WO2023158057A1 - High-efficiency fluid compression apparatus - Google Patents

High-efficiency fluid compression apparatus Download PDF

Info

Publication number
WO2023158057A1
WO2023158057A1 PCT/KR2022/017494 KR2022017494W WO2023158057A1 WO 2023158057 A1 WO2023158057 A1 WO 2023158057A1 KR 2022017494 W KR2022017494 W KR 2022017494W WO 2023158057 A1 WO2023158057 A1 WO 2023158057A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
fluid
cylinder
piston
inner space
Prior art date
Application number
PCT/KR2022/017494
Other languages
French (fr)
Korean (ko)
Inventor
류광현
Original Assignee
지에이치피 시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 지에이치피 시스템 주식회사 filed Critical 지에이치피 시스템 주식회사
Publication of WO2023158057A1 publication Critical patent/WO2023158057A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/18Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use for specific elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B41/00Pumping installations or systems specially adapted for elastic fluids
    • F04B41/06Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/10Valves; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/14Pistons, piston-rods or piston-rod connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/16Casings; Cylinders; Cylinder liners or heads; Fluid connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a high-efficiency fluid compression device that can be used to compress various gaseous or liquid state fluids, including hydrogen gas, at high pressure.
  • compressors for compressing fluid there are various types of compressors for compressing fluid, and they can be classified into positive displacement compressors and turbo compressors according to the compression method.
  • Positive displacement compressors increase pressure through volume reduction
  • turbo compressors use the kinetic energy of the fluid. It is a method of converting into pressure energy and compressing it.
  • a typical positive displacement compressor includes a reciprocating compressor, which compresses fluid by reciprocating motion of a piston.
  • Other types include screw compressors and diaphragm compressors.
  • hydrogen is recognized as one of the alternative energies, and as an energy source for automobiles, fuel cells using hydrogen are expected to be the most desirable power source considering its efficiency and output.
  • a fuel cell is a system that generates electricity electrochemically by using oxygen in the air and hydrogen in the fuel, and can continuously generate electricity regardless of the capacity of the battery by supplying fuel and air from the outside.
  • the fuel cell is an ideal power generation system with very high efficiency and little pollution because it directly converts the chemical energy of the fuel into electrical energy electrochemically within the cell without conversion into thermal energy.
  • the driving compressor in compressing a fluid such as hydrogen at a high pressure, is connected to the first compressor and the second compressor so that the hydrogen gas can be compressed in the first compressor and the second compressor through an incompressible fluid, resulting in high-quality compression.
  • a fluid such as hydrogen
  • the driving compressor is connected to the first compressor and the second compressor so that the hydrogen gas can be compressed in the first compressor and the second compressor through an incompressible fluid, resulting in high-quality compression.
  • the use of electrical elements is excluded in the first and second compressors where hydrogen compression is performed, and the repetitive supply and suction process of the incompressible fluid made in the driving compressor is also changed by physical contact between the piston rod and the operating rod. It is intended to provide a high-efficiency fluid compression device having stable and excellent compression efficiency characteristics by operating accurately without errors by making it happen.
  • a high-efficiency fluid compression device of the present invention for achieving the object as presented is a fluid compression device for compressing a fluid fuel to a high pressure, comprising: a drive compressor operated by hydraulic oil; A first rodless piston separating the inner space of the first cylinder is installed, and the first incompressible fluid flows into the inner space of the first cylinder while allowing the first rodless piston to rise by a pressurizing action generated at one side of the driving compressor.
  • a first compressor for compressing the supplied fluid fuel and discharging it to a temporary storage tank
  • a second rodless piston separating the inner space of the second cylinder is installed, and the second incompressible fluid is discharged by the suction action generated on the other side of the driving compressor, and the second rodless piston is lowered to lower the first load in the supply tank.
  • a second compressor that allows the new fluid fuel to flow into the inner space of the two cylinders, wherein one of the first compressor and the second compressor performs a compression stroke and the other performs a suction stroke. Characterized in that it includes a circuit.
  • a cooling jacket is provided covering outer surfaces of the first compressor and the second compressor to cool heat generated in the inner space of the first cylinder and the inner space of the second cylinder.
  • the primary compressed fluid fuel stored in the temporary storage tank is compressed to a higher pressure through a secondary compression circuit, the secondary compression circuit comprising: a secondary drive compressor operated by hydraulic oil;
  • the 1-1 rodless piston separating the inner space of the 1-1 cylinder is installed, and the 1-1 incompressible fluid moves through the 1-1 rodless piston by the pressurized action generated from one side of the secondary driving compressor.
  • a 1-1 compressor for compressing and discharging the primary compressed fluid fuel supplied to the inner space of the 1-1 cylinder while rising;
  • the 2-1 rodless piston separating the inner space of the 2-1 cylinder is installed, and the 2-1 incompressible fluid is discharged by the suction action generated on the other side of the secondary driving compressor, and the 2-1 rodless piston is installed.
  • a 2-1 compressor for allowing the primary compressed fluid fuel to flow from the temporary storage tank into the inner space of the 2-1 cylinder by lowering the piston.
  • the driving compressor has an operating space formed to pass through from side to side, and the operating space includes a cylinder body composed of a hydraulic oil supply chamber at the center and an incompressible fluid chamber at the left and right edges; A piston installed in the operating space and composed of a piston head positioned in the hydraulic oil supply chamber and a piston rod projecting left and right of the piston head and positioned in the incompressible fluid chamber; A housing coupled to both left and right ends of the cylinder body and an operating rod penetrating the housing and disposed coaxially with the piston, one end of the operating rod penetrates the cylinder body and enters the incompressible fluid chamber.
  • the operating space includes a cylinder body composed of a hydraulic oil supply chamber at the center and an incompressible fluid chamber at the left and right edges; A piston installed in the operating space and composed of a piston head positioned in the hydraulic oil supply chamber and a piston rod projecting left and right of the piston head and positioned in the incompressible fluid chamber; A housing coupled to both left and right ends of the
  • a pair of switching valves provided one by one on the outside of the pair of direction change detectors to allow hydraulic pressure to be applied to a signal hydraulic line when the operating rod contacts the other end of the operating rod when the operating rod moves outward; and a hydraulic oil flow control valve connected to the pair of switching valves and the signal hydraulic line and operated to change the flow direction of hydraulic oil in the hydraulic oil supply chamber when the switching valve on one side is operated.
  • the operating rod is formed to protrude left and right to have a smaller outer diameter than the outer diameter of the operating head based on the operating head, and one or more O-rings are coupled to an outer circumferential surface of the operating head.
  • the housing has an operating head chamber in which the operating head can be inserted and moved at one end side, and a seal installation chamber divided from the operating head chamber and a partition wall is formed at the other end side, and the operating rod is formed at the center of the partition wall. It is characterized in that a through hole is formed through which the diaphragm passes, and a hydraulic port capable of supplying hydraulic pressure to the operating head chamber adjacent to the bulkhead is formed.
  • the high-efficiency fluid compression device has the effect of being very efficient in compressing and storing gaseous fluid fuel, such as hydrogen, at high pressure.
  • the present invention has an effect that it is possible to produce a high-purity high-pressure compressed fluid fuel by reliably preventing a problem in which various impurities are mixed in a fluid fuel such as hydrogen gas during a high-pressure compression process.
  • the present invention allows the incompressible fluid to be discharged to one side while moving left and right reciprocally by working oil in the driving compressor, so that hydrogen gas is compressed in either the first compressor or the second compressor, and the incompressible fluid is discharged to the other side in the first compressor.
  • hydrogen gas is introduced into the compressor, and the direction of the piston moved by the hydraulic oil in the driving compressor is changed through physical contact between the piston rod and the operating rod to prevent malfunction. It has the effect of preventing safety accidents such as explosions by excluding the use of electric sensors.
  • FIG. 1 is a conceptual diagram of a compressor without a piston according to the prior art.
  • FIG. 2 is a conceptual diagram of a high-efficiency fluid compression device according to the present invention.
  • Figure 3 is an enlarged view of the cylinder body in Figure 2;
  • Figure 4 is an enlarged view of the direction change sensor in Figure 2;
  • FIG. 5 is an enlarged view of a first compressor or a second compressor
  • FIG. 6 is a configuration diagram of a high-efficiency fluid compression device composed of a primary compression circuit and a secondary compression circuit.
  • the high-efficiency fluid compression device of the present invention can be used to compress various fluids, that is, liquid or gaseous fluids, to high pressures, and in particular, to commercially sell gaseous fluid fuels such as hydrogen gas at high pressures. It is a technology necessary to build infrastructure for storage or transportation.
  • the high-efficiency fluid compression device of the present invention can be provided as a single-stage or multi-stage fluid compression device according to the demand of the customer, and thus basically includes a primary compression circuit, and in the case of a multi-stage compression device, a secondary compression circuit, A third compression circuit may be added.
  • Components of the high-efficiency fluid compression device of the present application including the primary compression circuit include a driving compressor (C), a first compressor (C1), and a second compressor (C2), and the driving compressor (C) is operated by hydraulic oil. And, the first compressor (C1) is connected to one side of the driving compressor (C), and the second compressor (C2) is connected to the other side of the driving compressor (C). Substantial hydrogen gas compression is performed in the first compressor (C1) and the second compressor (C2), a compression stroke is performed in one of the first compressor (C1) and the second compressor (C2), and suction is performed in the other compressor. As the stroke is performed, the first compressor C1 and the second compressor C2 alternately compress hydrogen to a high pressure.
  • the driving compressor (C) will be described in more detail.
  • the driving compressor (C) includes a cylinder body 100, a piston 200, a direction change detector 300, a switching valve 400, and a hydraulic oil flow control valve 500.
  • the cylinder body 100 penetrates left and right along the center line to form an operating space 110, and the operating space 110 includes a hydraulic oil supply chamber 110a at the center and an incompressible fluid chamber 110b at the left and right edges.
  • the hydraulic oil supply chamber 110a hydraulic oil for forcibly moving the piston 200 left and right is supplied and discharged, and the incompressible fluid chamber 110b is filled with a predetermined amount of incompressible fluid.
  • the cylinder body 100 is manufactured and assembled into a plurality of divided parts in consideration of processing and assembly characteristics.
  • the cylinder body 100 is composed of a central center body 101 and side bodies 102 coupled to both left and right ends of the center body 101, and the center body 101 is a hollow body that penetrates left and right. And the inner space of the center body 101 becomes the working oil supply chamber 110a.
  • Side bodies 102 are coupled to both left and right ends of the center body 101 one by one, and are fastened to the center body 101 through a flange formed at one end of the side body 102, and coaxial with the center body 101. As a result, an empty inner space is formed even inside the side body 102 to a predetermined depth.
  • the inner space formed in the side body 102 becomes an incompressible fluid chamber 110b, and the inner diameter of the incompressible fluid chamber 110b is smaller than the inner diameter of the hydraulic oil supply chamber 110a of the center body 101.
  • an operation rod insertion hole 103 penetrating to the outside is formed.
  • a piston 200 is installed inside the cylinder body 100, the piston 200 is composed of a piston head 210 and a piston rod 220, and one or more O-rings O are installed on the piston head 210 .
  • the piston head 210 is located in the hydraulic oil supply chamber 110a, and the piston rod 220 protrudes to the left and right of the piston head 210 and is installed in a state in which it is inserted into the non-compressible fluid chamber 110b.
  • the hydraulic oil supply chamber 110a is spatially separated by the piston head 210, so that one side becomes the first hydraulic oil supply chamber 110a-1 and the other side becomes the second hydraulic oil supply chamber 110a-2.
  • the piston 200 moves toward the second hydraulic oil supply chamber 110a-2, and at this time, the hydraulic oil in the second hydraulic oil supply chamber 110a-2 is discharged to the outside. do.
  • a sealing block 120 is installed between the connection points of the center body 101 and the side body 102 to increase sealing performance, and the piston rod 220 passes through the center of the sealing block 120, ,
  • the O-ring (O) is installed along the outer circumferential surface of the sealing block 120, and the sealing seal (S) is installed on the inner diameter surface of the sealing block 120 and the inner diameter surface of the incompressible fluid chamber 110b to be in contact with the piston rod 220. This prevents the hydraulic oil and incompressible fluid from mixing with each other.
  • a direction change sensor 300 is coupled to each end of the side body 102 constituting the cylinder body 100, and the direction change sensor 300 includes a housing 310 and an operating rod 320.
  • An operating rod 320 is disposed coaxially with the piston 200 while penetrating the housing 310 constituting the direction change detector 300 from side to side.
  • the operating rod 320 is shaped like a long rod connected to one another, and the operating head 320a is formed approximately in the middle so that the operating rod protrudes to the left and right of the operating head 320a to have a smaller outer diameter than the outer diameter of the operating head.
  • 320 is provided.
  • one or more O-rings (O) are coupled to the outer circumferential surface of the operating head (320a) to function as a piston.
  • One end of the operating rod 320 is installed to enter the incompressible fluid chamber 110b based on the operating head 320a, and the other end of the operating rod 320 is installed to protrude outward from the housing 310.
  • the operating rod 320 is installed while penetrating the housing 310, and the operating head 320a is inserted into one end side of the housing 310 coupled to the side body 102 to move the operating head chamber ( 311) is formed to a predetermined depth, and a seal installation chamber 313 divided into an operating head chamber 311 and a partition wall 312 is formed at the other end side of the housing 310.
  • a predetermined airtight seal (S) is installed in the seal installation chamber 313 to prevent incompressible fluid from leaking through the operating rod 320.
  • a through hole through which the operating rod 320 passes is formed at the center of the partition wall 312 so that the operating rod 320 can move left and right.
  • a hydraulic port 314 for supplying hydraulic pressure to the operating head chamber 311 adjacent to the bulkhead 312 . Through the hydraulic port 314, hydraulic fluid at a predetermined pressure is supplied to the operating head chamber 311 to balance the pressure formed in the incompressible fluid chamber 110b of the cylinder body 100.
  • a pair of switching valves 400 are provided while leaving a predetermined distance to the outside of the direction change detector 300 coupled to the outer end of the side body 102, respectively.
  • Each switching valve 400 presses the input end 410 of the switching valve 400 with the end of the operating rod 320 when the operating rod 320 of each facing direction change sensor 300 is forcibly moved to the outside. And, accordingly, the hydraulic pressure is operated to act on the signal hydraulic line (L1) connected to the switching valve 400.
  • a pair of switching valves 400 and a hydraulic oil flow control valve 500 connected to a signal hydraulic line L1 are provided. It serves to control the flow path so that the flow direction of hydraulic oil in the first hydraulic oil supply chamber 110a-1 and the second hydraulic oil supply chamber 110a-2 is changed.
  • the piston 200 moves toward the first hydraulic oil supply chamber 110a-1 by a predetermined distance. While the entire piston 200 moves, the piston rod 220 presses one end of the operating rod 320 that has entered the first incompressible fluid chamber 110b-1, and the other end of the operating rod 320 presses on the housing 310. ) While further protruding outward, the input end 410 of the first switching valve 400a is pressed so that the hydraulic oil supply path is changed in the hydraulic oil flow control valve 500 while hydraulic pressure is supplied to the signal hydraulic line L1.
  • hydraulic pressure is supplied through the hydraulic port 314 of each direction change sensor 300 so that the operating head 320a receives force toward the inside.
  • hydraulic pressure is applied through the hydraulic port 314 in the second direction switching sensor 300b, so the operating rod 320 is not pushed outward.
  • the piston 200 is moved so that the working oil in the first working oil supply chamber 110a-1 is discharged, and the incompressibility of the first incompressible fluid chamber 110b-1
  • the fluid is also discharged, and during the process, the hydraulic pressure of a predetermined pressure is applied through the hydraulic port 314 so that the operating rod 320 does not retreat outward until the piston rod 220 contacts the operating rod 320.
  • the first switching valve 400a is operated.
  • the hydraulic port 314 formed in the direction change sensor 300 is connected to the accumulator 50, so that when the piston rod 220 pushes the operating rod 320, the hydraulic oil of the operating head chamber 311 is transferred to the accumulator. 50, and when the piston 200 moves in the opposite direction, the hydraulic fluid introduced into the accumulator 50 is discharged again, so that hydraulic pressure is applied to the operating head chamber 311.
  • the hydraulic force applied to the operating head chamber 311 through the hydraulic port 314 of the direction change detector 300 is set so that an appropriate hydraulic pressure is applied in consideration of the pressure in the hydraulic oil supply chamber 110a inside the cylinder body 100. You can do it.
  • the piston 200 moves in the opposite direction, that is, to the second hydraulic oil supply chamber 110a-2, so that the piston rod 220 moves to the second direction change detector 300b.
  • One end of the operating rod 320 is pressed, and the other end of the operating rod 320 further protrudes to the outside of the housing 310 and presses the input end 410 of the second switching valve 400b to press the hydraulic line for the second signal (
  • the hydraulic oil flow control valve 500 is operated to change the flow path. That is, the hydraulic oil flows into the second hydraulic oil supply chamber 110a-2, and the hydraulic oil remaining in the first hydraulic oil supply chamber 110a-1 is controlled to be discharged to the tank.
  • the incompressible fluid is discharged or sucked from the incompressible fluid chamber 110b of the cylinder body 100 by the left and right repetitive movement of the piston 200 as described above to fill the incompressible fluid chamber.
  • the driving compressor (C) is for pressurizing and supplying an incompressible fluid so that hydrogen gas can be compressed in the first compressor (C1) and the second compressor (C2).
  • the first compressor C1 and the second compressor C2 connected to the drive compressor C will be described in more detail.
  • the first compressor (C1) and the second compressor (C2) have the same components, the first compressor (C1) is connected to the first incompressible fluid chamber (110b-1) and the flow path, the second compressor (C2) is interconnected with the second incompressible fluid chamber 110b-2 so that the incompressible fluid can move.
  • the first compressor (C1) is preferably arranged in the vertical direction, and the first cylinder (10) of a predetermined height is coupled upright on the bottom plate (BP), and the inside of the first cylinder (10) has an internal space A first rodless piston (P1) separating up and down is installed.
  • the first incompressible fluid chamber 110b-1 and the flow path are connected through the bottom plate BP so that the first incompressible fluid is supplied to the inner space of the first cylinder 10. Meanwhile, an outlet (V) of hydrogen gas to be compressed is provided at the upper end of the first cylinder 10 .
  • the outlet inlet (V) may be separated so that the inlet and outlet are formed independently, and when compressed through one outlet inlet (V), the compressed hydrogen can be discharged through the compression line (1), and inhaled on the contrary. At this time, hydrogen gas may be introduced into the first cylinder 10 through the suction line 2 .
  • one outlet inlet (V) is provided on the upper side of the first cylinder (10), and check valves (CV) are installed in the compression line (1) and the suction line (2), and the first The check valve CV1 is opened during compression and the second check valve CV2 is closed. When hydrogen gas is sucked into the first cylinder 10, the second check valve CV2 is opened and the first check valve CV1 is operated to close.
  • the cooling jacket (J) allows a refrigerant such as water to circulate to effectively absorb heat generated inside the first cylinder (10).
  • the second compressor (C2) is made of the same components as the first compressor (C1), the second rodless piston (P2) separating the inner space of the second cylinder (20) is installed, through the bottom plate (BP) It is connected to the second incompressible fluid chamber (110b-2), and an outflow inlet (V) is provided on the upper side.
  • a temporary storage tank (T1) and a supply tank (T2) must be provided, and the temporary storage tank (T1) is the compression line ( 1), so that hydrogen gas compressed to high pressure through the compression stroke can be stored.
  • the supply tank T2 is a necessary element for supplying hydrogen gas to be compressed to the first compressor C1 or the second compressor C2 through the suction line 2.
  • the first compressor (C1) and the second compressor (C2) operate simultaneously, and one compression stroke is performed and the other is a suction stroke, so that hydrogen gas can be compressed at high pressure quickly and efficiently.
  • the temporary storage tank (T1) is provided with a gas outlet (V1) for discharging the primarily compressed hydrogen gas to the outside.
  • the driving compressor (C), the first compressor (C1), and the second compressor (C2) are connected to each other and interlock with the operation of the driving compressor (C), so that the first compressor (C1) and the second compressor (C2) operate at the same time, ,
  • the first incompressible fluid accommodated in the first incompressible fluid chamber (110b-1) of the driving compressor (C) is discharged by pressurization, and the inside of the first cylinder (10)
  • P1 raise the first rodless piston
  • hydrogen gas can be compressed to a high pressure through the primary compression circuit, and when compression to a higher pressure is required, an additional secondary compression circuit is connected to reproduce the primary compressed hydrogen gas. to be able to compress it.
  • the secondary compression circuit includes a secondary driving compressor (C-1), a 1-1 compressor (C1-1), and a 2-1 compressor (C2-1), and the 1-1 compressor (C1-1) )
  • the first rodless piston (P1-1) is installed in the inner space of the 1-1 cylinder (10-1) by the pressurization action generated from one side of the secondary driving compressor (C-1). -1
  • the incompressible fluid causes the 1-1 rodless piston (P1-1) to rise so that the primary compressed fluid fuel supplied to the inner space of the 1-1 cylinder (10-1), that is, the primary compressed hydrogen gas, is further supplied. It is compressed and discharged to the storage tank (T3).
  • the 2-1 compressor (C2-1) has a 2-1 cylinder (20-1) and a 2-1 rodless piston (P2-1) is installed to separate the internal space, and the secondary driving compressor (C The 2-1 cylinder 20 in the temporary storage tank T1 by lowering the 2-1 rodless piston P2-1 while the 2-1 incompressible fluid is discharged by the suction action generated on the other side of -1). -1) Allow the primary compressed fluid fuel to flow into the inner space.
  • the compressed hydrogen gas stored in the storage tank is stored at a higher pressure than the temporary storage tank.
  • the hydrogen gas stored in the temporary storage tank through the primary compression circuit is approximately 500 bar, and is stored in the storage tank through the secondary compression circuit.
  • the hydrogen gas to be compressed can be stored at about 1000 bar.
  • a tertiary compression circuit may be further configured to compress hydrogen gas at a higher pressure.
  • the incompressible fluid referred to in the present invention may use water or an ionic liquid, and the ionic liquid includes an Alkyl-imidazolium system.
  • the ionic liquid is a material composed of organic cations and organic/inorganic anions, and It maintains a liquid state below 100°C, has a high heat resistance temperature, and is characterized by being non-flammable. Also, ionic liquids are characterized by very low solubility in water.
  • Ionic liquids are used as eco-friendly clean solvents, electrolytes for secondary batteries, and electrically conductive materials, but the manufacturing process is complicated and difficult, and the price is very high.
  • water or ionic liquid can be selected as the incompressible fluid, and water and ionic liquid are mixed in an appropriate amount, for example, 50%, to reduce the cost of supplementing the consumable incompressible fluid. present.
  • a balloon having excellent elasticity is installed inside the first compressor or the second compressor to inhale and compress hydrogen gas so that the hydrogen gas can be completely separated spatially inside the cylinder.
  • the upper end of the balloon is tightly connected to the inlet and outlet, and the lower end of the balloon is constrained using the upper end of the rodless piston and a magnet so that the balloon can also be contracted or expanded according to the elevation of the rodless piston.
  • the balloon As the rodless piston descends, the balloon also expands, and at this time, hydrogen gas flows into the balloon, and then, when the rodless piston rises, the balloon also contracts, compressing and discharging the hydrogen gas inside it.
  • the high-efficiency fluid compression device can be very useful when compressing a fluid such as hydrogen gas at a high pressure.
  • operation control of the driving compressor, the first compressor, and the second compressor In order to exclude elements using electricity such as solenoid valves, hydraulic pressure is used to drive the driving compressor, and the direction of the piston of the driving compressor is changed so that the compression and suction strokes can be alternately performed in the first and second compressors.
  • the controlling direction change sensor also has the advantage of preventing safety accidents such as explosion accidents by allowing the hydraulic oil supply path to be changed by physical contact between the piston rod and the operating rod.
  • the present invention is a technology that can be usefully used for the purpose of compressing a fluid such as hydrogen gas at a high pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

The present invention relates to a high-efficiency fluid compression apparatus usable for compressing, at high pressure, various gas-state fluids, such as hydrogen gas, or liquid-state fluids, the high-efficiency fluid compression apparatus comprising: a drive compressor which operates by means of a working fluid; a first compressor in which a first rodless piston dividing an inner space of a first cylinder is installed such that, by means of a pressurization reaction occurring at one side of the drive compressor, a first incompressible fluid raises the first rodless piston, thereby enabling a fluid which has been supplied into the inner space of the first cylinder to be compressed and discharged to a temporary storage tank; and a second compressor in which a second rodless piston dividing an inner space of a second cylinder is installed such that, by means of a suction reaction occurring at the other side of the drive compressor, a second incompressible fluid is discharged so as to lower the second rodless piston, thereby enabling a new batch of the fluid to flow into the inner space of the second cylinder from a supply tank, wherein the high-efficiency fluid compression apparatus comprises a primary compression circuit in which, of the first compressor and the second compressor, any one carries out a compression stroke, and the other one carries out a suction stroke.

Description

고효율 유체 압축 장치High Efficiency Fluid Compression Device
본 발명은 수소 가스를 비롯한 각종 기체나 액체 상태의 유체를 고압으로 압축하는데 사용될 수 있는 교효율 유체 압축 장치에 관한 것이다.The present invention relates to a high-efficiency fluid compression device that can be used to compress various gaseous or liquid state fluids, including hydrogen gas, at high pressure.
에너지를 얻기 위해 연료로 사용되는 다양한 액체들은 고압으로 압축한 상태로 운반, 저장된 후 여러 수요처에서 사용된다.Various liquids used as fuel to obtain energy are transported and stored in a state of high pressure and used in various demand places.
유체를 압축하기 위한 압축기는 다양한 것들이 있으며, 압축 방식에 따라 용적형 압축기와 터보형 압축기로 분류할 수 있고, 용적형 압축기는 체적의 감소를 통해 압력을 증가시키는 방식이고, 터보형 압축기는 유체의 운동에너지를 압력에너지로 변화시켜 압축을 하는 방식이다.There are various types of compressors for compressing fluid, and they can be classified into positive displacement compressors and turbo compressors according to the compression method. Positive displacement compressors increase pressure through volume reduction, and turbo compressors use the kinetic energy of the fluid. It is a method of converting into pressure energy and compressing it.
대표적인 용적형 압축기로는 왕복동식 압축기가 있으며, 피스톤의 왕복운동에 의해 유체를 압축하도록 한다. 그 외 스크류 압축기, 다이어프램 압축기 등이 있다.A typical positive displacement compressor includes a reciprocating compressor, which compresses fluid by reciprocating motion of a piston. Other types include screw compressors and diaphragm compressors.
특히, 수소는 대체에너지의 하나로 인식되고 있고, 자동차의 에너지원으로는 그 효율성과 출력을 감안하면 수소를 이용한 연료전지가 가장 바람직한 동력원으로 기대되고 있다.In particular, hydrogen is recognized as one of the alternative energies, and as an energy source for automobiles, fuel cells using hydrogen are expected to be the most desirable power source considering its efficiency and output.
연료전지(Fuel Cell)는 공기 중의 산소와 연료 중의 수소를 이용하여 전기화학적으로 전기를 발생시키는 것으로 연료와 공기를 외부에서 공급하여 전지의 용량에 관계없이 계속 발전을 할 수 있는 시스템이다.A fuel cell is a system that generates electricity electrochemically by using oxygen in the air and hydrogen in the fuel, and can continuously generate electricity regardless of the capacity of the battery by supplying fuel and air from the outside.
즉, 연료전지는 연료가 가지고 있는 화학에너지를 열에너지로의 변환 없이 전지 내에서 전기화학적으로 직접 전기에너지로 바꾸기 때문에 효율이 매우 높고 공해가 거의 없는 이상적인 발전시스템이다.That is, the fuel cell is an ideal power generation system with very high efficiency and little pollution because it directly converts the chemical energy of the fuel into electrical energy electrochemically within the cell without conversion into thermal energy.
본 발명에서는 수소와 같은 유체를 고압으로 압축함에 있어서, 구동 압축기와 제1압축기 및 제2압축기를 연결하여 비압축성유체를 통해 제1압축기와 제2압축기에서 수소 기체를 압축할 수 있도록 하여 고품질의 압축수소를 생산할 수 있도록 하고자 한다.In the present invention, in compressing a fluid such as hydrogen at a high pressure, the driving compressor is connected to the first compressor and the second compressor so that the hydrogen gas can be compressed in the first compressor and the second compressor through an incompressible fluid, resulting in high-quality compression. We want to be able to produce hydrogen.
특히, 수소 압축이 이루어지는 제1압축기와 제2압축기에는 전기적 요소의 사용을 배제하도록 하고, 구동 압축기에서 이루어지는 비압축성유체의 반복적인 공급과 흡입과정도 피스톤 로드와 작동로드간의 물리적 접촉에 의해 방향절환이 이루어지게 함으로써 에러없이 정확하게 동작되게 하여 안정적이면서도 뛰어난 압축 효율 특성을 갖는 고효율 유체 압축 장치를 제공하고자 한다.In particular, the use of electrical elements is excluded in the first and second compressors where hydrogen compression is performed, and the repetitive supply and suction process of the incompressible fluid made in the driving compressor is also changed by physical contact between the piston rod and the operating rod. It is intended to provide a high-efficiency fluid compression device having stable and excellent compression efficiency characteristics by operating accurately without errors by making it happen.
제시한 바와 같은 과제 달성을 위한 본 발명의 고효율 유체 압축 장치는, 유체 연료를 고압으로 압축하기 위한 유체 압축 장치로서, 작동유에 의해 동작되는 구동 압축기; 제1실린더 내부공간을 분리하는 제1로드리스 피스톤이 설치되어 상기 구동 압축기의 일측에서 발생되는 가압작용에 의해 제1비압축성유체가 상기 제1로드리스 피스톤을 상승되게 하면서 상기 제1실린더 내부공간으로 공급된 상기 유체 연료를 압축시겨 임시저장탱크로 배출시키는 제1압축기; 제2실린더 내부공간을 분리하는 제2로드리스 피스톤이 설치되어 상기 구동 압축기의 타측에서 발생되는 흡입작용에 의해 제2비압축성유체가 배출되면서 상기 제2로드리스 피스톤을 하강되게 하여 서플라이탱크에서 상기 제2실린더 내부공간으로 새로운 상기 유체 연료가 유입되게 하는 제2압축기;를 포함하되, 상기 제1압축기와 상기 제2압축기중 어느 하나는 압축행정을 수행하고 다른 하나는 흡입행정을 수행하는 1차압축회로를 포함하는 것을 특징으로 한다.A high-efficiency fluid compression device of the present invention for achieving the object as presented is a fluid compression device for compressing a fluid fuel to a high pressure, comprising: a drive compressor operated by hydraulic oil; A first rodless piston separating the inner space of the first cylinder is installed, and the first incompressible fluid flows into the inner space of the first cylinder while allowing the first rodless piston to rise by a pressurizing action generated at one side of the driving compressor. a first compressor for compressing the supplied fluid fuel and discharging it to a temporary storage tank; A second rodless piston separating the inner space of the second cylinder is installed, and the second incompressible fluid is discharged by the suction action generated on the other side of the driving compressor, and the second rodless piston is lowered to lower the first load in the supply tank. A second compressor that allows the new fluid fuel to flow into the inner space of the two cylinders, wherein one of the first compressor and the second compressor performs a compression stroke and the other performs a suction stroke. Characterized in that it includes a circuit.
바람직하게 상기 제1압축기와 상기 제2압축기의 외면을 감싸는 쿨링자켓이 구비되어 상기 제1실린더 내부공간 및 제2실린더 내부공간에서 발생되는 열을 냉각시킬 수 있도록 하는 것을 특징으로 한다.Preferably, a cooling jacket is provided covering outer surfaces of the first compressor and the second compressor to cool heat generated in the inner space of the first cylinder and the inner space of the second cylinder.
바람직하게 상기 임시저장탱크에 저장되는 1차압축유체연료는 2차압축회로를 통해 보다 높은 압력으로 압축되며, 상기 2차압축회로는, 작동유에 의해 동작되는 2차 구동 압축기; 제1-1실린더 내부공간을 분리하는 제1-1로드리스 피스톤이 설치되어 상기 2차 구동 압축기의 일측에서 발생되는 가압작용에 의해 제1-1비압축성유체가 상기 제1-1로드리스 피스톤을 상승되게 하면서 상기 제1-1실린더 내부공간으로 공급된 상기 1차압축유체연료를 압축시겨 저장탱크로 배출시키는 제1-1압축기; 제2-1실린더 내부공간을 분리하는 제2-1로드리스 피스톤이 설치되어 상기 2차 구동 압축기의 타측에서 발생되는 흡입작용에 의해 제2-1비압축성유체가 배출되면서 상기 제2-1로드리스 피스톤을 하강되게 하여 상기 임시저장탱크에서 상기 제2-1실린더 내부공간으로 상기 1차압축유체연료가 유입되게 하는 제2-1압축기;를 포함하는 것을 특징으로 한다.Preferably, the primary compressed fluid fuel stored in the temporary storage tank is compressed to a higher pressure through a secondary compression circuit, the secondary compression circuit comprising: a secondary drive compressor operated by hydraulic oil; The 1-1 rodless piston separating the inner space of the 1-1 cylinder is installed, and the 1-1 incompressible fluid moves through the 1-1 rodless piston by the pressurized action generated from one side of the secondary driving compressor. a 1-1 compressor for compressing and discharging the primary compressed fluid fuel supplied to the inner space of the 1-1 cylinder while rising; The 2-1 rodless piston separating the inner space of the 2-1 cylinder is installed, and the 2-1 incompressible fluid is discharged by the suction action generated on the other side of the secondary driving compressor, and the 2-1 rodless piston is installed. and a 2-1 compressor for allowing the primary compressed fluid fuel to flow from the temporary storage tank into the inner space of the 2-1 cylinder by lowering the piston.
바람직하게 상기 구동 압축기는, 좌우로 관통되게 작동공간이 형성되되, 상기 작동공간은 중앙부의 작동유공급실과 좌우 가장자리부의 비압축성유체실로 이루어지는 실린더 바디; 상기 작동공간에 설치되며, 상기 작동유공급실에 위치되는 피스톤 헤드와 상기 피스톤 헤드의 좌우로 돌출되어 상기 비압축성유체실에 위치하게 되는 피스톤 로드로 이루어지는 피스톤; 상기 실린더 바디의 좌우 양단부에 체결되는 하우징과, 상기 하우징을 관통하면서 상기 피스톤과 동축상으로 배치되는 작동로드를 갖추되, 상기 작동로드의 일단은 상기 실린더 바디를 관통하여 상기 비압축성유체실 내부로 진입되고, 상기 작동로드의 타단은 상기 하우징 외측으로 돌출되는 한 쌍의 방향절환감지체; 상기 한 쌍의 방향절환감지체 외측에 하나씩 구비되되 상기 작동로드가 외측으로 이동할 때 상기 작동로드의 타단과 접촉되면 신호용 유압라인으로 유압이 작용되게 하는 한 쌍의 스위칭밸브; 상기 한 쌍의 스위칭밸브와 상기 신호용 유압라인으로 연결되며, 어느 일측의 스위칭밸브가 작동되는 것에 의해 상기 작동유공급실의 작동유 흐름방향이 변경되도록 동작하는 작동유흐름제어밸브;를 포함하는 것을 특징으로 한다.Preferably, the driving compressor has an operating space formed to pass through from side to side, and the operating space includes a cylinder body composed of a hydraulic oil supply chamber at the center and an incompressible fluid chamber at the left and right edges; A piston installed in the operating space and composed of a piston head positioned in the hydraulic oil supply chamber and a piston rod projecting left and right of the piston head and positioned in the incompressible fluid chamber; A housing coupled to both left and right ends of the cylinder body and an operating rod penetrating the housing and disposed coaxially with the piston, one end of the operating rod penetrates the cylinder body and enters the incompressible fluid chamber. and a pair of direction change detectors at the other end of the operating rod protruding outward from the housing; A pair of switching valves provided one by one on the outside of the pair of direction change detectors to allow hydraulic pressure to be applied to a signal hydraulic line when the operating rod contacts the other end of the operating rod when the operating rod moves outward; and a hydraulic oil flow control valve connected to the pair of switching valves and the signal hydraulic line and operated to change the flow direction of hydraulic oil in the hydraulic oil supply chamber when the switching valve on one side is operated.
바람직하게 상기 작동로드는, 작동헤드를 기준으로 상기 작동헤드의 외경보다 작은 외경을 갖도록 좌우로 돌출되게 형성되며, 상기 작동헤드 외주면에는 하나 이상의 오링이 결합되는 것을 특징으로 한다.Preferably, the operating rod is formed to protrude left and right to have a smaller outer diameter than the outer diameter of the operating head based on the operating head, and one or more O-rings are coupled to an outer circumferential surface of the operating head.
바람직하게 상기 하우징은, 일측 단부측에 상기 작동헤드가 끼워져 움직일 수 있는 작동헤드실이 형성되고, 타측 단부측에는 상기 작동헤드실과 격벽으로 구분되는 씰설치실이 형성되고, 상기 격벽 중심에는 상기 작동로드가 지나가는 관통홀이 형성되고, 상기 격벽과 인접한 상기 작동헤드실로 유압을 공급할 수 있는 유압포트가 형성되는 것을 특징으로 한다.Preferably, the housing has an operating head chamber in which the operating head can be inserted and moved at one end side, and a seal installation chamber divided from the operating head chamber and a partition wall is formed at the other end side, and the operating rod is formed at the center of the partition wall. It is characterized in that a through hole is formed through which the diaphragm passes, and a hydraulic port capable of supplying hydraulic pressure to the operating head chamber adjacent to the bulkhead is formed.
바람직하게 상기 유압포트를 통해 항상 일정한 유압이 작용되도록 하는 것을 특징으로 한다.Preferably, it is characterized in that a constant hydraulic pressure is always applied through the hydraulic port.
본 발명에 의한 고효율 유체 압축 장치는 특히 수소와 같은 기체상태의 유체연료를 고압으로 압축 저장함에 있어 매우 효율적이라는 효과가 있다.The high-efficiency fluid compression device according to the present invention has the effect of being very efficient in compressing and storing gaseous fluid fuel, such as hydrogen, at high pressure.
즉, 본 발명은 수소 기체 등의 유체연료가 고압 압축과정에서 각종 불순물이 혼입되는 문제점을 확실하게 방지하여 고순도의 고압압축 유체연료를 생산할 수 있다는 효과가 있다.That is, the present invention has an effect that it is possible to produce a high-purity high-pressure compressed fluid fuel by reliably preventing a problem in which various impurities are mixed in a fluid fuel such as hydrogen gas during a high-pressure compression process.
또한 본 발명은 구동 압축기에서 작동유에 의해 좌우 왕복으로 이동하면서 비압축성유체를 일측으로는 배출되게하여 제1압축기와 제2압축기 중 어느 하나에서는 수소 기체를 압축되게 하고, 타측으로는 비압축성유체를 제1압축기와 제2압축기 중 어느 하나에서 흡입하면서 수소 기체가 압축기 내부로 유입되게 하되, 구동 압축기에서 작동유에 의해 이동되는 피스톤의 방향절환이 피스톤 로드와 작동로드의 물리적 접촉을 통해 이루어지게 함으로써 오작동을 방지하고 전기적 센서 사용을 배제함으로써 폭발 등의 안전사고를 예방할 수 있다는 효과가 있다.In addition, the present invention allows the incompressible fluid to be discharged to one side while moving left and right reciprocally by working oil in the driving compressor, so that hydrogen gas is compressed in either the first compressor or the second compressor, and the incompressible fluid is discharged to the other side in the first compressor. While sucking in either the compressor or the second compressor, hydrogen gas is introduced into the compressor, and the direction of the piston moved by the hydraulic oil in the driving compressor is changed through physical contact between the piston rod and the operating rod to prevent malfunction. It has the effect of preventing safety accidents such as explosions by excluding the use of electric sensors.
도 1은 종래기술에 의한 피스톤 없는 압축기의 개념도.1 is a conceptual diagram of a compressor without a piston according to the prior art.
도 2는 본 발명에 따른 고효율 유체 압축 장치의 개념도.2 is a conceptual diagram of a high-efficiency fluid compression device according to the present invention.
도 3은 도 2에서 실린더 바디의 확대도.Figure 3 is an enlarged view of the cylinder body in Figure 2;
도 4는 도 2에서 방향절환감지체의 확대도.Figure 4 is an enlarged view of the direction change sensor in Figure 2;
도 5는 제1압축기 또는 제2압축기의 확대도.5 is an enlarged view of a first compressor or a second compressor;
도 6은 1차압축회로와 2차압축회로로 구성되는 고효율 유체 압축 장치의 구성도.6 is a configuration diagram of a high-efficiency fluid compression device composed of a primary compression circuit and a secondary compression circuit.
도 7은 피스톤이 우측으로 이동하는 경우의 작동 예시도.7 is an example of operation when the piston moves to the right;
도 8은 피스톤이 좌측으로 이동하는 경우의 작동 예시도.8 is an operation example when the piston moves to the left;
이하, 본 발명에 의한 고효율 유체 압축 장치에 대해 보다 상세한 설명을 하도록 하며, 첨부되는 도면을 참조하는 것으로 한다. 단, 제시되는 도면 및 이에 대한 구체적인 설명은 본 발명의 기술적 사상에 따른 하나의 실시 가능한 예를 설명하는 것인 바, 본 발명의 기술적 보호범위가 이에 한정되는 것은 아니다.Hereinafter, a more detailed description of the high-efficiency fluid compression device according to the present invention will be given with reference to the accompanying drawings. However, the presented drawings and detailed description thereof are to describe one possible example according to the technical idea of the present invention, and the scope of technical protection of the present invention is not limited thereto.
도시된 바와 같이 본 발명의 고효율 유체 압축 장치는 각종 유체, 즉 액체상 또는 기체상의 유체를 고압으로 압축하는데 활용될 수 있는 것이며, 특히 수소 기체와 같은 기체상의 유체연료를 상업적으로 판매하기 위해 고압으로 압축하여 저장 또는 운반하기 위한 기반시설을 구축하는데 필요한 기술이다.As shown, the high-efficiency fluid compression device of the present invention can be used to compress various fluids, that is, liquid or gaseous fluids, to high pressures, and in particular, to commercially sell gaseous fluid fuels such as hydrogen gas at high pressures. It is a technology necessary to build infrastructure for storage or transportation.
본 발명의 구체적인 실시예에서는 수소 기체를 상업적으로 활용할 수 있도록 고압으로 압축하는 경우를 예로 제시하나, 이는 하나의 실시 가능한 예에 불과한 것임을 지적해둔다.In a specific embodiment of the present invention, a case of compressing hydrogen gas to a high pressure so that it can be used commercially is presented as an example, but it is pointed out that this is only one practical example.
한편, 본 발명의 고효율 유체 압축 장치는 수요처의 요구에 따라 1단 또는 다단 유체 압축 장치로 제공될 수 있으며, 따라서 기본적으로 1차압축회로를 포함하게 되고, 다단 압축장치인 경우 2차압축회로, 3차압축회로 등이 추가될 수 있다.On the other hand, the high-efficiency fluid compression device of the present invention can be provided as a single-stage or multi-stage fluid compression device according to the demand of the customer, and thus basically includes a primary compression circuit, and in the case of a multi-stage compression device, a secondary compression circuit, A third compression circuit may be added.
먼저, 본 발명의 제1실시예로서 1차압축회로만을 포함하는 1단 유체 압축 장치에 대해 설명하도록 한다.First, as a first embodiment of the present invention, a first-stage fluid compression device including only a primary compression circuit will be described.
1차압축회로를 포함하는 본원의 고효율 유체 압축 장치의 구성요소들로는 구동 압축기(C), 제1압축기(C1), 제2압축기(C2)를 포함하며, 구동 압축기(C)는 작동유에 의해 동작되고, 구동 압축기(C)의 일측으로 제1압축기(C1)가 연결되고, 구동 압축기(C)의 타측으로 제2압축기(C2)가 연결된다. 제1압축기(C1)와 제2압축기(C2)에서 실질적인 수소 기체 압축이 이루어지는데, 제1압축기(C1)와 제2압축기(C2) 중 어느 하나에서는 압축행정이 수행되고 다른 하나의 압축기에서는 흡입행정이 수행되어 제1압축기(C1)와 제2압축기(C2)는 교대로 수소를 고압으로 압축하게 된다.Components of the high-efficiency fluid compression device of the present application including the primary compression circuit include a driving compressor (C), a first compressor (C1), and a second compressor (C2), and the driving compressor (C) is operated by hydraulic oil. And, the first compressor (C1) is connected to one side of the driving compressor (C), and the second compressor (C2) is connected to the other side of the driving compressor (C). Substantial hydrogen gas compression is performed in the first compressor (C1) and the second compressor (C2), a compression stroke is performed in one of the first compressor (C1) and the second compressor (C2), and suction is performed in the other compressor. As the stroke is performed, the first compressor C1 and the second compressor C2 alternately compress hydrogen to a high pressure.
구동 압축기(C)에 대해 보다 상세히 설명하기로 한다.The driving compressor (C) will be described in more detail.
구동 압축기(C)는 실린더 바디(100), 피스톤(200), 방향절환감지체(300), 스위칭밸브(400), 작동유흐름제어밸브(500)를 포함한다.The driving compressor (C) includes a cylinder body 100, a piston 200, a direction change detector 300, a switching valve 400, and a hydraulic oil flow control valve 500.
실린더 바디(100)는 센터라인을 따라 좌우로 관통되면서 작동공간(110)이 형성되도록 하며, 작동공간(110)은 중앙부의 작동유공급실(110a)과 좌우 가장자리부의 비압축성유체실(110b)로 이루어진다. 작동유공급실(110a)에서는 피스톤(200)을 좌우로 강제 이동시키기 위한 작동유가 공급 및 배출되며, 비압축성유체실(110b)에는 소정량의 비압축성유체로 채워지게 된다. 한편, 실린더 바디(100)는 가공 및 조립 특성을 고려하여 복수개의 분할된 파트로 제작되어 조립되도록 한다.The cylinder body 100 penetrates left and right along the center line to form an operating space 110, and the operating space 110 includes a hydraulic oil supply chamber 110a at the center and an incompressible fluid chamber 110b at the left and right edges. In the hydraulic oil supply chamber 110a, hydraulic oil for forcibly moving the piston 200 left and right is supplied and discharged, and the incompressible fluid chamber 110b is filled with a predetermined amount of incompressible fluid. Meanwhile, the cylinder body 100 is manufactured and assembled into a plurality of divided parts in consideration of processing and assembly characteristics.
본 실시예의 경우 실린더 바디(100)는 중앙의 센터바디(101)와 센터바디(101)의 좌우 양단에 결합되는 사이드바디(102)로 이루어지며, 센터바디(101)는 좌우로 관통되는 중공체를 이루고 센터바디(101)의 내부공간이 작동유공급실(110a)이 된다. 센터바디(101)의 좌우 양단에 사이드바디(102)가 하나씩 결합되며, 사이드바디(102)의 일측단부에 형성되는 플랜지를 통해 센터바디(101)와 체결되고, 센터바디(101)와 동축상으로 사이드바디(102) 내부에도 비어있는 내부공간이 소정깊이까지 형성된다. 사이드바디(102)에 형성되는 내부공간이 비압축성유체실(110b)이 되며, 비압축성유체실(110b)의 내경은 센터바디(101)의 작동유공급실(110a)의 내경 보다 작은 치수로 이루어지고, 사이드바디(102)의 외측단에는 외부로 관통되는 작동로드 삽입구(103)가 형성된다.In the case of this embodiment, the cylinder body 100 is composed of a central center body 101 and side bodies 102 coupled to both left and right ends of the center body 101, and the center body 101 is a hollow body that penetrates left and right. And the inner space of the center body 101 becomes the working oil supply chamber 110a. Side bodies 102 are coupled to both left and right ends of the center body 101 one by one, and are fastened to the center body 101 through a flange formed at one end of the side body 102, and coaxial with the center body 101. As a result, an empty inner space is formed even inside the side body 102 to a predetermined depth. The inner space formed in the side body 102 becomes an incompressible fluid chamber 110b, and the inner diameter of the incompressible fluid chamber 110b is smaller than the inner diameter of the hydraulic oil supply chamber 110a of the center body 101. At the outer end of the body 102, an operation rod insertion hole 103 penetrating to the outside is formed.
실린더 바디(100) 내부에 피스톤(200)이 설치되며, 피스톤(200)은 피스톤 헤드(210)와 피스톤 로드(220)로 이루어지고, 피스톤 헤드(210)에는 하나 이상의 오링(O)이 설치된다. 피스톤 헤드(210)는 작동유공급실(110a)에 위치되며, 피스톤 헤드(210)의 좌우로 피스톤로드(220)가 길게 돌출되어 비압축성유체실(110b)에 삽입되는 상태로 설치된다.A piston 200 is installed inside the cylinder body 100, the piston 200 is composed of a piston head 210 and a piston rod 220, and one or more O-rings O are installed on the piston head 210 . The piston head 210 is located in the hydraulic oil supply chamber 110a, and the piston rod 220 protrudes to the left and right of the piston head 210 and is installed in a state in which it is inserted into the non-compressible fluid chamber 110b.
피스톤 헤드(210)에 의해 작동유공급실(110a)은 공간적으로 분리되어 어느 일측이 제1작동유공급실(110a-1)이 되고 타측이 제2작동유공급실(110a-2)이 된다. 예를들어 제1작동유공급실(110a-1)로 작동유가 공급되면 피스톤(200)은 제2작동유공급실(110a-2)측으로 이동되고 이때 제2작동유공급실(110a-2)의 작동유는 외부로 배출된다.The hydraulic oil supply chamber 110a is spatially separated by the piston head 210, so that one side becomes the first hydraulic oil supply chamber 110a-1 and the other side becomes the second hydraulic oil supply chamber 110a-2. For example, when hydraulic oil is supplied to the first hydraulic oil supply chamber 110a-1, the piston 200 moves toward the second hydraulic oil supply chamber 110a-2, and at this time, the hydraulic oil in the second hydraulic oil supply chamber 110a-2 is discharged to the outside. do.
이후 제2작동유공급실(110a-2)측으로 작동유가 다시 공급되면 반대로 피스톤(200)은 제1작동유공급실(110a-1)측을 향해 이동하게 되고 이때 제1작동유공급실(110a-1)의 작동유는 외부로 배출된다.Then, when the hydraulic oil is supplied again to the second hydraulic oil supply chamber 110a-2, the piston 200 moves toward the first hydraulic oil supply chamber 110a-1, and at this time, the hydraulic oil in the first hydraulic oil supply chamber 110a-1 discharged to the outside
더욱 바람직하게 센터바디(101)와 사이드바디(102)의 연결지점 사이로는 밀폐성을 높이기 위해 밀폐블록(120)이 설치되며, 밀폐블록(120)의 중심을 통해 피스톤로드(220)가 지나가게 되고, 밀폐블록(120) 외주면을 따라 오링(O)이 설치되고, 피스톤로드(220)와 접촉되게 밀폐블록(120) 내경면과 비압축성유체실(110b) 내경면에 밀폐씰(S)이 설치되도록 함으로써 작동유와 비압축성유체가 서로 섞이지 않도록 한다.More preferably, a sealing block 120 is installed between the connection points of the center body 101 and the side body 102 to increase sealing performance, and the piston rod 220 passes through the center of the sealing block 120, , The O-ring (O) is installed along the outer circumferential surface of the sealing block 120, and the sealing seal (S) is installed on the inner diameter surface of the sealing block 120 and the inner diameter surface of the incompressible fluid chamber 110b to be in contact with the piston rod 220. This prevents the hydraulic oil and incompressible fluid from mixing with each other.
실린더 바디(100)를 이루는 사이드바디(102)의 각 단부에는 방향절환감지체(300)가 결합되며, 방향절환감지체(300)는 하우징(310)과 작동로드(320)를 포함하게 된다. 방향절환감지체(300)를 구성하는 하우징(310)을 좌우로 관통하면서 피스톤(200)과 동축상으로 작동로드(320)가 배치된다. 특히 작동로드(320)는 하나로 이어진 길다란 봉 형상을 이루되, 대략 중간부분에 작동헤드(320a)가 형성되게 하여 작동헤드(320a)의 좌우로 작동헤드의 외경보다 작은 외경을 갖도록 돌출되는 작동로드(320)가 구비되게 한다. 그리고 작동헤드(320a)의 외주면에는 하나 이상의 오링(O)이 결합되게 하여 피스톤 기능을 하도록 한다.A direction change sensor 300 is coupled to each end of the side body 102 constituting the cylinder body 100, and the direction change sensor 300 includes a housing 310 and an operating rod 320. An operating rod 320 is disposed coaxially with the piston 200 while penetrating the housing 310 constituting the direction change detector 300 from side to side. In particular, the operating rod 320 is shaped like a long rod connected to one another, and the operating head 320a is formed approximately in the middle so that the operating rod protrudes to the left and right of the operating head 320a to have a smaller outer diameter than the outer diameter of the operating head. 320 is provided. In addition, one or more O-rings (O) are coupled to the outer circumferential surface of the operating head (320a) to function as a piston.
작동헤드(320a)를 기준으로 작동로드(320)의 일단은 비압축성유체실(110b) 내부로 진입되게 설치되며, 작동로드(320)의 타단은 하우징(310) 외측으로 돌출되도록 설치되도록 한다.One end of the operating rod 320 is installed to enter the incompressible fluid chamber 110b based on the operating head 320a, and the other end of the operating rod 320 is installed to protrude outward from the housing 310.
보다 구체적으로 하우징(310)을 관통하면서 작동로드(320)가 설치되되, 사이드바디(102)와 결합되는 하우징(310)의 일측 단부측에 작동헤드(320a)가 끼워져 움직일 수 있는 작동헤드실(311)이 소정깊이로 형성되게 하며, 하우징(310)의 타측 단부측에는 작동헤드실(311)과 격벽(312)으로 구분되는 씰설치실(313)이 형성되도록 한다. 씰설치실(313)에 소정의 밀폐씰(S)을 설치하여 작동로드(320)를 통해 비압축성유체가 누설되지 않도록 한다.More specifically, the operating rod 320 is installed while penetrating the housing 310, and the operating head 320a is inserted into one end side of the housing 310 coupled to the side body 102 to move the operating head chamber ( 311) is formed to a predetermined depth, and a seal installation chamber 313 divided into an operating head chamber 311 and a partition wall 312 is formed at the other end side of the housing 310. A predetermined airtight seal (S) is installed in the seal installation chamber 313 to prevent incompressible fluid from leaking through the operating rod 320.
그리고 격벽(312) 중심에는 작동로드(320)가 지나가는 관통홀이 형성되도록 하여 작동로드(320)가 좌우로 움직일 수 있도록 한다. 또한, 격벽(312)과 인접한 작동헤드실(311)로 유압을 공급하기 위한 유압포트(314)가 형성되도록 함이 바람직하다. 유압포트(314)를 통해 소정압력의 작동유가 작동헤드실(311)로 공급되게 하여 실린더 바디(100)의 비압축성유체실(110b)에 형성되는 압력과 균형을 이룰 수 있도록 한다.In addition, a through hole through which the operating rod 320 passes is formed at the center of the partition wall 312 so that the operating rod 320 can move left and right. In addition, it is preferable to form a hydraulic port 314 for supplying hydraulic pressure to the operating head chamber 311 adjacent to the bulkhead 312 . Through the hydraulic port 314, hydraulic fluid at a predetermined pressure is supplied to the operating head chamber 311 to balance the pressure formed in the incompressible fluid chamber 110b of the cylinder body 100.
한 쌍의 방향절환감지체(300)의 각 유압포트(314)를 통해서 설정된 일정한 압력이 항상 작용되도록 하는 점에 대해서는 구체적인 작동예를 통해 후술하도록 한다.The fact that the constant pressure set through each hydraulic port 314 of the pair of direction change detectors 300 is always applied will be described later through specific operation examples.
사이드바디(102) 외측단에 각각 결합되는 방향절환감지체(300)의 외측으로 소정 이격거리를 두면서 한 쌍의 스위칭밸브(400)가 구비되도록 한다. 각 스위칭밸브(400)는 마주하는 각 방향절환감지체(300)의 작동로드(320)가 외측으로 강제 이동되면 작동로드(320)의 단부가 스위칭밸브(400)의 입력단(410)을 밀어 누르게 되고, 이에 따라 스위칭밸브(400)와 연결된 신호용 유압라인(L1)으로 유압이 작용하도록 동작된다.A pair of switching valves 400 are provided while leaving a predetermined distance to the outside of the direction change detector 300 coupled to the outer end of the side body 102, respectively. Each switching valve 400 presses the input end 410 of the switching valve 400 with the end of the operating rod 320 when the operating rod 320 of each facing direction change sensor 300 is forcibly moved to the outside. And, accordingly, the hydraulic pressure is operated to act on the signal hydraulic line (L1) connected to the switching valve 400.
그리고 한 쌍의 스위칭밸브(400)와 신호용 유압라인(L1)으로 연결되는 작동유흐름제어밸브(500)가 구비되는데, 작동유흐름제어밸브(500)는 어느 일측의 스위칭밸브(400)가 작동됨에 따라 제1작동유공급실(110a-1)과 제2작동유공급실(110a-2)에서의 작동유 흐름방향이 변경되도록 유로를 제어하는 역할을 한다.In addition, a pair of switching valves 400 and a hydraulic oil flow control valve 500 connected to a signal hydraulic line L1 are provided. It serves to control the flow path so that the flow direction of hydraulic oil in the first hydraulic oil supply chamber 110a-1 and the second hydraulic oil supply chamber 110a-2 is changed.
예를 들어 제2작동유공급실(110a-2)로 작동유가 공급되면 피스톤(200)은 제1작동유공급실(110a-1)측으로 소정거리만큼 이동하게 된다. 피스톤(200) 전체가 이동하면서 피스톤로드(220)가 제1비압축성유체실(110b-1)로 진입해있던 작동로드(320)의 일단을 누르게 되고, 작동로드(320)의 타단은 하우징(310) 외측으로 더욱 돌출되면서 제1스위칭밸브(400a)의 입력단(410)을 가압하여 유압이 신호용 유압라인(L1)으로 공급되면서 작동유흐름제어밸브(500)에서 작동유의 공급유로가 변경되도록 한다.For example, when hydraulic oil is supplied to the second hydraulic oil supply chamber 110a-2, the piston 200 moves toward the first hydraulic oil supply chamber 110a-1 by a predetermined distance. While the entire piston 200 moves, the piston rod 220 presses one end of the operating rod 320 that has entered the first incompressible fluid chamber 110b-1, and the other end of the operating rod 320 presses on the housing 310. ) While further protruding outward, the input end 410 of the first switching valve 400a is pressed so that the hydraulic oil supply path is changed in the hydraulic oil flow control valve 500 while hydraulic pressure is supplied to the signal hydraulic line L1.
한편, 본 장치의 작동 중에는 각 방향절환감지체(300)의 유압포트(314)를 통해 유압이 공급되어 작동헤드(320a)가 내측을 향해 힘을 받도록 한다. 예를 들어 제2작동유공급실(110a-2)로 작동유가 공급되는 경우, 제2방향절환감지체(300b)에서는 유압포트(314)를 통해 유압이 작용하고 있어 작동로드(320)는 외측으로 밀리지 않는 상태가 되며, 반대로 제1방향절환감지체(400a)에서는 피스톤(200)이 이동되어 제1작동유공급실(110a-1)의 작동유가 배출되고, 제1비압축성유체실(110b-1)의 비압축성유체도 배출되는데 그 과정 중에 작동로드(320)는 피스톤로드(220)가 작동로드(320)에 접촉될 때까지 외측으로 후퇴되지 않도록 유압포트(314)를 통해 소정 압력의 유압이 작용되도록 함으로써 정확한 시점에 제1스위칭밸브(400a)가 동작될 수 있도록 한다. 그리고 방향절환감지체(300)에 형성되는 유압포트(314)는 어큐뮬레이터(50)와 연결되어 있음으로써 피스톤로드(220)가 작동로드(320)를 밀게 되면 작동헤드실(311)의 작동유는 어큐뮬레이터(50)로 유입되며, 피스톤(200)이 반대방향으로 이동하면 어큐뮬레이터(50)로 유입된 작동유는 다시 배출되면서 작동헤드실(311)로 유압이 작용되도록 한다.Meanwhile, during operation of the device, hydraulic pressure is supplied through the hydraulic port 314 of each direction change sensor 300 so that the operating head 320a receives force toward the inside. For example, when hydraulic oil is supplied to the second hydraulic oil supply chamber 110a-2, hydraulic pressure is applied through the hydraulic port 314 in the second direction switching sensor 300b, so the operating rod 320 is not pushed outward. On the contrary, in the first direction switching sensor 400a, the piston 200 is moved so that the working oil in the first working oil supply chamber 110a-1 is discharged, and the incompressibility of the first incompressible fluid chamber 110b-1 The fluid is also discharged, and during the process, the hydraulic pressure of a predetermined pressure is applied through the hydraulic port 314 so that the operating rod 320 does not retreat outward until the piston rod 220 contacts the operating rod 320. At this point, the first switching valve 400a is operated. And the hydraulic port 314 formed in the direction change sensor 300 is connected to the accumulator 50, so that when the piston rod 220 pushes the operating rod 320, the hydraulic oil of the operating head chamber 311 is transferred to the accumulator. 50, and when the piston 200 moves in the opposite direction, the hydraulic fluid introduced into the accumulator 50 is discharged again, so that hydraulic pressure is applied to the operating head chamber 311.
방향절환감지체(300)의 유압포트(314)를 통해 작동헤드실(311)로 작용되는 유압력은 실린더 바디(100) 내부의 작동유공급실(110a)의 압력을 고려하여 적절한 유압이 작용되도록 셋팅하면 된다.The hydraulic force applied to the operating head chamber 311 through the hydraulic port 314 of the direction change detector 300 is set so that an appropriate hydraulic pressure is applied in consideration of the pressure in the hydraulic oil supply chamber 110a inside the cylinder body 100. You can do it.
제1스위칭밸브(400a)의 작동으로 작동유흐름제어밸브(500)가 동작되면 작동유는 제1작동유공급실(110a-1)로 공급되고, 제2작동유공급실(110a-2)의 작동유는 탱크로 배출되도록 유로가 형성된다.When the hydraulic oil flow control valve 500 is operated by the operation of the first switching valve 400a, the hydraulic oil is supplied to the first hydraulic oil supply chamber 110a-1, and the hydraulic oil of the second hydraulic oil supply chamber 110a-2 is discharged into the tank. A flow path is formed as much as possible.
작동유가 제1작동유공급실(110a-1)로 유입되면 피스톤(200)은 반대방향, 즉 제2작동유공급실(110a-2)측으로 이동하여 피스톤로드(220)가 제2방향절환감지체(300b)의 작동로드(320)의 일단을 가압하게 되고, 작동로드(320)의 타단은 하우징(310) 외측으로 더욱 돌출되면서 제2스위칭밸브(400b)의 입력단(410)을 눌러 제2신호용 유압라인(L2)으로 유압이 작용되도록 함으로써 작동유흐름제어밸브(500)는 유로가 변경되게 동작된다. 즉, 작동유는 제2작동유공급실(110a-2)로 흐르게 되고, 제1작동유 공급실(110a-1)에 잔존하던 작동유는 탱크로 배출되도록 제어된다.When hydraulic oil flows into the first hydraulic oil supply chamber 110a-1, the piston 200 moves in the opposite direction, that is, to the second hydraulic oil supply chamber 110a-2, so that the piston rod 220 moves to the second direction change detector 300b. One end of the operating rod 320 is pressed, and the other end of the operating rod 320 further protrudes to the outside of the housing 310 and presses the input end 410 of the second switching valve 400b to press the hydraulic line for the second signal ( By allowing hydraulic pressure to act on L2), the hydraulic oil flow control valve 500 is operated to change the flow path. That is, the hydraulic oil flows into the second hydraulic oil supply chamber 110a-2, and the hydraulic oil remaining in the first hydraulic oil supply chamber 110a-1 is controlled to be discharged to the tank.
이와 같은 피스톤(200)의 좌우 반복적인 이동동작에 의해 실린더 바디(100)의 비압축성유체실(110b)에서는 비압축성유체가 배출되거나 흡입되어 비압축성유체실을 채우게 된다.The incompressible fluid is discharged or sucked from the incompressible fluid chamber 110b of the cylinder body 100 by the left and right repetitive movement of the piston 200 as described above to fill the incompressible fluid chamber.
이상과 같이 본 발명에 사용되는 구동 압축기(C)는 작동유에 의해 피스톤(200)이 좌우로 이동 동작하면서 일측에서 비압축성유체을 가압하여 배출하며, 타측에서는 비압축성유체를 흡입하는 동작을 반복하게 된다.As described above, in the drive compressor C used in the present invention, while the piston 200 is moved left and right by working oil, the operation of pressurizing and discharging the incompressible fluid on one side and sucking the incompressible fluid on the other side is repeated.
구동 압축기(C)는 제1압축기(C1)와 제2압축기(C2)에서 수소 기체를 압축할 수 있도록 비압축성유체를 가압하여 공급하기 위한 것이라 요약할 수 있다.It can be summarized that the driving compressor (C) is for pressurizing and supplying an incompressible fluid so that hydrogen gas can be compressed in the first compressor (C1) and the second compressor (C2).
이러한 구동 압축기(C)와 연결 구성되는 제1압축기(C1)와 제2압축기(C2)에 대해 보다 상세히 설명하도록 한다.The first compressor C1 and the second compressor C2 connected to the drive compressor C will be described in more detail.
제1압축기(C1)와 제2압축기(C2)는 동일한 구성요소를 갖추게 되며, 제1압축기(C1)는 제1비압축성유체실(110b-1)과 유로로 연결되며, 제2압축기(C2)는 제2비압축성유체실(110b-2)과 상호 연결되어 비압축성유체가 이동할 수 있도록 구성된다.The first compressor (C1) and the second compressor (C2) have the same components, the first compressor (C1) is connected to the first incompressible fluid chamber (110b-1) and the flow path, the second compressor (C2) is interconnected with the second incompressible fluid chamber 110b-2 so that the incompressible fluid can move.
제1압축기(C1)는 상하방향으로 배치되도록 함이 바람직하며, 바닥판(BP) 위에 소정 높이의 제1실린더(10)가 직립되게 결합되며, 제1실린더(10)의 내부에는 내부공간을 상하로 분리하는 제1로드리스 피스톤(P1)이 설치된다.The first compressor (C1) is preferably arranged in the vertical direction, and the first cylinder (10) of a predetermined height is coupled upright on the bottom plate (BP), and the inside of the first cylinder (10) has an internal space A first rodless piston (P1) separating up and down is installed.
바닥판(BP)을 통해 제1비압축성유체실(110b-1)과 유로가 연결되어 제1실린더(10) 내부공간으로 제1비압축성유체가 공급되게 한다. 한편, 제1실린더(10) 상단측에는 압축대상인 수소 기체의 유출입구(V)가 마련된다.The first incompressible fluid chamber 110b-1 and the flow path are connected through the bottom plate BP so that the first incompressible fluid is supplied to the inner space of the first cylinder 10. Meanwhile, an outlet (V) of hydrogen gas to be compressed is provided at the upper end of the first cylinder 10 .
유출입구(V)는 구분되어 유입구와 유출구가 독립적으로 형성될 수도 있고, 하나의 유출입구(V)를 통해 압축시에는 압축라인(1)을 통해 압축된 수소가 배출될 수 있도록 하고, 반대로 흡입시에는 흡입라인(2)을 통해 수소 기체가 제1실린더(10) 내부로 유입되게 할 수 있다.The outlet inlet (V) may be separated so that the inlet and outlet are formed independently, and when compressed through one outlet inlet (V), the compressed hydrogen can be discharged through the compression line (1), and inhaled on the contrary. At this time, hydrogen gas may be introduced into the first cylinder 10 through the suction line 2 .
본 실시예의 경우 제1실린더(10)의 상단측에 하나의 유출입구(V)를 마련하도록 하고, 압축라인(1)과 흡입라인(2)에는 체크밸브(CV)를 설치하도록 하고, 제1체크밸브(CV1)는 압축시 오픈되게 하고 제2체크밸브(CV2)는 닫히도록 한다. 제1실린더(10) 내부로 수소 기체를 흡입할 시에는 제2체크밸브(CV2)는 오픈되고, 제1체크밸브(CV1)는 닫히도록 동작되게 한다.In the case of this embodiment, one outlet inlet (V) is provided on the upper side of the first cylinder (10), and check valves (CV) are installed in the compression line (1) and the suction line (2), and the first The check valve CV1 is opened during compression and the second check valve CV2 is closed. When hydrogen gas is sucked into the first cylinder 10, the second check valve CV2 is opened and the first check valve CV1 is operated to close.
한편, 제1압축기(C1)의 외면에는 쿨링자켓(J)이 구비되게 함으로써 제1실린더(10) 내부에서 수소 기체 압축시 발생되는 열을 열교환으로 흡수하여 냉각작용을 할 수 있도록 하여 과열로 인한 문제점을 해소할 수 있도록 한다. 냉각자켓(J)은 물과 같은 냉매를 순환되게 하여 제1실린더(10) 내부에서 발생되는 열을 효과적으로 흡수할 수 있도록 한다.On the other hand, by providing a cooling jacket (J) on the outer surface of the first compressor (C1), the heat generated when hydrogen gas is compressed inside the first cylinder (10) is absorbed by heat exchange to perform a cooling action, resulting in overheating. make it possible to solve the problem. The cooling jacket (J) allows a refrigerant such as water to circulate to effectively absorb heat generated inside the first cylinder (10).
제2압축기(C2)는 제1압축기(C1)와 동일한 구성요소로 이루어지는데 제2실린더(20) 내부공간을 분리하는 제2로드리스 피스톤(P2)이 설치되고, 바닥판(BP)을 통해 제2비압축성유체실(110b-2)과 연결되고, 상단측에 유출입구(V)가 마련된다.The second compressor (C2) is made of the same components as the first compressor (C1), the second rodless piston (P2) separating the inner space of the second cylinder (20) is installed, through the bottom plate (BP) It is connected to the second incompressible fluid chamber (110b-2), and an outflow inlet (V) is provided on the upper side.
한편, 본 발명을 구성하는 요소로 임시저장탱크(T1)와 서플라이탱크(T2)가 마련되어야 하며, 임시저장탱크(T1)는 제1압축기(C1) 및 제2압축기(C2)의 압축라인(1)과 연결되어 압축행정을 통해 고압으로 압축된 수소 기체가 저장될 수 있도록 한다. 서플라이탱크(T2)는 압축할 수소 기체를 흡입라인(2)을 통해 제1압축기(C1) 또는 제2압축기(C2)로 공급하기 위해 필요한 요소이다.On the other hand, as elements constituting the present invention, a temporary storage tank (T1) and a supply tank (T2) must be provided, and the temporary storage tank (T1) is the compression line ( 1), so that hydrogen gas compressed to high pressure through the compression stroke can be stored. The supply tank T2 is a necessary element for supplying hydrogen gas to be compressed to the first compressor C1 or the second compressor C2 through the suction line 2.
제1압축기(C1)와 제2압축기(C2)는 동시에 작동하며 어느 하나에서는 압축행정이 수행되고 다른 하나에서는 흡입행정이 수행되면서 수소 기체를 신속하고도 효율적으로 고압 압축시킬 수 있도록 한다.The first compressor (C1) and the second compressor (C2) operate simultaneously, and one compression stroke is performed and the other is a suction stroke, so that hydrogen gas can be compressed at high pressure quickly and efficiently.
한편, 임시저장탱크(T1)에는 1차적으로 압축된 수소 기체를 외부로 배출시키기 위한 가스배출구(V1)가 마련된다.On the other hand, the temporary storage tank (T1) is provided with a gas outlet (V1) for discharging the primarily compressed hydrogen gas to the outside.
구동 압축기(C)와 제1압축기(C1) 및 제2압축기(C2)는 서로 연결되어 구동 압축기(C)의 동작에 연동하여 동시에 제1압축기(C1)와 제2압축기(C2)는 작동하며, 제1압축기(C1)에서 압축행정이 이루어지는 경우에는 구동 압축기(C)의 제1비압축성유체실(110b-1)에 수용된 제1비압축성유체가 가압작용에 의해 배출되면서 제1실린더(10) 내부로 유입되면서 제1로드리스 피스톤(P1)을 상승시키도록 동작되어 제1실린더(10) 내부공간에 유입되어있던 수소기체를 압축시키서 임시저장탱크(T1)로 내보내게 된다.The driving compressor (C), the first compressor (C1), and the second compressor (C2) are connected to each other and interlock with the operation of the driving compressor (C), so that the first compressor (C1) and the second compressor (C2) operate at the same time, , When the compression stroke is performed in the first compressor (C1), the first incompressible fluid accommodated in the first incompressible fluid chamber (110b-1) of the driving compressor (C) is discharged by pressurization, and the inside of the first cylinder (10) As it flows into, it is operated to raise the first rodless piston (P1), compresses the hydrogen gas that has flowed into the inner space of the first cylinder (10), and exports it to the temporary storage tank (T1).
이와 동시에 제2압축기(C2)에서는 흡입행정이 이루어지는데, 제2실린더(20)에 수용되어있던 제2비압축성유체는 구동 압축기(C1)의 제2비압축성유체실(110b-2)에서 유발되는 흡입작용에 의해 제2로드리스 피스톤(P2)이 하강하게 되고 이에 따라 제2실린더(20) 내부압력이 떨어지면서 서플라이탱크(T2)로부터 새로운 수소 기체가 제2실린더(20) 내부공간으로 유입된다.At the same time, a suction stroke is performed in the second compressor (C2), and the second incompressible fluid accommodated in the second cylinder (20) is suctioned from the second incompressible fluid chamber (110b-2) of the drive compressor (C1). By the action, the second rodless piston (P2) descends, and as a result, the internal pressure of the second cylinder (20) drops, and new hydrogen gas from the supply tank (T2) is introduced into the inner space of the second cylinder (20).
이상과 같이 1차압축회로를 통해 수소 기체를 고압으로 압축할 수 있음을 알 수 있으며, 더욱 높은 고압으로 압축이 요구될 시에는 추가로 2차압축회로를 연결하여 1차 압축된 수소 기체를 재압축할 수 있도록 한다.As described above, it can be seen that hydrogen gas can be compressed to a high pressure through the primary compression circuit, and when compression to a higher pressure is required, an additional secondary compression circuit is connected to reproduce the primary compressed hydrogen gas. to be able to compress it.
2차압축회로는 2차 구동 압축기(C-1), 제1-1압축기(C1-1), 제2-1압축기(C2-1)를 포함하게 되며, 제1-1압축기(C1-1)는 제1-1실린더(10-1) 내부공간을 제1-1로드리스 피스톤(P1-1)이 설치되어 2차 구동 압축기(C-1)의 일측에서 발생되는 가압작용에 의해 제1-1비압축성유체가 제1-1로드리스 피스톤(P1-1)을 상승되게 하여 제1-1실린더(10-1) 내부공간으로 공급된 1차압축유체연료, 즉 1차압축 수소기체를 더욱 압축시켜 저장탱크(T3)로 배출시키게 된다.The secondary compression circuit includes a secondary driving compressor (C-1), a 1-1 compressor (C1-1), and a 2-1 compressor (C2-1), and the 1-1 compressor (C1-1) ) The first rodless piston (P1-1) is installed in the inner space of the 1-1 cylinder (10-1) by the pressurization action generated from one side of the secondary driving compressor (C-1). -1 The incompressible fluid causes the 1-1 rodless piston (P1-1) to rise so that the primary compressed fluid fuel supplied to the inner space of the 1-1 cylinder (10-1), that is, the primary compressed hydrogen gas, is further supplied. It is compressed and discharged to the storage tank (T3).
제2-1압축기(C2-1)는 제2-1실린더(20-1)를 갖추고 그 내부공간을 분리하는 제2-1로드리스 피스톤(P2-1)이 설치되어 2차 구동 압축기(C-1)의 타측에서 발생되는 흡입작용에 의해 제2-1비압축성유체가 배출되면서 제2-1로드리스 피스톤(P2-1)을 하강시킴으로써 임시저장탱크(T1)에서 제2-1실린더(20-1) 내부공간으로 1차압축유체연료가 유입되게 한다.The 2-1 compressor (C2-1) has a 2-1 cylinder (20-1) and a 2-1 rodless piston (P2-1) is installed to separate the internal space, and the secondary driving compressor (C The 2-1 cylinder 20 in the temporary storage tank T1 by lowering the 2-1 rodless piston P2-1 while the 2-1 incompressible fluid is discharged by the suction action generated on the other side of -1). -1) Allow the primary compressed fluid fuel to flow into the inner space.
그 외 구성요소는 1차압축회로와 동일한 바 더 이상의 상세한 설명은 생략토록 한다.Other components are the same as the primary compression circuit, so further detailed descriptions will be omitted.
저장탱크에 저장되는 압축 수소기체는 임시저장탱크보다 높은 압력으로 저장되며, 대략 1차압축회로를 통해 임시저장탱크에 저장되는 수소 기체는 500bar 정도이며, 2차압축회로를 거치면서 저장탱크에 저장되는 수소 기체는 대략 1000bar 정도로 압축 저장되게 할 수 있다.The compressed hydrogen gas stored in the storage tank is stored at a higher pressure than the temporary storage tank. The hydrogen gas stored in the temporary storage tank through the primary compression circuit is approximately 500 bar, and is stored in the storage tank through the secondary compression circuit. The hydrogen gas to be compressed can be stored at about 1000 bar.
물론 3차압축회로를 더 구성하여 더욱 고압으로 수소 기체를 압축할 수 있도록 구성할 수 있다.Of course, a tertiary compression circuit may be further configured to compress hydrogen gas at a higher pressure.
한편, 본 발명에서 언급되는 비압축성유체는 물이나 이온성액체를 사용할 수 있고, 이온성 액체로는 Alkyl-imidazolium계 등이 있으며, 이온성 액체는 유기 양이온과 유/무기 음이온으로 이루어진 물질로서 상온이나 100℃ 이하에서 액체 상태를 유지하며 내열온도가 높고 비가연성이라는 특징이 있다. 또한 이온성 액체는 물에 대한 용해도 매우 낮다는 특징도 있다.On the other hand, the incompressible fluid referred to in the present invention may use water or an ionic liquid, and the ionic liquid includes an Alkyl-imidazolium system. The ionic liquid is a material composed of organic cations and organic/inorganic anions, and It maintains a liquid state below 100℃, has a high heat resistance temperature, and is characterized by being non-flammable. Also, ionic liquids are characterized by very low solubility in water.
이온성 액체는 친환경 청정 용매, 2차 전지 전해질, 전기 도전재료 등으로 활용되고 있으나 제조과정이 복잡하고 어려워 가격이 매우 높다는 단점이 있다.Ionic liquids are used as eco-friendly clean solvents, electrolytes for secondary batteries, and electrically conductive materials, but the manufacturing process is complicated and difficult, and the price is very high.
따라서 본 발명에서는 비압축성유체로 물 또는 이온성액체를 선택할 수 있고, 물과 이온성액체를 적당량, 예르들어 50% 씩 섞어 사용하여 소모성인 비압축성유체의 보충에 따른 비용을 절감할 수 있도록 하는 방안을 제시한다.Therefore, in the present invention, water or ionic liquid can be selected as the incompressible fluid, and water and ionic liquid are mixed in an appropriate amount, for example, 50%, to reduce the cost of supplementing the consumable incompressible fluid. present.
즉, 비압축성유체실과 제1압축기 또는 제2압축기의 실린더 내부공간, 유로를 채우는 총 부피 중 50%는 물로 채우도록 하고 나머지 50%는 이온성 액체를 채우도록 하는 방식으로 비압축성유체로 활용하도록 한다. 특히 이온성 액체는 물에 대한 용해도가 극히 낮기 때문에 양자를 함께 사용함에 큰 무리는 없다.That is, 50% of the total volume filling the incompressible fluid chamber, the inner space of the cylinder of the first or second compressor, and the flow path is filled with water and the remaining 50% is filled with ionic liquid. Use as an incompressible fluid. In particular, since ionic liquids have extremely low solubility in water, there is no great difficulty in using both together.
한편, 수소 기체를 흡입하여 압축하게 되는 제1압축기나 제2압축기의 내부에는 탄성이 우수한 벌룬이 설치되게하여 수소 기체가 완전히 실린더 내부에서 공간적으로 분리되게 할 수 있다. 벌룬의 상단은 유출입구와 밀폐되게 연결시키도록 하고 벌룬의 하단은 로드리스 피스톤 상단과 자석을 이용하여 구속되게 하는 형태로 로드리스 피스톤의 승하강에 따라 벌룬도 수축 내지 팽창될 수 있도록 한다.Meanwhile, a balloon having excellent elasticity is installed inside the first compressor or the second compressor to inhale and compress hydrogen gas so that the hydrogen gas can be completely separated spatially inside the cylinder. The upper end of the balloon is tightly connected to the inlet and outlet, and the lower end of the balloon is constrained using the upper end of the rodless piston and a magnet so that the balloon can also be contracted or expanded according to the elevation of the rodless piston.
로드리스 피스톤이 하강함에 따라 벌룬도 팽창하게 되고 이때 수소 기체는 벌룬 내부로 유입되고, 이후 로드리스 피스톤이 상승하게 되면 벌룬도 수축되면서 그 내부에 있는 수소 기체를 압축하여 배출되게 한다.As the rodless piston descends, the balloon also expands, and at this time, hydrogen gas flows into the balloon, and then, when the rodless piston rises, the balloon also contracts, compressing and discharging the hydrogen gas inside it.
이와 같이 제1압축기나 제2압축기에 벌룬을 적용하게 되면 로드리스 피스톤을 작동되게 하는 비압축성유체와 수소 기체간의 접촉을 원천적으로 배제할 수 있어 보다 고순도의 수소 기체를 고압 압축할 수 있다.In this way, when the balloon is applied to the first or second compressor, it is possible to fundamentally exclude the contact between the hydrogen gas and the incompressible fluid that operates the rodless piston, so that more pure hydrogen gas can be compressed at high pressure.
이상 설명한 바와 같이 본 발명에 의한 고효율 유체 압축 장치는 수소 기체와 같은 유체를 고압으로 압축하고자할 때 매우 유용하게 사용될 수 있으며, 특히 본 발명의 경우 구동 압축기, 제1압축기, 제2압축기의 동작제어에 솔레노이드밸브와 같은 전기를 사용하는 요소를 배제하기 위해 유압을 활용하여 구동 압축기가 구동되게 하고 제1압축기와 제2압축기에서 교대로 압축과 흡입행정이 이루어질 수 있도록 구동 압축기의 피스톤의 방향전환을 제어하는 방향절환센서도 피스톤로드와 작동로드의 물리적 접촉에 의해 작동유 공급유로가 변경되게 함으로써 폭발사고 등의 안전사고를 예방할 수 있다는 장점이 있다.As described above, the high-efficiency fluid compression device according to the present invention can be very useful when compressing a fluid such as hydrogen gas at a high pressure. In particular, in the case of the present invention, operation control of the driving compressor, the first compressor, and the second compressor In order to exclude elements using electricity such as solenoid valves, hydraulic pressure is used to drive the driving compressor, and the direction of the piston of the driving compressor is changed so that the compression and suction strokes can be alternately performed in the first and second compressors. The controlling direction change sensor also has the advantage of preventing safety accidents such as explosion accidents by allowing the hydraulic oil supply path to be changed by physical contact between the piston rod and the operating rod.
본 발명은 수소 기체 등의 유체를 고압으로 압축하는 용도로 유용하게 사용될 수 있는 기술이다.The present invention is a technology that can be usefully used for the purpose of compressing a fluid such as hydrogen gas at a high pressure.

Claims (5)

  1. 유체를 고압으로 압축하기 위한 유체 압축 장치로서,As a fluid compression device for compressing a fluid to a high pressure,
    작동유에 의해 동작되는 구동 압축기;a drive compressor operated by hydraulic oil;
    제1실린더 내부공간을 분리하는 제1로드리스 피스톤이 설치되어 상기 구동 압축기의 일측에서 발생되는 가압작용에 의해 제1비압축성유체가 상기 제1로드리스 피스톤을 상승되게 하면서 상기 제1실린더 내부공간으로 공급된 상기 유체를 압축시겨 임시저장탱크로 배출시키는 제1압축기;A first rodless piston separating the inner space of the first cylinder is installed, and the first incompressible fluid flows into the inner space of the first cylinder while allowing the first rodless piston to rise by a pressurizing action generated at one side of the driving compressor. a first compressor for compressing the supplied fluid and discharging it to a temporary storage tank;
    제2실린더 내부공간을 분리하는 제2로드리스 피스톤이 설치되어 상기 구동 압축기의 타측에서 발생되는 흡입작용에 의해 제2비압축성유체가 배출되면서 상기 제2로드리스 피스톤을 하강되게 하여 서플라이탱크에서 상기 제2실린더 내부공간으로 새로운 상기 유체가 유입되게 하는 제2압축기;를 포함하되,A second rodless piston separating the inner space of the second cylinder is installed, and the second incompressible fluid is discharged by the suction action generated on the other side of the driving compressor, and the second rodless piston is lowered to lower the first load in the supply tank. A second compressor that allows the new fluid to flow into the inner space of the two cylinders;
    상기 구동 압축기는,The drive compressor,
    좌우로 관통되게 작동공간이 형성되되, 상기 작동공간은 중앙부의 작동유공급실과 좌우 가장자리부의 비압축성유체실로 이루어지는 실린더 바디;An operating space is formed so as to pass through from side to side, and the operating space includes a cylinder body composed of a hydraulic oil supply chamber at the center and an incompressible fluid chamber at the left and right edges;
    상기 작동공간에 설치되며, 상기 작동유공급실에 위치되는 피스톤 헤드와 상기 피스톤 헤드의 좌우로 돌출되어 상기 비압축성유체실에 위치하게 되는 피스톤 로드로 이루어지는 피스톤;A piston installed in the operating space and composed of a piston head positioned in the hydraulic oil supply chamber and a piston rod projecting left and right of the piston head and positioned in the incompressible fluid chamber;
    상기 실린더 바디의 좌우 양단부에 체결되는 하우징과, 상기 하우징을 관통하면서 상기 피스톤과 동축상으로 배치되는 작동로드를 갖추되, 상기 작동로드의 일단은 상기 실린더 바디를 관통하여 상기 비압축성유체실 내부로 진입되고, 상기 작동로드의 타단은 상기 하우징 외측으로 돌출되는 한 쌍의 방향절환감지체;A housing coupled to both left and right ends of the cylinder body and an operating rod penetrating the housing and disposed coaxially with the piston, one end of the operating rod penetrates the cylinder body and enters the incompressible fluid chamber. and a pair of direction change detectors at the other end of the operating rod protruding outward from the housing;
    상기 한 쌍의 방향절환감지체 외측에 하나씩 구비되되 상기 작동로드가 외측으로 이동할 때 상기 작동로드의 타단과 접촉되면 신호용 유압라인으로 유압이 작용되게 하는 한 쌍의 스위칭밸브;A pair of switching valves provided one by one on the outside of the pair of direction change detectors to allow hydraulic pressure to be applied to a signal hydraulic line when the operating rod contacts the other end of the operating rod when the operating rod moves outward;
    상기 한 쌍의 스위칭밸브와 상기 신호용 유압라인으로 연결되며, 어느 일측의 스위칭밸브가 작동되는 것에 의해 상기 작동유공급실의 작동유 흐름방향이 변경되도록 동작하는 작동유흐름제어밸브;를 포함하고,A hydraulic oil flow control valve connected to the pair of switching valves and the signal hydraulic line and operating so that the hydraulic oil flow direction in the hydraulic oil supply chamber is changed when the switching valve on one side is operated,
    상기 작동로드는, 작동헤드를 기준으로 상기 작동헤드의 외경보다 작은 외경을 갖도록 좌우로 돌출되게 형성되며, 상기 작동헤드 외주면에는 하나 이상의 오링이 결합되고,The operating rod is formed to protrude left and right to have a smaller outer diameter than the outer diameter of the operating head based on the operating head, and one or more O-rings are coupled to the outer circumferential surface of the operating head,
    상기 제1압축기와 상기 제2압축기중 어느 하나는 압축행정을 수행하고 다른 하나는 흡입행정을 수행하는 1차압축회로를 포함하는 것을 특징으로 하는 고효율 유체 압축 장치.A high-efficiency fluid compression device comprising a primary compression circuit in which one of the first compressor and the second compressor performs a compression stroke and the other performs a suction stroke.
  2. 제 1 항에 있어서,According to claim 1,
    상기 제1압축기와 상기 제2압축기의 외면을 감싸는 쿨링자켓이 구비되어 상기 제1실린더 내부공간 및 제2실린더 내부공간에서 발생되는 열을 냉각시킬 수 있도록 하는 것을 특징으로 하는 고효율 유체 압축 장치.A high-efficiency fluid compression device, characterized in that a cooling jacket surrounding outer surfaces of the first compressor and the second compressor is provided to cool heat generated in the inner space of the first cylinder and the inner space of the second cylinder.
  3. 제 2 항에 있어서,According to claim 2,
    상기 임시저장탱크에 저장되는 1차압축유체는 2차압축회로를 통해 보다 높은 압력으로 압축되며, 상기 2차압축회로는,The primary compressed fluid stored in the temporary storage tank is compressed to a higher pressure through a secondary compression circuit, and the secondary compression circuit,
    작동유에 의해 동작되는 2차 구동 압축기;A secondary drive compressor operated by hydraulic oil;
    제1-1실린더 내부공간을 분리하는 제1-1로드리스 피스톤이 설치되어 상기 2차 구동 압축기의 일측에서 발생되는 가압작용에 의해 제1-1비압축성유체가 상기 제1-1로드리스 피스톤을 상승되게 하면서 상기 제1-1실린더 내부공간으로 공급된 상기 1차압축유체를 압축시겨 저장탱크로 배출시키는 제1-1압축기;The 1-1 rodless piston separating the inner space of the 1-1 cylinder is installed, and the 1-1 incompressible fluid moves through the 1-1 rodless piston by the pressurized action generated from one side of the secondary driving compressor. a 1-1 compressor for compressing and discharging the primary compressed fluid supplied to the inner space of the 1-1 cylinder while rising;
    제2-1실린더 내부공간을 분리하는 제2-1로드리스 피스톤이 설치되어 상기 2차 구동 압축기의 타측에서 발생되는 흡입작용에 의해 제2-1비압축성유체가 배출되면서 상기 제2-1로드리스 피스톤을 하강되게 하여 상기 임시저장탱크에서 상기 제2-1실린더 내부공간으로 상기 1차압축유체가 유입되게 하는 제2-1압축기;를 포함하는 것을 특징으로 하는 고효율 유체 압축 장치.The 2-1 rodless piston separating the inner space of the 2-1 cylinder is installed, and the 2-1 incompressible fluid is discharged by the suction action generated on the other side of the secondary driving compressor, and the 2-1 rodless piston is installed. A high-efficiency fluid compression device comprising a; 2-1 compressor that causes the piston to descend to allow the primary compressed fluid to flow from the temporary storage tank into the inner space of the 2-1 cylinder.
  4. 제 1 항 내지 제 3 항 중 어느 하나의 항에 있어서,According to any one of claims 1 to 3,
    상기 하우징은,the housing,
    일측 단부측에 상기 작동헤드가 끼워져 움직일 수 있는 작동헤드실이 형성되고, 타측 단부측에는 상기 작동헤드실과 격벽으로 구분되는 씰설치실이 형성되고, 상기 격벽 중심에는 상기 작동로드가 지나가는 관통홀이 형성되고, 상기 격벽과 인접한 상기 작동헤드실로 유압을 공급할 수 있는 유압포트가 형성되는 것을 특징으로 하는 고효율 유체 압축 장치.An operating head chamber in which the operating head can be inserted and moved is formed at one end side, and a seal installation chamber separated from the operating head chamber and a partition wall is formed at the other end side, and a through hole through which the operating rod passes is formed at the center of the partition wall. and a hydraulic port capable of supplying hydraulic pressure to the operating head chamber adjacent to the bulkhead is formed.
  5. 제 4 항에 있어서,According to claim 4,
    상기 유압포트를 통해 항상 일정한 유압이 작용되도록 하는 것을 특징으로 하는 고효율 유체 압축 장치.A high-efficiency fluid compression device characterized in that a constant hydraulic pressure is always applied through the hydraulic port.
PCT/KR2022/017494 2022-02-16 2022-11-09 High-efficiency fluid compression apparatus WO2023158057A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0020218 2022-02-16
KR1020220020218A KR102405274B1 (en) 2022-02-16 2022-02-16 High-efficiency fluid compression device

Publications (1)

Publication Number Publication Date
WO2023158057A1 true WO2023158057A1 (en) 2023-08-24

Family

ID=81987149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017494 WO2023158057A1 (en) 2022-02-16 2022-11-09 High-efficiency fluid compression apparatus

Country Status (2)

Country Link
KR (1) KR102405274B1 (en)
WO (1) WO2023158057A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102405274B1 (en) * 2022-02-16 2022-06-07 지에이치피 시스템 주식회사 High-efficiency fluid compression device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003129947A (en) * 2001-10-19 2003-05-08 Anest Iwata Corp Valve switching device for reciprocating device
KR20140126624A (en) * 2013-04-23 2014-10-31 주식회사 두배시스템 High-pressure water pump
KR101559108B1 (en) * 2015-04-17 2015-10-12 하종근 Gas compression device with rodless cylinder
KR101668672B1 (en) * 2016-08-01 2016-10-24 최상배 Liquid pressed gas compressor having pressure-volume converting device and torque converting device
US20180142444A1 (en) * 2015-04-21 2018-05-24 Caterpillar Sarl Hydraulic circuit and working machine
KR102405274B1 (en) * 2022-02-16 2022-06-07 지에이치피 시스템 주식회사 High-efficiency fluid compression device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006042918A1 (en) 2006-09-13 2008-03-27 Linde Ag Pistonless compressor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003129947A (en) * 2001-10-19 2003-05-08 Anest Iwata Corp Valve switching device for reciprocating device
KR20140126624A (en) * 2013-04-23 2014-10-31 주식회사 두배시스템 High-pressure water pump
KR101559108B1 (en) * 2015-04-17 2015-10-12 하종근 Gas compression device with rodless cylinder
US20180142444A1 (en) * 2015-04-21 2018-05-24 Caterpillar Sarl Hydraulic circuit and working machine
KR101668672B1 (en) * 2016-08-01 2016-10-24 최상배 Liquid pressed gas compressor having pressure-volume converting device and torque converting device
KR102405274B1 (en) * 2022-02-16 2022-06-07 지에이치피 시스템 주식회사 High-efficiency fluid compression device

Also Published As

Publication number Publication date
KR102405274B1 (en) 2022-06-07

Similar Documents

Publication Publication Date Title
WO2023158057A1 (en) High-efficiency fluid compression apparatus
US6321561B1 (en) Electrochemical refrigeration system and method
CN112005010B (en) Compressor apparatus and compression method
US20070034523A1 (en) Fuel-cell actuated mechanical device
CN114992084A (en) Power equipment and energy storage system
CN219281903U (en) Hydraulic drive tertiary compression cylinder
CN117184664A (en) Telescopic liquid storage container for space gravity-free environment
CN207634409U (en) Pressure charging system
CN111749868A (en) Compression device suitable for high inlet pressure
CN216382066U (en) Isolated two-stage double-acting electric hydraulic drive piston type compression cylinder
CN210371444U (en) Symmetric two-stage double-acting piston type compression cylinder
CN218206941U (en) High-pressure gas driven chromatographic column-loading pump
CN210765270U (en) A compress tightly sealed flowing back that blows for on DNA synthesizer
CN106898806A (en) The method of fuel cell module and this module of operation
CN219281902U (en) Piston type compression cylinder
CN111911467A (en) High-pressure metal bellows type energy accumulator
CN219431992U (en) Hydraulic drive secondary compression cylinder
KR102540129B1 (en) Hydrogen compressing system having liquid seal
CN206943557U (en) A kind of superposing type high thrust pneumatic actuator
CN219993889U (en) Mounting housing for a miniature piezoelectric pump
KR102540127B1 (en) Hydrogen compressor having liquid seal
CN218407715U (en) Reciprocating pneumatic pump and fluid supercharging device
CN214304203U (en) Efficient continuous feeding system
JPH0419967A (en) Molten carbonate fuel cell power generating system
CN216950731U (en) Novel hydraulic drive compression cylinder for compressed gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22927453

Country of ref document: EP

Kind code of ref document: A1