237594A1 (zh) 一种bwp的管理方法及装置、终端
WO2019153365A1 (zh) 传输信息的方法和设备
CN112738840B (zh) 一种配置pdcch检测的方法及相关设备
US11632219B2 (en) Resource determining method, indication method, and apparatus
US20140045507A1 (en) Code rate adaptation in wireless communication systems
US9768910B2 (en) Event 6D enhancements
CN113412595A (zh) 无线通信方法、终端设备和网络设备
US20160302100A1 (en) Techniques for retransmissions during bursty traffic
US20140045508A1 (en) Code rate adaptation in wireless communication systems
WO2023160193A1 (zh) 一种pdcch监测方法、装置及存储介质
CN112567843B (zh) 一种链路恢复过程的处理方法及装置、终端
US10708002B2 (en) Adaptive channel estimation for power optimization for narrow band systems
CN116420326A (zh) 基于分组错误率的自适应高级接收器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928437

Country of ref document: EP

Kind code of ref document: A1