WO2023157968A1 - Method for producing chalcogenide-based atomic layer film - Google Patents

Method for producing chalcogenide-based atomic layer film Download PDF

Info

Publication number
WO2023157968A1
WO2023157968A1 PCT/JP2023/006033 JP2023006033W WO2023157968A1 WO 2023157968 A1 WO2023157968 A1 WO 2023157968A1 JP 2023006033 W JP2023006033 W JP 2023006033W WO 2023157968 A1 WO2023157968 A1 WO 2023157968A1
Authority
WO
WIPO (PCT)
Prior art keywords
chalcogenide
atomic layer
gas
single crystal
base material
Prior art date
Application number
PCT/JP2023/006033
Other languages
French (fr)
Japanese (ja)
Inventor
博幸 山川
慎太朗 日向
敏宏 島田
Original Assignee
株式会社アイシン
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイシン, 国立大学法人北海道大学 filed Critical 株式会社アイシン
Publication of WO2023157968A1 publication Critical patent/WO2023157968A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B31/00Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
    • C30B31/06Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor by contacting with diffusion material in the gaseous state
    • C30B31/18Controlling or regulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate

Definitions

  • the present disclosure relates to a method for manufacturing a chalcogenide atomic layer film.
  • a chalcogen compound having a chalcogenide atomic layer on its surface (hereinafter referred to as a chalcogenide atomic layer material) is attracting attention as a topological insulator.
  • chalcogenide-based atomic layer materials are attracting attention for application to terahertz detection devices using Dirac electrons of topological insulators.
  • a film-like chalcogenide-based atomic layer material that is, a chalcogenide-based atomic layer film can be used, for example, in a high-sensitivity image sensor using terahertz waves. Therefore, there is a demand for a manufacturing method that can easily obtain a chalcogenide-based atomic layer film.
  • Patent Document 1 discloses that a multi-layered metal oxide single crystal base material is treated with a chalcogen gas under temperature conditions below the lower temperature of the base material melting point and the base material sublimation point and in the range of 500 to 1000 ° C. Disclosed is a method of synthesizing chalcogenide-based multi-atomic layer films by contact with a gas mixture with an inert carrier gas.
  • Patent Document 2 discloses a method for producing nanoparticles of bismuth telluride as a chalcogenide-based atomic layer material. According to the method disclosed in Patent Document 2, bismuth telluride nanoparticles are prepared by mixing a solution of bismuth chloride and a protective material dissolved in a solvent with an aqueous alkali metal hydroxide solution to prepare a mixed solution, and the mixed solution is added with tellurium. and a reducing agent are placed in a pressure vessel, and the reduction reaction is allowed to occur while stirring the inside of the pressure vessel in a sealed state.
  • Non-Patent Document 1 discloses a method of synthesizing a maize-like chalcogenide-based multilayer atomic layer material from bismuth halide via a halide-based metal oxide (metal oxyhalide).
  • JP 2021-161015 A JP-A-2005-343782
  • An object of the present invention is to provide a manufacturing method for obtaining a chalcogenide-based atomic layer film at a relatively low temperature.
  • the present disclosure provides a base material forming step of forming a metal oxide single crystal base material having a metal oxide atomic layer, and a temperature condition lower than the melting point of the metal oxide single crystal base material. a synthesis step of subjecting part or all of the metal oxide atomic layer to a topotactic reaction to produce a chalcogenide atomic layer by contacting it with a reducing chalcogen gas below. A method for manufacturing a membrane is provided.
  • the above synthesis process can be configured to be performed in a closed container
  • the metal oxide single crystal base material may be brought into contact with a reducing chalcogen gas having a concentration of 5 vol % or less.
  • the concentration of the reducing chalcogen gas is preferably less than 1 vol %.
  • the above synthesis step can also be configured to be performed under pressurized conditions.
  • the synthesis step can also be configured to be carried out under pressure conditions of more than 1 atm and less than or equal to 20 atm, preferably more than 1 atm and less than or equal to 10 atm.
  • the reducing chalcogen gas may be a hydrogen chalcogenide gas or a mixed gas of chalcogen gas and hydrogen gas.
  • the reducing chalcogen gas includes hydrogen sulfide gas, hydrogen selenide gas, hydrogen telluride gas, mixed gas of sulfur gas and hydrogen gas, mixed gas of selenium gas and hydrogen gas, and tellurium gas and hydrogen gas. and at least one selected from the group consisting of a mixed gas of
  • a metal oxide single crystal base material and an aqueous solution containing chalcogen as a source of reducing chalcogen gas are enclosed in a sealed container, and the temperature is lower than the melting point of the metal oxide single crystal base material. It can also be configured to be a step of contacting a metal oxide single crystal base material with a reducing chalcogen gas generated from a chalcogen-containing aqueous solution under a low temperature condition of 100° C. or more and less than 500° C.
  • the metal oxide single crystal base material may be a bismuth-based metal oxide
  • the chalcogenide-based atomic layer film may be a chalcogenide bismuth thin film.
  • the chalcogenide-based atomic layer film may be one selected from the group consisting of a bismuth sulfide thin film, a bismuth selenide thin film, and a bismuth telluride thin film.
  • the base material forming step is a step of crystal-growing a metal oxide single crystal base material on a single crystal substrate having an in-plane lattice constant substantially matching the in-plane lattice constant of the metal oxide single crystal base material.
  • substantially coincident means that the metal oxide single crystal grows so that the crystal orientation of the single crystal substrate and the crystal orientation of the metal oxide single crystal base material are aligned in the base material forming step. It means that the in-plane lattice constants of both are the same.
  • the single crystal substrate may be an STO single crystal substrate
  • the metal oxide single crystal base material may be bismuth chloride oxide.
  • a chalcogenide-based atomic layer film can be produced at a relatively low temperature of, for example, less than 500°C.
  • FIG. 1 shows a schematic configuration of a mist CVD apparatus that can be used in the base material forming process.
  • FIG. 2 shows a schematic diagram of a reactor that can be used in the synthesis process.
  • FIG. 3 shows the X-ray diffraction pole measurement result of the bismuth chloride oxide thin film formed in Example 1.
  • 4 shows the X-ray diffraction pole measurement result of the STO single crystal substrate used in Example 1.
  • FIG. 5 shows the X-ray diffraction results of the sample produced in Example 2.
  • FIG. FIG. 6 shows the Raman shift of the sample produced in Example 2.
  • FIG. FIG. 7 shows the photocurrent measurement results of the sample produced in Example 2.
  • FIG. FIG. 8 shows the X-ray diffraction results for each sample prepared in Example 2 by changing the concentration of the selenourea aqueous solution.
  • the chalcogenide-based atomic layer film manufactured by the manufacturing method according to the present embodiment is a film-like body having an atomic layer (chalcogenide-based atomic layer) composed of a compound of chalcogen and metal.
  • the chalcogenide-based atomic layer refers to a layer having a thickness of one or several atoms forming a crystal structure composed of metal and chalcogen, and may be a single layer or multiple layers. good.
  • Each element in one chalcogenide-based atomic layer is strongly bonded by a covalent bond, an ionic bond, or the like.
  • each atomic layer adjacent in the stacking direction is bonded by a weak force such as van der Waals force.
  • the thickness of one chalcogenide atomic layer is estimated to be approximately 1 nanometer. Therefore, for example, when 6 to 10 chalcogenide atomic layers are laminated, the total thickness of the atomic layers is estimated to be approximately 6 to 10 nanometers.
  • the chalcogenide-based atomic layer film manufactured by the manufacturing method according to the present embodiment may be configured in the form of a film by the chalcogenide-based atomic layer alone, or may be configured in the form of a film by the chalcogenide-based atomic layer and other substances. It's okay to be.
  • the chalcogenide-based atomic layer film is composed of the film-like base material and the chalcogenide-based atomic layer formed on the surface of the base material.
  • the method for manufacturing a chalcogenide-based atomic layer film according to this embodiment includes a base material forming step and a synthesizing step.
  • a metal oxide single crystal base material is formed.
  • This metal oxide single crystal base material has an atomic layer (metal oxide atomic layer) made of metal oxide on the surface.
  • the metal oxide single crystal base material contains the metal (A), and the metal (A) can be used as the center metal of the crystal lattice of the chalcogenide atomic layer of the chalcogenide atomic layer film, which is the target product.
  • Molybdenum, tungsten, vanadium, niobium, tantalum, titanium, zirconium, hafnium, bismuth, antimony and germanium as metal (A). Examples include at least one metal selected from the group consisting of tin, gallium, indium, platinum, iron, and iridium.
  • the crystal structure of the metal oxide single crystal base material is not particularly limited as long as it can form a metal oxide atomic layer.
  • the metal oxide single crystal has a tetragonal structure, a fluorite structure, a corundum structure, a spinel structure, a perovskite structure, an ilmenite structure, a scheelite structure, a K2NiF structure, a pyrochlore structure, and a magneto It may have a crystal structure selected from the group consisting of plumbite-type structures.
  • the base material it is desirable to use a material having a crystal plane with a specific plane orientation on its surface (exposed surface).
  • the surface (exposed surface) of the base material is a plane in which the arrangement of the metal (A) in the specific plane orientation is the same as the arrangement of the metal (A) in the plane perpendicular to the direction of the desired chalcogenide atomic layer. is desirable.
  • the base material having a crystal plane of a specific plane orientation on the surface (exposed plane) for example, planes with plane orientations of (001), (100), (101), and their inclined planes are selected. It is also possible to use a base material having a surface (exposed surface) of one type of crystal plane that has a low energy surface (exposed surface) or a base material that has a low-energy crystal surface (exposed surface).
  • the metal oxide single crystal base material may be a simple metal oxide, for example, bismuth oxide for a bismuth-based metal oxide, tungsten oxide for a tungsten-based metal oxide, or other metals. It may be a composite metal oxide with or a halogenated metal oxide with halogen (chlorine, bromine, iodine).
  • the metal oxide single crystal base material is a composite metal oxide with metal (A) and other metals
  • the other metals are metals other than metal (A) and calcium, silicon, lithium, beryllium , sodium, magnesium, potassium, rubidium, strontium, cesium, barium, germanium, titanium, aluminum, gallium, and indium.
  • metal halide oxides include bismuth chloride oxide (bismuth oxychloride).
  • bismuth chloride oxide bismuth oxychloride
  • the other metals or halogens mentioned above must be removed by a topotactic reaction in the synthesis process described later. Therefore, a halogenated metal oxide using a halogen that can be easily removed in the synthesis process is preferably used as the metal oxide single crystal base material.
  • the metal oxide single crystal base material is preferably in the form of a thin film.
  • a thin-film metal oxide single crystal base material can be formed by depositing it on a substrate by, for example, a CVD method.
  • FIG. 1 shows a schematic configuration of a mist CVD apparatus that can be used in the base material forming process.
  • this mist CVD apparatus 10 includes a mist generator 11, a heating furnace 12, a trap container 13, a thinning gas pipe 14, a carrier gas pipe 15, a mist pipe 16, and an outlet pipe 17. , an exhaust pipe 18 and an ultrasonic oscillator 19 .
  • Nitrogen gas flows through the thinning gas pipe 14 as a thinning gas whose flow rate is controlled by a mass flow controller. Nitrogen gas flows through the carrier gas pipe 15 as a carrier gas whose flow rate is controlled by a mass flow controller.
  • the mist generator 11 is configured in a container shape, and is filled with a precursor solution PS, which is a solution containing constituents of the metal oxide single crystal base material.
  • a precursor solution PS which is a solution containing constituents of the metal oxide single crystal base material.
  • the downstream end of the carrier gas pipe 15 is connected to the mist generator 11 so as to open to the upper space of the mist generator 11 .
  • an ultrasonic oscillator 19 is attached to the bottom of the mist generator 11 .
  • One end of the mist pipe 16 is connected to the mist generator 11 so as to open to the upper space of the mist generator 11 .
  • the downstream end of the thinning gas pipe 14 and the other end of the mist pipe 16 are connected to the inlet port 12in of the heating furnace 12 .
  • a single crystal substrate SB is placed at a predetermined position in the heating furnace 12 .
  • One end of an outlet pipe 17 is connected to the outlet port 12out of the heating furnace 12 .
  • the other end of outlet pipe 17 is connected to trap container 13 .
  • the trap container 13 is filled with water up to a predetermined liquid level, and the other end of the outlet pipe 17 is connected to the trap container 13 so as to open into the water inside the trap container 13 .
  • One end of the waste gas pipe 18 is connected to the trap container 13 so as to open to the gas portion in the trap container 13, and the other end of the waste gas pipe 18 is open to the atmosphere.
  • the precursor solution PS in the mist generator 11 is misted.
  • the misted precursor solution (hereinafter referred to as precursor solution mist) flows through the mist pipe 16 together with the carrier gas (nitrogen gas).
  • the precursor solution mist flowing through the mist pipe 16 is further merged with the thinning gas (nitrogen gas) and diluted before entering the heating furnace 12 .
  • the temperature in the heating furnace 12 is set in advance to such a temperature that the precursor solution mist can react (decompose) in the heating furnace 12 to deposit the desired metal oxide on the single crystal substrate. there is Therefore, the precursor solution mist that has entered the heating furnace 12 is decomposed in the heating furnace 12 and deposited on the single crystal substrate as metal oxide.
  • the gas that has reacted in the heating furnace 12 and the unreacted gas flow through the outlet pipe 17 and are introduced into the trap container 13, purified by the water filled in the trap container 13, and then discharged. It is discharged to the atmosphere through the air pipe 18 .
  • the single-crystal substrate is such that the lattice constant (in-plane lattice constant) of the crystal orientation exposed on the surface of the single-crystal substrate substantially matches the in-plane lattice constant of the target metal oxide single-crystal thin film.
  • strontium titanate (hereinafter referred to as STO ) single crystal substrates can be used. According to this, a metal oxide single crystal base material having the same crystal orientation as that of the single crystal substrate can be crystal-grown on the single crystal substrate.
  • a chalcogenide atomic layer is generated using the metal oxide single crystal base material formed in the base material formation process.
  • the metal oxide single crystal base material is brought into contact with a reducing chalcogen gas under a predetermined temperature condition lower than the melting point of the metal oxide single crystal base material formed in the base material forming step.
  • a topotactic reaction occurs between the metal oxide single crystal base material and the chalcogen gas, and while the crystals of the metal oxide single crystal base material and the crystals of the product maintain a three-dimensional orientation relationship, the base material Oxygen, other metals and halogens contained in the material are replaced with chalcogen.
  • the reducing chalcogen gas that comes into contact with the metal oxide single crystal base material in the synthesis process is a gas that contains chalcogen and has a reducing action.
  • the reducing chalcogen gas may be a compound gas of a component having a reducing action and chalcogen, or a mixed gas of a gas having a reducing action and a chalcogen gas.
  • the compound gas is preferably a chalcogenide gas.
  • the mixed gas is preferably a mixed gas of chalcogen gas and hydrogen gas.
  • the hydrogen chalcogenide gas include hydrogen sulfide gas, hydrogen selenide gas, and hydrogen telluride gas.
  • the mixed gas examples include a mixed gas of sulfur gas and hydrogen gas, a mixed gas of selenium gas and hydrogen gas, and a mixed gas of tellurium gas and hydrogen gas. Therefore, the reducing chalcogen gas is preferably at least one selected from the group consisting of the gases exemplified above.
  • the synthesis process should be carried out in a closed container.
  • the amount of highly toxic chalcogen gas released to the outside can be reduced.
  • the chalcogenide-based atomic layer film can be produced using the minimum required amount of chalcogen gas, and wasteful consumption of chalcogen gas can be prevented.
  • the synthesis step is preferably performed at a temperature lower than the melting point of the metal oxide single crystal base material and at a temperature of 100°C or higher and lower than 500°C. According to this, a chalcogenide-based atomic layer film can be produced under relatively low temperature conditions of less than 500.degree.
  • the synthesis process is performed under pressurized conditions.
  • the pressurization condition is at least a pressure condition higher than the atmospheric pressure, that is, a condition that a pressure exceeding 1 atm is applied. Therefore, in principle, a reactor that releases the gas inside the reactor to the outside during the synthesis process cannot satisfy the pressurization condition. conditions can be met.
  • the metal oxide single crystal base material formed in the base material forming step and the chalcogen gas are enclosed in a closed container, and the temperature is lower than the melting point of the metal oxide single crystal base material and is 100° C. or more and less than 500° C. It is preferable to carry out the synthesis step by raising the temperature in the closed vessel to the reaction temperature of and maintaining the reaction temperature for a predetermined time.
  • the gas in the sealed container is heated and expanded to satisfy the pressurization condition.
  • the pressure condition can be satisfied by adjusting the internal pressure of the container according to the temperature inside the closed container or the concentration of chalcogen gas generated inside the closed container.
  • the pressurization condition is a pressure higher than 1 atm as described above. Further, when the pressure exceeds 20 atm, the cost of the closed container increases in order to ensure sufficient pressure resistance performance of the closed container. Therefore, the pressurization condition is preferably greater than 1 atm and 20 atm or less, preferably greater than 1 atm and 10 atm or less.
  • the reducing chalcogen gas used in the synthesis process may be introduced from a cylinder or the like into the reaction vessel (for example, a closed vessel) where the synthesis process is performed, but hydrogen telluride is unstable due to its instability. cannot be sealed in cylinders. Also, since reducing chalcogen gas is highly toxic, it is desirable to reduce the amount used. Also, from the point of view of post-use processing and cleaning costs of reaction vessels and the like, reducing the amount of reducing chalcogen gas used is highly effective in terms of industrial utilization. Therefore, the amount of chalcogen gas discharged to the outside by generating the minimum amount of reducing chalcogen gas in a closed container and performing the synthesis process in the closed container using the gas thus generated. can be reduced.
  • a reducing chalcogen gas can be generated in a sealed container using an aqueous solution containing chalcogen.
  • a metal oxide single crystal base material and an aqueous solution containing chalcogen are enclosed in a sealed container, and the temperature is lower than the melting point of the metal oxide single crystal base material and is 100° C. or more and less than 500° C. and the step of contacting the metal oxide single crystal base material with a reducing chalcogen gas generated from an aqueous solution containing chalcogen.
  • FIG. 2 shows a schematic diagram of a reactor that can be used in the synthesis process.
  • the reaction device 20 includes a closed container 21 and a heater 22 .
  • the sealed container 21 is a pressure-resistant container having a pressure-resistant performance that does not break even when a predetermined pressure of 20 atm or less is applied.
  • the heater 22 is arranged around the closed container 21, and when driven (for example, energized), the temperature inside the closed container 21 is raised to a predetermined reaction temperature, and the raised reaction temperature is maintained for a certain period of time. configured to allow
  • the metal oxide single crystal base material formed in the base material forming step and the aqueous solution containing chalcogen are enclosed in the sealed container 21 .
  • a partition plate or the like may be provided in the closed container 21 so that the metal oxide single crystal base material and the aqueous solution containing chalcogen do not come into direct contact within the closed container 21 .
  • the heater 22 is driven and controlled so that the temperature inside the sealed container 21 is lower than the melting point of the metal oxide single crystal matrix and reaches a predetermined reaction temperature of 100° C. or more and less than 500° C.
  • the aqueous solution containing chalcogen in the sealed container 21 is heated to generate vapor of reducing chalcogen gas. Further, when the chalcogen gas thus generated and having a reducing property contacts the metal oxide single crystal base material in the closed container 21, a topotactic reaction occurs and a chalcogenide-based atomic layer is generated on the base material surface.
  • the metal oxide single crystal base material is brought into contact with the reducing chalcogen gas.
  • the desorption of oxygen atoms in the metal oxide single crystal base material is promoted by the reducing action of the chalcogen gas.
  • This promotes topotactic reactions. Therefore, even if the synthesis step is performed under a relatively low temperature condition, for example, a temperature condition of 100° C. or more and less than 500° C., the topotactic reaction proceeds and a chalcogenide atomic layer film can be obtained. .
  • a bismuth selenide thin film as a chalcogenide atomic layer can be synthesized even when the synthesis process is performed at a temperature of 170°C.
  • the topotactic reaction proceeds sufficiently to obtain a chalcogenide-based atomic layer film.
  • the synthesis process is performed in a closed vessel, and the pressure in the closed vessel is set to a pressurized state of greater than 1 atm and 20 atm or less by adjusting the temperature conditions, the concentration conditions of the reducing chalcogen gas, and the like. be able to.
  • the topotactic reaction is further promoted.
  • a chalcogenide-based atomic layer film can be obtained at a lower temperature.
  • the topography can be achieved only by bringing a non-reducing chalcogen gas into contact with the metal oxide single crystal base material under normal pressure.
  • a chalcogenide-based atomic layer film can be obtained by causing a topotactic reaction even for a material that did not undergo a tactical reaction.
  • the concentration of the reducing chalcogen gas generated in the sealed container 21 is preferably 5 vol% or less, more preferably less than 1 vol%, and even more preferably less than 0.1 vol%. Safety can be further improved by using such a low-concentration chalcogen gas. Furthermore, in the present embodiment, the topotactic reaction can proceed even when such a low-concentration chalcogen gas is used.
  • the chalcogen-containing aqueous solution enclosed in the sealed container 21 is preferably a chalcogen compound aqueous solution capable of generating reducing chalcogen gas.
  • a chalcogen compound aqueous solution a thioacetamide aqueous solution, a thiourea aqueous solution, and a selenourea aqueous solution can be exemplified.
  • An organic method or a reducing agent method can be exemplified as a method of generating chalcogenide hydrogen gas as a reducing chalcogen gas in a closed container. Further, as a method of generating hydrogen sulfide gas by an organic method, a method of heating a thioacetamide aqueous solution or a thiourea aqueous solution, which are chalcogen compound aqueous solutions, can be exemplified. Furthermore, as a method of generating hydrogen selenide gas by an organic method, a method of heating an aqueous solution of selenourea, which is an aqueous solution of a chalcogen compound, can be exemplified.
  • a reducing agent that generates hydrogen by thermal decomposition or the like is mixed with chalcogen (sulfur, selenium, tellurium, etc.), and the mixture is heated to the melting point of chalcogen (sulfur: 115°C, selenium: 221°C, tellurium: 450°C). ° C.) and below the boiling point (sulfur: 455° C., selenium: 685° C., tellurium: 988° C.) to generate a mixed gas of chalcogen gas and hydrogen gas.
  • the reducing agent used at this time include sodium borohydride (melting point: 400° C., decomposes at 500° C.), potassium borohydride (decomposes at 500° C.), and the like.
  • a chalcogenide-based atomic layer film can be used for various purposes. Among them, bismuth-based atomic layer films are expected to be applied to topological materials.
  • a topological insulator can be exemplified as one of the topological materials.
  • a topological insulator is a material whose interior is an insulator and whose surface is a conductor. In such a topological insulator, it is very important to control the number of chalcogenide atomic layers on the surface. It is possible to obtain semiconductor properties different from those of Therefore, when a chalcogenide-based atomic layer film is used as a topological insulator, the number of chalcogenide-based atomic layers must be controlled to be less than 20 layers.
  • the optimum number of layers for infrared absorption using Dirac electrons is 6 or more and 10 or less.
  • the chalcogenide atomic layer film can be used as an image sensor that absorbs infrared rays.
  • a chalcogenide-based atomic layer with a large area can be obtained on a thin-film metal oxide single crystal base material, so it is expected to be used as an infrared absorption type image sensor with higher sensitivity. be done.
  • the number of chalcogenide atomic layers affects the reaction time, the pressure during the reaction, and the reaction gas concentration (concentration of reducing chalcogen gas). Therefore, it is considered that the number of layers can be controlled by controlling these.
  • the number of chalcogenide-based atomic layers can be determined directly from a transmission electron microscope (TEM) image, or indirectly from a measurement using an XRR (X-ray reflectometer) and a Raman shift of crystal lattice vibration. can also judge.
  • TEM transmission electron microscope
  • XRR X-ray reflectometer
  • Raman shift of crystal lattice vibration can also judge.
  • the number of layers may be identified from the difference in the frequencies of two Raman-active vibration modes.
  • the topotactic reaction that occurs in the synthesis process proceeds from the outside (surface) of the metal oxide single crystal base material toward the inside (inside), and depending on time, the metal oxide of the base material It has been experimentally confirmed that the atomic layer becomes a chalcogenide atomic layer. Therefore, by adjusting the reaction time and the like, a part (from the outermost surface to a predetermined thickness) or all of the metal oxide atomic layer of the base material can be caused to undergo a topotactic reaction. Further, when the progress of the topotactic reaction is stopped at a certain time, all the atomic layers from the outermost surface to the predetermined number of layers are chalcogenide atomic layers, and all atomic layers after that are metal oxide atomic layers. layer.
  • the metal oxide single crystal A chalcogenide atomic layer film having a single or several chalcogenide atomic layers can be formed on a crystal matrix.
  • the metal oxide single crystal base material is an insulator, a semiconductor (chalcogenide atomic layer) can be obtained on the insulator. film) from the base material.
  • Example 1 Synthesis of bismuth sulfide thin film using hydrogen sulfide gas (1) Preparation of bismuth chloride oxide single crystal base material thin film1. Preparation of Substrate In preparing the bismuth chloride oxide single crystal base material thin film as the metal oxide single crystal base material, it is necessary to epitaxially grow the bismuth chloride oxide single crystal thin film on the substrate.
  • the in-plane lattice constant a of strontium titanate hereinafter referred to as STO
  • STO strontium titanate
  • an STO single crystal substrate manufactured by Shinko Co., dimensions: 10 mm ⁇ 10 mm ⁇ 0.5 mm (thickness), plane orientation (001)
  • the plane orientation (001) means that the crystal plane appearing on the substrate surface is the (001) plane.
  • the bismuth chloride oxide single crystal base material thin film was formed by a mist CVD method using a mist CVD apparatus 10 whose schematic configuration is shown in FIG.
  • the precursor solution PS is misted by ultrasonic waves
  • the precursor solution mist is transported into the heating furnace 12 by an inert carrier gas
  • the mist is placed at a predetermined position in the heating furnace 12. This is a method of forming a highly oriented film on an STO single crystal substrate.
  • the precursor solution was prepared by dissolving 5 mM bismuth chloride powder in n,n-dimethylformamide (hereinafter referred to as DMF) as a solvent.
  • DMF n,n-dimethylformamide
  • This precursor solution contains bismuth, chlorine, and oxygen as constituents of the metal oxide single crystal matrix.
  • a 2.4 MHz ultrasonic atomization unit HMC-2400 manufactured by Nissan Electronics Co., Ltd. was installed as an ultrasonic element including an ultrasonic oscillator 19 on the bottom surface of the mist generator 11 .
  • high-purity nitrogen gas was used as a carrier gas.
  • the heating furnace 12 was composed of a quartz tube with a diameter of 25 mm and an electric furnace (heater) provided around the quartz tube.
  • a prepared STO single crystal substrate was placed at a predetermined position in the heating furnace 12 (quartz tube). Then, the temperature of the heating furnace 12 was set to 400° C., the ultrasonic element was started in a sufficiently stable state, and the flow rate of the carrier gas was set to 0.5 L/min. , the flow rate of the thinning gas is set to 3.5 L/min. , and conveyed into the heating furnace 12 together with the precursor solution mist.
  • the precursor solution mist transported into the heating furnace 12 is decomposed in the heating furnace 12, thereby depositing bismuth chloride oxide on the STO single crystal substrate.
  • a bismuth chloride oxide thin film is formed on the STO single crystal substrate.
  • the film formation time is 60 min.
  • a thin film having a thickness of 30 nm was formed on the STO single crystal substrate.
  • the in-plane rotation angles ⁇ at which the four diffraction spots of the bismuth chloride oxide thin film and the STO single crystal substrate were confirmed were 46°, 136°, 226°, and 316°, which completely coincided with each other. It was confirmed that the material thin film was epitaxially grown on the STO single crystal substrate and was a single crystal.
  • hydrogen sulfide gas is generated from the thioacetamide aqueous solution in the glass pressure vessel, and the generated hydrogen sulfide gas is brought into contact with the bismuth chloride oxide single crystal base material thin film to perform a sulfurization treatment by a topotactic reaction. Ta.
  • the pressure in the glass pressure vessel is about 20 atm, which is the pressure resistance of the vessel, and the concentration of the hydrogen sulfide gas generated in the glass pressure vessel is about 2 vol %.
  • the sample bismuth chloride oxide single crystal base material thin film in contact with hydrogen sulfide gas
  • the crystal structure was evaluated by X-ray diffraction.
  • a peak of STO, a peak of bismuth chloride oxide, and a peak of bismuth sulfide were confirmed. From this result, it was confirmed that a bismuth sulfide thin film was formed on the bismuth chloride oxide single crystal base material thin film.
  • a vacuum pump is used to evacuate the quartz tube to a pressure of less than 10 Pa, and then a bypass line is used to remove argon gas from the quartz tube.
  • the temperature inside the quartz tube was set to the reaction temperature.
  • the valve of the sulfur gas passage was opened to introduce the sulfur gas into the reactor (quartz tube) together with the carrier gas for the reaction time.
  • the bismuth chloride oxide base material single crystal thin film was brought into contact with the sulfur gas in the reactor.
  • the reaction temperature was 320° C., and the reaction time was 30 minutes and 90 minutes. After the reaction time had elapsed, the sample (bismuth chloride oxide single crystal base material thin film in contact with sulfur gas) was taken out from the reactor.
  • the temperature in the synthesis process of Example 1 is 150°C
  • the temperature in the synthesis of Comparative Example 1 is 320°C, both of which are temperatures of 100°C or more and less than 500°C.
  • the bismuth chloride oxide single crystal base material thin film is brought into contact with a reducing chalcogen gas (hydrogen sulfide gas).
  • the bismuth chloride oxide single crystal base material thin film is brought into contact with non-reducing chalcogen gas (sulfur gas). From this, it is possible to generate a chalcogenide-based atomic layer (bismuth sulfide thin film) under a temperature condition of 100° C. or more and less than 500° C. by bringing a reducing chalcogen gas into contact with the bismuth chloride oxide single crystal base material thin film. Recognize.
  • Example 2 Preparation of bismuth selenide thin film using hydrogen selenide gas (1) Preparation of bismuth chloride oxide base material thin film1. Preparation of Substrate An STO single crystal substrate similar to that of Example 1 was prepared. 2. Formation of bismuth chloride oxide base material thin film (base material formation process) By the same procedure as in Example 1, a bismuth chloride oxide single crystal base material thin film was formed on an STO single crystal substrate.
  • a quartz plate was placed in a pressure-resistant glass container to separate the bismuth chloride oxide single crystal base material thin film from the selenourea aqueous solution. ing.
  • the pressure in the glass pressure vessel during the synthesis process was about 6 atm, and the concentration of hydrogen selenide gas generated in the glass pressure vessel was about 0.07 vol %.
  • a sample bismuth chloride oxide single crystal base material thin film in contact with hydrogen selenide gas
  • FIG. 5 is a graph showing X-ray diffraction results.
  • graph A1 is a graph showing the X-ray diffraction results of a commercially available bismuth selenide (Bi 2 Se 3 ) bulk
  • graph B1 is the X-ray diffraction results of a bismuth chloride oxide single crystal base material thin film.
  • graph C1 is a graph showing the X-ray diffraction results of a sample produced by a synthesis process;
  • a peak (the peak indicated by ⁇ in graph B1) was observed in the vicinity.
  • These angles 2.theta. correspond to diffraction angles caused by the (001) plane of the bismuth chloride oxide bulk and its higher-order planes. From this result, it was confirmed that a single crystal of bismuth chloride oxide was certainly formed on the STO single crystal substrate, and that the (001) plane and its higher-order planes were oriented parallel to the substrate surface. It turns out that there is
  • the produced sample was a single crystal of bismuth selenide, and it was (003) oriented. Moreover, since the single-crystal thin film is formed from the single-crystal base material, it is considered that the bismuth selenide single-crystal thin film was produced by a topotactic reaction.
  • FIG. 6 is a graph showing Raman shifts measured by the above apparatus.
  • graph A2 is a graph showing the Raman shift of a commercially available bismuth selenide (Bi 2 Se 3 ) single crystal bulk
  • graph B2 is a graph showing the Raman shift of a bismuth chloride oxide single crystal base material thin film.
  • Graph C2 is a graph showing the Raman shift of the sample produced by the synthesis process. As shown in graph B2, a peak was observed at 143 cm ⁇ 1 in the bismuth chloride oxide single crystal base material thin film, whereas as shown in graph C2, in the sample after synthesis (bismuth selenide thin film), 130, Two peaks were observed at 174 cm ⁇ 1 .
  • FIG. 7 is a graph showing the measurement results of the photocurrent. As shown in FIG. 7, when the laser irradiation was turned on and off repeatedly, it was confirmed that the photocurrent flowed in accordance with the turning on. From this result, it was confirmed that the sample surface was a semiconductor.
  • the bismuth selenide thin film was prepared by using an aqueous solution of selenourea and replacing oxygen in the base material with chalcogen (selenium) by a topotactic reaction.
  • concentration of selenourea was changed to 10 mM, 20 mM, 40 mM, 60 mN, 80 mM, and 120 mM.
  • 150 ⁇ L of selenourea aqueous solution was prepared.
  • each aqueous solution was sealed in the glass pressure vessel together with the bismuth chloride oxide single crystal base material thin film, the temperature inside the glass pressure vessel was raised to 170 ° C., and the temperature was 170 ° C. 40 min. maintained.
  • the bismuth chloride oxide single crystal base material thin film was brought into contact with the vapor of the selenourea aqueous solution (hydrogen selenide gas) to perform selenization treatment by topotactic reaction.
  • each of the prepared samples bismuth chloride oxide single crystal base material thin film in contact with hydrogen selenide gas
  • FIG. 8 is a graph showing X-ray diffraction results.
  • graph A3 is a graph showing the X-ray diffraction results of a commercially available bulk bismuth selenide
  • graph B3 is a graph showing the X-ray diffraction results of a bismuth chloride oxide single crystal base material thin film.
  • the graphs (C310, C320, C340) of the X-ray diffraction results of the samples prepared using the selenourea aqueous solution having a concentration of 40 mM or less show the sixth peak of the (003) plane of bismuth selenide. 57 deg. Almost no peak is seen in the vicinity (Bi 2 Se 3 (0018)).
  • the graphs (C360, C380, C3120) of the X-ray diffraction results of the samples prepared using the selenourea aqueous solution with a concentration of 60 mM or more show 57 deg. It can be confirmed that peaks can be seen in the vicinity.
  • the sixth atomic layer of bismuth selenide is formed in the sample prepared using the selenourea aqueous solution having a concentration of 60 mM or more. Moreover, when the concentration is 60 mM or more, the higher the concentration, the 57 deg. It was confirmed that the peaks in the vicinity became higher. From this, it was confirmed that the number of atomic layers of bismuth selenide can be easily controlled by the concentration of the selenourea aqueous solution.
  • the present invention should not be limited to the above embodiments.
  • the method for producing a bismuth sulfide thin film and a bismuth selenide thin film as chalcogenide atomic layer films was illustrated, but the present invention can also be applied to other chalcogenide atomic layer films.
  • a chalcogenated hydrogen gas was generated by heating an aqueous solution containing chalcogen (aqueous thioacetamide solution, aqueous selenourea solution) sealed in a sealed container. Hydrogen gas may be generated. In this manner, the present invention can be modified without departing from its gist.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

This method for producing a chalcogenide-based atomic layer film involves: a base material forming step for forming a metal oxide single crystal base material having a metal oxide atomic layer; and a synthesizing step for generating a chalcogenide-based atomic layer by bringing the metal oxide single crystal base material into contact with a reducible chalcogen gas under a condition at a temperature lower than the melting point of the metal oxide single crystal base material to cause part or whole of the metal oxide atomic layer to undergo topotactic reaction.

Description

カルコゲナイド系原子層膜の製造方法Method for producing chalcogenide atomic layer film
 本開示は、カルコゲナイド系原子層膜の製造方法に関する。 The present disclosure relates to a method for manufacturing a chalcogenide atomic layer film.
 表面にカルコゲナイド系原子層を有するカルコゲン化合物(以下、カルコゲナイド系原子層物質)は、トポロジカル絶縁体として注目されている。例えば、トポロジカル絶縁体のディラック電子を利用したテラヘルツ検出デバイスへの応用に、カルコゲナイド系原子層物質が注目されている。中でも、膜状のカルコゲナイド系原子層物質、すなわちカルコゲナイド系原子層膜は、例えばテラヘルツ波を利用した高感度イメージセンサに利用することができる。よって、カルコゲナイド系原子層膜を容易に得ることができる製造方法が求められる。 A chalcogen compound having a chalcogenide atomic layer on its surface (hereinafter referred to as a chalcogenide atomic layer material) is attracting attention as a topological insulator. For example, chalcogenide-based atomic layer materials are attracting attention for application to terahertz detection devices using Dirac electrons of topological insulators. Among them, a film-like chalcogenide-based atomic layer material, that is, a chalcogenide-based atomic layer film can be used, for example, in a high-sensitivity image sensor using terahertz waves. Therefore, there is a demand for a manufacturing method that can easily obtain a chalcogenide-based atomic layer film.
 特許文献1は、多層状金属酸化物単結晶母材を、母材融点及び母材昇華点のうちの低い方の温度未満であり且つ500~1000℃の範囲の温度条件下で、カルコゲンガスと不活性搬送ガスとの混合ガスとに接触させることにより、カルコゲナイド系多層原子層膜を合成する方法を開示する。 Patent Document 1 discloses that a multi-layered metal oxide single crystal base material is treated with a chalcogen gas under temperature conditions below the lower temperature of the base material melting point and the base material sublimation point and in the range of 500 to 1000 ° C. Disclosed is a method of synthesizing chalcogenide-based multi-atomic layer films by contact with a gas mixture with an inert carrier gas.
 特許文献2は、カルコゲナイド系原子層物質としてのテルル化ビスマスのナノ粒子の製造方法を開示する。特許文献2に開示の方法によれば、テルル化ビスマスナノ粒子は、塩化ビスマスと保護材とを溶媒に溶かした溶液と水酸化アルカリ金属水溶液とを混ぜて混合溶液を作製し、その混合溶液をテルルと還元剤と共に耐圧容器に入れて密閉状態で耐圧容器の中を攪拌しながら還元反応をさせることにより、合成される。 Patent Document 2 discloses a method for producing nanoparticles of bismuth telluride as a chalcogenide-based atomic layer material. According to the method disclosed in Patent Document 2, bismuth telluride nanoparticles are prepared by mixing a solution of bismuth chloride and a protective material dissolved in a solvent with an aqueous alkali metal hydroxide solution to prepare a mixed solution, and the mixed solution is added with tellurium. and a reducing agent are placed in a pressure vessel, and the reduction reaction is allowed to occur while stirring the inside of the pressure vessel in a sealed state.
 非特許文献1は、ビスマスハライドからハライド系金属酸化物(金属オキシハライド)を経由してメイズ状のカルコゲナイド系多層原子層物質を合成する方法を開示する。 Non-Patent Document 1 discloses a method of synthesizing a maize-like chalcogenide-based multilayer atomic layer material from bismuth halide via a halide-based metal oxide (metal oxyhalide).
特開2021-161015号公報JP 2021-161015 A 特開2005-343782号公報JP-A-2005-343782
  J. Zhang et. al., Chinese Science Bulletin, 59, 1787, (2014) DOI: 10.1007/s11434-014-0292-8 J. Zhang et. al., Chinese Science Bulletin, 59, 1787, (2014) DOI: 10.1007/s11434-014-0292-8
(発明が解決しようとする課題)
 特許文献1に記載の方法によれば、カルコゲナイド系原子層膜を製造することはできるが、反応温度(合成温度)が500℃以上と高いので、なお改善の余地がある。また、特許文献2に記載の方法及び非特許文献1に記載の方法では、カルコゲナイド系原子層膜を製造することができない。
(Problems to be solved by the invention)
According to the method described in Patent Document 1, a chalcogenide-based atomic layer film can be produced, but the reaction temperature (synthesis temperature) is as high as 500° C. or higher, so there is still room for improvement. In addition, the method described in Patent Document 2 and the method described in Non-Patent Document 1 cannot produce a chalcogenide-based atomic layer film.
 本発明は、比較的低温で、カルコゲナイド系原子層膜を得る製造方法を提供することを目的とする。 An object of the present invention is to provide a manufacturing method for obtaining a chalcogenide-based atomic layer film at a relatively low temperature.
 本開示は、金属酸化物原子層を有する金属酸化物単結晶母材を形成する母材形成工程と、金属酸化物単結晶母材を、金属酸化物単結晶母材の融点よりも低い温度条件下で還元性のあるカルコゲンガスに接触させることにより、金属酸化物原子層の一部又は全部をトポタクティック反応させて、カルコゲナイド系原子層を生成する合成工程と、を含む、カルコゲナイド系原子層膜の製造方法を提供する。 The present disclosure provides a base material forming step of forming a metal oxide single crystal base material having a metal oxide atomic layer, and a temperature condition lower than the melting point of the metal oxide single crystal base material. a synthesis step of subjecting part or all of the metal oxide atomic layer to a topotactic reaction to produce a chalcogenide atomic layer by contacting it with a reducing chalcogen gas below. A method for manufacturing a membrane is provided.
 上記合成工程は、密閉容器内にて行われるように構成することができる  The above synthesis process can be configured to be performed in a closed container
 上記合成工程にて、金属酸化物単結晶母材を5vol%以下の濃度の還元性のあるカルコゲンガスに接触させる、ように構成することもできる。この場合、上記還元性のあるカルコゲンガスの濃度は1vol%未満であるのが好ましい。 In the above synthesis step, the metal oxide single crystal base material may be brought into contact with a reducing chalcogen gas having a concentration of 5 vol % or less. In this case, the concentration of the reducing chalcogen gas is preferably less than 1 vol %.
 上記合成工程が100℃以上500℃未満の温度条件下で行われる、ように構成することもできる。 It is also possible to configure such that the synthesis step is carried out under temperature conditions of 100°C or more and less than 500°C.
 上記合成工程が、加圧条件下で行われるように構成することもできる。この場合、上記合成工程が、1atmよりも高く20atm以下の圧力条件下、好ましくは1atmよりも高く10atm以下の圧力条件下で行われる、ように構成することもできる。 The above synthesis step can also be configured to be performed under pressurized conditions. In this case, the synthesis step can also be configured to be carried out under pressure conditions of more than 1 atm and less than or equal to 20 atm, preferably more than 1 atm and less than or equal to 10 atm.
 上記還元性のあるカルコゲンガスは、カルコゲン化水素ガス又は、カルコゲンガスと水素ガスとの混合ガスである、というように構成することもできる。この場合、上記還元性のあるカルコゲンガスは、硫化水素ガス、セレン化水素ガス、テルル化水素ガス、硫黄ガスと水素ガスとの混合ガス、セレンガスと水素ガスとの混合ガス、テルルガスと水素ガスとの混合ガス、からなる群より選択される少なくとも1種である、というように構成することもできる。 The reducing chalcogen gas may be a hydrogen chalcogenide gas or a mixed gas of chalcogen gas and hydrogen gas. In this case, the reducing chalcogen gas includes hydrogen sulfide gas, hydrogen selenide gas, hydrogen telluride gas, mixed gas of sulfur gas and hydrogen gas, mixed gas of selenium gas and hydrogen gas, and tellurium gas and hydrogen gas. and at least one selected from the group consisting of a mixed gas of
 上記合成工程は、金属酸化物単結晶母材と、還元性のあるカルコゲンガスの発生源としてのカルコゲンを含む水溶液とを、密閉容器中に封入し、金属酸化物単結晶母材の融点よりも低く且つ100℃以上500℃未満の温度条件下で、金属酸化物単結晶母材をカルコゲンを含む水溶液から生じる還元性のあるカルコゲンガスに接触させる工程であるように構成することもできる。 In the above synthesis step, a metal oxide single crystal base material and an aqueous solution containing chalcogen as a source of reducing chalcogen gas are enclosed in a sealed container, and the temperature is lower than the melting point of the metal oxide single crystal base material. It can also be configured to be a step of contacting a metal oxide single crystal base material with a reducing chalcogen gas generated from a chalcogen-containing aqueous solution under a low temperature condition of 100° C. or more and less than 500° C.
 上記金属酸化物単結晶母材は、ビスマス系金属酸化物であり、上記カルコゲナイド系原子層膜は、カルコゲン化ビスマス薄膜である、というように構成することもできる。この場合、上記カルコゲナイド系原子層膜は、硫化ビスマス薄膜、セレン化ビスマス薄膜、テルル化ビスマス薄膜、からなる群より選択される1種である、というように構成することもできる。 The metal oxide single crystal base material may be a bismuth-based metal oxide, and the chalcogenide-based atomic layer film may be a chalcogenide bismuth thin film. In this case, the chalcogenide-based atomic layer film may be one selected from the group consisting of a bismuth sulfide thin film, a bismuth selenide thin film, and a bismuth telluride thin film.
 上記母材形成工程は、金属酸化物単結晶母材の面内格子定数と略一致する面内格子定数を持つ単結晶基板上に、金属酸化物単結晶母材を結晶成長させる工程である、というように構成することができる。ここで、「略一致」とは、母材形成工程にて、単結晶基板の結晶方位と金属酸化物単結晶母材の結晶方位が揃うように金属酸化物単結晶が結晶成長する程度に、両者の面内格子定数が一致することを意味する。この場合、単結晶基板はSTO単結晶基板であり、金属酸化物単結晶母材は塩化酸化ビスマスである、というように構成することもできる。 The base material forming step is a step of crystal-growing a metal oxide single crystal base material on a single crystal substrate having an in-plane lattice constant substantially matching the in-plane lattice constant of the metal oxide single crystal base material. It can be configured as follows. Here, "substantially coincident" means that the metal oxide single crystal grows so that the crystal orientation of the single crystal substrate and the crystal orientation of the metal oxide single crystal base material are aligned in the base material forming step. It means that the in-plane lattice constants of both are the same. In this case, the single crystal substrate may be an STO single crystal substrate, and the metal oxide single crystal base material may be bismuth chloride oxide.
 本発明によれば、例えば500℃未満の比較的低温で、カルコゲナイド系原子層膜を製造することができる。 According to the present invention, a chalcogenide-based atomic layer film can be produced at a relatively low temperature of, for example, less than 500°C.
図1は、母材形成工程にて用いることができるミストCVD装置の概略構成を示す。FIG. 1 shows a schematic configuration of a mist CVD apparatus that can be used in the base material forming process. 図2は、合成工程に用いることができる反応装置の概略図を示す。FIG. 2 shows a schematic diagram of a reactor that can be used in the synthesis process. 図3は、実施例1にて成膜された塩化酸化ビスマス薄膜のX線回折極点測定結果を示すFIG. 3 shows the X-ray diffraction pole measurement result of the bismuth chloride oxide thin film formed in Example 1. 図4は、実施例1に用いたSTO単結晶基板のX線回折極点測定結果を示す。4 shows the X-ray diffraction pole measurement result of the STO single crystal substrate used in Example 1. FIG. 図5は、実施例2にて作製したサンプルのX線回折結果を示す。5 shows the X-ray diffraction results of the sample produced in Example 2. FIG. 図6は、実施例2にて作製したサンプルのラマンシフトを示す。FIG. 6 shows the Raman shift of the sample produced in Example 2. FIG. 図7は、実施例2にて作製したサンプルについての光電流の計測結果を示す。FIG. 7 shows the photocurrent measurement results of the sample produced in Example 2. FIG. 図8は、実施例2にてセレノ尿素水溶液の濃度を変えて作製した各サンプルについてのX線回折結果を示す。FIG. 8 shows the X-ray diffraction results for each sample prepared in Example 2 by changing the concentration of the selenourea aqueous solution.
 本実施形態に係る製造方法により製造されるカルコゲナイド系原子層膜は、カルコゲンと金属との化合物により構成される原子層(カルコゲナイド系原子層)を有する膜状体である。ここで、上記カルコゲナイド系原子層とは、金属とカルコゲンとで構成される結晶構造をなす原子1個若しくは数個分の厚みの層を言い、単層であっても良いし多層であっても良い。カルコゲナイド系原子層1層中の各元素は共有結合或いはイオン結合等により強固に結合されている。また、カルコゲナイド系原子層が多層である場合、積層方向に隣接したそれぞれの原子層はファンデルワールス力等の弱い力により結合されている。1層のカルコゲナイド系原子層の厚みは概ね1ナノメートル程度と推察される。従って、例えば6~10層のカルコゲナイド系原子層が積層されている場合、原子層の総厚みは、概ね6~10ナノメートル程度と推察される。 The chalcogenide-based atomic layer film manufactured by the manufacturing method according to the present embodiment is a film-like body having an atomic layer (chalcogenide-based atomic layer) composed of a compound of chalcogen and metal. Here, the chalcogenide-based atomic layer refers to a layer having a thickness of one or several atoms forming a crystal structure composed of metal and chalcogen, and may be a single layer or multiple layers. good. Each element in one chalcogenide-based atomic layer is strongly bonded by a covalent bond, an ionic bond, or the like. Further, when the chalcogenide-based atomic layers are multi-layered, each atomic layer adjacent in the stacking direction is bonded by a weak force such as van der Waals force. The thickness of one chalcogenide atomic layer is estimated to be approximately 1 nanometer. Therefore, for example, when 6 to 10 chalcogenide atomic layers are laminated, the total thickness of the atomic layers is estimated to be approximately 6 to 10 nanometers.
 また、本実施形態に係る製造方法により製造されるカルコゲナイド系原子層膜は、カルコゲナイド系原子層のみにより膜状に構成されていても良いし、カルコゲナイド系原子層及びその他の物質により膜状に構成されていても良い。例えば、膜状の母材表面上にカルコゲナイド系原子層が形成される場合、カルコゲナイド系原子層膜は、膜状の母材及び母材表面に形成されたカルコゲナイド系原子層により構成される。 In addition, the chalcogenide-based atomic layer film manufactured by the manufacturing method according to the present embodiment may be configured in the form of a film by the chalcogenide-based atomic layer alone, or may be configured in the form of a film by the chalcogenide-based atomic layer and other substances. It's okay to be. For example, when a chalcogenide-based atomic layer is formed on the surface of a film-like base material, the chalcogenide-based atomic layer film is composed of the film-like base material and the chalcogenide-based atomic layer formed on the surface of the base material.
 本実施形態に係るカルコゲナイド系原子層膜の製造方法は、母材形成工程と、合成工程とを含む。 The method for manufacturing a chalcogenide-based atomic layer film according to this embodiment includes a base material forming step and a synthesizing step.
 母材形成工程では、金属酸化物単結晶母材が形成される。この金属酸化物単結晶母材は、表面に金属酸化物からなる原子層(金属酸化物原子層)を有する。また、金属酸化物単結晶母材は、金属(A)を含み、その金属(A)を目的生成物であるカルコゲナイド系原子層膜のカルコゲナイド系原子層の結晶格子の中心金属とすることができる。金属(A)として、モリブデン、タングステン、バナジウム、ニオブ、タンタル、チタン、ジルコニウム、ハフニウム、ビスマス、アンチモン、ゲルマニウム。スズ、ガリウム、インジウム、白金、鉄、及び、イリジウムからなる群より選択される少なくとも1種の金属を例示できる。 In the base material forming step, a metal oxide single crystal base material is formed. This metal oxide single crystal base material has an atomic layer (metal oxide atomic layer) made of metal oxide on the surface. In addition, the metal oxide single crystal base material contains the metal (A), and the metal (A) can be used as the center metal of the crystal lattice of the chalcogenide atomic layer of the chalcogenide atomic layer film, which is the target product. . Molybdenum, tungsten, vanadium, niobium, tantalum, titanium, zirconium, hafnium, bismuth, antimony and germanium as metal (A). Examples include at least one metal selected from the group consisting of tin, gallium, indium, platinum, iron, and iridium.
 金属酸化物単結晶母材の結晶構造は、金属酸化物原子層を形成し得るものであればよい。金属酸化物単結晶は、正方晶構造、蛍石型構造、コランダム型構造、スピネル型構造、ペロブスカイト型構造、イルメナイト型構造、シーライト型構造、KNiF型構造、パイロクロア型構造、及び、マグネトプランバイト型構造からなる群から選択される結晶構造を有するものであってもよい。 The crystal structure of the metal oxide single crystal base material is not particularly limited as long as it can form a metal oxide atomic layer. The metal oxide single crystal has a tetragonal structure, a fluorite structure, a corundum structure, a spinel structure, a perovskite structure, an ilmenite structure, a scheelite structure, a K2NiF structure, a pyrochlore structure, and a magneto It may have a crystal structure selected from the group consisting of plumbite-type structures.
 また、このような母材としては、特定の面方位の結晶面を表面(露出面)に有するものを利用することが望ましい。さらに、母材の表面(露出面)は、上記特定の面方位において金属(A)の配列が、所望のカルコゲナイド系原子層の方向と垂直な面における金属(A)の配列と同じ面であるのが望ましい。特定の面方位の結晶面を表面(露出面)に有する母材としては、例えば、面方位が(001)、(100)、(101)となる面、及び、それらの傾斜面の中から選択される1種の結晶面を表面(露出面)に有する母材、又は低エネルギー面からなる結晶面を表面(露出面)に有する母材を利用することも可能である。 In addition, as such a base material, it is desirable to use a material having a crystal plane with a specific plane orientation on its surface (exposed surface). Furthermore, the surface (exposed surface) of the base material is a plane in which the arrangement of the metal (A) in the specific plane orientation is the same as the arrangement of the metal (A) in the plane perpendicular to the direction of the desired chalcogenide atomic layer. is desirable. As the base material having a crystal plane of a specific plane orientation on the surface (exposed plane), for example, planes with plane orientations of (001), (100), (101), and their inclined planes are selected. It is also possible to use a base material having a surface (exposed surface) of one type of crystal plane that has a low energy surface (exposed surface) or a base material that has a low-energy crystal surface (exposed surface).
 金属酸化物単結晶母材は、単純な金属酸化物、例えばビスマス系の金属酸化物であれば酸化ビスマス、タングステン系の金属酸化物であれば酸化タングステン、であっても良いし、他の金属との複合金属酸化物或いはハロゲン(塩素、臭素、ヨウ素)とのハロゲン化金属酸化物であっても良い。金属酸化物単結晶母材が金属(A)及び他の金属との複合金属酸化物である場合、他の金属は、金属(A)以外の金属であり、且つ、カルシウム、ケイ素、リチウム、ベリリウム、ナトリウム、マグネシウム、カリウム、ルビジウム、ストロンチウム、セシウム、バリウム、ゲルマニウム、チタン、アルミニウム、ガリウム、インジウムからなる群より選択される少なくとも1種の金属であるのが良い。また、ハロゲン化金属酸化物として、例えば、塩化酸化ビスマス(オキシ塩化ビスマス)を例示することができる。なお、上記他の金属或いはハロゲンは、後述する合成工程において、トポタクティック反応により除去される必要がある。よって、合成工程にて除去が容易なハロゲンを用いたハロゲン化金属酸化物が、金属酸化物単結晶母材として好適に用いられる。 The metal oxide single crystal base material may be a simple metal oxide, for example, bismuth oxide for a bismuth-based metal oxide, tungsten oxide for a tungsten-based metal oxide, or other metals. It may be a composite metal oxide with or a halogenated metal oxide with halogen (chlorine, bromine, iodine). When the metal oxide single crystal base material is a composite metal oxide with metal (A) and other metals, the other metals are metals other than metal (A) and calcium, silicon, lithium, beryllium , sodium, magnesium, potassium, rubidium, strontium, cesium, barium, germanium, titanium, aluminum, gallium, and indium. Further, examples of metal halide oxides include bismuth chloride oxide (bismuth oxychloride). The other metals or halogens mentioned above must be removed by a topotactic reaction in the synthesis process described later. Therefore, a halogenated metal oxide using a halogen that can be easily removed in the synthesis process is preferably used as the metal oxide single crystal base material.
 金属酸化物単結晶母材は、薄膜状であるのが良い。薄膜状の金属酸化物単結晶母材は、例えばCVD法により基板上に堆積させることによって形成することができる。  The metal oxide single crystal base material is preferably in the form of a thin film. A thin-film metal oxide single crystal base material can be formed by depositing it on a substrate by, for example, a CVD method.
 図1は、母材形成工程にて用いることができるミストCVD装置の概略構成を示す。図1に示すように、このミストCVD装置10は、ミスト発生装置11と、加熱炉12と、トラップ容器13と、薄めガス配管14と、搬送ガス配管15と、ミスト配管16と、出口配管17と、廃気配管18と、超音波発振子19とを含む。 FIG. 1 shows a schematic configuration of a mist CVD apparatus that can be used in the base material forming process. As shown in FIG. 1, this mist CVD apparatus 10 includes a mist generator 11, a heating furnace 12, a trap container 13, a thinning gas pipe 14, a carrier gas pipe 15, a mist pipe 16, and an outlet pipe 17. , an exhaust pipe 18 and an ultrasonic oscillator 19 .
 薄めガス配管14には、マスフローコントローラにより流量制御された薄めガスとしての窒素ガスが流通する。また、搬送ガス配管15には、マスフローコントローラにより流量制御された搬送ガスとしての窒素ガスが流通する。 Nitrogen gas flows through the thinning gas pipe 14 as a thinning gas whose flow rate is controlled by a mass flow controller. Nitrogen gas flows through the carrier gas pipe 15 as a carrier gas whose flow rate is controlled by a mass flow controller.
 ミスト発生装置11は容器状に構成されており、金属酸化物単結晶母材の構成成分が含まれた溶液である前駆体溶液PSが充填される。搬送ガス配管15の下流端はミスト発生装置11の上部空間に開口するように、ミスト発生装置11に接続される。また、ミスト発生装置11の底部に超音波発振子19が取り付けられる。 The mist generator 11 is configured in a container shape, and is filled with a precursor solution PS, which is a solution containing constituents of the metal oxide single crystal base material. The downstream end of the carrier gas pipe 15 is connected to the mist generator 11 so as to open to the upper space of the mist generator 11 . Also, an ultrasonic oscillator 19 is attached to the bottom of the mist generator 11 .
 ミスト配管16の一方端はミスト発生装置11の上部空間に開口するように、ミスト発生装置11に接続される。また、薄めガス配管14の下流端及びミスト配管16の他方端は、加熱炉12の入口ポート12inに接続される。加熱炉12内の所定位置に単結晶基板SBが設置される。加熱炉12の出口ポート12outには、出口配管17の一方端が接続される。出口配管17の他方端はトラップ容器13に接続される。トラップ容器13内には水が所定の液面高さまで充填されており、出口配管17の他方端は、トラップ容器13内の水中に開口するように、トラップ容器13に接続される。また、廃気配管18の一方端はトラップ容器13内の気体部分に開口するようにトラップ容器13に接続され、廃気配管18の他方端は大気開放される。 One end of the mist pipe 16 is connected to the mist generator 11 so as to open to the upper space of the mist generator 11 . The downstream end of the thinning gas pipe 14 and the other end of the mist pipe 16 are connected to the inlet port 12in of the heating furnace 12 . A single crystal substrate SB is placed at a predetermined position in the heating furnace 12 . One end of an outlet pipe 17 is connected to the outlet port 12out of the heating furnace 12 . The other end of outlet pipe 17 is connected to trap container 13 . The trap container 13 is filled with water up to a predetermined liquid level, and the other end of the outlet pipe 17 is connected to the trap container 13 so as to open into the water inside the trap container 13 . One end of the waste gas pipe 18 is connected to the trap container 13 so as to open to the gas portion in the trap container 13, and the other end of the waste gas pipe 18 is open to the atmosphere.
 このようなミストCVD装置10において、超音波発振子19を発振させることにより、ミスト発生装置11内の前駆体溶液PSがミスト化する。ミスト化された前駆体溶液(以下、前駆体溶液ミスト)は、搬送ガス(窒素ガス)とともにミスト配管16を流れる。ミスト配管16を流れる前駆体溶液ミストはさらに薄めガス(窒素ガス)に合流して希釈されてから加熱炉12内に侵入する。加熱炉12内の温度は、加熱炉12内にて前駆体溶液ミストが反応(分解)して単結晶基板上に目的とする金属酸化物が堆積することができるような温度に予め設定されている。従って、加熱炉12内に侵入した前駆体溶液ミストは加熱炉12内で分解して金属酸化物として単結晶基板上に堆積する。これにより、薄膜状の金属酸化物単結晶母材が形成される。また、加熱炉12内にて反応した後のガス、及び未反応ガスは、出口配管17を流れてトラップ容器13内に導入され、トラップ容器13内に充填された水により浄化された後に、廃気配管18を通って大気に放出される。 By oscillating the ultrasonic oscillator 19 in the mist CVD apparatus 10, the precursor solution PS in the mist generator 11 is misted. The misted precursor solution (hereinafter referred to as precursor solution mist) flows through the mist pipe 16 together with the carrier gas (nitrogen gas). The precursor solution mist flowing through the mist pipe 16 is further merged with the thinning gas (nitrogen gas) and diluted before entering the heating furnace 12 . The temperature in the heating furnace 12 is set in advance to such a temperature that the precursor solution mist can react (decompose) in the heating furnace 12 to deposit the desired metal oxide on the single crystal substrate. there is Therefore, the precursor solution mist that has entered the heating furnace 12 is decomposed in the heating furnace 12 and deposited on the single crystal substrate as metal oxide. Thereby, a thin-film metal oxide single crystal base material is formed. In addition, the gas that has reacted in the heating furnace 12 and the unreacted gas flow through the outlet pipe 17 and are introduced into the trap container 13, purified by the water filled in the trap container 13, and then discharged. It is discharged to the atmosphere through the air pipe 18 .
 単結晶基板上に堆積させる薄膜を目的とする金属酸化物単結晶とするために、薄膜を基板上でエピタキシャル成長させるのが好ましい。この場合、単結晶基板の表面に露出している結晶方位の格子定数(面内格子定数)と、目的とする金属酸化物単結晶薄膜の面内格子定数が略一致するような、単結晶基板を選択するのが良い。例えば、金属酸化物単結晶として、面内格子定数a=3.89Åの塩化酸化ビスマスを形成する場合、単結晶基板として、面内格子定数a=3.905であるチタン酸ストロンチウム(以下、STO)単結晶基板を用いることができる。これによれば、単結晶基板上に、単結晶基板の結晶方位と同じ結晶方位を持つ金属酸化物単結晶母材を結晶成長させることができる。 It is preferable to epitaxially grow the thin film on the substrate in order to obtain a metal oxide single crystal intended for the thin film deposited on the single crystal substrate. In this case, the single-crystal substrate is such that the lattice constant (in-plane lattice constant) of the crystal orientation exposed on the surface of the single-crystal substrate substantially matches the in-plane lattice constant of the target metal oxide single-crystal thin film. is better to choose. For example, when forming bismuth chloride oxide with an in-plane lattice constant a of 3.89 Å as a metal oxide single crystal, strontium titanate (hereinafter referred to as STO ) single crystal substrates can be used. According to this, a metal oxide single crystal base material having the same crystal orientation as that of the single crystal substrate can be crystal-grown on the single crystal substrate.
 合成工程では、母材形成工程にて形成された金属酸化物単結晶母材を用いてカルコゲナイド系原子層が生成される。このとき、母材形成工程にて形成された金属酸化物単結晶母材の融点よりも低い所定の温度条件下で、還元性のあるカルコゲンガスに金属酸化物単結晶母材を接触させる。すると、金属酸化物単結晶母材とカルコゲンガスとのトポタクティック反応が起き、金属酸化物単結晶母材の結晶と生成物の結晶とで三次元的な方位関係が保持されながら、その母材中に含まれている酸素や他の金属やハロゲンとカルコゲンとが入れ替わる。これにより、カルコゲンと金属との化合物の単結晶層が生成される。すなわち、合成工程では、金属酸化物単結晶母材の金属酸化物原子層の一部又は全部を還元性のあるカルコゲンガスとトポタクティック反応させることにより、カルコゲナイド系原子層が、生成される。 In the synthesis process, a chalcogenide atomic layer is generated using the metal oxide single crystal base material formed in the base material formation process. At this time, the metal oxide single crystal base material is brought into contact with a reducing chalcogen gas under a predetermined temperature condition lower than the melting point of the metal oxide single crystal base material formed in the base material forming step. Then, a topotactic reaction occurs between the metal oxide single crystal base material and the chalcogen gas, and while the crystals of the metal oxide single crystal base material and the crystals of the product maintain a three-dimensional orientation relationship, the base material Oxygen, other metals and halogens contained in the material are replaced with chalcogen. This produces a single crystal layer of a compound of chalcogen and metal. That is, in the synthesis step, a chalcogenide-based atomic layer is produced by subjecting part or all of the metal oxide atomic layer of the metal oxide single crystal matrix to a topotactic reaction with a reducing chalcogen gas.
 合成工程にて金属酸化物単結晶母材に接触される還元性のあるカルコゲンガスとは、カルコゲンを含み且つ還元作用を有するガスである。還元性のあるカルコゲンガスは、還元作用を持つ成分とカルコゲンとの化合物ガスでもよいし、還元作用を持つガスとカルコゲンガスとの混合ガスでも良い。また、上記化合物ガスは、カルコゲン化水素ガスであるとよい。さらに、上記混合ガスは、カルコゲンガスと水素ガスとの混合ガスであるとよい。上記カルコゲン化水素ガスとして、硫化水素ガス、セレン化水素ガス、テルル化水素ガスを例示できる。上記混合ガスとして、硫黄ガスと水素ガスとの混合ガス、セレンガスと水素ガスとの混合ガス、テルルガスと水素ガスとの混合ガス、を例示できる。従って、還元性のあるカルコゲンガスは、上記のように例示したガスからなる群より選択される少なくとも1種であるのが良い。 The reducing chalcogen gas that comes into contact with the metal oxide single crystal base material in the synthesis process is a gas that contains chalcogen and has a reducing action. The reducing chalcogen gas may be a compound gas of a component having a reducing action and chalcogen, or a mixed gas of a gas having a reducing action and a chalcogen gas. Further, the compound gas is preferably a chalcogenide gas. Furthermore, the mixed gas is preferably a mixed gas of chalcogen gas and hydrogen gas. Examples of the hydrogen chalcogenide gas include hydrogen sulfide gas, hydrogen selenide gas, and hydrogen telluride gas. Examples of the mixed gas include a mixed gas of sulfur gas and hydrogen gas, a mixed gas of selenium gas and hydrogen gas, and a mixed gas of tellurium gas and hydrogen gas. Therefore, the reducing chalcogen gas is preferably at least one selected from the group consisting of the gases exemplified above.
 合成工程は、密閉容器内で行われると良い。密閉容器内で合成工程を行うことにより、毒性の強いカルコゲンガスの外部への放出量を低減することができる。また、密閉容器内で合成工程を行うことにより、必要最低限のカルコゲンガスを用いてカルコゲナイド系原子層膜を生成することができ、カルコゲンガスの無駄な消費を防止することができる。 The synthesis process should be carried out in a closed container. By carrying out the synthesis step in a closed container, the amount of highly toxic chalcogen gas released to the outside can be reduced. In addition, by performing the synthesis process in a closed container, the chalcogenide-based atomic layer film can be produced using the minimum required amount of chalcogen gas, and wasteful consumption of chalcogen gas can be prevented.
 合成工程は、金属酸化物単結晶母材の融点よりも低い温度であって、且つ、100℃以上500℃未満の温度条件下で行われるのが良い。これによれば、500℃未満の比較的低温条件下で、カルコゲナイド系原子層膜を製造することができる。 The synthesis step is preferably performed at a temperature lower than the melting point of the metal oxide single crystal base material and at a temperature of 100°C or higher and lower than 500°C. According to this, a chalcogenide-based atomic layer film can be produced under relatively low temperature conditions of less than 500.degree.
 合成工程は、加圧条件下で行われる。加圧条件とは、少なくとも大気圧よりも高い圧力条件、すなわち1atmを超える圧力が印加されるという条件である。従って、合成工程の実施中に反応装置内のガスを外部に放出するような反応装置では原則的に加圧条件を満たすことができず、密閉容器内にて合成工程を行うことによって、加圧条件を満たすことができる。この場合、密閉容器に、母材形成工程にて形成した金属酸化物単結晶母材とカルコゲンガスを封入し、金属酸化物単結晶母材の融点よりも低く且つ100℃以上500℃未満の所定の反応温度まで密閉容器内を昇温させ、その反応温度を所定時間維持することにより、合成工程を行うと良い。これによれば、密閉容器内の気体が加熱されることにより膨張して加圧条件を満たすことができる。このように、密閉容器内に積極的に圧力を印加する必要はなく、密閉容器内の温度、或いは密閉容器内で生じるカルコゲンガスの濃度によって容器内圧を調整して加圧条件を満たすことができる。また、加圧条件は、上記したように1atmより大きい圧力である。また、圧力が20atmを超えると、密閉容器の十分な耐圧性能を確保するために密閉容器のコストが高くなる。よって、加圧条件は、1atmよりも大きく20atm以下、好ましくは1atmよりも大きく10atm以下、という条件であるのが良い。 The synthesis process is performed under pressurized conditions. The pressurization condition is at least a pressure condition higher than the atmospheric pressure, that is, a condition that a pressure exceeding 1 atm is applied. Therefore, in principle, a reactor that releases the gas inside the reactor to the outside during the synthesis process cannot satisfy the pressurization condition. conditions can be met. In this case, the metal oxide single crystal base material formed in the base material forming step and the chalcogen gas are enclosed in a closed container, and the temperature is lower than the melting point of the metal oxide single crystal base material and is 100° C. or more and less than 500° C. It is preferable to carry out the synthesis step by raising the temperature in the closed vessel to the reaction temperature of and maintaining the reaction temperature for a predetermined time. According to this, the gas in the sealed container is heated and expanded to satisfy the pressurization condition. In this way, it is not necessary to positively apply pressure to the inside of the closed container, and the pressure condition can be satisfied by adjusting the internal pressure of the container according to the temperature inside the closed container or the concentration of chalcogen gas generated inside the closed container. . Moreover, the pressurization condition is a pressure higher than 1 atm as described above. Further, when the pressure exceeds 20 atm, the cost of the closed container increases in order to ensure sufficient pressure resistance performance of the closed container. Therefore, the pressurization condition is preferably greater than 1 atm and 20 atm or less, preferably greater than 1 atm and 10 atm or less.
 合成工程にて用いる還元性のあるカルコゲンガスは、ボンベ等から合成工程が行われる反応容器(例えば密閉容器)内に導入しても良いが、テルル化水素はその不安定さのために安定的にボンベに封入することができない。また、還元性のあるカルコゲンガスは毒性が高いので、使用量の低減が望まれる。また、使用後の処理や反応容器等の清掃費用の点から見ても、還元性のあるカルコゲンガスの使用量の低減は、工業的利用上の効果が大きい。従って、還元性のあるカルコゲンガスを必要最低限の量だけ密閉容器内で発生させ、こうして発生させたガスを用いて密閉容器内で合成工程を行わせることにより、外部に排出されるカルコゲンガス量を低減することができる。この場合、合成工程にて、カルコゲンを含む水溶液を用いて還元性のあるカルコゲンガスを密閉容器内で発生させることができる。例えば、合成工程は、金属酸化物単結晶母材とカルコゲンを含む水溶液とを密閉容器内に封入し、金属酸化物単結晶母材の融点よりも低く且つ100℃以上500℃未満の温度条件下で、金属酸化物単結晶母材をカルコゲンを含む水溶液から生じる還元性のあるカルコゲンガスに接触させる工程であるように構成することができる。このような合成工程によれば、密閉容器内で毒性の高いカルコゲンガスを発生させることにより、外部からカルコゲンガスを反応容器に導入する場合と比較してより安全性を高めることができる。 The reducing chalcogen gas used in the synthesis process may be introduced from a cylinder or the like into the reaction vessel (for example, a closed vessel) where the synthesis process is performed, but hydrogen telluride is unstable due to its instability. cannot be sealed in cylinders. Also, since reducing chalcogen gas is highly toxic, it is desirable to reduce the amount used. Also, from the point of view of post-use processing and cleaning costs of reaction vessels and the like, reducing the amount of reducing chalcogen gas used is highly effective in terms of industrial utilization. Therefore, the amount of chalcogen gas discharged to the outside by generating the minimum amount of reducing chalcogen gas in a closed container and performing the synthesis process in the closed container using the gas thus generated. can be reduced. In this case, in the synthesis step, a reducing chalcogen gas can be generated in a sealed container using an aqueous solution containing chalcogen. For example, in the synthesis step, a metal oxide single crystal base material and an aqueous solution containing chalcogen are enclosed in a sealed container, and the temperature is lower than the melting point of the metal oxide single crystal base material and is 100° C. or more and less than 500° C. and the step of contacting the metal oxide single crystal base material with a reducing chalcogen gas generated from an aqueous solution containing chalcogen. According to such a synthesis process, by generating highly toxic chalcogen gas in the closed container, it is possible to improve safety compared to the case of introducing the chalcogen gas from the outside into the reaction container.
 図2は、合成工程に用いることができる反応装置の概略図を示す。図2に示すように、反応装置20は、密閉容器21と、ヒータ22とを備える。密閉容器21は、20atm以下の所定の圧力が印加されても破壊することのない程度の耐圧性能を有する耐圧容器である。ヒータ22は、密閉容器21の周囲に配されており、駆動(例えば通電)することにより密閉容器21内の温度を所定の反応温度に昇温し、且つ昇温した反応温度を一定時間維持することができるように構成される。 Figure 2 shows a schematic diagram of a reactor that can be used in the synthesis process. As shown in FIG. 2, the reaction device 20 includes a closed container 21 and a heater 22 . The sealed container 21 is a pressure-resistant container having a pressure-resistant performance that does not break even when a predetermined pressure of 20 atm or less is applied. The heater 22 is arranged around the closed container 21, and when driven (for example, energized), the temperature inside the closed container 21 is raised to a predetermined reaction temperature, and the raised reaction temperature is maintained for a certain period of time. configured to allow
 図2に示す反応装置20において、密閉容器21内に、母材形成工程にて形成した金属酸化物単結晶母材とカルコゲンを含む水溶液とを封入する。このとき、金属酸化物単結晶母材とカルコゲンを含む水溶液とが密閉容器21内で直接接触しないように、例えば仕切板等を密閉容器21内に設けていても良い。次いで、密閉容器21内の温度が、金属酸化物単結晶母材の融点より低く且つ100℃以上500℃未満の所定の反応温度となるように、ヒータ22を駆動制御する。そして、上記の反応温度を所定時間維持すると、密閉容器21内のカルコゲンを含む水溶液が加熱されて、還元性のあるカルコゲンガスの蒸気が発生する。さらに、こうして発生した還元性のあるカルコゲンガスが金属酸化物単結晶母材に密閉容器21内で接触することによってトポタクティック反応が起き、母材表面にカルコゲナイド系原子層が生成される。 In the reaction apparatus 20 shown in FIG. 2, the metal oxide single crystal base material formed in the base material forming step and the aqueous solution containing chalcogen are enclosed in the sealed container 21 . At this time, for example, a partition plate or the like may be provided in the closed container 21 so that the metal oxide single crystal base material and the aqueous solution containing chalcogen do not come into direct contact within the closed container 21 . Next, the heater 22 is driven and controlled so that the temperature inside the sealed container 21 is lower than the melting point of the metal oxide single crystal matrix and reaches a predetermined reaction temperature of 100° C. or more and less than 500° C. When the reaction temperature is maintained for a predetermined period of time, the aqueous solution containing chalcogen in the sealed container 21 is heated to generate vapor of reducing chalcogen gas. Further, when the chalcogen gas thus generated and having a reducing property contacts the metal oxide single crystal base material in the closed container 21, a topotactic reaction occurs and a chalcogenide-based atomic layer is generated on the base material surface.
 合成工程では、上記したように、還元性のあるカルコゲンガスに、金属酸化物単結晶母材を接触させる。このときカルコゲンガスの還元作用によって金属酸化物単結晶母材中の酸素原子の脱離が促進される。これによりトポタクティック反応が促進される。よって、比較的低温度の温度条件下、例えば100℃以上500℃未満の温度条件下にて合成工程を行っても、トポタクティック反応が進行して、カルコゲナイド系原子層膜を得ることができる。例えば後述するように、170℃の温度条件下で合成工程を行った場合であっても、カルコゲナイド系原子層としてのセレン化ビスマス薄膜を合成できることが確認されている。また、低濃度の還元性のあるカルコゲンガスを用いても十分にトポタクティック反応が進行して、カルコゲナイド系原子層膜を得ることができる。 In the synthesis process, as described above, the metal oxide single crystal base material is brought into contact with the reducing chalcogen gas. At this time, the desorption of oxygen atoms in the metal oxide single crystal base material is promoted by the reducing action of the chalcogen gas. This promotes topotactic reactions. Therefore, even if the synthesis step is performed under a relatively low temperature condition, for example, a temperature condition of 100° C. or more and less than 500° C., the topotactic reaction proceeds and a chalcogenide atomic layer film can be obtained. . For example, as will be described later, it has been confirmed that a bismuth selenide thin film as a chalcogenide atomic layer can be synthesized even when the synthesis process is performed at a temperature of 170°C. In addition, even when a low-concentration reducing chalcogen gas is used, the topotactic reaction proceeds sufficiently to obtain a chalcogenide-based atomic layer film.
 また、合成工程を密閉容器内で行い、温度条件、還元性のあるカルコゲンガスの濃度条件等を調整することにより、密閉容器内の圧力を、1atmよりも大きく20atm以下の加圧状態に設定することができる。このような加圧条件下で合成工程を行うことにより、トポタクティック反応がより促進される。これにより、より低い温度でカルコゲナイド系原子層膜を得ることができる。さらに、還元性のあるカルコゲンガスを加圧条件下で金属酸化物単結晶母材に接触させることにより、還元性のないカルコゲンガスを常圧で金属酸化物単結晶母材に接触させるのみではトポタクティック反応が起こらなかったものに対しても、トポタクティック反応を起こしてカルコゲナイド系原子層膜を得ることができる。 In addition, the synthesis process is performed in a closed vessel, and the pressure in the closed vessel is set to a pressurized state of greater than 1 atm and 20 atm or less by adjusting the temperature conditions, the concentration conditions of the reducing chalcogen gas, and the like. be able to. By carrying out the synthesis step under such pressurized conditions, the topotactic reaction is further promoted. Thereby, a chalcogenide-based atomic layer film can be obtained at a lower temperature. Furthermore, by bringing a reducing chalcogen gas into contact with a metal oxide single crystal base material under pressurized conditions, the topography can be achieved only by bringing a non-reducing chalcogen gas into contact with the metal oxide single crystal base material under normal pressure. A chalcogenide-based atomic layer film can be obtained by causing a topotactic reaction even for a material that did not undergo a tactical reaction.
 密閉容器21内にて発生する還元性のあるカルコゲンガスの濃度は、5vol%以下、より望ましくは1vol%未満、さらに望ましくは0.1vol%未満であると良い。このような低濃度のカルコゲンガスを使用することにより、安全性をより高めることができる。さらに、本実施形態においては、このような低濃度のカルコゲンガスを用いても、トポタクティック反応を進行させることができる。 The concentration of the reducing chalcogen gas generated in the sealed container 21 is preferably 5 vol% or less, more preferably less than 1 vol%, and even more preferably less than 0.1 vol%. Safety can be further improved by using such a low-concentration chalcogen gas. Furthermore, in the present embodiment, the topotactic reaction can proceed even when such a low-concentration chalcogen gas is used.
 密閉容器21内に封入するカルコゲンを含む水溶液は、還元性のあるカルコゲンガスを発生可能なカルコゲン化合物水溶液であると良い。そのようなカルコゲン化合物水溶液として、チオアセトアミド水溶液、チオ尿素水溶液、セレノ尿素水溶液を例示することができる。 The chalcogen-containing aqueous solution enclosed in the sealed container 21 is preferably a chalcogen compound aqueous solution capable of generating reducing chalcogen gas. As such a chalcogen compound aqueous solution, a thioacetamide aqueous solution, a thiourea aqueous solution, and a selenourea aqueous solution can be exemplified.
 還元性のあるカルコゲンガスとしてカルコゲン化水素ガスを密閉容器内で発生させる方法として、有機法或いは還元剤法を例示できる。また、有機法によって硫化水素ガスを発生させる方法として、カルコゲン化合物水溶液であるチオアセトアミド水溶液やチオ尿素水溶液を加熱する方法を例示できる。さらに、有機法によってセレン化水素ガスを発生させる方法として、カルコゲン化合物水溶液であるセレノ尿素水溶液を加熱する方法を例示できる。 An organic method or a reducing agent method can be exemplified as a method of generating chalcogenide hydrogen gas as a reducing chalcogen gas in a closed container. Further, as a method of generating hydrogen sulfide gas by an organic method, a method of heating a thioacetamide aqueous solution or a thiourea aqueous solution, which are chalcogen compound aqueous solutions, can be exemplified. Furthermore, as a method of generating hydrogen selenide gas by an organic method, a method of heating an aqueous solution of selenourea, which is an aqueous solution of a chalcogen compound, can be exemplified.
 還元剤法は、熱分解などによって水素を発生させる還元剤とカルコゲン(硫黄、セレン、テルル等)とを混ぜ、その混合物を、カルコゲンの融点(硫黄:115℃、セレン:221℃、テルル:450℃)以上、沸点(硫黄:455℃、セレン:685℃、テルル:988℃)未満に加熱することにより、カルコゲンガスと水素ガスの混合ガスを発生させる方法である。このとき用いる還元剤として、水素化ホウ素ナトリウム(融点:400℃、500℃で分解)、水素化ホウ素カリウム(500℃で分解)等を例示することができる。 In the reducing agent method, a reducing agent that generates hydrogen by thermal decomposition or the like is mixed with chalcogen (sulfur, selenium, tellurium, etc.), and the mixture is heated to the melting point of chalcogen (sulfur: 115°C, selenium: 221°C, tellurium: 450°C). ° C.) and below the boiling point (sulfur: 455° C., selenium: 685° C., tellurium: 988° C.) to generate a mixed gas of chalcogen gas and hydrogen gas. Examples of the reducing agent used at this time include sodium borohydride (melting point: 400° C., decomposes at 500° C.), potassium borohydride (decomposes at 500° C.), and the like.
 カルコゲナイド系原子層膜は、様々な用途に利用することができる。中でも、ビスマス系原子層膜は、トポロジカル物質への応用に期待される。トポロジカル物質の一つとしてトポロジカル絶縁体を例示できる。トポロジカル絶縁体は、内部が絶縁体であり表面が導電体である物質である。このようなトポロジカル絶縁体において、表面のカルコゲナイド系原子層数の制御は非常に重要であり、およそ20層未満のカルコゲナイド系原子層が表面に形成されることにより、バルク(内部)の特性(絶縁性)とは異なる半導体特性を得ることができる。従って、カルコゲナイド系原子層膜をトポロジカル絶縁体として利用する場合、カルコゲナイド系原子層数が20層未満となるように制御しなければならない。 A chalcogenide-based atomic layer film can be used for various purposes. Among them, bismuth-based atomic layer films are expected to be applied to topological materials. A topological insulator can be exemplified as one of the topological materials. A topological insulator is a material whose interior is an insulator and whose surface is a conductor. In such a topological insulator, it is very important to control the number of chalcogenide atomic layers on the surface. It is possible to obtain semiconductor properties different from those of Therefore, when a chalcogenide-based atomic layer film is used as a topological insulator, the number of chalcogenide-based atomic layers must be controlled to be less than 20 layers.
 特に、ディラック電子を利用した赤外線吸収のための最適な層数は、6層以上且つ10層以下と言われている。層数を上記範囲に制御することで、赤外線を吸収するイメージセンサとしてカルコゲナイド系原子層膜を利用することができる。そして、本実施形態によれば、薄膜状の金属酸化物単結晶母材上に大面積のカルコゲナイド系原子層を得ることができるので、感度のより高い赤外線吸収式のイメージセンサとしての利用が期待される。 In particular, it is said that the optimum number of layers for infrared absorption using Dirac electrons is 6 or more and 10 or less. By controlling the number of layers within the above range, the chalcogenide atomic layer film can be used as an image sensor that absorbs infrared rays. Further, according to this embodiment, a chalcogenide-based atomic layer with a large area can be obtained on a thin-film metal oxide single crystal base material, so it is expected to be used as an infrared absorption type image sensor with higher sensitivity. be done.
 カルコゲナイド系原子層数は、反応時間、反応時の圧力、反応ガス濃度(還元性のあるカルコゲンガスの濃度)に影響する。よって、これらを制御することによって、層数を制御可能であると考えられる。 The number of chalcogenide atomic layers affects the reaction time, the pressure during the reaction, and the reaction gas concentration (concentration of reducing chalcogen gas). Therefore, it is considered that the number of layers can be controlled by controlling these.
 カルコゲナイド系原子層数の判断は、透過型電子顕微鏡(TEM)像により直接的に判断する方法の他、XRR(X線反射率測定装置)による測定、結晶格子振動のラマンシフトから、間接的に判断することもできる。なお、結晶格子振動のラマンシフトから間接的に層数を判断する場合、ラマン活性な2つの振動モードの振動数の差から層数が同定できる可能性がある。 The number of chalcogenide-based atomic layers can be determined directly from a transmission electron microscope (TEM) image, or indirectly from a measurement using an XRR (X-ray reflectometer) and a Raman shift of crystal lattice vibration. can also judge. When the number of layers is determined indirectly from the Raman shift of crystal lattice vibration, the number of layers may be identified from the difference in the frequencies of two Raman-active vibration modes.
 また、合成工程にて起きるトポタクティック反応は、金属酸化物単結晶母材の外側(表面)から内側(内部)に向かって進行し、時間に応じて、表面から順に母材の金属酸化物原子層がカルコゲナイド系原子層になっていくことが実験的に確認されている。従って、反応時間等を調整することにより、母材の金属酸化物原子層の一部(最表面から所定の厚さまで)又は全部をトポタクティック反応させることができる。また、ある時間でトポタクティック反応の進行を停止した場合には、最表面から所定の層数までの原子層は全てカルコゲナイド系原子層であり、それ以降の原子層は全て金属酸化物系原子層である。このように、外側からトポタクティック反応が進行するので、多層状の金属酸化物単結晶母材を用いて合成工程を実施してトポタクティック反応を所定時間起こさせた場合、金属酸化物単結晶母材上に、単層又は数層のカルコゲナイド系原子層を有するカルコゲナイド系原子層膜を形成することができる。この場合、金属酸化物単結晶母材が絶縁体であれば、絶縁体上に半導体(カルコゲナイド系原子層)を得ることができるので、そのまま半導体デバイスとして用いることができ、半導体(カルコゲナイド系原子層膜)を母材から剥離する手間を要しない。 In addition, the topotactic reaction that occurs in the synthesis process proceeds from the outside (surface) of the metal oxide single crystal base material toward the inside (inside), and depending on time, the metal oxide of the base material It has been experimentally confirmed that the atomic layer becomes a chalcogenide atomic layer. Therefore, by adjusting the reaction time and the like, a part (from the outermost surface to a predetermined thickness) or all of the metal oxide atomic layer of the base material can be caused to undergo a topotactic reaction. Further, when the progress of the topotactic reaction is stopped at a certain time, all the atomic layers from the outermost surface to the predetermined number of layers are chalcogenide atomic layers, and all atomic layers after that are metal oxide atomic layers. layer. In this way, since the topotactic reaction proceeds from the outside, when the synthesis step is performed using the multi-layered metal oxide single crystal base material and the topotactic reaction is allowed to occur for a predetermined time, the metal oxide single crystal A chalcogenide atomic layer film having a single or several chalcogenide atomic layers can be formed on a crystal matrix. In this case, if the metal oxide single crystal base material is an insulator, a semiconductor (chalcogenide atomic layer) can be obtained on the insulator. film) from the base material.
[実施例1]硫化水素ガスを使用した硫化ビスマス薄膜の合成
(1)塩化酸化ビスマス単結晶母材薄膜の作製
1.基板の準備
 金属酸化物単結晶母材としての塩化酸化ビスマス単結晶母材薄膜の作製にあたり、基板に塩化酸化ビスマス単結晶薄膜をエピタキシャル成長させる必要がある。ここで、塩化酸化ビスマスの面内格子定数a=3.89Åに対してチタン酸ストロンチウム(以下、STO)の面内格子定数a=3.905Åであり、格子不整合が0.4%と小さいため、STO単結晶基板(信光社製、寸法:10mm×10mm×0.5mm(厚さ)、面方位(001))を使用することとした。ここで、面方位(001)とは、基板表面に現れる結晶面が(001)面ということである。
[Example 1] Synthesis of bismuth sulfide thin film using hydrogen sulfide gas (1) Preparation of bismuth chloride oxide single crystal base material thin film1. Preparation of Substrate In preparing the bismuth chloride oxide single crystal base material thin film as the metal oxide single crystal base material, it is necessary to epitaxially grow the bismuth chloride oxide single crystal thin film on the substrate. Here, the in-plane lattice constant a of strontium titanate (hereinafter referred to as STO) is 3.905 Å compared to the in-plane lattice constant a of bismuth chloride oxide of 3.89 Å, and the lattice mismatch is as small as 0.4%. Therefore, an STO single crystal substrate (manufactured by Shinko Co., dimensions: 10 mm×10 mm×0.5 mm (thickness), plane orientation (001)) was used. Here, the plane orientation (001) means that the crystal plane appearing on the substrate surface is the (001) plane.
2.塩化酸化ビスマス単結晶母材薄膜の形成(母材形成工程)
 塩化酸化ビスマス単結晶母材薄膜は、図1にその概略構成を示すミストCVD装置10を用いて、ミストCVD法により成膜した。ミストCVD法は、上記したように、前駆体溶液PSを超音波によりミスト化し、不活性の搬送ガスによって加熱炉12内に前駆体溶液ミストを搬送し、加熱炉12内の所定位置に設置されたSTO単結晶基板上に高配向の膜を成膜する方法である。本例において、前駆体溶液は、溶媒としてのn,n-ジメチルホルムアミド(以下、DMF)に5mMの塩化ビスマス粉を溶解することにより作製した。この前駆体溶液には、金属酸化物単結晶母材の構成成分としてのビスマス、塩素、酸素が含まれている。また、ミスト発生装置11の底面には、超音波発振子19を含む超音波素子として、本田電子株式会社製の2.4MHz超音波霧化ユニットHMC-2400を設置した。また、搬送ガスとして高純度窒素ガスを使用した。加熱炉12は、直径25mmの石英管及びこの石英管の回りに設けられた電気炉(ヒータ)により構成した。この加熱炉12(石英管)内の所定位置に、準備したSTO単結晶基板を設置した。そして、加熱炉12の温度を400℃に設定し、十分温度が安定した状態で超音波素子を起動し、搬送ガスの流量を0.5L/min.、薄めガスの流量を3.5L/min.に設定して、これらを前駆体溶液ミストとともに加熱炉12内に搬送した。
2. Formation of bismuth chloride oxide single crystal base material thin film (base material forming process)
The bismuth chloride oxide single crystal base material thin film was formed by a mist CVD method using a mist CVD apparatus 10 whose schematic configuration is shown in FIG. In the mist CVD method, as described above, the precursor solution PS is misted by ultrasonic waves, the precursor solution mist is transported into the heating furnace 12 by an inert carrier gas, and the mist is placed at a predetermined position in the heating furnace 12. This is a method of forming a highly oriented film on an STO single crystal substrate. In this example, the precursor solution was prepared by dissolving 5 mM bismuth chloride powder in n,n-dimethylformamide (hereinafter referred to as DMF) as a solvent. This precursor solution contains bismuth, chlorine, and oxygen as constituents of the metal oxide single crystal matrix. A 2.4 MHz ultrasonic atomization unit HMC-2400 manufactured by Honda Electronics Co., Ltd. was installed as an ultrasonic element including an ultrasonic oscillator 19 on the bottom surface of the mist generator 11 . Also, high-purity nitrogen gas was used as a carrier gas. The heating furnace 12 was composed of a quartz tube with a diameter of 25 mm and an electric furnace (heater) provided around the quartz tube. A prepared STO single crystal substrate was placed at a predetermined position in the heating furnace 12 (quartz tube). Then, the temperature of the heating furnace 12 was set to 400° C., the ultrasonic element was started in a sufficiently stable state, and the flow rate of the carrier gas was set to 0.5 L/min. , the flow rate of the thinning gas is set to 3.5 L/min. , and conveyed into the heating furnace 12 together with the precursor solution mist.
 加熱炉12内に搬送された前駆体溶液ミストが加熱炉12内で分解することによって、STO単結晶基板上に塩化酸化ビスマスが堆積する。これによりSTO単結晶基板上に塩化酸化ビスマス薄膜が成膜される。本例では、成膜時間は60min.であり、膜厚30nmの薄膜がSTO単結晶基板上に成膜された。成膜したサンプルをX線回折によって確認したところ、(001)配向の塩化酸化ビスマスのピークが確認された。この結果から、STO単結晶基板上に塩化酸化ビスマス薄膜が成膜されたことがわかる。 The precursor solution mist transported into the heating furnace 12 is decomposed in the heating furnace 12, thereby depositing bismuth chloride oxide on the STO single crystal substrate. As a result, a bismuth chloride oxide thin film is formed on the STO single crystal substrate. In this example, the film formation time is 60 min. A thin film having a thickness of 30 nm was formed on the STO single crystal substrate. When the film-formed sample was confirmed by X-ray diffraction, a (001)-oriented bismuth chloride oxide peak was confirmed. From this result, it can be seen that a bismuth chloride oxide thin film was formed on the STO single crystal substrate.
3.塩化酸化ビスマス薄膜の単結晶化の確認
 成膜された塩化酸化ビスマス薄膜の単結晶の確認にX線回折極点測定を行った。測定結果を図3に示す。図3に示すように、塩化酸化ビスマスの(111)結晶面の回折角(2θ=34.833°)で極点測定を実施したところ、あおり角α=69°に4点回折スポット(No.1,2,3,4)が確認された。また、同様に、STO単結晶基板のX線回折極点測定を行った。測定結果を図4に示す。図4に示すように、STOの(111)結晶面の回折角(2θ=39.954°)で極点測定を実施したところ、あおり角α=54°に4点回折スポット(No.1,2,3,4)が確認された。
3. Confirmation of Single Crystal Formation of Bismuth Chloride Oxide Thin Film X-ray diffraction pole measurement was performed to confirm the single crystal of the formed bismuth chloride oxide thin film. The measurement results are shown in FIG. As shown in FIG. 3, when pole measurement was performed at the diffraction angle (2θ = 34.833°) of the (111) crystal plane of bismuth chloride oxide, four-point diffraction spots (No. 1 , 2, 3, 4) were confirmed. Similarly, the STO single crystal substrate was subjected to X-ray diffraction pole measurement. The measurement results are shown in FIG. As shown in FIG. 4, when pole measurement was performed at the diffraction angle (2θ = 39.954°) of the (111) crystal plane of STO, four-point diffraction spots (Nos. 1 and 2 , 3, 4) were confirmed.
 塩化酸化ビスマス薄膜とSTO単結晶基板の4点の回折スポットが確認された面内回転角βは46°、136°、226°、316°と完全に一致しており、作製した塩化酸化ビスマス母材薄膜はSTO単結晶基板上にエピタキシャル成長し、単結晶であることが確認できた。 The in-plane rotation angles β at which the four diffraction spots of the bismuth chloride oxide thin film and the STO single crystal substrate were confirmed were 46°, 136°, 226°, and 316°, which completely coincided with each other. It was confirmed that the material thin film was epitaxially grown on the STO single crystal substrate and was a single crystal.
(2)チオアセトアミドを使用したトポタクティック反応による硫化ビスマス薄膜の合成(合成工程)
 密閉容器としての、内容積約32mLのガラス製耐圧容器(Biotage社製、MicrowaveVial)に、上記のように作製した塩化酸化ビスマス母材薄膜と濃度60mMのチオアセトアミド水溶液1mLを入れて、これらをガラス製耐圧容器内に密封した。そして、ガラス製耐圧容器内を温度150℃に昇温し、温度150℃で1時間維持した。これにより、ガラス製耐圧容器内のチオアセトアミド水溶液から硫化水素ガスを発生させるとともに、発生した硫化水素ガスに塩化酸化ビスマス単結晶母材薄膜を接触させることによって、トポタクティック反応による硫化処理を行った。このときガラス製耐圧容器中の圧力は、容器耐圧の約20atmであり、ガラス製耐圧容器中で発生した硫化水素ガスの濃度は約2vol%である。
(2) Synthesis of bismuth sulfide thin film by topotactic reaction using thioacetamide (synthesis process)
The bismuth chloride oxide base material thin film prepared as described above and 1 mL of an aqueous thioacetamide solution having a concentration of 60 mM were placed in a glass pressure-resistant container (MicrowaveVial, manufactured by Biotage) having an internal volume of about 32 mL as a sealed container, and these were placed in a glass container. sealed in a pressure-resistant container. Then, the temperature inside the glass pressure vessel was raised to 150° C., and the temperature was maintained at 150° C. for 1 hour. As a result, hydrogen sulfide gas is generated from the thioacetamide aqueous solution in the glass pressure vessel, and the generated hydrogen sulfide gas is brought into contact with the bismuth chloride oxide single crystal base material thin film to perform a sulfurization treatment by a topotactic reaction. Ta. At this time, the pressure in the glass pressure vessel is about 20 atm, which is the pressure resistance of the vessel, and the concentration of the hydrogen sulfide gas generated in the glass pressure vessel is about 2 vol %.
 合成工程の終了後、ガラス製耐圧容器からサンプル(硫化水素ガスが接触した塩化酸化ビスマス単結晶母材薄膜)を取り出し、X線回折による結晶構造の評価を行った。その結果、STOのピーク、塩化酸化ビスマスのピークのほか、硫化ビスマスのピークが確認できた。この結果から、塩化酸化ビスマス単結晶母材薄膜上に、硫化ビスマス薄膜が形成されていることが確認された。 After the synthesis process was completed, the sample (bismuth chloride oxide single crystal base material thin film in contact with hydrogen sulfide gas) was taken out from the glass pressure vessel, and the crystal structure was evaluated by X-ray diffraction. As a result, a peak of STO, a peak of bismuth chloride oxide, and a peak of bismuth sulfide were confirmed. From this result, it was confirmed that a bismuth sulfide thin film was formed on the bismuth chloride oxide single crystal base material thin film.
[比較例1]硫黄ガスを使用した硫化ビスマス薄膜の合成
 硫黄粉末3gをアルミナボートに入れたものを、硫黄ガス発生用の加熱炉としてのSUS製管状炉に入れて、200℃に加熱した。これによりSUS製管状炉内に硫黄ガスを発生させた。また、搬送ガスとしてのアルゴンガスを流量0.5L/min.でSUS製管状炉に流し、これにより、硫黄ガスを搬送ガスとともに反応炉に導入した。反応炉は直径25mmの石英管を用いた電気炉とした。石英管内の所定位置に上記実施例1のように作製した塩化酸化ビスマス単結晶母材薄膜を設置した。また、反応炉(石英管)内に硫黄ガスを導入する前に、バキュームポンプを使用して石英管内の圧力を10Pa未満となるまで真空引きし、その後、バイパスラインを使用してアルゴンガスを石英管内に導入するとともに、石英管内の温度を反応温度に設定した。十分温度が安定した状態で、硫黄ガス流路のバルブを開放し、反応炉(石英管)内に硫黄ガスを搬送ガスとともに反応時間導入した。これにより、反応炉内にて、塩化酸化ビスマス母材単結晶薄膜を硫黄ガスに接触させた。反応温度は320℃、反応時間は30分、90分と条件を変えて反応を行った。反応時間経過後、反応炉からサンプル(硫黄ガスが接触した塩化酸化ビスマス単結晶母材薄膜)を取り出した。
[Comparative Example 1] Synthesis of Bismuth Sulfide Thin Film Using Sulfur Gas An alumina boat containing 3 g of sulfur powder was placed in a SUS tubular furnace as a heating furnace for generating sulfur gas and heated to 200°C. This generated sulfur gas in the SUS tubular furnace. Also, argon gas as a carrier gas was supplied at a flow rate of 0.5 L/min. to a SUS tubular furnace, whereby the sulfur gas was introduced into the reactor together with the carrier gas. The reactor was an electric furnace using a quartz tube with a diameter of 25 mm. A bismuth chloride oxide single crystal base material thin film prepared in the same manner as in Example 1 was placed at a predetermined position in the quartz tube. In addition, before introducing sulfur gas into the reactor (quartz tube), a vacuum pump is used to evacuate the quartz tube to a pressure of less than 10 Pa, and then a bypass line is used to remove argon gas from the quartz tube. While introducing into the tube, the temperature inside the quartz tube was set to the reaction temperature. When the temperature was sufficiently stabilized, the valve of the sulfur gas passage was opened to introduce the sulfur gas into the reactor (quartz tube) together with the carrier gas for the reaction time. As a result, the bismuth chloride oxide base material single crystal thin film was brought into contact with the sulfur gas in the reactor. The reaction temperature was 320° C., and the reaction time was 30 minutes and 90 minutes. After the reaction time had elapsed, the sample (bismuth chloride oxide single crystal base material thin film in contact with sulfur gas) was taken out from the reactor.
 取り出したサンプルに対してX線回折による結晶構造の評価をしたところ、塩化酸化ビスマス単結晶母材に対するわずかな回折線ピークの移動は確認できたが、硫化ビスマス起因のピークは確認できなかった。従って、塩化酸化ビスマス単結晶母材薄膜上に硫化ビスマス薄膜は形成されていないと考えられる。 When the crystal structure of the extracted sample was evaluated by X-ray diffraction, a slight shift of the diffraction line peak relative to the bismuth chloride oxide single crystal base material could be confirmed, but no peak due to bismuth sulfide could be confirmed. Therefore, it is considered that the bismuth sulfide thin film is not formed on the bismuth chloride oxide single crystal base material thin film.
 実施例1の合成工程における温度は150℃であり、比較例1の合成における温度は320℃であり、いずれも温度は100℃以上500℃未満の温度である。また、実施例1の合成工程では、塩化酸化ビスマス単結晶母材薄膜に還元性のあるカルコゲンガス(硫化水素ガス)を接触させている。一方で、比較例1の合成では、塩化酸化ビスマス単結晶母材薄膜に、還元性のないカルコゲンガス(硫黄ガス)を接触させている。このことから、塩化酸化ビスマス単結晶母材薄膜に還元性のあるカルコゲンガスを接触させることによって、100℃以上500℃未満の温度条件下で、カルコゲナイド系原子層(硫化ビスマス薄膜)を生成できることがわかる。 The temperature in the synthesis process of Example 1 is 150°C, and the temperature in the synthesis of Comparative Example 1 is 320°C, both of which are temperatures of 100°C or more and less than 500°C. Further, in the synthesis process of Example 1, the bismuth chloride oxide single crystal base material thin film is brought into contact with a reducing chalcogen gas (hydrogen sulfide gas). On the other hand, in the synthesis of Comparative Example 1, the bismuth chloride oxide single crystal base material thin film is brought into contact with non-reducing chalcogen gas (sulfur gas). From this, it is possible to generate a chalcogenide-based atomic layer (bismuth sulfide thin film) under a temperature condition of 100° C. or more and less than 500° C. by bringing a reducing chalcogen gas into contact with the bismuth chloride oxide single crystal base material thin film. Recognize.
[実施例2]セレン化水素ガスを使用したセレン化ビスマス薄膜の作製
(1)塩化酸化ビスマス母材薄膜の作製
1.基板の準備
 実施例1と同様のSTO単結晶基板を準備した。
2.塩化酸化ビスマス母材薄膜の成膜(母材形成工程)
 実施例1と同様の手順で、STO単結晶基板上に塩化酸化ビスマス単結晶母材薄膜を成膜した。
(2)セレノ尿素を使用したトポタクティック反応によるセレン化ビスマス薄膜の合成(合成工程)
 実施例1で用いたものと同じガラス製耐圧容器に、上記のように作製した塩化酸化ビスマス単結晶母材薄膜と濃度60mMのセレノ尿素水溶液150μLを入れて、これらをガラス製耐圧容器内に密封した。そして、ガラス製耐圧容器内を温度170℃に昇温し、温度170℃で40min.維持した。これにより、ガラス製耐圧容器内のセレノ尿素水溶液からセレン化水素ガスの蒸気を発生させるとともに、発生したセレン化水素ガスの蒸気に塩化酸化ビスマス単結晶母材薄膜を接触させることによって、トポタクティック反応によるセレン化処理を行った。この際、セレノ尿素を溶かす水は濃度約0.03mMの酢酸によってpHを4.8に調整している。また、塩化酸化ビスマス単結晶母材薄膜が液体状態のセレノ尿素水溶液と接触しないよう、ガラス製耐圧容器内に石英の板を敷いて、塩化酸化ビスマス単結晶母材薄膜とセレノ尿素水溶液とを隔てている。また、合成工程中におけるガラス製耐圧容器中の圧力は、約6atmであり、ガラス製耐圧容器中で発生したセレン化水素ガスの濃度は約0.07vol%である。合成工程の終了後、ガラス製耐圧容器からサンプル(セレン化水素ガスが接触した塩化酸化ビスマス単結晶母材薄膜)を取り出した。
[Example 2] Preparation of bismuth selenide thin film using hydrogen selenide gas (1) Preparation of bismuth chloride oxide base material thin film1. Preparation of Substrate An STO single crystal substrate similar to that of Example 1 was prepared.
2. Formation of bismuth chloride oxide base material thin film (base material formation process)
By the same procedure as in Example 1, a bismuth chloride oxide single crystal base material thin film was formed on an STO single crystal substrate.
(2) Synthesis of bismuth selenide thin film by topotactic reaction using selenourea (synthesis process)
The bismuth chloride oxide single crystal base material thin film prepared as described above and 150 μL of an aqueous solution of selenourea having a concentration of 60 mM were placed in the same glass pressure vessel as used in Example 1, and these were sealed in the glass pressure vessel. did. Then, the temperature inside the glass pressure vessel was raised to 170°C, and the temperature was maintained at 170°C for 40 min. maintained. As a result, vapor of hydrogen selenide gas is generated from the selenourea aqueous solution in the glass pressure-resistant container, and by bringing the generated hydrogen selenide gas vapor into contact with the bismuth chloride oxide single crystal base material thin film, topotactic A selenization treatment was performed by reaction. At this time, the water in which selenourea is dissolved is adjusted to pH 4.8 with acetic acid having a concentration of about 0.03 mM. In order to prevent the bismuth chloride oxide single crystal base material thin film from coming into contact with the liquid selenourea aqueous solution, a quartz plate was placed in a pressure-resistant glass container to separate the bismuth chloride oxide single crystal base material thin film from the selenourea aqueous solution. ing. The pressure in the glass pressure vessel during the synthesis process was about 6 atm, and the concentration of hydrogen selenide gas generated in the glass pressure vessel was about 0.07 vol %. After completion of the synthesis process, a sample (bismuth chloride oxide single crystal base material thin film in contact with hydrogen selenide gas) was taken out from the glass pressure-resistant container.
(3)分析機器による結晶の確認
1.X線回折による結晶構造の確認
 サンプルの結晶構造をOut-of-plane X線回折で確認した。図5は、X線回折結果を示すグラフである。図5中、グラフA1は、市販のセレン化ビスマス(BiSe)バルクのX線回折結果を示すグラフであり、グラフB1は、塩化酸化ビスマス単結晶母材薄膜のX線回折結果を示すグラフであり、グラフC1は、合成工程により作製したサンプルのX線回折結果を示すグラフである。グラフB1からわかるように、塩化酸化ビスマス単結晶母材薄膜では、2θ=12,24,36,49,63,78deg.付近にピーク(グラフB1の○で示すピーク)が見られた。これらの角度2θは塩化酸化ビスマスバルクの(001)面とその高次の面に起因する回折角と対応している。この結果から、STO単結晶基板上に確かに塩化酸化ビスマスの単結晶が成膜されており、かつ、その(001)面とその高次の面が基板面と平行となるように配向していることがわかった。
(3) Confirmation of crystals by analytical instrument 1. Confirmation of crystal structure by X-ray diffraction The crystal structure of the sample was confirmed by out-of-plane X-ray diffraction. FIG. 5 is a graph showing X-ray diffraction results. In FIG. 5, graph A1 is a graph showing the X-ray diffraction results of a commercially available bismuth selenide (Bi 2 Se 3 ) bulk, and graph B1 is the X-ray diffraction results of a bismuth chloride oxide single crystal base material thin film. Fig. 3 is a graph, and graph C1 is a graph showing the X-ray diffraction results of a sample produced by a synthesis process; As can be seen from the graph B1, in the bismuth chloride oxide single crystal base material thin film, 2θ=12, 24, 36, 49, 63, 78 deg. A peak (the peak indicated by ◯ in graph B1) was observed in the vicinity. These angles 2.theta. correspond to diffraction angles caused by the (001) plane of the bismuth chloride oxide bulk and its higher-order planes. From this result, it was confirmed that a single crystal of bismuth chloride oxide was certainly formed on the STO single crystal substrate, and that the (001) plane and its higher-order planes were oriented parallel to the substrate surface. It turns out that there is
 また、グラフB1によれば、2θ=22,46,73deg.付近にも強度の高いピーク(グラフB1の□で示すピーク)が見られる。これらのピークはSTO単結晶基板の(001)面とその高次の面に起因している。一方、グラフCからわかるように、合成工程により作製したサンプルでは先程の塩化酸化ビスマスに起因したピークが消失し、代わりに、2θ=9,18,28,37,57deg.付近にピーク(グラフC1の●で示すピーク)が出現した。これらの角度2θは、グラフA1にも示されるように、セレン化ビスマスバルクの(003)面とその高次の面に起因する回折角に対応している。この結果から、作製したサンプルがセレン化ビスマスの単結晶であり、それが、(003)配向していることが分かった。また、単結晶母材から単結晶薄膜が形成されていることから、セレン化ビスマス単結晶薄膜はトポタクティック反応により生成されたものと考えられる。 Also, according to graph B1, 2θ=22, 46, 73 deg. A high-intensity peak (the peak indicated by □ in graph B1) is also seen in the vicinity. These peaks originate from the (001) plane of the STO single crystal substrate and its higher-order planes. On the other hand, as can be seen from graph C, in the sample produced by the synthesis process, the peaks due to bismuth chloride oxide disappeared, and instead, 2θ = 9, 18, 28, 37, 57 deg. A peak (the peak indicated by ● in graph C1) appeared in the vicinity. These angles 2θ correspond to diffraction angles due to the (003) plane of the bismuth selenide bulk and its higher-order planes, as also shown in graph A1. From this result, it was found that the produced sample was a single crystal of bismuth selenide, and it was (003) oriented. Moreover, since the single-crystal thin film is formed from the single-crystal base material, it is considered that the bismuth selenide single-crystal thin film was produced by a topotactic reaction.
2.ラマン分光による結晶状態の評価
 市販のセレン化ビスマスバルク、塩化酸化ビスマス単結晶母材薄膜、及び、合成後のサンプル(セレン化ビスマス薄膜)について、ラマン分光による結晶状態の評価を行った。ラマン分光の測定には、Renishow inVia Reflex AP‐100079を用いた。本装置では入射光として主に532nmの緑色レーザを使用している。また、検出はストークス散乱のみとしており、受光側でストークス散乱のラマンシフト量が100cm-1以下である波長帯をフィルタで遮断し、大幅に強度を低下させている。また、セレン化ビスマスでは主にE (面内)、A 1g(面外)の2つの振動モードが光照射により生じ、それぞれラマンシフトとしては130,175cm-1に現れることが知られている(Ref: S. Jerng, et al., Journal of Nanoscale, 5, 21 (2013))。
2. Evaluation of Crystalline State by Raman Spectroscopy The crystalline state of commercially available bismuth selenide bulk, bismuth chloride oxide single crystal base material thin film, and synthesized sample (bismuth selenide thin film) was evaluated by Raman spectroscopy. A Renishaw inVia Reflex AP-100079 was used for Raman spectroscopic measurements. This apparatus mainly uses a green laser of 532 nm as the incident light. Further, only Stokes scattering is detected, and a wavelength band in which the amount of Raman shift of Stokes scattering is 100 cm −1 or less is blocked by a filter on the light receiving side, thereby greatly reducing the intensity. In bismuth selenide, it is known that two vibration modes, E 2 g (in-plane) and A 2 1g (out-of-plane), are mainly generated by light irradiation, and appear at 130 and 175 cm −1 as Raman shifts, respectively. (Ref: S. Jerng, et al., Journal of Nanoscale, 5, 21 (2013)).
 図6は、上記装置により計測されたラマンシフトを示すグラフである。図6中、グラフA2は、市販のセレン化ビスマス(BiSe)単結晶バルクのラマンシフトを示すグラフであり、グラフB2は、塩化酸化ビスマス単結晶母材薄膜のラマンシフトを示すグラフであり、グラフC2は、合成工程により作製したサンプルのラマンシフトを示すグラフである。グラフB2に示すように、塩化酸化ビスマス単結晶母材薄膜では143cm-1にピークが観測されたのに対して、グラフC2に示すように、合成後のサンプル(セレン化ビスマス薄膜)では130,174cm-1に2つのピークが観測された。また、グラフA2に示すように、市販のセレン化ビスマス単結晶バルクでもグラフC2と同様に2つのピークが見られた。この結果から、本例によって作製したセレン化ビスマス薄膜が市販のセレン化ビスマス単結晶バルクと同様のSe―Bi―Se―Bi―Seのユニットレイヤー(単位層)の振動モードを持って光学応答することが確認できた。したがって、市販のセレン化ビスマス単結晶バルクと本例のセレン化ビスマス薄膜は同様のユニットレイヤーを有していることが証明された。 FIG. 6 is a graph showing Raman shifts measured by the above apparatus. In FIG. 6, graph A2 is a graph showing the Raman shift of a commercially available bismuth selenide (Bi 2 Se 3 ) single crystal bulk, and graph B2 is a graph showing the Raman shift of a bismuth chloride oxide single crystal base material thin film. Graph C2 is a graph showing the Raman shift of the sample produced by the synthesis process. As shown in graph B2, a peak was observed at 143 cm −1 in the bismuth chloride oxide single crystal base material thin film, whereas as shown in graph C2, in the sample after synthesis (bismuth selenide thin film), 130, Two peaks were observed at 174 cm −1 . Moreover, as shown in graph A2, two peaks were observed in the commercially available bismuth selenide single crystal bulk as in graph C2. From this result, it can be seen that the bismuth selenide thin film produced by this example has the same vibration mode of the Se—Bi—Se—Bi—Se unit layer (unit layer) as the commercially available bulk bismuth selenide single crystal, and optically responds. I was able to confirm that. Therefore, it was proved that the commercially available bismuth selenide single crystal bulk and the bismuth selenide thin film of this example have similar unit layers.
3.光電流の計測
 作製したサンプル(セレン化ビスマス薄膜)が半導体化していることを確認するため、サンプル表面に電極を設置し、レーザー光照射による光電流の計測を行った。電極には銀ペーストを使用し、電極間の距離は約100μmに設定した。電極にタングステンプローブをあて、このタングステンプローブをキーサイト社製の半導体アナライザ(B1500)装置に接続した。そして、電極間にレーザ装置からレーザ光を断続的に照射し、そのときに流れる光電流を計測した。使用したレーザー装置はソーラボ製670nm4.5mWである。
3. Measurement of photocurrent In order to confirm that the prepared sample (bismuth selenide thin film) is a semiconductor, an electrode was placed on the surface of the sample, and photocurrent was measured by laser light irradiation. A silver paste was used for the electrodes, and the distance between the electrodes was set to about 100 μm. A tungsten probe was applied to the electrode, and this tungsten probe was connected to a semiconductor analyzer (B1500) manufactured by Keysight. Then, the space between the electrodes was intermittently irradiated with a laser beam from a laser device, and the photocurrent flowing at that time was measured. The laser equipment used is 670 nm 4.5 mW manufactured by Thorlabs.
 図7は、光電流の計測結果を示すグラフである。図7に示すように、レーザ照射のonとoffを繰り返したところ、onに合わせて光電流が流れることが確認された。この結果から、サンプル表面が半導体になっていることが確認された。 FIG. 7 is a graph showing the measurement results of the photocurrent. As shown in FIG. 7, when the laser irradiation was turned on and off repeatedly, it was confirmed that the photocurrent flowed in accordance with the turning on. From this result, it was confirmed that the sample surface was a semiconductor.
4.セレン化ビスマス薄膜の層数の制御
 本例において、セレン化ビスマス薄膜の作製にはセレノ尿素水溶液を使用し、トポタクティック反応によって母材の酸素をカルコゲン(セレン)に置換する反応を使用している。このとき、セレノ尿素水溶液の濃度を変えることで、セレン化ビスマス薄膜の原子層の層数が制御できることを確認するために、セレノ尿素の濃度を10mM,20mM,40mM,60mN,80mM,120mMと変えたセレノ尿素水溶液150μLをそれぞれ作製した。そして、合成工程にて、それぞれの水溶液を、上記のガラス製耐圧容器内に塩化酸化ビスマス単結晶母材薄膜と共に封入し、ガラス製耐圧容器内を温度170℃に昇温し、温度170℃で40min.維持した。これによりセレノ尿素水溶液の蒸気(セレン化水素ガス)に塩化酸化ビスマス単結晶母材薄膜を接触させて、トポタクティック反応によるセレン化処理を行った。その後、作製した各サンプル(セレン化水素ガスが接触した塩化酸化ビスマス単結晶母材薄膜)をガラス製耐圧容器から取り出した。
4. Control of the number of layers of the bismuth selenide thin film In this example, the bismuth selenide thin film was prepared by using an aqueous solution of selenourea and replacing oxygen in the base material with chalcogen (selenium) by a topotactic reaction. there is At this time, in order to confirm that the number of atomic layers of the bismuth selenide thin film can be controlled by changing the concentration of the selenourea aqueous solution, the concentration of selenourea was changed to 10 mM, 20 mM, 40 mM, 60 mN, 80 mM, and 120 mM. 150 μL of selenourea aqueous solution was prepared. Then, in the synthesis step, each aqueous solution was sealed in the glass pressure vessel together with the bismuth chloride oxide single crystal base material thin film, the temperature inside the glass pressure vessel was raised to 170 ° C., and the temperature was 170 ° C. 40 min. maintained. As a result, the bismuth chloride oxide single crystal base material thin film was brought into contact with the vapor of the selenourea aqueous solution (hydrogen selenide gas) to perform selenization treatment by topotactic reaction. After that, each of the prepared samples (bismuth chloride oxide single crystal base material thin film in contact with hydrogen selenide gas) was taken out from the pressure-resistant glass container.
 取り出した各サンプルの結晶構造をX線回折で確認した。図8は、X線回折結果を示すグラフである。図8において、グラフA3は、市販のセレン化ビスマスバルクのX線回折結果を示すグラフであり、グラフB3は、塩化酸化ビスマス単結晶母材薄膜のX線回折結果を示すグラフである。また、図8において、グラフC3x(x=10,20,40,60,80,120)は、合成工程にて濃度xmMのセレノ尿素水溶液を用いて作製したサンプルのX線回折結果を示すグラフである。 The crystal structure of each sample taken out was confirmed by X-ray diffraction. FIG. 8 is a graph showing X-ray diffraction results. In FIG. 8, graph A3 is a graph showing the X-ray diffraction results of a commercially available bulk bismuth selenide, and graph B3 is a graph showing the X-ray diffraction results of a bismuth chloride oxide single crystal base material thin film. In FIG. 8, graph C3x (x=10, 20, 40, 60, 80, 120) is a graph showing the X-ray diffraction results of a sample prepared using an aqueous selenourea solution with a concentration of x mM in the synthesis step. be.
 図8に示すように、濃度40mM以下のセレノ尿素水溶液を用いて作製したサンプルのX線回折結果のグラフ(C310,C320,C340)には、セレン化ビスマスの(003)面の6次ピークにあたる57deg.付近(BiSe(0018))にピークがほとんど見られない。これに対し、濃度60mM以上のセレノ尿素水溶液を用いて作製したサンプルのX線回折結果のグラフ(C360,C380,C3120)には、57deg.付近にピークが見られることが確認できる。このことから、濃度60mM以上のセレノ尿素水溶液を用いて作製したサンプルでは6層目のセレン化ビスマスの原子層が形成されていることが推定できる。また、濃度60mM以上である場合、濃度が高いほど、57deg.付近のピークが高くなることが確認できた。このことから、セレノ尿素水溶液の濃度によってセレン化ビスマスの原子層の層数の制御が容易にできることが確認できた。 As shown in FIG. 8, the graphs (C310, C320, C340) of the X-ray diffraction results of the samples prepared using the selenourea aqueous solution having a concentration of 40 mM or less show the sixth peak of the (003) plane of bismuth selenide. 57 deg. Almost no peak is seen in the vicinity (Bi 2 Se 3 (0018)). On the other hand, the graphs (C360, C380, C3120) of the X-ray diffraction results of the samples prepared using the selenourea aqueous solution with a concentration of 60 mM or more show 57 deg. It can be confirmed that peaks can be seen in the vicinity. From this, it can be estimated that the sixth atomic layer of bismuth selenide is formed in the sample prepared using the selenourea aqueous solution having a concentration of 60 mM or more. Moreover, when the concentration is 60 mM or more, the higher the concentration, the 57 deg. It was confirmed that the peaks in the vicinity became higher. From this, it was confirmed that the number of atomic layers of bismuth selenide can be easily controlled by the concentration of the selenourea aqueous solution.
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるべきものではない。例えば、上記実施例では、カルコゲナイド系原子層膜として硫化ビスマス薄膜及びセレン化ビスマス薄膜の製造方法を例示したが、それ以外のカルコゲナイド系原子層膜にも本発明を適用することができる。また、上記実施例では、密閉容器中に封入したカルコゲンを含む水溶液(チオアセトアミド水溶液、セレノ尿素水溶液)を加熱してカルコゲン化水素ガスを発生させる例を示したが、例えば還元剤法によりカルコゲン化水素ガスを発生させても良い。このように、本発明は、その趣旨を逸脱しない限りにおいて、変形可能である。 Although the embodiments of the present invention have been described above, the present invention should not be limited to the above embodiments. For example, in the above examples, the method for producing a bismuth sulfide thin film and a bismuth selenide thin film as chalcogenide atomic layer films was illustrated, but the present invention can also be applied to other chalcogenide atomic layer films. In the above examples, an example was shown in which a chalcogenated hydrogen gas was generated by heating an aqueous solution containing chalcogen (aqueous thioacetamide solution, aqueous selenourea solution) sealed in a sealed container. Hydrogen gas may be generated. In this manner, the present invention can be modified without departing from its gist.

Claims (12)

  1.  金属酸化物原子層を有する金属酸化物単結晶母材を形成する母材形成工程と、
     前記金属酸化物単結晶母材を、前記金属酸化物単結晶母材の融点よりも低い温度条件下で還元性のあるカルコゲンガスに接触させることにより、前記金属酸化物原子層の一部又は全部をトポタクティック反応させて、カルコゲナイド系原子層を生成する合成工程と、
     を含む、カルコゲナイド系原子層膜の製造方法。
    a base material forming step of forming a metal oxide single crystal base material having a metal oxide atomic layer;
    By contacting the metal oxide single crystal base material with a reducing chalcogen gas under a temperature condition lower than the melting point of the metal oxide single crystal base material, a part or all of the metal oxide atomic layer is topotactic reaction to form a chalcogenide atomic layer;
    A method for producing a chalcogenide-based atomic layer film, comprising:
  2.  請求項1に記載のカルコゲナイド系原子層膜の製造方法であって、
     前記合成工程が密閉容器内にて行われる、カルコゲナイド系原子層膜の製造方法。
    A method for producing a chalcogenide-based atomic layer film according to claim 1,
    A method for producing a chalcogenide-based atomic layer film, wherein the synthesis step is performed in a closed container.
  3.  請求項1又は2に記載のカルコゲナイド系原子層膜の製造方法であって、
     前記合成工程にて、前記金属酸化物単結晶母材を5vol%以下の濃度の還元性のあるカルコゲンガスに接触させる、カルコゲナイド系原子層膜の製造方法。
    A method for producing a chalcogenide-based atomic layer film according to claim 1 or 2,
    A method for producing a chalcogenide atomic layer film, wherein in the synthesis step, the metal oxide single crystal base material is brought into contact with a reducing chalcogen gas having a concentration of 5 vol % or less.
  4.  請求項3に記載のカルコゲナイド系原子層膜の製造方法であって、
     前記還元性のあるカルコゲンガスの濃度は1vol%未満である、カルコゲナイド系原子層膜の製造方法。
    A method for producing a chalcogenide-based atomic layer film according to claim 3,
    A method for producing a chalcogenide-based atomic layer film, wherein the concentration of the reducing chalcogen gas is less than 1 vol %.
  5.  請求項1乃至4のいずれか1項記載のカルコゲナイド系原子層膜の製造方法であって、
     前記合成工程が100℃以上500℃未満の温度条件下で行われる、カルコゲナイド系原子層膜の製造方法。
    A method for producing a chalcogenide-based atomic layer film according to any one of claims 1 to 4,
    A method for producing a chalcogenide-based atomic layer film, wherein the synthesis step is performed under a temperature condition of 100°C or higher and lower than 500°C.
  6.  請求項1乃至5のいずれか1項記載のカルコゲナイド系原子層膜の製造方法であって、
     前記合成工程が、1atmよりも高く20atm以下の圧力条件下で行われる、カルコゲナイド系原子層膜の製造方法。
    A method for producing a chalcogenide-based atomic layer film according to any one of claims 1 to 5,
    A method for producing a chalcogenide-based atomic layer film, wherein the synthesis step is performed under pressure conditions higher than 1 atm and 20 atm or less.
  7.  請求項1乃至6のいずれか1項記載のカルコゲナイド系原子層膜の製造方法であって、
     前記還元性のあるカルコゲンガスは、カルコゲン化水素ガス又は、カルコゲンガスと水素ガスとの混合ガスである、カルコゲナイド系原子層膜の製造方法。
    A method for producing a chalcogenide-based atomic layer film according to any one of claims 1 to 6,
    The method for producing a chalcogenide-based atomic layer film, wherein the reducing chalcogen gas is chalcogenide hydrogen gas or a mixed gas of chalcogen gas and hydrogen gas.
  8.  請求項7に記載のカルコゲナイド系原子層膜の製造方法であって、
     前記還元性のあるカルコゲンガスは、硫化水素ガス、セレン化水素ガス、テルル化水素ガス、硫黄ガスと水素ガスとの混合ガス、セレンガスと水素ガスとの混合ガス、テルルガスと水素ガスとの混合ガス、からなる群より選択される少なくとも1種である、カルコゲナイド系原子層膜の製造方法。
    A method for producing a chalcogenide-based atomic layer film according to claim 7,
    The reducing chalcogen gas includes hydrogen sulfide gas, hydrogen selenide gas, hydrogen telluride gas, a mixed gas of sulfur gas and hydrogen gas, a mixed gas of selenium gas and hydrogen gas, and a mixed gas of tellurium gas and hydrogen gas. A method for producing a chalcogenide-based atomic layer film, which is at least one selected from the group consisting of
  9.  請求項2に記載のカルコゲナイド系原子層膜の製造方法であって、
     前記合成工程は、前記金属酸化物単結晶母材と、前記還元性のあるカルコゲンガスの発生源としてのカルコゲンを含む水溶液とを、前記密閉容器中に封入し、前記金属酸化物単結晶母材の融点よりも低く且つ100℃以上500℃未満の温度条件下で、前記金属酸化物単結晶母材を前記カルコゲンを含む水溶液から生じる還元性のあるカルコゲンガスに接触させる工程である、カルコゲナイド系原子層膜の製造方法。
    A method for producing a chalcogenide-based atomic layer film according to claim 2,
    In the synthesis step, the metal oxide single crystal base material and an aqueous solution containing chalcogen as a source of the reducing chalcogen gas are enclosed in the sealed container, and the metal oxide single crystal base material is A chalcogenide-based atom, which is a step of contacting the metal oxide single crystal base material with a reducing chalcogen gas generated from the chalcogen-containing aqueous solution under a temperature condition of 100 ° C. or more and less than 500 ° C. lower than the melting point of A method for manufacturing a layered film.
  10.  請求項1乃至9のいずれか1項記載のカルコゲナイド系原子層膜の製造方法であって、
     前記金属酸化物単結晶母材は、ビスマス系金属酸化物であり、
     前記カルコゲナイド系原子層膜は、カルコゲン化ビスマス薄膜である、カルコゲナイド系原子層膜の製造方法。
    A method for producing a chalcogenide-based atomic layer film according to any one of claims 1 to 9,
    The metal oxide single crystal base material is a bismuth-based metal oxide,
    A method for producing a chalcogenide atomic layer film, wherein the chalcogenide atomic layer film is a chalcogenide bismuth thin film.
  11.  請求項1乃至10のいずれか1項記載のカルコゲナイド系原子層膜の製造方法であって、
     前記母材形成工程は、前記金属酸化物単結晶母材の面内格子定数と略一致する面内格子定数を持つ単結晶基板上に、前記金属酸化物単結晶母材を結晶成長させる工程である、カルコゲナイド系原子層膜の製造方法。
    A method for producing a chalcogenide-based atomic layer film according to any one of claims 1 to 10,
    The base material forming step is a step of crystal-growing the metal oxide single crystal base material on a single crystal substrate having an in-plane lattice constant substantially matching the in-plane lattice constant of the metal oxide single crystal base material. A method for producing a chalcogenide-based atomic layer film.
  12.  請求項11に記載のカルコゲナイド系原子層膜の製造方法であって、
     前記単結晶基板はSTO単結晶基板であり、
     前記金属酸化物単結晶母材は塩化酸化ビスマスである、
    カルコゲナイド系原子層膜の製造方法。
    A method for producing a chalcogenide-based atomic layer film according to claim 11,
    The single crystal substrate is an STO single crystal substrate,
    The metal oxide single crystal base material is bismuth chloride oxide,
    A method for producing a chalcogenide-based atomic layer film.
PCT/JP2023/006033 2022-02-21 2023-02-20 Method for producing chalcogenide-based atomic layer film WO2023157968A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-024462 2022-02-21
JP2022024462A JP2023121236A (en) 2022-02-21 2022-02-21 Production method of chalcogenide-based atomic layer film

Publications (1)

Publication Number Publication Date
WO2023157968A1 true WO2023157968A1 (en) 2023-08-24

Family

ID=87578722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006033 WO2023157968A1 (en) 2022-02-21 2023-02-20 Method for producing chalcogenide-based atomic layer film

Country Status (2)

Country Link
JP (1) JP2023121236A (en)
WO (1) WO2023157968A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160233322A1 (en) * 2015-02-06 2016-08-11 G-Force Nanotechnology Ltd. Method for fabricating chalcogenide films
KR20180071643A (en) * 2016-12-20 2018-06-28 한국과학기술연구원 Method of manufacturing for two-dimensional tin disulfide thin film
JP2020094279A (en) * 2018-12-13 2020-06-18 アーエスエム・イーぺー・ホールディング・ベスローテン・フェンノートシャップ Method for forming rhenium-containing film on substrate by periodical deposition process, and related semiconductor device structure
US20200357635A1 (en) * 2018-01-22 2020-11-12 King Abdullah University Of Science And Technology Large-scale synthesis of 2d semiconductors by epitaxial phase conversion
JP2021161015A (en) * 2020-03-30 2021-10-11 イムラ・ジャパン株式会社 Method for manufacturing chalcogenide multi-layered atomic layer material
WO2022005398A1 (en) * 2020-06-30 2022-01-06 Agency For Science, Technology And Research Method of growing monolayer transition metal dichalcogenides via sulfurization and subsequent sublimation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160233322A1 (en) * 2015-02-06 2016-08-11 G-Force Nanotechnology Ltd. Method for fabricating chalcogenide films
KR20180071643A (en) * 2016-12-20 2018-06-28 한국과학기술연구원 Method of manufacturing for two-dimensional tin disulfide thin film
US20200357635A1 (en) * 2018-01-22 2020-11-12 King Abdullah University Of Science And Technology Large-scale synthesis of 2d semiconductors by epitaxial phase conversion
JP2020094279A (en) * 2018-12-13 2020-06-18 アーエスエム・イーぺー・ホールディング・ベスローテン・フェンノートシャップ Method for forming rhenium-containing film on substrate by periodical deposition process, and related semiconductor device structure
JP2021161015A (en) * 2020-03-30 2021-10-11 イムラ・ジャパン株式会社 Method for manufacturing chalcogenide multi-layered atomic layer material
WO2022005398A1 (en) * 2020-06-30 2022-01-06 Agency For Science, Technology And Research Method of growing monolayer transition metal dichalcogenides via sulfurization and subsequent sublimation

Also Published As

Publication number Publication date
JP2023121236A (en) 2023-08-31

Similar Documents

Publication Publication Date Title
Arfaoui et al. Structural, morphological, gas sensing and photocatalytic characterization of MoO3 and WO3 thin films prepared by the thermal vacuum evaporation technique
JP4279455B2 (en) Solution synthesis of mixed metal chalcogenide nanoparticles and spray deposition of precursor films
Alexandrescu et al. TiO2 nanosized powders by TiCl4 laser pyrolysis
Crick et al. CVD of copper and copper oxide thin films via the in situ reduction of copper (ii) nitrate—a route to conformal superhydrophobic coatings
Zhang et al. Synthesis and formation mechanism of VO 2 (A) nanoplates with intrinsic peroxidase-like activity
CN110042363A (en) A kind of tungsten disulfide single thin film material and preparation method thereof
US9463440B2 (en) Oxide-based nanostructures and methods for their fabrication and use
Rodrigues et al. A review on the laser-assisted flow deposition method: Growth of ZnO micro and nanostructures
JP7413495B2 (en) Crystalline oxide thin film
Vallejos et al. Aerosol-assisted chemical vapor deposition of metal oxide structures: Zinc oxide rods
Kwak et al. Microwave-assisted synthesis of group 5 transition metal dichalcogenide thin films
Besserguenev et al. TiO2 thin film synthesis from complex precursors by CVD, its physical and photocatalytic properties
Narayanan et al. Role of hexamethylenetetramine concentration on structural, morphological, optical and electrical properties of hydrothermally grown zinc oxide nanorods
Suzuki et al. A novel flux coating method for the fabrication of layers of visible-light-responsive Ta 3 N 5 crystals on tantalum substrates
WO2023157968A1 (en) Method for producing chalcogenide-based atomic layer film
Gulina et al. Facile synthesis of scandium fluoride oriented single-crystalline rods and urchin-like structures by a gas–solution interface technique
Salaün et al. The incorporation of preformed metal nanoparticles in zinc oxide thin films using aerosol assisted chemical vapour deposition
Kumbhar et al. Synthesis of hierarchical zno nanostructure and its photocatalytic performance study
Heredia-Cancino et al. Optical and structural properties of PbSe films obtained by ionic exchange of lead oxyhydroxicarbonate in a selenium-rongalite solution
JPH07138761A (en) Method and apparatus for producing thin film
Labidi et al. Synthesis of pure Cu2O thin layers controlled by in-situ conductivity measurements
Raj et al. Synthesis and characterization of Cd (OH) 2 nanowires obtained by a microwave-assisted chemical route
JP2021161015A (en) Method for manufacturing chalcogenide multi-layered atomic layer material
Chowdhury et al. Evidence of phase heterogeneity in sol–gel Na0. 5K0. 5NbO3 system
US9017777B2 (en) Inorganic films using a cascaded source for battery devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23756492

Country of ref document: EP

Kind code of ref document: A1