WO2023159851A1 - 3d 电子内窥镜及其摄像系统 - Google Patents

3d 电子内窥镜及其摄像系统 Download PDF

Info

Publication number
WO2023159851A1
WO2023159851A1 PCT/CN2022/103722 CN2022103722W WO2023159851A1 WO 2023159851 A1 WO2023159851 A1 WO 2023159851A1 CN 2022103722 W CN2022103722 W CN 2022103722W WO 2023159851 A1 WO2023159851 A1 WO 2023159851A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
electronic endoscope
light
optical path
prism group
Prior art date
Application number
PCT/CN2022/103722
Other languages
English (en)
French (fr)
Inventor
李洋
袁小文
吴晓华
Original Assignee
武汉迈瑞医疗技术研究院有限公司
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉迈瑞医疗技术研究院有限公司, 深圳迈瑞生物医疗电子股份有限公司 filed Critical 武汉迈瑞医疗技术研究院有限公司
Publication of WO2023159851A1 publication Critical patent/WO2023159851A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00097Sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00131Accessories for endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00165Optical arrangements with light-conductive means, e.g. fibre optics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00194Optical arrangements adapted for three-dimensional imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/313Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes
    • A61B1/3132Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for introducing through surgical openings, e.g. laparoscopes for laparoscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0462Apparatus with built-in sensors

Definitions

  • the invention relates to the field of endoscopes, in particular to a 3D electronic endoscope and a camera system thereof.
  • 3D electronic endoscopes such as 3D laparoscopes
  • 3D laparoscopes generally adopt the "chip in the tip” technology, that is, the camera module is placed at the end of the insertion part away from the operating part, also called the distal end, which is limited by the insertion part of the 3D electronic endoscope.
  • the maximum width limit is generally required to be controlled at ⁇ 10.5mm, and the size of the camera module cannot be made too large.
  • the embodiment of the present application expects to provide a 3D electronic endoscope camera with improved image quality.
  • the embodiment of the present application provides a 3D electronic endoscope camera, including an insertion part and an operation part;
  • the insertion part includes a long tube, a camera module, an illumination optical path and a transmission part;
  • the long tube is a hollow tubular structure inside, and the camera module It is installed inside the far end of the long tube, and the far end is the end away from the operation part;
  • the illumination optical path and the transmission part are arranged inside the long tube;
  • the illumination optical path is used to connect the light guide and irradiate the light transmitted by the light source to a specific part of the inspection object ;
  • the camera module is used to receive the image light reflected or excited by a specific part acquired at the far end of the insertion part, convert the image light into an electrical signal, and transmit the electrical signal to the operation part through the transmission part;
  • the operation part includes an operation handle shell, a controller and an image signal processing component; the controller and the image signal processing component are arranged in the operating handle shell; the controller is used to realize different functions according to the signal input by the operator; the image signal processing component is used to transmit Process the electrical signal transmitted from the external part to obtain an image signal;
  • the camera module includes a first optical path assembly, a second optical path assembly, a first sensor, a second sensor, a first flexible board, a second flexible board, and a fixed substrate;
  • the first optical path assembly includes a first objective lens group and a first prism group
  • the second optical path assembly includes a second objective lens group and a second prism group, the first objective lens group is used to receive the first image light reflected or excited by a specific part;
  • the first prism group reflects or transmits the first image light to On the first sensor;
  • the first sensor is electrically connected to the first flexible board, and converts the first image light into a first electrical signal;
  • the second objective lens group is used to receive the second image light reflected or excited by a specific part;
  • the second The second prism group reflects or transmits the second image light to the second sensor;
  • the second sensor is electrically connected with the second flexible board, and converts the second image light into a second electrical signal.
  • the first sensor and the second sensor are respectively arranged on both sides of the fixed substrate, the first sensor and the first flexible board are arranged on the same surface of the fixed substrate, and the second sensor and the second flexible board are arranged on the other side of the fixed substrate.
  • the first sensor, the first flexible board, the fixed substrate, the second flexible board and the second sensor are stacked.
  • the first flexible board is provided with a through-hole structure, and the first sensor is disposed in the through-hole; or/and the second flexible board is provided with a through-hole structure, and the second sensor is disposed in the through-hole.
  • the first prism group includes right-angle prisms or triangular prisms; or/and the second prism group includes right-angle prisms or triangular prisms.
  • the light-emitting end face of the first prism group is rectangular, the long side of the rectangle is consistent with the axial direction of the long tube, and the short side is perpendicular to the axial direction of the long tube; or/and the light-emitting end face of the second prism group is rectangular , the long side of the rectangle is consistent with the axial direction of the long tube, and the short side is perpendicular to the axial direction of the long tube.
  • an aperture is further included, and the aperture is arranged on the light-emitting end surface of the first prism group or/and the second prism group.
  • the photosensitive area on the photosensitive surface of the first sensor is greater than or equal to the light exit end surface of the first prism group; or/and the photosensitive area on the photosensitive surface of the second sensor is greater than or equal to the light exit end surface of the second prism group .
  • the light-emitting end surface of the first prism group is arranged on the photosensitive surface of the first sensor, and at least part of the photosensitive area of the first sensor is in a closed space; or/and the light-emitting end surface of the second prism group is arranged on the second The photosensitive surface of the second sensor, and at least part of the photosensitive area of the second sensor is in a closed space.
  • a glass plate is further included, the glass plate is arranged between the first prism group and the first sensor; or/and the glass plate is arranged between the second prism group and the second sensor.
  • the transmission part includes a signal amplifying circuit, and the signal amplifying circuit is used to amplify the acquired first electrical signal or/and second electrical signal, and transmit them to the image signal processing component.
  • the fixed substrate includes a first fixed substrate and a second fixed substrate, the first sensor and the first flexible board are arranged on the first fixed substrate; the second sensor and the second flexible board are arranged on the second fixed substrate.
  • the fixed substrate is a heat conduction plate, which is used to dissipate the heat generated by the sensor.
  • the fixed substrate is a ceramic plate or a metal plate.
  • a supporting component is further included, and the first optical path assembly and the second optical path assembly are arranged on the supporting component.
  • a 3D electronic endoscope camera head includes an insertion part and an operation part;
  • the insertion part includes a long tube, a camera module, an illumination optical path and a transmission part;
  • the long tube is a hollow tubular structure inside, and the camera module It is installed inside the far end of the long tube, and the far end is the end away from the operation part;
  • the illumination optical path and the transmission part are arranged inside the long tube;
  • the illumination optical path is used to connect the light guide and irradiate the light transmitted by the light source to a specific part of the inspection object ;
  • the camera module is used to receive the image light reflected or excited by a specific part acquired at the far end of the insertion part, convert the image light into an electrical signal, and transmit the electrical signal to the operation part through the transmission part;
  • the operation part includes an operation handle shell, a controller and an image signal processing component; the controller and the image signal processing component are arranged in the operating handle shell; the controller is used to realize different functions according to the signal input by the operator; the image signal processing component is used to transmit Process the electrical signal transmitted from the external part to obtain an image signal;
  • the camera module includes an objective lens group, a prism group, a sensor, a fixed substrate and a flexible board;
  • the objective lens group is used to receive image light reflected or excited by a specific part;
  • the prism group is used to reflect or transmit the image light received by the objective lens group to the sensor ,
  • the sensor is electrically connected to the flexible board, and converts the image light into an electrical signal;
  • the flexible board is electrically connected to the transmission part, and transmits the electrical signal to the transmission part;
  • the sensor and the flexible board are electrically connected, and the sensor and the flexible board are arranged on the fixed substrate.
  • a 3D electronic endoscope imaging system includes a light source, a light guide, a camera host, cables and the 3D electronic endoscope in the above embodiments, the light source passes through the light guide and the 3D electronic endoscope Connection, one end of the 3D electronic endoscope is connected to the camera host through a cable.
  • Fig. 1 is a schematic structural view of a 3D electronic endoscope camera system in an embodiment
  • Fig. 2 is a schematic structural view of a 3D electronic endoscope camera system in an embodiment
  • Fig. 3 is a schematic diagram of the sensor structure in an embodiment
  • Fig. 4 is a schematic structural diagram of a camera module of a 3D electronic endoscope in an embodiment
  • Fig. 5 is a schematic structural diagram of a camera module of a 3D electronic endoscope in an embodiment
  • Fig. 6 is a schematic structural diagram of a 3D electronic endoscope in an embodiment
  • 31-camera module 311-objective lens group, 311a-first objective lens group, 311b-second objective lens group, 312-prism group, 312a-the first A prism
  • distal end means that the long tube insertion part 30 is away from the operation part 40
  • proximal end means that the long tube insertion part 30 is close to the operation part 40 .
  • a 3D electronic endoscope camera system 1000 including a light source 10, a light guide 20, an electronic mirror, a cable 71, a camera host 50, a display 60 and Video connection line 72.
  • the electronic mirror is an important component of the 3D electronic endoscopic imaging system 1000 , and includes an insertion part 30 and an operation part 40 , and the insertion part 30 and the operation part 40 may be integrated.
  • the insertion part 30 includes a long tube 32 , a camera module 31 , an illumination optical path and a transmission part 70 .
  • the long tube 32 can be a circular long tube with a relatively smooth outer surface and a hollow interior. The long tube 32 will extend into the body of the inspection object 100, so the outer diameter of the long tube 32 should be as small as possible, such as ⁇ 10.5mm.
  • the long tube 32 can be made into a non-circular tube, such as an elliptical tube; the camera module 31 is arranged inside the long tube 32 away from the part of the operating part 40, that is, the camera module 31 is arranged at the far end of the long tube 32, and the To receive the acquired image light reflected or excited by a specific part of the inspection object 100 , convert the image light into an electrical signal, and transmit the electrical signal to the operation unit 40 through the transmission unit 70 .
  • the camera module 31 of the 3D electronic endoscope has two optical paths, and is equipped with a first optical path assembly and a second optical path assembly.
  • the first optical path assembly receives image light from the left or right side, and the second optical path assembly The image light on the other side is received, and the left image light and the right image light are respectively transmitted to two sensors 314 (the first sensor 314a, the second sensor 314b). In order to ensure the final three-dimensional imaging effect, two identical models are preferred.
  • the first sensor 314a and the second sensor 314b convert the first image light and the second image light collected respectively into a first electrical signal and a second electrical signal, and respectively transmit the first electrical signal through the transmission part 70
  • the signal and the second electrical signal are transmitted to the operation part 40;
  • the illumination optical path is used to connect with the light guide 20, and is used to irradiate the light transmitted by the light source 10 to a specific part of the inspection object 100;
  • the transmission part 70 is connected to the operation part 40 for
  • the electric signal output by the sensor 314 is transmitted to the operation part 40 .
  • the operating part 40 includes an operating handle housing, a controller and an image signal processing component 41.
  • the controller is used to realize different functions according to the signals input by the operator, and can realize functions, such as: mode switching function, focusing function, color calibration function, lighting switch function etc.; the image signal processing component 41 processes the first electrical signal and the second electrical signal transmitted by the transmission unit 70, and obtains the first image signal and the second image signal, and transmits the first image signal and the second image signal to the camera host 50; the image signal processing component can perform relay processing, serial-to-parallel conversion, differential transmission processing, etc. on the received electrical signal. In another embodiment, at least part of the first image signal and/or the second image signal can be converted into a non-electrical signal, such as an optical signal, by at least one image signal conversion unit.
  • a non-electrical signal such as an optical signal
  • the display 60 will display the image of a specific part of the inspection object 100. After the image light on the left and right sides acquired by the 3D electronic endoscope is processed, such as: polarization processing, etc., the corresponding image of the specific part of the inspection object 100 will be displayed on the display 60. Above, observers need to wear polarized glasses for observation, and finally observe a three-dimensional stereoscopic image.
  • the signal amplification circuit 33 can also be set in the 3D electronic endoscope, the signal amplification system 33 is arranged between the camera module 31 and the image signal processing component 41, and is used to amplify the electrical signal output by the camera module 31 to ensure electrical The signal will not be attenuated too much during transmission, which will affect the final imaging effect.
  • the camera host 50 is connected to the 3D electronic endoscope through a cable 71 , and the image signal generated by the 3D electronic endoscope is transmitted to the camera host 50 through the cable 71 for processing.
  • the cable 71 can be an optical communication cable, such as an optical fiber, and the 3D electronic endoscope converts the image signal (electrical signal) into an optical signal, which is transmitted to the camera host 50 by the cable 71, and the camera host 50 The optical signal is then converted into an electrical signal (image signal).
  • the cable 71 may also be a photoelectric composite cable.
  • the 3D electronic endoscope converts part of the electrical signal into an optical signal, retains part of the electrical signal, and transmits it to the camera host 50 through the cable 71 for processing.
  • the 3D electronic endoscope can also send image signals to the camera host 50 through wireless transmission for processing.
  • Fig. 1 is only an example of a 3D electronic endoscope camera system, and does not constitute a limitation to the 3D electronic endoscope camera system.
  • the 3D electronic endoscope camera system may include more or fewer parts, or combinations of parts, or different parts.
  • the light source 10 is used to provide illumination or excite the light source to the site to be observed.
  • the light source includes a white light source (illumination light source).
  • the light source 10 may also include an excitation light source (laser light source, such as near-infrared light) corresponding to the fluorescent reagent.
  • the camera host 50 is provided with a processor, and the camera host 50 is connected to the electronic mirror through a cable 71 for acquiring image signals output by the electronic mirror.
  • the processor acquires the image signal output by the electron mirror, it will process the image signal to output a white light image or a fluorescence image of the observed tissue.
  • the acquired image signal may be a single white light signal or a fluorescent signal, or an image signal obtained by combining the white light signal and the fluorescent signal.
  • An embodiment of the present application provides a 3D electronic endoscope camera. It can be used in the 3D electronic endoscope camera system 1000 provided in any one of the above embodiments.
  • the 3D electronic endoscope includes an operation part 40 and an insertion part 30, and the insertion part 30 and the operation part 40 can be integrated to form a medical endoscope camera head together.
  • the insertion part 30 includes a long tube 32, a camera module 31, an illumination optical path and a transmission part 70;
  • the long tube 32 is a hollow tubular structure, and the camera module 31 is arranged inside the long tube 32; the illumination light path and the transmission part 70 It is arranged inside the long tube 32 ; the illumination optical path is used to irradiate the light of the light source 10 to a specific part of the inspection object 100 .
  • the light source 10 and the 3D electronic endoscope are connected through a light guide 20; in another embodiment, the light source 10 is arranged at the distal end of the 3D electronic endoscope.
  • the camera module 31 is used to receive the image light reflected or excited by the specific part captured by the distal end of the insertion part 30, convert the image light into an electrical signal, and transmit the electrical signal to the operation part 40 through the transmission part 70;
  • the operating part 40 includes an operating handle housing, a controller and an image signal processing assembly 41; the controller is used to realize different functions according to the signals input by the operator; the image signal processing assembly is used to process the electrical signal transmitted by the transmission part 70 to obtain image signal.
  • the operation unit 40 may further include an image signal conversion unit for converting the image signal into other non-electrical signals.
  • the camera module 31 includes a first optical path assembly, a second optical path assembly, a first sensor 314 a , a second sensor 314 b , a first flexible board 315 a , a second flexible board 315 b and a fixed substrate 316 .
  • the first flexible board 315 a and the second flexible board 315 b assume the function of a circuit board and transmit electrical signals to the transmission unit 70 .
  • the fixed base plate 316 may also be composed of multiple pieces together to form a whole.
  • the fixed substrate 316 can also be a ceramic plate or a metal plate; the ceramic plate has mature technology and moderate price, and is a conventional material for making medical endoscopes, and the metal plate can be used for heat conduction.
  • the heat guide long tube can also be a ceramic plate or a metal plate; the ceramic plate has mature technology and moderate price, and is a conventional material for making medical endoscopes, and the metal plate can be used for heat conduction.
  • the heat guide long tube can be a ceramic plate or a metal plate; the ceramic plate has mature technology and moderate price, and is a conventional material for making medical endoscopes, and the metal plate can be used for heat conduction.
  • the first optical path assembly includes a first objective lens group 311a and a first prism group 312a
  • the second optical path assembly includes a second objective lens group 311b and a second prism group 312b
  • image light the first prism group 312a is used to reflect or transmit the first image light to the first sensor 314a
  • the first sensor 314a is electrically connected to the first flexible board 315a, and converts the first image light into the second image light
  • the second objective lens group 311b is used to receive the second image light reflected or excited by a specific part
  • the second prism group 312b is used to reflect or transmit the second image light to the second sensor 314b
  • the second sensor 314b is electrically connected to the second flexible board 315b, and converts the second image light into a second electrical signal
  • the first prism group 312a is used to reflect or transmit the first image light to the first sensor 314a
  • the first sensor 314a is electrically connected to the first flexible board 315a,
  • the first flexible board 315a and the second flexible board 315b are electrically connected to the transmission part 70, and transmit the first electrical signal and the second electrical signal to the transmission part 70;
  • the first sensor 314 a and the first flexible board 315 a are disposed on the same surface of the fixed substrate 316
  • the second sensor 314 b and the second flexible board 315 b are disposed on the other side of the fixed substrate 316 .
  • the hardness or rigidity of the fixed substrate 316 is stronger than that of the first soft board 315a or the second soft board 315b, and provides support for the first soft board 315a or the second soft board 315b.
  • the embodiment of the present application can adjust the first sensor 314a or the first sensor 314a connected to the first soft board 315a or the second soft board 315b by adjusting the position of the first soft board 315a or the second soft board 315b.
  • the relative position of the second sensor 314b is more convenient to align the relative position of the first sensor 314a and the second sensor 314b, which facilitates calibration and improves the imaging quality.
  • the sensor 314 can use a CSP sensor or a COB sensor, etc.
  • the COB sensor as shown in Figure 3 is preferred, because, compared with the CSP sensor used in conventional medical endoscopes, the COB sensor has a smaller volume Smaller, thinner and bonded with gold wire, CSP sensors are larger and bonded via bottom solder balls.
  • the use of the COB sensor can effectively reduce the volume required for installing the sensor 314, release more space for the optical mirror group, maximize the optical mirror group, and obtain more image light.
  • the sensor is provided with a second welding part around, and a first welding part corresponding to the second welding part 3142 is provided on the flexible board, and the first welding part and the second welding part 3142 are welded to realize the electrical connection between the flexible board and the sensor.
  • the camera module 31 is an important part of the imaging of the endoscope camera. The larger the camera module 31 is, the more light signals it can receive, thereby presenting high-quality observation images. However, since the camera module 31 is arranged inside the long tube 32, Due to the limitation of the diameter of the long tube 32, the space where the camera module 31 can be arranged is limited. In the embodiment of the present application, by rationally arranging the structure of the internal components of the camera module 31, the photosensitive area is maximized and the imaging quality is guaranteed.
  • the first sensor 314a, the first flexible board 315a, the fixed substrate 316, the second flexible board 315b, and the second sensor 314b are stacked, and the positions of each component can correspond to a line, or they can be stacked in random order. .
  • the first flexible board 315a is provided with a through hole structure, and the first sensor 314a is disposed in the through hole; or/and the second flexible board 315b is provided with a through hole structure, and the second sensor 314b is disposed in the through hole structure. in the hole.
  • a metal plate or a substrate of other materials may be disposed in the through hole to provide support for the sensor disposed in the through hole.
  • the first prism group 312a includes a rectangular prism or a triangular prism; or/and the second prism group 312b includes a rectangular prism or a triangular prism, and the number of prisms in the first prism group 312a and the second prism group 312b does not vary.
  • Restrictions can be one or more.
  • the light-emitting end face of the first prism group 312a is rectangular, the long side of the rectangle is consistent with the axial direction of the long tube, and the short side is perpendicular to the axial direction of the long tube; or/and the light-emitting end face of the second prism group 312b It is a rectangle, the long side of the rectangle is consistent with the axial direction of the long tube, and the short side is perpendicular to the axial direction of the long tube.
  • the long side is equal to the short side, that is, the light emitting end surface is a square.
  • the long side of the light-emitting end surface is larger than the short side.
  • the short side of the prisms in the first prism group 312a and/or the second prism group 312b is greater than or equal to the height
  • the long side is greater than or equal to the short side, so that the height of the prism can be fully utilized to maximize the effective image surface , and then output a higher resolution picture
  • the short side of the prism is less than or equal to the long side, also to ensure that the reflective surface of the prism group is fully utilized, and output as much image light as possible to achieve a larger resolution output.
  • a diaphragm may be added on the light exit end surface of the first prism group 312a or/and the second prism group 312b, and the diaphragm is arranged on the light exit surface of the first prism group 312a or/and the second prism group 312b, Part of the image light that cannot be transmitted to the photosensitive area 3141 is blocked by the diaphragm, which can prevent mutual interference between light rays, affect the accuracy of the sensor 314 , and cause glare, ghost images, etc. to affect the imaging effect.
  • the photosensitive area 3141 on the photosensitive surface of the first sensor 314a is greater than or equal to the light emitting end surface of the first prism group 312a; or/and the photosensitive area 3141 on the photosensitive surface of the second sensor 314b is greater than or equal to the second The light-emitting end surface of the prism group 312b.
  • the sensor needs to receive as many light signals as possible.
  • the light-emitting end surface of the first prism group 312a is set on the photosensitive surface of the first sensor 314a, and at least part of the photosensitive area 3141 of the first sensor 314a is in a closed space; or/and the second prism group 312b
  • the light-emitting end surface is set on the photosensitive surface of the second sensor 314b, and at least part of the photosensitive area 3141 of the second sensor 314b is in a closed space to prevent dust and other sundries from adhering or falling in the photosensitive area 3141 of the sensor and ensure the effectiveness.
  • a glass plate can also be used, and the glass plate is arranged between the first prism group 312a and the first sensor 314a; or/and the glass plate is arranged between the second prism group 312b and the second sensor 314b .
  • other transparent polymer plates such as plastic plates, can also be used.
  • the transmission unit 70 includes a signal amplifying circuit 33, and the signal amplifying circuit 33 is used to amplify the acquired first electrical signal and/or second electrical signal, and transmit it to the image signal processing component In 41, the image signal is prevented from being excessively attenuated during the transmission process, resulting in too weak electrical signal intensity received by the image signal processing component 41, which affects the imaging quality.
  • a supporting component 313 is further included, and the first optical path assembly and the second optical path assembly are disposed on the supporting component 313 .
  • the 3D electronic endoscope includes an operation part 40 and an insertion part 30, and the insertion part 30 and the operation part 40 may be integrated to form a medical endoscope camera head together.
  • the insertion part 30 includes a long tube 32, a camera module 31, an illumination optical path and a transmission part 70;
  • the long tube 32 is a hollow tubular structure, and the camera module 31 is arranged inside the long tube 32; the illumination light path and the transmission part 70 It is arranged inside the long tube 32; the illumination optical path is used to irradiate the light of the light source to a specific part of the inspection object.
  • the camera module 31 is used to receive the image light reflected or excited by the specific part captured by the distal end of the insertion part 30, convert the image light into an electrical signal, and transmit the electrical signal to the operation part 40 through the transmission part 70;
  • the operating part 40 includes an operating handle housing, a controller and an image signal processing assembly 41; the controller is used to realize different functions according to the signals input by the operator; the image signal processing assembly is used to process the electrical signal transmitted by the transmission part 70 to obtain image signal.
  • the camera module 31 includes an optical path assembly, a sensor, a soft board and a fixed substrate 316 .
  • the optical path components include an objective lens group and a prism group; the objective lens group is used to receive the image light reflected or excited by a specific part; the prism group is used to reflect or transmit the image light to the sensor; the sensor is electrically connected to the flexible board and converts the image light into electric signal;
  • the flexible board is electrically connected to the transmission part 70 and transmits electrical signals to the transmission part 70 ; the sensors are respectively arranged on both sides of the fixed substrate 316 , and the sensors and the flexible board are arranged on the same surface of the fixed substrate 316 .
  • the hardness or rigidity of the fixed substrate 316 is stronger than that of the soft board, providing support for the soft board.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Abstract

一种3D电子内窥镜,包括插入部(30)和操作部(40);插入部(30)包括长管(32)、摄像模组(31)、照明光路和传输部(70);操作部(40)包括操作手柄外壳、控制器和图像信号处理组件(41);控制器和图像信号处理组件(41)设置在操作手柄外壳中;摄像模组(31)包括第一光路组件、第二光路组件、第一传感器(314a)、第二传感器(314b)、第一软板(315a)、第二软板(315b)和固定基板(316);第一光路组件包括第一物镜组(311a)和第一棱镜组(312a),第二光路组件包括第二物镜组(311b)和第二棱镜组(312b);第一光路组件和第二光路组件将图像光反射或透射至第一传感器(314a)和第二传感器(314b)上;第一传感器(314a)和第二传感器(314b)分别与第一软板(315a)和第二软板(315b)电连接;第一传感器(314a)和第二传感器(314b)设置在固定基板(316)两侧,第一传感器(314a)和第一软板(315a)设置在固定基板(316)同面,第二传感器(314b)和第二软板(315b)在固定基板(316)另一面。

Description

3D电子内窥镜及其摄像系统 技术领域
本发明涉及内窥镜领域,具体涉及一种3D电子内窥镜及其摄像系统。
背景技术
3D电子内窥镜,如3D腹腔镜,普遍采用“chip in the tip”技术,即将摄像模组放置在插入部分远离操作部的一端,也叫远端,受限于3D电子内窥镜插入部分最大宽度的限制,一般要求控制在≤10.5mm,摄像模组的尺寸不能做的太大。而为了实现高分辨率画幅和高画质输出,又希望采用具有更大感光面的传感器,而传感器是摄像模组的重要组成部件,因此如何充分利用插入部分末端的有限空间,实现传感器上有效感光面最大化是至关重要的。
技术问题
有鉴于此,本申请实施例期待提供一种提升图像质量的3D电子内窥镜摄像头。
技术解决方案
本申请实施例提供了一种3D电子内窥镜摄像头,包括插入部和操作部;插入部包括长管、摄像模组、照明光路和传输部;长管为内部中空的管状结构,摄像模组设置在长管远端的内部,远端为远离操作部的一端;照明光路和传输部设置在长管内部;照明光路用于对接导光束,并将光源传输的光照射至检查对象的特定部位;摄像模组用于接收插入部远端获取的特定部位反射或激发的图像光,并将图像光转化为电信号,通过传输部将电信号传输到操作部中;
操作部包括操作手柄外壳、控制器和图像信号处理组件;控制器和图像信号处理组件设置在操作手柄外壳中;控制器用于根据操作者输入的信号实现不同功能;图像信号处理组件用于对传输部传输来的电信号进行处理,以得到图像信号;
其中,摄像模组包括第一光路组件、第二光路组件、第一传感器、第二传感器、第一软板、第二软板和固定基板;第一光路组件包括第一物镜组和第一棱镜组,第二光路组件包括第二物镜组和第二棱镜组,第一物镜组用于接收特定部位反射或激发的第一路图像光;第一棱镜组将第一路图像光反射或透射至第一传感器上;第一传感器与第一软板电连接,并将第一路图像光转化为第一电信号;第二物镜组用于接收特定部位反射或激发的第二路图像光;第二棱镜组将第二路图像光反射或透射至第二传感器上;第二传感器与第二软板电连接,并将第二路图像光转化为第二电信号。
第一传感器和第二传感器分别设置在固定基板的两侧,第一传感器和第一软板设置在固定基板的同一面,第二传感器和第二软板设置在所述固定基板的另一面。
在一实施例中,第一传感器、第一软板、固定基板、第二软板和第二传感器层叠设置。
在一实施例中,第一软板上设置有通孔结构,第一传感器设置在通孔中;或/和第二软板上设置有通孔结构,第二传感器设置在通孔中。
在一实施例中,第一棱镜组包括直角棱镜或三角棱镜;或/和第二棱镜组包括直角棱镜或三角棱镜。
在一实施例中,第一棱镜组的出光端面为矩形,矩形的长边与长管轴向方向一致,短边垂直于长管轴向方向;或/和第二棱镜组的出光端面为矩形,矩形的长边与长管轴向方向一致,短边垂直于长管轴向方向。
在一实施例中,还包括光阑,光阑设置在第一棱镜组或/和第二棱镜组出光端面上。
在一实施例中,第一传感器的感光面上的感光区域大于或等于第一棱镜组的出光端面;或/和第二传感器的感光面上的感光区域大于或等于第二棱镜组的出光端面。
在一实施例中,第一棱镜组的出光端面设置在第一传感器的感光面上,并且第一传感器的至少部分感光区域处于封闭空间中;或/和第二棱镜组的出光端面设置在第二传感器的感光面上,并且第二传感器的至少部分感光区域处于封闭空间中。
在一实施例中,还包括玻璃板,玻璃板设置在第一棱镜组和第一传感器之间;或/和玻璃板设置在第二棱镜组和第二传感器之间。
在一实施例中,传输部包括信号放大电路,信号放大电路用于放大获取到的第一电信号或/和第二电信号,并传输至图像信号处理组件。
在一实施例中,固定基板包括第一固定基板和第二固定基板,第一传感器和第一软板设置第一固定基板上;第二传感器和第二软板设置在第二固定基板上个。
在一实施例中,固定基板为导热板,用于导出传感器产生的热量。
在一实施例中,固定基板为陶瓷板或金属板。
在一实施例中,还包括支撑部件,第一光路组件和第二光路组件设置在支撑部件上。
在一实施例中,一种3D电子内窥镜摄像头,包括插入部和操作部;插入部包括长管、摄像模组、照明光路和传输部;长管为内部中空的管状结构,摄像模组设置在长管远端的内部,远端为远离操作部的一端;照明光路和传输部设置在长管内部;照明光路用于对接导光束,并将光源传输的光照射至检查对象的特定部位;摄像模组用于接收插入部远端获取的特定部位反射或激发的图像光,并将图像光转化为电信号,通过传输部将电信号传输到操作部中;
操作部包括操作手柄外壳、控制器和图像信号处理组件;控制器和图像信号处理组件设置在操作手柄外壳中;控制器用于根据操作者输入的信号实现不同功能;图像信号处理组件用于对传输部传输来的电信号进行处理,以得到图像信号;
摄像模组包括物镜组、棱镜组、传感器、固定基板和软性板;物镜组用以接收特定部位反射或激发的图像光;棱镜组用以将物镜组接收的图像光反射或透射至传感器上,传感器与软性板电连接,并将图像光转化为电信号;软性板与传输部电连接,将电信号传输至传输部;
传感器和软性板电连接,传感器和软性板设置在固定基板上。
在一实施例中,一种3D电子内窥镜摄像系统,包括光源、导光束、摄像主机、线缆和以上各实施例中的3D电子内窥镜,光源通过导光束与3D电子内窥镜连接,3D电子内窥镜的一端通过线缆与摄像主机连接。
有益效果
附图说明
图1为一种实施例中3D电子内窥镜摄像系统的结构示意图;
图2为一种实施例中3D电子内窥镜摄像系统的结构示意图;
图3为一种实施例中传感器结构示意图;
图4为一种实施例中3D电子内窥镜的摄像模组结构示意图;
图5为一种实施例中3D电子内窥镜的摄像模组结构示意图;
图6为一种实施例中3D电子内窥镜的结构示意图;
图中,10-光源,20-导光束,30-插入部,31-摄像模组,311-物镜组,311a-第一物镜组,311b-第二物镜组,312-棱镜组,312a-第一棱镜组,312b-第二棱镜组,313-支撑部件,314a-第一传感器,314b-第二传感器,3141-感光区域,3142-第二焊接部,315a-第一软板,315b-第二软板,316-固定基板,32-长管,33-信号放大电路,40-操作部,41-图像信号处理组件,50-摄像主机,60-显示器,70-传输部,71-线缆,72-视频连接线,100-检查对象,1000-3D电子内窥镜摄像系统。
本发明的实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例用于说明本申请,但不能用来限制本申请的范围。
在本申请实施例的描述中,需要说明的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。本申请实施例中所述的“远端”指长管插入部30远离操作部40,“近端”为长管插入部30靠近操作部40。
如图1和图2所示,在一实施例中,提供了一种3D电子内窥镜摄像系统1000,包括光源10、导光束20、电子镜、线缆71、摄像主机50、显示器60和视频连接线72。
电子镜是3D电子内窥镜成像系统1000的重要组成部件,包括插入部30和操作部40,插入部30和操作部40可以为一体结构。其中,插入部30包括长管32、摄像模组31,照明光路和传输部70。长管32可以是根外表面相对光滑,内部中空的圆形长管,长管32会伸入到检查对象100体内,因此长管32外径需尽可能的小,如≤10.5mm,在一实施例中,长管32可以制作为非正圆管,如椭圆管;摄像模组31设置在长管32内部远离操作部40的部分,即摄像模组31设置在长管32远端,用于接收获取到的检查对象100特定部位反射或激发的图像光,并将图像光转化为电信号,并通过传输部70将电信号传输到操作部40中。具体而言,3D电子内窥镜镜的摄像模组31有两路光路,配有第一光路组件和第二光路组件,第一光路组件接收左侧或右侧的图像光,第二光路组件接收另一侧图像光,左侧图像光与右侧图像光分别传输到两个传感器314(第一传感器314a、第二传感器314b)上,为保证最后的三维成像效果,优选两个相同型号的传感器,第一传感器314a和第二传感器314b将各自采集到的第一路图像光和第二路图像光分别转化为第一电信号和第二电信号,并通过传输部70分别将第一电信号和第二电信号传输至操作部40;照明光路用于与导光束20对接,用于将光源10传输的光照射至检查对象100的特定部位;传输部70与操作部40对接,用于将传感器314输出的电信号传输至操作部40。操作部40包括操作手柄外壳、控制器和图像信号处理组件41,控制器用于根据操作者输入的信号实现不同功能,可以实现功能,如:模式转换功能、对焦功能、校色功能、照明开关功能等;图像信号处理组件41将传输部70传输来的第一电信号和第二电信号进行处理,并得到第一图像信号和第二图像信号,并将第一图像信号和第二图像信号传输到摄像主机50中;图像信号处理组件可以对接收到的电信号进行中继处理、串并转换、差分传输处理等。在另一实施例中,第一图像信号和/或第二图像信号可通过至少一个图像信号转换单元将至少部分电信号转化为非电信号,如光信号。
显示器60会显示出检查对象100的特定部位的图像,经由3D电子内窥镜获取的左右两侧图像光经过处理后,如:偏振处理等,检查对象100的特定部位对应图像会显示在显示器60上,观测者需佩戴偏振眼镜进行观测,并最终观测到三维立体图像。
在3D电子内窥镜中也可以设置信号放大电路33,信号放大系统33设置在摄像模组31和图像信号处理组件41之间,用于将摄像模组31输出的电信号进行放大,保证电信号在传输过程中不至于过分衰减,导致影响最终成像效果。
摄像主机50通过线缆71与3D电子内窥镜相连接,3D电子内窥镜生成的图像信号通过线缆71传输至摄像主机50内进行处理。在某些实施例中,线缆71可以为光通信线缆,如光纤,3D电子内窥镜将图像信号(电信号)转化为光信号,由线缆71传输到摄像主机50,摄像主机50再将光信号转换成电信号(图像信号)。在另一实施例中,线缆71也可以为光电复合缆,3D电子内窥镜将部分电信号转化为光信号,保留部分电信号,通过线缆71传输到摄像主机50上进行处理。在另一实施例中,3D电子内窥镜也可以通过无线传输将图像信号发送至摄像主机50上进行处理。
本领域技术人员应当理解的是,图1仅是3D电子内窥镜摄像系统的示例,并不构成对3D电子内窥镜摄像系统的限定,3D电子内窥镜摄像系统可以包括比图1所示更多或更少的部件,或者组合某些部件,或者不同的部件。
在一实施例中,光源10用于向待观察部位提供照明或激发光源。光源包括白光光源(照明光源),在另一实施例中,光源10也可包括对应于荧光试剂的激发光光源(激光光源,例如近红外光)。
在一实施例中,摄像主机50内设有处理器,摄像主机50通过线缆71与电子镜连接,用于获取电子镜输出的图像信号。处理器获取到电子镜输出的图像信号后,将对图像信号进行处理,以输出被观察组织的白光图像或荧光图像。其中获取的图像信号可以为单独的白光信号或荧光信号,也可以为白光信号和荧光信号合并的图像信号。
本申请实施例提供一种3D电子内窥镜摄像头。可以用于上述任意一实施例提供的3D电子内窥镜摄像系统1000中。
3D电子内窥镜包括操作部40和插入部30,插入部30和操作部40可以为一体结构,共同构成医用内窥镜摄像头。其中,插入部30包括长管32、摄像模组31,照明光路和传输部70;长管32为内部中空的管状结构,摄像模组31设置在长管32的内部;照明光路和传输部70设置在长管32内部;照明光路用于将光源10的光照射至检查对象100的特定部位。在一实施例中,光源10和3D电子内窥镜通过导光束20连接;在另一实施例中,光源10设置在3D电子内窥镜远端。
摄像模组31用于接收插入部30远端获取的特定部位反射或激发的图像光,并将图像光转化为电信号,通过传输部70将电信号传输到操作部40中;
操作部40包括操作手柄外壳、控制器和图像信号处理组件41;控制器用于根据操作者输入的信号实现不同功能;图像信号处理组件用于对传输部70传输来的电信号进行处理,以得到图像信号。在其他一实施例中,操作部40还可以包括图像信号转换单元,用于将图像信号转化为其他非电信号。
如图4所示,摄像模组31包括第一光路组件、第二光路组件、第一传感器314a、第二传感器314b、第一软板315a、第二软板315b和固定基板316。第一软板315a和第二软板315b承担着电路板的功能,将电信号传输到传输部70。如图5所示,在一实施例中,固定基板316也可以是多块合在一起,形成一个整体。在另一实施例中,固定基板316也可以采用陶瓷板,或金属板;陶瓷板工艺成熟、价格适中,是制作医用内窥镜的常规材料,而选用金属板可以方便导热,将传感器314上的热量导向长管。
第一光路组件包括第一物镜组311a和第一棱镜组312a,第二光路组件包括第二物镜组311b和第二棱镜组312b;第一物镜组311a用以接收特定部位反射或激发的第一路图像光;第一棱镜组312a用以将第一路图像光反射或透射至第一传感器314a上;第一传感器314a与第一软板315a电连接,并将第一路图像光转化为第一电信号;第二物镜组311b用以接收特定部位反射或激发的第二路图像光;第二棱镜组312b用以将第二路图像光反射或透射至第二传感器314b上;第二传感器314b与第二软板315b电连接,并将第二路图像光转化为第二电信号;
第一软板315a和第二软板315b与传输部70电连接,将第一电信号和第二电信号传输至传输部70;第一传感器314a和第二传感器314b分别设置在固定基板316的两侧,第一传感器314a和第一软板315a设置在固定基板316的同一面,第二传感器314b和第二软板315b设置在固定基板316的另一面。固定基板316的硬度或刚度强于第一软板315a或第二软板315b,为第一软板315a或第二软板315b提供支撑力。相较于常规的硬板,本申请实施例可以通过调整第一软板315a或第二软板315b的位置来调整和第一软板315a或第二软板315b相连接的第一传感器314a或第二传感器314b的相对位置,更加方便对准第一传感器314a和第二传感器314b的相对位置,方便校准,提高成像质量。
在一实施例中,传感器314可以采用CSP传感器或COB传感器等,在本申请中,优选如图3所示的COB传感器,因为,相较于常规医用内窥镜采用的CSP传感器,COB传感器体积更小、更薄并使用金线焊接,而CSP传感器体积更大,通过底部焊接球进行焊接。使用COB传感器可以有效减小设置传感器314所需体积,释放更多空间给光学镜组,使得光学镜组最大化,获取更多图像光。传感器四周设置有第二焊接部,在软板上设置有与第二焊接部3142对应的第一焊接部,将第一焊接部和第二焊接部3142焊接,得以实现软板和传感器电连接。
摄像模组31是内窥镜摄像头成像的重要部件,摄像模组31越大越能接收到更多的光信号,进而呈现出高质量观测图像,但由于摄像模组31设置在长管32内部,受到长管32直径限制,摄像模组31能够布置的空间有限,本申请的实施例通过合理布置摄像模组31内部元件结构,实现感光面积最大化,保证成像质量。
在一实施例中,第一传感器314a、第一软板315a、固定基板316、第二软板315b和第二传感器314b层叠设置,各个部件的位置可以对应在一条线上,也可以错落叠放。
在一实施例中,第一软板315a上设置有通孔结构,第一传感器314a设置在通孔中;或/和第二软板315b上设置有通孔结构,第二传感器314b设置在通孔中。通孔中可以设置金属板或其他材料的基板,给设置在通孔中的传感器支撑力。
在一实施例中,第一棱镜组312a包括直角棱镜或三角棱镜;或/和第二棱镜组312b包括直角棱镜或三角棱镜,第一棱镜组312a和第二棱镜组312b中的棱镜数量不做限定,可以是一个或多个。
在一实施例中,第一棱镜组312a的出光端面为矩形,矩形的长边与长管轴向方向一致,短边垂直于长管轴向方向;或/和第二棱镜组312b的出光端面为矩形,矩形的长边与长管轴向方向一致,短边垂直于长管轴向方向。在一特殊实施例中,长边等于短边,即出光端面为正方形。在另一实施例中,出光端面的长边大于短边。在一实施例中,第一棱镜组312a和/或第二棱镜组312b中的棱镜的短边大于等于高度,长边大于等于短边,可充分利用棱镜高度,以实现有效像面的最大化,进而输出较高分辨率的画面,棱镜的短边小于等于长边,同样是为了保证棱镜组的反射面得到充分利用,尽可能输出更多图像光,以实现较大的分辨率输出。
在一实施例中,第一棱镜组312a或/和第二棱镜组312b的出光端面上还可以增加光阑,光阑设置在第一棱镜组312a或/和第二棱镜组312b出光端面上,通过光阑遮挡部分不能传播到感光区域3141的图像光,可以防止光线间相互干扰,影响传感器314的准确,出现炫光、鬼影等影响成像效果。
在一实施例中,第一传感器314a的感光面上的感光区域3141大于或等于第一棱镜组312a的出光端面;或/和第二传感器314b的感光面上的感光区域3141大于或等于第二棱镜组312b的出光端面。为保证成像效果,需要传感器接收到尽量多的光信号。
在一实施例中,第一棱镜组312a的出光端面设置在第一传感器314a的感光面上,并且第一传感器314a的至少部分感光区域3141处于封闭空间中;或/和第二棱镜组312b的出光端面设置在第二传感器314b的感光面上,并且第二传感器314b的至少部分感光区域3141处于封闭空间中,防止灰尘等杂物附着或落在传感器的感光区域3141中,保证成效效果。在另一实施例中,也可以使用玻璃板,将玻璃板设置在第一棱镜组312a和第一传感器314a之间;或/和玻璃板设置在第二棱镜组312b和第二传感器314b之间。在另一实施例中,也可以使用其他高分子透明板,如塑料板等。
如图2所示,在一实施例中,传输部70包括信号放大电路33,信号放大电路33用于放大获取到的第一电信号和/或第二电信号,并传输至图像信号处理组件41中,防止图像信号在传输过程中过分衰减,而导致图像信号处理组件41接收到的电信号强度过弱,影响成像质量。
在一实施例中,还包括支撑部件313,第一光路组件和第二光路组件设置在支撑部件313上。
在一实施例中,3D电子内窥镜包括操作部40和插入部30,插入部30和操作部40可以为一体结构,共同构成医用内窥镜摄像头。其中,插入部30包括长管32、摄像模组31,照明光路和传输部70;长管32为内部中空的管状结构,摄像模组31设置在长管32的内部;照明光路和传输部70设置在长管32内部;照明光路用于将光源的光照射至检查对象的特定部位。
摄像模组31用于接收插入部30远端获取的特定部位反射或激发的图像光,并将图像光转化为电信号,通过传输部70将电信号传输到操作部40中;
操作部40包括操作手柄外壳、控制器和图像信号处理组件41;控制器用于根据操作者输入的信号实现不同功能;图像信号处理组件用于对传输部70传输来的电信号进行处理,以得到图像信号。
摄像模组31包括光路组件、传感器、软板和固定基板316。
光路组件包括物镜组和棱镜组;物镜组用以接收特定部位反射或激发的图像光;棱镜组用以将图像光反射或透射至传感器上;传感器与软板电连接,并将图像光转化为电信号;
软板与传输部70电连接,将电信号传输至传输部70;传感器分别设置在固定基板316的两侧,传感器和软板设置在固定基板316的同一面。固定基板316的硬度或刚度强于软板,为软板提供支撑力。
以上应用了具体个例对本发明进行阐述,只是用于帮助理解本发明,并不用以限制本发明。对于本发明所属技术领域的技术人员,依据本发明的思想,还可以做出若干简单推演、变形或替换。

Claims (16)

  1. 一种3D电子内窥镜,其特征在于,所述3D电子内窥镜包括插入部和操作部;
    所述插入部包括长管、摄像模组、照明光路和传输部;所述长管为内部中空的管状结构,所述摄像模组设置在所述长管的内部;所述照明光路和所述传输部设置在所述长管内部;所述照明光路用于将光照射至检查对象的特定部位;所述摄像模组用于接收所述插入部远端获取的所述特定部位反射或激发的图像光,并将所述图像光转化为电信号,通过所述传输部将所述电信号传输到所述操作部中;
    所述操作部包括操作手柄外壳、控制器和图像信号处理组件;所述控制器和所述图像信号处理组件设置在所述操作手柄外壳中;所述控制器用于根据操作者输入的信号实现不同功能;所述图像信号处理组件用于对所述传输部传输来的所述电信号进行处理,以得到图像信号;
    所述摄像模组,包括第一光路组件、第二光路组件、第一传感器、第二传感器、第一软板、第二软板和固定基板;所述第一光路组件包括第一物镜组和第一棱镜组,所述第二光路组件包括第二物镜组和第二棱镜组;所述第一物镜组用以接收特定部位反射或激发的第一路图像光;所述第一棱镜组用以将所述第一路图像光反射或透射至所述第一传感器上;所述第一传感器与所述第一软板电连接,并将所述第一路图像光转化为第一电信号;所述第二物镜组用以接收特定部位反射或激发的第二路图像光;所述第二棱镜组用以将所述第二路图像光反射或透射至所述第二传感器上;所述第二传感器与所述第二软板电连接,并将所述第二路图像光转化为第二电信号;
    所述第一软板和所述第二软板与所述传输部电连接,将所述第一电信号和所述第二电信号传输至所述传输部;
    所述第一传感器和所述第二传感器分别设置在所述固定基板的两侧,所述第一传感器和所述第一软板设置在所述固定基板的同一面,所述第二传感器和所述第二软板设置在所述固定基板的另一面。
  2. 如权利要求1所述的3D电子内窥镜,其特征在于,所述第一传感器、所述第一软板、所述固定基板、所述第二软板和所述第二传感器层叠设置。
  3. 如权利要求1所述的3D电子内窥镜,其特征在于,所述第一软板上设置有通孔结构,所述第一传感器设置在所述通孔中;或/和所述第二软板上设置有通孔结构,所述第二传感器设置在所述通孔中。
  4. 如权利要求1所述的3D电子内窥镜,其特征在于,所述第一棱镜组包括直角棱镜或三角棱镜;或/和所述第二棱镜组包括直角棱镜或三角棱镜。
  5. 如权利要求1所述的3D电子内窥镜,其特征在于,所述第一棱镜组的出光端面为矩形,所述矩形的长边与所述长管轴向方向一致,短边垂直于所述长管轴向方向;或/和
    所述第二棱镜组的出光端面为矩形,所述矩形的长边与所述长管轴向方向一致,短边垂直于所述长管轴向方向。
  6. 如权利要求1所述的3D电子内窥镜,其特征在于,还包括光阑,所述光阑设置在第一棱镜组或/和第二棱镜组出光端面上。
  7. 如权利要求1所述的3D电子内窥镜,其特征在于,所述第一传感器的感光面上的感光区域大于或等于所述第一棱镜组的出光端面;或/和
    所述第二传感器的感光面上的感光区域大于或等于所述第二棱镜组的出光端面。
  8. 如权利要求7所述的3D电子内窥镜,其特征在于,所述第一棱镜组的出光端面设置在所述第一传感器的感光面上,并且所述第一传感器的至少部分感光区域处于封闭空间中;或/和
    所述第二棱镜组的出光端面设置在所述第二传感器的感光面上,并且所述第二传感器的至少部分感光区域处于封闭空间中。
  9. 如权利要求1所述的3D电子内窥镜,其特征在于,还包括玻璃板,所述玻璃板设置在所述第一棱镜组和所述第一传感器之间;或/和所述玻璃板设置在所述第二棱镜组和所述第二传感器之间。
  10. 如权利要求1所述的3D电子内窥镜,其特征在于,所述传输部包括信号放大电路,所述信号放大电路用于放大获取到的所述第一电信号和/或所述第二电信号,并传输至图像信号处理组件。
  11. 如权利要求1所述的3D电子内窥镜,其特征在于,所述固定基板包括第一固定基板和第二固定基板,所述第一传感器和所述第一软板设置在所述第一固定基板上;所述第二传感器和所述第二软板设置在所述第二固定基板上。
  12. 如权利要求1-11所述的3D电子内窥镜,其特征在于,固定基板为导热板,用于导出传感器产生的热量。
  13. 如权利要求1-12所述的3D电子内窥镜,其特征在于,所述固定基板为陶瓷板或金属板。
  14. 如权利要求1所述的3D电子内窥镜,其特征在于,还包括支撑部件,所述第一光路组件和所述第二光路组件设置在所述支撑部件上。
  15. 一种3D电子内窥镜组件,其特征在于,所述3D电子内窥镜组件包括插入部和操作部;
    所述插入部包括长管、摄像模组、照明光路和传输部;所述长管为内部中空的管状结构,所述摄像模组设置在所述长管的内部;所述照明光路和所述传输部设置在所述长管内部;所述照明光路用于将光照射至检查对象的特定部位;所述摄像模组用于接收所述插入部远端获取的所述特定部位反射或激发的图像光,并将所述图像光转化为电信号,通过所述传输部将所述电信号传输到所述操作部中;
    所述操作部包括操作手柄外壳、控制器和图像信号处理组件;所述控制器和所述图像信号处理组件设置在所述操作手柄外壳中;所述控制器用于根据操作者输入的信号实现不同功能;所述图像信号处理组件用于对所述传输部传输来的所述电信号进行处理,以得到图像信号;
    所述摄像模组,包括物镜组、棱镜组、传感器、固定基板和软性板;所述物镜组用以接收特定部位反射或激发的图像光;所述棱镜组用以将所述物镜组接收的所述图像光反射或透射至所述传感器上;所述传感器与所述软性板电连接,并将所述图像光转化为电信号;所述软性板与所述传输部电连接,将所述电信号传输至所述传输部;
    所述传感器和所述软性板电连接,所述传感器和所述软性板设置在所述的固定基板上。
  16. 一种3D电子内窥镜摄像系统,其特征在于,包括光源、导光束、摄像主机、线缆和如权利要求1-14任意一项所述的3D电子内窥镜,所述光源通过所述导光束与所述3D电子内窥镜连接,所述3D电子内窥镜的一端通过所述线缆与所述摄像主机连接。
PCT/CN2022/103722 2022-02-24 2022-07-04 3d 电子内窥镜及其摄像系统 WO2023159851A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202220402386 2022-02-24
CN202220402386.9 2022-02-24

Publications (1)

Publication Number Publication Date
WO2023159851A1 true WO2023159851A1 (zh) 2023-08-31

Family

ID=83258573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103722 WO2023159851A1 (zh) 2022-02-24 2022-07-04 3d 电子内窥镜及其摄像系统

Country Status (2)

Country Link
CN (6) CN217960050U (zh)
WO (1) WO2023159851A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217960050U (zh) * 2022-02-24 2022-12-06 深圳迈瑞生物医疗电子股份有限公司 一种3d电子内窥镜及其摄像系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4622954A (en) * 1984-05-15 1986-11-18 Fuji Photo Optical Co., Ltd. Endoscope having a plate-like image sensor for forming images
US20080151041A1 (en) * 2006-12-21 2008-06-26 Intuitive Surgical, Inc. Stereoscopic endoscope
CN101711118A (zh) * 2008-01-18 2010-05-19 强生有限公司 便携式成像装置
US20130041226A1 (en) * 2011-08-12 2013-02-14 Ian McDowall Image capture unit in a surgical instrument
CN107595231A (zh) * 2016-07-11 2018-01-19 富士胶片株式会社 内窥镜
CN115067864A (zh) * 2022-02-24 2022-09-20 武汉迈瑞医疗技术研究院有限公司 3d电子内窥镜及其摄像系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4622954A (en) * 1984-05-15 1986-11-18 Fuji Photo Optical Co., Ltd. Endoscope having a plate-like image sensor for forming images
US20080151041A1 (en) * 2006-12-21 2008-06-26 Intuitive Surgical, Inc. Stereoscopic endoscope
CN101711118A (zh) * 2008-01-18 2010-05-19 强生有限公司 便携式成像装置
US20130041226A1 (en) * 2011-08-12 2013-02-14 Ian McDowall Image capture unit in a surgical instrument
CN107595231A (zh) * 2016-07-11 2018-01-19 富士胶片株式会社 内窥镜
CN115067864A (zh) * 2022-02-24 2022-09-20 武汉迈瑞医疗技术研究院有限公司 3d电子内窥镜及其摄像系统

Also Published As

Publication number Publication date
CN115067864A (zh) 2022-09-20
CN217960050U (zh) 2022-12-06
CN115251810A (zh) 2022-11-01
CN219126270U (zh) 2023-06-06
CN115736793A (zh) 2023-03-07
CN218684313U (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
US8823788B2 (en) Imaging apparatus
US4600940A (en) Video camera for use with an endoscope and method for making same
US4639772A (en) Focusable video camera for use with endoscopes
US5335662A (en) Image pickup system comprising signal processing device which uses exclusive adaptor in probes different in image pickup system from each other
US7976459B2 (en) Portable endoscope for intubation
US10084947B2 (en) Imaging module
WO2012043187A1 (ja) 光電気変換コネクタ、光伝送モジュール、撮像装置および内視鏡
JP2009240634A (ja) 内視鏡装置
WO2023159851A1 (zh) 3d 电子内窥镜及其摄像系统
JP7122476B2 (ja) 電子内視鏡及び電子内視鏡システム
US4600939A (en) Focusable video camera for use with endoscopes
JPH0820603B2 (ja) ビデオスコ−プ装置
JP3353949B2 (ja) 撮像システム
US4600938A (en) Focusable video camera for use with endoscopes
WO2011148784A1 (ja) 撮像ユニット及び内視鏡装置
KR100369287B1 (ko) 인체관찰용 비젼시스템
JPH0652933B2 (ja) 撮像装置
JP3791763B2 (ja) 内視鏡
JP2001221961A (ja) 双眼光学アダプタ
JP3270106B2 (ja) 内視鏡装置
JP2001104245A (ja) 内視鏡及び内視鏡装置
KR200215296Y1 (ko) 인체관찰용 비젼시스템
US11808935B2 (en) Endoscope and endoscope apparatus
JP2001204684A (ja) 内視鏡装置
JPS6069616A (ja) 内視鏡装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928120

Country of ref document: EP

Kind code of ref document: A1