WO2023158047A1 - Optimal placement design method for 3d irregular objects in containers - Google Patents

Optimal placement design method for 3d irregular objects in containers Download PDF

Info

Publication number
WO2023158047A1
WO2023158047A1 PCT/KR2022/014932 KR2022014932W WO2023158047A1 WO 2023158047 A1 WO2023158047 A1 WO 2023158047A1 KR 2022014932 W KR2022014932 W KR 2022014932W WO 2023158047 A1 WO2023158047 A1 WO 2023158047A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
containers
object model
chromosomes
population
Prior art date
Application number
PCT/KR2022/014932
Other languages
French (fr)
Korean (ko)
Inventor
김형철
한삼희
Original Assignee
주식회사엔에스이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사엔에스이 filed Critical 주식회사엔에스이
Publication of WO2023158047A1 publication Critical patent/WO2023158047A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • G06Q10/043Optimisation of two dimensional placement, e.g. cutting of clothes or wood
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0637Strategic management or analysis, e.g. setting a goal or target of an organisation; Planning actions based on goals; Analysis or evaluation of effectiveness of goals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/087Inventory or stock management, e.g. order filling, procurement or balancing against orders

Definitions

  • the present invention relates to a method for designing an optimal container arrangement of irregular 3D objects, and more particularly, to a design method for accommodating and arranging a plurality of 3D objects in a minimum number of containers.
  • the present invention relates to an optimal container arrangement design method of irregular three-dimensional objects, and is intended to provide a design method of accommodating and disposing a plurality of three-dimensional objects in a minimum number of containers for 3D printing or disposal and storage of waste pieces.
  • a method for designing an optimal container arrangement of a 3D object includes the steps of (s1) generating and indexing a 3D object model for irregular objects; (s2) deriving a minimum constraining box while rotating the 3D object model and adjusting the posture of the 3D object model accordingly; (s3) generating a population of chromosomes encoded in the sequence and rotation type of the 3D object model; (s4) determining the required number of containers and the arrangement position of the 3D object model in each container coordinate space by applying a heuristic procedure to the minimum constraining box sequence and rotation type by chromosomes; (s5) evaluating the value of the fitness function including the number of containers required and the volume utilization rate of the final container for each chromosome in the population and selecting surviving chromosomes according to the ranking; (s6) evaluating the diversity index value of the population and determining whether to converge; (s7) declaring the number of containers required for the chromosome having the highest degree of fitness and the arrangement position of the 3D object model in
  • the rotation type may be characterized in that the dimension of the applied minimum constraint box in one direction does not exceed the dimension of the container in the corresponding direction.
  • the present invention has an effect of deriving an optimal design solution for accommodating and arranging a plurality of 3D objects in a minimum number of containers.
  • the present invention has an effect of maximizing the volume of non-occupied space of a final container while reducing the number of containers required in a container arrangement design of a plurality of 3D objects.
  • the present invention excludes chromosomes that cannot accommodate a three-dimensional object in a container at the time of generating the initial population in the container arrangement design of large objects to enable the procedure of the present invention to be started and to secure statistically homogeneous initial conditions have an effect
  • the present invention has an effect of preventing unnecessary time consumption in calculation procedures.
  • FIG. 1 is a flowchart of an optimal layout design method according to the present invention.
  • FIG. 2 is a conceptual diagram for explaining a minimum constraining box.
  • 3 is an exemplary view illustrating rotation types of the minimum constraining box.
  • Fig. 4 is an explanatory diagram of a heuristic procedure for arranging boxes in a container
  • 5 is an example of a matrix format of container placement solutions for chromosomes.
  • Fig. 6 is an example of a container arrangement solution obtained by applying the present invention.
  • the required volume means a value obtained by multiplying the build volume by the number of runs in the case of a 3D printer. Therefore, it is desirable to arrange the articles in such a way that the unoccupied volume space within the manufacturing volume is minimized, so that the article of interest is manufactured the minimum number of times.
  • the same concept of optimal container arrangement design method for 3D objects can be applied.
  • a method for designing an optimal container arrangement of a 3D object includes the steps of (s1) generating and indexing a 3D object model for irregular objects; (s2) deriving a Minimum Bounding Box (MBB) while rotating the 3D object model and adjusting the posture of the 3D object model accordingly; (s3) generating a population of chromosomes encoded in the sequence and rotation type of the 3D object model; (s4) determining the required number of containers and the arrangement position of the 3D object model in each container coordinate space by applying a heuristic procedure to the MBB sequence and rotation type by chromosome; (s5) evaluating the value of the fitness function including the number of containers required and the volume utilization rate of the final container for each chromosome in the population and selecting surviving chromosomes according to the ranking; (s6) evaluating the diversity index value of the population and determining whether to converge; (s7) declaring the number of containers required for the chromosome having the highest degree of fitness and the
  • step s1 a 3D object model is created for an irregular object having an arbitrary irregular shape, and an index is given with a series of unique numbers.
  • a three-dimensional model is usually created in the format of a stereolithography (STL) file.
  • Step (s2) finds the minimum constraining box (MBB) while rotating the STL model in the azimuthal angle and zenithal angle directions in virtual space, and the posture of the 3D object model with the azimuthal and zenith angles corresponding to MBB Adjust the orientation.
  • MBB minimum constraining box
  • FIG. 2 as an example, in case (a), an axis aligned bounding box for a 3D model at the beginning of creation is displayed in a square shape. As it rotates, the volume of the axis aligned bounding box increases.
  • the rectangle of the minimized case (b) corresponds to the MBB and becomes a 3D object model whose posture is adjusted at that time. Comparing the space occupied by an object and the unoccupied space in the axis alignment constraint box of FIG. 2, it can be conceptually understood that the volume of the unoccupied space of case (b), which is MBB, is minimized.
  • FIG. 2 is illustrated in two dimensions for convenience of description, this can be easily expanded to a three-dimensional space
  • the reason for obtaining the MBB and adjusting the posture of the 3D object model in this way is that the heuristic procedure, which will be described later, was developed for an orthogonal box and an orthogonal container, and also an optimal solution by a genetic algorithm. Since the search is determined in the direction in which the volume utilization of the container is maximized, the MBB is used to minimize the unoccupied volume, thereby minimizing the inherent error.
  • the volumetric utilization rate may be defined as a value obtained by dividing the sum of the volumes of boxes accommodated in a container by the volume of the container.
  • step s3 the rotation type (rotation) of the MBB corresponding to the vector generated by the sequence of the 3D object model by random permutation of the index of the 3D object model and the random number type) to generate a population of chromosomes encoded by the vector.
  • the index of a 3D object model is usually created with a series of natural numbers, and as shown in FIG. 3, 6 rotation types (r) are available for a cuboid box, and each rotation type is an integer from 0 to 5. It can be expressed as , and the length, width, and height dimensions change according to the rotation type.
  • the size of the MBB may not be sufficiently small compared to the size of the container.
  • the MBB may not be accommodated within the container boundary. Therefore, when the rotation type is applied to the MBB, it is desirable to limit the value of the rotation type so that the dimension of one direction of the MBB does not exceed the dimension of the corresponding direction of the container.
  • the length, width, and height of the container are entered in advance, and when the chromosome is created, a rotation type corresponding to each MBB is created. If the dimension in one direction exceeds the dimension in the corresponding direction of the container, A method of regenerating the rotation type can be used.
  • This method fundamentally excludes chromosomes that cannot accommodate a 3D object in a container at the time of initial population generation, enabling the procedure of the placement design method according to the present invention to be started, and a potential solution area (potential solution) domain) has the effect of securing statistically homogeneous initial conditions. This effect is particularly noticeable in the container layout design for permanent disposal storage of bulky waste.
  • a placement failure may be declared and the placement design procedure may be terminated. This is a case where it is impossible to accommodate a container even if all rotation type values are sequentially applied to a certain MBB, and it is a case where container arrangement is impossible in the first place.
  • This method may have an effect of preventing unnecessary calculation procedure attempts, which is particularly effective when a target object cannot be easily and intuitively grasped in advance in an arrangement problem in which the number of target 3D objects is large.
  • step s4 a heuristic procedure is applied to the MBB sequence and rotation type of each chromosome included in the population to determine the required number of containers and the location of the object model in each container coordinate space.
  • the heuristic procedure is an a priori arrangement methodology, and the DBLF (Deepest Bottom Left with Fill) method proposed by Karabulut et al. mentioned above or various variant methods developed thereafter can be applied.
  • DBLF Deepest Bottom Left with Fill
  • FIG. 4 shows a container space and a series of boxes stationary at the origin of a three-dimensional Cartesian coordinate system.
  • the boxes are given the dimensions of length, width, and height by the previously derived MBB, are ordered according to the given sequence, and have length, width, and height dimensions according to the given rotation type.
  • can Containers are also given a length, width and height.
  • the left-bottom-back vertex of the first MBB is placed at the origin. Then, three adjacent vertexes are generated as candidate placement points (P1, P2, P3) in the order of decreasing x-z-y coordinate values. In the future, if there is an empty space below the two vertexes on the bottom side, the point projected downward onto the surface of another MBB encountered first or the bottom surface of the container becomes a candidate placement point.
  • the second MBB checks the possibility of placement in the order of decreasing x-z-y coordinate values among the generated candidate placement points.
  • the MBB is placed at the candidate placement point, and the candidate is placed in the same way as before. Add points (P4, P5, P6). This procedure continues until there are no more candidate placement points in the container that satisfy the placement conditions or until the given number of MBBs is exhausted.
  • the initial required number of containers starts with a natural number greater than or equal to the sum of all given MBB volumes divided by the container volume. Therefore, although only one container is shown in FIG. 4 for convenience of description, there may be one or more N containers. If there are no candidate placement points satisfying the placement condition in the existing N containers for the current MBB, a new container is added and the required number of containers (N) is increased by 1. Containers to which the current MBB is allocated may be sequentially selected in the order of containers having the largest unoccupied space volume.
  • the heuristic procedure described above can be implemented by a computer program, and even if it is not the same, if the procedure can determine the number of containers required for a given box sequence and rotation type and the position of the box in each container coordinate space, , which corresponds to the heuristic procedure of step s4.
  • the batch solution determined by the heuristic procedure for chromosomes representing n MBBs can be expressed in a 6xn matrix format as shown in FIG. 5 .
  • the elements of the third row may have values from 1 to N.
  • the placement point of the first MBB in the sequence is indicated as being located at the origin of the first container, and other elements of the matrix may be variously changed depending on the given chromosome.
  • step (s5) for each chromosome included in the population, the value of the fitness function expressed including the number of consumed containers and the volume utilization of the final container is evaluated and the rank is ranked. Survival chromosomes are selected according to (ranking).
  • the fitness (f) function may be given as, for example, Equation 1 below.
  • N is the number of containers required
  • e represents the volume utilization rate of the container finally added in step s4.
  • the volume utilization factor is a value obtained by dividing the sum of the volumes of the boxes accommodated in the container by the volume of the container, and has a value of 1.0 or less.
  • the fit value increases as the number of required containers decreases, and even when the required number of containers decreases, the fit value increases as the volume utilization rate of the final container decreases. Therefore, by adopting the fitness function according to Equation 1, if the number of containers required in the population is small and the number of containers required is the same, the chromosome with a small volume utilization rate of the final container ranks higher, and the fewer containers required in the final arrangement year. However, it has the effect of maximizing the volume of the non-occupied space of the final container.
  • the maximum workload for the overall layout design project including the unit layout design concerned is first confirmed by the layout solution for N-1 containers, and the objects allocated to the Nth container are transferred to a separate additional layout design problem. There is an effect that can promote economic efficiency.
  • the fitness function of the present invention is not necessarily limited to Equation 1.
  • surviving chromosome selection all chromosomes included in the population can become surviving chromosomes in the case of the first generation population, but from the second generation, both the old generation chromosomes and the new generation chromosome population generated by step (s8) As a target, surviving chromosomes are selected according to the fitness ranking to form a population.
  • a diversity index value of the population is evaluated and convergence is determined.
  • the diversity index is an index that can evaluate how close the fitness value of each chromosome in the population is to the optimal value, and can be given as, for example, Equation 2 below.
  • the diversity index of the present invention is not necessarily limited to Equation 2.
  • step (s7) when it is determined that convergence is determined in step (s6), the number of containers required for the chromosome having the highest degree of fitness and the location of the object model in each container coordinate space are declared as the optimal solution, and the solution is terminated.
  • the optimal solution can be expressed in the form of FIG. 5, and each column can be collected and expressed separately for each container.
  • step s8 if convergence is not determined in step s6, crossover and mutation operations are performed to generate a population composed of new chromosome generations, and step s4 is entered. do.
  • the cross-mutation operation selects parent chromosome pairs from the current population with fitness-based probabilities, randomly selects some strings of chromosome codes, and reproduces children chromosome pairs by exchanging them with each other. Additionally, a flip mutation operation that changes the rotation type of some randomly selected child chromosomes is performed with a set probability. Through this operation, a population of a new generation is formed by generating chromosomes equal to the size of the population.
  • the rotation type according to the flip mutation operation it is preferable to limit the rotation type according to the flip mutation operation so that the dimension of one direction of the applied MBB does not exceed the dimension of the corresponding direction of the container.
  • a method of regenerating the rotation type can be used. By doing this, it is possible to prevent generation of child chromosomes that cannot be accommodated in the container for mutation calculation, and to prevent unnecessary time consumption in subsequent calculation procedures.
  • FIG. 6 is an example of a part of a layout design obtained by using the layout design method of the present invention through 3D visualization in a problem of arranging 166 3D objects in a container of a specific size.
  • the number of required containers was calculated to be 24, and 3D object arrangement states for the first 3 and last 3 containers among them were shown as an example.
  • the present invention can be used to create a design plan that can perform the work with the minimum number of times in the 3D printing task of manufacturing a large number of atypical items, and also the number of disposal containers for permanent disposal storage of pieces of toxic solid waste or radioactive waste Since it can be applied to minimization, etc., there is a possibility of use in related industries.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Tourism & Hospitality (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Marketing (AREA)
  • Development Economics (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Operations Research (AREA)
  • Theoretical Computer Science (AREA)
  • Game Theory and Decision Science (AREA)
  • Educational Administration (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Image Generation (AREA)

Abstract

A design method for optimally placing three-dimensional objects in containers according to the present invention comprises the steps of: (s1) generating a three-dimensional object model; (s2) deriving a minimum bounding box and adjusting the posture of the three-dimensional object model; (s3) generating a population of chromosomes coded in sequence and rotation types of the object model; (s4) applying a heuristic procedure to the chromosomes to determine the number of necessary containers and the position in which the object model is to be placed in each container coordinate space; (s5) evaluating the value of a fitness function including the number of necessary containers and the volume utilization ratio of the final container with regard to each chromosome, and selecting surviving chromosomes according to the rank thereof; (s6) determining whether convergence occurs by means of the diversity index value of the population; and (s7) declaring that the number of necessary containers related to the converging chromosomes and the position in which the object model is to be placed in each container coordinate space constituting an optimal solution. The present invention is advantageous in that, in connection with design for placing objects in containers, the maximum unoccupied space volume of the final container is secured while reducing the number of necessary containers.

Description

비정형 3차원 객체의 컨테이너 최적 배치 설계 방법Container Optimal Arrangement Design Method for Irregular 3D Objects
본 발명은 비정형 3차원 객체의 컨테이너 최적 배치 설계 방법에 관한 것으로서, 보다 상세하게는 복수의 3차원 객체를 최소 개수의 컨테이너 내에 수용 배치하는 설계 방법에 관한 것이다.The present invention relates to a method for designing an optimal container arrangement of irregular 3D objects, and more particularly, to a design method for accommodating and arranging a plurality of 3D objects in a minimum number of containers.
효과적인 물류 관리를 위하여 오래전부터 운영연구(operations research, OR) 분야에서 상자 포장 문제(bin packing problem)가 연구되어 왔다. 최근 3D 프린팅 기술이 활성화 되면서 제작될 물품들을 구획된 제조 체적(build volume) 내에 최대의 체적 활용률(volume utilization)을 갖도록 배치하는 것이 3D 프린팅 계획에서 중요 설계 목표 중의 하나인데, 이때 OR 분야 포장 알고리즘의 개념들을 활용하여 다양한 방법들이 개발되어 적용되고 있다. 전통적인 상자 포장 문제에서는 직육면체의 물품 상자를 직육면체의 컨테이너 안에 효율적으로 배치하는 하는 것이고, 3D 프린팅에서는 비정형 물체를 제조 체적 내에 배치하는 것인 만큼, 적용상의 차이는 있지만 핵심적 개념은 동일하게 적용할 수 있다. 배치 알고리즘은 예를 들어 Karabulut 등에 의하여 제안된 바 있는 휴리스틱 절차(heuristic procedure) 및 유전 알고리즘의 통합 방법(A hybrid genetic algorithm for packing in 3D with deepest bottom left with fill method, in: T. Yakhno (Eds.), Advances in Information Systems. ADVIS 2004, Lecture Notes in Computer Science, vol 3261, Springer, Berlin, Heidelberg, 2004, pp. 441-450)을 참고할 수 있다.For effective logistics management, the bin packing problem has been studied for a long time in the field of operations research (OR). With the recent activation of 3D printing technology, arranging the products to be manufactured to have the maximum volume utilization within the partitioned build volume is one of the important design goals in the 3D printing plan. At this time, the OR field packaging algorithm Various methods have been developed and applied using the concepts. In the traditional boxing problem, it is to efficiently place a cuboid product box into a cuboid container, and in 3D printing, an irregular object is placed in a manufacturing volume. Although there are differences in application, the core concept is the same. . The batch algorithm is, for example, a heuristic procedure proposed by Karabulut et al. and a genetic algorithm integration method (A hybrid genetic algorithm for packing in 3D with deepest bottom left with fill method, in: T. Yakhno (Eds. ), Advances in Information Systems. ADVIS 2004, Lecture Notes in Computer Science, vol 3261, Springer, Berlin, Heidelberg, 2004, pp. 441-450).
3D 프린터의 제조 체적의 한계로 인하여, 특히, 비교적 다량의 물품 세트 제조의 경우에는 일회 수행 제작으로 완료될 수 없고, 복수 회에 걸쳐서 제작을 수행해야 하므로, 이는 다중 컨테이너에 대한 배치 설계의 문제가 된다. 또한 독성 고체 폐기물 또는 방사성 폐기물 조각들의 영구 처분 저장을 위한 처분 용기 포장도 다중 컨테이너 배치 설계의 문제로 취급할 수 있다.Due to the limitation of the manufacturing volume of the 3D printer, in particular, in the case of manufacturing a set of relatively large quantities of items, it cannot be completed in one-time manufacturing and must be manufactured multiple times, which is a problem of batch design for multiple containers. do. Packaging of disposal containers for permanent disposal storage of toxic solid waste or radioactive waste fragments may also be addressed as a multi-container layout design issue.
본 발명은 비정형 3차원 객체의 컨테이너 최적 배치 설계 방법에 관한 것으로서, 3D 프린팅 또는 폐기물 조각 처분 저장을 위하여 복수의 3차원 객체를 최소 개수의 컨테이너 내에 수용 배치하는 설계 방법을 제공하기 위한 것이다.The present invention relates to an optimal container arrangement design method of irregular three-dimensional objects, and is intended to provide a design method of accommodating and disposing a plurality of three-dimensional objects in a minimum number of containers for 3D printing or disposal and storage of waste pieces.
본 발명에 따른 3차원 객체의 컨테이너 최적 배치 설계 방법은 (s1) 비정형 객체들에 대한 3차원 객체 모델을 생성하고 인덱싱 하는 단계; (s2) 3차원 객체 모델을 회전시키면서 최소구속상자를 도출하고 그에 따라 3차원 객체 모델의 자세를 조정하는 단계; (s3) 3차원 객체 모델의 시퀀스 및 회전 타입으로 코딩된 크로모솜의 모집단을 생성하는 단계; (s4) 크로모솜에 의한 최소구속상자 시퀀스와 회전 타입에 대하여 휴리스틱 절차를 적용하여 소요 컨테이너 수와 각 컨테이너 좌표 공간에서의 3차원 객체 모델의 배치 위치를 결정하는 단계; (s5) 모집단의 각 크로모솜에 대하여 소요 컨테이너 수와 최종 컨테이너의 체적 활용률을 포함하는 적합도 함수의 값을 평가하고 그 순위에 따라 생존 크로모솜을 선별하는 단계; (s6) 모집단의 다양성 지표 값을 평가하고 수렴 여부를 판정하는 단계; (s7) 수렴으로 판정된 경우에 최상위 적합도를 갖는 크로모솜에 대한 소요 컨테이너 수와 각 컨테이너 좌표 공간 내의 3차원 객체 모델의 배치 위치를 최적 해로 선언하고 종료하는 단계; 및 (s8) 수렴으로 판정되지 않은 경우에 교차변이 및 돌연변이 연산을 수행하여 새로운 크로모솜 세대의 모집단을 생성하고 단계(s4)로 진입하는 단계;를 포함하는 것을 특징으로 한다.A method for designing an optimal container arrangement of a 3D object according to the present invention includes the steps of (s1) generating and indexing a 3D object model for irregular objects; (s2) deriving a minimum constraining box while rotating the 3D object model and adjusting the posture of the 3D object model accordingly; (s3) generating a population of chromosomes encoded in the sequence and rotation type of the 3D object model; (s4) determining the required number of containers and the arrangement position of the 3D object model in each container coordinate space by applying a heuristic procedure to the minimum constraining box sequence and rotation type by chromosomes; (s5) evaluating the value of the fitness function including the number of containers required and the volume utilization rate of the final container for each chromosome in the population and selecting surviving chromosomes according to the ranking; (s6) evaluating the diversity index value of the population and determining whether to converge; (s7) declaring the number of containers required for the chromosome having the highest degree of fitness and the arrangement position of the 3D object model in each container coordinate space as an optimal solution when it is determined that convergence is reached, and terminating; and (s8) generating a population of new chromosome generations by performing cross-mutation and mutation calculations when it is not determined as convergence and entering step (s4).
본 발명에 따른 최적 배치 설계 방법에서 회전 타입은 적용된 최소구속상자의 어느 한 방향의 치수가 컨테이너의 대응되는 방향의 치수를 초과하지 않도록 제한되는 것을 특징으로 할 수 있다.In the optimal arrangement design method according to the present invention, the rotation type may be characterized in that the dimension of the applied minimum constraint box in one direction does not exceed the dimension of the container in the corresponding direction.
본 발명에 따른 최적 배치 설계 방법에서 최소구속상자의 어느 한 방향의 치수도 컨테이너의 대응되는 방향의 치수를 초과하지 않게 하는 회전 타입이 없을 경우, 배치 실패를 선언하고 종료되는 것을 특징으로 하는 것을 특징으로 할 수 있다.In the optimal arrangement design method according to the present invention, if there is no rotation type that does not allow the dimension of any one direction of the minimum constraining box to exceed the dimension of the corresponding direction of the container, it is characterized in that the arrangement is declared failure and terminated. can be done with
본 발명은 복수의 3차원 객체를 최소 개수의 컨테이너 내에 수용 배치하는 최적 설계 해를 도출할 수 있는 효과가 있다.The present invention has an effect of deriving an optimal design solution for accommodating and arranging a plurality of 3D objects in a minimum number of containers.
본 발명은 복수의 3차원 객체의 컨테이너 배치 설계에서 소요 컨테이너 수가 적으면서도 최종 컨테이너의 비점유 공간 체적이 최대한 확보되는 효과를 갖는다. 또한 당해 단위 배치 설계가 포함된 전체적 배치 설계 프로젝트에 대하여 최대의 작업 부하 경제성을 도모할 수 있는 효과가 있다.The present invention has an effect of maximizing the volume of non-occupied space of a final container while reducing the number of containers required in a container arrangement design of a plurality of 3D objects. In addition, there is an effect of achieving maximum workload economic efficiency for the entire layout design project including the unit layout design.
본 발명은 특히 대형 객체의 컨테이너 배치 설계에서 초기 모집단 생성시에 3차원 객체를 컨테이너 내에 수용할 수 없는 크로모솜을 배제하여 본 발명의 절차시작이 가능하도록 하고, 통계적으로 균질한 초기 조건을 확보하는 효과를 갖는다.In particular, the present invention excludes chromosomes that cannot accommodate a three-dimensional object in a container at the time of generating the initial population in the container arrangement design of large objects to enable the procedure of the present invention to be started and to secure statistically homogeneous initial conditions have an effect
본 발명은 연산 절차에서 불필요한 시간 소모를 방지하는 효과를 갖는다.The present invention has an effect of preventing unnecessary time consumption in calculation procedures.
도1은 본 발명에 따른 최적 배치 설계 방법의 흐름도이다.1 is a flowchart of an optimal layout design method according to the present invention.
도2는 최소구속상자를 설명하기 위한 개념도이다.2 is a conceptual diagram for explaining a minimum constraining box.
도3은 최소구속상자의 회전 타입을 설명하는 예시도이다.3 is an exemplary view illustrating rotation types of the minimum constraining box.
도4는 컨테이너 내의 상자 배치를 위한 휴리스틱 절차의 설명도이다.Fig. 4 is an explanatory diagram of a heuristic procedure for arranging boxes in a container;
도5는 크로모솜에 대한 컨테이너 배치 해의 매트릭스 형식 예이다.5 is an example of a matrix format of container placement solutions for chromosomes.
도6은 본 발명을 적용하여 얻어진 컨테이너 배치 해의 일례이다.Fig. 6 is an example of a container arrangement solution obtained by applying the present invention.
이하에서는 본 발명에 따른 구체적인 실시예가 설명된다. 그러나 본 발명은 여러 가지 다양한 형태로 변형하여 구현될 수 있으며 여기에서 설명하는 실시예로 한정되지는 않는다. 본 발명에 첨부된 도면은 설명의 편의를 위하여 간략화 되었으며, 본 발명을 명확하게 설명하기 위해서 일부가 과장되거나 설명과 관계없는 부분은 생략되었다. Hereinafter, specific embodiments according to the present invention are described. However, the present invention can be implemented by modifying in various forms and is not limited to the embodiments described herein. The drawings accompanying the present invention have been simplified for convenience of explanation, and some exaggerated parts or parts irrelevant to the description have been omitted in order to clearly describe the present invention.
이하에서 다수의 비정형 물품을 규격화된 컨테이너에 최소의 소요 체적(consumed volume)을 갖도록 배치하기 위한 3차원 객체의 컨테이너 최적 배치 설계 방법을 설명한다. 여기서 소요 체적이라 함은 3D 프린터의 경우 제조 체적(build volume)에 실행 회수를 곱한 값을 의미한다. 그러므로 제조 체적 내에 비점유(unoccupied volume) 공간이 최소가 되도록 물품을 배치하여, 대상 물품을 최소 회수로 제조하는 것이 바람직하다. 또한 독성 고체 폐기물 또는 방사성 폐기물 조각들의 영구 처분 포장의 경우에도, 최소 개수의 처분 용기에 대상 폐기물 조각을 포장하는 것이 목표이므로, 동일한 개념의 3차원 객체의 컨테이너 최적 배치 설계 방법이 적용될 수 있다.Hereinafter, a container optimal arrangement design method of a 3D object for arranging a plurality of atypical items in a standardized container to have a minimum consumed volume will be described. Here, the required volume means a value obtained by multiplying the build volume by the number of runs in the case of a 3D printer. Therefore, it is desirable to arrange the articles in such a way that the unoccupied volume space within the manufacturing volume is minimized, so that the article of interest is manufactured the minimum number of times. In addition, even in the case of packaging for permanent disposal of pieces of toxic solid waste or radioactive waste, since the goal is to package the pieces of target waste in the minimum number of disposal containers, the same concept of optimal container arrangement design method for 3D objects can be applied.
본 발명에 따른 3차원 객체의 컨테이너 최적 배치 설계 방법은, 도1을 참조하여, (s1) 비정형 객체들에 대한 3차원 객체 모델을 생성하고 인덱싱 하는 단계; (s2) 3차원 객체 모델을 회전시키면서 최소구속상자(Minimum Bounding Box, MBB)를 도출하고 그에 따라 3차원 객체 모델의 자세를 조정하는 단계; (s3) 3차원 객체 모델의 시퀀스 및 회전 타입으로 코딩된 크로모솜의 모집단을 생성하는 단계; (s4) 크로모솜에 의한 MBB 시퀀스와 회전 타입에 대하여 휴리스틱 절차를 적용하여 소요 컨테이너 수와 각 컨테이너 좌표 공간에서의 3차원 객체 모델의 배치 위치를 결정하는 단계; (s5) 모집단의 각 크로모솜에 대하여 소요 컨테이너 수와 최종 컨테이너의 체적 활용률을 포함하는 적합도 함수의 값을 평가하고 그 순위에 따라 생존 크로모솜을 선별하는 단계; (s6) 모집단의 다양성 지표 값을 평가하고 수렴 여부를 판정하는 단계; (s7) 수렴으로 판정된 경우에 최상위 적합도를 갖는 크로모솜에 대한 소요 컨테이너 수와 각 컨테이너 좌표 공간 내의 객체 모델의 배치 위치를 최적 해로 선언하고 종료하는 단계; 및 (s8) 수렴으로 판정되지 않은 경우에 교차변이 및 돌연변이 연산을 수행하여 새로운 크로모솜 세대를 생성하고 단계(s4)로 진입하는 단계;를 포함하여 구성된다. 이하에서 각 단계에 대하여 더욱 상세하게 설명한다.Referring to FIG. 1, a method for designing an optimal container arrangement of a 3D object according to the present invention includes the steps of (s1) generating and indexing a 3D object model for irregular objects; (s2) deriving a Minimum Bounding Box (MBB) while rotating the 3D object model and adjusting the posture of the 3D object model accordingly; (s3) generating a population of chromosomes encoded in the sequence and rotation type of the 3D object model; (s4) determining the required number of containers and the arrangement position of the 3D object model in each container coordinate space by applying a heuristic procedure to the MBB sequence and rotation type by chromosome; (s5) evaluating the value of the fitness function including the number of containers required and the volume utilization rate of the final container for each chromosome in the population and selecting surviving chromosomes according to the ranking; (s6) evaluating the diversity index value of the population and determining whether to converge; (s7) declaring the number of containers required for the chromosome having the highest degree of fitness and the arrangement position of the object model in each container coordinate space as an optimal solution when it is determined that convergence is reached, and terminating; and (s8) generating a new chromosome generation by performing cross-mutation and mutation calculations when it is not determined to be convergence and entering step (s4). Hereinafter, each step will be described in more detail.
단계(s1)에서는 임의의 비정형 형상을 갖는 대상 객체(irregular object)에 대하여 3차원 컴퓨터 객체 모델(3D object model)을 작성하고 일련의 고유 번호로 인덱스(index)를 부여한다. 3차원 모델은 통상적으로 STL (stereolithography) 파일 형식으로 작성된다. In step s1, a 3D object model is created for an irregular object having an arbitrary irregular shape, and an index is given with a series of unique numbers. A three-dimensional model is usually created in the format of a stereolithography (STL) file.
단계(s2)는 가상 공간상에서 STL 모델을 방위각(azimuthal angle) 방향 및 천정각(zenithal angle) 방향으로 회전 시키면서 최소 구속 상자(MBB)를 찾고, MBB에 해당되는 방위각 및 천정각으로 3차원 객체 모델의 자세(orientation)를 조정한다. 도2를 예를 들어 설명하면, 케이스 (a)는 생성 초기의 3차원 모델에 대한 축정렬 구속 상자(axis aligned bounding box)가 정사각형 형태로 표시되어 있는데, 이를 회전시키면서 축정렬 구속 상자의 체적이 최소가 된 케이스 (b)의 직사각형이 MBB에 해당되고 그때의 자세가 조정된 3차원 객체 모델이 된다. 도2의 축정렬 구속 상자 내에서 물체가 점유하는(occupied) 공간과 비점유(unoccupied) 공간을 비교하면 MBB인 케이스 (b)의 비점유 공간 체적이 최소로 된다는 것을 개념적으로 이해할 수 있다. 다만, 도2는 설명의 편의를 위하여 2차원으로 도시되었으나, 이는 용이하게 3차원 공간으로 확장하여 설명될 수 있다. Step (s2) finds the minimum constraining box (MBB) while rotating the STL model in the azimuthal angle and zenithal angle directions in virtual space, and the posture of the 3D object model with the azimuthal and zenith angles corresponding to MBB Adjust the orientation. Referring to FIG. 2 as an example, in case (a), an axis aligned bounding box for a 3D model at the beginning of creation is displayed in a square shape. As it rotates, the volume of the axis aligned bounding box increases. The rectangle of the minimized case (b) corresponds to the MBB and becomes a 3D object model whose posture is adjusted at that time. Comparing the space occupied by an object and the unoccupied space in the axis alignment constraint box of FIG. 2, it can be conceptually understood that the volume of the unoccupied space of case (b), which is MBB, is minimized. However, although FIG. 2 is illustrated in two dimensions for convenience of description, this can be easily expanded to a three-dimensional space.
이와 같이 MBB를 구하고 3차원 객체 모델의 자세를 조정하는 이유는 이후에 설명될 휴리스틱 절차가 직교의 상자(orthogonal box)와 직교의 컨테이너(orthogonal container)를 대상으로 개발되었고, 또한 유전 알고리즘에 의한 최적해 탐색이 컨테이너의 체적 활용률(volume utilization)이 최대화되는 방향으로 결정되기 때문에, MBB를 사용하여 비점유 체적을 최소화함으로써 이에 따르는 내재적 오차를 최소화하기 위함이다. 체적 활용률은 컨테이너에 수용된 상자의 체적의 합을 컨테이너의 체적으로 나눈 값으로 정의될 수 있다.The reason for obtaining the MBB and adjusting the posture of the 3D object model in this way is that the heuristic procedure, which will be described later, was developed for an orthogonal box and an orthogonal container, and also an optimal solution by a genetic algorithm. Since the search is determined in the direction in which the volume utilization of the container is maximized, the MBB is used to minimize the unoccupied volume, thereby minimizing the inherent error. The volumetric utilization rate may be defined as a value obtained by dividing the sum of the volumes of boxes accommodated in a container by the volume of the container.
단계(s3)에서는 3차원 객체 모델의 인덱스를 무작위 순열(random permutation)에 의하여 3차원 객체 모델의 시퀀스(sequence)를 생성한 벡터와, 난수(random number)에 의하여 대응되는 MBB의 회전 타입(rotation type)을 생성한 벡터로 코딩된 크로모솜(chromosome)의 모집단(population)을 생성한다. 3차원 객체 모델의 인덱스는 통상 일련의 자연수로 생성하고, 회전 타입은 도3에서 보는 바와 같이 직육면체 상자에 대하여 6가지의 회전 타입(r)이 가능하며, 각 회전 타입은 0부터 5까지의 정수로 표현될 수 있으며, 회전 타입에 따라 길이, 폭, 높이 치수가 바뀌게 된다.In step s3, the rotation type (rotation) of the MBB corresponding to the vector generated by the sequence of the 3D object model by random permutation of the index of the 3D object model and the random number type) to generate a population of chromosomes encoded by the vector. The index of a 3D object model is usually created with a series of natural numbers, and as shown in FIG. 3, 6 rotation types (r) are available for a cuboid box, and each rotation type is an integer from 0 to 5. It can be expressed as , and the length, width, and height dimensions change according to the rotation type.
경우에 따라 MBB의 크기가 컨테이너 크기에 비하여 충분히 작지 않은 경우도 있을 수 있는데, 이러한 경우에는 회전 타입에 따라 MBB가 컨테이너 경계 안에 수용(accommodate)될 수 없는 경우도 발생될 수 있다. 따라서 회전 타입이 MBB에 적용되었을 때 MBB의 어느 한 방향의 치수가 컨테이너의 대응되는 방향의 치수를 초과하지 않도록 회전 타입의 값을 제한하는 것이 바람직하다. 이를 위하여 미리 컨테이너의 길이, 폭, 높이 치수를 입력하고, 크로모솜을 생성할 때 각 MBB에 대응되는 회전 타입을 생성하여 만일 어느 한 방향의 치수가 컨테이너의 대응되는 방향의 치수를 초과할 경우에는 회전 타입을 재생성하는 방식을 사용할 수 있다. 이러한 방식은 초기 모집단 생성시에 3차원 객체를 컨테이너 내에 수용할 수 없는 크로모솜을 원천적으로 배제하여 본 발명에 의한 배치 설계 방법의 절차 시작이 가능하도록 하고, 잠재성이 있는 배치 해 영역(potential solution domain)에서 통계적으로 균질한 초기 조건을 확보하는 효과를 갖는다. 이러한 효과는 특히 대형 폐기물의 영구 처분 저장시 컨테이너 배치 설계에서 현저하게 나타난다.In some cases, the size of the MBB may not be sufficiently small compared to the size of the container. In this case, depending on the rotation type, the MBB may not be accommodated within the container boundary. Therefore, when the rotation type is applied to the MBB, it is desirable to limit the value of the rotation type so that the dimension of one direction of the MBB does not exceed the dimension of the corresponding direction of the container. To this end, the length, width, and height of the container are entered in advance, and when the chromosome is created, a rotation type corresponding to each MBB is created. If the dimension in one direction exceeds the dimension in the corresponding direction of the container, A method of regenerating the rotation type can be used. This method fundamentally excludes chromosomes that cannot accommodate a 3D object in a container at the time of initial population generation, enabling the procedure of the placement design method according to the present invention to be started, and a potential solution area (potential solution) domain) has the effect of securing statistically homogeneous initial conditions. This effect is particularly noticeable in the container layout design for permanent disposal storage of bulky waste.
만일, MBB의 어느 한 방향의 치수도 컨테이너의 대응되는 방향의 치수를 초과하지 않게 하는 회전 타입이 없는 경우에는, 배치 실패를 선언하고 배치 설계 절차를 종료하게 할 수 있다. 이는 어느 한 MBB에 대하여 회전 타입 값을 순차적으로 모두 적용해 보아도 컨테이너에 수용할 수 없는 경우이며, 애초에 컨테이너 배치가 불가한 경우이다. 이러한 방식은 불필요한 연산 절차 시도를 방지하는 효과를 가질 수 있는데, 이는 특히 대상 3차원 객체 수가 많은 배치 문제에서 사전에 직관적으로 대상 객체를 용이하게 파악할 수 없는 경우에 매우 효과적이다.If there is no rotation type that does not allow the dimensions of the MBB in either direction to exceed the dimensions of the container in the corresponding direction, a placement failure may be declared and the placement design procedure may be terminated. This is a case where it is impossible to accommodate a container even if all rotation type values are sequentially applied to a certain MBB, and it is a case where container arrangement is impossible in the first place. This method may have an effect of preventing unnecessary calculation procedure attempts, which is particularly effective when a target object cannot be easily and intuitively grasped in advance in an arrangement problem in which the number of target 3D objects is large.
단계(s4)에서는 모집단에 포함된 각 크로모솜에 의한 MBB 시퀀스와 회전 타입에 대하여 휴리스틱 절차를 적용하여 소요 컨테이너 수와 각 컨테이너 좌표 공간에서의 객체 모델의 배치 위치를 결정한다. In step s4, a heuristic procedure is applied to the MBB sequence and rotation type of each chromosome included in the population to determine the required number of containers and the location of the object model in each container coordinate space.
휴리스틱 절차는 선험적 배치 방법론으로서 앞서 언급된 Karabulut 등이 제안한 DBLF(Deepest Bottom Left with Fill) 방법 또는 그 이후에 개발된 다양한 변종 방법이 응용될 수 있다. 본 발명에 대한 설명의 완결성을 위하여 단계(s4)에서 사용될 수 있는 휴리스틱 절차의 일례를 이하에서 설명한다.The heuristic procedure is an a priori arrangement methodology, and the DBLF (Deepest Bottom Left with Fill) method proposed by Karabulut et al. mentioned above or various variant methods developed thereafter can be applied. For completeness of description of the present invention, an example of a heuristic procedure that can be used in step s4 will be described below.
도4에는 3차원 직교좌표계 원점에 정치된 컨테이너 공간과 일련의 상자들이 도시되어 있다. 상자는 앞서 도출된 MBB에 의하여 길이(length), 폭(width), 높이(height)의 치수가 주어지고, 주어진 시퀀스에 따라 순서가 정해지며, 주어진 회전 타입에 따라 길이, 폭, 높이 치수를 가질 수 있다. 컨테이너 또한 길이, 폭, 높이가 주어져 있다.4 shows a container space and a series of boxes stationary at the origin of a three-dimensional Cartesian coordinate system. The boxes are given the dimensions of length, width, and height by the previously derived MBB, are ordered according to the given sequence, and have length, width, and height dimensions according to the given rotation type. can Containers are also given a length, width and height.
도4에 보인바와 같이 첫 번째 MBB의 좌하후(left-bottom-back) 꼭지점이 원점에 배치된다. 그리고 인접하는 3개의 꼭지점이 x-z-y 좌표 값이 작은 순서대로 후보 배치점(P1, P2, P3)으로 생성된다. 향후, 만일 바닥 쪽의 2개의 꼭지점의 아래가 빈 공간일 경우에는 최초로 만나는 다른 MBB의 표면 또는 컨테이너 바닥면으로 하향 투사된 점이 후보 배치점이 된다. 두 번째 MBB는 생성된 후보 배치점 중에서 x-z-y 좌표 값이 작은 순서대로 배치 가능성을 체크한다. 만일 어느 후보 배치점에 대하여 현재의 당면 MBB가 기존에 배치된 다른 MBB와 중첩되거나 또는 컨테이너의 경계를 벗어나지 않는다는 배치조건을 충족하면 해당 후보 배치점에 MBB를 배치하고, 앞서와 같은 방법으로 후보 배치점(P4, P5, P6)을 추가한다. 이러한 절차는 당해 컨테이너에 배치조건을 충족하는 후보 배치점이 더 이상 없을 때까지 또는 주어진 MBB 개수가 모두 소진될 때까지 계속된다.As shown in FIG. 4, the left-bottom-back vertex of the first MBB is placed at the origin. Then, three adjacent vertexes are generated as candidate placement points (P1, P2, P3) in the order of decreasing x-z-y coordinate values. In the future, if there is an empty space below the two vertexes on the bottom side, the point projected downward onto the surface of another MBB encountered first or the bottom surface of the container becomes a candidate placement point. The second MBB checks the possibility of placement in the order of decreasing x-z-y coordinate values among the generated candidate placement points. If the current MBB for a candidate placement point satisfies the placement condition that the current MBB overlaps with another MBB previously placed or does not go beyond the boundary of the container, the MBB is placed at the candidate placement point, and the candidate is placed in the same way as before. Add points (P4, P5, P6). This procedure continues until there are no more candidate placement points in the container that satisfy the placement conditions or until the given number of MBBs is exhausted.
최초의 소요 컨테이너 수는 주어진 모든 MBB 체적의 합을 컨테이너 체적으로 나눈 값과 같거나 그 이상인 자연수에서 시작된다. 그러므로 도4에서는 설명의 편의상 1개의 컨테이너만을 도시하였으나, 1 이상인 N개의 컨테이너가 존재할 수 있다. 만일 당면 MBB에 대하여 현존하는 N개의 컨테이너에 더 이상 배치조건을 충족하는 후보 배치점이 없을 경우에는 새로운 컨테이너를 추가하고 소요 컨테이너 수(N)를 1 증가시킨다. 당면 MBB가 할당되는 컨테이너는 비점유 공간 체적이 가장 큰 컨테이너 순으로 순차적으로 선택될 수 있다. The initial required number of containers starts with a natural number greater than or equal to the sum of all given MBB volumes divided by the container volume. Therefore, although only one container is shown in FIG. 4 for convenience of description, there may be one or more N containers. If there are no candidate placement points satisfying the placement condition in the existing N containers for the current MBB, a new container is added and the required number of containers (N) is increased by 1. Containers to which the current MBB is allocated may be sequentially selected in the order of containers having the largest unoccupied space volume.
이상에서 설명된 바와 같은 휴리스틱 절차는 컴퓨터 프로그램에 의하여 구현될 수 있으며, 이와 동일하지 않더라도 주어진 상자 시퀀스와 회전 타입에 대하여 소요 컨테이너 수와 각 컨테이너 좌표 공간에서의 상자의 배치 위치를 결정할 수 있는 절차라면, 단계(s4)의 휴리스틱 절차에 해당되는 것이다. The heuristic procedure described above can be implemented by a computer program, and even if it is not the same, if the procedure can determine the number of containers required for a given box sequence and rotation type and the position of the box in each container coordinate space, , which corresponds to the heuristic procedure of step s4.
n개의 MBB를 나타내는 크로모솜에 대하여 휴리스틱 절차에 의하여 결정된 배치 해는 도5와 같은 6xn 매트릭스 형식으로 표현될 수 있다. 여기서 제3행의 요소들은 1부터 N까지의 값을 가질 수 있다. 앞서 설명되었듯이 시퀀스의 첫 번째 MBB의 배치점은 첫 번째 컨테이너의 원점에 위치됨이 표시되어 있고, 매트릭스의 기타 요소는 주어진 크로모솜에 따라 다양하게 변화될 수 있다.The batch solution determined by the heuristic procedure for chromosomes representing n MBBs can be expressed in a 6xn matrix format as shown in FIG. 5 . Here, the elements of the third row may have values from 1 to N. As described above, the placement point of the first MBB in the sequence is indicated as being located at the origin of the first container, and other elements of the matrix may be variously changed depending on the given chromosome.
단계(s5)에서는 모집단에 포함된 각 크로모솜에 대하여 소요 컨테이너 수(number of consumed containers)와 최종 컨테이너의 체적 활용률(volume utilization)을 포함하여 표현되는 적합도(fitness) 함수의 값을 평가하고 그 순위(ranking)에 따라 생존 크로모솜을 선별한다.In step (s5), for each chromosome included in the population, the value of the fitness function expressed including the number of consumed containers and the volume utilization of the final container is evaluated and the rank is ranked. Survival chromosomes are selected according to (ranking).
적합도(f) 함수는 예를 들어 다음 수학식 1과 같이 주어질 수 있다.The fitness (f) function may be given as, for example, Equation 1 below.
Figure PCTKR2022014932-appb-img-000001
Figure PCTKR2022014932-appb-img-000001
여기서 N은 소요 컨테이너 수이고, e는 단계(s4)에서 최종적으로 추가된 컨테이너의 체적 활용률을 나타낸다. 체적 활용률은 컨테이너에 수용된 상자들의 체적의 합을 컨테이너의 체적으로 나눈 값으로서 1.0 이하의 값을 갖는다.Here, N is the number of containers required, and e represents the volume utilization rate of the container finally added in step s4. The volume utilization factor is a value obtained by dividing the sum of the volumes of the boxes accommodated in the container by the volume of the container, and has a value of 1.0 or less.
수학식 1에 따르면, 소요 컨테이너 수가 적을수록 적합도 값이 커지고, 소요 컨테이너 수가 동일하더라도 최종 컨테이너의 체적 활용률이 작을수록 적합도 값이 증가한다. 그러므로 수학식 1에 의한 적합도 함수를 채택함으로써 모집단내에서 소요 컨테이너 수가 적을수록 그리고 소요 컨테이너 수가 동일하면 최종 컨테이너의 체적 활용률이 작은 크로모솜 일수록 상위 순위를 차지하게 되고, 최종 배치 해에서 소요 컨테이너 수가 적으면서도 최종 컨테이너의 비점유 공간 체적이 최대한 확보되는 효과를 갖는다. According to Equation 1, the fit value increases as the number of required containers decreases, and even when the required number of containers decreases, the fit value increases as the volume utilization rate of the final container decreases. Therefore, by adopting the fitness function according to Equation 1, if the number of containers required in the population is small and the number of containers required is the same, the chromosome with a small volume utilization rate of the final container ranks higher, and the fewer containers required in the final arrangement year. However, it has the effect of maximizing the volume of the non-occupied space of the final container.
소요 컨테이너 수가 동일하더라도 최종 컨테이너의 비점유 공간 체적이 최대한으로 확보된다면, 현재의 배치 설계 문제에서 대상으로 하지 않고 있는 객체들에 대한 여분의 수용 능력이 최대한 확보되는 것이다. 그러므로, 우선 N-1 개의 컨테이너에 대한 배치 해를 확정하고, N번째 컨테이너에 할당된 객체들은 별도의 추가적인 배치 설계 문제로 이관함으로써 당해 단위 배치 설계가 포함된 전체적 배치 설계 프로젝트에 대하여 최대의 작업 부하 경제성을 도모할 수 있는 효과가 있다.Even if the required number of containers is the same, if the volume of the non-occupied space of the final container is secured to the maximum extent, the maximum capacity to accommodate extra objects that are not targeted in the current arrangement design problem is secured. Therefore, the maximum workload for the overall layout design project including the unit layout design concerned is first confirmed by the layout solution for N-1 containers, and the objects allocated to the Nth container are transferred to a separate additional layout design problem. There is an effect that can promote economic efficiency.
적합도 함수는 위와 동일한 효과를 가져 올 수 있는 단순 변형이 다양하게 가능한 것이므로, 본 발명의 적합도 함수는 반드시 수학식 1로 제한되지 않는다.Since the fitness function is capable of various simple transformations that can bring about the same effect as above, the fitness function of the present invention is not necessarily limited to Equation 1.
생존 크로모솜 선별 시에는 최초 세대 모집단일 경우에는 모집단에 포함된 전체 크로모솜이 생존 크로모솜이 될 수 있지만, 두 번째 세대부터는 구세대 크로모솜과 단계(s8)에 의하여 생성된 신세대 크로모솜 모집단을 모두 대상으로 하여 적합도 순위에 따라 생존 크로모솜을 선별하여 모집단을 구성한다.In the case of surviving chromosome selection, all chromosomes included in the population can become surviving chromosomes in the case of the first generation population, but from the second generation, both the old generation chromosomes and the new generation chromosome population generated by step (s8) As a target, surviving chromosomes are selected according to the fitness ranking to form a population.
단계(s6)에서는 모집단의 다양성 지표(diversity index) 값을 평가하고 수렴 여부를 판정한다. 다양성 지표는 모집단 내의 각 크로모솜의 적합도 값이 얼마나 최적치에 근접하는지를 평가할 수 있는 지표로서 예를 들어 다음 수학식 2와 같이 주어질 수 있다.In step s6, a diversity index value of the population is evaluated and convergence is determined. The diversity index is an index that can evaluate how close the fitness value of each chromosome in the population is to the optimal value, and can be given as, for example, Equation 2 below.
Figure PCTKR2022014932-appb-img-000002
Figure PCTKR2022014932-appb-img-000002
여기서 η는 다양성 지표이고, fbest 및 fworst는 각각 모집단 내의 최고 적합도 및 최저 적합도를 나타낸다. 그러므로 다양성 지표 값이 미리 설정된 충분히 작은 기준치 이하로 감소되거나 또는 누적된 세대(generation) 수가 설정된 충분히 큰 값을 초과하는 경우 배치 해가 수렴되었다고 판정한다. 본 발명에서 다양성 지표는 동일한 역할을 수행할 수 있는 다양한 단순 변형이 가능한 것이므로, 본 발명의 다양성 지표는 반드시 수학식 2로 제한되지 않는다.where η is the diversity indicator, and f best and f worst represent the highest and lowest fitness within the population, respectively. Therefore, it is determined that the batch solution is converged when the diversity index value is reduced below a preset sufficiently small reference value or when the accumulated number of generations exceeds a set sufficiently large value. In the present invention, since the diversity index can perform various simple modifications that can perform the same role, the diversity index of the present invention is not necessarily limited to Equation 2.
단계(s7)에서는 단계(s6)에서 수렴으로 판정된 경우에 최상위 적합도를 갖는 크로모솜에 대한 소요 컨테이너 수와 각 컨테이너 좌표 공간 내의 객체 모델의 배치 위치를 최적 해로 선언하고 종료한다. 최적 해는 도5의 형식으로 표현될 수 있으며, 각 열을 컨테이너 별로 모아서 분리 표현할 수 있다.In step (s7), when it is determined that convergence is determined in step (s6), the number of containers required for the chromosome having the highest degree of fitness and the location of the object model in each container coordinate space are declared as the optimal solution, and the solution is terminated. The optimal solution can be expressed in the form of FIG. 5, and each column can be collected and expressed separately for each container.
단계(s8)에서는 단계(s6)에서 수렴으로 판정되지 않은 경우에 교차변이(crossover) 및 돌연변이(mutation) 연산을 수행하여 새로운 크로모솜 세대(generation)로 구성된 모집단을 생성하고 단계(s4)로 진입한다. In step s8, if convergence is not determined in step s6, crossover and mutation operations are performed to generate a population composed of new chromosome generations, and step s4 is entered. do.
교차변이 연산은 현행 모집단에서 부모(parents) 크로모솜 쌍을 적합도 기반의 확률로 선정하고 크로모솜 코드의 일부 스트링을 무작위 선택하고 서로 교환하는 방식으로 자식(children) 크로모솜 쌍을 재생산한다. 추가적으로 무작위로 선택된 일부 자식 크로모솜의 회전 타입을 변경하는 플립(flip) 돌연변이 연산을 설정된 확률로 수행한다. 이러한 연산을 통하여 모집단 크기만큼의 크로모솜을 생성하여 신세대의 모집단이 구성된다.The cross-mutation operation selects parent chromosome pairs from the current population with fitness-based probabilities, randomly selects some strings of chromosome codes, and reproduces children chromosome pairs by exchanging them with each other. Additionally, a flip mutation operation that changes the rotation type of some randomly selected child chromosomes is performed with a set probability. Through this operation, a population of a new generation is formed by generating chromosomes equal to the size of the population.
플립 돌연변이 연산에 따른 회전 타입은 적용된 MBB의 어느 한 방향의 치수가 컨테이너의 대응되는 방향의 치수를 초과하지 않도록 제한하는 것이 바람직하다. 이를 위하여 어느 MBB에 대하여 돌연변이 연산이 이루어 질 때 어느 한 방향의 치수가 컨테이너의 대응되는 방향의 치수를 초과할 경우에는 회전 타입을 재생성하는 방식을 사용할 수 있다. 이렇게 함으로써 돌연변이 연산에 컨테이너 내에 수용할 수 없는 자식 크로모솜이 생성되는 것을 방지하고, 이후 연산 절차에서 불필요한 시간 소모를 방지하는 효과를 가질 수 있다.It is preferable to limit the rotation type according to the flip mutation operation so that the dimension of one direction of the applied MBB does not exceed the dimension of the corresponding direction of the container. To this end, when a mutation operation is performed on a certain MBB, if the dimension in one direction exceeds the dimension in the corresponding direction of the container, a method of regenerating the rotation type can be used. By doing this, it is possible to prevent generation of child chromosomes that cannot be accommodated in the container for mutation calculation, and to prevent unnecessary time consumption in subsequent calculation procedures.
도6은 166개의 3차원 객체를 특정 사이즈의 컨테이너에 배치하는 문제에 본 발명의 배치 설계 방법을 사용하여 얻어진 배치 설계안을 3차원 가시화를 통하여 그 일부를 도시한 예이다. 소요 컨테이너 수가 24개로 계산되었고, 그 중 처음 3개 및 마지막 3개의 컨테이너에 대한 3차원 객체 배치 상태가 예시적으로 도시되었다. 단계(s5)의 적합도 함수에 대한 설명에서 상세히 언급되었다시피, 최종 24번째 컨테이너에는 가장 적은 개수의 3차원 객체가 배치되어 비점유 공간이 넓게 확보된 것을 시각적으로 확인할 수 있다. FIG. 6 is an example of a part of a layout design obtained by using the layout design method of the present invention through 3D visualization in a problem of arranging 166 3D objects in a container of a specific size. The number of required containers was calculated to be 24, and 3D object arrangement states for the first 3 and last 3 containers among them were shown as an example. As described in detail in the description of the fitness function in step (s5), it can be visually confirmed that the least number of 3D objects are placed in the final 24th container, so that a wide non-occupied space is secured.
본 발명은 다수의 비정형 물품을 제작하고자 하는 3D 프린팅 과제에서 최소 회수로 작업을 수행할 수 있는 설계 계획을 작성하는데 활용할 수 있으며, 또한 독성 고체 폐기물 또는 방사성 폐기물 조각들의 영구 처분 저장을 위한 처분 용기 개수 최소화 등에 적용할 수 있으므로, 관련 분야 산업에 이용 가능성이 있다.The present invention can be used to create a design plan that can perform the work with the minimum number of times in the 3D printing task of manufacturing a large number of atypical items, and also the number of disposal containers for permanent disposal storage of pieces of toxic solid waste or radioactive waste Since it can be applied to minimization, etc., there is a possibility of use in related industries.

Claims (4)

  1. (s1) 비정형 객체들에 대한 3차원 객체 모델을 생성하고 인덱싱 하는 단계;(s1) generating and indexing a 3D object model for irregular objects;
    (s2) 3차원 객체 모델을 회전시키면서 최소구속상자를 도출하고 그에 따라 3차원 객체 모델의 자세를 조정하는 단계;(s2) deriving a minimum constraining box while rotating the 3D object model and adjusting the posture of the 3D object model accordingly;
    (s3) 3차원 객체 모델의 시퀀스 및 회전 타입으로 코딩된 크로모솜의 모집단을 생성하는 단계;(s3) generating a population of chromosomes encoded in the sequence and rotation type of the 3D object model;
    (s4) 크로모솜에 의한 최소구속상자 시퀀스와 회전 타입에 대하여 휴리스틱 절차를 적용하여 소요 컨테이너 수와 각 컨테이너 좌표 공간에서의 3차원 객체 모델의 배치 위치를 결정하는 단계;(s4) determining the required number of containers and the arrangement position of the 3D object model in each container coordinate space by applying a heuristic procedure to the minimum constraining box sequence and rotation type by chromosomes;
    (s5) 모집단의 각 크로모솜에 대하여 소요 컨테이너 수와 최종 컨테이너의 체적 활용률을 포함하는 적합도 함수의 값을 평가하고 그 순위에 따라 생존 크로모솜을 선별하는 단계;(s5) evaluating the value of the fitness function including the number of containers required and the volume utilization rate of the final container for each chromosome in the population and selecting surviving chromosomes according to the ranking;
    (s6) 모집단의 다양성 지표 값을 평가하고 수렴 여부를 판정하는 단계;(s6) evaluating the diversity index value of the population and determining whether to converge;
    (s7) 수렴으로 판정된 경우에 최상위 적합도를 갖는 크로모솜에 대한 소요 컨테이너 수와 각 컨테이너 좌표 공간 내의 3차원 객체 모델의 배치 위치를 최적 해로 선언하고 종료하는 단계; 및(s7) declaring the number of containers required for the chromosome having the highest degree of fitness and the arrangement position of the 3D object model in each container coordinate space as an optimal solution when it is determined that convergence is reached, and terminating; and
    (s8) 수렴으로 판정되지 않은 경우에 교차변이 및 돌연변이 연산을 수행하여 새로운 크로모솜 세대의 모집단을 생성하고 단계(s4)로 진입하는 단계;를 포함하는 3차원 객체의 컨테이너 최적 배치 설계 방법.(s8) generating a population of a new chromosome generation by performing cross-mutation and mutation operations when it is not determined to be convergence, and entering step (s4); a container optimal arrangement design method for a 3-dimensional object including.
  2. 제1항에 있어서, According to claim 1,
    단계(s3)에서 In step (s3)
    회전 타입은 적용된 최소구속상자의 어느 한 방향의 치수가 컨테이너의 대응되는 방향의 치수를 초과하지 않도록 제한되는 것을 특징으로 하는 3차원 객체의 컨테이너 최적 배치 설계 방법.The rotation type is a container optimal arrangement design method of a three-dimensional object, characterized in that the dimension of any one direction of the applied minimum constraint box does not exceed the dimension of the corresponding direction of the container.
  3. 제2항에 있어서, According to claim 2,
    최소구속상자의 어느 한 방향의 치수도 컨테이너의 대응되는 방향의 치수를 초과하지 않게 하는 회전 타입이 없을 경우, 배치 실패를 선언하고 종료되는 것을 특징으로 하는 3차원 객체의 컨테이너 최적 배치 설계 방법.A container optimal arrangement design method of a 3D object, characterized in that when there is no rotation type that prevents the dimension of either direction of the minimum constraint box from exceeding the dimension of the corresponding direction of the container, an arrangement failure is declared and terminated.
  4. 제1항에 있어서, According to claim 1,
    단계(s8)의 돌연변이 연산에 따른 회전 타입은 적용된 최소구속상자의 어느 한 방향의 치수가 컨테이너의 대응되는 방향의 치수를 초과하지 않도록 제한되는 것을 특징으로 하는 3차원 객체의 컨테이너 최적 배치 설계 방법.The rotation type according to the mutation operation in step (s8) is limited so that the dimension of any one direction of the applied minimum constraint box does not exceed the dimension of the container in the corresponding direction.
PCT/KR2022/014932 2022-02-18 2022-10-05 Optimal placement design method for 3d irregular objects in containers WO2023158047A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0021357 2022-02-18
KR1020220021357A KR20230124268A (en) 2022-02-18 2022-02-18 An optimal placement design method for 3D irregular objects in containers

Publications (1)

Publication Number Publication Date
WO2023158047A1 true WO2023158047A1 (en) 2023-08-24

Family

ID=87578771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/014932 WO2023158047A1 (en) 2022-02-18 2022-10-05 Optimal placement design method for 3d irregular objects in containers

Country Status (2)

Country Link
KR (1) KR20230124268A (en)
WO (1) WO2023158047A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170173888A1 (en) * 2015-12-16 2017-06-22 Stratasys, Inc. Multi-user access to fabrication resources
KR20180046361A (en) * 2016-10-27 2018-05-08 삼성에스디에스 주식회사 Method and System for loading optimization based on depth sensor
KR20200028642A (en) * 2018-09-07 2020-03-17 충북대학교 산학협력단 Method and Apparatus for Optimizing Parameters Used in 3D Printers
US20200096978A1 (en) * 2018-09-26 2020-03-26 Robert Anthony BAKER Automated manufacturing architectural millwork
WO2021145880A1 (en) * 2020-01-16 2021-07-22 Hewlett-Packard Development Company, L.P. Spatial arrangements of objects for additive manufacturing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170173888A1 (en) * 2015-12-16 2017-06-22 Stratasys, Inc. Multi-user access to fabrication resources
KR20180046361A (en) * 2016-10-27 2018-05-08 삼성에스디에스 주식회사 Method and System for loading optimization based on depth sensor
KR20200028642A (en) * 2018-09-07 2020-03-17 충북대학교 산학협력단 Method and Apparatus for Optimizing Parameters Used in 3D Printers
US20200096978A1 (en) * 2018-09-26 2020-03-26 Robert Anthony BAKER Automated manufacturing architectural millwork
WO2021145880A1 (en) * 2020-01-16 2021-07-22 Hewlett-Packard Development Company, L.P. Spatial arrangements of objects for additive manufacturing

Also Published As

Publication number Publication date
KR20230124268A (en) 2023-08-25

Similar Documents

Publication Publication Date Title
Karp et al. A probabilistic analysis of multidimensional bin packing problems
Crainic et al. Extreme point-based heuristics for three-dimensional bin packing
Hopper et al. A review of the application of meta-heuristic algorithms to 2D strip packing problems
Baddar et al. Designing sorting networks: A new paradigm
CN104915817A (en) Loading method and apparatus for container
Bruck et al. Tolerating faults in hypercubes using subcube partitioning
Li et al. A genetic algorithm for the three-dimensional bin packing problem with heterogeneous bins
CN114494650A (en) Distributed unstructured grid cross-processor face interface method and system
Shang et al. Spatial scheduling optimization algorithm for block assembly in shipbuilding
Yeung et al. A hybrid genetic approach for container loading in logistics industry
Xiang et al. Optimization of heterogeneous container loading problem with adaptive genetic algorithm
WO2023158047A1 (en) Optimal placement design method for 3d irregular objects in containers
Fischer et al. Employing subgroup evolution for irregular-shape nesting
Amir et al. Efficient regular data structures and algorithms for location and proximity problems
CN110110158A (en) A kind of the memory space division methods and system of three-dimensional mesh data
CN112163706B (en) Hybrid optimization method for unmanned platform marshalling under search task
Liang et al. A hybrid meta-heuristic for the container loading problem
WO2017115898A1 (en) Method for distributed-saving of massive tin data
Tiwari et al. A fast and efficient compact packing algorithm for free-form objects
Walker The implementation of a three-dimensional PIC code on a hypercube concurrent processor
Haijun et al. A new genetic algorithm for order-picking of irregular warehouse
Zsolt et al. A fuzzy bacterial evolutionary solution for crisp three-dimensional bin packing problems
González et al. A multi-level filling heuristic for the multi-objective container loading problem
Bożejko et al. Parallel coevolutionary algorithm for three-dimensional bin packing problem
Ou et al. Parallel remapping of adaptive problems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22927443

Country of ref document: EP

Kind code of ref document: A1