WO2023159753A1 - 基于答案指导的题目生成方法、装置、设备及存储介质 - Google Patents

基于答案指导的题目生成方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2023159753A1
WO2023159753A1 PCT/CN2022/090421 CN2022090421W WO2023159753A1 WO 2023159753 A1 WO2023159753 A1 WO 2023159753A1 CN 2022090421 W CN2022090421 W CN 2022090421W WO 2023159753 A1 WO2023159753 A1 WO 2023159753A1
Authority
WO
WIPO (PCT)
Prior art keywords
word
vector
graph convolution
encoding
graph
Prior art date
Application number
PCT/CN2022/090421
Other languages
English (en)
French (fr)
Inventor
舒畅
陈又新
Original Assignee
平安科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 平安科技(深圳)有限公司 filed Critical 平安科技(深圳)有限公司
Publication of WO2023159753A1 publication Critical patent/WO2023159753A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/33Querying
    • G06F16/3331Query processing
    • G06F16/334Query execution
    • G06F16/3344Query execution using natural language analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/20Natural language analysis
    • G06F40/279Recognition of textual entities
    • G06F40/289Phrasal analysis, e.g. finite state techniques or chunking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/044Recurrent networks, e.g. Hopfield networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/047Probabilistic or stochastic networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/02Knowledge representation; Symbolic representation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present application relates to the technical field of artificial intelligence, and specifically relates to a question generation method, device, equipment and storage medium based on answer guidance.
  • the traditional question generation method is to generate corresponding questions through preset generation rules or according to the part-of-speech type of the answer.
  • the method of rule generation needs to manually pre-set the sentences as the seed questions, and then compose new test questions through dictionary-based methods such as synonyms or synonym replacement.
  • Another method of part-of-speech generation requires part-of-speech and other models to identify the part-of-speech of the answer, and then generate corresponding questions based on the part-of-speech. For example, if the part of speech is a noun, the title will be "what"; if the part of speech is an adjective, the title will be "how”; if the part of speech is a location, the title will be "where". Based on this, the inventor realizes that the test questions generated by the current question generation method have low diversity and weak coverage.
  • the embodiment of the present application provides a question generation method, device, device and storage medium based on answer guidance, which uses deep learning to independently study the answer text to generate questions without Human intervention and pre-arrangement reduce labor costs while the generated questions are diverse and comprehensive.
  • the embodiment of the present application provides a method for generating questions based on answer guidance, including:
  • each second word in the at least one second word includes tag information, and the tag information is used to identify the corresponding second word the object to which the word belongs;
  • the at least one third word is spliced according to the generation time of each third word in the at least one third word to obtain a question corresponding to the answer text.
  • the embodiment of the present application provides a device for generating questions based on answer guidance, including:
  • a segmentation module configured to segment the answer text according to the paragraph text corresponding to the answer text to obtain at least one first word, and segment the paragraph text according to at least one first word to obtain the first sub-paragraph;
  • An analysis module configured to analyze and process the first subfield according to at least one first word to obtain at least one second word, wherein each second word in the at least one second word includes tag information, and the tag information is used for Identifying the object to which the corresponding second word belongs, and performing a dependency analysis on at least one second word to obtain a relationship graph, wherein the relationship graph is used to identify the relationship between each second word;
  • the encoding module is used to perform graph convolution coding on each second word according to the relationship graph to obtain at least one graph convolution vector, wherein at least one graph convolution vector is in one-to-one correspondence with at least one second word, and for each The second word is encoded to obtain at least one word vector and at least one encoding vector, wherein the encoding vector is obtained by encoding the marking information of each second word, at least one word vector and at least one second word— Corresponding, at least one coding vector corresponds to at least one second word;
  • a generating module configured to perform word generation processing multiple times according to at least one graph convolution vector, at least one word vector, and at least one encoding vector to obtain at least one third word, and at least one third word according to at least one third word
  • the generation time of each third word is spliced to obtain the title corresponding to the answer text.
  • the embodiment of the present application provides an electronic device, which includes a processor, a memory, a communication interface, and one or more programs, wherein the one or more programs are stored in the memory and are Configuring is performed by the processor, the one or more programs including instructions for:
  • each second word in the at least one second word includes tag information, and the tag The information is used to identify the object to which the corresponding second word belongs;
  • the at least one third word is spliced according to the generation time of each third word in the at least one third word to obtain the topic corresponding to the answer text.
  • an embodiment of the present application provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program, and the computer program is executed by a processor to implement the following steps:
  • each second word in the at least one second word includes tag information, and the tag The information is used to identify the object to which the corresponding second word belongs;
  • the at least one third word is spliced according to the generation time of each third word in the at least one third word to obtain the topic corresponding to the answer text.
  • an embodiment of the present application provides a computer program product, the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer is operable to cause the computer to execute the method in the first aspect.
  • the answer text is segmented by the paragraph text corresponding to the answer text, and then the paragraph text is segmented by at least one first word obtained by word segmentation, to obtain the first sub-paragraph closely related to the answer text in the paragraph text. Then, the first subparagraph is analyzed according to the at least one first word to obtain at least one second word carrying tag information, and the dependency analysis is performed on the at least one second word to obtain a relationship graph. Then perform graph convolution coding on each second word according to the relationship graph to obtain at least one graph convolution vector.
  • each second word is encoded to obtain at least one word vector and at least one encoding vector, and multiple word generation processes are performed according to at least one graph convolution vector, at least one word vector and at least one encoding vector, and the generated
  • the at least one third word in is spliced according to the generation time of each third word to obtain the title corresponding to the answer text.
  • FIG. 1 is a schematic diagram of the hardware structure of a device for generating questions based on answer guidance provided by an embodiment of the present application;
  • FIG. 2 is a schematic flow diagram of a method for generating questions based on answer guidance provided by an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a method for segmenting a paragraph text according to at least one first word to obtain a first sub-paragraph according to an embodiment of the present application;
  • FIG. 4 is a schematic flowchart of a method for performing graph convolution coding on each second word according to the relationship graph provided by an embodiment of the present application to obtain at least one graph convolution vector corresponding to at least one second word;
  • FIG. 5 is a schematic diagram of a relationship diagram provided in an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a method for generating at least one third word by performing multiple word generation processes according to at least one graph convolution vector, at least one word vector, and at least one encoding vector according to an embodiment of the present application;
  • FIG. 7 is a block diagram of functional modules of a question generation device based on answer guidance provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an electronic device provided in an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a hardware structure of a device for generating questions based on answer guidance provided in an embodiment of the present application.
  • the question generating apparatus 100 based on answer guidance includes at least one processor 101 , a communication line 102 , a memory 103 and at least one communication interface 104 .
  • the processor 101 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, a specific application integrated circuit (application-specific integrated circuit, ASIC), or one or more An integrated circuit that controls the program execution of the program of this application.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication line 102 which may include a path, transmits information between the aforementioned components.
  • the communication interface 104 may be any device such as a transceiver (such as an antenna) for communicating with other devices or communication networks, such as Ethernet, RAN, wireless local area networks (wireless local area networks, WLAN) and the like.
  • a transceiver such as an antenna
  • WLAN wireless local area networks
  • Memory 103 may be read-only memory (read-only memory, ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM) or other types that can store information and instructions
  • Type of dynamic storage device also can be electrically erasable programmable read-only memory (electrically erasable programmable read-only memory, EEPROM), read-only disc (compact disc read-only memory, CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be used by Any other medium accessed by a computer, but not limited to.
  • the memory 103 may exist independently and be connected to the processor 101 through the communication line 102 .
  • the memory 103 can also be integrated with the processor 101 .
  • the memory 103 provided in this embodiment of the present application may generally be non-volatile.
  • the memory 103 is used to store computer-executed instructions for implementing the solutions of the present application, and the execution is controlled by the processor 101 .
  • the processor 101 is configured to execute computer-executed instructions stored in the memory 103, so as to implement the methods provided in the following embodiments of the present application.
  • computer-executed instructions may also be referred to as application code, which is not specifically limited in the present application.
  • the processor 101 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 1 .
  • the apparatus 100 for generating questions based on answer guidance may include multiple processors, such as processor 101 and processor 107 in FIG. 1 .
  • processors may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the question generating device 100 based on answer guidance is a server, for example, it can be an independent server, or it can provide cloud services, cloud databases, cloud computing, cloud functions, cloud storage, network services, Cloud servers for basic cloud computing services such as cloud communications, middleware services, domain name services, security services, content delivery network (Content Delivery Network, CDN), and big data and artificial intelligence platforms.
  • the apparatus 100 for generating questions based on answer guidance may further include an output device 105 and an input device 106 .
  • Output device 105 is in communication with processor 101 and may display information in a variety of ways.
  • the output device 105 may be a liquid crystal display (liquid crystal display, LCD), a light emitting diode (light emitting diode, LED) display device, a cathode ray tube (cathode ray tube, CRT) display device, or a projector (projector) wait.
  • the input device 106 communicates with the processor 101 and can receive user input in various ways.
  • the input device 106 may be a mouse, a keyboard, a touch screen device, or a sensing device, among others.
  • the above-mentioned question generating apparatus 100 based on answer guidance may be a general-purpose device or a special-purpose device.
  • the embodiment of the present application does not limit the type of the question generating apparatus 100 based on answer guidance.
  • AI artificial intelligence
  • the embodiments disclosed in this application can acquire and process relevant data based on artificial intelligence technology.
  • artificial intelligence is the theory, method, technology and application system that uses digital computers or machines controlled by digital computers to simulate, extend and expand human intelligence, perceive the environment, acquire knowledge and use knowledge to obtain the best results. .
  • Artificial intelligence basic technologies generally include technologies such as sensors, dedicated artificial intelligence chips, cloud computing, distributed storage, big data processing technology, operation/interaction systems, and mechatronics.
  • Artificial intelligence software technology mainly includes computer vision technology, robotics technology, biometrics technology, speech processing technology, natural language processing technology, and machine learning/deep learning.
  • FIG. 2 is a schematic flowchart of a method for generating questions based on answer guidance provided in an embodiment of the present application.
  • the question generation method based on answer guidance includes the following steps:
  • the paragraph text can be understood as a text description associated with the question and answer text.
  • the question asks a text question about the description of the paragraph text
  • the answer text is a text that answers the question raised by the question with reference to the text description of the paragraph text.
  • the relationship between the paragraph text, the question and the answer text can be modeled in advance, so that through the training of the model, the answer text can be learned autonomously through deep learning to generate questions.
  • the relationship among paragraph text, question and answer text can be expressed by formula 1:
  • p represents the paragraph text
  • a represents the answer text
  • q represents the title
  • P represents the probability function, which can be the probability of generating each word in the title q.
  • word segmentation processing can be performed on the answer text through the paragraph text, that is, the corresponding words in the question can be determined through keywords related to the paragraph text in the answer text.
  • the HanLP corpus can be used to divide the answer text into several first candidate words, and then the natural language processing toolkit (Natural Language Toolkit, NLTK) can be used to filter the stop words in several first candidate words to obtain Several second candidate words. Finally, the plurality of second candidate words are matched in the paragraph text, and words not in the paragraph text are screened out to obtain the at least one first word.
  • NLTK Natural Language Toolkit
  • the first sub-paragraph is a paragraph closely related to the answer text in the paragraph text.
  • the answer text is the text that answers the description of the first sub-paragraph.
  • this embodiment provides a method for segmenting a paragraph text according to at least one first word to obtain a first subparagraph, as shown in FIG. 3 , the method includes:
  • the method of performing word segmentation processing on each sentence in the paragraph text is similar to the method of performing word segmentation processing on the answer text in step 201 , and will not be repeated here.
  • the words in each phrase can be arranged in sequence according to their position in the corresponding sentence. Then input the arranged words in turn into the pre-trained Bidirectional Encoder Representation from Transformers (BERT) model for encoding to obtain the sentence vector of each sentence.
  • BERT Bidirectional Encoder Representation from Transformers
  • the method of encoding the at least one first word is similar to the manner of encoding each phrase in the at least one phrase in step 302, and details are not repeated here.
  • the cosine similarity between the sentence vector of each sentence and the text vector of the answer text may be used as the second similarity corresponding to each sentence.
  • the first sentence is a sentence whose second similarity degree is greater than the first threshold for the first time in the paragraph text
  • the second sentence is a sentence whose second similarity degree is greater than the first threshold for the last time in the paragraph text.
  • the first threshold may be the lowest second similarity value corresponding to the top30% sentences.
  • the top30% sentences in the second similarity are marked as S, and the paragraph text is divided.
  • the paragraph text can be divided into: [SO, SB, SI, SE, SO].
  • SO represents the sentence before or after the top30% sentence
  • SB represents the first sentence of the top30% sentence appearing in the paragraph text, that is, the first sentence
  • SI represents the sentence in the middle of the top30% sentence (may be included in the top30% In the sentence, it may also be outside the top30% sentence)
  • SE represents the last top30% sentence that appears in the paragraph text, that is, the second sentence.
  • the paragraph text is divided into three areas, wherein, the first SO and the third SO are sentences that have nothing to do with the answer text or have low relevance, and the second SB+SI+SE is a sentence with Sentences with highly relevant answers, i.e. the first subparagraph.
  • each second word in the at least one second word includes tag information, and the tag information is used to identify an object to which the corresponding second word belongs.
  • at least one first word may be used to mark the word segmentation of each sentence in the first sub-paragraph to obtain the at least one second word.
  • each sentence in the first subparagraph may be segmented into words first, and the processing method is similar to the way of segmenting the answer text in step 201, and details will not be repeated here. Then, match the participle result with at least one first word. If the match is successful, the mark X of the answer text will be given to the participle that matches successfully, indicating that the participle belongs to the answer text; The imprint Y given to the paragraph text indicates that the participle belongs to the paragraph text.
  • the relationship graph is used to identify the relationship between each second word.
  • each second word can be used as a point in the relationship graph, and the points of two second words that have a relationship Connect them with line segments to get a relationship diagram.
  • tools such as Stanford and Dependency Parse tree can be used to perform dependency analysis on at least one second word to obtain the relationship between words.
  • a method of performing graph convolution coding on each second word according to the relationship graph to obtain at least one graph convolution vector corresponding to at least one second word includes:
  • the first adjacency matrix can be constructed by taking each point in the relationship graph as the horizontal axis and the vertical axis of the matrix respectively.
  • the intersection position of the horizontal axis and the vertical axis corresponding to the two points to 1, otherwise set to 0, thereby obtaining the first adjacency matrix.
  • FIG. 5 shows a relationship diagram. Taking FIG. 5 as an example, the following first adjacency matrix can be obtained:
  • each second adjacency matrix includes not only the relationship features between the second words, but also the features of the corresponding second words themselves.
  • A represents the first adjacency matrix
  • I ⁇ represents the identity matrix
  • represents the feature of each second word in the relation graph.
  • the formula 3 is satisfied between the second adjacency matrix and the first degree matrix:
  • the activation function can be a sigmoid activation function, the first matrix, the second adjacency matrix corresponding to the jth second word, the learning matrix corresponding to the jth graph convolution process, the jth input code and the activation function.
  • the relationship can be expressed by the formula 4:
  • represents the sigmoid activation function
  • W j represents the learning matrix corresponding to the jth graph convolution process.
  • the word vector can be obtained by using the BERT language model; the encoding vector is obtained by encoding the label information of each second word.
  • the encoding of the imprint X of the answer text may be set to 1
  • the encoding of the imprint Y of the paragraph text may be set to 2.
  • a method for generating at least one third word by performing multiple word generation processes based on at least one graph convolution vector, at least one word vector, and at least one encoding vector is provided, as shown in FIG. 6 , the Methods include:
  • the i-th word vector is the i-th word vector in at least one word vector
  • the i-th encoding vector is the i-th encoding vector in at least one encoding vector
  • the convolution vector is an i-th graph convolution vector among at least one graph convolution vector, and i is an integer greater than or equal to 1.
  • the input hidden layer feature vector B i is an empty vector.
  • the relationship between the input hidden layer feature vector B i , the fusion vector A i and the first word vector C i can be expressed by formula 5:
  • fusion vector A i can be expressed by the formula 6:
  • k i represents the i-th word vector
  • f i represents the i-th encoding vector
  • h i represents the i-th graph convolution vector
  • the input hidden layer feature vector B i may be the output hidden layer feature vector D i-1 in the last word generation process.
  • the first word vector Ci can be input into a gated recurrent unit (gated recurrent unit, GRU) neural network to obtain the hidden layer state feature vector and the output feature vector; then calculate the hidden layer state feature vector and the output feature vector The first similarity between them; finally, input the first similarity into the softmax function, and normalize the output of the softmax function to obtain the weight of the first word vector C i .
  • GRU gated recurrent unit
  • the feature vector B i+1 is subjected to the i+1th word generation process until at least one third word is obtained after multiple word generation processes are performed.
  • the second reply word vector E i may be decoded by means of inverse encoding.
  • the answer text is segmented through the paragraph text corresponding to the answer text, and then the paragraph text is segmented by at least one first word obtained from the word segmentation to obtain the paragraph text
  • the first subparagraph that is closely related to the answer text is analyzed according to the at least one first word to obtain at least one second word carrying tag information, and the dependency analysis is performed on the at least one second word to obtain a relationship graph.
  • each second word is encoded to obtain at least one word vector and at least one encoding vector, and multiple word generation processes are performed according to at least one graph convolution vector, at least one word vector and at least one encoding vector, and the generated
  • the at least one third word in is spliced according to the generation time of each third word to obtain the title corresponding to the answer text.
  • FIG. 7 is a block diagram of functional modules of a device for generating questions based on answer guidance provided in an embodiment of the present application.
  • the question generation device 700 based on answer guidance includes:
  • the segmentation module 701 is used to perform word segmentation processing on the answer text according to the paragraph text corresponding to the answer text to obtain at least one first word, and perform paragraph segmentation on the paragraph text according to the at least one first word to obtain the first sub-paragraph;
  • the analysis module 702 is configured to analyze and process the first subfield paragraph according to at least one first word to obtain at least one second word, wherein each second word in the at least one second word includes tag information, and the tag information uses To identify the object to which the corresponding second word belongs, and perform a dependency analysis on at least one second word to obtain a relationship graph, wherein the relationship graph is used to identify the relationship between each second word;
  • the coding module 703 is configured to perform graph convolution coding on each second word according to the relationship graph to obtain at least one graph convolution vector, wherein at least one graph convolution vector is in one-to-one correspondence with at least one second word, and for each The second words are encoded to obtain at least one word vector and at least one encoding vector, wherein the encoding vector is obtained by encoding the tag information of each second word, at least one word vector and at least one second word One-to-one correspondence, at least one coded vector corresponds to at least one second word;
  • the generation module 704 is used to perform word generation processing multiple times according to at least one graph convolution vector, at least one word vector, and at least one encoding vector to obtain at least one third word, and convert at least one third word according to at least one third word Splice the generation time of each third word in , and get the title corresponding to the answer text.
  • the generation module 704 is specifically used for:
  • the i-th word vector, the i-th coding vector and the i-th graph convolution vector are concatenated to obtain the fusion vector A i , where the i-th word vector is at least one word vector
  • the i-th word vector in the ranking, the i-th encoding vector is the i-th encoding vector in at least one encoding vector, and the i-th graph convolution vector is the i-th ranking in at least one graph convolution vector
  • the graph convolution vector, i is an integer greater than or equal to 1;
  • the generation module 704 is specifically used for:
  • the coding module 703 is specifically used for:
  • the first adjacency matrix is added with features to obtain the second adjacency matrix
  • the encoding module 703 is specifically used to:
  • the inverse matrix of the first-degree matrix corresponding to the j-th second word is obtained, and the square root of the inverse matrix is processed to obtain the first matrix, wherein the i-th second word is The second word ranked jth in at least one second word, j is an integer greater than or equal to 1;
  • the jth output code is used as the j+1th input code of the j+1th graph convolution processing to perform the j+1th graph convolution processing, until after multiple graph convolution processing, each second word corresponding to The graph convolution vector for .
  • the segmentation module 701 is specifically used to:
  • FIG. 8 is a schematic structural diagram of an electronic device provided in an embodiment of the present application.
  • an electronic device 800 includes a transceiver 801 , a processor 802 and a memory 803 . They are connected through a bus 804 .
  • the memory 803 is used to store computer programs and data, and can transmit the data stored in the memory 803 to the processor 802 .
  • the processor 802 is used to read the computer program in the memory 803 to perform the following operations:
  • each second word in the at least one second word includes tag information, and the tag information is used to identify the corresponding second word the object to which the word belongs;
  • the at least one third word is spliced according to the generation time of each third word in the at least one third word to obtain a question corresponding to the answer text.
  • the processor 802 is specifically configured to perform the following in order to obtain at least one third word by performing multiple word generation processes based on at least one graph convolution vector, at least one word vector, and at least one encoding vector operate:
  • the i-th word vector, the i-th coding vector and the i-th graph convolution vector are concatenated to obtain the fusion vector A i , where the i-th word vector is at least one word vector
  • the i-th word vector in the ranking, the i-th encoding vector is the i-th encoding vector in at least one encoding vector, and the i-th graph convolution vector is the i-th ranking in at least one graph convolution vector
  • the graph convolution vector, i is an integer greater than or equal to 1;
  • the processor 802 is specifically configured to perform the following operations:
  • the processor 802 in terms of performing graph convolution coding on each second word according to the relationship graph to obtain at least one graph convolution vector, the processor 802 is specifically configured to perform the following operations:
  • the first adjacency matrix is added with features to obtain the second adjacency matrix
  • the processor 802 in terms of obtaining the graph convolution vector corresponding to each second word by performing multiple graph convolution processes according to the second adjacency matrix and the first degree matrix, the processor 802 is specifically configured to perform the following operate:
  • the inverse matrix of the first-degree matrix corresponding to the j-th second word is obtained, and the square root of the inverse matrix is processed to obtain the first matrix, wherein the i-th second word is The second word ranked jth in at least one second word, j is an integer greater than or equal to 1;
  • the jth output code is used as the j+1th input code of the j+1th graph convolution processing to perform the j+1th graph convolution processing, until after multiple graph convolution processing, each second word corresponding to The graph convolution vector for .
  • the processor 802 is specifically configured to perform the following operations:
  • the question generation device based on answer guidance in the present application can include smart phones (such as Android phones, iOS phones, Windows Phone phones, etc.), tablet computers, palmtop computers, notebook computers, mobile Internet equipment MID (Mobile Internet Devices, Abbreviation: MID), robot or wearable device, etc.
  • smart phones such as Android phones, iOS phones, Windows Phone phones, etc.
  • tablet computers palmtop computers
  • notebook computers mobile Internet equipment MID (Mobile Internet Devices, Abbreviation: MID), robot or wearable device, etc.
  • MID Mobile Internet Devices, Abbreviation: MID
  • robot or wearable device etc.
  • the above question generation device based on answer guidance is only an example, not exhaustive, including but not limited to the above question generation device based on answer guidance.
  • the above-mentioned question generation device based on answer guidance may also include: intelligent vehicle-mounted terminals, computer equipment and so on.
  • the embodiments of the present application also provide a computer-readable storage medium, the computer-readable storage medium stores a computer program, and the computer program is executed by a processor to implement any one of the above-mentioned method implementations based on Some or all steps of an answer-guided question generation method.
  • the storage medium may include a hard disk, a floppy disk, an optical disk, a magnetic tape, a magnetic disk, a flash memory, and the like.
  • the computer-readable storage medium may be non-volatile or volatile.
  • the embodiments of the present application also provide a computer program product, the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to cause the computer to execute the method as described in the above-mentioned method embodiment. Some or all of the steps of any answer-guided question generation method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Software Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Probability & Statistics with Applications (AREA)
  • Databases & Information Systems (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Machine Translation (AREA)

Abstract

本申请公开了一种基于答案指导的题目生成方法、装置、设备及存储介质,其中,方法包括:根据答案文本对应的段落文本对答案文本进行分词处理得到至少一个第一词语;根据至少一个第一词语对段落文本进行段落分割得到第一子段落;根据至少一个第一词语对第一子字段落进行分析处理得到至少一个第二词语;对至少一个第二词语进行依存分析得到关系图;根据关系图对每个第二词语进行图卷积编码得到至少一个图卷积向量;对每个第二词语进行编码处理得到至少一个词向量和至少一个编码向量;根据至少一个图卷积向量、至少一个词向量和至少一个编码向量进行多次词语生成处理,并将生成的至少一个第三词语按照每个第三词语的生成时间进行拼接,得到题目。

Description

基于答案指导的题目生成方法、装置、设备及存储介质
优先权申明
本申请要求于2022年2月22日提交中国专利局、申请号为202210164199.6,发明名称为“基于答案指导的题目生成方法、装置、设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及人工智能技术领域,具体涉及一种基于答案指导的题目生成方法、装置、设备及存储介质。
背景技术
目前,传统的题目生成方法是通过预设的生成规则或者根据答案的词性类型生成相应的题目。但是,规则生成的方法需要人工预先设定好作为种子问题的句子,然后通过同义词或者近义词替换等基于词典的方法组成新的考题题目。而另一种词性生成的方法,则需要通过part-of-speech等模型,识别出答案的词性,然后在基于词性生成相应的题目。比如词性为名词就把题目出成“是什么”;词性为形容词就把题目出成“怎么样”;词性为地点就把题目出成“在哪里”。基于此,发明人意识到目前的题目生成方法生成的考题多样性低,且覆盖性也偏弱。
发明内容
为了解决现有技术中存在的上述问题,本申请实施方式提供了一种基于答案指导的题目生成方法、装置、设备及存储介质,通过深度学的方式对答案文本进行自主学习以生成题目,无需人力插手和事先布局,在生成的题目具备多样性和全面性的同时,降低了人力成本。
第一方面,本申请的实施方式提供了一种基于答案指导的题目生成方法,包括:
根据答案文本对应的段落文本对答案文本进行分词处理,得到至少一个第一词语;
根据至少一个第一词语对段落文本进行段落分割,得到第一子段落;
根据至少一个第一词语对第一子字段落进行分析处理,得到至少一个第二词语,其中, 至少一个第二词语中的每个第二词语包括标记信息,标记信息用于标识对应的第二词语所属的对象;
对至少一个第二词语进行依存分析,得到关系图,其中,关系图用于标识每个第二词语之间的关系;
根据关系图对每个第二词语进行图卷积编码,得到至少一个图卷积向量,其中,至少一个图卷积向量与至少一个第二词语一一对应;
对每个第二词语进行编码处理,得到至少一个词向量和至少一个编码向量,其中,编码向量为对每个第二词语的标记信息进行编码处理得到的,至少一个词向量和至少一个第二词语一一对应,至少一个编码向量和至少一个第二词语一一对应;
根据至少一个图卷积向量、至少一个词向量和至少一个编码向量进行多次词语生成处理,得到至少一个第三词语;
将至少一个第三词语按照至少一个第三词语中每个第三词语的生成时间进行拼接,得到答案文本对应的题目。
第二方面,本申请的实施方式提供了一种基于答案指导的题目生成装置,包括:
分割模块,用于根据答案文本对应的段落文本对答案文本进行分词处理,得到至少一个第一词语,并根据至少一个第一词语对段落文本进行段落分割,得到第一子段落;
分析模块,用于根据至少一个第一词语对第一子字段落进行分析处理,得到至少一个第二词语,其中,至少一个第二词语中的每个第二词语包括标记信息,标记信息用于标识对应的第二词语所属的对象,并对至少一个第二词语进行依存分析,得到关系图,其中,关系图用于标识每个第二词语之间的关系;
编码模块,用于根据关系图对每个第二词语进行图卷积编码,得到至少一个图卷积向量,其中,至少一个图卷积向量与至少一个第二词语一一对应,并对每个第二词语进行编码处理,得到至少一个词向量和至少一个编码向量,其中,编码向量为对每个第二词语的标记信息进行编码处理得到的,至少一个词向量和至少一个第二词语一一对应,至少一个编码向量和至少一个第二词语一一对应;
生成模块,用于根据至少一个图卷积向量、至少一个词向量和至少一个编码向量进行多次词语生成处理,得到至少一个第三词语,并将至少一个第三词语按照至少一个第三词语中每个第三词语的生成时间进行拼接,得到答案文本对应的题目。
第三方面,本申请实施方式提供一种电子设备,其中,包括处理器、存储器、通信接口以及一个或多个程序,其中,所述一个或多个程序被存储在所述存储器中,并且被配置 由所述处理器执行,所述一个或多个程序包括用于执行如下步骤的指令:
根据答案文本对应的段落文本对所述答案文本进行分词处理,得到至少一个第一词语;
根据所述至少一个第一词语对所述段落文本进行段落分割,得到第一子段落;
根据所述至少一个第一词语对所述第一子字段落进行分析处理,得到至少一个第二词语,其中,所述至少一个第二词语中的每个第二词语包括标记信息,所述标记信息用于标识对应的第二词语所属的对象;
对所述至少一个第二词语进行依存分析,得到关系图,其中,所述关系图用于标识所述每个第二词语之间的关系;
根据所述关系图对所述每个第二词语进行图卷积编码,得到至少一个图卷积向量,其中,所述至少一个图卷积向量与所述至少一个第二词语一一对应;
对所述每个第二词语进行编码处理,得到至少一个词向量和至少一个编码向量,其中,所述编码向量为对所述每个第二词语的标记信息进行所述编码处理得到的,所述至少一个词向量和所述至少一个第二词语一一对应,所述至少一个编码向量和所述至少一个第二词语一一对应;
根据所述至少一个图卷积向量、所述至少一个词向量和所述至少一个编码向量进行多次词语生成处理,得到至少一个第三词语;
将所述至少一个第三词语按照所述至少一个第三词语中每个第三词语的生成时间进行拼接,得到所述答案文本对应的题目。
第四方面,本申请实施方式提供一种计算机可读存储介质,其中,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行以实现如下的步骤:
根据答案文本对应的段落文本对所述答案文本进行分词处理,得到至少一个第一词语;
根据所述至少一个第一词语对所述段落文本进行段落分割,得到第一子段落;
根据所述至少一个第一词语对所述第一子字段落进行分析处理,得到至少一个第二词语,其中,所述至少一个第二词语中的每个第二词语包括标记信息,所述标记信息用于标识对应的第二词语所属的对象;
对所述至少一个第二词语进行依存分析,得到关系图,其中,所述关系图用于标识所述每个第二词语之间的关系;
根据所述关系图对所述每个第二词语进行图卷积编码,得到至少一个图卷积向量,其中,所述至少一个图卷积向量与所述至少一个第二词语一一对应;
对所述每个第二词语进行编码处理,得到至少一个词向量和至少一个编码向量,其中, 所述编码向量为对所述每个第二词语的标记信息进行所述编码处理得到的,所述至少一个词向量和所述至少一个第二词语一一对应,所述至少一个编码向量和所述至少一个第二词语一一对应;
根据所述至少一个图卷积向量、所述至少一个词向量和所述至少一个编码向量进行多次词语生成处理,得到至少一个第三词语;
将所述至少一个第三词语按照所述至少一个第三词语中每个第三词语的生成时间进行拼接,得到所述答案文本对应的题目。
第五方面,本申请实施方式提供一种计算机程序产品,计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,计算机可操作来使计算机执行如第一方面的方法。
实施本申请实施方式,具有如下有益效果:
在本申请实施方式中,通过答案文本对应的段落文本将答案文本分词,继而通过分词得到的至少一个第一词语对段落文本进行分割,得到段落文本中与答案文本关系紧密的第一子段落。然后,根据至少一个第一词语对第一子段落进行分析,得到携带标记信息的至少一个第二词语,并对至少一个第二词语进行依存分析,得到关系图。继而根据关系图对每个第二词语进行图卷积编码,得到至少一个图卷积向量。最后,对每个第二词语进行编码处理,得到至少一个词向量和至少一个编码向量,并根据至少一个图卷积向量、至少一个词向量和至少一个编码向量进行多次词语生成处理,将生成的至少一个第三词语按照每个第三词语的生成时间进行拼接,得到答案文本对应的题目。由此,实现了通过深度学的方式对答案文本进行自主学习以生成题目,无需人力插手和事先布局,在生成的题目具备多样性和全面性的同时,降低了人力成本。
附图说明
为了更清楚地说明本申请实施方式中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施方式提供的一种基于答案指导的题目生成装置的硬件结构示意图;
图2为本申请实施方式提供的一种基于答案指导的题目生成方法的流程示意图;
图3为本申请实施方式提供的一种根据至少一个第一词语对段落文本进行段落分割, 得到第一子段落的方法的流程示意图;
图4为本申请实施方式提供的一种根据关系图对每个第二词语进行图卷积编码,得到与至少一个第二词语一一对应的至少一个图卷积向量的方法的流程示意图;
图5为本申请实施方式提供的一种关系图的示意图;
图6为本申请实施方式提供的一种根据至少一个图卷积向量、至少一个词向量和至少一个编码向量进行多次词语生成处理,得到至少一个第三词语的方法的流程示意图;
图7为本申请实施方式提供的一种基于答案指导的题目生成装置的功能模块组成框图;
图8为本申请实施方式提供的一种电子设备的结构示意图。
具体实施方式
下面将结合本申请实施方式中的附图,对本申请实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本申请一部分实施方式,而不是全部的实施方式。基于本申请中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本申请保护的范围。
首先,参阅图1,图1为本申请实施方式提供的一种基于答案指导的题目生成装置的硬件结构示意图。该基于答案指导的题目生成装置100包括至少一个处理器101,通信线路102,存储器103以及至少一个通信接口104。
在本实施方式中,处理器101,可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路102,可以包括一通路,在上述组件之间传送信息。
通信接口104,可以是任何收发器一类的装置(如天线等),用于与其他设备或通信网络通信,例如以太网,RAN,无线局域网(wireless local area networks,WLAN)等。
存储器103,可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通 用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
在本实施方式中,存储器103可以独立存在,通过通信线路102与处理器101相连接。存储器103也可以和处理器101集成在一起。本申请实施方式提供的存储器103通常可以具有非易失性。其中,存储器103用于存储执行本申请方案的计算机执行指令,并由处理器101来控制执行。处理器101用于执行存储器103中存储的计算机执行指令,从而实现本申请下述实施方式中提供的方法。
在可选的实施方式中,计算机执行指令也可以称之为应用程序代码,本申请对此不作具体限定。
在可选的实施方式中,处理器101可以包括一个或多个CPU,例如图1中的CPU0和CPU1。
在可选的实施方式中,该基于答案指导的题目生成装置100可以包括多个处理器,例如图1中的处理器101和处理器107。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在可选的实施方式中,若基于答案指导的题目生成装置100为服务器,例如,可以是独立的服务器,也可以是提供云服务、云数据库、云计算、云函数、云存储、网络服务、云通信、中间件服务、域名服务、安全服务、内容分发网络(Content Delivery Network,CDN)、以及大数据和人工智能平台等基础云计算服务的云服务器。则基于答案指导的题目生成装置100还可以包括输出设备105和输入设备106。输出设备105和处理器101通信,可以以多种方式来显示信息。例如,输出设备105可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备106和处理器101通信,可以以多种方式接收用户的输入。例如,输入设备106可以是鼠标、键盘、触摸屏设备或传感设备等。
上述的基于答案指导的题目生成装置100可以是一个通用设备或者是一个专用设备。本申请实施方式不限定基于答案指导的题目生成装置100的类型。
其次,需要说明的是,本申请所公开的实施方式可以基于人工智能技术对相关的数据进行获取和处理。其中,人工智能(Artificial Intelligence,AI)是利用数字计算机或者数字计算机控制的机器模拟、延伸和扩展人的智能,感知环境、获取知识并使用知识获得最 佳结果的理论、方法、技术及应用系统。
人工智能基础技术一般包括如传感器、专用人工智能芯片、云计算、分布式存储、大数据处理技术、操作/交互系统、机电一体化等技术。人工智能软件技术主要包括计算机视觉技术、机器人技术、生物识别技术、语音处理技术、自然语言处理技术以及机器学习/深度学习等几大方向。
以下,将对本申请所公开的基于答案指导的题目生成方法进行说明:
参阅图2,图2为本申请实施方式提供的一种基于答案指导的题目生成方法的流程示意图。该基于答案指导的题目生成方法包括以下步骤:
201:根据答案文本对应的段落文本对答案文本进行分词处理,得到至少一个第一词语。
在本实施方式中,段落文本可以理解为一段和题目以及答案文本相关连的文字描述。具体而言,题目会针对段落文本的描述提出文字问题,答案文本是参照段落文本的文字描述回答题目所提出的问题的文本。
同时,在本实施方式中,可以预先对段落文本、题目和答案文本之间的关系进行建模,从而通过对模型的训练,实现通过深度学的方式对答案文本进行自主学习以生成题目。具体而言,段落文本、题目和答案文本之间的关系可以通过公式①进行表示:
Figure PCTCN2022090421-appb-000001
其中,p表示段落文本,a表示答案文本,q表示题目,P表示概率函数,可以为生成题目q中的每个词的概率。
由此,在本实施方式中,可以通过段落文本对答案文本进行分词处理,即而通过答案文本中与段落文本相关的关键词,确定题目中对应的词语。具体而言,可以使用HanLP语料库将答案文本切分为若干个第一候选词,继而使用自然语言处理工具包(Natural Language Toolkit,NLTK)将若干个第一候选词中的停用词过滤,得到若干个第二候选词。最后,将该若干个第二候选词在段落文本中进行匹配,筛除段落文本中没有的词,得到该至少一个第一词语。
202:根据至少一个第一词语对段落文本进行段落分割,得到第一子段落。
在本实施方式中,第一子段落为段落文本中与答案文本关系紧密的一个段落。简单而言,根据上述题目、答案文本和段落文本之间的关系,可以理解该答案文本即为对该第一子段落的描述进行回答的文本。
由此,本实施方式提供了一种根据至少一个第一词语对段落文本进行段落分割,得到第一子段落的方法,如图3所示,该方法包括:
301:对段落文本中的每个句子进行分词处理,得到至少一个词组。
在本实施方式中,对段落文本中的每个句子进行分词处理的方法与步骤201中对答案文本进行分词处理的方式类似,在此不再赘述。
302:对至少一个词组中的每个词组进行编码处理,得到每个句子的句子向量。
在本实施方式中,可以将每个词组中的词语,按照其在对应的句子中的位置前后顺序进行排列。再将排列好的词语依次输入预训练的基于转换器的双向编码表征(Bidirectional Encoder Representation from Transformers,BERT)模型进行编码,得到每个句子的句子向量。
303:对至少一个第一词语进行编码处理,得到答案文本的文本向量。
在本实施方式中,对至少一个第一词语进行编码处理的方法与步骤302中对至少一个词组中的每个词组进行编码处理的方式类似,在此不再赘述。
304:对每个句子的句子向量与答案文本的文本向量之间进行相似度计算,得到每个句子对应的第二相似度。
在本实施方式中,可以将每个句子的句子向量与答案文本的文本向量之间的余弦相似度,作为每个句子对应的第二相似度。
305:根据每个句子对应的第二相似度在段落文本中确定第一语句和第二语句。
在本实施方式中,第一语句为段落文本中首次出现的第二相似度大于第一阈值的句子,第二语句为段落文本中末次出现的第二相似度大于第一阈值的句子。
具体而言,第一阈值可以取top30%的句子对应的最低第二相似度值。由此,将第二相似度中top30%的句子标记为S,并对段落文本进行划分。示例性的,可以将段落文本划分为:[SO,SB,SI,SE,SO]。其中,SO表示top30%的句子之前或者之后的句子,SB表示段落文本中出现的第一句top30%的句子,即第一语句,SI表示top30%的句子中间的句子(可能包含在top30%的句子里,也有可能在top30%的句子外),SE表示段落文本中出现的最后一句top30%的句子,即第二语句。
306:将第一语句和第二语句之间的句子作为第一子段落。
在本实施方式中,段落文本被划分出三块区域,其中,第一块SO和第三块SO都是和答案文本无关或关连度低的句子,第二块SB+SI+SE则是和答案高度相关的句子,即第一子段落。
203:根据至少一个第一词语对第一子字段落进行分析处理,得到至少一个第二词语。
在本实施方式中,该至少一个第二词语中的每个第二词语包括标记信息,标记信息用于标识对应的第二词语所属的对象。具体而言,在得到第一子段落后,可以通过至少一个第一词语对该第一子段落中的各个句子的分词进行标记,得到该至少一个第二词语。
示例性的,可以先对第一子段落中的各个句子进行分词处理,处理方法与步骤201中对答案文本进行分词处理的方式类似,在此不再赘述。然后,将分词结果与至少一个第一词语进行匹配,若匹配成功,则为匹配成功的分词赋予答案文本的印记X,表明该分词属于答案文本;若匹配不成功,则为匹配不成功的分词赋予段落文本的印记Y,表明该分词属于段落文本。
204:对至少一个第二词语进行依存分析,得到关系图。
在本实施方式中,关系图用于标识每个第二词语之间的关系,示例性的,可以将每个第二词语作为关系图中的点,将存在关系的两个第二词语的点之间用线段进行连接,得到关系图。具体而言,可以使用Stanford、Dependency Parse tree等工具对至少一个第二词语进行依存分析,以获取词与词之间的关系。
205:根据关系图对每个第二词语进行图卷积编码,得到与至少一个第二词语一一对应的至少一个图卷积向量。
在本实施方式中,提供了一种根据关系图对每个第二词语进行图卷积编码,得到与至少一个第二词语一一对应的至少一个图卷积向量的方法,如图4所示,该方法包括:
401:根据关系图构建第一邻接矩阵。
在本实施方式中,可以将关系图中的各个点分别作为矩阵的横轴和纵轴构建第一邻接矩阵。当两个点之间存在关系,即两个点之间存在连线时,将这两个点对应的横轴和纵轴的交叉位置置1,否则置0,从而得到第一邻接矩阵。示例性的,图5示出了一种关系图,以图5为例,可以得到如下第一邻接矩阵:
Figure PCTCN2022090421-appb-000002
402:根据每个第二词语在关系图中的特征,对第一邻接矩阵进行特征添加,得到第二邻接矩阵。
通过上述邻接矩阵的构建方式可以看出,在本实施方式中,邻接矩阵忽略了关系图中每个点本身的特征。因此,可以通过将每个第二词语在关系图中的特征添加进第一邻接矩阵,得到该第二词语对应的第二邻接矩阵。由此,使每个第二邻接矩阵中除了包含各个第二词语之间的关系特征,还包括对应的第二词语本身的特征。
具体而言,每个第二词语在关系图中的特征、第一邻接矩阵和每个第二词语对应的第二邻接矩阵之间的关系可以通过公式②进行表示:
Figure PCTCN2022090421-appb-000003
其中,
Figure PCTCN2022090421-appb-000004
表示第二邻接矩阵,A表示第一邻接矩阵,I ω表示单位矩阵,θ表示每个第二词语在关系图中的特征。
403:根据第二邻接矩阵确定第一度矩阵。
在本实施方式中,第二邻接矩阵和第一度矩阵之间满足公式③:
Figure PCTCN2022090421-appb-000005
其中,
Figure PCTCN2022090421-appb-000006
表示第一度矩阵中第n行第n列的元素,
Figure PCTCN2022090421-appb-000007
表示第二邻接矩阵中第n行第m列的元素,n、m为大于或等于1的整数。
404:根据第二邻接矩阵和第一度矩阵进行多次图卷积处理,得到每个第二词语对应的图卷积向量。
示例性的,在第j次图卷积处理时,首先,获取第j个第二词语对应的第一度矩阵的逆矩阵,并对逆矩阵进行开方处理,得到第一矩阵,其中,第i个第二词语为至少一个第二词语中排位第j位的第二词语,j为大于或等于1的整数;然后,将第一矩阵、第j个第二词语对应的第二邻接矩阵、第j次图卷积处理对应的学习矩阵和第j输入编码输入激活函数,得到第j输出编码,其中,当j=1时,第j输入编码为空;最后,将第j输出编码作为第j+1次图卷积处理的第j+1输入编码进行第j+1次图卷积处理,直至进行多次图卷积处理后,得到每个第二词语对应的图卷积向量。
具体而言,激活函数可以是sigmoid激活函数,第一矩阵、第j个第二词语对应的第二邻接矩阵、第j次图卷积处理对应的学习矩阵、第j输入编码和激活函数之间的关系可以通过公式④进行表示:
Figure PCTCN2022090421-appb-000008
其中,σ表示sigmoid激活函数,W j表示第j次图卷积处理对应的学习矩阵。
206:对每个第二词语进行编码处理,得到和至少一个第二词语一一对应的至少一个词向量,以及和至少一个第二词语一一对应的至少一个编码向量。
在本实施方式中,词向量可以使用BERT语言模型获取;编码向量为对每个第二词语的标记信息进行编码处理得到的。示例性的,可以将答案文本的印记X的编码设置为1,段落文本的印记Y设置为2。
207:根据至少一个图卷积向量、至少一个词向量和至少一个编码向量进行多次词语生成处理,得到至少一个第三词语。
在本实施方式中,提供了一种根据至少一个图卷积向量、至少一个词向量和至少一个编码向量进行多次词语生成处理,得到至少一个第三词语的方法,如图6所示,该方法包括:
601:在第i次词语生成处理中,将第i个词向量、第i个编码向量和第i个图卷积向量进行拼接,得到融合向量A i
在本实施方式中,第i个词向量为至少一个词向量中排位第i位的词向量,第i个编码向量为至少一个编码向量中排位第i位的编码向量,第i个图卷积向量为至少一个图卷积向量中排位第i位的图卷积向量,i为大于或等于1的整数。
602:将输入隐藏层特征向量B i和融合向量A i输入长短期记忆(Long Short-Term Memory,LSTM)神经网络,得到第一词向量C i和输出隐藏层特征向量D i
在本实施方式中,当i=1时,输入隐藏层特征向量B i为空向量。具体而言,输入隐藏层特征向量B i、融合向量A i和第一词向量C i之间可以通过公式⑤进行表示:
C i=LSTM(B i,A i).........⑤
进一步的,融合向量A i可以通过公式⑥进行表示:
A i=[k i,f i,h i].........⑥
其中,k i表示第i个词向量、f i表示第i个编码向量,h i表示第i个图卷积向量;
进一步的,输入隐藏层特征向量B i可以是上一次词语生成处理中的输出隐藏层特征向量D i-1
603:确定第一词向量C i的权重,将第一词向量C i与权重相乘,得到第二词向量E i
在本实施方式中,可以将第一词向量Ci输入门控循环单元(gatedrecurrent unit,GRU)神经网络,得到隐藏层状态特征向量和输出特征向量;再计算隐藏层状态特征向量和输出特征向量之间的第一相似度;最后,将第一相似度输入softmax函数,并将softmax函数的输出结果归一化,得到第一词向量C i的权重。
604:对第二回复词向量E i进行解码处理,得到第i次词语生成处理对应的第三词语,并将输出隐藏层特征向量D i作为第i+1次词语生成处理对应的输入隐藏层特征向量B i+1进行第i+1次词语生成处理,直至进行多次词语生成处理后,得到至少一个第三词语。
具体而言,可以通过逆编码的方式,对第二回复词向量E i进行解码处理。
208:将至少一个第三词语按照至少一个第三词语中每个第三词语的生成时间进行拼接,得到答案文本对应的题目。
综上所述,本申请所提供的基于答案指导的题目生成方法中,通过答案文本对应的段落文本将答案文本分词,继而通过分词得到的至少一个第一词语对段落文本进行分割,得到段落文本中与答案文本关系紧密的第一子段落。然后,根据至少一个第一词语对第一子段落进行分析,得到携带标记信息的至少一个第二词语,并对至少一个第二词语进行依存分析,得到关系图。继而根据关系图对每个第二词语进行图卷积编码,得到至少一个图卷积向量。最后,对每个第二词语进行编码处理,得到至少一个词向量和至少一个编码向量,并根据至少一个图卷积向量、至少一个词向量和至少一个编码向量进行多次词语生成处理,将生成的至少一个第三词语按照每个第三词语的生成时间进行拼接,得到答案文本对应的题目。由此,实现了通过深度学的方式对答案文本进行自主学习以生成题目,无需人力插手和事先布局,在生成的题目具备多样性和全面性的同时,降低了人力成本。
参阅图7,图7为本申请实施方式提供的一种基于答案指导的题目生成装置的功能模块组成框图。如图7所示,该基于答案指导的题目生成装置700包括:
分割模块701,用于根据答案文本对应的段落文本对答案文本进行分词处理,得到至少一个第一词语,并根据至少一个第一词语对段落文本进行段落分割,得到第一子段落;
分析模块702,用于根据至少一个第一词语对第一子字段落进行分析处理,得到至少一个第二词语,其中,至少一个第二词语中的每个第二词语包括标记信息,标记信息用于标识对应的第二词语所属的对象,并对至少一个第二词语进行依存分析,得到关系图,其中,关系图用于标识每个第二词语之间的关系;
编码模块703,用于根据关系图对每个第二词语进行图卷积编码,得到至少一个图卷积向量,其中,至少一个图卷积向量与至少一个第二词语一一对应,并对每个第二词语进行编码处理,得到至少一个词向量和至少一个编码向量,其中,编码向量为对每个第二词语的标记信息进行编码处理得到的,至少一个词向量和至少一个第二词语一一对应,至少一个编码向量和至少一个第二词语一一对应;
生成模块704,用于根据至少一个图卷积向量、至少一个词向量和至少一个编码向量进行多次词语生成处理,得到至少一个第三词语,并将至少一个第三词语按照至少一个第三词语中每个第三词语的生成时间进行拼接,得到答案文本对应的题目。
在本申请的实施方式中,在根据至少一个图卷积向量、至少一个词向量和至少一个编码向量进行多次词语生成处理,得到至少一个第三词语方面,生成模块704,具体用于:
在第i次词语生成处理中,将第i个词向量、第i个编码向量和第i个图卷积向量进行拼接,得到融合向量A i,其中,第i个词向量为至少一个词向量中排位第i位的词向量,第i个编码向量为至少一个编码向量中排位第i位的编码向量,第i个图卷积向量为至少一个图卷积向量中排位第i位的图卷积向量,i为大于或等于1的整数;
将输入隐藏层特征向量B i和融合向量A i输入长短期记忆神经网络,得到第一词向量C i和输出隐藏层特征向量D i,其中,当i=1时,输入隐藏层特征向量B i为空向量;
确定第一词向量C i的权重,将第一词向量C i与权重相乘,得到第二词向量E i
对第二回复词向量E i进行解码处理,得到第i次词语生成处理对应的第三词语,并将输出隐藏层特征向量D i作为第i+1次词语生成处理对应的输入隐藏层特征向量B i+1进行第i+1次词语生成处理,直至进行多次词语生成处理后,得到至少一个第三词语。
在本申请的实施方式中,在确定第一词向量C i的权重方面,生成模块704,具体用于:
将第一词向量Ci输入门控循环单元神经网络,得到隐藏层状态特征向量和输出特征向量;
计算隐藏层状态特征向量和输出特征向量之间的第一相似度;
将第一相似度输入softmax函数,并将softmax函数的输出结果归一化,得到第一词向量C i的权重。
在本申请的实施方式中,在根据关系图对每个第二词语进行图卷积编码,得到至少一个图卷积向量方面,编码模块703,具体用于:
根据关系图构建第一邻接矩阵;
根据每个第二词语在关系图中的特征,对第一邻接矩阵进行特征添加,得到第二邻接矩阵;
根据第二邻接矩阵确定第一度矩阵;
根据第二邻接矩阵和第一度矩阵进行多次图卷积处理,得到每个第二词语对应的图卷积向量。
在本申请的实施方式中,在根据第二邻接矩阵和第一度矩阵进行多次图卷积处理,得 到每个第二词语对应的图卷积向量方面,编码模块703,具体用于:
在第j次图卷积处理时,获取第j个第二词语对应的第一度矩阵的逆矩阵,并对逆矩阵进行开方处理,得到第一矩阵,其中,第i个第二词语为至少一个第二词语中排位第j位的第二词语,j为大于或等于1的整数;
将第一矩阵、第j个第二词语对应的第二邻接矩阵、第j次图卷积处理对应的学习矩阵和第j输入编码输入激活函数,得到第j输出编码,其中,当j=1时,第j输入编码为空;
将第j输出编码作为第j+1次图卷积处理的第j+1输入编码进行第j+1次图卷积处理,直至进行多次图卷积处理后,得到每个第二词语对应的图卷积向量。
在本申请的实施方式中,第二邻接矩阵和第一度矩阵之间可以通过公式⑦进行表示:
Figure PCTCN2022090421-appb-000009
其中,
Figure PCTCN2022090421-appb-000010
表示第一度矩阵中第n行第n列的元素,
Figure PCTCN2022090421-appb-000011
表示第二邻接矩阵中第n行第m列的元素,n、m为大于或等于1的整数。
在本申请的实施方式中,在根据至少一个第一词语对段落文本进行段落分割,得到第一子段落方面,分割模块701,具体用于:
对段落文本中的每个句子进行分词处理,得到至少一个词组;
对至少一个词组中的每个词组进行编码处理,得到每个句子的句子向量;
对至少一个第一词语进行编码处理,得到答案文本的文本向量;
对每个句子的句子向量与答案文本的文本向量之间进行相似度计算,得到每个句子对应的第二相似度;
根据每个句子对应的第二相似度在段落文本中确定第一语句和第二语句,其中,第一语句为段落文本中首次出现的第二相似度大于第一阈值的句子,第二语句为段落文本中末次出现的第二相似度大于第一阈值的句子;
将第一语句和第二语句之间的句子作为第一子段落。
参阅图8,图8为本申请实施方式提供的一种电子设备的结构示意图。如图8所示,电子设备800包括收发器801、处理器802和存储器803。它们之间通过总线804连接。存储器803用于存储计算机程序和数据,并可以将存储器803存储的数据传输给处理器802。
处理器802用于读取存储器803中的计算机程序执行以下操作:
根据答案文本对应的段落文本对答案文本进行分词处理,得到至少一个第一词语;
根据至少一个第一词语对段落文本进行段落分割,得到第一子段落;
根据至少一个第一词语对第一子字段落进行分析处理,得到至少一个第二词语,其中,至少一个第二词语中的每个第二词语包括标记信息,标记信息用于标识对应的第二词语所属的对象;
对至少一个第二词语进行依存分析,得到关系图,其中,关系图用于标识每个第二词语之间的关系;
根据关系图对每个第二词语进行图卷积编码,得到至少一个图卷积向量,其中,至少一个图卷积向量与至少一个第二词语一一对应;
对每个第二词语进行编码处理,得到至少一个词向量和至少一个编码向量,其中,编码向量为对每个第二词语的标记信息进行编码处理得到的,至少一个词向量和至少一个第二词语一一对应,至少一个编码向量和至少一个第二词语一一对应;
根据至少一个图卷积向量、至少一个词向量和至少一个编码向量进行多次词语生成处理,得到至少一个第三词语;
将至少一个第三词语按照至少一个第三词语中每个第三词语的生成时间进行拼接,得到答案文本对应的题目。
在本申请的实施方式中,在根据至少一个图卷积向量、至少一个词向量和至少一个编码向量进行多次词语生成处理,得到至少一个第三词语方面,处理器802,具体用于执行以下操作:
在第i次词语生成处理中,将第i个词向量、第i个编码向量和第i个图卷积向量进行拼接,得到融合向量A i,其中,第i个词向量为至少一个词向量中排位第i位的词向量,第i个编码向量为至少一个编码向量中排位第i位的编码向量,第i个图卷积向量为至少一个图卷积向量中排位第i位的图卷积向量,i为大于或等于1的整数;
将输入隐藏层特征向量B i和融合向量A i输入长短期记忆神经网络,得到第一词向量C i和输出隐藏层特征向量D i,其中,当i=1时,输入隐藏层特征向量B i为空向量;
确定第一词向量C i的权重,将第一词向量C i与权重相乘,得到第二词向量E i
对第二回复词向量E i进行解码处理,得到第i次词语生成处理对应的第三词语,并将输出隐藏层特征向量D i作为第i+1次词语生成处理对应的输入隐藏层特征向量B i+1进行第i+1次词语生成处理,直至进行多次词语生成处理后,得到至少一个第三词语。
在本申请的实施方式中,在确定第一词向量C i的权重方面,处理器802,具体用于执行以下操作:
将第一词向量Ci输入门控循环单元神经网络,得到隐藏层状态特征向量和输出特征向量;
计算隐藏层状态特征向量和输出特征向量之间的第一相似度;
将第一相似度输入softmax函数,并将softmax函数的输出结果归一化,得到第一词向量C i的权重。
在本申请的实施方式中,在根据关系图对每个第二词语进行图卷积编码,得到至少一个图卷积向量方面,处理器802,具体用于执行以下操作:
根据关系图构建第一邻接矩阵;
根据每个第二词语在关系图中的特征,对第一邻接矩阵进行特征添加,得到第二邻接矩阵;
根据第二邻接矩阵确定第一度矩阵;
根据第二邻接矩阵和第一度矩阵进行多次图卷积处理,得到每个第二词语对应的图卷积向量。
在本申请的实施方式中,在根据第二邻接矩阵和第一度矩阵进行多次图卷积处理,得到每个第二词语对应的图卷积向量方面,处理器802,具体用于执行以下操作:
在第j次图卷积处理时,获取第j个第二词语对应的第一度矩阵的逆矩阵,并对逆矩阵进行开方处理,得到第一矩阵,其中,第i个第二词语为至少一个第二词语中排位第j位的第二词语,j为大于或等于1的整数;
将第一矩阵、第j个第二词语对应的第二邻接矩阵、第j次图卷积处理对应的学习矩阵和第j输入编码输入激活函数,得到第j输出编码,其中,当j=1时,第j输入编码为空;
将第j输出编码作为第j+1次图卷积处理的第j+1输入编码进行第j+1次图卷积处理,直至进行多次图卷积处理后,得到每个第二词语对应的图卷积向量。
在本申请的实施方式中,第二邻接矩阵和第一度矩阵之间可以通过公式⑧进行表示:
Figure PCTCN2022090421-appb-000012
其中,
Figure PCTCN2022090421-appb-000013
表示第一度矩阵中第n行第n列的元素,
Figure PCTCN2022090421-appb-000014
表示第二邻接矩阵中第n行第m列的元素,n、m为大于或等于1的整数。
在本申请的实施方式中,在根据至少一个第一词语对段落文本进行段落分割,得到第一子段落方面,处理器802,具体用于执行以下操作:
对段落文本中的每个句子进行分词处理,得到至少一个词组;
对至少一个词组中的每个词组进行编码处理,得到每个句子的句子向量;
对至少一个第一词语进行编码处理,得到答案文本的文本向量;
对每个句子的句子向量与答案文本的文本向量之间进行相似度计算,得到每个句子对应的第二相似度;
根据每个句子对应的第二相似度在段落文本中确定第一语句和第二语句,其中,第一语句为段落文本中首次出现的第二相似度大于第一阈值的句子,第二语句为段落文本中末次出现的第二相似度大于第一阈值的句子;
将第一语句和第二语句之间的句子作为第一子段落。
应理解,本申请中的基于答案指导的题目生成装置可以包括智能手机(如Android手机、iOS手机、Windows Phone手机等)、平板电脑、掌上电脑、笔记本电脑、移动互联网设备MID(Mobile Internet Devices,简称:MID)、机器人或穿戴式设备等。上述基于答案指导的题目生成装置仅是举例,而非穷举,包含但不限于上述基于答案指导的题目生成装置。在实际应用中,上述基于答案指导的题目生成装置还可以包括:智能车载终端、计算机设备等等。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到本申请可借助软件结合硬件平台的方式来实现。基于这样的理解,本申请的技术方案对背景技术做出贡献的全部或者部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施方式或者实施方式的某些部分所述的方法。
因此,本申请实施方式还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行以实现如上述方法实施方式中记载的任何一种基于答案指导的题目生成方法的部分或全部步骤。例如,所述存储介质可以包括硬盘、软盘、光盘、磁带、磁盘、优盘、闪存等。所述计算机可读存储介质可以是非易失性,也可以是易失性。
本申请实施方式还提供一种计算机程序产品,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如上述方法实施方式中记载的任何一种基于答案指导的题目生成方法的部分或全部步骤。
以上对本申请实施方式进行了详细介绍,本文中应用了具体个例对本申请的原理及实 施方式进行了阐述,以上实施方式的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种基于答案指导的题目生成方法,其中,所述方法包括:
    根据答案文本对应的段落文本对所述答案文本进行分词处理,得到至少一个第一词语;
    根据所述至少一个第一词语对所述段落文本进行段落分割,得到第一子段落;
    根据所述至少一个第一词语对所述第一子字段落进行分析处理,得到至少一个第二词语,其中,所述至少一个第二词语中的每个第二词语包括标记信息,所述标记信息用于标识对应的第二词语所属的对象;
    对所述至少一个第二词语进行依存分析,得到关系图,其中,所述关系图用于标识所述每个第二词语之间的关系;
    根据所述关系图对所述每个第二词语进行图卷积编码,得到至少一个图卷积向量,其中,所述至少一个图卷积向量与所述至少一个第二词语一一对应;
    对所述每个第二词语进行编码处理,得到至少一个词向量和至少一个编码向量,其中,所述编码向量为对所述每个第二词语的标记信息进行所述编码处理得到的,所述至少一个词向量和所述至少一个第二词语一一对应,所述至少一个编码向量和所述至少一个第二词语一一对应;
    根据所述至少一个图卷积向量、所述至少一个词向量和所述至少一个编码向量进行多次词语生成处理,得到至少一个第三词语;
    将所述至少一个第三词语按照所述至少一个第三词语中每个第三词语的生成时间进行拼接,得到所述答案文本对应的题目。
  2. 根据权利要求1所述的方法,其中,所述根据所述至少一个图卷积向量、所述至少一个词向量和所述至少一个编码向量进行多次词语生成处理,得到至少一个第三词语,包括:
    在第i次词语生成处理中,将第i个词向量、第i个编码向量和第i个图卷积向量进行拼接,得到融合向量A i,其中,所述第i个词向量为所述至少一个词向量中排位第i位的词向量,所述第i个编码向量为所述至少一个编码向量中排位第i位的编码向量,所述第i个图卷积向量为所述至少一个图卷积向量中排位第i位的图卷积向量,i为大于或等于1的整数;
    将输入隐藏层特征向量B i和融合向量A i输入长短期记忆神经网络,得到第一词向量C i和输出隐藏层特征向量D i,其中,当i=1时,所述输入隐藏层特征向量B i为空向量;
    确定所述第一词向量C i的权重,将所述第一词向量C i与所述权重相乘,得到第二词向量E i
    对所述第二回复词向量E i进行解码处理,得到所述第i次词语生成处理对应的第三词语,并将所述输出隐藏层特征向量D i作为第i+1次词语生成处理对应的输入隐藏层特征向量B i+1进行所述第i+1次词语生成处理,直至进行所述多次词语生成处理后,得到所述至少一个第三词语。
  3. 根据权利要求2所述的方法,其中,所述确定所述第一词向量C i的权重,包括:
    将所述第一词向量Ci输入门控循环单元神经网络,得到隐藏层状态特征向量和输出特征向量;
    计算所述隐藏层状态特征向量和所述输出特征向量之间的第一相似度;
    将所述第一相似度输入softmax函数,并将所述softmax函数的输出结果归一化,得到所述第一词向量C i的权重。
  4. 根据权利要求1所述的方法,其中,所述根据所述关系图对所述每个第二词语进行图卷积编码,得到至少一个图卷积向量,包括:
    根据所述关系图构建第一邻接矩阵;
    根据所述每个第二词语在所述关系图中的特征,对所述第一邻接矩阵进行特征添加,得到第二邻接矩阵;
    根据所述第二邻接矩阵确定第一度矩阵;
    根据所述第二邻接矩阵和所述第一度矩阵进行多次图卷积处理,得到所述每个第二词语对应的图卷积向量。
  5. 根据权利要求4所述的方法,其中,所述根据所述第二邻接矩阵和所述第一度矩阵进行多次图卷积处理,得到所述每个第二词语对应的图卷积向量,包括:
    在第j次图卷积处理时,获取第j个第二词语对应的第一度矩阵的逆矩阵,并对所述逆矩阵进行开方处理,得到第一矩阵,其中,所述第i个第二词语为所述至少一个第二词语中排位第j位的第二词语,j为大于或等于1的整数;
    将所述第一矩阵、所述第j个第二词语对应的第二邻接矩阵、所述第j次图卷积处理对应的学习矩阵和第j输入编码输入激活函数,得到第j输出编码,其中,当j=1时,所述第j输入编码为空;
    将所述第j输出编码作为第j+1次图卷积处理的第j+1输入编码进行所述第j+1次图卷积处理,直至进行多次图卷积处理后,得到所述每个第二词语对应的图卷积向量。
  6. 根据权利要求4所述的方法,其中,所述第二邻接矩阵和所述第一度矩阵之间满足以下公式:
    Figure PCTCN2022090421-appb-100001
    其中,
    Figure PCTCN2022090421-appb-100002
    表示所述第一度矩阵中第n行第n列的元素,
    Figure PCTCN2022090421-appb-100003
    表示所述第二邻接矩阵中第n行第m列的元素,n、m为大于或等于1的整数。
  7. 根据权利要求1所述的方法,其中,所述根据所述至少一个第一词语对所述段落文本进行段落分割,得到第一子段落,包括:
    对所述段落文本中的每个句子进行分词处理,得到至少一个词组;
    对所述至少一个词组中的每个词组进行编码处理,得到所述每个句子的句子向量;
    对所述至少一个第一词语进行所述编码处理,得到所述答案文本的文本向量;
    对所述每个句子的句子向量与所述答案文本的文本向量之间进行相似度计算,得到所述每个句子对应的第二相似度;
    根据所述每个句子对应的第二相似度在所述段落文本中确定第一语句和第二语句,其中,所述第一语句为所述段落文本中首次出现的第二相似度大于第一阈值的句子,所述第二语句为所述段落文本中末次出现的第二相似度大于所述第一阈值的句子;
    将所述第一语句和所述第二语句之间的句子作为所述第一子段落。
  8. 一种基于答案指导的题目生成装置,其中,所述装置装置:
    分割模块,用于根据答案文本对应的段落文本对所述答案文本进行分词处理,得到至少一个第一词语,并根据所述至少一个第一词语对所述段落文本进行段落分割,得到第一子段落;
    分析模块,用于根据所述至少一个第一词语对所述第一子字段落进行分析处理,得到至少一个第二词语,其中,所述至少一个第二词语中的每个第二词语包括标记信息,所述标记信息用于标识对应的第二词语所属的对象,并对所述至少一个第二词语进行依存分析,得到关系图,其中,所述关系图用于标识所述每个第二词语之间的关系;
    编码模块,用于根据所述关系图对所述每个第二词语进行图卷积编码,得到至少一个图卷积向量,其中,所述至少一个图卷积向量与所述至少一个第二词语一一对应,并对所述每个第二词语进行编码处理,得到至少一个词向量和至少一个编码向量,其中,所述编码向量为对所述每个第二词语的标记信息进行所述编码处理得到的,所述至少一个词向量和所述至少一个第二词语一一对应,所述至少一个编码向量和所述至少一个第二词语一一对应;
    生成模块,用于根据所述至少一个图卷积向量、所述至少一个词向量和所述至少一个 编码向量进行多次词语生成处理,得到至少一个第三词语,并将所述至少一个第三词语按照所述至少一个第三词语中每个第三词语的生成时间进行拼接,得到所述答案文本对应的题目。
  9. 一种电子设备,其中,包括处理器、存储器、通信接口以及一个或多个程序,其中,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述一个或多个程序包括用于执行如下步骤的指令:
    根据答案文本对应的段落文本对所述答案文本进行分词处理,得到至少一个第一词语;
    根据所述至少一个第一词语对所述段落文本进行段落分割,得到第一子段落;
    根据所述至少一个第一词语对所述第一子字段落进行分析处理,得到至少一个第二词语,其中,所述至少一个第二词语中的每个第二词语包括标记信息,所述标记信息用于标识对应的第二词语所属的对象;
    对所述至少一个第二词语进行依存分析,得到关系图,其中,所述关系图用于标识所述每个第二词语之间的关系;
    根据所述关系图对所述每个第二词语进行图卷积编码,得到至少一个图卷积向量,其中,所述至少一个图卷积向量与所述至少一个第二词语一一对应;
    对所述每个第二词语进行编码处理,得到至少一个词向量和至少一个编码向量,其中,所述编码向量为对所述每个第二词语的标记信息进行所述编码处理得到的,所述至少一个词向量和所述至少一个第二词语一一对应,所述至少一个编码向量和所述至少一个第二词语一一对应;
    根据所述至少一个图卷积向量、所述至少一个词向量和所述至少一个编码向量进行多次词语生成处理,得到至少一个第三词语;
    将所述至少一个第三词语按照所述至少一个第三词语中每个第三词语的生成时间进行拼接,得到所述答案文本对应的题目。
  10. 根据权利要求9所述的电子设备,其中,所述根据所述至少一个图卷积向量、所述至少一个词向量和所述至少一个编码向量进行多次词语生成处理,得到至少一个第三词语,包括:
    在第i次词语生成处理中,将第i个词向量、第i个编码向量和第i个图卷积向量进行拼接,得到融合向量A i,其中,所述第i个词向量为所述至少一个词向量中排位第i位的词向量,所述第i个编码向量为所述至少一个编码向量中排位第i位的编码向量,所述第i个图卷积向量为所述至少一个图卷积向量中排位第i位的图卷积向量,i为大于或等于1的整数;
    将输入隐藏层特征向量B i和融合向量A i输入长短期记忆神经网络,得到第一词向量C i和输出隐藏层特征向量D i,其中,当i=1时,所述输入隐藏层特征向量B i为空向量;
    确定所述第一词向量C i的权重,将所述第一词向量C i与所述权重相乘,得到第二词向量E i
    对所述第二回复词向量E i进行解码处理,得到所述第i次词语生成处理对应的第三词语,并将所述输出隐藏层特征向量D i作为第i+1次词语生成处理对应的输入隐藏层特征向量B i+1进行所述第i+1次词语生成处理,直至进行所述多次词语生成处理后,得到所述至少一个第三词语。
  11. 根据权利要求10所述的电子设备,其中,所述确定所述第一词向量C i的权重,包括:
    将所述第一词向量Ci输入门控循环单元神经网络,得到隐藏层状态特征向量和输出特征向量;
    计算所述隐藏层状态特征向量和所述输出特征向量之间的第一相似度;
    将所述第一相似度输入softmax函数,并将所述softmax函数的输出结果归一化,得到所述第一词向量C i的权重。
  12. 根据权利要求9所述的电子设备,其中,所述根据所述关系图对所述每个第二词语进行图卷积编码,得到至少一个图卷积向量,包括:
    根据所述关系图构建第一邻接矩阵;
    根据所述每个第二词语在所述关系图中的特征,对所述第一邻接矩阵进行特征添加,得到第二邻接矩阵;
    根据所述第二邻接矩阵确定第一度矩阵;
    根据所述第二邻接矩阵和所述第一度矩阵进行多次图卷积处理,得到所述每个第二词语对应的图卷积向量。
  13. 根据权利要求12所述的电子设备,其中,所述根据所述第二邻接矩阵和所述第一度矩阵进行多次图卷积处理,得到所述每个第二词语对应的图卷积向量,包括:
    在第j次图卷积处理时,获取第j个第二词语对应的第一度矩阵的逆矩阵,并对所述逆矩阵进行开方处理,得到第一矩阵,其中,所述第i个第二词语为所述至少一个第二词语中排位第j位的第二词语,j为大于或等于1的整数;
    将所述第一矩阵、所述第j个第二词语对应的第二邻接矩阵、所述第j次图卷积处理对应的学习矩阵和第j输入编码输入激活函数,得到第j输出编码,其中,当j=1时,所述第j 输入编码为空;
    将所述第j输出编码作为第j+1次图卷积处理的第j+1输入编码进行所述第j+1次图卷积处理,直至进行多次图卷积处理后,得到所述每个第二词语对应的图卷积向量。
  14. 根据权利要求12所述的电子设备,其中,所述第二邻接矩阵和所述第一度矩阵之间满足以下公式:
    Figure PCTCN2022090421-appb-100004
    其中,
    Figure PCTCN2022090421-appb-100005
    表示所述第一度矩阵中第n行第n列的元素,
    Figure PCTCN2022090421-appb-100006
    表示所述第二邻接矩阵中第n行第m列的元素,n、m为大于或等于1的整数。
  15. 一种计算机可读存储介质,其中,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行以实现如下的步骤:
    根据答案文本对应的段落文本对所述答案文本进行分词处理,得到至少一个第一词语;
    根据所述至少一个第一词语对所述段落文本进行段落分割,得到第一子段落;
    根据所述至少一个第一词语对所述第一子字段落进行分析处理,得到至少一个第二词语,其中,所述至少一个第二词语中的每个第二词语包括标记信息,所述标记信息用于标识对应的第二词语所属的对象;
    对所述至少一个第二词语进行依存分析,得到关系图,其中,所述关系图用于标识所述每个第二词语之间的关系;
    根据所述关系图对所述每个第二词语进行图卷积编码,得到至少一个图卷积向量,其中,所述至少一个图卷积向量与所述至少一个第二词语一一对应;
    对所述每个第二词语进行编码处理,得到至少一个词向量和至少一个编码向量,其中,所述编码向量为对所述每个第二词语的标记信息进行所述编码处理得到的,所述至少一个词向量和所述至少一个第二词语一一对应,所述至少一个编码向量和所述至少一个第二词语一一对应;
    根据所述至少一个图卷积向量、所述至少一个词向量和所述至少一个编码向量进行多次词语生成处理,得到至少一个第三词语;
    将所述至少一个第三词语按照所述至少一个第三词语中每个第三词语的生成时间进行拼接,得到所述答案文本对应的题目。
  16. 根据权利要求15所述的计算机可读存储介质,其中,所述根据所述至少一个图卷积向量、所述至少一个词向量和所述至少一个编码向量进行多次词语生成处理,得到至少 一个第三词语,包括:
    在第i次词语生成处理中,将第i个词向量、第i个编码向量和第i个图卷积向量进行拼接,得到融合向量A i,其中,所述第i个词向量为所述至少一个词向量中排位第i位的词向量,所述第i个编码向量为所述至少一个编码向量中排位第i位的编码向量,所述第i个图卷积向量为所述至少一个图卷积向量中排位第i位的图卷积向量,i为大于或等于1的整数;
    将输入隐藏层特征向量B i和融合向量A i输入长短期记忆神经网络,得到第一词向量C i和输出隐藏层特征向量D i,其中,当i=1时,所述输入隐藏层特征向量B i为空向量;
    确定所述第一词向量C i的权重,将所述第一词向量C i与所述权重相乘,得到第二词向量E i
    对所述第二回复词向量E i进行解码处理,得到所述第i次词语生成处理对应的第三词语,并将所述输出隐藏层特征向量D i作为第i+1次词语生成处理对应的输入隐藏层特征向量B i+1进行所述第i+1次词语生成处理,直至进行所述多次词语生成处理后,得到所述至少一个第三词语。
  17. 根据权利要求16所述的计算机可读存储介质,其中,所述确定所述第一词向量C i的权重,包括:
    将所述第一词向量Ci输入门控循环单元神经网络,得到隐藏层状态特征向量和输出特征向量;
    计算所述隐藏层状态特征向量和所述输出特征向量之间的第一相似度;
    将所述第一相似度输入softmax函数,并将所述softmax函数的输出结果归一化,得到所述第一词向量C i的权重。
  18. 根据权利要求15所述的计算机可读存储介质,其中,所述根据所述关系图对所述每个第二词语进行图卷积编码,得到至少一个图卷积向量,包括:
    根据所述关系图构建第一邻接矩阵;
    根据所述每个第二词语在所述关系图中的特征,对所述第一邻接矩阵进行特征添加,得到第二邻接矩阵;
    根据所述第二邻接矩阵确定第一度矩阵;
    根据所述第二邻接矩阵和所述第一度矩阵进行多次图卷积处理,得到所述每个第二词语对应的图卷积向量。
  19. 根据权利要求18所述的计算机可读存储介质,其中,所述根据所述第二邻接矩阵和所述第一度矩阵进行多次图卷积处理,得到所述每个第二词语对应的图卷积向量,包括:
    在第j次图卷积处理时,获取第j个第二词语对应的第一度矩阵的逆矩阵,并对所述逆矩阵进行开方处理,得到第一矩阵,其中,所述第i个第二词语为所述至少一个第二词语中排位第j位的第二词语,j为大于或等于1的整数;
    将所述第一矩阵、所述第j个第二词语对应的第二邻接矩阵、所述第j次图卷积处理对应的学习矩阵和第j输入编码输入激活函数,得到第j输出编码,其中,当j=1时,所述第j输入编码为空;
    将所述第j输出编码作为第j+1次图卷积处理的第j+1输入编码进行所述第j+1次图卷积处理,直至进行多次图卷积处理后,得到所述每个第二词语对应的图卷积向量。
  20. 根据权利要求18所述的计算机可读存储介质,其中,所述第二邻接矩阵和所述第一度矩阵之间满足以下公式:
    Figure PCTCN2022090421-appb-100007
    其中,
    Figure PCTCN2022090421-appb-100008
    表示所述第一度矩阵中第n行第n列的元素,
    Figure PCTCN2022090421-appb-100009
    表示所述第二邻接矩阵中第n行第m列的元素,n、m为大于或等于1的整数。
PCT/CN2022/090421 2022-02-22 2022-04-29 基于答案指导的题目生成方法、装置、设备及存储介质 WO2023159753A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210164199.6A CN114564562B (zh) 2022-02-22 2022-02-22 基于答案指导的题目生成方法、装置、设备及存储介质
CN202210164199.6 2022-02-22

Publications (1)

Publication Number Publication Date
WO2023159753A1 true WO2023159753A1 (zh) 2023-08-31

Family

ID=81713271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090421 WO2023159753A1 (zh) 2022-02-22 2022-04-29 基于答案指导的题目生成方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN114564562B (zh)
WO (1) WO2023159753A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200065389A1 (en) * 2017-10-10 2020-02-27 Tencent Technology (Shenzhen) Company Limited Semantic analysis method and apparatus, and storage medium
CN111814982A (zh) * 2020-07-15 2020-10-23 四川大学 面向多跳问答的动态推理网络及方法
CN111831789A (zh) * 2020-06-17 2020-10-27 广东工业大学 一种基于多层语义特征提取结构的问答文本匹配方法
US20210209139A1 (en) * 2020-01-02 2021-07-08 International Business Machines Corporation Natural question generation via reinforcement learning based graph-to-sequence model
CN113254616A (zh) * 2021-06-07 2021-08-13 佰聆数据股份有限公司 面向智能问答系统的句向量生成方法及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109271646B (zh) * 2018-09-04 2022-07-08 腾讯科技(深圳)有限公司 文本翻译方法、装置、可读存储介质和计算机设备
WO2021184311A1 (zh) * 2020-03-19 2021-09-23 中山大学 一种自动生成可推理问答的方法和装置
CN111368304B (zh) * 2020-03-31 2022-07-05 绿盟科技集团股份有限公司 一种恶意样本类别检测方法和装置及设备
CN112183085A (zh) * 2020-09-11 2021-01-05 杭州远传新业科技有限公司 机器阅读理解方法、装置、电子设备及计算机存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200065389A1 (en) * 2017-10-10 2020-02-27 Tencent Technology (Shenzhen) Company Limited Semantic analysis method and apparatus, and storage medium
US20210209139A1 (en) * 2020-01-02 2021-07-08 International Business Machines Corporation Natural question generation via reinforcement learning based graph-to-sequence model
CN111831789A (zh) * 2020-06-17 2020-10-27 广东工业大学 一种基于多层语义特征提取结构的问答文本匹配方法
CN111814982A (zh) * 2020-07-15 2020-10-23 四川大学 面向多跳问答的动态推理网络及方法
CN113254616A (zh) * 2021-06-07 2021-08-13 佰聆数据股份有限公司 面向智能问答系统的句向量生成方法及系统

Also Published As

Publication number Publication date
CN114564562B (zh) 2024-05-14
CN114564562A (zh) 2022-05-31

Similar Documents

Publication Publication Date Title
CN112131366B (zh) 训练文本分类模型及文本分类的方法、装置及存储介质
WO2022007823A1 (zh) 一种文本数据处理方法及装置
CN108363790B (zh) 用于对评论进行评估的方法、装置、设备和存储介质
CN109376222B (zh) 问答匹配度计算方法、问答自动匹配方法及装置
KR20220005416A (ko) 다항 관계 생성 모델의 트레이닝 방법, 장치, 전자 기기 및 매체
CN110705301A (zh) 实体关系抽取方法及装置、存储介质、电子设备
EP4113357A1 (en) Method and apparatus for recognizing entity, electronic device and storage medium
WO2022001724A1 (zh) 一种数据处理方法及装置
CN112100332A (zh) 词嵌入表示学习方法及装置、文本召回方法及装置
US12032605B2 (en) Searchable data structure for electronic documents
CN113779225B (zh) 实体链接模型的训练方法、实体链接方法及装置
CN113806487A (zh) 基于神经网络的语义搜索方法、装置、设备和存储介质
CN114912450B (zh) 信息生成方法与装置、训练方法、电子设备和存储介质
CN112528654A (zh) 自然语言处理方法、装置及电子设备
CN110705273A (zh) 基于神经网络的信息处理方法及装置、介质和电子设备
CN114492661B (zh) 文本数据分类方法和装置、计算机设备、存储介质
CN113704420A (zh) 文本中的角色识别方法、装置、电子设备及存储介质
JP2023002690A (ja) セマンティックス認識方法、装置、電子機器及び記憶媒体
CN112214595A (zh) 类别确定方法、装置、设备及介质
CN117787226A (zh) 标签生成模型训练方法、装置、电子设备及存储介质
JP2022106980A (ja) クエリ文の生成方法、装置、電子機器及び記憶媒体
CN111767720B (zh) 一种标题生成方法、计算机及可读存储介质
WO2023137903A1 (zh) 基于粗糙语义的回复语句确定方法、装置及电子设备
CN115169330B (zh) 中文文本纠错及验证方法、装置、设备及存储介质
CN114861639B (zh) 提问信息生成方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928025

Country of ref document: EP

Kind code of ref document: A1