WO2023158029A1 - Atp 신타아제 신규 변이체 및 이를 이용한 l-방향족 아미노산 생산 방법 - Google Patents

Atp 신타아제 신규 변이체 및 이를 이용한 l-방향족 아미노산 생산 방법 Download PDF

Info

Publication number
WO2023158029A1
WO2023158029A1 PCT/KR2022/010041 KR2022010041W WO2023158029A1 WO 2023158029 A1 WO2023158029 A1 WO 2023158029A1 KR 2022010041 W KR2022010041 W KR 2022010041W WO 2023158029 A1 WO2023158029 A1 WO 2023158029A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
aromatic amino
atp synthase
present
amino acids
Prior art date
Application number
PCT/KR2022/010041
Other languages
English (en)
French (fr)
Inventor
신원주
박재은
김용수
조영일
Original Assignee
대상 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대상 주식회사 filed Critical 대상 주식회사
Publication of WO2023158029A1 publication Critical patent/WO2023158029A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/22Tryptophan; Tyrosine; Phenylalanine; 3,4-Dihydroxyphenylalanine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/22Tryptophan; Tyrosine; Phenylalanine; 3,4-Dihydroxyphenylalanine
    • C12P13/222Phenylalanine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/22Tryptophan; Tyrosine; Phenylalanine; 3,4-Dihydroxyphenylalanine
    • C12P13/227Tryptophan
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli

Definitions

  • the present invention relates to a novel variant of ATP synthase and a method for producing L-aromatic amino acids using the same.
  • Aromatic amino acids include phenylalanine, tyrosine, and tryptophan, and phenylalanine and tryptophan are essential amino acids that are not synthesized in vivo and correspond to high value-added industries that form a market worth $300 billion annually worldwide.
  • a wild-type strain obtained in nature or a mutant strain modified to improve its amino acid production ability may be used.
  • genetic recombination technology is applied to microorganisms such as Escherichia coli and Corynebacterium, which are widely used in the production of useful substances such as L-amino acids, to produce excellent L-aromatic amino acids.
  • Various recombinant strains or mutant strains and L-aromatic amino acid production methods using the same are being developed.
  • the present invention aims to provide novel ATP synthase variants.
  • the present invention provides a polynucleotide encoding the variant.
  • the present invention provides a transformant comprising the variant or polynucleotide.
  • an object of the present invention is to provide a method for producing L-aromatic amino acids using the transformant.
  • One aspect of the present invention provides an ATP synthase variant consisting of the amino acid sequence of SEQ ID NO: 1 in which the 235th glycine in the amino acid sequence of SEQ ID NO: 3 is substituted with serine.
  • ATP synthase is an enzyme that synthesizes adenosine triphosphate (ATP) using adenosine diphosphate (ADP) and inorganic phosphate. It plays a role in synthesizing ATP used in the overall metabolic process in the body.
  • the ATP synthase may be a gene encoding ATP synthase or a sequence having substantial identity thereto.
  • substantially identical means that each gene sequence, that is, a nucleotide sequence or nucleotide sequence, and any other nucleotide sequence are aligned and analyzed to maximize correspondence, and any other nucleotide sequence is at least 70% or 80% of each nucleotide sequence It means having a sequence homology of at least 90% or more or 98% or more.
  • the ATP synthase in the present invention is encoded by the atpD gene and includes the amino acid sequence of SEQ ID NO: 3.
  • the amino acid sequence of SEQ ID NO: 3 may be derived from wild-type E. coli.
  • variant refers to a variation of the variant by conservative substitution and/or modification of one or more amino acids at the N-terminus, C-terminus, and/or within the amino acid sequence of a specific gene.
  • conservative substitution means substitution of one amino acid with another amino acid having similar structural and/or chemical properties, and may have little or no effect on the activity of a protein or polypeptide.
  • variants also include those in which one or more portions are removed, such as the N-terminal leader sequence or transmembrane domain, or portions are removed from the N- and/or C-terminus of the mature protein. .
  • Such variants may have increased, unchanged, or reduced abilities relative to the polypeptide before the mutation.
  • variants may be mixed with variants, variants, variant polypeptides, mutated proteins, and variants.
  • the variant in the present invention may be an ATP synthase mutant in which glycine, which is the 235th amino acid in the amino acid sequence of SEQ ID NO: 3, is substituted with serine, and may consist of the amino acid sequence of SEQ ID NO: 1.
  • Another aspect of the present invention provides a polynucleotide encoding the ATP synthase variant.
  • polynucleotide is a polymer of nucleotides in which nucleotide monomers are connected in a long chain shape by covalent bonds, and is a DNA or RNA strand of a certain length or more, more specifically, the variant It means a polynucleotide fragment that encodes.
  • the polynucleotide may include a base sequence encoding the amino acid sequence of SEQ ID NO: 1.
  • the polynucleotide may include the nucleotide sequence represented by SEQ ID NO: 2.
  • Another aspect of the present invention provides a vector comprising a polynucleotide encoding the ATP synthase variant.
  • another aspect of the present invention provides a transformant comprising the ATP synthase variant or polynucleotide.
  • vector refers to any type of nucleic acid sequence delivery structure used as a means for transferring and expressing a gene of interest in a host cell.
  • the vector may refer to a carrier nucleic acid sequence inserted into the genome of a host cell to be expressed and/or independently expressed.
  • Such a vector contains essential regulatory elements operably linked to express the gene insert, and "operably linked” means that a target gene and its regulatory sequence are linked in such a way as to enable gene expression by being functionally linked to each other.
  • regulatory element includes a promoter for performing transcription, an arbitrary operator sequence for regulating transcription, a sequence encoding a suitable mRNA ribosome binding site, and a sequence for regulating termination of transcription and translation.
  • the vector used in the present invention is not particularly limited as long as it can be replicated in a host cell, and any vector known in the art can be used.
  • the vectors include natural or recombinant plasmids, cosmids, viruses and bacteriophages.
  • phage vectors or cosmid vectors include pWE15, M13, ⁇ MBL3, ⁇ MBL4, ⁇ IXII, ⁇ ASHII, ⁇ APII, ⁇ t10, ⁇ t11, Charon4A, Charon21A, etc.
  • plasmid vectors include pBR, pUC, pBluescriptII, There are pGEM-based, pTZ-based, pCL-based and pET-based, etc., but are not limited thereto.
  • the vector may typically be constructed as a vector for cloning or as a vector for expression.
  • Vectors for expression may be conventional ones used in the art to express foreign genes or proteins in plants, animals, or microorganisms, and may be constructed through various methods known in the art.
  • Recombinant vectors can be constructed using prokaryotic or eukaryotic cells as hosts.
  • a strong promoter capable of promoting transcription e.g., pL ⁇ promoter, CMV promoter, trp promoter, lac promoter, tac promoter, T7 promoter
  • the replication origins included in the vector include the f1 origin of replication, the SV40 origin of replication, the pMB1 origin of replication, the adeno origin of replication, the AAV origin of replication, and the BBV origin of replication. It is not limited.
  • promoters derived from the genome of mammalian cells eg, metallotionine promoter
  • promoters derived from mammalian viruses eg, adenovirus late promoter, vaccinia virus 7.5K promoter, SV40 promoter, cytomegalovirus promoter
  • the tk promoter of HSV can be used, and usually has a polyadenylation sequence as a transcription termination sequence.
  • the recombinant vector may include a selection marker.
  • the selection marker is for selecting a transformant (host cell) transformed with the vector and expresses the selection marker in a medium treated with the selection marker. Since only cells are viable, selection of transformed cells is possible.
  • Representative examples of the selectable marker include kanamycin, streptomycin, and chloramphenicol, but are not limited thereto.
  • a transformant may be produced by inserting the recombinant vector into a host cell, and the transformant may be obtained by introducing the recombinant vector into an appropriate host cell.
  • the host cell is a cell capable of stably and continuously cloning or expressing the expression vector, and any host cell known in the art may be used.
  • yeast eg, Saccharomyces cerevisiae
  • insect cells plant cells and animal cells, such as Sp2/0 and CHO K1 as host cells
  • CHO DG44, PER.C6, W138, BHK, COS7, 293, HepG2, Huh7, 3T3, RIN, MDCK cell lines, etc. may be used, but are not limited thereto.
  • transformation refers to a phenomenon in which external DNA is introduced into a host cell to artificially cause genetic changes
  • transformat refers to the introduction of external DNA into a target gene. It refers to a host cell that stably maintains expression.
  • a suitable vector introduction technique is selected according to the host cell, and the target gene or a recombinant vector containing the same can be expressed in the host cell.
  • vector introduction can be performed by electroporation, heat-shock, calcium phosphate (CaPO4) precipitation, calcium chloride (CaCl2) precipitation, microinjection, polyethylene glycol (PEG) method, DEAE- It may be performed by a dextran method, a cationic liposome method, a lithium acetate-DMSO method, or a combination thereof, but is not limited thereto.
  • the transformed gene may be included without limitation, whether it is inserted into the chromosome of the host cell or located outside the chromosome, as long as it can be expressed in the host cell.
  • the transformant includes cells transfected, transformed, or infected with the recombinant vector according to the present invention in vivo or in vitro, and may be used as the same term as recombinant host cell, recombinant cell, or recombinant microorganism.
  • the transformant may be an Escherichia genus strain.
  • the Escherichia genus strains include Escherichia coli , Escherichia albertii , Escherichia blattae , Escherichia fergusonii , Escherichia hermann Ni ( Escherichia hermannii ), Escherichia vulneris ( Escherichia vulneris ), etc., but are not limited thereto.
  • the transformant in the present invention includes the above-described ATP synthase variant or a polynucleotide encoding the same, or a strain containing a vector containing the same, a strain expressing the ATP synthase variant or polynucleotide, or the ATP It may be a strain having activity for synthase variants, but is not limited thereto.
  • the transformant may have the ability to produce L-aromatic amino acids.
  • the transformant may naturally have the ability to produce L-aromatic amino acids or may be artificially endowed with the ability to produce L-aromatic amino acids.
  • the transformant may have an improved ability to produce L-aromatic amino acids due to a change in the activity of ATP synthase.
  • “Improved productivity” used in the present invention means increased productivity of L-aromatic amino acids compared to the parent strain.
  • the parent strain refers to a wild-type or mutant strain subject to mutation, and includes a subject subject to direct mutation or transformed into a recombinant vector.
  • the parent strain may be a wild-type strain of Escherichia genus or a strain of the genus Escherichia mutated from the wild-type strain.
  • the transformant according to the present invention exhibits increased L-aromatic amino acid production ability compared to the parent strain due to the change in ATP synthase activity due to the introduction of the ATP synthase variant, and in particular, the L-aromatic amino acid production is 10 % or more, specifically, 10 to 80% (preferably 20 to 60%) can be increased to produce 4 to 20 g of L-aromatic amino acids per 1 liter of the strain culture medium.
  • Another aspect of the present invention is culturing the transformant in a medium; and recovering L-aromatic amino acids from the transformants or the medium in which the transformants are cultured.
  • the culture may be performed according to appropriate media and culture conditions known in the art, and those skilled in the art can easily adjust and use the media and culture conditions.
  • the medium may be a liquid medium, but is not limited thereto.
  • the culture method may include, for example, batch culture, continuous culture, fed-batch culture, or a combination culture thereof, but is not limited thereto.
  • the medium must meet the requirements of a particular strain in an appropriate way, and can be appropriately modified by a person skilled in the art.
  • Culture medium for strains of the genus Escherichia may refer to known literature (Manual of Methods for General Bacteriology. American Society for Bacteriology. Washington D.C., USA, 1981), but is not limited thereto.
  • Carbon sources that can be used include sugars and carbohydrates such as glucose, sucrose, lactose, fructose, maltose, starch and cellulose, oils and fats such as soybean oil, sunflower oil, castor oil, coconut oil, palmitic acid, stearic acid, These include fatty acids such as linoleic acid, alcohols such as glycerol and ethanol, and organic acids such as acetic acid. These materials may be used individually or as a mixture, but are not limited thereto.
  • Nitrogen sources that can be used include peptone, yeast extract, broth, malt extract, corn steep liquor, soybean meal and urea or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and ammonium nitrate. Nitrogen sources may also be used individually or as a mixture, but are not limited thereto. Sources of phosphorus that may be used include, but are not limited to, potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts.
  • the culture medium may contain metal salts such as magnesium sulfate or iron sulfate necessary for growth, but is not limited thereto.
  • essential growth substances such as amino acids and vitamins may be included. Precursors suitable for the culture medium may also be used. The medium or individual components may be added in a batchwise or continuous manner by a method suitable for the culture medium during the culture process, but is not limited thereto.
  • the pH of the culture medium can be adjusted by adding compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid and sulfuric acid to the microbial culture medium in an appropriate manner during cultivation.
  • the formation of bubbles can be suppressed by using an antifoaming agent such as a fatty acid polyglycol ester during cultivation.
  • oxygen or oxygen-containing gas eg, air
  • the temperature of the culture medium may be usually 20 ° C to 45 ° C, for example, 25 ° C to 40 ° C.
  • the culturing period may be continued until useful substances are obtained in a desired yield, and may be, for example, 10 to 160 hours.
  • the step of recovering L-aromatic amino acids from the cultured transformants or the medium in which the transformants are cultured is produced from the medium using a suitable method known in the art according to the culture method.
  • L-aromatic amino acids can be collected or recovered. For example, centrifugation, filtration, extraction, spraying, drying, evaporation, precipitation, crystallization, electrophoresis, fractionation (eg ammonium sulfate precipitation), chromatography (eg ion exchange, affinity, hydrophobicity and Size exclusion) may be used, but is not limited thereto.
  • the culture medium in the step of recovering the L-aromatic amino acid, is centrifuged at low speed to remove biomass, and the obtained supernatant may be separated through ion exchange chromatography.
  • the step of recovering the L-aromatic amino acid may include a step of purifying the L-aromatic amino acid.
  • the L- aromatic amino acid may be at least one selected from the group consisting of L-tryptophan, L-phenylalanine and L-tyrosine.
  • the enzymatic activity is changed by replacing one or more amino acids in the amino acid sequence constituting the ATP synthase, so that the recombinant microorganism containing the variant can efficiently produce L-aromatic amino acids.
  • FIG. 1 shows the structure of a plasmid pDSG according to an embodiment of the present invention.
  • Figure 2 shows the structure of plasmid pDS9 according to an embodiment of the present invention.
  • the plasmid pDSG has an origin of replication that works only in E. coli, and has an ampicillin resistance gene and a guide RNA (gRNA) expression mechanism.
  • Plasmid pDS9 has an origin of replication that works only in E. coli, and has kanamycin resistance genes, ⁇ Red genes (exo, bet, and gam), and a mechanism for expressing CAS9 derived from Streptococcus pyogenes .
  • each upstream and downstream fragment contained a sequence that changes glycine (Gly), the 235th amino acid residue of the atpD gene, to serine (Ser).
  • Takara PrimeSTAR Max DNA polymerase was used as the polymerase, and PCR amplification conditions were repeated 30 times: denaturation at 95 ° C for 10 seconds, annealing at 57 ° C for 15 seconds, and polymerization for 10 seconds at 72 ° C.
  • each gene fragment contained a gRNA sequence targeting the 235th Gly of the atpD gene.
  • the gRNA was selected as 20 mer in front of NGG of the sequence to induce mutation.
  • Takara PrimeSTAR Max DNA polymerase was used as the polymerase, and PCR amplification conditions were performed by repeating 30 times of denaturation at 95 ° C for 10 seconds, annealing at 57 ° C for 15 seconds, and polymerization at 72 ° C for 15 seconds.
  • the obtained recombinant plasmid was obtained by cloning upstream and downstream of amino acid 235 of the obtained atpD gene and four pDSG gene fragments using a self-assembly cloning method (BioTechniques 51:55-56 (July 2011)), which was obtained as pDSG -atpD (Gly235Ser) was named.
  • E. coli KFCC11660P and KCCM10016 were used as parent strains to prepare L-tryptophan-producing strains and L-phenylalanine-producing strains.
  • KFCC11660P strain or KCCM10016 strain was first transformed with plasmid pDS9, cultured in LB-Km (LB liquid medium containing 25 g/L and kanamycin 50 mg/L) solid medium, and then colonies having kanamycin resistance were selected. Secondary transformation of the pDSG-atpD (Gly235Ser) plasmid was performed on the selected colonies, followed by culturing in LB-Amp&Km (LB liquid medium containing 25 g/L, ampicillin 100 mg/L and kanamycin 50 mg/L) solid medium, followed by ampicillin and kanamycin After selecting resistant colonies, a gene fragment was obtained through PCR using a primer pair of primers 17 and 18.
  • Takara PrimeSTAR Max DNA polymerase was used as the polymerase, and PCR amplification conditions were performed by repeating 30 cycles of denaturation at 95°C for 10 seconds, annealing at 57°C for 10 seconds, and polymerization at 72°C for 15 seconds. Macrogen was entrusted with confirming the sequence of the obtained gene fragment using the primer pair of primer 17 and primer 18.
  • the selected secondary transformants were subcultured 7 times in LB liquid medium, and colonies were selected in LB solid medium. Each colony was selectively cultured on LB, LB-Amp and LB-Km solid media, respectively. Colonies that did not grow on LB-Amp and LB-Km solid media were selected while growing on LB solid medium.
  • the strains prepared in this way were named KFCC11660P_atpD (Gly235Ser) and KCCM10016_atpD (Gly235Ser), respectively.
  • Primer name sequence number Primer sequence (5'-3') primer 1 5 CAATTTTATTATAGTAATTGACTATTATAC Primer 2 6 CGTGACGTTCCAATTTTATTATAGTAATTGACTATTATAC Primer 3 7 GAACGTCACGACCTTCGTCAGTTTTAGAGCTAGAAATAGC primer 4 8 ACCTTCGTCAGTTTTAGAGCTAGAAATAGC Primer 5 9 GAGCCTGTCGGCCTACCTGCT primer 6 10 CGGCCGGCATGAGCCTGTCG primer 7 11 ATGCCGGCCGCGGCCGGGTAGATACCCAGAG Primer 8 12 CGGCCGGGTAGATACCCAGAG Primer 9 13 TCTGCTGTTCGTTGACAACA Primer 10 14 GTCGTGACGTTCTGCTGTTC Primer 11 15 ACGTCACGACTTTCGTCACGGAATTTCTCA Primer 12 16 TTTCGTCACGGAATTTCTCA Primer 13 17 TCCGTTCGCTAAGGGCGGTA Primer 14 18 ACCTGATGTCCGTTCGCT Primer 15 19 CACATCAGGTGA
  • Each strain (parent strain or mutant strain) was inoculated at 1% by volume in a 100 mL flask containing 10 mL of the medium for the production of tryptophan or 10 mL of the medium for the production of phenylalanine in Table 2 below, and cultured with shaking at 37 ° C. and 200 rpm for 72 hours did After completion of the culture, the concentration of L-tryptophan or L-phenylalanine in the medium was measured using HPLC (Agilent), and the results are shown in Tables 3 and 4, respectively.
  • mutant strains KFCC11660P_atpD (Gly235Ser) and KCCM10016_atpD (Gly235Ser) into which ATP synthase variants were introduced showed L-tryptophan and L-phenylalanine production of about 34% and 31, respectively, compared to the parent strains KFCC11660P and KCCM10016. % improvement was found.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 ATP 신타아제 신규 변이체 및 이를 이용한 L-방향족 아미노산 생산 방법에 관한 것으로, 상기 ATP 신타아제 변이체는 ATP 신타아제를 구성하는 아미노산 서열 중 하나 이상의 아미노산이 치환됨으로써 효소 활성이 변화되어, 이를 포함하는 재조합 미생물은 L-방향족 아미노산을 효율적으로 생산할 수 있다.

Description

ATP 신타아제 신규 변이체 및 이를 이용한 L-방향족 아미노산 생산 방법
본 발명은 ATP 신타아제 신규 변이체 및 이를 이용한 L-방향족 아미노산 생산 방법에 관한 것이다.
아미노산은 곁사슬의 성질에 따라 소수성, 친수성, 염기성 및 산성 아미노산으로 구분되며, 이들 중 벤젠 고리를 갖는 아미노산을 방향족 아미노산이라 한다. 방향족 아미노산에는 페닐알라닌, 티로신 및 트립토판이 있으며, 페닐알라닌과 트립토판은 생체 내에서 합성되지 않는 필수 아미노산으로 전세계적으로 연간 3000억 달러 규모의 시장을 형성하고 있는 고부가가치 산업에 해당한다.
방향족 아미노산의 생산은 자연상태에서 수득된 야생형 균주나 이의 아미노산 생산능이 향상되도록 변형된 변이주를 이용할 수 있다. 최근에는 방향족 아미노산의 생산 효율을 개선시키기 위해 L-아미노산과 같은 유용물질 생산에 많이 이용되는 대장균, 코리네박테리움 등의 미생물을 대상으로 유전자 재조합 기술을 적용하여 우수한 L-방향족 아미노산 생산능을 갖는 다양한 재조합 균주 또는 변이주 및 이를 이용한 L-방향족 아미노산 생산 방법이 개발되고 있다. 특히 L-방향족 아미노산의 생합성 경로에 관여하는 효소, 전사인자, 수송 단백질 등의 유전자를 대상으로 하거나, 또는 이들의 발현을 조절하는 프로모터에 변이를 유도하여 해당 아미노산의 생산량을 증대시키려는 시도가 있었다. 그러나 L-방향족 아미노산 생산에 직간접적으로 연관된 효소, 전사인자, 수송 단백질 등 단백질의 종류가 수십여 종에 이르기 때문에 이러한 단백질의 활성 변화에 따른 L-방향족 아미노산 생산능 증가 여부에 관해 여전히 많은 연구가 필요한 실정이다.
[선행기술문헌]
[특허문헌]
한국 등록특허 제10-1830002호
본 발명은 신규한 ATP 신타아제 변이체를 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 변이체를 암호화하는 폴리뉴클레오티드를 제공한다.
또한, 본 발명은 상기 변이체 또는 폴리뉴클레오티드를 포함하는 형질전환체를 제공한다.
또한, 본 발명은 상기 형질전환체를 이용한 L-방향족 아미노산의 생산 방법을 제공하는 것을 목적으로 한다.
본 발명의 일 양상은 서열번호 3의 아미노산 서열에서 235번째 글리신이 세린으로 치환된, 서열번호 1의 아미노산 서열로 이루어진 ATP 신타아제 변이체를 제공한다.
본 발명에서 사용된 “ATP 신타아제(ATP synthase)”는 아데노신 2인산(adenosine diphosphate, ADP)과 무기인산(inorganic phosphate)을 이용하여 아데노신 3인산(adenosine triphosphate, ATP)을 합성하는 효소로, 세포막 사이에 위치하며 생체 내 전반적인 대사과정에서 사용되는 ATP를 합성하는 역할을 한다. 상기 ATP 신타아제는 ATP 신타아제를 암호화하는 유전자 또는 이와 실질적 동일성을 가지는 서열일 수 있다. 여기서 “실질적 동일성”이란 각각의 유전자 서열, 즉 염기서열 또는 뉴클레오티드 서열과 임의의 다른 뉴클레오티드 서열을 최대한 대응되도록 정렬하여 분석하였을 때 상기 임의의 다른 뉴클레오티드 서열이 각각의 뉴클레오티드 서열과 70% 이상, 80% 이상, 90% 이상 또는 98% 이상의 서열 상동성을 가지는 것을 의미한다.
본 발명에서의 ATP 신타아제는 atpD 유전자에 의해 암호화된 것으로, 서열번호 3의 아미노산 서열을 포함한다.
본 발명의 일 구체예에 따르면, 상기 서열번호 3의 아미노산 서열은 야생형 대장균에서 유래한 것일 수 있다.
본 발명에서 사용된 “변이체”는 특정 유전자의 아미노산 서열 중 N-말단, C-말단 및/또는 내부에서 하나 이상의 아미노산이 보존적 치환(conservative substitution) 및/또는 변형(modification)되어 상기 변이체의 변이 전 아미노산 서열과 상이하나 기능(functions) 또는 특성(properties)이 유지되는 폴리펩티드를 의미한다. 여기서 “보존적 치환”이란 하나의 아미노산을 구조적 및/또는 화학적 성질이 유사한 다른 아미노산으로 치환시키는 것을 의미하며, 단백질 또는 폴리펩티드의 활성에 거의 영향을 미치지 않거나, 또는 전혀 영향을 미치지 않을 수 있다. 또한, 변이체는 N-말단 리더 서열 또는 막전이 도메인(transmembrane domain)과 같은 하나 이상의 부분이 제거되거나, 또는 성숙 단백질(mature protein)의 N- 및/또는 C-말단으로부터 일부분이 제거된 것을 포함한다. 이러한 변이체는 그 능력이 변이 전 폴리펩티드에 비하여 증가되거나, 변하지 않거나, 또는 감소될 수 있다. 본 발명에서는 변이체가 변이형, 변형, 변이형 폴리펩티드, 변이된 단백질, 변이 등과 혼용될 수 있다.
본 발명에서의 변이체는 서열번호 3의 아미노산 서열에서 235번째 위치한 아미노산인 글리신이 세린으로 치환된 ATP 신타아제 변이체로, 서열번호 1의 아미노산 서열로 이루어진 것일 수 있다.
본 발명의 다른 양상은 상기 ATP 신타아제 변이체를 암호화하는 폴리뉴클레오티드를 제공한다.
본 발명에서 사용된 “폴리뉴클레오티드(polynucleotide)”는 뉴클레오티드 단위체(monomer)가 공유결합에 의해 길게 사슬모양으로 이어진 뉴클레오티드의 중합체(polymer)로 일정한 길이 이상의 DNA 또는 RNA 가닥으로서, 보다 구체적으로는 상기 변이체를 암호화하는 폴리뉴클레오티드 단편을 의미한다.
상기 폴리뉴클레오티드는 서열번호 1의 아미노산 서열을 암호화하는 염기서열을 포함할 수 있다.
본 발명의 일 구체예에 따르면, 상기 폴리뉴클레오티드는 서열번호 2로 표시되는 염기서열을 포함하는 것일 수 있다.
본 발명의 다른 양상은 상기 ATP 신타아제 변이체를 암호화하는 폴리뉴클레오티드를 포함하는 벡터를 제공한다.
또한, 본 발명의 다른 양상은 상기 ATP 신타아제 변이체 또는 폴리뉴클레오티드를 포함하는 형질전환체를 제공한다.
본 발명에서 사용된 “벡터(vector)”는 숙주세포에 목적 유전자를 전달하여 발현시키기 위한 수단으로 사용되는 모든 유형의 핵산 서열 운반 구조체를 의미한다. 상기 벡터는 특별한 언급이 없는 한, 담지된 핵산 서열이 숙주세포 유전체 내 삽입되어 발현되도록 하는 것 및/또는 독자적으로 발현되도록 하는 것을 의미할 수 있다. 이러한 벡터는 유전자 삽입물이 발현되도록 작동가능하게 연결된 필수적인 조절요소를 포함하며, “작동가능하게 연결된(operably linked)”이란 목적 유전자와 이의 조절 서열이 서로 기능적으로 결합되어 유전자 발현을 가능케 하는 방식으로 연결된 것을 의미하고, “조절요소”는 전사를 수행하기 위한 프로모터, 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합 부위를 암호화하는 서열, 및 전사 및 해독의 종결을 조절하는 서열을 포함한다.
본 발명에서 사용되는 벡터는 숙주세포 내에서 복제 가능한 것이라면 특별히 한정되지 않으며, 당업계에 알려진 임의의 벡터를 이용할 수 있다. 상기 벡터의 일례로는 천연 상태이거나 재조합된 상태의 플라스미드, 코스미드, 바이러스 및 박테리오파지를 들 수 있다. 예를 들면, 파지 벡터 또는 코스미드 벡터로는 pWE15, M13, λMBL3, λMBL4, λIXII, λASHII, λAPII, λt10, λt11, Charon4A, Charon21A 등이 있으며, 플라스미드 벡터로는 pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계 및 pET계 등이 있으나, 이에 한정되는 것은 않는다.
상기 벡터는 전형적으로 클로닝을 위한 벡터 또는 발현을 위한 벡터로서 구축될 수 있다. 발현을 위한 벡터는 당업계에서 식물, 동물 또는 미생물에서 외래의 유전자 또는 단백질을 발현하는데 사용되는 통상의 것을 사용할 수 있으며, 당업계에 공지된 다양한 방법을 통해 구축될 수 있다.
재조합 벡터는 원핵세포 또는 진핵세포를 숙주로 하여 구축될 수 있다. 예를 들어, 사용되는 벡터가 발현 벡터이고 원핵세포를 숙주로 하는 경우에는, 전사를 진행시킬 수 있는 강력한 프로모터 (예컨대, pLλ프로모터, CMV 프로모터, trp 프로모터, lac 프로모터, tac 프로모터, T7 프로모터), 해독의 개시를 위한 라이보좀 결합 자리 및 전사/해독 종결 서열을 포함하는 것이 일반적이다. 진핵세포를 숙주로 하는 경우에는, 벡터에 포함되는 진핵세포에서 작동하는 복제원점은 f1 복제원점, SV40 복제원점, pMB1 복제원점, 아데노 복제원점, AAV 복제원점 및 BBV 복제원점 등을 포함하나, 이에 한정되는 것은 아니다. 또한, 포유동물 세포의 게놈으로부터 유래된 프로모터 (예컨대, 메탈로 티오닌 프로모터) 또는 포유동물 바이러스로부터 유래된 프로모터 (예컨대, 아데노 바이러스 후기 프로모터, 백시니아 바이러스 7.5K 프로모터, SV40 프로모터, 사이토 메갈로 바이러스 프로모터, HSV의 tk 프로모터)가 이용될 수 있으며, 전사 종결 서열로서 폴리아데닐화 서열을 일반적으로 가진다.
상기 재조합 벡터는 선택 마커(selection marker)를 포함할 수 있는데, 상기 선택 마커는 벡터로 형질전환된 형질전환체 (숙주세포)를 선별하기 위한 것으로 상기 선택 마커가 처리된 배지에서 선택 마커를 발현하는 세포만 생존할 수 있기 때문에, 형질전환된 세포의 선별이 가능하다. 상기 선택 마커는 대표적인 예로 카나마이신, 스트렙토마이신, 클로람페니콜 등이 있으나, 이에 한정되는 것은 아니다.
재조합 벡터를 숙주세포에 삽입함으로써 형질전환체를 만들 수 있으며, 상기 형질전환체는 재조합 벡터를 적절한 숙주세포에 도입시킴으로써 얻어진 것일 수 있다. 숙주세포는 상기 발현벡터를 안정되면서 연속적으로 클로닝 또는 발현시킬 수 있는 세포로서 당업계에 공지된 어떠한 숙주세포도 이용할 수 있다.
재조합 미생물을 제작하기 위하여 원핵세포에 형질전환시키는 경우에는 숙주세포로서 E. coli JM109, E. coli BL21, E. coli RR1, E. coli LE392, E. coli B, E. coli X 1776, E. coli W3110, E. coli XL1-Blue와 같은 대장균 속 균주, 바실러스 서브틸리스, 바실러스 츄린겐시스와 같은 바실러스 속 균주, 살모넬라 티피무리움, 세라티아 마르세슨스 및 슈도모나스 종과 같은 다양한 장내균과 균주 등이 이용되는 것일 수 있으나, 이에 한정되는 것은 아니다.
재조합 미생물을 제작하기 위하여 진핵세포에 형질전환을 하는 경우에는 숙주세포로서 효모 (예컨대, 사카로마이세스 세레비지에), 곤충 세포, 식물 세포 및 동물 세포, 예를 들어, Sp2/0, CHO K1, CHO DG44, PER.C6, W138, BHK, COS7, 293, HepG2, Huh7, 3T3, RIN, MDCK 세포주 등이 이용될 수 있으나, 이에 한정되는 것은 아니다.
본 발명에서 사용된 “형질전환(transformation)”은 외부 DNA를 숙주세포 내로 도입하여 인위적으로 유전적인 변화를 일으키는 현상을 의미하며, “형질전환체(transformat)”는 외부 DNA가 도입되어 목적 유전자의 발현을 안정적으로 유지하는 숙주세포를 의미한다.
상기 형질전환은 숙주세포에 따라 적합한 벡터 도입 기술이 선택되어 목적 유전자 또는 이를 포함하는 재조합 벡터를 숙주세포 내에서 발현시킬 수 있다. 예를 들면, 벡터 도입은 전기천공법(electroporation), 열 충격(heat-shock), 인산칼슘(CaPO4) 침전, 염화칼슘(CaCl2) 침전, 미세주입법(microinjection), 폴리에틸렌글리콜(PEG)법, DEAE-덱스트란법, 양이온 리포좀법, 초산 리튬-DMSO법, 또는 이들의 조합에 의해 수행될 수 있으나, 이에 한정되는 것은 아니다. 형질전환된 유전자는 숙주세포 내에서 발현될 수 있으면 숙주세포의 염색체 내 삽입 또는 염색체 외에 위치하고 있는 것이든 제한하지 않고 포함될 수 있다.
상기 형질전환체는 생체내 또는 시험관내에서 본 발명에 따른 재조합 벡터로 형질감염, 형질전환, 또는 감염된 세포를 포함하며, 재조합 숙주세포, 재조합 세포 또는 재조합 미생물과 동일한 용어로 사용될 수 있다.
본 발명의 일 구체예에 따르면, 상기 형질전환체는 에스케리치아(Escherichia) 속 균주인 것일 수 있다.
상기 에스케리치아 속 균주로는 에스케리치아 콜라이(Escherichia coli), 에스케리치아 알베르티(Escherichia albertii), 에스케리치아 블라태(Escherichia blattae), 에스케리치아 퍼구소니(Escherichia fergusonii), 에스케리치아 헤르만니(Escherichia hermannii), 에스케리치아 불네리스(Escherichia vulneris) 등이 있으나, 이에 한정되는 것은 아니다.
본 발명에서의 형질전환체는 전술한 ATP 신타아제 변이체 또는 이를 암호화하는 폴리뉴클레오티드를 포함하거나, 또는 이를 포함하는 벡터를 포함하는 균주, 상기 ATP 신타아제 변이체 또는 폴리뉴클레오티드를 발현하는 균주, 또는 상기 ATP 신타아제 변이체에 대한 활성을 가지는 균주일 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 구체예에 따르면, 상기 형질전환체는 L-방향족 아미노산 생산능을 가지는 것일 수 있다.
상기 형질전환체는 자연적으로 L-방향족 아미노산 생산능을 가지고 있거나, 또는 인위적으로 L-방향족 아미노산 생산능이 부여된 것일 수 있다.
본 발명의 일 구체예에 따르면, 상기 형질전환체는 ATP 신타아제의 활성이 변화되어 L-방향족 아미노산 생산능이 향상된 것일 수 있다.
본 발명에서 사용된 “생산능이 향상된”은 모균주에 비해 L-방향족 아미노산의 생산성이 증가된 것을 의미한다. 상기 모균주는 변이의 대상이 되는 야생형 또는 변이주를 의미하며, 직접 변이의 대상이 되거나 재조합된 벡터 등으로 형질전환되는 대상을 포함한다. 본 발명에 있어서, 모균주는 야생형 에스케리치아 속 균주 또는 야생형으로부터 변이된 에스케리치아 속 균주일 수 있다.
본 발명에 따른 형질전환체는 ATP 신타아제 변이체가 도입됨으로써 ATP 신타아제의 활성이 변화하여 모균주에 비해 증가된 L-방향족 아미노산 생산능을 나타내며, 특히 모균주에 비해 L-방향족 아미노산 생산량이 10% 이상, 구체적으로는 10 내지 80% (바람직하게는 20 내지 60%) 증가되어 균주 배양액 1 ℓ 당 4 ~ 20 g의 L-방향족 아미노산을 생산할 수 있다.
본 발명의 다른 양상은 상기 형질전환체를 배지에서 배양하는 단계; 및 상기 형질전환체 또는 형질전환체가 배양된 배지로부터 L-방향족 아미노산을 회수하는 단계를 포함하는 L-방향족 아미노산의 생산 방법을 제공한다.
상기 배양은 당업계에 알려진 적절한 배지와 배양 조건에 따라 이루어질 수 있으며, 통상의 기술자라면 배지 및 배양 조건을 용이하게 조정하여 사용할 수 있다. 구체적으로, 상기 배지는 액체 배지일 수 있으나, 이에 한정되는 것은 아니다. 배양 방법은 예를 들면, 회분식 배양(batch culture), 연속식 배양(continuous culture), 유가식 배양(fed-batch culture) 또는 이들의 조합 배양을 포함할 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 구체예에 따르면, 상기 배지는 적절한 방식으로 특정 균주의 요건을 충족해야 하며, 통상의 기술자에 의해 적절하게 변형될 수 있다. 에스케리치아 속 균주에 대한 배양 배지는 공지된 문헌 (Manual of Methods for General Bacteriology. American Society for Bacteriology. Washington D.C., USA, 1981)을 참조할 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 구체예에 따르면, 배지에 다양한 탄소원, 질소원 및 미량원소 성분을 포함할 수 있다. 사용될 수 있는 탄소원으로는 글루코스, 수크로스, 락토스, 프락토스, 말토스, 전분, 셀룰로스와 같은 당 및 탄수화물, 대두유, 해바라기유, 피마자유, 코코넛유 등과 같은 오일 및 지방, 팔미트산, 스테아린산, 리놀레산과 같은 지방산, 글리세롤, 에탄올과 같은 알코올, 아세트산과 같은 유기산이 포함된다. 이들 물질은 개별적으로 또는 혼합물로서 사용될 수 있으나, 이에 한정되는 것은 아니다. 사용될 수 있는 질소원으로는 펩톤, 효모 추출물, 육즙, 맥아 추출물, 옥수수 침지액, 대두밀 및 요소 또는 무기 화합물, 예를 들면 황산 암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄이 포함될 수 있다. 질소원 또한 개별적으로 또는 혼합물로서 사용할 수 있으나 이에 한정되는 것은 아니다. 사용될 수 있는 인의 공급원으로는 인산이수소칼륨 또는 인산수소이칼륨 또는 상응하는 나트륨-함유 염이 포함될 수 있으며, 이에 한정되는 것은 아니다. 또한, 배양 배지는 성장에 필요한 황산마그네슘 또는 황산철과 같은 금속염을 함유할 수 있으며, 이에 한정되는 것은 아니다. 그 외에, 아미노산 및 비타민과 같은 필수 성장 물질이 포함될 수 있다. 또한 배양 배지에 적절한 전구체들이 사용될 수 있다. 상기 배지 또는 개별 성분은 배양과정에서 배양액에 적절한 방식에 의해 회분식으로 또는 연속식으로 첨가될 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 구체예에 따르면, 배양 중에 수산화암모늄, 수산화칼륨, 암모니아, 인산 및 황산과 같은 화합물을 미생물 배양액에 적절한 방식으로 첨가하여 배양액의 pH를 조정할 수 있다. 또한, 배양 중에 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 추가적으로, 배양액의 호기 상태를 유지하기 위하여, 배양액 내로 산소 또는 산소-함유 기체 (예, 공기)를 주입할 수 있다. 배양액의 온도는 통상 20℃ 내지 45℃, 예를 들면 25℃ 내지 40℃일 수 있다. 배양기간은 유용물질이 원하는 생산량으로 수득될 때까지 계속될 수 있으며, 예를 들면 10 내지 160 시간일 수 있다.
본 발명의 일 구체예에 따르면, 상기 배양된 형질전환체 또는 형질전환체가 배양된 배지에서 L-방향족 아미노산을 회수하는 단계는 배양 방법에 따라 당해 분야에 공지된 적합한 방법을 이용하여 배지로부터 생산된 L-방향족 아미노산을 수집 또는 회수할 수 있다. 예를 들면 원심분리, 여과, 추출, 분무, 건조, 증발, 침전, 결정화, 전기영동, 분별용해 (예를 들면, 암모늄 설페이트 침전), 크로마토그래피 (예를 들면, 이온 교환, 친화성, 소수성 및 크기배제) 등의 방법을 사용할 수 있으나, 이에 한정되는 것은 않는다.
본 발명의 일 구체예에 따르면, 상기 L-방향족 아미노산을 회수하는 단계는 배양 배지를 저속 원심분리하여 바이오매스를 제거하고 얻어진 상등액을 이온교환 크로마토그래피를 통하여 분리할 수 있다.
본 발명의 일 구체예에 따르면, 상기 L-방향족 아미노산을 회수하는 단계는 L-방향족 아미노산을 정제하는 공정을 포함할 수 있다.
본 발명의 일 구체예에 따르면, 상기 L-방향족 아미노산은 L-트립토판, L-페닐알라닌 및 L-티로신으로 이루어진 군에서 선택된 1종 이상인 것일 수 있다.
본 발명에 따른 ATP 신타아제 변이체는 ATP 신타아제를 구성하는 아미노산 서열 중 하나 이상의 아미노산이 치환됨으로써 효소 활성이 변화되어, 이를 포함하는 재조합 미생물은 L-방향족 아미노산을 효율적으로 생산할 수 있다.
도 1은 본 발명의 일 실시예에 따른 플라스미드 pDSG의 구조를 나타낸 것이다.
도 2는 본 발명의 일 실시예에 따른 플라스미드 pDS9의 구조를 나타낸 것이다.
이하, 본 발명을 보다 상세하게 설명한다. 그러나, 이러한 설명은 본 발명의 이해를 돕기 위하여 예시적으로 제시된 것일 뿐, 본 발명의 범위가 이러한 예시적인 설명에 의하여 제한되는 것은 아니다.
실시예 1. ATP 신타아제 변이체를 발현하는 균주 제작
ATP 신타아제의 아미노산 서열 (서열번호 3) 중 235번째 위치한 글리신이 세린으로 치환된 변이체가 L-방향족 아미노산의 생산에 미치는 영향을 확인하기 위해 상기 ATP 신타아제 변이체를 발현하는 벡터 및 상기 벡터가 도입된 균주를 제작하였다. 균주 내 ATP 신타아제 변이체의 유전자 삽입을 위해 플라스미드 pDSG 및 pDS9를 사용하여 다음과 같이 제작하였다.
여기서 플라스미드 pDSG는 대장균에서만 작용하는 복제원점을 가지며, 암피실린 내성 유전자 및 가이드 RNA(gRNA) 발현 기전을 가진다. 플라스미드 pDS9는 대장균에서만 작용하는 복제원점을 가지며, 카나마이신 내성 유전자, λ Red 유전자 (exo, bet 및 gam) 및 Streptococcus pyogenes 유래 CAS9 발현 기전을 가진다.
1-1. 형질전환용 벡터 pDSG-atpD(Gly235Ser) 제작
대장균(Escherichia coli) MG1655 (KCTC14419BP) gDNA를 주형으로 프라이머 7 및 프라이머 9의 프라이머 쌍과 프라이머 8 및 프라이머 10의 프라이머 쌍을 이용하여 ATP 신타아제를 암호화하는 대장균 atpD 유전자의 235번 아미노산 변이의 upstream 단편과, 프라이머 11 및 프라이머 13의 프라이머 쌍과 프라이머 12 및 프라이머 14의 프라이머 쌍을 이용하여 대장균 atpD 유전자의 235번 아미노산 변이의 downstream 단편을 각각 PCR 수행을 통해 수득하였다. 이때 각 upstream과 downstream 단편에는 atpD 유전자의 235번째 아미노산 잔기인 글리신(Gly)을 세린(Ser)으로 변경하는 서열을 포함시켰다. 여기서 중합효소는 Takara PrimeSTAR Max DNA polymerase를 사용하였으며, PCR 증폭 조건은 95℃에서 10초 변성, 57℃ 15초 어닐링 및 72℃ 10초 중합을 30회 반복하여 수행하였다.
플라스미드 pDSG를 주형으로 프라이머 3 및 프라이머 5의 프라이머 쌍, 프라이머 4 및 프라이머 6의 프라이머 쌍, 프라이머 15 및 프라이머 1, 및 프라이머 16 및 프라이머 2의 프라이머 쌍을 각각 이용하여 4개의 pDSG 유전자 단편을 PCR 수행을 통해 수득하였다. 이때 각 유전자 단편에는 atpD 유전자의 235번째 Gly을 타겟하는 gRNA 서열을 포함시켰다. gRNA는 변이를 유발하고자 하는 서열의 NGG 앞 20 mer로 선택하였다. 여기서 중합효소는 Takara PrimeSTAR Max DNA polymerase를 사용하였으며, PCR 증폭 조건은 95℃에서 10초 변성, 57℃ 15초 어닐링 및 72℃ 15초 중합을 30회 반복하여 수행하였다.
수득된 atpD 유전자의 235번 아미노산의 upstream과 downstream, 그리고 4개의 pDSG 유전자 단편들을 self-assembly cloning 방법 (BioTechniques 51:55-56 (July 2011))을 이용하여 클로닝하여 재조합 플라스미드를 획득하였으며, 이를 pDSG-atpD(Gly235Ser)로 명명하였다.
1-2. ATP 신타아제 변이체 atpD(Gly235Ser)가 도입된 L-트립토판 또는 L-페닐알라닌 생산 균주 제작
L-트립토판 생산 균주 및 L-페닐알라닌 생산 균주를 제작하기 위해 모균주로서 대장균 KFCC11660P 및 KCCM10016을 이용하였다.
KFCC11660P 균주 또는 KCCM10016 균주에 플라스미드 pDS9을 1차 형질전환하여 LB-Km (LB 액체배지 25 g/L 및 카나마이신 50 mg/L 함유) 고체배지에서 배양한 후 카나마이신 내성을 가지는 콜로니를 선별하였다. 선별된 콜로니에 pDSG-atpD(Gly235Ser) 플라스미드를 2차 형질전환하여 LB-Amp&Km (LB 액체배지 25 g/L, 암피실린 100 mg/L 및 카나마이신 50 mg/L 함유) 고체배지에서 배양하여 암피실린 및 카나마이신 내성을 가지는 콜로니를 선별한 후 프라이머 17 및 프라이머 18의 프라이머 쌍을 이용하여 PCR 수행을 통해 유전자 단편을 수득하였다. 중합효소는 Takara PrimeSTAR Max DNA polymerase를 사용하였으며, PCR 증폭 조건은 95℃에서 10초 변성, 57℃ 10초 어닐링 및 72℃ 15초 중합을 30회 반복하여 수행하였다. 마크로젠에 위탁하여 프라이머 17 및 프라이머 18의 프라이머 쌍을 이용하여 수득된 유전자 단편의 서열을 확인하였다.
선별된 2차 형질전환체는 LB 액체배지에서 7번 계대배양하여 LB 고체배지에서 콜로니를 선별하였다. 각 콜로니를 LB, LB-Amp 및 LB-Km 고체배지에서 각각 선별적으로 배양하였다. LB 고체배지에서 생장하면서 LB-Amp 및 LB-Km 고체배지에서 생육하지 않는 콜로니를 선별하였다. 이와 같은 방법으로 제작된 균주를 각각 KFCC11660P_atpD(Gly235Ser) 및 KCCM10016_atpD(Gly235Ser)로 명명하였다
실시예 1에서 사용된 프라이머 서열은 하기 표 1과 같다.
프라이머 명칭 서열번호 프라이머 서열 (5'-3')
프라이머 1 5 CAATTTTATTATAGTAATTGACTATTATAC
프라이머 2 6 CGTGACGTTCCAATTTTATTATAGTAATTGACTATTATAC
프라이머 3 7 GAACGTCACGACCTTCGTCAGTTTTAGAGCTAGAAATAGC
프라이머 4 8 ACCTTCGTCAGTTTTAGAGCTAGAAATAGC
프라이머 5 9 GAGCCTGTCGGCCTACCTGCT
프라이머 6 10 CGGCCGGCATGAGCCTGTCG
프라이머 7 11 ATGCCGGCCGCGGCCGGGTAGATACCCAGAG
프라이머 8 12 CGGCCGGGTAGATACCCAGAG
프라이머 9 13 TCTGCTGTTCGTTGACAACA
프라이머 10 14 GTCGTGACGTTCTGCTGTTC
프라이머 11 15 ACGTCACGACTTTCGTCACGGAATTTCTCA
프라이머 12 16 TTTCGTCACGGAATTTCTCA
프라이머 13 17 TCCGTTCGCTAAGGGCGGTA
프라이머 14 18 ACCTGATGTGTCCGTTCGCT
프라이머 15 19 CACATCAGGTGAGCTCCTGAAAATCTCGATAAC
프라이머 16 20 GAGCTCCTGAAAATCTCGATAAC
프라이머 17 21 TCCGTTCGCTAAGGGCGGTA
프라이머 18 22 ACCTGATGTGTCCGTTCGCT
실험예 1. ATP 신타아제 변이체가 도입된 변이주의 L-방향족 아미노산 생산능 평가
모균주 (KFCC11660P 및 KCCM10016)와 ATP 신타아제 변이체가 도입된 변이주 (KFCC11660P_atpD(Gly235Ser) 및 KCCM10016_atpD(Gly235Ser))의 L-트립토판 또는 L-페닐알라닌 생산능을 비교하였다.
하기 표 2의 트립토판 생산용 배지 또는 페닐알라닌 생산용 배지 10 mL가 담긴 100 mL 플라스크에 각 균주 (모균주 또는 변이주)를 부피 기준으로 1%씩 접종하여 37℃, 200 rpm의 조건으로 72시간 진탕 배양하였다. 배양 종료 후 HPLC (Agilent)를 사용하여 배지 내 L-트립토판 또는 L-페닐알라닌의 농도를 측정하였고, 그 결과를 각각 하기 표 3 및 4에 나타내었다.
트립토판 생산용 배지 페닐알라닌 생산용 배지
조성 함량 조성 함량
Glucose 80.0 g/L Glucose 80.0 g/L
(NH4)2SO4 20.0 g/L (NH4)2SO4 20.0 g/L
K2HPO4 0.8 g/L K2HPO4 1.0 g/L
K2SO4 0.4 g/L KH2PO4 1.0 g/L
MgCl2 0.8 g/L K2SO4 0.4 g/L
Fumaric acid 1.0 g/L MgCl2 1.0 g/L
Yeast extract 1.0 g/L Fumaric acid 0.5 g/L
(NH4)6Mo7O24 0.12 ppm Yeast extract 1.0 g/L
H3BO3 0.01 ppm Glutamic acid 0.5 g/L
CuSO4 0.01 ppm CaCl2 5.00 ppm
MnCl2 2.00 ppm MnCl2 2.00 ppm
ZnSO4 0.01 ppm ZnSO4 1.00 ppm
CoCl2 0.10 ppm CoCl2 0.10 ppm
FeCl2 10.00 ppm FeCl2 10.00 ppm
Thiamine_HCl 20.00 ppm Thiamine_HCl 20.00 ppm
L-Tyrosine 200.00 ppm L-Tyrosine 200.00 ppm
L-phenylalanine 300.00 ppm CaCO3 3%
CaCO3 3% - -
pH 7.0 with NaOH (33%) pH 7.0 with NaOH (33%)
균주 L-트립토판 농도
(g/L)
L-트립토판 농도 증가율
(%)
KFCC11660P 3.8 -
KFCC11660P_atpD(Gly235Ser) 5.1 34.2
균주 L-페닐알라닌 농도
(g/L)
L- 페닐알라닌 농도 증가율
(%)
KCCM10016 3.30 -
KCCM10016_atpD(Gly235Ser) 4.32 30.9
상기 표 3 및 4에 나타낸 바와 같이, ATP 신타아제 변이체가 도입된 변이주 KFCC11660P_atpD(Gly235Ser) 및 KCCM10016_atpD(Gly235Ser)는 모균주 KFCC11660P 및 KCCM10016에 비해 L-트립토판 및 L-페닐알라닌 생산량이 각각 약 34% 및 31% 향상된 것으로 확인되었다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (7)

  1. 서열번호 3의 아미노산 서열에서 235번째 글리신이 세린으로 치환된, 서열번호 1의 아미노산 서열로 이루어진 ATP 신타아제 변이체.
  2. 청구항 1의 변이체를 암호화하는 폴리뉴클레오티드.
  3. 청구항 1의 변이체 또는 청구항 2의 폴리뉴클레오티드를 포함하는 형질전환체.
  4. 청구항 3에 있어서,
    상기 형질전환체는 에스케리치아(Escherichia) 속 균주인 것인 형질전환체.
  5. 청구항 3에 있어서,
    상기 형질전환체는 L-방향족 아미노산 생산능을 가지는 것인 형질전환체.
  6. 청구항 3의 형질전환체를 배지에서 배양하는 단계; 및
    상기 형질전환체 또는 형질전환체가 배양된 배지로부터 L-방향족 아미노산을 회수하는 단계를 포함하는 L-방향족 아미노산의 생산 방법.
  7. 청구항 6에 있어서,
    상기 L-방향족 아미노산은 L-트립토판, L-페닐알라닌 및 L-티로신으로 이루어진 군에서 선택된 1종 이상인 것인 방법.
PCT/KR2022/010041 2022-02-16 2022-07-11 Atp 신타아제 신규 변이체 및 이를 이용한 l-방향족 아미노산 생산 방법 WO2023158029A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220020009A KR102421920B1 (ko) 2022-02-16 2022-02-16 Atp 신타아제 신규 변이체 및 이를 이용한 l-방향족 아미노산 생산 방법
KR10-2022-0020009 2022-02-16

Publications (1)

Publication Number Publication Date
WO2023158029A1 true WO2023158029A1 (ko) 2023-08-24

Family

ID=82610330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/010041 WO2023158029A1 (ko) 2022-02-16 2022-07-11 Atp 신타아제 신규 변이체 및 이를 이용한 l-방향족 아미노산 생산 방법

Country Status (3)

Country Link
KR (1) KR102421920B1 (ko)
CN (1) CN116606820B (ko)
WO (1) WO2023158029A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102421920B1 (ko) * 2022-02-16 2022-07-21 대상 주식회사 Atp 신타아제 신규 변이체 및 이를 이용한 l-방향족 아미노산 생산 방법
WO2024090885A1 (ko) * 2022-10-24 2024-05-02 대상 주식회사 Dna-결합 전사 제어인자 malt 신규 변이체 및 이를 이용한 l-방향족 아미노산의 생산 방법
KR20240105685A (ko) * 2022-12-28 2024-07-08 씨제이제일제당 (주) 외래 수용성 피리딘 뉴클레오타이드 트랜스 하이드로게나제가 도입된 미생물 및 이를 이용한 l-트립토판의 생산 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140125314A (ko) * 2013-04-16 2014-10-28 씨제이제일제당 (주) L-트립토판 생산능을 갖는 미생물 및 이를 이용하여 l-트립토판을 생산하는 방법
KR101830002B1 (ko) 2016-10-11 2018-02-19 대상 주식회사 부기질의 공급 강화를 통한 l-트립토판이 과발현되는 균주 및 이를 이용하는 l-트립토판의 제조 방법
KR20200080163A (ko) * 2018-12-26 2020-07-06 대상 주식회사 L-아미노산을 생산하는 대장균 변이주 또는 코리네박테리움 글루타미컴 변이주 및 이를 이용한 l-아미노산의 생산 방법
KR102284731B1 (ko) * 2021-04-28 2021-08-02 씨제이제일제당 주식회사 신규한 아이소시트르산 디하이드로게네이즈 키나아제/포스파타제 효소 변이체 및 이를 이용한 l-트립토판 생산 방법
KR102284730B1 (ko) * 2021-04-28 2021-08-02 씨제이제일제당 주식회사 신규한 수용성 피리딘 뉴클레오티드 트랜스수소효소 변이체 및 이를 이용한 l-트립토판 생산 방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005019967A1 (de) * 2005-04-29 2006-11-02 Forschungszentrum Jülich GmbH Verfahren zur fermentativen Herstellung von L-Aminosäuren
WO2015069847A2 (en) * 2013-11-06 2015-05-14 Massachusetts Institute Of Technology Co-culture based modular engineering for the biosynthesis of isoprenoids, aromatics and aromatic-derived compounds
KR101904666B1 (ko) * 2017-08-02 2018-11-29 씨제이제일제당 (주) Atp 포스포리보실기 전이효소 변이체 및 이를 이용한 l-히스티딘 생산방법
KR102274484B1 (ko) 2021-04-20 2021-07-07 씨제이제일제당 주식회사 신규한 f0f1 atp 합성효소 서브유닛 알파 변이체 및 이를 이용한 xmp 또는 gmp 생산 방법
KR102421920B1 (ko) * 2022-02-16 2022-07-21 대상 주식회사 Atp 신타아제 신규 변이체 및 이를 이용한 l-방향족 아미노산 생산 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140125314A (ko) * 2013-04-16 2014-10-28 씨제이제일제당 (주) L-트립토판 생산능을 갖는 미생물 및 이를 이용하여 l-트립토판을 생산하는 방법
KR101830002B1 (ko) 2016-10-11 2018-02-19 대상 주식회사 부기질의 공급 강화를 통한 l-트립토판이 과발현되는 균주 및 이를 이용하는 l-트립토판의 제조 방법
KR20200080163A (ko) * 2018-12-26 2020-07-06 대상 주식회사 L-아미노산을 생산하는 대장균 변이주 또는 코리네박테리움 글루타미컴 변이주 및 이를 이용한 l-아미노산의 생산 방법
KR102284731B1 (ko) * 2021-04-28 2021-08-02 씨제이제일제당 주식회사 신규한 아이소시트르산 디하이드로게네이즈 키나아제/포스파타제 효소 변이체 및 이를 이용한 l-트립토판 생산 방법
KR102284730B1 (ko) * 2021-04-28 2021-08-02 씨제이제일제당 주식회사 신규한 수용성 피리딘 뉴클레오티드 트랜스수소효소 변이체 및 이를 이용한 l-트립토판 생산 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Manual of Methods for General Bacteriology", 1981, AMERICAN SOCIETY FOR BACTERIOLOGY
BIOTECHNIQUES, vol. 51, July 2011 (2011-07-01), pages 55 - 56

Also Published As

Publication number Publication date
CN116606820A (zh) 2023-08-18
KR102421920B1 (ko) 2022-07-21
CN116606820B (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
WO2023158029A1 (ko) Atp 신타아제 신규 변이체 및 이를 이용한 l-방향족 아미노산 생산 방법
WO2023158175A1 (ko) 수송단백질 신규 변이체 및 이를 이용한 l-방향족 아미노산 생산 방법
WO2023158030A1 (ko) 징크 바인딩 디하이드로게나제 신규 변이체 및 이를 이용한 l-방향족 아미노산 생산 방법
WO2023158174A1 (ko) 시그마 38 신규 변이체 및 이를 이용한 l-방향족 아미노산 생산 방법
WO2023158176A1 (ko) 스트레스 단백질 신규 변이체 및 이를 이용한 l-방향족 아미노산 생산 방법
WO2022191357A1 (ko) L-라이신 생산능이 향상된 코리네박테리움 글루타미쿰 변이주 및 이를 이용한 l-라이신의 생산 방법
WO2024090883A1 (ko) 피루베이트 인산화효소 2 신규 변이체 및 이를 이용한 l-방향족 아미노산의 생산 방법
WO2024090884A1 (ko) 페닐알라닌:h+ 동시수송체 phep 신규 변이체 및 이를 이용한 l-방향족 아미노산의 생산 방법
WO2024090885A1 (ko) Dna-결합 전사 제어인자 malt 신규 변이체 및 이를 이용한 l-방향족 아미노산의 생산 방법
WO2024210281A1 (ko) 5-데하이드로-2-데옥시글루코노키나아제 신규 변이체 및 이를 이용한 5'-이노신산 생산 방법
WO2024210280A1 (ko) 포스포에놀피루베이트 카르복실라아제 신규 변이체 및 이를 이용한 5'-이노신산 생산 방법
WO2024096219A1 (ko) L-글루탐산을 생산하는 코리네박테리움 속 변이 미생물 및 이를 이용한 l-글루탐산의 생산 방법
WO2024210282A1 (ko) 트레오닌 암모니아 리아제 신규 변이체 및 이를 이용한 5'-이노신산 생산 방법
WO2024210279A1 (ko) 뉴클레오타이드 하이드롤라아제 신규 변이체 및 이를 이용한 5'-이노신산 생산 방법
WO2024214883A1 (ko) 피루베이트 탈수소효소 신규 변이체 및 이를 이용한 5'-이노신산 생산 방법
WO2024214887A1 (ko) Fe-s 클러스터 조립 단백질 sufc 신규 변이체 및 이를 이용한 5'-이노신산 생산 방법
WO2024214886A1 (ko) Fe-s 클러스터 조립 단백질 sufb 신규 변이체 및 이를 이용한 5'-이노신산 생산 방법
WO2024096218A1 (ko) L-글루탐산을 생산하는 코리네박테리움 속 변이 미생물 및 이를 이용한 l-글루탐산의 생산 방법
WO2024214882A1 (ko) 인산기전이효소 신규 변이체 및 이를 이용한 5'-이노신산 생산 방법
WO2024210283A1 (ko) Abc 수송체 투과효소 신규 변이체 및 이를 이용한 5'-이노신산 생산 방법
WO2024214885A1 (ko) Fe-s 클러스터 조립 단백질 sufd 신규 변이체 및 이를 이용한 5'-이노신산 생산 방법
WO2024214881A1 (ko) (p)ppgpp 합성효소 신규 변이체 및 이를 이용한 5'-이노신산 생산 방법
WO2024014699A1 (ko) L-글루탐산을 생산하는 코리네박테리움 속 변이 미생물 및 이를 이용한 l-글루탐산의 생산 방법
WO2024014696A1 (ko) L-글루탐산을 생산하는 코리네박테리움 속 변이 미생물 및 이를 이용한 l-글루탐산의 생산 방법
WO2024014700A1 (ko) L-글루탐산을 생산하는 코리네박테리움 속 변이 미생물 및 이를 이용한 l-글루탐산의 생산 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891171

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022891171

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022891171

Country of ref document: EP

Effective date: 20240916