WO2023159774A1 - 一种高稳定大扭矩磁流变液离合器 - Google Patents

一种高稳定大扭矩磁流变液离合器 Download PDF

Info

Publication number
WO2023159774A1
WO2023159774A1 PCT/CN2022/092098 CN2022092098W WO2023159774A1 WO 2023159774 A1 WO2023159774 A1 WO 2023159774A1 CN 2022092098 W CN2022092098 W CN 2022092098W WO 2023159774 A1 WO2023159774 A1 WO 2023159774A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
electromagnet
push rod
magnetorheological fluid
output
Prior art date
Application number
PCT/CN2022/092098
Other languages
English (en)
French (fr)
Inventor
陈金鑫
周崇秋
郑岚鹏
高春甫
Original Assignee
浙江师范大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江师范大学 filed Critical 浙江师范大学
Priority to US17/795,227 priority Critical patent/US11879507B2/en
Publication of WO2023159774A1 publication Critical patent/WO2023159774A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D37/00Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive
    • F16D37/02Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive the particles being magnetisable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D37/00Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive
    • F16D2037/001Electric arrangements for clutch control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D37/00Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive
    • F16D2037/005Clutches in which the drive is transmitted through a medium consisting of small particles, e.g. centrifugally speed-responsive characterised by a single substantially radial gap in which the fluid or medium consisting of small particles is arranged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10443Clutch type
    • F16D2500/10475Magnetic field, e.g. electro-rheological, magnetisable particles

Definitions

  • the invention relates to the technical field of clutches, in particular to a magneto-rheological fluid clutch with high stability and high torque.
  • the clutch is a device located between the power input device and the power output device. Through the clutch, the connection and interruption of the power between the power input device and the power output device can be realized.
  • the traditional mechanical clutch uses the friction between the friction plates to realize the power. Due to the relative sliding between the friction plates during low-speed and low-torque transmission, the wear between the friction plates is caused, so the service life is generally low.
  • Magnetorheological fluid is a kind of intelligent material, which is mainly composed of base carrier liquid, magnetic particles and active additives. Under the action of no external magnetic field, magnetorheological fluid is no different from traditional Newtonian fluid, showing good fluidity. When an external excitation magnetic field is applied, the stiffness and viscosity of the magnetorheological fluid increase rapidly within milliseconds, and the increase in stiffness and viscosity is positively correlated with the external excitation magnetic field, that is, the rheological properties of the magnetorheological fluid. Because the rheological characteristics of magnetorheological fluid have the advantages of fast speed and high controllability, magnetorheological fluid is used in many fields, and the magnetorheological fluid clutch is one of them. The magnetorheological fluid is filled in Between the active part and the driven part, the power transmission and interruption are carried out by using the characteristic that the yield stress of the magnetorheological fluid is variable under the action of a magnetic field.
  • the magnetic particles in the magnetorheological fluid will settle during long-term storage, which will affect the performance of the clutch. Since the magnetic particles in the magnetorheological fluid are suspended In the base carrier fluid, the settlement problem cannot be avoided at present; the second is that the yield stress of the magnetorheological fluid is affected by the size of the magnetic field, and the size of the magnetic field generated by the electromagnet is limited, resulting in the problem of limited maximum transfer torque.
  • the object of the present invention is to provide a magneto-rheological fluid clutch with high stability and high torque, aiming at solving the problems that the magneto-rheological fluid in the existing magneto-rheological clutch is prone to subsidence and the maximum transmission torque of the magneto-rheological clutch is insufficient.
  • the present invention provides the following scheme: the present invention provides a high-stability and high-torque magneto-rheological fluid clutch, including a power output device, an output disc, an output disc bearing, a left housing, a magnetorheological fluid, an input disc, Power input device and right housing;
  • the output disk includes an output disk main shaft and an output disk body, and the input disk includes an input disk main shaft and an input disk body; the output disk main shaft is connected to a power output device, and the output disk is connected to the left casing through an output disk bearing Fixed connection, a No. 1 electric push rod is fixed in the left shell, and a No. 1 permanent magnet is connected to the push rod of the No. 1 electric push rod.
  • the No. 1 electromagnet is fixed on the left shell through the electromagnet bracket;
  • the rotation direction of the main shaft is the circumferential direction, and more than one No. 1 electric push rod, No. 1 permanent magnet, No. 1 electromagnet and electromagnet bracket are installed;
  • the main shaft of the input disc is connected with the power input device, the outer ring of the bearing of the input disc is installed in the bearing sleeve of the input disc, the inner ring of the bearing of the input disc is installed on the main shaft of the input disc, the bearing sleeve of the input disc is slidably assembled with the right housing, and the right housing
  • An end cover is installed at one end of the back spring, and the two ends of the return spring are respectively fixed on the end cover and the input disk bearing sleeve;
  • the rotation direction of the input disk main shaft is the circumferential direction in the input disk bearing sleeve, and more than one return spring is installed ;
  • the input disc is fixedly connected with the right housing through the input disc bearing and the input disc bearing sleeve,
  • the No. 2 electric push rod is fixed in the right housing, the No. 2 electric push rod is connected with the No. 2 permanent magnet, the No. 2 electromagnet is fixed in the right housing through the electromagnet bracket, and the No. 3 electric push rod is fixed on the In the right housing, the push rod of the No. 3 electric push rod is connected with the thrust bearing, and the thrust bearing is installed on the main shaft of the input disc; in the right housing, with the rotation direction of the main shaft of the input disc as the circumferential direction, more than one No. 2 electric push rod is installed.
  • a sealing ring is arranged at the junction of the disc body.
  • an output shaft torque sensor is installed between the output disc main shaft and the power output device, and an input shaft torque sensor is installed between the input disc main shaft and the power input device.
  • more than one blade is installed on the input disc body.
  • the N pole and S pole of the No. 1 permanent magnet and the No. 1 electromagnet are opposite to each other;
  • the No. 2 permanent magnet and the No. 2 electromagnet work in series , the No. 2 permanent magnet and the No. 2 electromagnet have S poles and N poles opposite to each other;
  • the No. 1 electromagnet and No. 2 electromagnets have N and S poles opposite to each other.
  • a slide rail is provided on the input disk bearing sleeve, and a slideway is provided on the right casing, the slide rail of the input disk bearing sleeve is slidably fitted in the slideway of the right casing, and the slide rail of the right casing
  • An end cap is installed at one end of the channel.
  • the excitation method adopts the combination of permanent magnet and electromagnet, which increases the range of excitation magnetic field and the range of torque that can be transmitted by magneto-rheological clutch;
  • An input shaft torque sensor is installed between the power input device and the magneto-rheological clutch
  • an output shaft torque sensor is installed between the power output device and the magneto-rheological clutch
  • the input torque of the power input device and the torque of the magneto-rheological clutch are detected.
  • the detected value is more accurate and more realistic than the theoretically calculated value.
  • the controller compares the relationship between the input torque and the output torque to change the working mode of the clutch.
  • Fig. 1 is a cross-sectional view of a magneto-rheological fluid clutch with high stability and high torque
  • Fig. 2 is the second sectional view of the magneto-rheological fluid clutch with high stability and high torque
  • Figure 3 is an exploded view of some parts of the high-stability and high-torque magneto-rheological fluid clutch
  • the object of the present invention is to provide a magneto-rheological fluid clutch with high stability and high torque, aiming at solving the problems that the magneto-rheological fluid in the existing magneto-rheological clutch is prone to subsidence and the maximum transmission torque of the magneto-rheological clutch is insufficient.
  • this embodiment provides a high-stability, high-torque magneto-rheological fluid clutch, the output disc main shaft 2-1 is connected to the power output device 1, and the An output shaft torque sensor 26 is installed between them, the output disc 2 is fixedly connected with the left housing 7 through the output disc bearing 3, and a No. 1 electric push rod 4 is fixed inside the left housing 7, and a No.
  • the magnet 5 and the No. 1 electromagnet 6 are fixed on the left casing 7 through the electromagnet bracket 24. In the left casing 7, with the rotation direction of the output disk main shaft 2-1 as the circumferential direction, more than one No. 1 electric push rod 4 is installed. , No. 1 permanent magnet 5, No.
  • the input disc main shaft 15-1 is connected with the power input device 16, and an input shaft torque sensor is installed between the input disc main shaft 15-1 and the power input device 16 25.
  • the outer ring of the input disc bearing 17 is installed in the input disc bearing sleeve 20, the inner ring of the input disc bearing 17 is installed on the input disc main shaft 15-1, and the slide rail 20-1 of the input disc bearing sleeve 20 is installed in the right shell In the slideway 21-1 of 21, an end cap 19 is installed on one end of the right housing 21 slideway 21-1, and the two ends of the back-moving spring 18 are respectively fixed on the end cap 19 and the input disk bearing sleeve 20, with the input disk main shaft 15-
  • the rotation direction of 1 is the circumferential direction, and more than one return spring 18 is installed; the input disc 15 is fixedly connected with the right housing 21 through the input disc bearing 17, the input disc bearing sleeve 20, and the second electric push rod 12 is fixed inside the right housing 21 No.
  • a sealing ring 9 is installed at the junction of the output disc body 2-2 and the input disc body 15-2.
  • a blade 15-3 is installed on the input disk body 15-2.
  • the power input device 16 drives the input disc 15 to rotate idly, and the blades 15-3 on the input disc 15 stir the magnetorheological fluid 8 to realize uniform distribution of magnetic particles in the base carrier liquid.
  • the superposition of electromagnets and permanent magnets is used to increase the maximum excitation magnetic field.
  • the permanent magnet has a high magnetic energy density, and the generated magnetic field strength is large, but the magnetic field strength cannot be adjusted, while the electromagnet generates a low magnetic field strength, but the generated magnetic field strength can be adjusted by voltage. Therefore, when a larger magnetic field is required, the permanent magnet is first used. The magnet generates a basic magnetic field, and then the electromagnet and the permanent magnet are connected in series to further increase the magnetic field, and the magnetic field is adjusted by adjusting the voltage of the electromagnet.
  • the No. 1 electric push rod 4 is installed in the left casing 7, and the No. 2 electric push rod 12 is installed in the right casing 21.
  • the No. 1 electric push rod Rod 4 and No. 2 electric push rod 12 push away No. 1 permanent magnet 5 and No. 2 permanent magnet 11.
  • the excitation magnetic field is generated by No. 1 electromagnet 6 and No. 2 electromagnet 10, and only needs to be controlled by controller 22
  • the PWM DC power supply 23 reduces the voltage of the first electromagnet 6 and the second electromagnet 10 to generate a magnetic field in a lower range.
  • a No. 3 electric push rod 14 is installed in the right housing 21.
  • the No. 3 electric push rod 14 pushes the thrust bearing 13, and the thrust bearing 13 transmits the thrust
  • the input disk body 15-2 squeezes the magnetorheological fluid 8 to make the magnetorheological fluid 8 work under the shear-squeeze working condition, which can improve the maximum yield of the magnetorheological fluid 8 stress.
  • the No. 3 electric push rod 14 is working, the input disk 15 moves slightly in the axial direction.
  • the input disk bearing 17 is installed on the input disk bearing sleeve 20, and the input disk
  • the bearing sleeve 20 has a sliding rail 20 - 1 structure, and is installed in the sliding rail 21 - 1 structure of the right housing 21 to realize axial slight movement.
  • the present invention provides a magneto-rheological fluid clutch with high stability and high torque, which has five working modes, namely, power interruption mode, low torque power transmission mode, medium torque power transmission mode, high torque power transmission mode, and variable torque operation mode. model.
  • the clutch works in the power interruption mode, as shown in Figure 2, the No. 1 electric push rod 4 and the No. 2 electric push rod 12 push the No. 1 permanent magnet 5 and the No. 2 permanent magnet 11 away from the No. 1 electromagnet 6 and the No. 2 electromagnet 10, the controller 22 controls the PWM DC power supply 23 to stop supplying power to the No. 1 electromagnet 6 and the No. 2 electromagnet 10. At this time, there is no external excitation magnetic field in the magnetorheological fluid 8, and the magnetorheological fluid 8 is at liquid state.
  • the power input device 16 drives the input disc 15 to rotate, and the blades 15-3 on the input disc body 15-2 stir the magnetorheological fluid 8, so that the settled magnetic particles in the magnetorheological fluid 8 are evenly distributed on the base load.
  • the input disk 15 since the magnetorheological fluid 8 is in a liquid state, the input disk 15 cannot drive the output disk 2 to rotate, and the power between the power input device 16 and the power output device 1 is interrupted at this time.
  • the clutch When it is necessary to realize the power connection between the power input device 16 and the power output device 1, the clutch first starts the low-torque power transmission mode. At this time, the controller 22 controls the PWM DC power supply 23 to supply power to the first electromagnet 6 and the second electromagnet 10, The first electromagnet 6 and the second electromagnet 10 generate an exciting magnetic field to solidify the magnetorheological fluid 8, and the yield stress of the magnetorheological fluid 8 increases. At this time, the input plate 15 transmits power to the output through the magnetorheological fluid 8. Disc 2, while the controller 22 detects the torque values of the input shaft torque sensor 25 and the output shaft torque sensor 26, when the torque value of the input shaft torque sensor 25 is equal to the torque value of the output shaft torque sensor 26, it means that the power is fully transmitted.
  • the controller 22 should control The PWM DC power supply 23 increases the output voltage, increases the excitation magnetic field generated by the first electromagnet 6 and the second electromagnet 10, thereby increasing the yield stress of the magnetorheological fluid 8 to increase the output torque.
  • the output voltage of the PWM DC power supply 23 reaches the maximum value, if the torque value of the input shaft torque sensor 25 is greater than the torque value of the output shaft torque sensor 26, the clutch enters the medium torque power transmission mode.
  • the controller 22 controls the No. 1 electric push rod 4 and the No. 2 electric push rod 12 to push the No. 1 permanent magnet 5 and the No. 2 permanent magnet 11 close to the No. 1 electromagnet 6 and No. 2 electromagnet 10. At this time, the No. 1 permanent magnet 5 and the No. 1 electromagnet 6 are in the series operation mode, and the No. 2 permanent magnet 11 and the No. 2 electromagnet 10 are in the series operation mode.
  • the controller 22 controls the output voltage of the PWM DC power supply 23 to be zero, and compare the torque value of the input shaft torque sensor 25 with the torque value of the output shaft torque sensor 26, when the torque value of the input shaft torque sensor 25 is equal to the torque value of the output shaft torque sensor 26, the power is fully transmitted, when the input shaft When the torque value of the torque sensor 25 is greater than the torque value of the output shaft torque sensor 26, the power is partially transmitted. If complete power transmission is to be realized, the controller 22 controls the PWM DC power supply 23 to increase the output voltage and increases the excitation magnetic field so that the input shaft torque sensor 25 The torque value of is equal to the torque value of the output shaft torque sensor 26. If the PWM DC power supply 23 reaches the maximum output voltage, the torque value of the input shaft torque sensor 25 is still greater than the torque value of the output shaft torque sensor 26, and the clutch enters the high torque power transmission mode at this time.
  • the controller 22 controls the No. 3 electric push rod 14 to push the input disk 15 close to the output disk 2, and the input disk body 15-2 squeezes the magnetorheological fluid 8 to make the magnetorheological
  • the liquid 8 works in the shearing-extruding working state, and the extrusion amount of the magnetorheological fluid 8 can be controlled by controlling the push stroke of the No. 3 electric push rod 14 through the controller 22.
  • the clutch can reduce the output voltage of the PWM DC power supply 23 through the controller 22, and reduce the output voltage of the first electromagnet 6 and the second electromagnet 6.
  • the excitation magnetic field of the electromagnet 10 reduces the yield stress of the magneto-rheological fluid 8, makes the torque obtained by the output disk 2 smaller than the torque input by the input disk 15, and makes the clutch work in the variable torque mode to realize the variable torque function.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Operated Clutches (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

一种高稳定大扭矩磁流变液离合器,其目的是为了解决目前磁流变液离合器中磁流变液(8)易发生沉降的问题以及磁流变液离合器扭矩不足的问题。首先,为防止磁流变液(8)的沉降,在输入盘盘体(15-2)上安装叶片(15-3),离合器运行在动力中断模式时,叶片(15-3)会对磁流变液(8)进行搅拌,使发生沉降的磁流变液(8)混合均匀。其次,为提高磁流变液离合器的最大传递扭矩,使用永磁铁(5、11)与电磁铁(6、10)串联的模式增大激励磁场,同时使用三号电推杆(14)推动输入盘(15),使磁流变液(8)工作在剪切—挤压工作模式下,以此提高磁流变液(8)的屈服应力,从而提高磁流变液离合器的最大传递力矩。

Description

一种高稳定大扭矩磁流变液离合器 技术领域
本发明涉及离合器技术领域,特别是涉及一种高稳定大扭矩磁流变液离合器。
背景技术
离合器是位于动力输入设备与动力输出设备之间的一个装置,通过离合器可以实现动力输入设备与动力输出设备之间动力的连接与中断,传统的机械式离合器采用摩擦片之间的摩擦力实现动力的传递以及中断,由于低速以及低扭矩传动时摩擦片之间的相对滑动,导致摩擦片之间的磨损,因此寿命一般较低。
磁流变液是一种智能材料,主要由基载液、磁性颗粒以及活性添加剂组成,在无外加磁场的作用下,磁流变液与传统的牛顿液体无异,表现出良好的流动性,在施加外加激励磁场时,磁流变液的刚度与黏度在毫秒级的时间内迅速提升,且刚度与黏度的提升大小与外加激励磁场成正相关,即磁流变液的流变特性。由于磁流变液的流变特性具有相应速度快、高度可控的优点,因此,磁流变液被应用多个领域,磁流变液离合器即为其中之一,将磁流变液填充于主动零件与从动零件之间,利用磁流变液的屈服应力在磁场作用下可变的特点进行动力的传递与中断。
目前磁流变液离合器还存在着一些问题亟待解决,一是磁流变液中的磁性颗粒会在长时间的存放中发生沉降,影响离合器的性能,由于磁流变液中的磁性颗粒是悬浮在基载液中的,目前沉降问题不能避免;二是磁流变液的屈服应力受磁场大小影响,而电磁铁产生的磁场大小有限,导致最大传递力矩有限的问题。
发明内容
本发明的目的是提供一种高稳定大扭矩磁流变液离合器,目的在于解决现有磁流变离合器中的磁流变液易发生沉降以及磁流变离合器最大传递扭矩不足的问题。
为实现上述目的,本发明提供了如下方案:本发明提供一种高稳定大 扭矩磁流变液离合器,包括动力输出设备、输出盘、输出盘轴承、左外壳、磁流变液、输入盘、动力输入设备和右外壳;
所述输出盘包括输出盘主轴和输出盘盘体,所述输入盘包括输入盘主轴和输入盘盘体;所述输出盘主轴与动力输出设备相连,所述输出盘通过输出盘轴承与左外壳固连,左外壳内固定有一号电推杆,一号电推杆的推杆上连接有一号永磁铁,一号电磁铁通过电磁铁支架固定在左外壳上;在左外壳内,以输出盘主轴的旋转方向为圆周方向,安装有一个以上的一号电推杆、一号永磁铁、一号电磁铁和电磁铁支架;
所述输入盘主轴与动力输入设备相连,输入盘轴承外圈安装在输入盘轴承套筒内,输入盘轴承内圈安装在输入盘主轴上,输入盘轴承套筒与右外壳滑动装配,右外壳的一端安装有端盖,复位弹簧的两端分别固定在端盖与输入盘轴承套筒上;所述输入盘轴承套筒内以输入盘主轴的旋转方向为圆周方向,安装有一个以上复位弹簧;所述输入盘通过输入盘轴承、输入盘轴承套筒与右外壳固连,
所述右外壳内固定有二号电推杆,二号电推杆的推杆上连接有二号永磁铁,二号电磁铁通过电磁铁支架固定在右外壳内,三号电推杆固定在右外壳内,且三号电推杆的推杆与推力轴承连接,推力轴承安装在输入盘主轴上;在右外壳内,以输入盘主轴的旋转方向为圆周方向,安装有一个以上的二号电推杆、三号电推杆、二号电磁铁、电磁铁支架和二号永磁铁;在输出盘盘体和输入盘盘体之间填充有磁流变液,在输出盘盘体和输入盘盘体的交界处装有密封圈。
优选地,所述输出盘主轴与动力输出设备之间安装有输出轴扭矩传感器,所述输入盘主轴与动力输入设备之间安装有输入轴扭矩传感器。
优选地,所述输入盘盘体上安装有一个以上的叶片。
优选地,所述一号永磁铁与一号电磁铁串联工作时,一号永磁铁与一号电磁铁的N极与S极相异磁极面相对;二号永磁铁与二号电磁铁串联工作时,二号永磁铁与二号电磁铁的S极与N极相异磁极面相对;一号电磁铁与二号电磁铁的N极与S极相异磁极面相对。
优选地,所述输入盘轴承套筒上设有滑轨,在右外壳上设有滑道,所 述输入盘轴承套筒的滑轨滑动装配在右外壳的滑道内,所述右外壳的滑道一端安装有端盖。
本发明相对于现有技术取得了以下有益技术效果:
(1)在输入盘盘体上装有一个以上叶片,当动力输入设备刚启动时,离合器处于动力中断模式,此时磁流变液处于液体状态,输入盘盘体上的叶片对磁流变液进行搅拌,能够使沉降的磁流变液混合均匀,提高磁流变离合器工作的稳定性;
(2)励磁方式采用永磁铁与电磁铁结合,提高了励磁磁场的范围,提高了磁流变离合器可传递扭矩的范围;
(3)在动力输入设备与磁流变离合器之间安装输入轴扭矩传感器,在动力输出设备与磁流变离合器之间安装输出轴扭矩传感器,检测动力输入设备的输入扭矩以及磁流变离合器的输出扭矩,检测值相较于理论计算值更加精确且复合实际,通过控制器比较输入扭矩与输出扭矩之间的关系,改变离合器的工作模式。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为高稳定大扭矩磁流变液离合器剖视图一;
图2为高稳定大扭矩磁流变液离合器剖视图二;
图3为高稳定大扭矩磁流变液离合器部分零件爆炸图;
其中,1.动力输出设备、2.输出盘、3.输出盘轴承、4.一号电推杆、5.一号永磁铁、6.一号电磁铁、7.左外壳、8.磁流变液、9.密封圈、10.二号电磁铁、11.二号永磁铁、12.二号电推杆、13.推力轴承、14.三号电推杆、15.输入盘、16.动力输入设备、17.输入盘轴承、18.复位弹簧、19.端盖、20.输入盘轴承套筒、21.右外壳、22.控制器、23.PWM直流电源、24.电磁铁支架、25.输入轴扭矩传感器、26.输出轴扭矩传感器、2-1.输出盘主轴、2-2.输出盘盘体、15-1.输入盘主轴、15-2.输入盘盘体、15-3.叶片、20-1. 滑轨、21-1.滑道。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种高稳定大扭矩磁流变液离合器,目的在于解决现有磁流变离合器中的磁流变液易发生沉降以及磁流变离合器最大传递扭矩不足的问题。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图1-图3所示,本实施例提供一种高稳定大扭矩磁流变液离合器,输出盘主轴2-1与动力输出设备1相连,输出盘主轴2-1与动力输出设备1之间安装有输出轴扭矩传感器26,输出盘2通过输出盘轴承3与左外壳7固连,左外壳7内固定有一号电推杆4,一号电推杆4的推杆上连接有一号永磁铁5,一号电磁铁6通过电磁铁支架24固定在左外壳7上,在左外壳7内,以输出盘主轴2-1的旋转方向为圆周方向,安装有一个以上一号电推杆4、一号永磁铁5、一号电磁铁6、电磁铁支架24;输入盘主轴15-1与动力输入设备16相连,输入盘主轴15-1与动力输入设备16之间安装有输入轴扭矩传感器25,输入盘轴承17外圈安装在输入盘轴承套筒20内,输入盘轴承17内圈安装在输入盘主轴15-1上,输入盘轴承套筒20的滑轨20-1安装在右外壳21的滑道21-1内,右外壳21滑道21-1一端安装有端盖19,复位弹簧18两端分别固定在端盖19与输入盘轴承套筒20上,以输入盘主轴15-1的旋转方向为圆周方向,安装有一个以上复位弹簧18;输入盘15通过输入盘轴承17、输入盘轴承套筒20与右外壳21固连,右外壳21内固定有二号电推杆12,二号电推杆12的推杆上连接有二号永磁铁11,二号电磁铁10通过电磁铁支架24固定在右外壳21内,三号电推杆14固定在右外壳内,且三号电推杆14的推杆与推力轴承13连接,推力轴承13安装在输入盘主轴15-1上,在右外壳21内, 以输入盘主轴15-1的旋转方向为圆周方向,安装有一个以上二号电推杆12、三号电推杆14、二号电磁铁10、电磁铁支架24、二号永磁铁11;在输出盘盘体2-2和输入盘盘体15-2之间填充有磁流变液8,为防止磁流变液泄露,在输出盘盘体2-2和输入盘盘体15-2交界处装有密封圈9。
为防止磁流变液沉降导致离合器性能失效,在输入盘盘体15-2上装有叶片15-3,当离合器工作在动力中断的工况下,即磁流变液8在无外加激励磁场时处于液体状态,动力输入设备16带动输入盘15空转,输入盘15上的叶片15-3对磁流变液8进行搅拌,实现磁性颗粒在基载液中的均匀分布。
为增大磁流变离合器的最大传递扭矩,由于磁流变液8的最大屈服应力与外加激励磁场大小成正相关,使用电磁铁加永磁铁叠加的方式提高最大激励磁场。永磁铁磁能密度高,产生的磁场强度大但磁场强度大小不可调节,而电磁铁产生的磁场强度较低但可通过电压调节产生的磁场强度,因此,在需要较大的磁场时,首先使用永磁铁产生一个基础磁场,其次将电磁铁与永磁铁进行串联进一步增大磁场,并通过调节电磁铁电压对磁场进行调节。在本发明中,如图1,在左外壳7内,装有一号电磁铁6与一号永磁铁5,在右外壳21内,装有二号电磁铁10与二号永磁铁11,其中,一号电磁铁6与一号永磁铁5串联实现磁场增强时,一号永磁铁5与一号电磁铁6N极和S极相异磁极相对,同理二号电磁铁10与二号永磁铁11串联实现磁场增强时,二号永磁铁11与二号电磁铁10S极和N极相异磁极相对;为实现磁流变液区域磁场的增强,一号电磁铁6与二号电磁铁10N极与S极相异磁极相对。
为增大磁场可调范围,在左外壳7内装有一号电推杆4,在右外壳21内装有二号电推杆12,当需要较低的激励磁场时,如图2,一号电推杆4与二号电推杆12将一号永磁铁5与二号永磁铁11推开,此时激励磁场由一号电磁铁6与二号电磁铁10产生,只需通过控制器22来控制PWM直流电源23减低一号电磁铁6与二号电磁铁10的电压即可产生较低范围内的磁场。
为增大磁流变离合器的最大传递扭矩,在右外壳21内装有三号电推杆14,当需要传递较高的扭矩时,三号电推杆14推动推力轴承13,推力 轴承13将推力传递至输入盘15,输入盘盘体15-2挤压磁流变液8使磁流变液8工作在剪切-挤压的工况下,此工况可提高磁流变液8的最大屈服应力。当三号电推杆14工作时,输入盘15在轴向方向发生微量移动,为满足输入盘15在轴向方向的移动,将输入盘轴承17安装在输入盘轴承套筒20上,输入盘轴承套筒20上具有滑轨20-1结构,并安装在右外壳21的滑道21-1结构内实现轴向的微量移动。
使用方式说明:
本发明提供了一种高稳定大扭矩磁流变液离合器,其工作模式有5种,分别为动力中断模式、低扭矩动力传输模式、中扭矩动力传输模式、高扭矩动力传输模式、变扭矩工作模式。
在动力输入设备16刚启动时,离合器工作在动力中断模式,如图2,一号电推杆4与二号电推杆12推动一号永磁铁5与二号永磁铁11远离一号电磁铁6与二号电磁铁10,控制器22控制PWM直流电源23停止给一号电磁铁6与二号电磁铁10供电,此时磁流变液8中无外加激励磁场,磁流变液8处于液体状态。动力输入设备16带动输入盘15旋转,输入盘盘体15-2上的叶片15-3对磁流变液8进行搅拌,使磁流变液8中发生沉降的磁性颗粒均匀地分布在基载液中,由于磁流变液8处于液体状态,输入盘15不能带动输出盘2旋转,此时动力输入设备16与动力输出设备1之间的动力中断。
当需要实现动力输入设备16与动力输出设备1动力连接时,离合器首先启动低扭矩动力传输模式,此时通过控制器22控制PWM直流电源23给一号电磁铁6与二号电磁铁10供电,一号电磁铁6与二号电磁铁10产生激励磁场使磁流变液8发生固化,磁流变液8的屈服应力增大,此时输入盘15通过磁流变液8将动力传递至输出盘2,同时控制器22检测输入轴扭矩传感器25与输出轴扭矩传感器26的扭矩值,当输入轴扭矩传感器25的扭矩值等于输出轴扭矩传感器26的扭矩值时,说明动力完全实现传递,当输入轴扭矩传感器25的扭矩值大于输出轴扭矩传感器26的扭矩值时,说明此时磁流变液8的屈服应力不足,动力部分传递,若要实现动力完全传递,此时控制器22应控制PWM直流电源23增大输出电压,增大一号电磁铁6与二号电磁铁10产生激励磁场,从而增大磁流变液8的 屈服应力以增加输出扭矩。当PWM直流电源23输出电压达到最大值时,此时若输入轴扭矩传感器25的扭矩值大于输出轴扭矩传感器26的扭矩值,离合器进入中扭矩动力传输模式。
在离合器进入中扭矩动力传输模式时,控制器22控制一号电推杆4与二号电推杆12推动一号永磁铁5与二号永磁铁11靠近一号电磁铁6与二号电磁铁10,此时一号永磁铁5与一号电磁铁6处于串联工作模式,二号永磁铁11与二号电磁铁10处于串联工作模式,此时控制器22控制PWM直流电源23的输出电压为零,并比较输入轴扭矩传感器25的扭矩值与输出轴扭矩传感器26的扭矩值,当输入轴扭矩传感器25的扭矩值等于输出轴扭矩传感器26的扭矩值时,动力实现完全传递,当输入轴扭矩传感器25的扭矩值大于输出轴扭矩传感器26的扭矩值时,动力部分传递,若要实现动力完全传递,控制器22控制PWM直流电源23增大输出电压,增加激励磁场使输入轴扭矩传感器25的扭矩值等于输出轴扭矩传感器26的扭矩值。若PWM直流电源23达到最大输出电压时,输入轴扭矩传感器25的扭矩值仍大于输出轴扭矩传感器26的扭矩值,此时离合器进入高扭矩动力传输模式。
当离合器进入高扭矩动力传输模式时,控制器22控制三号电推杆14推动输入盘15靠近输出盘2,输入盘盘体15-2对磁流变液8进行挤压,使磁流变液8工作在剪切-挤压工作状态下,通过控制器22控制三号电推杆14的推动行程即可控制磁流变液8的挤压量,当磁流变液8挤压量增大时,磁流变液8的屈服应力增大,此时离合器的最大传递扭矩增大,当磁流变液8的挤压量达到最大时,离合器达到最大传递扭矩。当离合器退出高扭矩动力传输模式时,控制器22控制三号电推杆14推杆收缩,输入盘15在复位弹簧18的作用下远离输出盘2。
当离合器工作在低扭矩动力传输模式、中扭矩动力传输模式、高扭矩动力传输模式时,离合器均可通过控制器22减小PWM直流电源23的输出电压,减小一号电磁铁6与二号电磁铁10的激励磁场,从而减小磁流变液8的屈服应力,使输出盘2获得的扭矩小于输入盘15输入的扭矩,使离合器工作在变扭矩工作模式,实现变扭功能。
需要说明的是,对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内,不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
本发明中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (5)

  1. 一种高稳定大扭矩磁流变液离合器,其特征在于:包括动力输出设备、输出盘、输出盘轴承、左外壳、磁流变液、输入盘、动力输入设备和右外壳;
    所述输出盘包括输出盘主轴和输出盘盘体,所述输入盘包括输入盘主轴和输入盘盘体;所述输出盘主轴与动力输出设备相连,所述输出盘通过输出盘轴承与左外壳固连,左外壳内固定有一号电推杆,一号电推杆的推杆上连接有一号永磁铁,一号电磁铁通过电磁铁支架固定在左外壳上;在左外壳内,以输出盘主轴的旋转方向为圆周方向,安装有一个以上的一号电推杆、一号永磁铁、一号电磁铁和电磁铁支架;
    所述输入盘主轴与动力输入设备相连,输入盘轴承外圈安装在输入盘轴承套筒内,输入盘轴承内圈安装在输入盘主轴上,输入盘轴承套筒与右外壳滑动装配,右外壳的一端安装有端盖,复位弹簧的两端分别固定在端盖与输入盘轴承套筒上;所述输入盘轴承套筒内以输入盘主轴的旋转方向为圆周方向,安装有一个以上复位弹簧;所述输入盘通过输入盘轴承、输入盘轴承套筒与右外壳固连,
    所述右外壳内固定有二号电推杆,二号电推杆的推杆上连接有二号永磁铁,二号电磁铁通过电磁铁支架固定在右外壳内,三号电推杆固定在右外壳内,且三号电推杆的推杆与推力轴承连接,推力轴承安装在输入盘主轴上;在右外壳内,以输入盘主轴的旋转方向为圆周方向,安装有一个以上的二号电推杆、三号电推杆、二号电磁铁、电磁铁支架和二号永磁铁;在输出盘盘体和输入盘盘体之间填充有磁流变液,在输出盘盘体和输入盘盘体的交界处装有密封圈。
  2. 根据权利要求1所述的高稳定大扭矩磁流变液离合器,其特征在于:所述输出盘主轴与动力输出设备之间安装有输出轴扭矩传感器,所述输入盘主轴与动力输入设备之间安装有输入轴扭矩传感器。
  3. 根据权利要求1所述的高稳定大扭矩磁流变液离合器,其特征在于:所述输入盘盘体上安装有多个叶片。
  4. 根据权利要求1所述的高稳定大扭矩磁流变液离合器,其特征在于: 所述一号永磁铁与一号电磁铁串联工作时,一号永磁铁与一号电磁铁的N极与S极相异磁极面相对;二号永磁铁与二号电磁铁串联工作时,二号永磁铁与二号电磁铁的S极与N极相异磁极面相对;一号电磁铁与二号电磁铁的N极与S极相异磁极面相对。
  5. 根据权利要求1所述的高稳定大扭矩磁流变液离合器,其特征在于:所述输入盘轴承套筒上设有滑轨,在右外壳上设有滑道,所述输入盘轴承套筒的滑轨滑动装配在右外壳的滑道内,所述右外壳的滑道一端安装有端盖。
PCT/CN2022/092098 2022-02-23 2022-05-11 一种高稳定大扭矩磁流变液离合器 WO2023159774A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/795,227 US11879507B2 (en) 2022-02-23 2022-05-11 High-stability and large-torque magnetorheological fluid clutch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210166173.5 2022-02-23
CN202210166173.5A CN114439863B (zh) 2022-02-23 2022-02-23 一种高稳定大扭矩磁流变液离合器

Publications (1)

Publication Number Publication Date
WO2023159774A1 true WO2023159774A1 (zh) 2023-08-31

Family

ID=81373914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092098 WO2023159774A1 (zh) 2022-02-23 2022-05-11 一种高稳定大扭矩磁流变液离合器

Country Status (2)

Country Link
CN (1) CN114439863B (zh)
WO (1) WO2023159774A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114439863B (zh) * 2022-02-23 2023-06-16 浙江师范大学 一种高稳定大扭矩磁流变液离合器
US11879507B2 (en) 2022-02-23 2024-01-23 Zhejiang Normal University High-stability and large-torque magnetorheological fluid clutch

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120085613A1 (en) * 2009-02-03 2012-04-12 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Switchable magnetorheological torque or force transmission device, the use thereof, and magnetorheological torque or force transmission method
JP2016109207A (ja) * 2014-12-05 2016-06-20 株式会社デンソー 回転伝達装置
CN208719183U (zh) * 2018-08-30 2019-04-09 华东交通大学 一种采用双磁场作用的具有蛇形液流通道的磁流变离合器
CN110107615A (zh) * 2019-04-30 2019-08-09 西华大学 自供能多极式磁流变离合器
CN111577787A (zh) * 2020-05-15 2020-08-25 西华大学 磁流变离合器
CN114439863A (zh) * 2022-02-23 2022-05-06 浙江师范大学 一种高稳定大扭矩磁流变液离合器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0652385U (ja) * 1992-12-22 1994-07-15 住友特殊金属株式会社 渦電流式減速装置
US6412618B1 (en) * 2000-06-27 2002-07-02 Eaton Corporation Ball-ramp-actuated friction clutch controlled by a particle-clutch
AT6572U1 (de) * 2002-10-31 2003-12-29 Magna Steyr Powertrain Ag & Co Magnetorheologische kupplung
EP1493936B1 (de) * 2003-07-04 2005-11-23 BorgWarner Inc. Aktuator für Viskosekupplung mit magnetischer Ölumlaufventilansteuerung im Kupplungsschaft
US7070032B2 (en) * 2004-04-16 2006-07-04 Borgwarner Inc. Hydrodynamic coupling apparatus
DE102009034055B4 (de) * 2009-07-21 2011-07-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 80686 Drehmomentbegrenztes Kupplungselement sowie Verfahren zum drehmomentbegrenzten Kuppeln
DE102010055833A1 (de) * 2010-09-15 2012-03-15 Inventus Engineering Gmbh Rheologische Übertragungsvorrichtung
CN102562857B (zh) * 2011-12-27 2014-01-22 浙江师范大学 一种锥形挤压-剪切式磁流变离合器
CN202418318U (zh) * 2012-01-17 2012-09-05 浙江师范大学 复合增力式磁流变离合器
US9334905B2 (en) * 2012-04-16 2016-05-10 GM Global Technology Operations LLC Hybrid coded magnets and SMA positive drive clutch
CN202628878U (zh) * 2012-06-08 2012-12-26 浙江师范大学 一种锯齿式磁流变联轴器
CN104603490B (zh) * 2012-08-23 2017-06-09 皮尔伯格泵技术有限责任公司 机械式内燃机驱动流体泵
EP2888496B1 (en) * 2012-08-23 2016-06-22 Pierburg Pump Technology GmbH Mechanical combustion-engine-driven fluid pump
CN103470654B (zh) * 2013-09-16 2016-03-02 浙江师范大学 压电挤压式磁流变离合器及其传递扭矩计算方法
JP6418764B2 (ja) * 2014-03-26 2018-11-07 ジヤトコ株式会社 電磁クラッチ
AU2015279647A1 (en) * 2014-06-27 2017-01-19 S.P.M. Flow Control, Inc. Pump drivetrain damper system and control systems and methods for same
CN108287180B (zh) * 2017-12-08 2023-11-07 浙江师范大学 一种模拟实际工况磁流变液沉降检测装置
CN208109640U (zh) * 2018-03-19 2018-11-16 浙江师范大学 一种用于剪切工况的磁流变液沉降检测装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120085613A1 (en) * 2009-02-03 2012-04-12 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Switchable magnetorheological torque or force transmission device, the use thereof, and magnetorheological torque or force transmission method
JP2016109207A (ja) * 2014-12-05 2016-06-20 株式会社デンソー 回転伝達装置
CN208719183U (zh) * 2018-08-30 2019-04-09 华东交通大学 一种采用双磁场作用的具有蛇形液流通道的磁流变离合器
CN110107615A (zh) * 2019-04-30 2019-08-09 西华大学 自供能多极式磁流变离合器
CN111577787A (zh) * 2020-05-15 2020-08-25 西华大学 磁流变离合器
CN114439863A (zh) * 2022-02-23 2022-05-06 浙江师范大学 一种高稳定大扭矩磁流变液离合器

Also Published As

Publication number Publication date
CN114439863B (zh) 2023-06-16
CN114439863A (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
WO2023159774A1 (zh) 一种高稳定大扭矩磁流变液离合器
WO2018000869A1 (zh) 一种磁体径向移动式可调速磁力耦合器
CN108458006B (zh) 采用环形永磁体和励磁线圈激励的盘式磁流变制动器
CN103326538B (zh) 永磁智能调速节能装置
CN202082318U (zh) 一种单盘式磁流变柔性制动器
CN111321820A (zh) 一种电涡流惯性质量阻尼器
US11879507B2 (en) High-stability and large-torque magnetorheological fluid clutch
CN103607097A (zh) 一种用于永磁涡流传动装置的平盘型聚磁式磁路结构
CN114934963A (zh) 一种中空筒式磁流变液传动装置
CN105811735A (zh) 一体化永磁调速变速器
CN101319695A (zh) 磁流变液软启动装置
CN104493836A (zh) 一种基于磁流变液离合器的机器人关节结构
CN212377003U (zh) 一种采用永磁体和励磁线圈双激励的混合流动式磁流变阀
CN101789730B (zh) 一种基于磁流变脂的电动机软启动装置
CN102297213B (zh) 一种多片式磁流变软启动装置
CN111577787A (zh) 磁流变离合器
CN103603891B (zh) 多片式磁流变液电磁离合器
CN202132456U (zh) 软启动装置及刮板输送机
RU169815U1 (ru) Электромагнитная муфта привода насоса подачи топлива авиационного двигателя
CN109854637B (zh) 一种永磁激励的扭矩可控的磁流变过载保护安全联轴器
CN204349761U (zh) 一种固定磁隙的永磁调速器
CN114198425B (zh) 一种永磁激励下的双剪切磁流变离合器
CN204349740U (zh) 一种固定磁隙的永磁调速器
CN110925380B (zh) 基于剪切-挤压效应的行星式磁流变传动装置
CN110864055A (zh) 一种圆盘式磁流变双离合器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928045

Country of ref document: EP

Kind code of ref document: A1