WO2023159538A1 - 天线单元及电子设备 - Google Patents

天线单元及电子设备 Download PDF

Info

Publication number
WO2023159538A1
WO2023159538A1 PCT/CN2022/078168 CN2022078168W WO2023159538A1 WO 2023159538 A1 WO2023159538 A1 WO 2023159538A1 CN 2022078168 W CN2022078168 W CN 2022078168W WO 2023159538 A1 WO2023159538 A1 WO 2023159538A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch
microstrip
antenna unit
groove
coupling line
Prior art date
Application number
PCT/CN2022/078168
Other languages
English (en)
French (fr)
Inventor
王亚丽
曲峰
李必奇
范西超
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202280000337.5A priority Critical patent/CN116982222A/zh
Priority to PCT/CN2022/078168 priority patent/WO2023159538A1/zh
Publication of WO2023159538A1 publication Critical patent/WO2023159538A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands

Definitions

  • Embodiments of the present disclosure relate to but are not limited to the technical field of communications, and in particular, relate to an antenna unit and an electronic device.
  • Antenna and filter are two important components of the RF front-end.
  • the antenna is responsible for receiving/transmitting electromagnetic signals
  • the filter is responsible for filtering interference signals.
  • Their performance plays a decisive role in the overall working quality of the wireless communication system.
  • filtering antennas have been proposed and received extensive attention. An antenna element whose function and radiation function of the antenna are integrated in the same device.
  • an embodiment of the present disclosure provides an antenna unit, including: a dielectric substrate, and an antenna layer and a ground layer located on both sides of the dielectric substrate; wherein, the antenna layer includes: a microstrip feeder and a A radiation patch and a microstrip coupling line structure on one side of the feeder line in the first direction, the microstrip coupling line structure comprising: a first branch structure, a microstrip coupling line and a second branch structure sequentially connected along the first direction, The first branch structure is spaced apart from the microstrip feeder, and the ground layer includes: a floor groove, the orthographic projection of the floor groove on the dielectric substrate is the same as that of the microstrip feeder on the dielectric substrate The orthographic projection of has a first overlapping area, and has a second overlapping area with the orthographic projection of the first branch structure on the dielectric substrate.
  • an embodiment of the present disclosure further provides an electronic device, including: the antenna unit described in the foregoing embodiments.
  • Fig. 1 is a structural schematic diagram of a filter antenna
  • Fig. 2 is a first structural schematic diagram of an antenna unit in an exemplary embodiment of the present disclosure
  • FIG. 3 is a schematic plan view of the antenna unit shown in FIG. 2;
  • FIG. 4 is a schematic cross-sectional view of the antenna unit shown in FIG. 3 along the CL direction;
  • 5A to 5D are schematic diagrams of simulation results of the antenna unit shown in FIG. 2;
  • FIG. 6 is a second structural schematic diagram of an antenna unit in an exemplary embodiment of the present disclosure.
  • FIG. 7A to 7D are schematic diagrams of simulation results of the antenna unit shown in FIG. 6;
  • FIG. 8 is a schematic diagram of a third structure of an antenna unit in an exemplary embodiment of the present disclosure.
  • FIG. 8 are schematic diagrams of simulation results of the antenna unit shown in FIG. 8;
  • FIG. 10 is a schematic diagram of a fourth structure of an antenna unit in an exemplary embodiment of the present disclosure.
  • FIG. 10 are schematic diagrams of simulation results of the antenna unit shown in FIG. 10;
  • Fig. 12 is a schematic diagram of a fifth structure of an antenna unit in an exemplary embodiment of the present disclosure.
  • FIG. 12 are schematic diagrams of simulation results of the antenna unit shown in FIG. 12;
  • Fig. 14 is a schematic diagram of a sixth structure of an antenna unit in an exemplary embodiment of the present disclosure.
  • 15A to 15D are schematic diagrams of simulation results of the antenna unit shown in FIG. 14 .
  • ordinal numerals such as “first”, “second”, and “third” are provided to avoid confusion of constituent elements, rather than to limit in terms of quantity.
  • connection should be interpreted in a broad sense unless otherwise specified and limited.
  • it may be a fixed connection, or a detachable connection, or an integral connection; it may be a mechanical connection, or an electrical connection; it may be a direct connection, or an indirect connection through an intermediate piece, or an internal communication between two components.
  • connection should be interpreted in a broad sense unless otherwise specified and limited.
  • it may be a fixed connection, or a detachable connection, or an integral connection; it may be a mechanical connection, or an electrical connection; it may be a direct connection, or an indirect connection through an intermediate piece, or an internal communication between two components.
  • electrically connected includes a case where constituent elements are connected together through an element having some kind of electrical function.
  • the "element having some kind of electrical action” is not particularly limited as long as it can transmit and receive electrical signals between connected components.
  • the "element having some kind of electrical function” may be, for example, an electrode or a wiring, or a switching element such as a transistor, or other functional elements such as a resistor, an inductor, or a capacitor.
  • parallel refers to a state where the angle formed by two straight lines is not less than -10° and not more than 10°, and therefore, a state where the angle is not less than -5° and not more than 5° is also included.
  • perpendicular means a state in which the angle formed by two straight lines is 80° to 100°, and therefore also includes an angle of 85° to 95°.
  • the first direction Y may refer to the horizontal direction
  • the second direction X may refer to the vertical direction
  • the third direction Z may refer to the direction perpendicular to the plane of the antenna unit or the thickness direction of the antenna unit, etc.
  • the first direction Y and the second direction X may be perpendicular to each other
  • the first direction Y and the third direction Z may be perpendicular to each other.
  • the output of the transceiver chip is a balanced signal, including two equal-amplitude and opposite signals, that is, a differential signal.
  • the differential signal can greatly reduce the common-mode signal. and environmental noise interference.
  • the antenna is a single-port device, and a balun device needs to be connected to perform balanced-unbalanced signal conversion before the signal enters the antenna. necessary signal.
  • an additional filter circuit can be directly cascaded between the antenna and the balun device, which introduces additional insertion loss and increases the volume of the system.
  • An embodiment of the present disclosure provides an antenna unit, and the antenna unit may include: a dielectric substrate, and an antenna layer and a ground layer located on both sides of the dielectric substrate; wherein, the antenna layer may include: a microstrip feeder line and a second antenna layer located on the microstrip feeder line A radiation patch and a microstrip coupling line structure on one side of a direction Y, the microstrip coupling line structure may include: a first branch structure, a microstrip coupling line and a second branch structure sequentially connected along the first direction Y, the first The branch structure and the microstrip feeder are arranged at intervals, and the grounding layer may include: a floor groove, the orthographic projection of the floor groove on the dielectric substrate and the orthographic projection of the microstrip feeder on the dielectric substrate have a first overlapping area, and have a first overlapping area with the first branch The orthographic projection of the node structure on the dielectric substrate has a second overlapping area.
  • the conversion structure formed by the floor groove, the microstrip coupling line structure and the microstrip feeder line can be Realize the conversion between single-ended signals and differential signals, and also realize hybrid electromagnetic coupling in the antenna unit, wherein the excitation between the first stub structure and the microstrip feeder is through adjacent coupling, so that the microstrip feeder and the microstrip
  • the gap capacitance between the coupling line structure can realize the electrical coupling path; the microstrip feeder and the floor groove can realize the magnetic coupling path, thus, because the strength and phase of the two coupling paths are not the same, it can make the antenna unit in the passband A radiation zero point is formed on both sides.
  • the antenna unit can have the characteristics of simple antenna structure, small size, low structural section, low cost, easy processing, and easy integration with other modules, which is beneficial to the miniaturization and integration design of the radio frequency front-end module.
  • the microstrip coupling line structure and the microstrip feeder can achieve a better filtering function, it can avoid the introduction of additional filtering circuits, thereby avoiding the introduction of insertion loss.
  • the hybrid electromagnetic coupling excitation antenna can be realized, which can reduce the cross-polarization level of the antenna unit and improve the radiation efficiency of the antenna unit.
  • the gain flatness of the antenna unit in the passband is better, so that the antenna unit can have excellent antenna performance.
  • the first stub structure in the microstrip coupling line structure and the feeder are excited through adjacent coupling, and the conversion formed by overlapping the microstrip coupling line structure, the microstrip feeder line and the floor groove
  • the structure excites the microstrip coupled line structure, and the microstrip coupled line structure excites the radiating patch.
  • the dielectric substrate has a first reference line extending along the first direction Y and a second reference line extending along the second direction X, floor grooves, radiation patches, first branch structures, At least one of the microstrip coupling line and the second branch structure is arranged symmetrically with respect to the first reference line, the microstrip feeder line is arranged symmetrically with respect to the second reference line, and the first reference line is perpendicular to the second reference line.
  • the first reference line may be a centerline CL extending along the first direction Y of the dielectric substrate.
  • the embodiments of the present disclosure do not limit this.
  • the shape of the floor groove may be a "one" shape, an "H" shape, or a dumbbell shape.
  • the shape of the floor groove may be one or a combination of long strip shapes such as rectangle or ellipse.
  • the floor grooves can be set at equal widths, so that the shape of the floor grooves can be in the shape of a "one".
  • the embodiments of the present disclosure do not limit this.
  • the floor grooves can be arranged with unequal widths.
  • the floor grooves can include: first grooves arranged in sequence along the first direction Y Groove, second groove and third groove, the first end of the second groove is located in the first overlapping area in the orthographic projection of the dielectric substrate, and the second end of the second groove is located in the second orthographic projection of the dielectric substrate. overlapping areas.
  • the width of the second groove is different from the width of the first groove and the width of the third groove.
  • the width of the second groove is smaller than the width of the first groove and smaller than the width of the third groove.
  • the width of the second groove is smaller than the width of the first groove, and the width of the first groove is equal to the width of the third groove.
  • the width of the groove refers to the dimension characteristic along the second direction X, which is perpendicular to the first direction Y.
  • the embodiments of the present disclosure do not limit this.
  • At least one of the width of the first groove, the width of the second groove and the width of the third groove may be about 0.25mm to 1.8mm.
  • the embodiments of the present disclosure do not limit this.
  • the length of the second groove may be about 2.0 mm to 2.65 mm, and the length of the groove refers to a dimension characteristic along the first direction Y.
  • the embodiments of the present disclosure do not limit this.
  • the microstrip coupling line may have an axisymmetric structure, and the symmetry axis of the microstrip coupling line may be the center line CL of the dielectric substrate.
  • the microstrip coupling line may include: a first microstrip coupling line and a second microstrip coupling line located on both sides of the radiation patch in the second direction, and the first microstrip coupling line and the second microstrip coupling line may be arranged symmetrically on on either side of the centerline CL of the dielectric substrate.
  • the shapes of the first microstrip coupling line and the second microstrip coupling line may be arcs.
  • the embodiments of the present disclosure do not limit this.
  • the microstrip coupling line, the first stub structure and the second stub structure may be an integral structure connected to each other.
  • the "integrated structure" referred to in the embodiments of the present disclosure may refer to two (or more than two) structures formed by the same deposition process and patterned by the same patterning process to form interconnected structures. The materials can be the same or different.
  • the microstrip feeder, the radiation patch, the microstrip coupling line, the first branch structure and the second branch structure may be arranged in the same layer and with the same material.
  • the "same-layer arrangement" referred to in the embodiments of the present disclosure refers to two (or more than two) structures formed by the same deposition process and patterned by the same patterning process, and their materials can be same or different.
  • the materials of precursors forming multiple structures arranged in the same layer are the same, and the materials finally formed may be the same or different.
  • the first branch structure may be an axisymmetric structure.
  • the axis of symmetry of the first branch structure may be the centerline CL of the dielectric substrate.
  • the first branch structure may include: a first branch extending along the first direction Y and a second branch extending along the first direction Y, and the first branch and the second branch may be arranged symmetrically on the centerline of the dielectric substrate Both sides of CL.
  • both the first branch and the second branch may include: two sequentially connected "L"-shaped branches.
  • the embodiments of the present disclosure do not limit this.
  • the first branch structure may be a closed branch structure.
  • the first branch structure may include: a first branch and a second branch located on the opposite side of the first direction Y of the radiation patch, the first end of the first branch is connected to the first end of the second branch, The second end of the first branch is connected to the first end of the first microstrip coupling line, and the second end of the second branch is connected to the first end of the second microstrip coupling line.
  • the main part of the first branch extends along the first direction Y
  • the main part of the second branch extends along the first direction Y.
  • the first sub-branch may include: a first sub-branch and a second sub-branch
  • the second sub-branch may include: a third sub-branch and a fourth sub-branch
  • the first sub-branch of the first sub-branch may include: end is connected with the first end of the third sub-branch, the second end of the first sub-branch is connected with the first end of the second sub-branch, and the second end of the second sub-branch is connected with the first end of the first microstrip coupling line connection
  • the second end of the third sub-branch is connected with the first end of the fourth sub-branch
  • the second end of the fourth sub-branch is connected with the first end of the second microstrip coupling line
  • the branch, the third sub-branch and the fourth sub-branch may be "L"-shaped branches.
  • the second branch structure may be a parallel branch structure with a certain length.
  • the second stub structure may be any one of an open stub structure, a short-circuit stub structure and a closed stub structure.
  • the embodiments of the present disclosure do not limit this.
  • the second branch structure may be an axisymmetric structure.
  • the axis of symmetry of the second branch structure may be the centerline CL of the dielectric substrate.
  • the second branch structure may include: a third branch extending along the first direction Y and a fourth branch extending along the first direction Y, and the third branch and the fourth branch may be symmetrically arranged on the centerline CL of the dielectric substrate on both sides.
  • the second branch structure includes: a third branch and a fourth branch located on one side of the first direction Y of the radiation patch, the first end of the third branch is connected to the first microstrip coupling line The second end of the fourth branch is connected to the second end of the second microstrip coupling line; the second end of the third branch is connected to the second end of the fourth branch, or the third branch Both the second end of the third branch and the second end of the fourth branch are connected to the ground layer through a via hole, or the second end of the third branch and the second end of the fourth branch are open.
  • the embodiments of the present disclosure do not limit this.
  • the third branch and the fourth branch may be "-"-shaped branches, or the third and fourth branch may be "L"-shaped branches.
  • both the third branch and the fourth branch can be "one" type branches extending along the first direction Y, the first end of the third branch and the first end of the fourth branch One end is connected with the second end of the microstrip coupling line.
  • both the third branch and the fourth branch can be "L"-shaped branches extending along the first direction Y, the first end of the third branch and the fourth branch The first end of the microstrip coupling line is connected to the second end, and the second end of the third branch is connected to the second end of the fourth branch.
  • the embodiments of the present disclosure do not limit this.
  • the microstrip feedline may include but not limited to: a uniform impedance microstrip feedline or a step impedance microstrip feedline extending along a second direction X, and the second direction X is perpendicular to the first direction Y.
  • the uniform impedance microstrip feeder may extend along the second direction X in the shape of a "one".
  • the step impedance microstrip feeder line may include: a first feeder line, a second feeder line and a third feeder line sequentially connected along the second direction X, wherein the width of the second feeder line is the same as that of the first feeder line and the width of the third feeder line Different, for example, the width of the second feeder is smaller than the width of the first feeder and smaller than the width of the third feeder.
  • the width of the second feeder line is smaller than the width of the first feeder line, and the width of the first feeder line is equal to the width of the third feeder line.
  • the width of the feeder line refers to the dimensional characteristics along the first direction Y, and the second direction X Y cross.
  • the embodiments of the present disclosure do not limit this.
  • the microstrip feeder may include but not limited to be made of at least one metal material such as copper, gold or silver. In this way, the resistance of the microstrip feeder is lower, the sensitivity of the transmitted signal is higher, the metal loss is less, and the service life is longer.
  • the shape of the radiation patch may be any one of axisymmetric figures such as a circle, an ellipse, a rectangle, or a rhombus.
  • the radiation patch may be circular in shape.
  • the embodiments of the present disclosure do not limit this.
  • the dielectric substrate may satisfy any one or more of the following conditions: the dielectric constant (dk) of the dielectric substrate may be about 1.7 to 2.7, and the dielectric loss (df) of the dielectric substrate may be about 0.00072 to 0.00108, and the thickness of the dielectric substrate can be 0.4mm (millimeter) to 0.6mm.
  • the dielectric substrate may be a lossy dielectric substrate, the dk/df of the lossy dielectric substrate may be about 2.2/0.0009, and the thickness of the lossy dielectric substrate may be about 0.508 mm.
  • the dielectric loss (df) may also be called a loss tangent value, a dielectric loss tangent, a dielectric loss factor or a loss factor, and the like.
  • the dielectric substrate may be a rigid dielectric substrate or a flexible dielectric substrate.
  • the dielectric substrate may include but not limited to epoxy glass cloth (FR-4) laminated board, polytetrafluoroethylene glass fiber laminated board, phenolic glass cloth laminated board, or glass substrate and other rigid materials.
  • FR-4 is a code name for a flame-resistant material grade.
  • the dielectric substrate may include but not limited to polyimide (PI), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), or one of the flexible dielectric substrates made of polymer materials such as polycarbonate (PC).
  • PI polyimide
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • the prepared antenna unit has a wide range of material sources, better flexibility, lighter weight, and more impact resistance. Therefore, when the antenna unit is applied to electronic equipment, the impact of the shape or size of the electronic equipment on the antenna unit can be reduced. limitations, with the advantage of better integration with other components in the electronic device.
  • the antenna layer may include but not limited to be made of at least one metal material such as copper, gold or silver.
  • the microstrip feed line, the radiation patch, the microstrip coupling line, the first branch structure and the second branch structure in the antenna layer can be made of copper material. In this way, the resistance of the antenna layer is lower, the sensitivity of the transmitted signal is higher, the metal loss is less, and the service life is longer.
  • the thickness of the antenna layer may be approximately 0.144 mm to 0.216 mm.
  • the thickness of the antenna layer may be about 0.018 mm.
  • the embodiments of the present disclosure do not limit this.
  • the ground layer may include but not limited to be made of at least one metal material such as copper, gold or silver.
  • the ground plane can be made of copper material. In this way, the resistance of the ground plane is lower, the sensitivity of the transmitted signal is higher, the metal loss is less, and the service life is longer.
  • the thickness of the ground plane may be approximately 0.144 mm to 0.216 mm.
  • the thickness of the ground plane may be about 0.018 mm.
  • the embodiments of the present disclosure do not limit this.
  • the thickness of the antenna element may be approximately 0.144 ⁇ 0 to 0.216 ⁇ 0.
  • the thickness of the antenna element may be approximately 0.018 ⁇ 0.
  • ⁇ 0 represents the vacuum wavelength corresponding to the center frequency point f0 of the antenna unit, and the center frequency point f0 of the antenna unit may be about 10 GHz.
  • the embodiments of the present disclosure do not limit this.
  • the antenna unit may be implemented as a differential microstrip filter antenna.
  • FIG. 2 is a schematic diagram of the first structure of the antenna unit in an exemplary embodiment of the present disclosure
  • FIG. 3 is a schematic plan view of the antenna unit shown in FIG. 2
  • FIG. 4 is a cross-section along the CL direction of the antenna unit shown in FIG. 3 schematic diagram. As shown in Figures 2 to 4, in the direction perpendicular to the plane of the antenna unit (i.e.
  • the antenna unit may include: a dielectric substrate 11, an antenna layer 12 positioned on the first surface side of the dielectric substrate 11 , and a ground layer 13 located on the second surface side of the dielectric substrate 11, wherein the first surface and the second surface are two surfaces away from the dielectric substrate, the antenna layer 12 may include: a microstrip feeder 15, and a With the radiating patch 14 on one side of the feeder 15 along the first direction Y and the microstrip coupling line structure 16 at least partially surrounding the radiating patch 14 , the ground layer 13 may include: a floor groove 17 .
  • the orthographic projection of the floor groove 17 on the dielectric substrate 11 overlaps with the orthographic projection of the microstrip feeder 15 on the dielectric substrate 11, and the floor groove 17 is in the
  • the orthographic projection of the dielectric substrate 11 and the end of the microstrip coupling line structure 16 close to the microstrip feeder 15 overlap the orthographic projection of the dielectric substrate 11, so that the floor groove, the microstrip coupling line structure and the microstrip feeder form a conversion structure
  • the conversion structure is configured to realize the conversion between the single-ended signal and the differential signal, realize hybrid electromagnetic coupling in the antenna unit, and realize better filtering function.
  • the electrical coupling path is mainly generated by the gap capacitance between the microstrip feed line and the microstrip coupling line structure, while the magnetic coupling path is mainly realized by the floor groove, and the strength and phase of the two coupling paths are different.
  • the phases of the signals transmitted along the two paths are opposite, the magnetic coupling will be canceled by the electrical coupling, thereby enhancing the out-of-band suppression level of the antenna unit.
  • the microstrip coupling line structure 16 may include: a microstrip coupling line 162 , and first branch structures 161 located on both sides of the microstrip coupling line 162 in the first direction Y and the second branch structure 163, the first branch structure 161 may include: a first branch 161-1 extending along the first direction Y and a second branch 161-2 extending along the first direction Y, the microstrip coupling line 162 may include: a first microstrip coupling line 162-1 and a second microstrip coupling line 162-2, and the second branch structure 163 may include: a third branch 163-1 extending along the first direction Y and a third branch 163-1 extending along the first direction Y; The fourth branch 163-2 of the Y extension, wherein, the first end of the first branch 161-1 is connected to the first end of the second branch 161-2, and the second end of the first branch 161-1 is connected to the first The first end of the microstrip coupling line 162-1
  • the first microstrip coupling line 162-1 and the second microstrip coupling line 162-2 may be symmetrically arranged on both sides of the centerline CL of the dielectric substrate.
  • the shapes of the first microstrip coupling line 162-1 and the second microstrip coupling line 162-2 may be arcs.
  • the embodiments of the present disclosure do not limit this.
  • the first branch 161 - 1 and the second branch 161 - 2 may be symmetrically arranged on both sides of the centerline CL of the dielectric substrate.
  • both the first branch 161-1 and the second branch 161-2 may include: two sequentially connected "L"-shaped branches.
  • the embodiments of the present disclosure do not limit this.
  • the third branch 163 - 1 and the fourth branch 163 - 2 may be symmetrically arranged on both sides of the center line CL of the dielectric substrate.
  • both the third branch 163 - 1 and the fourth branch 163 - 2 may be "-" type branches extending along the first direction Y.
  • the embodiments of the present disclosure do not limit this.
  • the microstrip feeder 15 may be a uniform impedance microstrip feeder.
  • the microstrip feeder 15 may extend along the second direction X, and the shape of the microstrip feeder 15 may be "one".
  • the second direction X crosses the first direction Y.
  • the floor groove 17 may extend along the first direction Y, and the shape of the floor groove 17 may be a "one" shape.
  • the radiation patch 14 may be circular in shape.
  • FIG. 5A to FIG. 5D show the simulation results of the antenna unit shown in FIG. 2 , and the performance of the antenna unit shown in FIG. 2 will be described below in conjunction with the simulation results of the antenna unit.
  • Fig. 5 A shows the reflection coefficient (S11 parameter) curve in the scattering parameter (S parameter) of the antenna element shown in Fig. 2, as shown in Fig. 5 A, the -10dB (decibel) impedance bandwidth of this antenna element is about 9.89GHz (gigahertz) to 10.28GHz, and the antenna element exhibits a second-order filter response characteristic.
  • Figure 5B shows the gain curve of the antenna unit shown in Figure 2, as shown in Figure 5B, the gain of the antenna unit in the passband is about 8dBi, and the gain flatness in the passband is better; the antenna unit is in the passband There is a radiation null point on the left and right sides of the band, and the two radiation zero points are at 9.325GHz and 10.625GHz respectively; the stopband suppression of the antenna unit in the upper sideband is better than that in the lower sideband.
  • the electric field on the radiation patch of the antenna unit is very strong at the center frequency point (ie 10.075GHz), while at the two radiation
  • the field strength on the radiation patch at the zero point (9.325GHz and 10.625GHz) is very weak, and the antenna unit hardly radiates; the magnetic coupling strength of the antenna unit at the upper zero point is weaker than that at the lower zero point, so the antenna unit is at the upper
  • the level of out-of-band rejection at the zero point is better than at the lower zero point.
  • Figures 5C to 5D show the radiation patterns of the antenna unit shown in Figure 2 on the E plane and the H plane, as shown in Figures 5C to 5D, the antenna unit has a lower cross-polarization level and Stable radiation pattern.
  • the antenna unit provided by the embodiments of the present disclosure, by setting a space between the microstrip coupling line structure and the microstrip feeder line, and setting the orthographic projection of the floor groove on the dielectric substrate and the microstrip feeder line in the dielectric
  • the orthographic projection of the substrate overlaps, and the orthographic projection of the floor groove on the dielectric substrate and the end of the microstrip coupling line structure close to the microstrip feeder (that is, the first branch structure in the microstrip coupling line structure) are on the dielectric substrate.
  • the orthographic projections are partially overlapped so that the floor groove, the microstrip coupling line structure and the microstrip feeder line form a conversion structure.
  • the conversion between single-ended signals and differential signals can be realized through the conversion structure, hybrid electromagnetic coupling can be realized in the antenna unit, and a better filtering function can be realized. Therefore, by forming a conversion structure, the integrated design of the antenna, filter and balun is realized, without the need to introduce additional filter circuits and load complex parasitic structures, and the antenna unit can have simple antenna structure, small size, low structural profile, and low cost. It is low in weight, easy to process, easy to integrate with other modules, and can guarantee excellent antenna performance.
  • Fig. 6 is a second structural diagram of the antenna unit in an exemplary embodiment of the present disclosure.
  • the antenna unit may include: The substrate 11, the antenna layer 12 located on the first surface side of the dielectric substrate 11, and the ground layer 13 located on the second surface side of the dielectric substrate 11, wherein the first surface and the second surface are two sides of the dielectric substrate facing away from each other.
  • the antenna layer 12 may include: a microstrip feeder 15, a radiation patch 14 located on one side of the microstrip feeder 15 along the first direction Y, and a microstrip coupling line structure 16 at least partially surrounding the radiation patch 14, grounded Layer 13 may include: floor recesses 17 .
  • the orthographic projection of the floor groove 17 on the dielectric substrate 11 overlaps with the orthographic projection of the microstrip feeder 15 on the dielectric substrate 11, and the floor groove 17 is in the
  • the orthographic projection of the dielectric substrate 11 and the end of the microstrip coupling line structure 16 close to the microstrip feeder 15 overlap the orthographic projection of the dielectric substrate 11 to form a conversion structure, which can realize the conversion between single-ended signals and differential signals, and can Hybrid electromagnetic coupling is realized in the antenna unit, and better filtering function can be realized.
  • the microstrip coupling line structure 16 may include: a microstrip coupling line 162, and a first branch structure 161 and a second branch structure connected to the microstrip coupling line 162 163, the first stub structure 161 and the second stub structure 163 are located on both sides of the microstrip coupling line 162 in the first direction Y, the first stub structure 161 adopts a closed stub structure, and the second stub structure 163 adopts a short-circuit stub structure.
  • the second end of the first branch structure 161 is connected to the first end of the microstrip coupling line 162, the second end of the microstrip coupling line 162 is connected to the first end of the second branch structure 163, and the second branch structure 163 The second end is connected to the ground layer 13 through a via hole.
  • the first branch structure 161 may include: a first branch 161-1 extending along the first direction Y and a second branch 161 extending along the first direction Y -2, the first branch 161-1 and the second branch 161-2 extending along the first direction Y, the first branch 161-1 and the second branch 161-2 can be symmetrically arranged on the centerline CL of the dielectric substrate sides.
  • both the first branch 161-1 and the second branch 161-2 may include: two sequentially connected "L"-shaped branches.
  • the embodiments of the present disclosure do not limit this.
  • the microstrip coupling line 162 may include: a first microstrip coupling line 162-1 and a second microstrip coupling line 162-2, the first microstrip coupling line 162 -1 and the second microstrip coupling line 162-2 may be symmetrically arranged on both sides of the center line CL of the dielectric substrate.
  • the shapes of the first microstrip coupling line 162-1 and the second microstrip coupling line 162-2 may be arcs.
  • the embodiments of the present disclosure do not limit this.
  • the second branch structure 163 may include: a third branch 163-1 extending along the first direction Y and a fourth branch 163-1 extending along the first direction Y. 2.
  • the third branch 163-1 and the fourth branch 163-2 may be symmetrically arranged on both sides of the centerline CL of the dielectric substrate.
  • both the third branch 163 - 1 and the fourth branch 163 - 2 may be "-" type branches extending along the first direction Y.
  • the embodiments of the present disclosure do not limit this.
  • the first end of the first branch 161-1 is connected to the first end of the second branch 161-2, and the second end of the first branch 161-1 It is connected to the first end of the first microstrip coupling line 162-1, the second end of the first microstrip coupling line 162-1 is connected to the first end of the third branch 163-1, and the second end of the second branch 161-2
  • the second end is connected to the first end of the second microstrip coupling line 162-2, the second end of the second microstrip coupling line 162-2 is connected to the first end of the fourth branch 163-2, and the third branch 163
  • the second end of -1 is connected to the ground layer 13 through a via hole, and the second end of the fourth branch 163-2 is connected to the ground layer 13 through a via hole.
  • the microstrip feeder 15 may use a uniform impedance microstrip feeder.
  • the microstrip feeder 15 may extend along the second direction X, and the shape of the microstrip feeder 15 may be "one".
  • the second direction X crosses the first direction Y.
  • the floor groove 17 may extend along the first direction Y, and the shape of the floor groove 17 may be a "one" shape.
  • the radiation patch 14 may be circular in shape.
  • FIG. 7A to 7D show the simulation results of the antenna unit shown in FIG. 6 , and the performance of the antenna unit shown in FIG. 6 will be described below in conjunction with the simulation results of the antenna unit.
  • Figure 7B shows the gain curve of the antenna unit shown in Figure 6, as shown in Figure 7B, the gain of the antenna unit in the passband is about 8dBi, and the gain flatness in the passband is better; the antenna unit is in the passband There is a radiation null point on the left and right sides of the band, and the two radiation zero points are at 9.4GHz and 10.6GHz respectively; the stopband suppression of the antenna unit in the upper sideband is better than that in the lower sideband.
  • the electric field on the radiation patch of the antenna unit is very strong at the center frequency point (10.1GHz), while at the two radiation
  • the field strength on the radiation patch at the zero point (9.4GHz and 10.6GHz) is very weak, and the antenna unit hardly radiates; the magnetic coupling strength of the antenna unit at the upper zero point is weaker than that at the lower zero point, so the antenna unit is at the upper zero point.
  • the level of out-of-band rejection at the zero point is better than at the lower zero point.
  • Figures 7C to 7D show the radiation patterns of the antenna unit shown in Figure 6 on the E plane and the H plane, as shown in Figures 7C to 7D, the antenna unit has a lower cross-polarization level and Stable radiation pattern.
  • the antenna unit provided by the embodiments of the present disclosure, by setting a space between the microstrip coupling line structure and the microstrip feeder line, and setting the orthographic projection of the floor groove on the dielectric substrate and the microstrip feeder line in the dielectric
  • the orthographic projection of the substrate overlaps, and the orthographic projection of the floor groove on the dielectric substrate and the end of the microstrip coupling line structure close to the microstrip feeder (that is, the first branch structure in the microstrip coupling line structure) are on the dielectric substrate.
  • the orthographic projections are partially overlapped so that the floor groove, the microstrip coupling line structure and the microstrip feeder line form a conversion structure.
  • the conversion between single-ended signals and differential signals can be realized through the conversion structure, hybrid electromagnetic coupling can be realized in the antenna unit, and a better filtering function can be realized. Therefore, by forming a conversion structure, the integrated design of the antenna, filter and balun is realized, without the need to introduce additional filter circuits and load complex parasitic structures, and the antenna unit can have simple antenna structure, small size, low structural profile, and low cost. It is low in weight, easy to process, easy to integrate with other modules, and can guarantee excellent antenna performance.
  • Fig. 8 is a third structural diagram of the antenna unit in an exemplary embodiment of the present disclosure.
  • the antenna unit may include: The substrate 11, the antenna layer 12 located on the first surface side of the dielectric substrate 11, and the ground layer 13 located on the second surface side of the dielectric substrate 11, wherein the first surface and the second surface are two sides of the dielectric substrate facing away from each other.
  • the orthographic projection of the floor groove 17 on the dielectric substrate 11 overlaps with the orthographic projection of the microstrip feeder 15 on the dielectric substrate 11, and the floor groove 17 is in the
  • the orthographic projection of the dielectric substrate 11 and the end of the microstrip coupling line structure 16 close to the microstrip feeder 15 overlap the orthographic projection of the dielectric substrate 11 to form a conversion structure, which can realize the conversion between single-ended signals and differential signals, and can Hybrid electromagnetic coupling is realized in the antenna unit, and better filtering function can be realized.
  • the microstrip coupling line structure 16 may include: a microstrip coupling line 162, and a first branch structure 161 and a second branch structure connected to the microstrip coupling line 162 163, the first branch structure 161 and the second branch structure 163 are located on both sides of the microstrip coupling line 162 in the first direction Y, the first branch structure 161 adopts a closed branch structure, and the second branch structure 163 adopts a closed branch structure.
  • the second end of the first branch structure 161 is connected to the first end of the microstrip coupling line 162
  • the second end of the microstrip coupling line 162 is connected to the first end of the second branch structure 163 .
  • the first branch structure 161 may include: a first branch 161-1 extending along the first direction Y and a second branch 161 extending along the first direction Y -2, the first branch 161-1 and the second branch 161-2 extending along the first direction Y, the first branch 161-1 and the second branch 161-2 can be symmetrically arranged on the centerline CL of the dielectric substrate sides.
  • both the first branch 161-1 and the second branch 161-2 may include: two sequentially connected "L"-shaped branches.
  • this disclosure is not limited in this embodiment.
  • the microstrip coupling line 162 may include: a first microstrip coupling line 162-1 and a second microstrip coupling line 162-2, the first microstrip coupling line 162 -1 and the second microstrip coupling line 162-2 may be symmetrically arranged on both sides of the center line CL of the dielectric substrate.
  • the shapes of the first microstrip coupling line 162-1 and the second microstrip coupling line 162-2 may be arcs.
  • the embodiments of the present disclosure do not limit this.
  • the second branch structure 163 may include: a third branch 163-1 extending along the first direction Y and a fourth branch 163-1 extending along the first direction Y. 2.
  • the third branch 163-1 and the fourth branch 163-2 may be symmetrically arranged on both sides of the centerline CL of the dielectric substrate.
  • both the third branch 163-1 and the fourth branch 163-2 may be "L"-shaped branches extending along the first direction Y.
  • the embodiments of the present disclosure do not limit this.
  • the first end of the first branch 161-1 is connected to the first end of the second branch 161-2, and the second end of the first branch 161-1 It is connected to the first end of the first microstrip coupling line 162-1, the second end of the first microstrip coupling line 162-1 is connected to the first end of the third branch 163-1, and the second end of the second branch 161-2
  • the second end is connected to the first end of the second microstrip coupling line 162-2, the second end of the second microstrip coupling line 162-2 is connected to the first end of the fourth branch 163-2, and the third branch 163
  • the second end of -1 is connected to the second end of the fourth branch 163-2.
  • the microstrip feeder 15 may use a uniform impedance microstrip feeder.
  • the microstrip feeder 15 may extend along the second direction X, and the shape of the microstrip feeder 15 may be "one".
  • the second direction X crosses the first direction Y.
  • the floor groove 17 can be a rectangular groove, for example, the floor groove 17 can extend along the first direction Y, and the shape of the floor groove 17 can be "a " font.
  • the radiation patch 14 may be circular in shape.
  • 9A to 9D show the simulation results of the antenna unit shown in FIG. 8 , and the performance of the antenna unit shown in FIG. 8 will be described below in conjunction with the simulation results of the antenna unit.
  • Figure 9A shows the reflection coefficient (S11 parameter) curve in the scattering parameter (S parameter) of the antenna unit shown in Figure 8, as shown in Figure 9A, the -10dB (decibel) impedance bandwidth of this antenna unit is about 9.83GHz (gigahertz) to 10.22GHz, and the antenna element exhibits a second-order filter response characteristic.
  • Figure 9B shows the gain curve of the antenna unit shown in Figure 8, as shown in Figure 9B, the gain of the antenna unit in the passband is about 8dBi, and the gain flatness in the passband is better; the antenna unit is in the passband There is a radiation null point on the left and right sides of the band, and the two radiation zero points are at 9.375GHz and 10.6GHz respectively; the stopband suppression of the antenna unit in the upper sideband is better than that in the lower sideband.
  • the field strength on the radiation patch at the zero point (9.375GHz and 10.6GHz) is very weak, and the antenna unit hardly radiates; the magnetic coupling strength of the antenna unit at the upper zero point is weaker than that at the lower zero point, so the antenna unit is at the upper zero point.
  • the level of out-of-band rejection at the zero point is better than at the lower zero point.
  • Figures 9C to 9D show the radiation patterns of the antenna unit shown in Figure 8 on the E plane and the H plane, as shown in Figures 9C to 9D, the antenna unit has a lower cross-polarization level and Stable radiation pattern.
  • the antenna unit provided by the embodiments of the present disclosure, by setting a space between the microstrip coupling line structure and the microstrip feeder line, and setting the orthographic projection of the floor groove on the dielectric substrate and the microstrip feeder line in the dielectric
  • the orthographic projection of the substrate overlaps, and the orthographic projection of the floor groove on the dielectric substrate and the end of the microstrip coupling line structure close to the microstrip feeder (that is, the first branch structure in the microstrip coupling line structure) are on the dielectric substrate.
  • the orthographic projections are partially overlapped so that the floor groove, the microstrip coupling line structure and the microstrip feeder line form a conversion structure.
  • the conversion between single-ended signals and differential signals can be realized through the conversion structure, hybrid electromagnetic coupling can be realized in the antenna unit, and a better filtering function can be realized. Therefore, by forming a conversion structure, the integrated design of the antenna, filter and balun is realized, without the need to introduce additional filter circuits and load complex parasitic structures, and the antenna unit can have simple antenna structure, small size, low structural profile, and low cost. It is low in weight, easy to process, easy to integrate with other modules, and can guarantee excellent antenna performance.
  • FIG. 10 is a schematic diagram of a fourth structure of the antenna unit in an exemplary embodiment of the present disclosure.
  • the antenna unit may include: The substrate 11 , the antenna layer 12 located on the first surface side of the dielectric substrate 11 , and the ground layer 13 located on the second surface side of the dielectric substrate 11 .
  • the antenna layer 12 may include: a microstrip feeder 15, and a radiation patch 14 located on one side of the microstrip feeder 15 along the first direction Y and At least partially surrounding the microstrip coupling line structure 16 of the radiating patch 14 , the ground layer 13 may include: a floor groove 17 .
  • the orthographic projection of the floor groove 17 on the dielectric substrate 11 overlaps with the orthographic projection of the microstrip feeder 15 on the dielectric substrate 11, and the floor groove 17 is in the
  • the orthographic projection of the dielectric substrate 11 and the end of the microstrip coupling line structure 16 close to the microstrip feeder 15 overlap the orthographic projection of the dielectric substrate 11 to form a conversion structure, which can realize the conversion between single-ended signals and differential signals, and can Hybrid electromagnetic coupling is realized in the antenna unit, and better filtering function can be realized.
  • the floor groove 17 may extend along the first direction Y, and the shape of the floor groove 17 may be an "H" shape.
  • the floor groove 17 may include: a first groove, a second groove and a third groove arranged in sequence along the first direction Y, wherein the width of the second groove is the same as the width of the first groove and the width of the third groove.
  • the grooves are not of the same width.
  • the width of the second groove is smaller than the width of the first groove and smaller than the width of the third groove.
  • the width of the first groove and the width of the third groove are equal.
  • the width of the groove refers to the dimension characteristic along the second direction X.
  • the second direction X crosses the first direction Y.
  • the embodiments of the present disclosure do not limit this.
  • the radiation patch 14 may be circular in shape.
  • the microstrip feeder 15 may be a uniform impedance microstrip feeder.
  • the microstrip feeder 15 may extend along the second direction X, and the shape of the microstrip feeder 15 may be "one".
  • the second direction X crosses the first direction Y.
  • the microstrip coupling line structure 16 may include: a microstrip coupling line 162, and a first branch structure 161 and a second branch structure connected to the microstrip coupling line 162 163, the first branch structure 161 and the second branch structure 163 are located on both sides of the microstrip coupling line 162 in the first direction Y, the first branch structure 161 adopts a closed branch structure, and the second branch structure 163 adopts a closed branch structure.
  • the second end of the first branch structure 161 is connected to the first end of the microstrip coupling line 162
  • the second end of the microstrip coupling line 162 is connected to the first end of the second branch structure 163 .
  • the first branch structure 161 may be an axisymmetric structure, and the axis of symmetry of the first branch structure 161 may be the centerline CL of the dielectric substrate.
  • the first branch structure 161 may include: a first branch 161-1 extending along the first direction Y and a second branch 161-2 extending along the first direction Y, the first branch 161-1 and The second branch 161 - 2 , the first branch 161 - 1 and the second branch 161 - 2 extending in one direction Y may be arranged symmetrically on both sides of the centerline CL of the dielectric substrate.
  • both the first branch 161-1 and the second branch 161-2 may include: two sequentially connected "L"-shaped branches.
  • this disclosure is not limited in this embodiment.
  • the microstrip coupling line 162 may have an axisymmetric structure, and the symmetry axis of the microstrip coupling line 162 may be the centerline CL of the dielectric substrate.
  • the microstrip coupling line 162 may include: a first microstrip coupling line 162-1 and a second microstrip coupling line 162-2, and the first microstrip coupling line 162-1 and the second microstrip coupling line 162-2 may symmetrically arranged on both sides of the center line CL of the dielectric substrate.
  • the shapes of the first microstrip coupling line 162-1 and the second microstrip coupling line 162-2 may be arcs.
  • this disclosure is not limited in this embodiment.
  • the second branch structure 163 may be an axisymmetric structure, and the symmetry axis of the second branch structure 163 may be the center line CL of the dielectric substrate.
  • the second branch structure 163 may include: a third branch 163-1 extending along the first direction Y and a fourth branch 163-2 extending along the first direction Y, the third branch 163-1 and the fourth branch 163-2 may be symmetrically disposed on both sides of the center line CL of the dielectric substrate.
  • both the third branch 163-1 and the fourth branch 163-2 may be "L"-shaped branches extending along the first direction Y.
  • the embodiments of the present disclosure do not limit this.
  • the first end of the first branch 161-1 is connected to the first end of the second branch 161-2, and the second end of the first branch 161-1 It is connected to the first end of the first microstrip coupling line 162-1, the second end of the first microstrip coupling line 162-1 is connected to the first end of the third branch 163-1, and the second end of the second branch 161-2
  • the second end is connected to the first end of the second microstrip coupling line 162-2, the second end of the second microstrip coupling line 162-2 is connected to the first end of the fourth branch 163-2, and the third branch 163
  • the second end of -1 is connected to the second end of the fourth branch 163-2.
  • FIG. 11A to FIG. 11D show simulation results of the antenna unit shown in FIG. 10 , and the performance of the antenna unit shown in FIG. 10 will be described below in conjunction with the simulation results of the antenna unit.
  • Fig. 11A shows the reflection coefficient (S11 parameter) curve in the scattering parameter (S parameter) of the antenna element shown in Fig. 10, as shown in Fig. 11A, the -10dB (decibel) impedance bandwidth of this antenna element is about 9.94GHz (gigahertz) to 10.26GHz, and the antenna element exhibits a first-order filter response characteristic.
  • Figure 11B shows the gain curve of the antenna unit shown in Figure 10, as shown in Figure 11B, the gain of the antenna unit in the passband is about 8dBi, and the gain flatness in the passband is better; the antenna unit is in the passband There is a radiation null point on the left and right sides of the band, and the two radiation zero points are at 9.3GHz and 10.65GHz respectively; the stopband suppression of the antenna unit in the upper sideband is better than that in the lower sideband.
  • the antenna unit shown in Figure 10 at the center frequency point i.e. 10.1GHz
  • two radiation null points i.e. 9.3GHz and 10.65GHz
  • the antenna unit shown in Figure 10 at the center frequency point i.e.
  • Figures 11C to 11D show the radiation patterns of the antenna unit shown in Figure 10 on the E plane and the H plane, as shown in Figures 11C to 11D, the antenna unit has a lower cross-polarization level and Stable radiation pattern.
  • the floor groove 17 may include: a first groove, a second groove and a third groove arranged in sequence along the first direction Y, the width of the first groove is equal to the width of the third groove, and the width of the third groove is equal to that of the third groove.
  • the width of the second groove is smaller than that of the first groove. According to the simulation results, when the length of the second groove varies from about 2.0mm to 2.65mm, the antenna performance of the antenna unit is basically not affected.
  • the width of the groove refers to the dimensional characteristic along the second direction X, and the length of the groove refers to the dimensional characteristic along the first direction Y.
  • the antenna unit provided by the embodiments of the present disclosure, by setting a space between the microstrip coupling line structure and the microstrip feeder line, and setting the orthographic projection of the floor groove on the dielectric substrate and the microstrip feeder line in the dielectric
  • the orthographic projection of the substrate overlaps, and the orthographic projection of the floor groove on the dielectric substrate and the end of the microstrip coupling line structure close to the microstrip feeder (that is, the first branch structure in the microstrip coupling line structure) are on the dielectric substrate.
  • the orthographic projections are partially overlapped so that the floor groove, the microstrip coupling line structure and the microstrip feeder line form a conversion structure.
  • the conversion between single-ended signals and differential signals can be realized through the conversion structure, hybrid electromagnetic coupling can be realized in the antenna unit, and a better filtering function can be realized. Therefore, by forming a conversion structure, the integrated design of the antenna, filter and balun is realized, without the need to introduce additional filter circuits and load complex parasitic structures, and the antenna unit can have simple antenna structure, small size, low structural profile, and low cost. It is low in weight, easy to process, easy to integrate with other modules, and can guarantee excellent antenna performance.
  • FIG. 12 is a schematic diagram of a fifth structure of the antenna unit in an exemplary embodiment of the present disclosure.
  • the antenna unit may include: The substrate 11 , the antenna layer 12 located on the first surface side of the dielectric substrate 11 , and the ground layer 13 located on the second surface side of the dielectric substrate 11 .
  • the antenna layer 12 may include: a microstrip feeder 15, and a radiation patch 14 located on one side of the microstrip feeder 15 along the first direction Y and At least partially surrounding the microstrip coupling line structure 16 of the radiating patch 14 , the ground layer 13 may include: a floor groove 17 .
  • the orthographic projection of the floor groove 17 on the dielectric substrate 11 overlaps with the orthographic projection of the microstrip feeder 15 on the dielectric substrate 11, and the floor groove 17 is in the
  • the orthographic projection of the dielectric substrate 11 and the end of the microstrip coupling line structure 16 close to the microstrip feeder 15 overlap the orthographic projection of the dielectric substrate 11 to form a conversion structure, which can realize the conversion between single-ended signals and differential signals, and can Hybrid electromagnetic coupling is realized in the antenna unit, and better filtering function can be realized.
  • the floor groove 17 may extend along the first direction Y, and the shape of the floor groove 17 may be an "H" shape.
  • the floor groove 17 may include: a first groove, a second groove and a third groove arranged in sequence along the first direction Y, wherein the width of the second groove is the same as the width of the first groove and the width of the third groove.
  • the grooves are not of the same width.
  • the width of the second groove is smaller than the width of the first groove and smaller than the width of the third groove.
  • the width of the first groove is equal to the width of the third groove.
  • the width of the groove refers to the dimension characteristic along the second direction X.
  • the second direction X crosses the first direction Y.
  • the embodiments of the present disclosure do not limit this.
  • the radiation patch 14 may be circular in shape.
  • the microstrip coupling line structure 16 may include: a microstrip coupling line 162, and a first branch structure 161 and a second branch structure connected to the microstrip coupling line 162 163, the first branch structure 161 and the second branch structure 163 are located on both sides of the microstrip coupling line 162 in the first direction Y, the first branch structure 161 adopts a closed branch structure, and the second branch structure 163 adopts a closed branch structure.
  • the second end of the first branch structure 161 is connected to the first end of the microstrip coupling line 162
  • the second end of the microstrip coupling line 162 is connected to the first end of the second branch structure 163 .
  • the first branch structure 161 may be an axisymmetric structure, and the axis of symmetry of the first branch structure 161 may be the centerline CL of the dielectric substrate.
  • the first branch structure 161 may include: a first branch 161-1 extending along the first direction Y and a second branch 161-2 extending along the first direction Y, the first branch 161-1 and the second The branches 161-2 may be symmetrically arranged on both sides of the center line CL of the dielectric substrate.
  • both the first branch 161-1 and the second branch 161-2 may include: two sequentially connected "L"-shaped branches.
  • the embodiments of the present disclosure do not limit this.
  • the microstrip coupling line 162 may have an axisymmetric structure, and the symmetry axis of the microstrip coupling line 162 may be the centerline CL of the dielectric substrate.
  • the microstrip coupling line 162 may include: a first microstrip coupling line 162-1 and a second microstrip coupling line 162-2, and the first microstrip coupling line 162-1 and the second microstrip coupling line 162-2 may symmetrically arranged on both sides of the centerline CL of the dielectric substrate.
  • the shapes of the first microstrip coupling line 162-1 and the second microstrip coupling line 162-2 may be arcs.
  • the embodiments of the present disclosure do not limit this.
  • the second branch structure 163 may be an axisymmetric structure, and the symmetry axis of the second branch structure 163 may be the center line CL of the dielectric substrate.
  • the second branch structure 163 may include: a third branch 163-1 extending along the first direction Y and a fourth branch 163-2 extending along the first direction Y, the third branch 163-1 and the fourth branch 163-2 may be symmetrically disposed on both sides of the centerline CL of the dielectric substrate.
  • both the third branch 163-1 and the fourth branch 163-2 may be "L"-shaped branches extending along the first direction Y.
  • the embodiments of the present disclosure do not limit this.
  • the first end of the first branch 161-1 is connected to the first end of the second branch 161-2, and the second end of the first branch 161-1 It is connected to the first end of the first microstrip coupling line 162-1, the second end of the first microstrip coupling line 162-1 is connected to the first end of the third branch 163-1, and the second end of the second branch 161-2
  • the second end is connected to the first end of the second microstrip coupling line 162-2, the second end of the second microstrip coupling line 162-2 is connected to the first end of the fourth branch 163-2, and the third branch 163
  • the second end of -1 is connected to the second end of the fourth branch 163-2.
  • 13A to 13D show the simulation results of the antenna unit shown in FIG. 12 , and the performance of the antenna unit shown in FIG. 12 will be described below in conjunction with the simulation results of the antenna unit.
  • Figure 13A shows the reflection coefficient (S11 parameter) curve in the scattering parameter (S parameter) of the antenna unit shown in Figure 12, as shown in Figure 13A, the -10dB (decibel) impedance bandwidth of this antenna unit is about 9.93GHz (gigahertz) to 10.30GHz, and the antenna element exhibits a second-order filter response characteristic.
  • the impedance bandwidth of the antenna unit shown in FIG. 12 is slightly wider, and the filter response order is better.
  • Figure 13B shows the gain curve of the antenna unit shown in Figure 12, as shown in Figure 13B, the gain of the antenna unit in the passband is about 7dBi, and the gain flatness in the passband is better; the antenna unit is in the passband There is a radiation null point on the left and right sides of the band, and the two radiation zero points are at 9.25GHz and 10.875GHz respectively; the stopband suppression of the antenna unit in the lower sideband is better than that in the upper sideband.
  • Figures 13C to 13D show the radiation patterns of the antenna unit shown in Figure 12 on the E plane and the H plane, as shown in Figures 13C to 13D, the antenna unit has a lower cross-polarization level and Stable radiation pattern.
  • the microstrip feeder 15 may include: a first feeder, a second feeder and a third feeder arranged in sequence along the second direction X, the width of the second feeder is smaller than the width of the first feeder, and the width of the first feeder and the second feeder As an example, the widths of the three feeders are equal.
  • the microstrip feeder 15 in the antenna unit shown in FIG. 12 changes from a uniform impedance microstrip feeder to a step impedance microstrip feeder.
  • the simulation results of the antenna unit shown in FIG. 10 it can be seen from the simulation results of the antenna unit shown in FIG.
  • the antenna filtering performance and antenna radiation performance are not significantly affected, and the cross-polarization of the antenna unit is not significantly affected, and slightly affects the sideband suppression levels of the upper and lower sidebands.
  • the antenna unit provided by the embodiments of the present disclosure, by setting a space between the microstrip coupling line structure and the microstrip feeder line, and setting the orthographic projection of the floor groove on the dielectric substrate and the microstrip feeder line in the dielectric
  • the orthographic projection of the substrate overlaps, and the orthographic projection of the floor groove on the dielectric substrate and the end of the microstrip coupling line structure close to the microstrip feeder (that is, the first branch structure in the microstrip coupling line structure) are on the dielectric substrate.
  • the orthographic projections are partially overlapped so that the floor groove, the microstrip coupling line structure and the microstrip feeder line form a conversion structure.
  • the conversion between single-ended signals and differential signals can be realized through the conversion structure, hybrid electromagnetic coupling can be realized in the antenna unit, and a better filtering function can be realized. Therefore, by forming a conversion structure, the integrated design of the antenna, filter and balun is realized, without the need to introduce additional filter circuits and load complex parasitic structures, and the antenna unit can have simple antenna structure, small size, low structural profile, and low cost. It is low in weight, easy to process, easy to integrate with other modules, and can guarantee excellent antenna performance.
  • Fig. 14 is a schematic diagram of the sixth structure of the antenna unit in an exemplary embodiment of the present disclosure.
  • the antenna unit may include: The substrate 11 , the antenna layer 12 located on the first surface side of the dielectric substrate 11 , and the ground layer 13 located on the second surface side of the dielectric substrate 11 .
  • the antenna layer 12 may include: a microstrip feeder 15, and a radiation patch 14 located on one side of the microstrip feeder 15 along the first direction Y and At least partially surrounding the microstrip coupling line structure 16 of the radiating patch 14 , the ground layer 13 may include: a floor groove 17 .
  • the orthographic projection of the floor groove 17 on the dielectric substrate 11 overlaps with the orthographic projection of the microstrip feeder 15 on the dielectric substrate 11, and the floor groove 17 is in the
  • the orthographic projection of the dielectric substrate 11 and the end of the microstrip coupling line structure 16 close to the microstrip feeder 15 overlap the orthographic projection of the dielectric substrate 11 to form a conversion structure, which can realize the conversion between single-ended signals and differential signals, and can Hybrid electromagnetic coupling is realized in the antenna unit, and better filtering function can be realized.
  • the floor groove 17 may extend along the first direction Y, and the shape of the floor groove 17 may be a "one" shape.
  • the floor groove 17 may adopt a rectangular groove.
  • the microstrip feeder 15 may adopt a step impedance microstrip feeder.
  • the microstrip feeder 15 may extend along the second direction X, and the shape of the microstrip feeder 15 may be "H".
  • the microstrip feeder 15 may include: a first feeder, a second feeder and a third feeder arranged in sequence along the second direction X, wherein the width of the second feeder is different from the width of the first feeder and the width of the third feeder
  • the width of the second feeder is smaller than the width of the first feeder and smaller than the width of the third feeder.
  • the width of the first feeder is equal to the width of the third feeder.
  • the width of the feeder line refers to a dimension characteristic along the first direction Y.
  • the second direction X crosses the first direction Y.
  • the embodiments of the present disclosure do not limit this.
  • the radiation patch 14 may be circular in shape.
  • the microstrip coupling line structure 16 may include: a microstrip coupling line 162, and a first branch structure 161 and a second branch structure connected to the microstrip coupling line 162 163, the first branch structure 161 and the second branch structure 163 are located on both sides of the microstrip coupling line 162 in the first direction Y, the first branch structure 161 adopts a closed branch structure, and the second branch structure 163 adopts a closed branch structure.
  • the second end of the first branch structure 161 is connected to the first end of the microstrip coupling line 162, and the second end of the microstrip coupling line 162 is connected to the first end of the second branch structure 163.
  • the first branch structure 161 may be an axisymmetric structure, and the axis of symmetry of the first branch structure 161 may be the center line CL of the dielectric substrate.
  • the first branch structure 161 may include: a first branch 161-1 extending along the first direction Y and a second branch 161-2 extending along the first direction Y, the first branch 161-1 and The second branch 161 - 2 , the first branch 161 - 1 and the second branch 161 - 2 extending in one direction Y may be arranged symmetrically on both sides of the centerline CL of the dielectric substrate.
  • both the first branch 161-1 and the second branch 161-2 may include: two sequentially connected "L"-shaped branches.
  • the embodiments of the present disclosure do not limit this.
  • the microstrip coupling line 162 may have an axisymmetric structure, and the symmetry axis of the microstrip coupling line 162 may be the centerline CL of the dielectric substrate.
  • the microstrip coupling line 162 may include: a first microstrip coupling line 162-1 and a second microstrip coupling line 162-2, and the first microstrip coupling line 162-1 and the second microstrip coupling line 162-2 may symmetrically arranged on both sides of the center line CL of the dielectric substrate.
  • the shapes of the first microstrip coupling line 162-1 and the second microstrip coupling line 162-2 may be arcs.
  • the embodiments of the present disclosure do not limit this.
  • the second branch structure 163 may be an axisymmetric structure, and the symmetry axis of the second branch structure 163 may be the centerline CL of the dielectric substrate.
  • the second branch structure 163 may include: a third branch 163-1 extending along the first direction Y and a fourth branch 163-2 extending along the first direction Y, the third branch 163-1 and the fourth branch 163-2 may be symmetrically disposed on both sides of the center line CL of the dielectric substrate.
  • both the third branch 163-1 and the fourth branch 163-2 may be "L"-shaped branches extending along the first direction Y.
  • the embodiments of the present disclosure do not limit this.
  • the first end of the first branch 161-1 is connected to the first end of the second branch 161-2, and the second end of the first branch 161-1 It is connected to the first end of the first microstrip coupling line 162-1, the second end of the first microstrip coupling line 162-1 is connected to the first end of the third branch 163-1, and the second end of the second branch 161-2
  • the second end is connected to the first end of the second microstrip coupling line 162-2, the second end of the second microstrip coupling line 162-2 is connected to the first end of the fourth branch 163-2, and the third branch 163
  • the second end of -1 is connected to the second end of the fourth branch 163-2.
  • FIGS 15A to 15D show the simulation results of the antenna unit shown in Figure 14, and the performance of the antenna unit shown in Figure 14 will be described below in conjunction with the simulation results of the antenna unit.
  • Figure 15A shows the reflection coefficient (S11 parameter) curve in the scattering parameter (S parameter) of the antenna element shown in Figure 14, as shown in Figure 15A, the -10dB (decibel) impedance bandwidth of this antenna element is about 9.94GHz (gigahertz) to 10.31GHz, and the antenna element exhibits a second-order filter response characteristic.
  • the impedance bandwidth of the antenna unit shown in FIG. 14 does not change significantly.
  • Figure 15B shows the gain curve of the antenna unit shown in Figure 14, as shown in Figure 15B, the gain of the antenna unit in the passband is about 7dBi, and the gain flatness in the passband is better; the antenna unit is in the passband There is a radiation null point on the left and right sides of the band, and the two radiation zero points are at 9.325GHz and 10.825GHz respectively; the stopband suppression of the antenna unit in the lower sideband is better than that in the upper sideband.
  • the electric field on the radiation patch of the antenna unit is very strong at the center frequency point (10.0GHz), while at the two radiation
  • the field strength on the radiation patch at the zero point (9.325GHz and 10.825GHz) is very weak, and the antenna unit hardly radiates; the magnetic coupling strength of the antenna unit at the upper zero point is not much different from that at the lower zero point.
  • the electric field distribution at is slightly stronger than that at the upper zero point, therefore, the out-of-band suppression level at the lower zero point is better than that at the upper zero point.
  • Figures 15C to 15D show the radiation patterns of the antenna unit shown in Figure 14 on the E plane and the H plane, as shown in Figures 15C to 15D, the antenna unit has a lower cross-polarization level and Stable radiation pattern.
  • the floor groove 17 in the antenna unit shown in FIG. 14 is changed to a “one”-shaped rectangular groove.
  • the cross-polarization of the antenna elements is affected (for example, from -27dB to -20dB), and the sideband suppression level of the lower sideband is affected.
  • the antenna unit provided by the embodiments of the present disclosure, by setting a space between the microstrip coupling line structure and the microstrip feeder line, and setting the orthographic projection of the floor groove on the dielectric substrate and the microstrip feeder line in the dielectric
  • the orthographic projection of the substrate overlaps, and the orthographic projection of the floor groove on the dielectric substrate and the end of the microstrip coupling line structure close to the microstrip feeder (that is, the first branch structure in the microstrip coupling line structure) are on the dielectric substrate.
  • the orthographic projections are partially overlapped so that the floor groove, the microstrip coupling line structure and the microstrip feeder line form a conversion structure.
  • the conversion between single-ended signals and differential signals can be realized through the conversion structure, hybrid electromagnetic coupling can be realized in the antenna unit, and a better filtering function can be realized. Therefore, by forming a conversion structure, the integrated design of the antenna, filter and balun is realized, without the need to introduce additional filter circuits and load complex parasitic structures, and the antenna unit can have simple antenna structure, small size, low structural profile, and low cost. It is low in weight, easy to process, easy to integrate with other modules, and can guarantee excellent antenna performance.
  • An embodiment of the present disclosure further provides an electronic device, which may include: the antenna unit in one or more embodiments above.
  • the electronic device may include, but is not limited to, any product or component with a communication function such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, or a navigator.
  • a communication function such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, or a navigator.
  • the embodiment of the present disclosure does not limit the type of the electronic device.
  • Other essential components of the electronic device should be understood by those of ordinary skill in the art, and will not be repeated here, nor should they be used as limitations on the present disclosure.
  • the electronic equipment in the embodiments of the present disclosure may include other necessary components and structures in addition to the above-mentioned structures, and those skilled in the art may design and supplement correspondingly according to the type of the electronic equipment, and no further repeat.

Landscapes

  • Waveguide Aerials (AREA)

Abstract

一种天线单元及电子设备,该天线单元,包括:介质基板、以及位于介质基板的两侧的天线层和接地层;其中,所述天线层包括:微带馈线以及位于所述微带馈线的第一方向一侧的辐射贴片和微带耦合线结构,所述微带耦合线结构包括:沿第一方向依次连接的第一枝节结构、微带耦合线和第二枝节结构,所述第一枝节结构与所述微带馈线间隔设置,所述接地层包括:地板凹槽,所述地板凹槽在所述介质基板的正投影与所述微带馈线在所述介质基板的正投影具有第一交叠区域,且与所述第一枝节结构在所述介质基板的正投影具有第二交叠区域。

Description

天线单元及电子设备 技术领域
本公开实施例涉及但不限于通信技术领域,尤其涉及一种天线单元及电子设备。
背景技术
天线和滤波器作为射频前端两个重要组件,其中,天线负责接收/发射电磁信号,滤波器负责滤波干扰信号,它们的性能对无线通讯系统的整体工作质量起到决定性作用。目前,随着电子设备的发展,为了顺应无线通信系统小型化和集成化的发展趋势,滤波天线被提出并受到广泛关注,其中,滤波天线(Filtering antenna)是一种可以将传统滤波器的滤波功能和天线的辐射功能集成在同一器件中的天线单元。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
一方面,本公开实施例提供了一种天线单元,包括:介质基板、以及位于介质基板的两侧的天线层和接地层;其中,所述天线层包括:微带馈线以及位于所述微带馈线的第一方向一侧的辐射贴片和微带耦合线结构,所述微带耦合线结构包括:沿第一方向依次连接的第一枝节结构、微带耦合线和第二枝节结构,所述第一枝节结构与所述微带馈线间隔设置,所述接地层包括:地板凹槽,所述地板凹槽在所述介质基板的正投影与所述微带馈线在所述介质基板的正投影具有第一交叠区域,且与所述第一枝节结构在所述介质基板的正投影具有第二交叠区域。
另一方面,本公开实施例还提供了一种电子设备,包括:上述实施例中所述的天线单元。
本公开的其它特征和优点将在随后的说明书中阐述,并且,部分地从说 明书中变得显而易见,或者通过实施本公开而了解。本公开的其他优点可通过在说明书以及附图中所描述的方案来实现和获得。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本公开技术方案的理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开的技术方案的限制。附图中每个部件的形状和大小不反映真实比例,目的只是示意说明本公开内容。
图1为一种滤波天线的结构示意图;
图2为本公开示例性实施例中的天线单元的第一种结构示意图;
图3为图2所示的天线单元的平面示意图;
图4为图3所示的天线单元的沿CL方向的剖面示意图;
图5A至图5D为图2所示的天线单元的仿真结果示意图;
图6为本公开示例性实施例中的天线单元的第二种结构示意图;
图7A至图7D为图6所示的天线单元的仿真结果示意图;
图8为本公开示例性实施例中的天线单元的第三种结构示意图;
图9A至图9D为图8所示的天线单元的仿真结果示意图;
图10为本公开示例性实施例中的天线单元的第四种结构示意图;
图11A至图11D为图10所示的天线单元的仿真结果示意图;
图12为本公开示例性实施例中的天线单元的第五种结构示意图;
图13A至图13D为图12所示的天线单元的仿真结果示意图;
图14为本公开示例性实施例中的天线单元的第六种结构示意图;
图15A至图15D为图14所示的天线单元的仿真结果示意图。
具体实施方式
本文描述了多个实施例,但是该描述是示例性的,而不是限制性的,在本文所描述的实施例包含的范围内可以有更多的实施例和实现方案。尽管在附图中示出了许多可能的特征组合,并在示例性实施方式中进行了讨论,但是所公开的特征的许多其它组合方式是可能的。除非特意加以限制的情况以外,任何实施例的任何特征或元件可以与任何其它实施例中的任何其他特征或元件结合使用,或可以替代任何其它实施例中的任何其他特征或元件。
在描述具有代表性的实施例时,说明书可能已经将方法或过程呈现为特定的步骤序列。然而,在该方法或过程不依赖于本文步骤的特定顺序的程度上,该方法或过程不应限于的特定顺序的步骤。如本领域普通技术人员将理解的,其它的步骤顺序是可能的。因此,说明书中阐述的步骤的特定顺序不应被解释为对权利要求的限制。此外,针对该方法或过程的权利要求不应限于按照所写顺序执行它们的步骤,本领域技术人员可以容易地理解,这些顺序可以变化,并且仍然保持在本公开实施例的精神和范围内。
在附图中,有时为了明确起见,夸大表示了每个构成要素的大小、层的厚度或区域。因此,本公开的一个方式并不一定限定于该尺寸,附图中每个部件的形状和大小不反映真实比例。此外,附图示意性地示出了理想的例子,本公开的一个方式不局限于附图所示的形状或数值等。
在本公开示例性实施例中,“第一”、“第二”、“第三”等序数词是为了避免构成要素的混同而设置,而不是为了在数量方面上进行限定的。
在本公开示例性实施例中,为了方便起见,使用“中部”、“上”、“下”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示方位或位置关系的词句以参照附图说明构成要素的位置关系,仅是为了便于描述本说明书和简化描述,而不是指示或暗示所指的装置或元件具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。构成要素的位置关系根据描述每个构成要素的方向适当地改变。因此,不局限于在说明书中说明的词句,根据情况可以适当地更换。
在本公开示例性实施例中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解。例如,可以是固定连接,或可拆卸连接,或一体地连接;可以是机械连接,或电连接;可以是直接相连,或通过中间 件间接相连,或两个元件内部的连通。对于本领域的普通技术人员而言,可以根据情况理解上述术语在本公开中的含义。
在本公开示例性实施例中,“电连接”包括构成要素通过具有某种电作用的元件连接在一起的情况。“具有某种电作用的元件”只要可以进行连接的构成要素间的电信号的授受,就对其没有特别的限制。“具有某种电作用的元件”例如可以是电极或布线,或者是晶体管等开关元件,或者是电阻器、电感器或电容器等其它功能元件等。
在本公开示例性实施例中,“平行”是指两条直线形成的角度为-10°以上且10°以下的状态,因此,也包括该角度为-5°以上且5°以下的状态。另外,“垂直”是指两条直线形成的角度为80°以上且100°以下的状态,因此,也包括85°以上且95°以下的角度的状态。
在本公开示例性实施例中,“约”是指不严格限定界限,允许工艺和测量误差范围内的数值。
在本公开示例性实施例中,第一方向Y可以是指水平方向,第二方向X可以是指垂直方向,第三方向Z可以是指垂直于天线单元平面的方向或者天线单元的厚度方向等。例如,第一方向Y和第二方向X可以相互垂直,第一方向Y和第三方向Z可以相互垂直。
一般而言,在射频前端模块中,收发芯片输出的为平衡信号,包括两个等幅反向的信号,即差分信号,与单端信号相比,差分信号能极大低减小共模信号和环境噪声的干扰。但是,如图1所示,天线是单端口器件,在信号进入天线之前需要连接巴伦器件进行平衡-非平衡信号转换,而巴伦器件的引入即增加了系统的插入损耗,也会引入不必要的信号。为了滤除杂波,可以将天线和巴伦器件直接级联额外的滤波电路,这又额外引入了插入损耗且增大了系统的体积。
本公开实施例提供一种天线单元,该天线单元可以包括:介质基板、以及位于介质基板的两侧的天线层和接地层;其中,天线层可以包括:微带馈线以及位于微带馈线的第一方向Y一侧的辐射贴片和微带耦合线结构,微带耦合线结构可以包括:沿第一方向Y依次连接的第一枝节结构、微带耦合线和第二枝节结构,第一枝节结构与微带馈线间隔设置,接地层可以包括:地 板凹槽,地板凹槽在介质基板的正投影与微带馈线在介质基板的正投影具有第一交叠区域,且与第一枝节结构在介质基板的正投影具有第二交叠区域。
如此,通过设置微带馈线、微带耦合线结构中的第一枝节结构与地板凹槽交叠,一方面,使得地板凹槽、微带耦合线结构与微带馈线所形成的转换结构可以实现单端信号和差分信号之间的转换,并且还可以在天线单元中实现混合电磁耦合,其中,第一枝节结构与微带馈线之间通过临近耦合进行激励,使得微带馈线和微带耦合线结构之间的间隙电容可以实现电耦合路径;微带馈线和地板凹槽可以实现磁耦合路径,从而,由于两条耦合路径的强度和相位均不相同,能够使得该天线单元在通带两侧分别形成一个辐射零点,当沿着两条耦合路径传输的信号相位相反时,磁耦合将会被电耦合抵消,能够增强带外抑制水平。另一方面,由于使得地板凹槽、微带耦合线结构与微带馈线所形成的转换结构可以实现单端信号和差分信号之间的转换,避免了引入额外的滤波电路和加载复杂的寄生结构,从而,可以使得天线单元具有天线结构简单、尺寸较小、结构剖面低、成本较低、易于加工、易于和其它模块集成的特点,有利于射频前端模块的小型化和集成化设计。又一方面,由于地板凹槽、微带耦合线结构与微带馈线所形成的转换结构可以实现较好的滤波功能,可以避免引入额外的滤波电路,从而,可以避免引入插入损耗。又一方面,通过地板凹槽、微带耦合线结构与微带馈线所形成的转换结构,实现混合电磁耦合激励天线,可以降低天线单元的交叉极化水平,可以提升天线单元的辐射效率,可以使得天线单元在通带的增益平坦度较好,从而,可以使得天线单元具有优异的天线性能。
在一种示例性实施例中,微带耦合线结构中的第一枝节结构和馈线之间通过临近耦合进行激励,微带耦合线结构、微带馈线与地板凹槽交叠所形成的转换结构激励微带耦合线结构,微带耦合线结构激励辐射贴片。
在一种示例性实施例中,介质基板具有沿第一方向Y延伸的第一参考线和沿第二方向X延伸的第二参考线,地板凹槽、辐射贴片、第一枝节结构、微带耦合线和第二枝节结构中至少一个关于第一参考线呈对称设置,微带馈线关于第二参考线呈对称设置,第一参考线与第二参考线垂直。例如,第一参考线可以为介质基板的沿第一方向Y延伸的中心线CL。这里,本公开实 施例对此不做限定。
在一种示例性实施例中,地板凹槽的形状可以呈“一”字型、“H”字型或者哑铃型等。例如,地板凹槽的形状可以为矩形或者椭圆形等长条形状中的一种或多种形状的组合。例如,地板凹槽可以等宽设置,使得地板凹槽的形状可以呈“一”字型。这里,本公开实施例对此不做限定。
在一种示例性实施例中,地板凹槽可以非等宽设置,以地板凹槽的形状呈“H”字型为例,地板凹槽可以包括:沿第一方向Y依次设置的第一凹槽、第二凹槽和第三凹槽,第二凹槽的第一端在介质基板的正投影位于第一交叠区域,第二凹槽的第二端在介质基板的正投影位于第二交叠区域。其中,第二凹槽的宽度与第一凹槽的宽度和第三凹槽的宽度不相同。例如,第二凹槽的宽度小于第一凹槽的宽度,且小于第三凹槽的宽度。例如,第二凹槽的宽度小于第一凹槽的宽度,且第一凹槽的宽度与第三凹槽的宽度相等。凹槽的宽度是指沿第二方向X的尺寸特征,第二方向X与第一方向Y垂直。这里,本公开实施例对此不做限定。
在一种示例性实施例中,第一凹槽的宽度、第二凹槽的宽度和第三凹槽的宽度中至少一个可以约为0.25mm至1.8mm。这里,本公开实施例对此不做限定。
在一种示例性实施例中,第二凹槽的长度可以约为2.0mm至2.65mm,凹槽的长度是指沿第一方向Y的尺寸特征。这里,本公开实施例对此不做限定。
在一种示例性实施例中,微带耦合线可以为轴对称结构,微带耦合线的对称轴可以为介质基板的中心线CL。例如,微带耦合线可以包括:位于辐射贴片第二方向两侧的第一微带耦合线和第二微带耦合线,第一微带耦合线和第二微带耦合线可以对称设置在介质基板的中心线CL的两侧。例如,以辐射贴片的形状为圆形为例,第一微带耦合线和第二微带耦合线的形状可以为弧形。这里,本公开实施例对此不做限定。
在一种示例性实施例中,微带耦合线、第一枝节结构和第二枝节结构可以为相互连接的一体结构。这里,本公开实施例中所称的“一体结构”可以是指两种(或两种以上)结构通过同一道沉积工艺形成并通过同一道构图工 艺得以图案化而形成的彼此连接的结构,它们的材料可以相同或不同。
在一种示例性实施例中,微带馈线、辐射贴片、微带耦合线、第一枝节结构和第二枝节结构可以同层同材料设置。如此,可以避免增加金属层数,可以实现天线单元的低剖面平面设计。这里,本公开实施例中所称的“同层设置”是指两种(或两种以上)结构通过同一道沉积工艺形成并通过同一道构图工艺得以图案化而形成的结构,它们的材料可以相同或不同。例如,形成同层设置的多种结构的前驱体的材料是相同的,最终形成的材料可以相同或不同。
在一种示例性实施例中,第一枝节结构可以为轴对称结构。例如,第一枝节结构的对称轴可以为介质基板的中心线CL。例如,第一枝节结构可以包括:沿第一方向Y延伸的第一枝节和沿第一方向Y延伸的第二枝节,第一枝节和第二枝节可以对称设置在介质基板的中心线CL的两侧。例如,第一枝节和第二枝节均可以包括:两个依次连接的“L”型枝节。这里,本公开实施例对此不做限定。
在一种示例性实施例中,第一枝节结构可以为闭合枝节结构。例如,第一枝节结构可以包括:位于辐射贴片第一方向Y反方向一侧的第一枝节和第二枝节,第一枝节的第一端与第二枝节的第一端连接,第一枝节的第二端与第一微带耦合线的第一端连接,第二枝节的第二端与第二微带耦合线的第一端连接。例如,第一枝节的主体部分沿第一方向Y延伸,第二枝节的主体部分沿第一方向Y延伸。
在一种示例性实施例中,以第一枝节可以包括:第一子枝节和第二子枝节,第二枝节可以包括:第三子枝节和第四子枝节,第一子枝节的第一端与第三子枝节的第一端连接,第一子枝节的第二端与第二子枝节的第一端连接,第二子枝节的第二端与第一微带耦合线的第一端连接,第三子枝节的第二端与第四子枝节的第一端连接,第四子枝节的第二端与第二微带耦合线的第一端连接,第一子枝节、第二子枝节、第三子枝节和第四子枝节可以为“L”型枝节。
在一种示例性实施例中,第二枝节结构可以为具有一定长度的平行的枝节结构。例如,第二枝节结构可以为开路枝节结构、短路枝节结构和闭合枝 节结构中的任意一种。这里,本公开实施例对此不做限定。
在一种示例性实施例中,第二枝节结构可以为轴对称结构。例如,第二枝节结构的对称轴可以为介质基板的中心线CL。例如,第二枝节结构可以包括:沿第一方向Y延伸的第三枝节和沿第一方向Y延伸的第四枝节,第三枝节和第四枝节可以对称设置在介质基板的中心线CL的两侧。
在一种示例性实施例中,第二枝节结构包括:位于辐射贴片第一方向Y一侧的第三枝节和第四枝节,第三枝节的第一端与第一微带耦合线的第二端连接,第四枝节的第一端与第二微带耦合线的第二端连接;第三枝节的第二端与第四枝节的第二端连接,或者,第三枝节的第二端与第四枝节的第二端均通过过孔与接地层连接,或者,第三枝节的第二端与第四枝节的第二端开路。这里,本公开实施例对此不做限定。
在一种示例性实施例中,第三枝节和第四枝节可以为“一”型枝节,或者,第三枝节和第四枝节可以为“L”型枝节。例如,以第二枝节结构为开路枝节结构,第三枝节和第四枝节均可以为沿第一方向Y延伸的“一”型枝节,第三枝节的第一端和第四枝节的第一端与微带耦合线的第二端连接。例如,以第二枝节结构为闭合枝节结构为例,第三枝节和第四枝节均可以为沿第一方向Y延伸的“L”型枝节,第三枝节的第一端和第四枝节的第一端与微带耦合线的第二端连接,第三枝节的第二端与第四枝节的第二端连接。这里,本公开实施例对此不做限定。
在一种示例性实施例中,微带馈线可以包括但不限于:沿第二方向X延伸的均匀阻抗微带馈线或者阶跃阻抗微带馈线,第二方向X与第一方向Y垂直。例如,均匀阻抗微带馈线可以为沿第二方向X延伸的呈“一”字型。例如,阶跃阻抗微带馈线可以包括:沿第二方向X依次连接的第一馈线、第二馈线和第三馈线,其中,第二馈线的宽度与第一馈线的宽度和第三馈线的宽度不相同,例如,第二馈线的宽度小于第一馈线的宽度,且小于第三馈线的宽度。例如,第二馈线的宽度小于第一馈线的宽度,且第一馈线的宽度与第三馈线的宽度相等,馈线的宽度是指沿第一方向Y的尺寸特征,第二方向X与第一方向Y交叉。这里,本公开实施例对此不做限定。
在一种示例性实施例中,微带馈线可以包括但不限于采用铜、金或者银 等金属材料中的至少一种制成。如此,微带馈线的电阻较低,传输信号的灵敏度较高,金属损耗较少,寿命较长。
在一种示例性实施例中,辐射贴片的形状可以为圆形、椭圆形、矩形、或者菱形等轴对称图形中的任意一种。例如,辐射贴片的形状可以为圆形。这里,本公开实施例对此不做限定。
在一种示例性实施例中,介质基板可以满足如下条件中的任意一种或多种:介质基板的介电常数(dk)可以约为1.7至2.7,介质基板的介质损耗(df)可以约为0.00072至0.00108,介质基板的厚度可以为0.4mm(毫米)至0.6mm。例如,介质基板可以采用有损介质基板,该有损介质基板的dk/df可以约为2.2/0.0009,该有损介质基板的厚度可以约为0.508mm。这里,本公开实施例对此不做限定。其中,介质损耗(df),又可称为损耗角正切值、介质损耗角正切、介质损耗因素或者损耗因子等。
在一种示例性实施例中,介质基板可以为刚性介质基板或者柔性介质基板。例如,以介质基板为刚性介质基板为例,介质基板可以包括但不限于环氧玻璃布(FR-4)层压板、聚四氟乙烯玻璃纤维压板、酚醛玻璃布层压板、或者玻璃基板等刚性介质基板中的一种。如此,所制备出的天线单元具有材料来源较为广泛,稳定性较佳,绝缘效果较佳,微波损耗低,几乎不会影响无线电信号或者电磁波的传输,硬度较佳,天线性能较佳等优点。这里,FR-4是一种耐燃材料等级的代号。又例如,以介质基板为柔性介质基板为例,介质基板可以包括但不限于聚酰亚胺(PI)、聚对苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)、或者聚碳酸酯(PC)等聚合物材料制成的柔性介质基板中的一种。如此,所制备出的天线单元具有材料来源较为广泛,柔韧性较好,重量较轻,更耐冲击,从而,将该天线单元应用于电子设备时,能够减少电子设备的形状或大小对天线单元的限制,具有可以更好地与电子设备中的其它部件集成的优点。
在一种示例性实施例中,天线层可以包括但不限于采用铜、金或者银等金属材料中的至少一种制成。例如,天线层中的微带馈线、辐射贴片、微带耦合线、第一枝节结构和第二枝节结构可以采用铜材料制成。如此,天线层的电阻较低,传输信号的灵敏度较高,金属损耗较少,寿命较长。
在一种示例性实施例中,天线层的厚度可以约为0.144mm至0.216mm。例如,天线层的厚度可以约为0.018mm。这里,本公开实施例对此不做限定。
在一种示例性实施例中,接地层可以包括但不限于采用铜、金或者银等金属材料中的至少一种制成。例如,接地层可以采用铜材料制成。如此,接地层的电阻较低,传输信号的灵敏度较高,金属损耗较少,寿命较长。
在一种示例性实施例中,接地层的厚度可以约为0.144mm至0.216mm。例如,接地层的厚度可以约为0.018mm。这里,本公开实施例对此不做限定。
在一种示例性实施例中,天线单元的厚度可以约为0.144λ0至0.216λ0。例如,天线单元的厚度可以约为0.018λ0。其中,λ0表示天线单元的中心频点f0所对应的真空波长,天线单元的中心频点f0可以约为10GHz。这里,本公开实施例对此不做限定。
在一种示例性实施例中,天线单元可以实现为差分微带滤波天线。
下面结合附图以示例性实例对上述天线单元进行详细说明。
本公开实施例提供一种天线单元。图2为本公开示例性实施例中的天线单元的第一种结构示意图,图3为图2所示的天线单元的平面示意图,图4为图3所示的天线单元的沿CL方向的剖面示意图。如图2至图4所示,在垂直于天线单元平面的方向(即第三方向Z)上,该天线单元可以包括:介质基板11、位于介质基板11的第一表面一侧的天线层12、以及位于介质基板11的第二表面一侧的接地层13,其中,第一表面和第二表面是介质基板相背离的两个表面,天线层12可以包括:微带馈线15、以及位于微带馈线15的沿第一方向Y一侧的辐射贴片14和至少部分包围辐射贴片14的微带耦合线结构16,接地层13可以包括:地板凹槽17。微带耦合线结构16与微带馈线15之间具有间隔区域,地板凹槽17在介质基板11的正投影与微带馈线15在介质基板11的正投影部分交叠,且地板凹槽17在介质基板11的正投影与微带耦合线结构16的靠近微带馈线15一端在介质基板11的正投影部分交叠,以使地板凹槽、微带耦合线结构与微带馈线形成转换结构,转换结构被配置为可以实现单端信号和差分信号之间的转换,可以在天线单元中实现混合电磁耦合,且可以实现较好的滤波功能。其中,电耦合路径主要是由微带馈线和微带耦合线结构之间的间隙电容产生,而磁耦合路径主要由地板凹 槽实现,两条耦合路径的强度和相位均不相同。当沿着两个路径传输的信号相位相反时,磁耦合将会被电耦合抵消,从而,能够增强天线单元的带外抑制水平。
在一种示例性实施例中,如图3所示,微带耦合线结构16可以包括:微带耦合线162、以及位于微带耦合线162第一方向Y两侧的第一枝节结构161和第二枝节结构163,第一枝节结构161可以包括:沿第一方向Y延伸的第一枝节161-1和沿第一方向Y延伸的第二枝节161-2,微带耦合线162可以包括:第一微带耦合线162-1和第二微带耦合线162-2,第二枝节结构163可以包括:沿第一方向Y延伸的第三枝节163-1和沿第一方向Y延伸的第四枝节163-2,其中,第一枝节161-1的第一端与第二枝节161-2的第一端连接,第一枝节161-1的第二端与第一微带耦合线162-1的第一端连接,第一微带耦合线162-1的第二端与第三枝节163-1的第一端连接,第二枝节161-2的第二端与第二微带耦合线162-2的第一端连接,第二微带耦合线162-2的第二端与第四枝节163-2的第一端连接。这里,图3中是以第二枝节结构163采用开路枝节结构为例进行示意。
在一种示例性实施例中,如图3所示,第一微带耦合线162-1和第二微带耦合线162-2可以对称设置在介质基板的中心线CL的两侧。例如,以辐射贴片14的形状为圆形为例,第一微带耦合线162-1和第二微带耦合线162-2的形状可以为弧形。这里,本公开实施例对此不做限定。
在一种示例性实施例中,如图3所示,第一枝节161-1和第二枝节161-2可以对称设置在介质基板的中心线CL的两侧。例如,第一枝节161-1和第二枝节161-2均可以包括:两个依次连接的“L”型枝节。这里,本公开实施例对此不做限定。
在一种示例性实施例中,如图3所示,第三枝节163-1和第四枝节163-2可以对称设置在介质基板的中心线CL的两侧。例如,第三枝节163-1和第四枝节163-2均可以为沿第一方向Y延伸的“一”型枝节。这里,本公开实施例对此不做限定。
在一种示例性实施例中,如图3所示,微带馈线15可以采用均匀阻抗微带馈线。例如,微带馈线15可以沿第二方向X延伸,且微带馈线15的形状 可以呈“一”字型。第二方向X与第一方向Y交叉。
在一种示例性实施例中,如图3所示,地板凹槽17可以沿第一方向Y延伸,且地板凹槽17的形状可以呈“一”字型。
在一种示例性实施例中,如图3所示,辐射贴片14的形状可以为圆形。
图5A至图5D示出了图2所示的天线单元的仿真结果,下面结合天线单元的仿真结果对图2所示的天线单元的性能进行说明。
图5A示出了图2所示的天线单元的散射参数(S参数)中的反射系数(S11参数)曲线,如图5A所示,该天线单元的-10dB(分贝)阻抗带宽约为9.89GHz(千兆赫兹)至10.28GHz,且该天线单元呈现一个二阶滤波响应特性。
图5B示出了图2所示的天线单元的增益曲线,如图5B所示,该天线单元在通带内的增益约为8dBi,且通带内增益平坦度较好;该天线单元在通带左右两侧分别存在一个辐射零点,其中,两个辐射零点分别在9.325GHz和10.625GHz;该天线单元在上边带的阻带抑制好于下边带。
根据图2所示的天线单元在中心频点(即10.075GHz)和两个辐射零点(即9.325GHz和10.625GHz)处的电场分布情况,以及图2所示的天线单元在中心频点(即10.075GHz)和两个辐射零点(即9.325GHz和10.625GHz)处的磁场分布情况可知,该天线单元在中心频点(即10.075GHz)处辐射贴片上的电场非常强,而在两个辐射零点(即9.325GHz和10.625GHz)处辐射贴片上场强非常弱,该天线单元几乎不辐射;该天线单元在上零点处的磁耦合强度弱于在下零点处,因此,该天线单元在上零点处的带外抑制水平好于下零点处。
图5C至图5D示出了图2所示的天线单元在E面和H面的辐射方向图,如图5C至图5D所示,通带内该天线单元具有较低的交叉极化水平和稳定的辐射模式。
由上述内容可知,在本公开实施例提供的天线单元中,通过设置微带耦合线结构与微带馈线之间具有间隔区域,并设置地板凹槽在介质基板的正投影与微带馈线在介质基板的正投影部分交叠,且地板凹槽在介质基板的正投 影与微带耦合线结构的靠近微带馈线的一端(即微带耦合线结构中的第一枝节结构)在介质基板的正投影部分交叠,以使地板凹槽、微带耦合线结构与微带馈线形成转换结构。如此,通过转换结构可以实现单端信号和差分信号之间的转换,可以在天线单元中实现混合电磁耦合,且可以实现较好的滤波功能。从而,通过形成转换结构实现了将天线、滤波器和巴伦融合设计,无需引入额外的滤波电路和加载复杂的寄生结构,可以使得天线单元具有天线结构简单、尺寸较小、结构剖面低、成本较低、易于加工、易于和其它模块集成的特点,且能够保证优异的天线性能。
本公开实施例提供一种天线单元。图6为本公开示例性实施例中的天线单元的第二种结构示意图,如图6所示,在垂直于天线单元平面的方向(即第三方向Z)上,该天线单元可以包括:介质基板11、位于介质基板11的第一表面一侧的天线层12、以及位于介质基板11的第二表面一侧的接地层13,其中,第一表面和第二表面是介质基板相背离的两个表面,天线层12可以包括:微带馈线15、以及位于微带馈线15的沿第一方向Y一侧的辐射贴片14和至少部分包围辐射贴片14的微带耦合线结构16,接地层13可以包括:地板凹槽17。微带耦合线结构16与微带馈线15之间具有间隔区域,地板凹槽17在介质基板11的正投影与微带馈线15在介质基板11的正投影部分交叠,且地板凹槽17在介质基板11的正投影与微带耦合线结构16的靠近微带馈线15一端在介质基板11的正投影部分交叠,以形成转换结构,可以实现单端信号和差分信号之间的转换,可以在天线单元中实现混合电磁耦合,且可以实现较好的滤波功能。
在一种示例性实施例中,如图6所示,微带耦合线结构16可以包括:微带耦合线162、以及与微带耦合线162连接的第一枝节结构161和第二枝节结构163,第一枝节结构161和第二枝节结构163位于微带耦合线162第一方向Y两侧,第一枝节结构161采用闭合枝节结构,第二枝节结构163采用短路枝节结构。其中,第一枝节结构161的第二端与微带耦合线162的第一端连接,微带耦合线162的第二端与第二枝节结构163的第一端连接,第二枝节结构163的第二端通过过孔与接地层13连接。
在一种示例性实施例中,如图6所示,第一枝节结构161可以包括:沿第一方向Y延伸的第一枝节161-1和沿第一方向Y延伸的第二枝节161-2,第一枝节161-1和沿第一方向Y延伸的第二枝节161-2,第一枝节161-1和第二枝节161-2可以对称设置在介质基板的中心线CL的两侧。例如,第一枝节161-1和第二枝节161-2均可以包括:两个依次连接的“L”型枝节。这里,本公开实施例对此不做限定。
在一种示例性实施例中,如图6所示,微带耦合线162可以包括:第一微带耦合线162-1和第二微带耦合线162-2,第一微带耦合线162-1和第二微带耦合线162-2可以对称设置在介质基板的中心线CL的两侧。例如,以辐射贴片14的形状为圆形为例,第一微带耦合线162-1和第二微带耦合线162-2的形状可以为弧形。这里,本公开实施例对此不做限定。
在一种示例性实施例中,如图6所示,第二枝节结构163可以包括:沿第一方向Y延伸的第三枝节163-1和沿第一方向Y延伸的第四枝节163-2。第三枝节163-1和第四枝节163-2可以对称设置在介质基板的中心线CL的两侧。例如,第三枝节163-1和第四枝节163-2均可以为沿第一方向Y延伸的“一”型枝节。这里,本公开实施例对此不做限定。
在一种示例性实施例中,如图6所示,第一枝节161-1的第一端与第二枝节161-2的第一端连接,第一枝节161-1的第二端与第一微带耦合线162-1的第一端连接,第一微带耦合线162-1的第二端与第三枝节163-1的第一端连接,第二枝节161-2的第二端与第二微带耦合线162-2的第一端连接,第二微带耦合线162-2的第二端与第四枝节163-2的第一端连接,第三枝节163-1的第二端通过过孔与接地层13连接,第四枝节163-2的第二端通过过孔与接地层13连接。
在一种示例性实施例中,如图6所示,微带馈线15可以采用均匀阻抗微带馈线。例如,微带馈线15可以沿第二方向X延伸,且微带馈线15的形状可以呈“一”字型。第二方向X与第一方向Y交叉。
在一种示例性实施例中,如图6所示,地板凹槽17可以沿第一方向Y延伸,且地板凹槽17的形状可以呈“一”字型。
在一种示例性实施例中,如图6所示,辐射贴片14的形状可以为圆形。
图7A至图7D示出了图6所示的天线单元的仿真结果,下面结合天线单元的仿真结果对图6所示的天线单元的性能进行说明。
图7A示出了图6所示的天线单元的散射参数(S参数)中的反射系数(S11参数)曲线,如图7A所示,该天线单元的-10dB(分贝)阻抗带宽约为9.93GHz(千兆赫兹)至10.28GHz,且天线单元呈现一个二阶滤波响应特性。
图7B示出了图6所示的天线单元的增益曲线,如图7B所示,该天线单元在通带内的增益约为8dBi,且通带内增益平坦度较好;该天线单元在通带左右两侧分别存在一个辐射零点,其中,两个辐射零点分别在9.4GHz和10.6GHz;该天线单元在上边带的阻带抑制好于下边带。
根据图6所示的天线单元在中心频点(即10.1GHz)和两个辐射零点(即9.4GHz和10.6GHz)处的电场分布情况,以及图6所示的天线单元在中心频点(即10.1GHz)和两个辐射零点(即9.4GHz和10.6GHz)处的磁场分布情况可知,该天线单元在中心频点处(即10.1GHz)辐射贴片上的电场非常强,而在两个辐射零点(即9.4GHz和10.6GHz)处辐射贴片上场强非常弱,该天线单元几乎不辐射;该天线单元在上零点处的磁耦合强度弱于在下零点处,因此,该天线单元在上零点处的带外抑制水平好于下零点处。
图7C至图7D示出了图6所示的天线单元在E面和H面的辐射方向图,如图7C至图7D所示,通带内该天线单元具有较低的交叉极化水平和稳定的辐射模式。
由上述内容可知,在本公开实施例提供的天线单元中,通过设置微带耦合线结构与微带馈线之间具有间隔区域,并设置地板凹槽在介质基板的正投影与微带馈线在介质基板的正投影部分交叠,且地板凹槽在介质基板的正投影与微带耦合线结构的靠近微带馈线的一端(即微带耦合线结构中的第一枝节结构)在介质基板的正投影部分交叠,以使地板凹槽、微带耦合线结构与微带馈线形成转换结构。如此,通过转换结构可以实现单端信号和差分信号之间的转换,可以在天线单元中实现混合电磁耦合,且可以实现较好的滤波功能。从而,通过形成转换结构实现了将天线、滤波器和巴伦融合设计,无需引入额外的滤波电路和加载复杂的寄生结构,可以使得天线单元具有天线 结构简单、尺寸较小、结构剖面低、成本较低、易于加工、易于和其它模块集成的特点,且能够保证优异的天线性能。
本公开实施例提供一种天线单元。图8为本公开示例性实施例中的天线单元的第三种结构示意图,如图8所示,在垂直于天线单元平面的方向(即第三方向Z)上,该天线单元可以包括:介质基板11、位于介质基板11的第一表面一侧的天线层12、以及位于介质基板11的第二表面一侧的接地层13,其中,第一表面和第二表面是介质基板相背离的两个表面,天线层12可以包括:微带馈线15、以及位于微带馈线15的沿第一方向Y一侧的辐射贴片14和至少部分包围辐射贴片14的微带耦合线结构16,接地层13可以包括:地板凹槽17。微带耦合线结构16与微带馈线15之间具有间隔区域,地板凹槽17在介质基板11的正投影与微带馈线15在介质基板11的正投影部分交叠,且地板凹槽17在介质基板11的正投影与微带耦合线结构16的靠近微带馈线15一端在介质基板11的正投影部分交叠,以形成转换结构,可以实现单端信号和差分信号之间的转换,可以在天线单元中实现混合电磁耦合,且可以实现较好的滤波功能。
在一种示例性实施例中,如图8所示,微带耦合线结构16可以包括:微带耦合线162、以及与微带耦合线162连接的第一枝节结构161和第二枝节结构163,第一枝节结构161和第二枝节结构163位于微带耦合线162第一方向Y两侧,第一枝节结构161采用闭合枝节结构,第二枝节结构163采用闭合枝节结构。其中,第一枝节结构161的第二端与微带耦合线162的第一端连接,微带耦合线162的第二端与第二枝节结构163的第一端连接。
在一种示例性实施例中,如图8所示,第一枝节结构161可以包括:沿第一方向Y延伸的第一枝节161-1和沿第一方向Y延伸的第二枝节161-2,第一枝节161-1和沿第一方向Y延伸的第二枝节161-2,第一枝节161-1和第二枝节161-2可以对称设置在介质基板的中心线CL的两侧。例如,第一枝节161-1和第二枝节161-2均可以包括:两个依次连接的“L”型枝节。这里,本公开实施例对此不做限定。
在一种示例性实施例中,如图8所示,微带耦合线162可以包括:第一 微带耦合线162-1和第二微带耦合线162-2,第一微带耦合线162-1和第二微带耦合线162-2可以对称设置在介质基板的中心线CL的两侧。例如,以辐射贴片14的形状为圆形为例,第一微带耦合线162-1和第二微带耦合线162-2的形状可以为弧形。这里,本公开实施例对此不做限定。
在一种示例性实施例中,如图8所示,第二枝节结构163可以包括:沿第一方向Y延伸的第三枝节163-1和沿第一方向Y延伸的第四枝节163-2。第三枝节163-1和第四枝节163-2可以对称设置在介质基板的中心线CL的两侧。例如,第三枝节163-1和第四枝节163-2均可以为沿第一方向Y延伸的“L”型枝节。这里,本公开实施例对此不做限定。
在一种示例性实施例中,如图8所示,第一枝节161-1的第一端与第二枝节161-2的第一端连接,第一枝节161-1的第二端与第一微带耦合线162-1的第一端连接,第一微带耦合线162-1的第二端与第三枝节163-1的第一端连接,第二枝节161-2的第二端与第二微带耦合线162-2的第一端连接,第二微带耦合线162-2的第二端与第四枝节163-2的第一端连接,第三枝节163-1的第二端与第四枝节163-2的第二端连接。
在一种示例性实施例中,如图8所示,微带馈线15可以采用均匀阻抗微带馈线。例如,微带馈线15可以沿第二方向X延伸,且微带馈线15的形状可以呈“一”字型。第二方向X与第一方向Y交叉。
在一种示例性实施例中,如图8所示,地板凹槽17可以采用矩形凹槽,例如,地板凹槽17可以沿第一方向Y延伸,且地板凹槽17的形状可以呈“一”字型。
在一种示例性实施例中,如图8所示,辐射贴片14的形状可以为圆形。
图9A至图9D示出了图8所示的天线单元的仿真结果,下面结合天线单元的仿真结果对图8所示的天线单元的性能进行说明。
图9A示出了图8所示的天线单元的散射参数(S参数)中的反射系数(S11参数)曲线,如图9A所示,该天线单元的-10dB(分贝)阻抗带宽约为9.83GHz(千兆赫兹)至10.22GHz,且天线单元呈现一个二阶滤波响应特性。
图9B示出了图8所示的天线单元的增益曲线,如图9B所示,该天线单元在通带内的增益约为8dBi,且通带内增益平坦度较好;该天线单元在通带左右两侧分别存在一个辐射零点,其中,两个辐射零点分别在9.375GHz和10.6GHz;该天线单元在上边带的阻带抑制好于下边带。
根据图8所示的天线单元在中心频点(即10.0GHz)和两个辐射零点(即9.375GHz和10.6GHz)处的电场分布情况,以及图8所示的天线单元在中心频点(即10.0GHz)和两个辐射零点(即9.375GHz和10.6GHz)处的磁场分布情况可知,该天线单元在中心频点处(即10.0GHz)辐射贴片上的电场非常强,而在两个辐射零点(即9.375GHz和10.6GHz)处辐射贴片上场强非常弱,该天线单元几乎不辐射;该天线单元在上零点处的磁耦合强度弱于在下零点处,因此,该天线单元在上零点处的带外抑制水平好于下零点处。
图9C至图9D示出了图8所示的天线单元在E面和H面的辐射方向图,如图9C至图9D所示,通带内该天线单元具有较低的交叉极化水平和稳定的辐射模式。
由上述内容可知,在本公开实施例提供的天线单元中,通过设置微带耦合线结构与微带馈线之间具有间隔区域,并设置地板凹槽在介质基板的正投影与微带馈线在介质基板的正投影部分交叠,且地板凹槽在介质基板的正投影与微带耦合线结构的靠近微带馈线的一端(即微带耦合线结构中的第一枝节结构)在介质基板的正投影部分交叠,以使地板凹槽、微带耦合线结构与微带馈线形成转换结构。如此,通过转换结构可以实现单端信号和差分信号之间的转换,可以在天线单元中实现混合电磁耦合,且可以实现较好的滤波功能。从而,通过形成转换结构实现了将天线、滤波器和巴伦融合设计,无需引入额外的滤波电路和加载复杂的寄生结构,可以使得天线单元具有天线结构简单、尺寸较小、结构剖面低、成本较低、易于加工、易于和其它模块集成的特点,且能够保证优异的天线性能。
本公开实施例提供一种天线单元。图10为本公开示例性实施例中的天线单元的第四种结构示意图,如图10所示,在垂直于天线单元平面的方向(即第三方向Z)上,该天线单元可以包括:介质基板11、位于介质基板11的 第一表面一侧的天线层12、以及位于介质基板11的第二表面一侧的接地层13。其中,第一表面和第二表面是介质基板相背离的两个表面,天线层12可以包括:微带馈线15、以及位于微带馈线15的沿第一方向Y一侧的辐射贴片14和至少部分包围辐射贴片14的微带耦合线结构16,接地层13可以包括:地板凹槽17。微带耦合线结构16与微带馈线15之间具有间隔区域,地板凹槽17在介质基板11的正投影与微带馈线15在介质基板11的正投影部分交叠,且地板凹槽17在介质基板11的正投影与微带耦合线结构16的靠近微带馈线15一端在介质基板11的正投影部分交叠,以形成转换结构,可以实现单端信号和差分信号之间的转换,可以在天线单元中实现混合电磁耦合,且可以实现较好的滤波功能。
在一种示例性实施例中,如图10所示,地板凹槽17可以沿第一方向Y延伸,且地板凹槽17的形状可以呈“H”字型。例如,地板凹槽17可以包括:沿第一方向Y依次设置的第一凹槽、第二凹槽和第三凹槽,其中,第二凹槽的宽度与第一凹槽的宽度和第三凹槽的宽度不相同。例如,第二凹槽的宽度小于第一凹槽的宽度,且小于第三凹槽的宽度。例如,第一凹槽的宽度和第三凹槽的宽度相等。其中,凹槽的宽度是指沿第二方向X的尺寸特征。其中,第二方向X与第一方向Y交叉。这里,本公开实施例对此不做限定。
在一种示例性实施例中,如图10所示,辐射贴片14的形状可以为圆形。
在一种示例性实施例中,如图10所示,微带馈线15可以采用均匀阻抗微带馈线。例如,微带馈线15可以沿第二方向X延伸,且微带馈线15的形状可以呈“一”字型。第二方向X与第一方向Y交叉。
在一种示例性实施例中,如图10所示,微带耦合线结构16可以包括:微带耦合线162、以及与微带耦合线162连接的第一枝节结构161和第二枝节结构163,第一枝节结构161和第二枝节结构163位于微带耦合线162第一方向Y两侧,第一枝节结构161采用闭合枝节结构,第二枝节结构163采用闭合枝节结构。其中,第一枝节结构161的第二端与微带耦合线162的第一端连接,微带耦合线162的第二端与第二枝节结构163的第一端连接。
在一种示例性实施例中,如图10所示,第一枝节结构161可以为轴对称结构,第一枝节结构161的对称轴可以为介质基板的中心线CL。例如,第 一枝节结构161可以包括:沿第一方向Y延伸的第一枝节161-1和沿第一方向Y延伸的第二枝节161-2,第一枝节161-1和沿第一方向Y延伸的第二枝节161-2,第一枝节161-1和第二枝节161-2可以对称设置在介质基板的中心线CL的两侧。例如,第一枝节161-1和第二枝节161-2均可以包括:两个依次连接的“L”型枝节。这里,本公开实施例对此不做限定。
在一种示例性实施例中,如图10所示,微带耦合线162可以为轴对称结构,微带耦合线162的对称轴可以为介质基板的中心线CL。例如,微带耦合线162可以包括:第一微带耦合线162-1和第二微带耦合线162-2,第一微带耦合线162-1和第二微带耦合线162-2可以对称设置在介质基板的中心线CL的两侧。例如,以辐射贴片14的形状为圆形为例,第一微带耦合线162-1和第二微带耦合线162-2的形状可以为弧形。这里,本公开实施例对此不做限定。
在一种示例性实施例中,如图10所示,第二枝节结构163可以为轴对称结构,第二枝节结构163的对称轴可以为介质基板的中心线CL。例如,第二枝节结构163可以包括:沿第一方向Y延伸的第三枝节163-1和沿第一方向Y延伸的第四枝节163-2,第三枝节163-1和第四枝节163-2可以对称设置在介质基板的中心线CL的两侧。例如,第三枝节163-1和第四枝节163-2均可以为沿第一方向Y延伸的“L”型枝节。这里,本公开实施例对此不做限定。
在一种示例性实施例中,如图10所示,第一枝节161-1的第一端与第二枝节161-2的第一端连接,第一枝节161-1的第二端与第一微带耦合线162-1的第一端连接,第一微带耦合线162-1的第二端与第三枝节163-1的第一端连接,第二枝节161-2的第二端与第二微带耦合线162-2的第一端连接,第二微带耦合线162-2的第二端与第四枝节163-2的第一端连接,第三枝节163-1的第二端与第四枝节163-2的第二端连接。
图11A至图11D示出了图10所示的天线单元的仿真结果,下面结合天线单元的仿真结果对图10所示的天线单元的性能进行说明。
图11A示出了图10所示的天线单元的散射参数(S参数)中的反射系数(S11参数)曲线,如图11A所示,该天线单元的-10dB(分贝)阻抗带 宽约为9.94GHz(千兆赫兹)至10.26GHz,且天线单元呈现一个一阶滤波响应特性。
图11B示出了图10所示的天线单元的增益曲线,如图11B所示,该天线单元在通带内的增益约为8dBi,且通带内增益平坦度较好;该天线单元在通带左右两侧分别存在一个辐射零点,其中,两个辐射零点分别在9.3GHz和10.65GHz;该天线单元在上边带的阻带抑制好于下边带。
根据图10所示的天线单元在中心频点(即10.1GHz)和两个辐射零点(即9.3GHz和10.65GHz)处的电场分布情况,以及图10所示的天线单元在中心频点(即10.1GHz)和两个辐射零点(即9.3GHz和10.65GHz)处的磁场分布情况可知,该天线单元在中心频点处(即10.1GHz)辐射贴片上的电场非常强,而在两个辐射零点(即9.3GHz和10.65GHz)处辐射贴片上场强非常弱,该天线单元几乎不辐射;该天线单元在上零点处的磁耦合强度弱于在下零点处,因此,该天线单元在上零点处的带外抑制水平好于下零点处。
图11C至图11D示出了图10所示的天线单元在E面和H面的辐射方向图,如图11C至图11D所示,通带内该天线单元具有较低的交叉极化水平和稳定的辐射模式。
此外,以地板凹槽17可以包括:沿第一方向Y依次设置的第一凹槽、第二凹槽和第三凹槽,第一凹槽的宽度和第三凹槽的宽度相等,且第二凹槽的宽度小于第一凹槽的宽度,根据仿真结果可知,当第二凹槽的长度约在2.0mm至2.65mm之间变化时,对天线单元的天线性能基本无影响。凹槽的宽度是指沿第二方向X的尺寸特征,凹槽的长度是指沿第一方向Y的尺寸特征。
相对于图8所示的天线单元,图10所示的天线单元改变了接地层13中的地板凹槽17的形状。相比于图8所示的天线单元的仿真结果,由图10所示的天线单元的仿真结果可知,图10所示的天线单元通带内的增益平坦度稍微下降,图10所示的天线单元在下零点处辐射贴片上的电场强度大于图8所示的天线单元在下零点处辐射贴片上的电场强度,因此,图10所示的天线单元下边带的带外抑制略有下降,但是,对天线单元的天线滤波性能和天线辐射性能没有明显影响,天线单元的交叉极化没有明显影响。
由上述内容可知,在本公开实施例提供的天线单元中,通过设置微带耦 合线结构与微带馈线之间具有间隔区域,并设置地板凹槽在介质基板的正投影与微带馈线在介质基板的正投影部分交叠,且地板凹槽在介质基板的正投影与微带耦合线结构的靠近微带馈线的一端(即微带耦合线结构中的第一枝节结构)在介质基板的正投影部分交叠,以使地板凹槽、微带耦合线结构与微带馈线形成转换结构。如此,通过转换结构可以实现单端信号和差分信号之间的转换,可以在天线单元中实现混合电磁耦合,且可以实现较好的滤波功能。从而,通过形成转换结构实现了将天线、滤波器和巴伦融合设计,无需引入额外的滤波电路和加载复杂的寄生结构,可以使得天线单元具有天线结构简单、尺寸较小、结构剖面低、成本较低、易于加工、易于和其它模块集成的特点,且能够保证优异的天线性能。
本公开实施例提供一种天线单元。图12为本公开示例性实施例中的天线单元的第五种结构示意图,如图12所示,在垂直于天线单元平面的方向(即第三方向Z)上,该天线单元可以包括:介质基板11、位于介质基板11的第一表面一侧的天线层12、以及位于介质基板11的第二表面一侧的接地层13。其中,第一表面和第二表面是介质基板相背离的两个表面,天线层12可以包括:微带馈线15、以及位于微带馈线15的沿第一方向Y一侧的辐射贴片14和至少部分包围辐射贴片14的微带耦合线结构16,接地层13可以包括:地板凹槽17。微带耦合线结构16与微带馈线15之间具有间隔区域,地板凹槽17在介质基板11的正投影与微带馈线15在介质基板11的正投影部分交叠,且地板凹槽17在介质基板11的正投影与微带耦合线结构16的靠近微带馈线15一端在介质基板11的正投影部分交叠,以形成转换结构,可以实现单端信号和差分信号之间的转换,可以在天线单元中实现混合电磁耦合,且可以实现较好的滤波功能。
在一种示例性实施例中,如图12所示,地板凹槽17可以沿第一方向Y延伸,且地板凹槽17的形状可以呈“H”字型。例如,地板凹槽17可以包括:沿第一方向Y依次设置的第一凹槽、第二凹槽和第三凹槽,其中,第二凹槽的宽度与第一凹槽的宽度和第三凹槽的宽度不相同。例如,第二凹槽的宽度小于第一凹槽的宽度,且小于第三凹槽的宽度。例如,第一凹槽的宽度 和第三凹槽的宽度相等。其中,凹槽的宽度是指沿第二方向X的尺寸特征。其中,第二方向X与第一方向Y交叉。这里,本公开实施例对此不做限定。
在一种示例性实施例中,如图12所示,微带馈线15可以采用阶跃阻抗微带馈线。例如,微带馈线15可以沿第二方向X延伸,且微带馈线15的形状可以呈“H”字型。例如,微带馈线15可以包括:沿第二方向X依次设置的第一馈线、第二馈线和第三馈线,其中,第二馈线的宽度与第一馈线的宽度和第三馈线的宽度不相同,例如,第二馈线的宽度小于第一馈线的宽度,且小于第三馈线的宽度。例如,第一馈线的宽度和第三馈线的宽度相等。其中,馈线的宽度是指沿第一方向Y的尺寸特征。其中,第二方向X与第一方向Y交叉。这里,本公开实施例对此不做限定。
在一种示例性实施例中,如图12所示,辐射贴片14的形状可以为圆形。
在一种示例性实施例中,如图12所示,微带耦合线结构16可以包括:微带耦合线162、以及与微带耦合线162连接的第一枝节结构161和第二枝节结构163,第一枝节结构161和第二枝节结构163位于微带耦合线162第一方向Y两侧,第一枝节结构161采用闭合枝节结构,第二枝节结构163采用闭合枝节结构。其中,第一枝节结构161的第二端与微带耦合线162的第一端连接,微带耦合线162的第二端与第二枝节结构163的第一端连接。
在一种示例性实施例中,如图12所示,第一枝节结构161可以为轴对称结构,第一枝节结构161的对称轴可以为介质基板的中心线CL。例如,第一枝节结构161可以包括:沿第一方向Y延伸的第一枝节161-1和沿第一方向Y延伸的第二枝节161-2,第一枝节161-1和第二枝节161-2可以对称设置在介质基板的中心线CL的两侧。例如,第一枝节161-1和第二枝节161-2均可以包括:两个依次连接的“L”型枝节。这里,本公开实施例对此不做限定。
在一种示例性实施例中,如图12所示,微带耦合线162可以为轴对称结构,微带耦合线162的对称轴可以为介质基板的中心线CL。例如,微带耦合线162可以包括:第一微带耦合线162-1和第二微带耦合线162-2,第一微带耦合线162-1和第二微带耦合线162-2可以对称设置在介质基板的中心线CL的两侧。例如,以辐射贴片14的形状为圆形为例,第一微带耦合线162-1 和第二微带耦合线162-2的形状可以为弧形。这里,本公开实施例对此不做限定。
在一种示例性实施例中,如图12所示,第二枝节结构163可以为轴对称结构,第二枝节结构163的对称轴可以为介质基板的中心线CL。例如,第二枝节结构163可以包括:沿第一方向Y延伸的第三枝节163-1和沿第一方向Y延伸的第四枝节163-2,第三枝节163-1和第四枝节163-2可以对称设置在介质基板的中心线CL的两侧。例如,第三枝节163-1和第四枝节163-2均可以为沿第一方向Y延伸的“L”型枝节。这里,本公开实施例对此不做限定。
在一种示例性实施例中,如图12所示,第一枝节161-1的第一端与第二枝节161-2的第一端连接,第一枝节161-1的第二端与第一微带耦合线162-1的第一端连接,第一微带耦合线162-1的第二端与第三枝节163-1的第一端连接,第二枝节161-2的第二端与第二微带耦合线162-2的第一端连接,第二微带耦合线162-2的第二端与第四枝节163-2的第一端连接,第三枝节163-1的第二端与第四枝节163-2的第二端连接。
图13A至图13D示出了图12所示的天线单元的仿真结果,下面结合天线单元的仿真结果对图12所示的天线单元的性能进行说明。
图13A示出了图12所示的天线单元的散射参数(S参数)中的反射系数(S11参数)曲线,如图13A所示,该天线单元的-10dB(分贝)阻抗带宽约为9.93GHz(千兆赫兹)至10.30GHz,且天线单元呈现一个二阶滤波响应特性。其中,相比于图10所示的天线单元,图12所示的天线单元的阻抗带宽略微变宽,滤波响应阶数变好。
图13B示出了图12所示的天线单元的增益曲线,如图13B所示,该天线单元在通带内的增益约为7dBi,且通带内增益平坦度较好;该天线单元在通带左右两侧分别存在一个辐射零点,其中,两个辐射零点分别在9.25GHz和10.875GHz;该天线单元在下边带的阻带抑制好于上边带。
根据图12所示的天线单元在中心频点(即10.0GHz)和两个辐射零点(即9.25GHz和10.875GHz)处的电场分布情况,以及图12所示的天线单元在中心频点(即10.0GHz)和两个辐射零点(即9.25GHz和10.875GHz)处的磁 场分布情况可知,该天线单元在中心频点处(即10.0GHz)辐射贴片上的电场非常强,而在两个辐射零点(即9.25GHz和10.875GHz)处辐射贴片上场强非常弱,该天线单元几乎不辐射;该天线单元在上零点处的磁耦合强度和下零点处的差别不大,但是由于下零点处的电场分布略强于上零点处,因此,在下零点处的带外抑制水平好于上零点处。
图13C至图13D示出了图12所示的天线单元在E面和H面的辐射方向图,如图13C至图13D所示,通带内该天线单元具有较低的交叉极化水平和稳定的辐射模式。
此外,以微带馈线15可以包括:沿第二方向X依次设置的第一馈线、第二馈线和第三馈线,第二馈线的宽度小于第一馈线的宽度,且第一馈线的宽度和第三馈线的宽度相等为例,相对于图10所示的天线单元,图12所示的天线单元中微带馈线15从均匀阻抗微带馈线变为阶跃阻抗微带馈线。相比于图10所示的天线单元的仿真结果,由图12所示的天线单元的仿真结果可知,微带馈线15从均匀阻抗微带馈线变为阶跃阻抗微带馈线,对天线单元的天线滤波性能和天线辐射性能没有明显影响,天线单元的交叉极化没有明显影响,略微影响了上边带和下边带的边带抑制水平。
由上述内容可知,在本公开实施例提供的天线单元中,通过设置微带耦合线结构与微带馈线之间具有间隔区域,并设置地板凹槽在介质基板的正投影与微带馈线在介质基板的正投影部分交叠,且地板凹槽在介质基板的正投影与微带耦合线结构的靠近微带馈线的一端(即微带耦合线结构中的第一枝节结构)在介质基板的正投影部分交叠,以使地板凹槽、微带耦合线结构与微带馈线形成转换结构。如此,通过转换结构可以实现单端信号和差分信号之间的转换,可以在天线单元中实现混合电磁耦合,且可以实现较好的滤波功能。从而,通过形成转换结构实现了将天线、滤波器和巴伦融合设计,无需引入额外的滤波电路和加载复杂的寄生结构,可以使得天线单元具有天线结构简单、尺寸较小、结构剖面低、成本较低、易于加工、易于和其它模块集成的特点,且能够保证优异的天线性能。
本公开实施例提供一种天线单元。图14为本公开示例性实施例中的天线 单元的第六种结构示意图,如图14所示,在垂直于天线单元平面的方向(即第三方向Z)上,该天线单元可以包括:介质基板11、位于介质基板11的第一表面一侧的天线层12、以及位于介质基板11的第二表面一侧的接地层13。其中,第一表面和第二表面是介质基板相背离的两个表面,天线层12可以包括:微带馈线15、以及位于微带馈线15的沿第一方向Y一侧的辐射贴片14和至少部分包围辐射贴片14的微带耦合线结构16,接地层13可以包括:地板凹槽17。微带耦合线结构16与微带馈线15之间具有间隔区域,地板凹槽17在介质基板11的正投影与微带馈线15在介质基板11的正投影部分交叠,且地板凹槽17在介质基板11的正投影与微带耦合线结构16的靠近微带馈线15一端在介质基板11的正投影部分交叠,以形成转换结构,可以实现单端信号和差分信号之间的转换,可以在天线单元中实现混合电磁耦合,且可以实现较好的滤波功能。
在一种示例性实施例中,如图14所示,地板凹槽17可以沿第一方向Y延伸,且地板凹槽17的形状可以呈“一”字型。例如,地板凹槽17可以采用矩形凹槽。
在一种示例性实施例中,如图14所示,微带馈线15可以采用阶跃阻抗微带馈线。例如,微带馈线15可以沿第二方向X延伸,且微带馈线15的形状可以呈“H”字型。例如,微带馈线15可以包括:沿第二方向X依次设置的第一馈线、第二馈线和第三馈线,其中,第二馈线的宽度与第一馈线的宽度和第三馈线的宽度不相同,例如,第二馈线的宽度小于第一馈线的宽度,且小于第三馈线的宽度。例如,第一馈线的宽度和第三馈线的宽度相等。其中,馈线的宽度是指沿第一方向Y的尺寸特征。其中,第二方向X与第一方向Y交叉。这里,本公开实施例对此不做限定。
在一种示例性实施例中,如图14所示,辐射贴片14的形状可以为圆形。
在一种示例性实施例中,如图14所示,微带耦合线结构16可以包括:微带耦合线162、以及与微带耦合线162连接的第一枝节结构161和第二枝节结构163,第一枝节结构161和第二枝节结构163位于微带耦合线162第一方向Y两侧,第一枝节结构161采用闭合枝节结构,第二枝节结构163采用闭合枝节结构。其中,第一枝节结构161的第二端与微带耦合线162的第 一端连接,微带耦合线162的第二端与第二枝节结构163的第一端连接。
在一种示例性实施例中,如图14所示,第一枝节结构161可以为轴对称结构,第一枝节结构161的对称轴可以为介质基板的中心线CL。例如,第一枝节结构161可以包括:沿第一方向Y延伸的第一枝节161-1和沿第一方向Y延伸的第二枝节161-2,第一枝节161-1和沿第一方向Y延伸的第二枝节161-2,第一枝节161-1和第二枝节161-2可以对称设置在介质基板的中心线CL的两侧。例如,第一枝节161-1和第二枝节161-2均可以包括:两个依次连接的“L”型枝节。这里,本公开实施例对此不做限定。
在一种示例性实施例中,如图14所示,微带耦合线162可以为轴对称结构,微带耦合线162的对称轴可以为介质基板的中心线CL。例如,微带耦合线162可以包括:第一微带耦合线162-1和第二微带耦合线162-2,第一微带耦合线162-1和第二微带耦合线162-2可以对称设置在介质基板的中心线CL的两侧。例如,以辐射贴片14的形状为圆形为例,第一微带耦合线162-1和第二微带耦合线162-2的形状可以为弧形。这里,本公开实施例对此不做限定。
在一种示例性实施例中,如图14所示,第二枝节结构163可以为轴对称结构,第二枝节结构163的对称轴可以为介质基板的中心线CL。例如,第二枝节结构163可以包括:沿第一方向Y延伸的第三枝节163-1和沿第一方向Y延伸的第四枝节163-2,第三枝节163-1和第四枝节163-2可以对称设置在介质基板的中心线CL的两侧。例如,第三枝节163-1和第四枝节163-2均可以为沿第一方向Y延伸的“L”型枝节。这里,本公开实施例对此不做限定。
在一种示例性实施例中,如图14所示,第一枝节161-1的第一端与第二枝节161-2的第一端连接,第一枝节161-1的第二端与第一微带耦合线162-1的第一端连接,第一微带耦合线162-1的第二端与第三枝节163-1的第一端连接,第二枝节161-2的第二端与第二微带耦合线162-2的第一端连接,第二微带耦合线162-2的第二端与第四枝节163-2的第一端连接,第三枝节163-1的第二端与第四枝节163-2的第二端连接。
图15A至图15D示出了图14所示的天线单元的仿真结果,下面结合天 线单元的仿真结果对图14所示的天线单元的性能进行说明。
图15A示出了图14所示的天线单元的散射参数(S参数)中的反射系数(S11参数)曲线,如图15A所示,该天线单元的-10dB(分贝)阻抗带宽约为9.94GHz(千兆赫兹)至10.31GHz,且天线单元呈现一个二阶滤波响应特性。其中,相比于图12所示的天线单元,图14所示的天线单元的阻抗带宽没有明显变化。
图15B示出了图14所示的天线单元的增益曲线,如图15B所示,该天线单元在通带内的增益约为7dBi,且通带内增益平坦度较好;该天线单元在通带左右两侧分别存在一个辐射零点,其中,两个辐射零点分别在9.325GHz和10.825GHz;该天线单元在下边带的阻带抑制好于上边带。
根据图14所示的天线单元在中心频点(即10.0GHz)和两个辐射零点(即9.325GHz和10.825GHz)处的电场分布情况,以及图14所示的天线单元在中心频点(即10.0GHz)和两个辐射零点(即9.325GHz和10.825GHz)处的磁场分布情况可知,该天线单元在中心频点处(即10.0GHz)辐射贴片上的电场非常强,而在两个辐射零点(即9.325GHz和10.825GHz)处辐射贴片上场强非常弱,该天线单元几乎不辐射;该天线单元在上零点处的磁耦合强度和下零点处的差别不大,但是由于下零点处的电场分布略强于上零点处,因此,在下零点处的带外抑制水平好于上零点处。
图15C至图15D示出了图14所示的天线单元在E面和H面的辐射方向图,如图15C至图15D所示,通带内该天线单元具有较低的交叉极化水平和稳定的辐射模式。
此外,相对于图12所示的天线单元,图14所示的天线单元中地板凹槽17变为采用呈“一”字型的矩形凹槽。相比于图12所示的天线单元的仿真结果,由图14所示的天线单元的仿真结果可知,地板凹槽17变为采用呈“一”字型的矩形凹槽,对天线单元的天线滤波性能和天线辐射性能没有明显影响,影响了天线单元的交叉极化(例如,从-27dB变为-20dB),影响了下边带的边带抑制水平。
由上述内容可知,在本公开实施例提供的天线单元中,通过设置微带耦合线结构与微带馈线之间具有间隔区域,并设置地板凹槽在介质基板的正投 影与微带馈线在介质基板的正投影部分交叠,且地板凹槽在介质基板的正投影与微带耦合线结构的靠近微带馈线的一端(即微带耦合线结构中的第一枝节结构)在介质基板的正投影部分交叠,以使地板凹槽、微带耦合线结构与微带馈线形成转换结构。如此,通过转换结构可以实现单端信号和差分信号之间的转换,可以在天线单元中实现混合电磁耦合,且可以实现较好的滤波功能。从而,通过形成转换结构实现了将天线、滤波器和巴伦融合设计,无需引入额外的滤波电路和加载复杂的寄生结构,可以使得天线单元具有天线结构简单、尺寸较小、结构剖面低、成本较低、易于加工、易于和其它模块集成的特点,且能够保证优异的天线性能。
本公开实施例还提供一种电子设备,该电子设备可以包括:上述一个或多个实施例中的天线单元。
在一种示例性实施例中,该电子设备可以包括但不限于为手机、平板电脑、电视机、显示器、笔记本电脑、数码相框或者导航仪等任何具有通信功能的产品或部件。这里,本公开实施例对电子设备的类型不做限定。对于该电子设备的其它必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本公开的限制。
以上电子设备实施例的描述,与上述天线单元实施例的描述是类似的,具有同天线单元实施例相似的有益效果。对于本公开电子设备实施例中未披露的技术细节,本领域的技术人员请参照本公开天线单元实施例中的描述而理解,这里不再赘述。
此外,本公开实施例中的电子设备除了可以包括上述的结构以外,还可以包括其它必要的组成和结构,本领域技术人员可根据该电子设备的种类进行相应地设计和补充,在此不再赘述。
虽然本公开所揭露的实施方式如上,但上述的内容仅为便于理解本公开而采用的实施方式,并非用以限定本公开。任何本公开所属领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本公开的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (17)

  1. 一种天线单元,包括:介质基板、以及位于介质基板的两侧的天线层和接地层;其中,所述天线层包括:微带馈线以及位于所述微带馈线的第一方向一侧的辐射贴片和微带耦合线结构,所述微带耦合线结构包括:沿第一方向依次连接的第一枝节结构、微带耦合线和第二枝节结构,所述第一枝节结构与所述微带馈线间隔设置,所述接地层包括:地板凹槽,所述地板凹槽在所述介质基板的正投影与所述微带馈线在所述介质基板的正投影具有第一交叠区域,且与所述第一枝节结构在所述介质基板的正投影具有第二交叠区域。
  2. 根据权利要求1所述的天线单元,其中,所述介质基板具有沿所述第一方向延伸的第一参考线和沿第二方向延伸的第二参考线,所述地板凹槽、所述辐射贴片、所述第一枝节结构、所述微带耦合线和所述第二枝节结构中至少一个关于所述第一参考线呈对称设置,所述微带馈线关于所述第二参考线呈对称设置,所述第一参考线与所述第二参考线垂直。
  3. 根据权利要求1或2所述的天线单元,其中,所述地板凹槽的形状呈“一”字型或者“H”字型。
  4. 根据权利要求3所述的天线单元,其中,所述地板凹槽包括:沿第一方向依次设置的第一凹槽、第二凹槽和第三凹槽,所述第二凹槽的第一端在介质基板的正投影位于所述第一交叠区域,所述第二凹槽的第二端在介质基板的正投影位于所述第二交叠区域,所述第二凹槽的宽度小于所述第一凹槽的宽度,且所述第一凹槽的宽度与所述第三凹槽的宽度相等,凹槽的宽度是指沿第二方向的尺寸特征,第二方向与第一方向垂直。
  5. 根据权利要求4所述的天线单元,其中,所述第一凹槽的宽度、所述第二凹槽的宽度和所述第三凹槽的宽度中至少一个为0.25mm至1.8mm。
  6. 根据权利要求4或5所述的天线单元,其中,所述第二凹槽的长度为2.0mm至2.65mm,凹槽的长度是指沿第一方向的尺寸特征。
  7. 根据权利要求1或2所述的天线单元,其中,所述微带馈线为沿第二方向延伸的均匀阻抗微带馈线或者阶跃阻抗微带馈线,第二方向与第一方向 垂直。
  8. 根据权利要求7所述的天线单元,其中,所述阶跃阻抗微带馈线包括:沿第二方向依次连接的第一馈线、第二馈线和第三馈线,所述第二馈线的宽度小于所述第一馈线的宽度,且所述第一馈线的宽度与所述第三馈线的宽度相等,馈线的宽度是指沿第一方向的尺寸特征。
  9. 根据权利要求1或2所述的天线单元,其中,所述微带耦合线可以包括:位于所述辐射贴片第二方向两侧的第一微带耦合线和第二微带耦合线。
  10. 根据权利要求9所述的天线单元,其中,所述第一枝节结构包括:位于所述辐射贴片第一方向反方向一侧的第一枝节和第二枝节,所述第一枝节的第一端与所述第二枝节的第一端连接,所述第一枝节的第二端与所述第一微带耦合线的第一端连接,所述第二枝节的第二端与所述第二微带耦合线的第一端连接。
  11. 根据权利要求10所述的天线单元,其中,所述第一枝节包括:第一子枝节和第二子枝节,所述第二枝节包括:第三子枝节和第四子枝节,第一子枝节的第一端与第三子枝节的第一端连接,第一子枝节的第二端与第二子枝节的第一端连接,第二子枝节的第二端与所述第一微带耦合线的第一端连接,第三子枝节的第二端与第四子枝节的第一端连接,第四子枝节的第二端与所述第二微带耦合线的第一端连接,第一子枝节、第二子枝节、第三子枝节和第四子枝节为“L”型枝节。
  12. 根据权利要求9所述的天线单元,其中,所述第二枝节结构包括:位于所述辐射贴片第一方向一侧的第三枝节和第四枝节,所述第三枝节的第一端与所述第一微带耦合线的第二端连接,所述第四枝节的第一端与所述第二微带耦合线的第二端连接;所述第三枝节的第二端与所述第四枝节的第二端连接,或者,所述第三枝节的第二端与所述第四枝节的第二端均通过过孔与所述接地层连接,或者,所述第三枝节的第二端与所述第四枝节的第二端开路。
  13. 根据权利要求12所述的天线单元,其中,所述第三枝节和所述第四枝节为“一”型枝节,或者,所述第三枝节和所述第四枝节为“L”型枝节。
  14. 根据权利要求1所述的天线单元,其中,微带馈线、辐射贴片、微 带耦合线、第一枝节结构和第二枝节结构同层同材料设置。
  15. 根据权利要求1所述的天线单元,其中,微带耦合线、第一枝节结构和第二枝节结构可以为相互连接的一体结构。
  16. 根据权利要求1所述的天线单元,其中,所述辐射贴片的形状为圆形、椭圆形、矩形和菱形中的一种。
  17. 一种电子设备,包括:如权利要求1至16任一项所述的天线单元。
PCT/CN2022/078168 2022-02-28 2022-02-28 天线单元及电子设备 WO2023159538A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280000337.5A CN116982222A (zh) 2022-02-28 2022-02-28 天线单元及电子设备
PCT/CN2022/078168 WO2023159538A1 (zh) 2022-02-28 2022-02-28 天线单元及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/078168 WO2023159538A1 (zh) 2022-02-28 2022-02-28 天线单元及电子设备

Publications (1)

Publication Number Publication Date
WO2023159538A1 true WO2023159538A1 (zh) 2023-08-31

Family

ID=87764368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078168 WO2023159538A1 (zh) 2022-02-28 2022-02-28 天线单元及电子设备

Country Status (2)

Country Link
CN (1) CN116982222A (zh)
WO (1) WO2023159538A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117937116A (zh) * 2024-01-12 2024-04-26 华南理工大学 一种相模控制单元、扫描阵列、通信设备及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043738A (en) * 1990-03-15 1991-08-27 Hughes Aircraft Company Plural frequency patch antenna assembly
CN108493589A (zh) * 2018-05-17 2018-09-04 华南理工大学 一种用于可穿戴设备的滤波天线
CN113675607A (zh) * 2021-08-19 2021-11-19 北京邮电大学 一种平面多端口高隔离宽频带三工集成天线

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043738A (en) * 1990-03-15 1991-08-27 Hughes Aircraft Company Plural frequency patch antenna assembly
CN108493589A (zh) * 2018-05-17 2018-09-04 华南理工大学 一种用于可穿戴设备的滤波天线
CN113675607A (zh) * 2021-08-19 2021-11-19 北京邮电大学 一种平面多端口高隔离宽频带三工集成天线

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JI SHUOSHENG; DONG YUANDAN: "Bandpass Filter Inspired Filtering Patch Antenna", 2021 IEEE MTT-S INTERNATIONAL WIRELESS SYMPOSIUM (IWS), IEEE, 23 May 2021 (2021-05-23), pages 1 - 3, XP033955914, DOI: 10.1109/IWS52775.2021.9499515 *
JI SHUOSHENG; DONG YUANDAN; FAN YONG: "Bandpass Filter Prototype Inspired Filtering Patch Antenna/Array", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, IEEE, USA, vol. 70, no. 5, 29 December 2021 (2021-12-29), USA, pages 3297 - 3307, XP011907398, ISSN: 0018-926X, DOI: 10.1109/TAP.2021.3137473 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117937116A (zh) * 2024-01-12 2024-04-26 华南理工大学 一种相模控制单元、扫描阵列、通信设备及方法

Also Published As

Publication number Publication date
CN116982222A (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
US20170047631A1 (en) High frequency band pass filter with coupled surface mount transition
CN111883914B (zh) 基于siw馈电的具有滤波特性的介质谐振器宽带天线
US9472855B2 (en) Antenna device
US20080284670A1 (en) Wide-band slot antenna apparatus with stop band
US7642981B2 (en) Wide-band slot antenna apparatus with constant beam width
CN111129731B (zh) 一种新型双端口馈电四频段滤波双工天线
CN113097715B (zh) 一种平面复合左右手传输线型5g手机mimo天线
WO2023159538A1 (zh) 天线单元及电子设备
CN115911838A (zh) 宽带共模吸收的差分馈电式双模贴片天线及天线阵列
CN114389020A (zh) 天线结构
CN112928409A (zh) 具有宽阻带和高选择性的微带带通滤波器
CN110112549B (zh) 一种差分馈电三频双极化天线
CN113745809B (zh) 电子设备
CN111463562B (zh) 一种具备滤波效果的超宽带差分馈电pifa天线
CN110581354B (zh) 双极化5g毫米波天线结构及移动设备
CN113690621B (zh) 一种基于多层pcb板的小型化高效率蓝牙天线
CN112993501B (zh) 加载谐振器慢波传输线的微带小型化宽阻带滤波功分器
CN114792885A (zh) 一种双频自解耦的mimo天线对
US20060232481A1 (en) Wideband antenna module for the high-frequency and microwave range
WO2023245435A1 (zh) 天线和电子装置
CN220106863U (zh) 同轴转微带互连装置和射频模组
US12046839B2 (en) Antenna structure and electronic device
CN219575906U (zh) 一种基于枝节加载谐振器的超宽带微带滤波器
CN215933819U (zh) 天线模块及智能电视
WO2023116780A1 (zh) 一种电子设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18016357

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22927821

Country of ref document: EP

Kind code of ref document: A1