WO2023159716A1 - Anc参数的自适应调整方法、设备及存储介质 - Google Patents

Anc参数的自适应调整方法、设备及存储介质 Download PDF

Info

Publication number
WO2023159716A1
WO2023159716A1 PCT/CN2022/084596 CN2022084596W WO2023159716A1 WO 2023159716 A1 WO2023159716 A1 WO 2023159716A1 CN 2022084596 W CN2022084596 W CN 2022084596W WO 2023159716 A1 WO2023159716 A1 WO 2023159716A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy loss
anc
frequency
frequency points
adaptive adjustment
Prior art date
Application number
PCT/CN2022/084596
Other languages
English (en)
French (fr)
Inventor
曾楷
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2023159716A1 publication Critical patent/WO2023159716A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1083Reduction of ambient noise
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/108Communication systems, e.g. where useful sound is kept and noise is cancelled
    • G10K2210/1081Earphones, e.g. for telephones, ear protectors or headsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/01Hearing devices using active noise cancellation

Definitions

  • the present application relates to the field of ANC active noise reduction, and in particular to an adaptive adjustment method, device and computer-readable storage medium of ANC parameters.
  • the main purpose of the present application is to provide an adaptive adjustment method of ANC parameters, which aims to solve the technical problem that the ANC parameter adjustment in the prior art cannot obtain ideal noise reduction effects in different usage scenarios.
  • the present application provides an adaptive adjustment method of ANC parameters, and the adaptive adjustment method of ANC parameters includes:
  • the noise-cancelling earphones include at least: a speaker, a feedback microphone, and a feed-forward microphone.
  • the steps further include:
  • test audio is played through the speaker and the test audio is received by the feedback microphone to obtain the received audio.
  • the steps of obtaining the frequency points where the noise-canceling headphones have energy loss and the respective energy loss values of the frequency points include:
  • the frequency points where the noise-cancelling headphones have energy loss and the respective energy loss values of the frequency points are calculated.
  • the step further includes:
  • the gain of the feedforward microphone is adjusted.
  • the step of calculating the main frequency of the chip of the noise reduction earphone includes:
  • the main frequency is calculated according to the number of frequency points and the preset theoretical processing time.
  • the chip includes multiple main frequency modes
  • the step of adjusting the chip to the target main frequency mode corresponding to the main frequency size includes:
  • the steps after calculating and adjusting the ANC parameters of the noise-cancelling headphones in the target main frequency mode also include:
  • the method before obtaining the frequency points with energy loss of the noise-cancelling earphones and the respective energy loss values of the frequency points, the method further includes:
  • the first energy loss threshold, the preset frequency threshold, the second energy loss threshold, and the preset theoretical processing time are calculated based on the current ANC parameters of the noise canceling earphones.
  • the present application also provides an adaptive adjustment device for ANC parameters.
  • the adaptive adjustment device for ANC parameters includes: a memory, a processor, and an ANC parameter stored on the memory and operable on the processor.
  • Adaptive adjustment program when the adaptive adjustment program of ANC parameters is executed by the processor, the steps of the above-mentioned adaptive adjustment method for ANC parameters are realized.
  • the present application also provides a computer-readable storage medium, on which an adaptive adjustment program of ANC parameters is stored, and when the adaptive adjustment program of ANC parameters is executed by a processor, the above Steps of an adaptive adjustment method for ANC parameters.
  • An adaptive adjustment method, device, and computer-readable storage medium for ANC parameters proposed in the embodiments of the present application, to obtain the frequency points with energy loss of the noise-cancelling earphones and the respective energy loss values of the frequency points, and determine the energy loss values in the frequency points The number of frequency points greater than the first energy loss threshold; judging whether the sum of each energy loss value is greater than the second energy loss threshold, and judging whether the number of frequency points is greater than the preset frequency point number threshold; if the sum of each energy loss value Greater than the second energy loss threshold and the number of frequency points is greater than the preset frequency point number threshold, then calculate the main frequency of the chip of the noise-canceling earphone and adjust the chip to the target main frequency mode corresponding to the main frequency size; in the target main frequency mode Calculate and adjust the ANC parameters of the noise-cancelling headphones below.
  • the test audio is played by the speaker, and then received by the feedback microphone, and the energy loss value of the frequency point corresponding to the current ANC parameter is calculated.
  • the energy loss value it is determined whether to adjust the gain of the feed-forward microphone, that is, to achieve rapid adjustment by raising the overall noise reduction curve, or to adjust by recalculating the filter parameters.
  • the way of adjusting the ANC parameters it is further determined whether the CPU frequency needs to be increased to speed up the processing.
  • this application can not only allow users to obtain ideal noise reduction effects in different usage scenarios, but also optimize parameter calculations in different scenarios to achieve the purpose of reducing power consumption. Therefore, while ensuring the noise reduction performance, the power consumption can be reduced at the same time, which can satisfy complex user usage scenarios and enable users to obtain a relatively ideal noise reduction effect. And because the ANC parameters are dynamically adjusted during the headphone fit test during the wearing process, it also achieves the effect of non-inductively improving the user experience.
  • Fig. 1 is a schematic diagram of the terminal structure of the hardware operating environment involved in the solution of the embodiment of the present application;
  • Fig. 2 is a schematic flow chart of an embodiment of an adaptive adjustment method of an ANC parameter in the present application
  • FIG. 3 is a schematic diagram of an application flow of an embodiment of an adaptive adjustment method for ANC parameters in the present application.
  • FIG. 1 is a schematic diagram of a terminal structure of a hardware operating environment involved in the solution of the embodiment of the present application.
  • the terminal device may include: a processor 1001, such as a central processing unit (Central Processing Unit, CPU), a communication bus 1002, a network interface 1003, and a memory 1004.
  • the communication bus 1002 is used to realize connection and communication between these components.
  • the network interface 1003 may include a standard wired interface and a wireless interface (such as a wireless fidelity (WIreless-FIdelity, WI-FI) interface).
  • the memory 1004 may be a high-speed random access memory (Random Access Memory, RAM) memory, or a stable non-volatile memory (Non-Volatile Memory, NVM), such as a disk memory.
  • the memory 1004 may also be a storage device independent of the aforementioned processor 1001 .
  • FIG. 1 does not constitute a limitation on the terminal device, and may include more or less components than those shown in the figure, or combine some components, or arrange different components.
  • the memory 1004 as a storage medium may include an operating system, a data storage module, a network communication module, a user interface module, and an adaptive adjustment program for ANC parameters.
  • the network interface 1003 is mainly used for data communication with other devices; the processor 1001 and memory 1004 in the terminal device of this application can be set in the terminal device, and the terminal device calls the memory through the processor 1001
  • the adaptive adjustment program of the ANC parameters stored in 1004 and perform the following operations:
  • the processor 1001 may call the adaptive adjustment program of the ANC parameters stored in the memory 1004, and also perform the following operations:
  • the noise-cancelling earphones at least include: a speaker, a feedback microphone, and a feed-forward microphone.
  • the steps before obtaining the frequency points with energy loss of the noise-cancelling earphones and the respective energy loss values of the frequency points also include:
  • test audio is played through the speaker and the test audio is received by the feedback microphone to obtain the received audio.
  • the processor 1001 may call the adaptive adjustment program of the ANC parameters stored in the memory 1004, and also perform the following operations:
  • the steps of obtaining the frequency points with energy loss of the noise-cancelling headphones and the respective energy loss values of the frequency points include:
  • the frequency points where the noise-cancelling headphones have energy loss and the respective energy loss values of the frequency points are calculated.
  • the processor 1001 may call the adaptive adjustment program of the ANC parameters stored in the memory 1004, and also perform the following operations:
  • the step further includes:
  • the gain of the feedforward microphone is adjusted.
  • the processor 1001 may call the adaptive adjustment program of the ANC parameters stored in the memory 1004, and also perform the following operations:
  • the steps for calculating the main frequency of the chip of the noise-cancelling earphone include:
  • the main frequency is calculated according to the number of frequency points and the preset theoretical processing time.
  • the processor 1001 may call the adaptive adjustment program of the ANC parameters stored in the memory 1004, and also perform the following operations:
  • the chip includes multiple main frequency modes, and the steps of adjusting the chip to the target main frequency mode corresponding to the main frequency size include:
  • the processor 1001 may call the adaptive adjustment program of the ANC parameters stored in the memory 1004, and also perform the following operations:
  • the steps after calculating and adjusting the ANC parameters of the noise-cancelling earphones in the target main frequency mode also include:
  • the processor 1001 may call the adaptive adjustment program of the ANC parameters stored in the memory 1004, and also perform the following operations:
  • the steps before obtaining the frequency points with energy loss of the noise-cancelling headphones and the respective energy loss values of the frequency points also include:
  • the first energy loss threshold, the preset frequency threshold, the second energy loss threshold, and the preset theoretical processing time are calculated based on the current ANC parameters of the noise canceling earphones.
  • FIG. 2 is a schematic flowchart of a first embodiment of a method for adaptively adjusting ANC parameters of the present application.
  • the adaptive adjustment method of ANC parameters includes:
  • Step S10 Obtain the frequency points with energy loss of the noise-cancelling earphones and their respective energy loss values, and determine the number of frequency points whose energy loss values are greater than the first energy loss threshold among the frequency points.
  • the preset ANC parameters include different frequency points, and the test audio has energy loss at different frequency points.
  • the energy loss value of each frequency point is compared by the energy between the received audio and the test audio. If the energy loss value is greater than the first energy loss threshold ⁇ i, it means that the ANC parameter needs to be adjusted for this frequency point, and the number tn of all frequency points whose energy loss value is greater than the first energy loss threshold ⁇ i is recorded.
  • the specific method is: while detecting the fitting degree of the earphone, obtain the energy loss value of different frequency points in the current wearing scene.
  • the test audio is broadcast through the speaker, and is calculated after being received by the feedback microphone.
  • the frequency points included in the preset ANC parameters are f1, f2...fn
  • the energy of the corresponding frequency points in the test audio is Ef1, Ef2...Efn
  • the energy of the corresponding frequency points in the audio signal received by the feedback microphone is Eb1, Eb2...Ebn
  • ⁇ E2
  • ... ⁇ En
  • ⁇ E1, ⁇ E2... ⁇ En select the number tn of frequency points whose energy loss value is greater than the first energy loss threshold ⁇ i.
  • Step S20 judging whether the sum of the energy loss values is greater than a second energy loss threshold, and judging whether the number of frequency points is greater than a preset threshold number of frequency points.
  • the sum of all energy loss values Sum( ⁇ E) is also recorded. Determine whether the total energy loss value of all frequency points is greater than the second energy loss threshold ⁇ sum, and if so, then determine whether the number of frequency points tn is greater than the preset frequency point number threshold ⁇ tn.
  • Step S30 If the sum of each energy loss value is greater than the second energy loss threshold and the number of frequency points is greater than the preset frequency point number threshold, then calculate the main frequency of the chip of the noise-cancelling earphone and adjust the chip to the corresponding main frequency Target frequency mode;
  • each energy loss value is greater than the second energy loss threshold and the number of frequency points is greater than the preset frequency point number threshold, it means that the energy loss value is relatively large in the current earphone wearing environment, and the main frequency that needs to be adjusted by calculating df , adjust the chip to the target main frequency mode corresponding to the main frequency size df, calculate and adjust the ANC parameters in the target main frequency mode after overclocking processing.
  • the frequency points with energy loss of the noise reduction earphones and the respective energy loss values of the frequency points are obtained, and the number of frequency points whose energy loss values are greater than the first energy loss threshold in the frequency points is determined; Whether the sum is greater than the second energy loss threshold, and determine whether the number of frequency points is greater than the preset frequency point number threshold; if the sum of each energy loss value is greater than the second energy loss threshold and the number of frequency points is greater than the preset frequency point number Threshold, then calculate the main frequency of the chip of the noise canceling earphone and adjust the chip to the target main frequency mode corresponding to the main frequency; calculate and adjust the ANC parameters of the noise canceling earphone in the target main frequency mode.
  • the test audio is played by the speaker, received by the feedback microphone, and the energy loss value of the frequency point corresponding to the current ANC parameter is calculated.
  • the energy loss value it is determined whether to adjust the gain of the feedforward microphone, that is, to achieve rapid adjustment by raising the overall noise reduction curve, or to adjust by recalculating the filter parameters.
  • the way of adjusting the ANC parameters it is further determined whether the CPU frequency needs to be increased to speed up the processing.
  • the current ANC parameters are dynamically adjusted when the earphone fit test is performed. That is, when the earphones are worn well or the user slightly adjusts the earphones, that is, when the energy loss value is small, keep the main frequency of the CPU unchanged, and only adjust the gain of the feed-forward microphone; When it is larger, adjust the CPU main frequency to the corresponding mode, recalculate the adjusted ANC parameters, and restore the CPU main frequency after the calculation is completed.
  • This strategy of dynamic adjustment according to the energy loss value can not only allow users to obtain ideal noise reduction effects in different usage scenarios, but also optimize parameter calculations in different scenarios to achieve the purpose of reducing power consumption.
  • the power consumption can be reduced while ensuring the performance, satisfying complex user usage scenarios, and enabling users to obtain an ideal noise reduction effect.
  • the ANC parameters are dynamically adjusted during the headphone fit test during the wearing process, it also achieves the effect of non-inductively improving the user experience.
  • the noise-cancelling earphones include at least: a speaker, a feedback microphone, and a feed-forward microphone.
  • the steps further include:
  • test audio is played through the speaker and the test audio is received by the feedback microphone to obtain the received audio.
  • the test audio When testing the fit of the headset, the test audio will be broadcast through the speaker, and the test audio will be received by the feedback microphone to obtain the received audio. Through the test audio and the received audio, the energy loss value of different frequency points in the current wearing scene can be obtained.
  • the method for obtaining the energy loss value is not limited, and the time for obtaining the energy loss value is not limited. It is not limited whether the time to obtain the energy loss value is automatically obtained when the headset is worn or fit, or is obtained when the user manually adjusts the noise reduction effect during normal wearing and use. .
  • the steps of obtaining the frequency points where the noise-canceling headphones have energy loss and the respective energy loss values of the frequency points include:
  • the frequency points where the noise-cancelling headphones have energy loss and the respective energy loss values of the frequency points are calculated.
  • the energy loss value of different frequency points in the current wearing scene can be obtained by testing audio and receiving audio.
  • , ⁇ E2
  • ... ⁇ En
  • energy can be understood as sound volume, so that the fit detection of noise-cancelling headphones can be performed by a combination of speakers and microphones.
  • the step further includes:
  • the gain of the feedforward microphone is adjusted.
  • the step of calculating the main frequency of the chip of the noise reduction earphone includes:
  • the main frequency is calculated according to the number of frequency points and the preset theoretical processing time.
  • the chip includes multiple main frequency modes
  • the step of adjusting the chip to the target main frequency mode corresponding to the main frequency size includes:
  • the main frequency of many chips can be set in different modes, corresponding to different sizes, such as low low power mode corresponding to 32kHz, normal normal mode corresponding to 80kHz, high high performance mode corresponding to 120kHz.
  • the main frequency is calculated, when adjusting the chip to the target main frequency mode corresponding to the main frequency, adjust to the target main frequency mode according to the main frequency range of the main frequency. For example, if the main frequency is calculated to be 40kHz, then adjust the target main frequency mode of the chip to normal mode; if the main frequency is calculated to be 100kHz, then adjust the target main frequency mode of the chip to high high-performance mode, and use the target main frequency mode
  • the minimum main frequency of the computer meets the calculated main frequency.
  • the steps after calculating and adjusting the ANC parameters of the noise-cancelling headphones in the target main frequency mode also include:
  • the CPU central processing unit
  • the method before obtaining the frequency points with energy loss of the noise-cancelling earphones and the respective energy loss values of the frequency points, the method further includes:
  • the first energy loss threshold, the preset frequency threshold, the second energy loss threshold, and the preset theoretical processing time are calculated based on the current ANC parameters of the noise-cancelling headphones.
  • Energy loss threshold ⁇ i threshold number of preset frequency points ⁇ tn
  • second energy loss threshold ⁇ sum and theoretical processing time.
  • the theoretical processing time is determined by the processing capability of the chip and the preset ANC parameter type, which is obtained through pre-calculation.
  • FIG. 3 is a schematic diagram of an application process of a first embodiment of a method for adaptively adjusting ANC parameters of the present application.
  • Step 1 Detect the fit of the earphones, and obtain the energy loss values of different frequency points in the current wearing scene.
  • the test audio can be played out through the speaker, and can be calculated after being received by the feedback microphone.
  • , ⁇ E2
  • ... ⁇ En
  • Step 2 According to the energy loss value obtained in step 1, calculate respectively:
  • the calculation method for the number of frequency points that need to be adjusted is: compare the energy loss value of each frequency point, if ⁇ Ei is greater than the threshold ⁇ i, then the frequency point needs to adjust the parameters.
  • the thresholds ⁇ sum, ⁇ tn, ⁇ i are determined according to the product shape and preset ANC parameters, and need to be verified through simulation and a large number of tests.
  • Step 3 If the conditions 1) and 2) in step 2 are not satisfied, that is, the energy loss value is small, then the adjustment method of adaptive ANC is to modify the feedforward microphone gain, that is, to increase the noise reduction curve as a whole.
  • ts is the ideal processing time, which is determined by the processing capability of the chip and the preset ANC parameter type, and is obtained through pre-calculation.
  • Step 5 According to the main frequency that needs to be adjusted in step 4, dynamically adjust the CPU main frequency to the corresponding mode.
  • the main frequency of many chips can be set in different modes, corresponding to different sizes. For example, low corresponds to 32kHz, normal corresponds to 80kHz, and high corresponds to 120kHz, then set different CPU main frequency modes according to the calculation result in step 4.
  • Step 6 After the ANC parameter adjustment is completed, restore the CPU frequency to the original mode.
  • the embodiment of the present application also provides an adaptive adjustment device for ANC parameters.
  • the adaptive adjustment device for ANC parameters includes: a memory, a processor, and an adaptive adjustment of ANC parameters stored on the memory and operable on the processor.
  • the program, the adaptive adjustment program of the ANC parameters implements the steps of the above-mentioned adaptive adjustment method for the ANC parameters when the program is executed by the processor.
  • the embodiment of the present application also provides a computer-readable storage medium, on which an adaptive adjustment program of ANC parameters is stored, and when the adaptive adjustment program of ANC parameters is executed by a processor, the above-mentioned ANC The steps of the adaptive adjustment method of parameters.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or the part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM) as described above. , magnetic disk, optical disk), including several instructions to enable a terminal device (which may be a mobile phone, computer, server, or network device, etc.) to execute the methods described in various embodiments of the present application.

Abstract

本申请公开了一种ANC参数的自适应调整方法、设备及存储介质,属于ANC主动降噪技术领域,方法为:获取降噪耳机具有能量损失的频点和频点各自的能量损失值,确定频点中能量损失值大于第一能量损失阈值的频点个数;判断各能量损失值的和是否大于第二能量损失阈值,并判断频点个数是否大于预设频点个数阈值;若均大于,则计算降噪耳机的芯片的主频大小并调整芯片至主频大小对应的目标主频模式;在目标主频模式下计算并调整ANC参数。本申请通过在耳机贴合检测时得到频点的能量损失值,根据能量损失值采用不同的ANC参数调整方法,并根据不同方法动态调整CPU主频,在保证降噪性能的同时又可以降低功耗,满足复杂的用户使用场景,使用户获得较为理想的降噪效果。

Description

ANC参数的自适应调整方法、设备及存储介质
本申请要求于2022年02月24日提交中国专利局、申请号202210174777.4、申请名称为“ANC参数的自适应调整方法、设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及ANC主动降噪领域,尤其涉及一种ANC参数的自适应调整方法、设备及计算机可读存储介质。
背景技术
半入耳式耳机在佩戴时,对耳道的密闭性较差,同时用户的佩戴松紧度差异也会影响降噪效果,因此固定的ANC(Active Noise Cancellation,主动降噪)参数难以达到理想的降噪效果。目前,在调整ANC参数时,往往需要根据佩戴情况重新计算所有的滤波器参数,这对于芯片的处理能力和计算资源要求较高,并且该过程的功耗也很高。也有一些通过预设多个降噪曲线,根据佩戴情况选择其中一个的方法,但该方式需要大量的前期测试验证工作,而且需要消耗较多存储资源存放预设的滤波器,同时由于参数不是实时计算,难以精确匹配复杂的实际使用场景。
上述内容仅用于辅助理解本申请的技术方案,并不代表承认上述内容是现有技术。
发明内容
本申请的主要目的在于提供一种ANC参数的自适应调整方法,旨在解决现有技术中的ANC参数调整,在面对不同的使用场景时无法得到理想的降噪效果的技术问题。
为实现上述目的,本申请提供一种ANC参数的自适应调整方法,ANC参数的自适应调整方法包括:
获取降噪耳机具有能量损失的频点和频点各自的能量损失值,确定频点中能量损失值大于第一能量损失阈值的频点个数;
判断各能量损失值的和是否大于第二能量损失阈值,并判断频点个数是否大于预设频点个数阈值;
若各能量损失值的和大于第二能量损失阈值且频点个数大于预设频点个数阈值,则计算降噪耳机的芯片的主频大小并调整芯片至主频大小对应的目标主频模式;
在目标主频模式下计算并调整降噪耳机的ANC参数。
可选地,降噪耳机至少包括:扬声器、反馈麦克风和前馈麦克风,在获取降噪耳机具有能量损失的频点和频点各自的能量损失值之前的步骤,还包括:
在检测降噪耳机佩戴的贴合度时,通过扬声器播放测试音频并由反馈麦克风接收测试音频得到接收音频。
可选地,获取降噪耳机具有能量损失的频点和频点各自的能量损失值的步骤包括:
基于测试音频和接收音频中的能量,计算得到降噪耳机具有能量损失的频点和频点各自的能量损失值。
可选地,在判断各能量损失值的和是否大于第二能量损失阈值,并判断频点个数是否大于预设频点个数阈值之后的步骤,还包括:
若各能量损失值的和不大于第二能量损失阈值,并且频点个数不大于预设频点个数阈值,则调整前馈麦克风的增益。
可选地,计算降噪耳机的芯片的主频大小的步骤,包括:
根据频点个数和预设理论处理时间计算得到主频大小。
可选地,芯片包括多个主频模式,调整芯片至主频大小对应的目标主频模式的步骤,包括:
获取各主频模式的主频范围,根据主频大小所处的主频范围确定目标主频模式,调整芯片至对应的目标主频模式。
可选地,在目标主频模式下计算并调整降噪耳机的ANC参数之后的步骤,还包括:
恢复目标主频模式至ANC参数调整之前芯片的主频模式。
可选地,在获取降噪耳机具有能量损失的频点和频点各自的能量损失值之前的步骤,还包括:
基于降噪耳机当前的ANC参数计算得到第一能量损失阈值、预设频点个数阈值、第二能量损失阈值和预设理论处理时间。
此外,为实现上述目的,本申请还提供一种ANC参数的自适应调整设备,ANC参数的自适应调整设备包括:存储器、处理器及存储在存储器上并可在处理器上运行的ANC参数的自适应调整程序,ANC参数的自适应调整程序被处理器执行时实现如上述的ANC参数的自适应调整方法的步骤。
此外,为实现上述目的,本申请还提供一种计算机可读存储介质,计算机可读存储介质上存储有ANC参数的自适应调整程序,ANC参数的自适应调整程序被处理器执行时实现如上的ANC参数的自适应调整方法的步骤。
本申请实施例提出的一种ANC参数的自适应调整方法、设备及计算机可读存储介质,获取降噪耳机具有能量损失的频点和频点各自的能量损失值,确定频点中能量损失值大于第一能量损失阈值的频点个数;判断各能量损失值的和是否大于第二能量损失阈值,并判断频点个数是否大于预设频点个数阈值;若各能量损失值的和大于第二能量损失阈值且频点个数大于预设频点个数阈值,则计算降噪耳机的芯片的主频大小并调整芯片至主频大小对应的目标主频模式;在目标主频模式下计算并调整降噪耳机的ANC参数。
本申请在进行耳机贴合度测试时,由扬声器播放测试音频,再由反馈麦克风接收,计算当前ANC参数对应频点的能量损失值。根据能量损失值情况,确定是通过前馈麦克风的 增益调节,即整体降噪曲线的抬升实现快速调整,还是通过重新计算滤波器参数的方式调整。根据ANC参数调整的方式,进一步确定是否需要提升CPU主频以加速处理。
本申请通过这种根据能量损失值情况动态调整的策略,既可以让用户在不同的使用场景获得理想的降噪效果,也可以优化不同场景下的参数计算,达到降低功耗的目的。从而在保证降噪性能的同时又可以降低功耗,满足复杂的用户使用场景,使用户获得较为理想的降噪效果。并且由于是在佩戴过程中的耳机贴合度测试时动态调整的ANC参数,也做到了无感提升用户体验的效果。
附图说明
图1是本申请实施例方案涉及的硬件运行环境的终端结构示意图;
图2为本申请一种ANC参数的自适应调整方法一实施例的流程示意图;
图3为本申请一种ANC参数的自适应调整方法一实施例的应用流程示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
参照图1,图1为本申请实施例方案涉及的硬件运行环境的终端结构示意图。
如图1所示,该终端设备可以包括:处理器1001,例如中央处理器(Central Processing Unit,CPU),通信总线1002,网络接口1003,存储器1004。其中,通信总线1002用于实现这些组件之间的连接通信。网络接口1003可选的可以包括标准的有线接口、无线接口(如无线保真(WIreless-FIdelity,WI-FI)接口)。存储器1004可以是高速的随机存取存储器(Random Access Memory,RAM)存储器,也可以是稳定的非易失性存储器(Non-Volatile Memory,NVM),例如磁盘存储器。存储器1004可选的还可以是独立于前述处理器1001的存储装置。
本领域技术人员可以理解,图1中示出的结构并不构成对终端设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,作为一种存储介质的存储器1004中可以包括操作系统、数据存储模块、网络通信模块、用户接口模块以及ANC参数的自适应调整程序。
在图1所示的终端设备中,网络接口1003主要用于与其他设备进行数据通信;本申请终端设备中的处理器1001、存储器1004可以设置在终端设备中,终端设备通过处理器1001调 用存储器1004中存储的ANC参数的自适应调整程序,并执行以下操作:
获取降噪耳机具有能量损失的频点和频点各自的能量损失值,确定频点中能量损失值大于第一能量损失阈值的频点个数;
判断各能量损失值的和是否大于第二能量损失阈值,并判断频点个数是否大于预设频点个数阈值;
若各能量损失值的和大于第二能量损失阈值且频点个数大于预设频点个数阈值,则计算降噪耳机的芯片的主频大小并调整芯片至主频大小对应的目标主频模式;
在目标主频模式下计算并调整降噪耳机的ANC参数。
进一步地,处理器1001可以调用存储器1004中存储的ANC参数的自适应调整程序,还执行以下操作:
降噪耳机至少包括:扬声器、反馈麦克风和前馈麦克风,在获取降噪耳机具有能量损失的频点和频点各自的能量损失值之前的步骤,还包括:
在检测降噪耳机佩戴的贴合度时,通过扬声器播放测试音频并由反馈麦克风接收测试音频得到接收音频。
进一步地,处理器1001可以调用存储器1004中存储的ANC参数的自适应调整程序,还执行以下操作:
获取降噪耳机具有能量损失的频点和频点各自的能量损失值的步骤包括:
基于测试音频和接收音频中的能量,计算得到降噪耳机具有能量损失的频点和频点各自的能量损失值。
进一步地,处理器1001可以调用存储器1004中存储的ANC参数的自适应调整程序,还执行以下操作:
在判断各能量损失值的和是否大于第二能量损失阈值,并判断频点个数是否大于预设频点个数阈值之后的步骤,还包括:
若各能量损失值的和不大于第二能量损失阈值,并且频点个数不大于预设频点个数阈值,则调整前馈麦克风的增益。
进一步地,处理器1001可以调用存储器1004中存储的ANC参数的自适应调整程序,还执行以下操作:
计算降噪耳机的芯片的主频大小的步骤,包括:
根据频点个数和预设理论处理时间计算得到主频大小。
进一步地,处理器1001可以调用存储器1004中存储的ANC参数的自适应调整程序,还执行以下操作:
芯片包括多个主频模式,调整芯片至主频大小对应的目标主频模式的步骤,包括:
获取各主频模式的主频范围,根据主频大小所处的主频范围确定目标主频模式,调整芯片至对应的目标主频模式。
进一步地,处理器1001可以调用存储器1004中存储的ANC参数的自适应调整程序,还执行以下操作:
在目标主频模式下计算并调整所述降噪耳机的ANC参数之后的步骤,还包括:
恢复目标主频模式至ANC参数调整之前芯片的主频模式。
进一步地,处理器1001可以调用存储器1004中存储的ANC参数的自适应调整程序,还执行以下操作:
在获取降噪耳机具有能量损失的频点和频点各自的能量损失值之前的步骤,还包括:
基于降噪耳机当前的ANC参数计算得到第一能量损失阈值、预设频点个数阈值、第二能量损失阈值和预设理论处理时间。
本申请实施例提供了一种ANC参数的自适应调整方法,参照图2,图2为本申请一种ANC参数的自适应调整方法第一实施例的流程示意图。
本实施例中,ANC参数的自适应调整方法包括:
步骤S10:获取降噪耳机具有能量损失的频点和频点各自的能量损失值,确定频点中能量损失值大于第一能量损失阈值的频点个数。
预设的ANC参数包含有不同的频点,测试音频在不同频点处均有能量损失,通过接收音频和测试音频之间的能量,对每个频点的能量损失值进行比较。如果能量损失值大于第一能量损失阈值θi,则说明该频点需要调整ANC参数,记录所有能量损失值大于第一能量损失阈值θi的频点个数tn。具体方法为:在检测耳机佩戴的贴合度的同时,得到当前佩戴场景下的不同频点的能量损失值情况。通过扬声器播出测试音频,由反馈麦克风接收后计算得到。预设的ANC参数包含的频点为f1,f2…fn,测试音频中对应频点的能量为Ef1,Ef2…Efn,由反馈麦克风接收的音频信号中对应频点的能量为Eb1,Eb2…Ebn,则对应频点的能量损失值为ΔE1=|Ef1-Eb1|,ΔE2=|Ef2-Eb2|…ΔEn=|Efn-Ebn|。再在ΔE1,ΔE2…ΔEn中,选择得到能量损失值大于第一能量损失阈值θi的频点的个数tn。
步骤S20:判断各能量损失值的和是否大于第二能量损失阈值,并判断频点个数是否大于预设频点个数阈值。
同样的,在对每个频点的能量损失值进行比较时,除了记录能量损失值大于第一能量损失阈值θi的频点个数tn,而且记录所有能量损失值之和Sum(ΔE)。判断所有频点的总能量损失值是否大于第二能量损失阈值θsum,如果大于则接着判断频点个数tn是否大于预设频点个数阈值θtn。
步骤S30:若各能量损失值的和大于第二能量损失阈值且频点个数大于预设频点个数阈值,则计算降噪耳机的芯片的主频大小并调整芯片至主频大小对应的目标主频模式;
在目标主频模式下计算并调整降噪耳机的ANC参数。
如果各能量损失值的和大于第二能量损失阈值且频点个数大于预设频点个数阈值,则说明当下耳机佩戴环境下,能量损失值较大,通过计算需要调整的主频大小df,调整芯片至主频大小df对应的目标主频模式,超频处理后在目标主频模式下计算并调整ANC参数。
在本实施例中,获取降噪耳机具有能量损失的频点和频点各自的能量损失值,确定频点中能量损失值大于第一能量损失阈值的频点个数;判断各能量损失值的和是否大于第二能量损失阈值,并判断频点个数是否大于预设频点个数阈值;若各能量损失值的和大于第二能量损失阈值且频点个数大于预设频点个数阈值,则计算降噪耳机的芯片的主频大小并调整芯片至主频大小对应的目标主频模式;在目标主频模式下计算并调整降噪耳机的ANC参数。
本实施例在进行耳机贴合度测试时,由扬声器播放测试音频,再由反馈麦克风接收,计算当前ANC参数对应频点的能量损失值。根据能量损失值情况,确定是通过前馈麦克风的增益调节,即整体降噪曲线的抬升实现快速调整,还是通过重新计算滤波器参数的方式调整。根据ANC参数调整的方式,进一步确定是否需要提升CPU主频以加速处理。
本实施例通过在检测到用户已佩戴好降噪耳机后,进行耳机贴合度测试的时候,对当前ANC参数进行动态调整。即、当耳机佩戴较好或用户轻微调整耳机佩戴,即能量损失值较小时,保持CPU主频不变,只调节前馈麦克风增益;当耳机佩戴较差,或佩戴发生松动,即能量损失值较大时,将CPU主频调整到相应模式,重新计算调整后的ANC参数,计算完成后恢复CPU主频。这种根据能量损失值情况动态调整的策略,既可以让用户在不同的使用场景获得理想的降噪效果,也可以优化不同场景下的参数计算,达到降低功耗的目的。从而在 保证性能的同时又可以降低功耗,满足复杂的用户使用场景,使用户获得较为理想的降噪效果。并且由于是在佩戴过程中的耳机贴合度测试时动态调整的ANC参数,也做到了无感提升用户体验的效果。
可选地,降噪耳机至少包括:扬声器、反馈麦克风和前馈麦克风,在获取降噪耳机具有能量损失的频点和频点各自的能量损失值之前的步骤,还包括:
在检测降噪耳机佩戴的贴合度时,通过扬声器播放测试音频并由反馈麦克风接收测试音频得到接收音频。
在检测耳机佩戴的贴合度时,会通过扬声器播出测试音频,由反馈麦克风接收该测试音频得到接收音频,通过测试音频和接收音频即可得到当前佩戴场景下的不同频点的能量损失值情况。在本实施例中,不限定获取能量损失值的方法,不限定获取能量损失值的时间是在检测耳机佩戴贴合度时自动获取,还是在正常佩戴使用过程中用户手动调整降噪效果时获取。
可选地,获取降噪耳机具有能量损失的频点和频点各自的能量损失值的步骤包括:
基于测试音频和接收音频中的能量,计算得到降噪耳机具有能量损失的频点和频点各自的能量损失值。
通过测试音频和接收音频得到当前佩戴场景下的不同频点的能量损失值情况具体方法为:预设ANC参数包含的频点为f1,f2…fn,测试音频中对应频点的能量为Ef1,Ef2…Efn,由反馈麦克风接收的接收音频信号中对应频点的能量为Eb1,Eb2…Ebn,则对应频点的能量损失值为ΔE1=|Ef1-Eb1|,ΔE2=|Ef2-Eb2|…ΔEn=|Efn-Ebn|。在最简单的方式中,可以将能量理解为声量,从而由扬声器和麦克风组合便能进行降噪耳机的贴合度检测。
可选地,在判断各能量损失值的和是否大于第二能量损失阈值,并判断频点个数是否大于预设频点个数阈值之后的步骤,还包括:
若各能量损失值的和不大于第二能量损失阈值,并且频点个数不大于预设频点个数阈值,则调整前馈麦克风的增益。
如果所有频点的能量损失值之和Sum(ΔE)不大于第二能量损失阈值θsum且频点个数tn不大于预设频点个数阈值θtn,则说明当下耳机佩戴环境下,能量损失值较小。将ANC 参数的自适应调整方式修改为调整前馈麦克风增益,即对降噪曲线进行整体抬升即可。
可选地,计算降噪耳机的芯片的主频大小的步骤,包括:
根据频点个数和预设理论处理时间计算得到主频大小。
如果当下耳机佩戴环境下,能量损失值较大,则需要通过计算需要调整的主频大小,调整芯片至主频大小对应的目标主频模式,超频处理后在目标主频模式下计算并调整ANC参数。其中,根据频点个数和理论处理时间计算得到主频大小df=tn/ts,df为主频大小,tn为频点个数,ts为理论处理时间。
可选地,芯片包括多个主频模式,调整芯片至主频大小对应的目标主频模式的步骤,包括:
获取各主频模式的主频范围,根据主频大小所处的主频范围确定目标主频模式,调整芯片至对应的目标主频模式。
当前很多芯片的主频均可设置不同模式,对应不同大小,如low低功耗模式对应32kHz,normal正常模式对应80kHz,high高性能模式对应120kHz。在计算得到主频大小后,在调整芯片到主频大小对应的目标主频模式时,根据主频大小所处的主频范围调整至目标主频模式。比如,计算得到主频大小为40kHz,则调整芯片的目标主频模式到normal正常模式;计算得到主频大小为100kHz,则调整芯片的目标主频模式到high高性能模式,以目标主频模式的主频最低满足计算得到的主频大小为准。
可选地,在目标主频模式下计算并调整降噪耳机的ANC参数之后的步骤,还包括:
恢复目标主频模式至ANC参数调整之前芯片的主频模式。
如果当下耳机佩戴环境下,能量损失值较大,则在对芯片超频处理、在目标主频模式下计算并调整ANC参数之后,即在ANC参数自适应调整完成后,需要恢复CPU(central processing unit,中央处理器)的主频到原来的模式,从而降低功耗,提升体验。
可选地,在获取降噪耳机具有能量损失的频点和频点各自的能量损失值之前的步骤,还包括:
基于降噪耳机当前的ANC参数计算得到第一能量损失阈值、预设频点个数阈值、第二能 量损失阈值和预设理论处理时间。
在获取降噪耳机在不同频点的能量损失值,基于能量损失值动态调整ANC参数之前,还需要基于产品形态和当前的ANC参数,在经过仿真和大量测试验证后,计算或设置得到第一能量损失阈值θi、预设频点个数阈值θtn、第二能量损失阈值θsum和理论处理时间。其中,理论处理时间更是由芯片处理能力以及预设的ANC参数类型决定,通过预先计算得到。
本申请实施例提供了一种ANC参数的自适应调整方法,参照图3,图3为本申请一种ANC参数的自适应调整方法第一实施例的应用流程示意图。
步骤1:检测耳机佩戴的贴合度,得到当前佩戴场景下的不同频点的能量损失值情况。该方法可以通过扬声器播出测试音频,由反馈麦克风接收后计算得到。具体方法为:预设的ANC参数包含的频点为f1,f2…fn,测试音频中对应频点的能量为Ef1,Ef2…Efn,由反馈麦克风接收的音频信号中对应频点的能量为Eb1,Eb2…Ebn,则对应频点的能量损失值为ΔE1=|Ef1-Eb1|,ΔE2=|Ef2-Eb2|…ΔEn=|Efn-Ebn|。
步骤2:根据步骤1得到的能量损失值情况,分别计算:
1)能量损失值之和Sum(ΔE)是否大于阈值θsum
2)需要调整的频点个数tn是否大于阈值θtn。需要调整的频点个数计算方法为:对每个频点的能量损失值进行比较,如果ΔEi大于阈值θi,则该频点需要调整参数。
阈值θsum,θtn,θi根据产品形态和预设的ANC参数确定,需要经过仿真和大量测试验证得到。
步骤3:如果步骤2中的条件1)2)均不满足,即能量损失值较小,则自适应ANC的调整方式为修改前馈麦克风增益,即对降噪曲线进行整体抬升即可。
步骤4:如果步骤2中的条件1)满足,则进一步判断条件2),计算需要调整的主频大小df=tn/ts。ts为理想处理时间,由芯片处理能力以及预设的ANC参数类型决定,通过预先计算得到。
步骤5:根据步骤4中需要调整的主频大小,动态调整CPU主频至相应模式。而当前很多芯片的主频均可设置不同模式,对应不同大小。如low对应32kHz,normal对应80kHz,high对应120kHz,则根据步骤4计算结果设置不同CPU主频模式。
步骤6:ANC参数调整完成后,恢复CPU主频到原来的模式。
此外,本申请实施例还提供一种ANC参数的自适应调整设备,ANC参数的自适应调整设备包括:存储器、处理器及存储在存储器上并可在处理器上运行的ANC参数的自适应调整程序,ANC参数的自适应调整程序被处理器执行时实现如上述的ANC参数的自适应调整方法的步骤。
此外,本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有ANC参数的自适应调整程序,ANC参数的自适应调整程序被处理器执行时实现如上所述的ANC参数的自适应调整方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种ANC参数的自适应调整方法,其特征在于,所述ANC参数的自适应调整方法包括以下步骤:
    获取降噪耳机具有能量损失的频点和所述频点各自的能量损失值,确定所述频点中能量损失值大于第一能量损失阈值的频点个数;
    判断各所述能量损失值的和是否大于第二能量损失阈值,并判断所述频点个数是否大于预设频点个数阈值;
    若各所述能量损失值的和大于第二能量损失阈值且所述频点个数大于预设频点个数阈值,则计算所述降噪耳机的芯片的主频大小并调整所述芯片至所述主频大小对应的目标主频模式;
    在所述目标主频模式下计算并调整所述降噪耳机的ANC参数。
  2. 如权利要求1所述的ANC参数的自适应调整方法,其特征在于,所述降噪耳机至少包括:扬声器、反馈麦克风和前馈麦克风,在所述获取降噪耳机具有能量损失的频点和所述频点各自的能量损失值之前的步骤,还包括:
    在检测降噪耳机佩戴的贴合度时,通过所述扬声器播放测试音频并由所述反馈麦克风接收所述测试音频得到接收音频。
  3. 如权利要求2所述的ANC参数的自适应调整方法,其特征在于,所述获取降噪耳机具有能量损失的频点和所述频点各自的能量损失值的步骤包括:
    基于所述测试音频和所述接收音频中的能量,计算得到所述降噪耳机具有能量损失的频点和所述频点各自的能量损失值。
  4. 如权利要求2所述的ANC参数的自适应调整方法,其特征在于,在所述判断各所述能量损失值的和是否大于第二能量损失阈值,并判断所述频点个数是否大于预设频点个数阈值之后的步骤,还包括:
    若各所述能量损失值的和不大于第二能量损失阈值,并且所述频点个数不大于预设频点个数阈值,则调整前馈麦克风的增益。
  5. 如权利要求1所述的ANC参数的自适应调整方法,其特征在于,所述计算所述降噪耳机的芯片的主频大小的步骤,包括:
    根据所述频点个数和预设理论处理时间计算得到所述主频大小。
  6. 如权利要求1所述的ANC参数的自适应调整方法,其特征在于,所述芯片包括多个主频模式,所述调整所述芯片至所述主频大小对应的目标主频模式的步骤,包括:
    获取各所述主频模式的主频范围,根据所述主频大小所处的主频范围确定目标主频模式,调整芯片至对应的所述目标主频模式。
  7. 如权利要求1所述的ANC参数的自适应调整方法,其特征在于,在所述目标主频模式下计算并调整所述降噪耳机的ANC参数之后的步骤,还包括:
    恢复所述目标主频模式至ANC参数调整之前所述芯片的主频模式。
  8. 如权利要求1所述的ANC参数的自适应调整方法,其特征在于,在所述获取降噪耳机具有能量损失的频点和所述频点各自的能量损失值之前的步骤,还包括:
    基于所述降噪耳机当前的ANC参数计算得到所述第一能量损失阈值、所述预设频点个数阈值、所述第二能量损失阈值和预设理论处理时间。
  9. 一种ANC参数的自适应调整设备,其特征在于,所述ANC参数的自适应调整设备包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的ANC参数的自适应调整程序,所述ANC参数的自适应调整程序配置为实现如权利要求1至8中任一项所述的ANC参数的自适应调整方法的步骤。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有ANC参数的自适应调整程序,所述ANC参数的自适应调整程序被处理器执行时实现如权利要求1至8中任一项所述的ANC参数的自适应调整方法的步骤。
PCT/CN2022/084596 2022-02-24 2022-03-31 Anc参数的自适应调整方法、设备及存储介质 WO2023159716A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210174777.4 2022-02-24
CN202210174777.4A CN114554346B (zh) 2022-02-24 2022-02-24 Anc参数的自适应调整方法、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023159716A1 true WO2023159716A1 (zh) 2023-08-31

Family

ID=81679259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084596 WO2023159716A1 (zh) 2022-02-24 2022-03-31 Anc参数的自适应调整方法、设备及存储介质

Country Status (2)

Country Link
CN (1) CN114554346B (zh)
WO (1) WO2023159716A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110049403A (zh) * 2018-01-17 2019-07-23 北京小鸟听听科技有限公司 一种基于场景识别的自适应音频控制装置和方法
WO2021104957A1 (en) * 2019-11-28 2021-06-03 Ams Ag Noise cancellation system and signal processing method for an ear-mountable playback device
CN112911446A (zh) * 2021-02-07 2021-06-04 恒玄科技(上海)股份有限公司 一种降噪耳机的滤波器参数配置方法及主动降噪耳机
CN113645532A (zh) * 2021-08-17 2021-11-12 恒玄科技(上海)股份有限公司 一种具备anc的耳机的自适应处理方法及具备anc的耳机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9930447B1 (en) * 2016-11-09 2018-03-27 Bose Corporation Dual-use bilateral microphone array
CN109686378B (zh) * 2017-10-13 2021-06-08 华为技术有限公司 语音处理方法和终端
CN108764073B (zh) * 2018-05-14 2021-09-21 华南理工大学 一种结合频谱能量形态拟合的加速度滤噪和积分方法
CN110996215B (zh) * 2020-02-26 2020-06-02 恒玄科技(北京)有限公司 确定耳机降噪参数的方法、装置以及计算机可读介质
CN113766384A (zh) * 2021-09-24 2021-12-07 北京小米移动软件有限公司 能量补偿滤波器的目标参数的生成方法、装置和耳机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110049403A (zh) * 2018-01-17 2019-07-23 北京小鸟听听科技有限公司 一种基于场景识别的自适应音频控制装置和方法
WO2021104957A1 (en) * 2019-11-28 2021-06-03 Ams Ag Noise cancellation system and signal processing method for an ear-mountable playback device
CN112911446A (zh) * 2021-02-07 2021-06-04 恒玄科技(上海)股份有限公司 一种降噪耳机的滤波器参数配置方法及主动降噪耳机
CN113645532A (zh) * 2021-08-17 2021-11-12 恒玄科技(上海)股份有限公司 一种具备anc的耳机的自适应处理方法及具备anc的耳机

Also Published As

Publication number Publication date
CN114554346A (zh) 2022-05-27
CN114554346B (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
CN105612576B (zh) 限制有源噪声消除输出
CN110972014B (zh) 一种有源降噪耳机的参数调整方法、装置及无线耳机
US8897457B2 (en) Method and device for acoustic management control of multiple microphones
US20090016541A1 (en) Method and Device for Acoustic Management Control of Multiple Microphones
WO2017206488A1 (zh) 一种自适应调节降噪增益的降噪方法、装置及降噪耳机
WO2017215657A1 (zh) 音效处理方法及终端设备
CN112954530B (zh) 一种耳机降噪方法、装置、系统及无线耳机
CN110996203B (zh) 一种耳机降噪方法、装置、系统及无线耳机
JP2006139307A (ja) 声音効果処理と騒音制御を有する装置及びその方法
US9392364B1 (en) Virtual microphone for adaptive noise cancellation in personal audio devices
TW201727619A (zh) 具有可控制位準的主動式雜訊消除技術
WO2021189309A1 (zh) 主动降噪的方法、系统、电子设备和芯片
WO2023284402A1 (zh) 音频信号处理方法、系统、装置、电子设备和存储介质
CN113345400A (zh) 可穿戴设备的主动降噪系统的校准方法及装置、存储介质、终端
WO2022227399A1 (zh) 一种无线耳机及其透传方法、装置及系统
WO2023159716A1 (zh) Anc参数的自适应调整方法、设备及存储介质
WO2024060458A1 (zh) 主动降噪方法和主动降噪耳机
WO2023197474A1 (zh) 一种耳机模式对应的参数确定方法、耳机、终端和系统
WO2023045130A1 (zh) 降噪方法、装置、耳机设备及存储介质
WO2023024361A1 (zh) 一种啸叫抑制方法、装置、入耳式耳机及存储介质
CN115835094A (zh) 音频信号处理方法、系统、设备、产品及介质
US20210219051A1 (en) Method and device for in ear canal echo suppression
US20210281945A1 (en) Method and device for in-ear echo suppression
CN115225998A (zh) 耳机降噪方法、装置、耳机设备及计算机可读存储介质
US11323804B2 (en) Methods, systems and apparatus for improved feedback control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22927995

Country of ref document: EP

Kind code of ref document: A1