WO2023157961A1 - Steering device - Google Patents

Steering device Download PDF

Info

Publication number
WO2023157961A1
WO2023157961A1 PCT/JP2023/005881 JP2023005881W WO2023157961A1 WO 2023157961 A1 WO2023157961 A1 WO 2023157961A1 JP 2023005881 W JP2023005881 W JP 2023005881W WO 2023157961 A1 WO2023157961 A1 WO 2023157961A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
steering
electric motor
steering device
ball screw
Prior art date
Application number
PCT/JP2023/005881
Other languages
French (fr)
Japanese (ja)
Inventor
敦 吉武
直也 杉本
Original Assignee
クノールブレムゼステアリングシステムジャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クノールブレムゼステアリングシステムジャパン株式会社 filed Critical クノールブレムゼステアリングシステムジャパン株式会社
Priority to JP2024501460A priority Critical patent/JPWO2023157961A1/ja
Publication of WO2023157961A1 publication Critical patent/WO2023157961A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear

Definitions

  • the present invention relates to steering devices.
  • a steering device for example, a steering device described in Patent Document 1 below is known.
  • the steering device of Patent Literature 1 has a steering shaft to which a rotational force due to a driver's steering operation is input.
  • the steering shaft is provided with a torque sensor for detecting steering torque, an electric motor for applying assist torque to the rotational force, and a ball screw mechanism for transmitting thrust generated by the rotational force to the output shaft.
  • the present invention has been devised in view of the conventional circumstances, and one object of the present invention is to provide a steering device capable of reducing the axial dimension of the steering device.
  • the steering device includes a first shaft, an output shaft positioned radially outside the first shaft, and a second shaft positioned on the opposite side of the first shaft across the output shaft. a gear mechanism connecting a first shaft and a second shaft; a torque sensor; an electric motor; , and the remaining one is provided on the second shaft.
  • the axial dimension of the steering device can be reduced.
  • FIG. 1 is a top view of the steering device of the first embodiment;
  • FIG. FIG. 2 is a longitudinal sectional view of the steering device of the first embodiment taken along line AA in FIG. 1;
  • 1 is a perspective view of a steering device according to a first embodiment;
  • FIG. It is a top view of the steering device of a 2nd embodiment.
  • FIG. 5 is a longitudinal cross-sectional view of the second embodiment of the steering device taken along line BB of FIG. 4; It is a top view of the steering device of 3rd Embodiment.
  • FIG. 7 is a vertical cross-sectional view of the steering device of the third embodiment taken along line CC of FIG. 6; It is a top view of the steering device of a 4th embodiment.
  • FIG. 9 is a vertical cross-sectional view of the fourth embodiment of the steering device taken along line DD of FIG. 8;
  • FIG. 9 is a partial cross-sectional view of the first electric motor, etc., taken along line EE in FIG. 8
  • the steering device has a first shaft that is one of the steering shaft 1 and the intermediate shaft 2, and a second shaft that is the other of the steering shaft 1 and the intermediate shaft 2, and the torque sensor 8. Two of the first electric motor 6 and the ball screw mechanism 4 are provided on the first shaft, and the remaining one is provided on the second shaft.
  • the steering device has a first shaft that is one of the steering shaft 1 and the intermediate shaft 2 and a second shaft that is the other of the steering shaft 1 and the intermediate shaft 2, All of the torque sensor 8, the first electric motor 6 and the ball screw mechanism 4 are prevented from being provided on the first shaft or the second shaft.
  • FIG. 1 is a top view of the steering device of the first embodiment.
  • 2 is a longitudinal sectional view of the steering apparatus of the first embodiment taken along line AA of FIG. 1.
  • FIG. 2 the side (upper side in the figure) linked to the steering wheel in the direction along the rotation axis P of the steering shaft 1 is defined as "one end", and the side (lower side in the figure) to which the first bevel gear 42 is attached. is described as "the other end”.
  • FIG. 3 is a perspective view of the steering device of the first embodiment.
  • the steering shaft 1 is the first shaft and the intermediate shaft 2 is the second shaft, and the torque sensor 8 and the first electric motor 6 are provided on the steering shaft 1, On the other hand, an example in which the ball screw mechanism 4 is provided on the intermediate shaft 2 is shown.
  • the steering device includes a steering shaft 1 linked to a steering wheel (not shown), an intermediate shaft 2 arranged radially outside the steering shaft 1, and a gear mechanism 3 connecting the steering shaft 1 and the intermediate shaft 2. , a ball screw mechanism 4 provided on the intermediate shaft 2 , a sector gear (output shaft) 5 to which thrust from the ball screw mechanism 4 is transmitted and used to steer the steerable wheels, and an assist torque to the steering shaft 1 .
  • It is mainly composed of a first electric motor 6, a first speed reducer 7 that reduces the rotation of the first electric motor 6, and a torque sensor 8 that detects the steering torque associated with the rotational force input from the driver. ing.
  • the steering shaft 1 is housed in a first housing 9, a partition member 10 and a second housing 11, which will be described later, except for one end, and includes an input shaft 12, a first linking shaft 13 and a second linking shaft 14. ing.
  • One end of the input shaft 12 is linked to the steering wheel, and is used for input of steering torque by the driver.
  • the other end of the input shaft 12 is inserted into an opening recess 13 a formed on one end side of the first linking shaft 13 .
  • the input shaft 12 is rotatably supported by a bearing such as a first ball bearing 15 provided on the inner peripheral surface of the first housing 9 .
  • One end of the first linking shaft 13 is connected to the input shaft 12 via a torsion bar 16 so as to be relatively rotatable. Provide for input.
  • the first linking shaft 13 is supported by a bearing such as a second ball bearing 17 provided on the inner peripheral portion of the partition member 10 and a bearing provided on the inner peripheral surface of the second housing 11 such as a third ball bearing 18. rotatably supported.
  • One end of the second linking shaft 14 is fixed to the outer periphery of the other end of the first linking shaft 13 , while the other end is rotatably supported by a bearing such as a fourth ball bearing 19 .
  • the direction along the rotation axis P of the steering shaft 1 is defined as “axial direction”, and the direction orthogonal to the axial direction is defined as “radial direction”.
  • the circumferential direction is defined as “circumferential direction”.
  • the first housing 9 is made of metal, such as an aluminum alloy, and has a cylindrical shape.
  • the first housing 9 is arranged on one end side of the steering shaft 1 and, as shown in FIG. there is As shown in FIG. 2, the first housing 9 includes a small-diameter portion 9a located at one end of the steering shaft 1, and a large-diameter portion 9a integrally formed with the small-diameter portion 9a and having a larger diameter than the small-diameter portion 9a. and a diameter portion 9b.
  • a space inside the small-diameter portion 9a serves as a bearing housing portion 21 for housing the first ball bearing 15 therein.
  • a space inside the large-diameter portion 9b serves as a sensor accommodating portion 22 for accommodating the torque sensor 8. As shown in FIG.
  • annular flange portion 9c projecting radially outward from the outer peripheral portion is formed on the outer peripheral portion of the large diameter portion 9b.
  • the annular continuous surface of the flange portion 9c on the other end side is abutted against the distal end surface of the annular first projection portion 10a protruding from the surface of the metal partition member 10 on the one end side.
  • the outer peripheral surface of the peripheral wall of the large diameter portion 9b and the inner peripheral surface of the first protrusion 10a are airtightly sealed by the ring-shaped first seal member 23. As shown in FIG.
  • the second housing 11 is made of metal such as an aluminum alloy.
  • the second housing 11 includes a cylindrical linking shaft side tubular portion 24 that houses the first linking shaft 13 and the second linking shaft 14, and a cylindrical intermediate shaft that houses the intermediate shaft 2 provided with the ball screw mechanism 4. It is configured by integrally forming the side tubular portion 25 .
  • the linking shaft-side cylindrical portion 24 includes a cylindrical main body portion 24a, a first enlarged diameter portion 24b that expands from one end of the cylindrical main body portion 24a, and a first enlarged diameter portion 24b that expands from one end of the cylindrical main body portion 24a. and a second enlarged diameter portion 24c formed to have a smaller diameter than the first enlarged diameter portion 24b.
  • a space inside the first enlarged diameter portion 24 b serves as a first reduction gear accommodating portion 26 that accommodates the first reduction gear 7 .
  • the first reduction gear housing portion 26 is positioned below the sensor housing portion 22 with the partition member 10 interposed therebetween.
  • One end of the peripheral wall of the first enlarged diameter portion 24b is abutted against the surface on the other end side of the partition member 10, and in this abutted state, the outer peripheral surface of the peripheral wall of the first enlarged diameter portion 24b and the partition member 10
  • a ring-shaped second projection 10 b projecting from the other end side of the second projection 10 b is airtightly sealed by a ring-shaped second sealing member 27 .
  • the second protrusion 10b is positioned radially outward of the first protrusion 10a.
  • the partition member 10 has a through hole 10c through which one end of the first linking shaft 13 passes through at its central portion.
  • an annular third protrusion 10d is formed to protrude toward the other end.
  • a second ball bearing 17 that rotatably supports the first linking shaft 13 is provided on the inner peripheral surface of the third protrusion 10d.
  • a third ball bearing 18, which rotatably supports the first linking shaft 13, is provided on the inner peripheral surface of the first enlarged diameter portion 24b on the other end side.
  • Bearings for rotatably supporting the second linking shaft 14 are provided on the inner peripheral surface of the second enlarged diameter portion 24c and a part of the inner peripheral surface axially adjacent to the second enlarged diameter portion 24c.
  • a fourth ball bearing 19 is provided.
  • the side portion of the second enlarged diameter portion 24c and the side portion of the tubular main body portion 24a adjacent to the second enlarged diameter portion 24c in the axial direction are the side portion of the intermediate shaft side tubular portion 25 on the other end side. They are connected via a connecting portion 28 with a predetermined inclination angle ⁇ .
  • the inclination angle ⁇ is, for example, an angle in the range of 30 to 60 degrees, and is about 35 degrees in this embodiment. It should be noted that the inclination angle ⁇ is not necessarily set within the range described above, but is appropriately set according to the design of the vehicle in which the steering device is mounted.
  • the space of the connecting shaft side tubular portion 24 on the other end side of the coupling portion 28 communicates with the space of the intermediate shaft side tubular portion 25 below the coupling portion 28, and the space in communication with the space below the coupling portion 28.
  • a portion serves as a gear mechanism accommodating portion 29 that accommodates the gear mechanism 3 .
  • the gear mechanism accommodating portion 29 is attached to the inclined axial end face 24d of the linking shaft side tubular portion 24 and the inclined axial end face 25a of the intermediate shaft side tubular portion 25 by fastening members (not shown), such as bolts. It is closed by fixing the circular plate-shaped first cover member 30 via a fastening member (not shown) such as a bolt.
  • the intermediate shaft side cylindrical portion 25 has a substantially constant diameter along the longitudinal direction.
  • the intermediate shaft-side tubular portion 25 is located at one end in the axial direction of the rotation axis Q of the intermediate shaft 2 that is inclined at an inclination angle ⁇ with respect to the rotation axis P of the steering shaft 1 (diagonally upper right in FIG. 2). It is closed by a lid member 31 .
  • the second lid member 31 is formed in a cylindrical shape with a bottom, and has a male screw portion formed on its outer peripheral surface. The second lid member 31 is attached and fixed to the intermediate shaft side tubular portion 25 by screwing the male threaded portion into the female threaded portion formed on the inner peripheral surface of the intermediate shaft side tubular portion 25 .
  • a bearing for rotatably supporting the intermediate shaft 2 for example, a fifth ball bearing 32 is provided on the inner peripheral surface of the second lid member 31 .
  • the fifth ball bearing 32 is mounted between the second cover member 31 and the intermediate shaft 2 by screwing the second cover member 31 into the intermediate shaft-side cylindrical portion 25 while in contact with the annular protrusion 2 a provided on the intermediate shaft 2 . It is fixed between the shafts 2.
  • a portion of the inner peripheral surface of the intermediate shaft-side cylindrical portion 25 adjacent to the gear mechanism accommodating portion 29 is a bearing support portion 25b formed in a diameter-reduced shape.
  • a sixth ball bearing 33 is provided to rotatably support the intermediate shaft 2 .
  • the sixth ball bearing 33 is brought into contact with both the annular projection 25c provided on the intermediate shaft side cylindrical portion 25 and the stepped portion 2b provided on the intermediate shaft 2, so that the intermediate shaft side cylindrical portion 25 and the intermediate shaft 2.
  • a space between the fifth ball bearing 32 and the sixth ball bearing 33 in the internal space of the intermediate shaft side cylindrical portion 25 serves as a ball screw mechanism accommodating portion 34 that accommodates the ball screw mechanism 4 .
  • the part of the ball screw mechanism accommodating portion 34 that faces the linking shaft side tubular portion 24 is linked via a generally cylindrical output shaft peripheral wall portion 35 that surrounds the sector gear 5, which is the output shaft. It is connected to the tubular body portion 24 a of the shaft-side tubular portion 24 .
  • the output shaft peripheral wall portion 35 is provided between the first enlarged diameter portion 24b of the linking shaft side cylindrical portion 24 and the coupling portion 28 at a position closer to the first enlarged diameter portion 24b.
  • a space inside the output shaft peripheral wall portion 35 serves as a gear accommodation portion 36 that accommodates the sector gear 5 , and the gear accommodation portion 36 opens to the ball screw mechanism accommodation portion 34 of the intermediate shaft side cylindrical portion 25 .
  • the gear housing portion 36 and a portion of the ball screw mechanism housing portion 34 adjacent to the gear housing portion 36 are, as shown in FIGS.
  • the intermediate shaft side cylindrical portion 25 is closed by attaching a plate-like third lid member 38 by 37 .
  • the torque sensor 8 includes a permanent magnet (not shown), a holder member 39, a pair of first and second yokes (not shown), a pair of first and second magnetic flux collecting rings 40 and 41, and a magnetic sensor (not shown). and consists mainly of The permanent magnet, holder member 39, first and second yokes, and magnetic flux collection rings 40 and 41 are all arranged substantially concentrically with the rotation axis P of the steering shaft 1. As shown in FIG.
  • the permanent magnet is a magnetic member that is made of a magnetic material and has a substantially cylindrical shape and is attached and fixed to the outer periphery of the first link shaft 13 on the one end side.
  • the permanent magnet is configured by alternately arranging (magnetizing) N poles and S poles along the circumferential direction of the permanent magnet.
  • the holder member 39 is formed in a substantially cylindrical shape and is attached and fixed to the outer periphery of the other end of the input shaft 12 .
  • the pair of first and second yokes are both formed of a soft magnetic material in a substantially cylindrical shape, connected to the input shaft 12 via a holder member 39, and arranged so that the other end faces the permanent magnet in the radial direction. is provided in The first and second yokes are welded and fixed to the holder member 39 by annular welding plates (not shown).
  • the pair of magnetism collecting rings 40 and 41 are substantially annular rings that collect the magnetic flux of the permanent magnets leaked to one end of both yokes in a predetermined range.
  • the magnetic flux collection ring 40 is arranged on the outer peripheral side of the torque sensor 8
  • the magnetic flux collection ring 41 is arranged on the inner peripheral side of the torque sensor 8 so as to face the magnetic flux collection ring 40 .
  • a magnetism collecting portion 40a having a flat surface (not shown) is provided at a predetermined position in the circumferential direction of the magnetism collecting ring 40.
  • a magnetism collecting portion 40a is provided at a position facing the magnetism collecting portion 40a in the circumferential direction of the magnetism collecting ring 41.
  • the magnetic sensor includes a Hall element (not shown) housed in a radial gap between the flat surface of the magnetic flux collecting portion 40a and the flat surface of the magnetic flux collecting portion 41a, and a substrate (not shown) for connecting the Hall element. and connection terminals (not shown).
  • the magnetic sensor uses the Hall effect of the Hall element to detect the magnetic flux passing between the opposing flat surfaces of the magnetic flux collectors 40a and 41a, and outputs a signal corresponding to this magnetic flux to a substrate (not shown). output to As a result, calculation of the relative rotation angle between the input shaft 12 and the first linking shaft 13 on the substrate and calculation of the steering torque based on the relative rotation angle are performed.
  • the gear mechanism 3 includes a first bevel gear 42 fixed to the outer peripheral portion on the other end side of the second linking shaft 14 and a second gear mechanism 42 fixed to the outer peripheral portion on the other end side of the intermediate shaft 2 and meshing with the first bevel gear 42 . and a bevel gear 43.
  • the first bevel gear 42 has a plurality of first teeth 42a inclined toward the other end in the direction of the rotation axis P of the steering shaft 1. It has a plurality of second tooth portions 43a inclined toward the other end in the direction of .
  • the number of the first tooth portions 42a and the number of the second tooth portions 43a are set to be the same, so the speed ratio between the first bevel gear 42 and the second bevel gear 43 is 1:1.
  • the rotation axis Q of the intermediate shaft 2 is inclined at an angle ⁇ with respect to the rotation axis P of the steering shaft 1 extending in the vertical direction. It's like
  • the ball screw mechanism 4 includes an intermediate shaft side ball screw groove 2c that is a spiral groove provided on the outer peripheral side of the intermediate shaft 2, and a nut side ball screw groove 44a that is a spiral groove provided on the inner peripheral side of the nut 44. , and a plurality of balls 45 arranged between the ball screw grooves 2c and 44a.
  • the ball 45 supports the nut 44 rotatably relative to the intermediate shaft 2 .
  • the outer peripheral surface of the nut 44 is slidably in contact with the inner peripheral surface of the ball screw mechanism accommodating portion 34 . This allows the nut 44 to slide along the rotation axis Q of the intermediate shaft 2 inside the ball screw mechanism accommodating portion 34 .
  • a plurality of rack teeth 44b are formed on the outer peripheral portion of the nut 44 on the sector gear 5 side. These rack teeth 44b are meshed with the tooth portion 5a of the sector gear 5. As shown in FIG.
  • the sector gear 5 is provided swingably within the gear housing portion 36 .
  • One axial end of the sector gear 5 is connected to a nut 44 via a toothed portion 5a, and the other end is linked to a steering wheel (not shown) via a pitman arm 46 and a drag link and ball joint (not shown).
  • the pitman arm 46 is attached to the other end side of the sector gear 5 so as to be rotatable around the rotation axis R of the sector gear 5 .
  • the pitman arm 46 is rotatable clockwise from the position indicated by the solid line in FIG. 2 to a position of 90 degrees (the position of the left pitman arm 46 indicated by the two-dot chain line). Also, when the pitman arm 46 rotates, the trajectory of the pitman arm 46 and the trajectory of the drag ring (not shown) connected to the pitman arm 46 do not interfere with parts or components positioned below the steering device. It's like
  • the first speed reducer 7 is arranged in a first speed reducer accommodating portion 26 provided in the large diameter portion 9b of the cylindrical portion 24 on the linking shaft side.
  • the first speed reducer 7 reduces the speed of rotation from the first electric motor 6 and is composed of a worm gear formed by meshing a worm shaft (not shown) and a worm wheel 47 .
  • the worm wheel 47 has a generally cylindrical metal core portion 47a and a synthetic resin gear forming portion 47b provided on the outer peripheral portion of the core metal portion 47a.
  • the gear forming portion 47b meshes with a worm formed on a worm shaft.
  • the first electric motor 6 is connected to the first linking shaft 13 via the first speed reducer 7, and is a three-phase AC motor that applies assist torque to the first linking shaft 13 in accordance with the twist amount of the torsion bar 16. is configured as a brushless motor. As shown in FIG. 1 , the first electric motor 6 is integrated with a first EPS controller 48 that controls the first electric motor 6 based on the steering torque from the torque sensor 8 . The first electric motor 6 is housed in a motor housing 49 , and the motor housing 49 is attached and fixed to a worm shaft housing 50 integrally formed with the first housing 9 . The first electric motor 6 has a motor shaft (not shown), and one axial end of the motor shaft is connected to a worm shaft (not shown). The first electric motor 6 and the first EPS controller 48 are provided at a position higher than the sector gear 5 and lower than the driving floor (not shown).
  • the sector gear 5 is arranged radially outside the steering shaft 1, and the steering shaft 1 and the intermediate shaft 2 are connected to each other via the first and second bevel gears 42, 43.
  • the intermediate shaft 2 is arranged on the opposite side of the steering shaft 1 with the sector gear 5 interposed therebetween. More specifically, the intermediate shaft 2 is tilted at the tilt angle ⁇ with respect to the steering shaft 1 by the first and second bevel gears 42 and 43 .
  • the torque sensor 8 and the first electric motor 6 are provided on the steering shaft 1, while the ball screw mechanism 4 is provided on the intermediate shaft 2.
  • the axial length of the ball screw mechanism 4 including the stroke of the nut 44 is not added to the steering shaft 1, the torque sensor, the first electric motor and the ball screw mechanism are all provided on the steering shaft. With respect to the configuration, the axial dimensions of the steering device can be reduced. Such a steering system is particularly effective for small trucks.
  • a torque sensor, a ball screw mechanism, and a first electric motor (a first reduction gear connected to the first electric motor) are arranged in order from one end of the steering shaft. There is no space for providing the first reduction gear between one end of the steering shaft and the torque sensor.
  • the first reduction gear is provided between the torque sensor and the ball screw mechanism without increasing the axial dimension of the steering device. Unable to secure space for placement.
  • the design from the sector gear to the steered wheels is also fixed, the steering shaft and the sector gear have a fixed positional relationship.
  • the first electric motor in order to dispose the first electric motor while maintaining the positional relationship between the steering shaft and the sector gear, the first electric motor, more specifically, the first electric motor connected to the first electric motor
  • the speed reducer has to be arranged at the other end (lower side) of the steering shaft.
  • the drag link connected to the pitman arm may interfere with the motor housing when the pitman arm rotates.
  • the first electric motor provided on the other end side of the steering shaft is easily affected by water and pebbles that enter the lower part of the vehicle from the road surface, causing electrical failure of the first electric motor and damage to the motor housing. was likely to occur.
  • the first electric motor 6 is provided at a position higher than the sector gear 5 .
  • the first electric motor 6 is provided at a position far away from the pitman arm 46 and the drag link. Therefore, it is possible to prevent the drag link from damaging the motor housing 49 and the first EPS controller 48 when the pitman arm 46 rotates.
  • the first electric motor 6 when the first electric motor 6 is positioned higher than the sector gear 5, it becomes difficult for water and pebbles from the road surface to reach the first electric motor 6. Electrical failure of the electric motor 6 and damage to the motor housing 49 and the first EPS controller 48 can be suppressed.
  • the first electric motor 6 is arranged higher than the sector gear 5 in this way, it is possible to easily achieve the minimum ground clearance standard indicating the vertical distance between the road surface and the lowest part of the vehicle.
  • the ball screw mechanism is provided on the steering shaft, and the teeth of the sector gear mesh with the rack teeth of the nut of the ball screw mechanism.
  • the steering shaft and the sector gear have a certain positional relationship, so it is possible to increase the outer diameter of the ball screw mechanism, which requires relatively high rigidity to transmit thrust to the sector gear. The problem was that it was difficult.
  • the intermediate shaft 2 is inclined with respect to the steering shaft 1 at the inclination angle ⁇ , and furthermore, the toothed portion 5a of the sector gear 5 is positioned outside the linking shaft side cylindrical portion 24. It meshes with the rack teeth 44b of the nut 44 of the ball screw mechanism 4.
  • the outer diameter of the ball screw mechanism 4 can be increased without being constrained by the positional relationship between the steering shaft 1 and the sector gear 5, and the degree of freedom in designing the ball screw mechanism 4 can be improved. Furthermore, the steering apparatus having the configuration of the first embodiment can be applied not only to small-sized trucks but also to large-sized trucks.
  • FIG. 4 is a top view of the steering device of the second embodiment.
  • FIG. 5 is a longitudinal cross-sectional view of the steering device of the second embodiment taken along line BB in FIG.
  • the steering shaft 1 is the first shaft and the intermediate shaft 2 is the second shaft. and the first electric motor 6 are provided on the intermediate shaft 2 .
  • the second embodiment shows an example in which the first electric motor 6 provided on the steering shaft 1 in the first embodiment is provided on the intermediate shaft 2 .
  • the first reduction gear accommodating portion 26 of the first embodiment is eliminated, and the axial dimension of the first enlarged diameter portion 24b of the linking shaft side cylindrical portion 24 becomes shorter than in the first embodiment. ing.
  • the second cover member 31 has a circular shaft through-hole 31a formed in its central portion, and the small-diameter end portion 2d of the intermediate shaft 2 formed in a stepped diameter reduction shape is inserted into the shaft through-hole 31a. is penetrating.
  • a worm wheel 47 that constitutes a part of the first speed reducer 7 is attached and fixed to the outer peripheral portion of the small-diameter end portion 2 d that protrudes outward from the second lid member 31 .
  • the first reduction gear accommodating portion 26 of the second embodiment that accommodates the first reduction gear 7 is closed by attaching a cup-shaped closing member 51 to the outer peripheral portion of the intermediate shaft side cylindrical portion 25 . .
  • the first speed reducer 7 is not arranged inside the first enlarged diameter portion 24b, by shortening the axial dimension of the first enlarged diameter portion 24b, the axial direction of the steering device can be reduced more than in the first embodiment. Dimensions can be reduced.
  • the intermediate shaft side ball screw groove 2c and the nut side ball screw groove 44a of the ball screw mechanism 4 By shortening the lead of the ball screw mechanism 4, the speed of the ball screw mechanism 4 can be reduced, and the assisting force to the intermediate shaft 2 can be increased. Further, if the lead is shortened, the assist force of the first electric motor 6 can be reduced by the amount of the shortened lead, so the first electric motor 6 can be miniaturized.
  • the total speed ratio from the input shaft 12 to the sector gear 5 can be kept constant, whereby the ball screw mechanism 4 and the speed ratio of the first and second bevel gears 42 and 43 can be improved.
  • FIG. 6 is a top view of the steering device of the third embodiment.
  • 7 is a vertical cross-sectional view of the third embodiment of the steering device taken along line CC of FIG. 6.
  • the third embodiment is a combination of the configuration of the steering device of the first embodiment and the configuration of the steering device of the second embodiment. That is, in the third embodiment, the torque sensor 8 and the first electric motor 6 are provided on the steering shaft 1, while the ball screw mechanism 4 and the second electric motor 6 having the same configuration as the first electric motor 6 are provided. A motor 52 is provided on the intermediate shaft 2 .
  • the first electric motor 6 is arranged so that the second EPS controller 53 is located on the rear side of the first housing 9 and the linking shaft side cylindrical portion 24 when viewed from the direction of the rotation axis R of the sector gear 5 (see FIG. 7). back side).
  • the intermediate shaft 2 is tilted at the tilt angle ⁇ with respect to the steering shaft 1 by the first and second bevel gears 42 and 43. , while the ball screw mechanism 4 and the second electric motor 52 are provided on the intermediate shaft 2 .
  • the two motors of the first and second electric motors 6, 52 can supply larger assist torque than in the first and second embodiments. Further, even if one of the first and second electric motors 6, 52 fails, the other of the first and second electric motors 6, 52 can continue to operate the steering device.
  • FIG. 8 is a top view of the steering device of the fourth embodiment.
  • FIG. 9 is a longitudinal sectional view of the fourth embodiment of the steering device taken along line DD in FIG.
  • FIG. 10 is a partial cross-sectional view of the first electric motor 6, etc. taken along line EE in FIG.
  • the intermediate shaft 2 is connected orthogonally to the steering shaft 1 via the gear mechanism 3.
  • a torque sensor 8 and a ball screw mechanism 4 are provided on the steering shaft 1
  • a first electric motor 6 is provided on the intermediate shaft 2 .
  • the partition member 10 of the first to third embodiments is eliminated, and the first housing 9 is directly attached to the linking shaft side cylindrical portion 24 by bolts 20.
  • the linking shaft side tubular portion 24 is formed separately from the intermediate shaft side tubular portion 25 .
  • the first housing 9 further has a medium-diameter portion 9d located between the small-diameter portion 9a and the large-diameter portion 9b, and the space inside the medium-diameter portion 9d is used to generate torque.
  • a sensor accommodating portion 22 that accommodates the sensor 8 is formed.
  • the linking shaft side tubular portion 24 has a generally cylindrical shape, and a portion of the outer peripheral portion bulges radially outward to form an output shaft surrounding wall portion 35 .
  • the output shaft surrounding wall portion 35 opens inside the linking shaft side tubular portion 24 .
  • the sector gear 5 is arranged such that the tooth portion 5 a faces the second linking shaft 14 , and the tooth portion 5 a is a ball screw provided around the second linking shaft 14 . It meshes with the rack teeth 44b of the nut 44 of the mechanism 4.
  • a linking shaft side ball screw groove 14 a that constitutes a part of the ball screw mechanism 4 is formed on the outer peripheral surface of the second linking shaft 14 at the central portion in the axial direction.
  • a substantially annular bearing holding member 55 for holding a bearing, for example, a seventh ball bearing 54 is provided inside one end of the linking shaft side tubular portion 24 .
  • a male threaded portion is formed on the outer peripheral surface of the bearing holding member 55 , and this male threaded portion is screwed into a female threaded portion formed on the inner peripheral surface of one end of the linking shaft side cylindrical portion 24 .
  • the bearing holding member 55 is attached and fixed to the linking shaft side tubular portion 24 .
  • the bearing holding member 55 has a shaft through hole 55a formed in its central portion, and the steering shaft 1 extends axially through the shaft through hole 55a.
  • a diameter-reduced portion 24e having a diameter-reduced shape is formed at the other end portion of the linking shaft-side cylindrical portion 24, and the inner peripheral surface of the diameter-reduced portion 24e has a second A bearing for rotatably supporting the linking shaft 14, for example, an eighth ball bearing 70 is provided.
  • the intermediate shaft-side cylindrical portion 25 includes a first cylindrical portion 56 that accommodates a portion of the second linking shaft 14 and a second cylindrical portion 56 that is integrally formed with the first cylindrical portion 56 and accommodates a portion of the intermediate shaft 2 . and a cylindrical portion 57 .
  • One end of the first cylindrical portion 56 serves as a support portion for installing the linking shaft side cylindrical portion 24 , while the other end is formed to have a smaller diameter than the one end and serves as a portion coupled to the second cylindrical portion 57 . It's becoming An end portion 56a of the first cylindrical portion 56 that is not coupled to the second cylindrical portion 57 is inclined radially outward.
  • the second cylindrical portion 57 has an annular projecting portion 57a formed on its inner peripheral surface, and the annular projecting portion 57a has a bearing, for example, a ninth ball bearing 58, for rotatably supporting the intermediate shaft 2. is in contact with one end of the outer race 58a. With one end of the outer race 58a in contact with the annular projecting portion 57a, the other end of the outer race 58a is held by a first retaining ring 59 provided on the inner circumference of the second cylindrical portion 57 so as to be attached to the intermediate shaft 2. It is fixed to the second cylindrical portion 57 by pressing it toward one end in the direction.
  • a bearing for example, a ninth ball bearing 58
  • One end of the inner race 58b of the ninth ball bearing 58 is in contact with a stepped portion 2e formed near the center of the intermediate shaft 2 in the axial direction.
  • the inner race 58 b is in contact with the stepped portion 2 e of the intermediate shaft 2 , and the other end of the inner race 58 b is pushed toward one axial end of the intermediate shaft 2 by a second retaining ring 60 provided on the outer periphery of the intermediate shaft 2 . It is fixed to the intermediate shaft 2 by pressing.
  • a second bevel gear 43 is attached and fixed to the first bevel gear 42 at right angles to the small-diameter end 2 d of the intermediate shaft 2 on the one axial end side.
  • the first toothed portion 42a of the first bevel gear 42 and the second toothed portion 43a of the second bevel gear 43 mesh with each other so that the rotation axis Q of the intermediate shaft 2 is perpendicular to the rotation axis P of the steering shaft 1. .
  • the inner side of the closing member 51 serves as a first reduction gear accommodating portion 26 in which the first reduction gear 7 that reduces the rotation speed of the first electric motor 6 is accommodated.
  • a part of the outer peripheral portion of the closing member 51 communicates with a worm shaft accommodating portion 61, which will be described later, provided in the worm shaft housing 50 shown in FIG.
  • the worm shaft housing 50 is formed integrally with a cylindrical shaft tubular portion 50a and is formed in a conical tapered shape that gradually expands in diameter toward the first electric motor 6 side. and a tapered conical portion 50b.
  • a space inside the shaft cylindrical portion 50a and the conical tapered portion 50b serves as a worm shaft housing portion 61 for housing a worm shaft 62 therein.
  • One axial end portion 50c of the conical tapered portion 50b is fixed to the outer peripheral portion of a stepped reduced diameter portion 49a formed in the motor housing 49 in a stepped diameter reduced shape.
  • a ring-shaped fourth seal member 63 airtightly seals the inner peripheral surface of the one axial end portion 50c and the outer peripheral surface of the stepped reduced diameter portion 49a.
  • the opening at the other end in the axial direction of the cylindrical shaft portion 50a is closed by a breathing valve 64 that allows the air inside the worm shaft housing 50 to escape to the outside.
  • the worm shaft 62 is made of a metal material and has a substantially cylindrical shape.
  • the worm shaft 62 has one end fixed to the motor shaft 65 and the other end positioned in the worm shaft housing 61 near the breathing valve 64 .
  • the worm shaft 62 has a cylindrical shaft portion 62a and a spiral tooth portion 62b formed on the outer peripheral portion of the shaft portion 62a and continuing in a spiral shape.
  • the helical tooth portion 62b meshes with the gear forming portion 47b of the worm wheel 47 of the first speed reducer 7. As shown in FIG.
  • a bearing for rotatably supporting the worm shaft 62 such as a deep groove ball bearing 66, is provided on the outer peripheral portion of the worm shaft 62 on one end side in the axial direction.
  • a tenth ball bearing 67 which rotatably supports the worm shaft 62, is provided on the outer peripheral portion of the worm shaft 62 on the other end side in the axial direction.
  • a tenth ball bearing 67 is supported by a bearing support member 68 provided between the worm shaft 62 and the breathing valve 64 .
  • the bearing support member 68 has a circular recess 68a formed in a surface facing the other axial end of the worm shaft 62, and the tenth ball bearing 67 is fitted into this circular recess 68a.
  • the tenth ball bearing 67 is supported by the bearing holding member 68 .
  • the outer peripheral surface of the bearing holding member 68 and the inner peripheral surface of the cylindrical shaft portion 50a are airtightly sealed by a ring-shaped fifth seal member 69. As shown in FIG.
  • the torque sensor 8 and the ball screw mechanism 4 are provided on the steering shaft 1 in a shaft configuration in which the intermediate shaft 2 is orthogonal to the steering shaft 1 by the first and second bevel gears 42 and 43.
  • a first electric motor 6 is provided on the intermediate shaft 2 .
  • the axial dimension of the steering device can be reduced by the amount of the first electric motor 6 compared to the conventional steering device.
  • the intermediate shaft 2 is tilted at the tilt angle ⁇ with respect to the steering shaft 1 by the first and second bevel gears 42 and 43.
  • the example in which the spur gear is displaced so as to be parallel to the steering axis 1 can be applied to the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Steering Mechanism (AREA)

Abstract

A steering device comprises a steering shaft (1), a sector gear (5) positioned radially outward of the steering shaft (1), an intermediate shaft (2) positioned on the side opposite from the steering shaft (1) with the sector gear (5) therebetween, first and second bevel gears (42, 43) connecting the steering shaft (1) and the intermediate shaft (2), a torque sensor (8) that detects steering torque accompanying rotational force, a first electric motor (6) that imparts torque for rotational force, and a ball screw mechanism (4) that transmits thrust generated by the rotational force to the sector gear (5). The intermediate shaft (2) is provided so as to be inclined at an inclination angle (α) with respect to the steering shaft (1) by the first and second bevel gears (42, 43). The torque sensor (8) and the first electric motor (6) are provided to the steering shaft (1), and the ball screw mechanism (4) is provided to the intermediate shaft (2).

Description

ステアリング装置steering device
 本発明は、ステアリング装置に関する。 The present invention relates to steering devices.
 ステアリング装置として、例えば以下の特許文献1に記載されたステアリング装置が知られている。 As a steering device, for example, a steering device described in Patent Document 1 below is known.
 特許文献1のステアリング装置は、運転者の操舵操作に伴う回転力が入力される操舵軸を有している。この操舵軸には、操舵トルクを検出するトルクセンサと、回転力に対するアシストトルクを付与する電動モータと、回転力により生じる推力を出力軸に伝達するボールねじ機構とが設けられている。 The steering device of Patent Literature 1 has a steering shaft to which a rotational force due to a driver's steering operation is input. The steering shaft is provided with a torque sensor for detecting steering torque, an electric motor for applying assist torque to the rotational force, and a ball screw mechanism for transmitting thrust generated by the rotational force to the output shaft.
 特許文献1に記載のステアリング装置では、トルクセンサ、電動モータおよびボールねじ機構が操舵軸に設けられているので、ステアリング装置が軸方向に大型化してしまい、このようなステアリング装置を小型のトラックに適用することが困難となる虞がある。 In the steering device described in Patent Document 1, since the torque sensor, the electric motor and the ball screw mechanism are provided on the steering shaft, the steering device becomes large in the axial direction. It may be difficult to apply.
 本発明は、従来の実情に鑑みて案出されたもので、ステアリング装置の軸方向寸法を減少させることが可能なステアリング装置を提供することを一つの目的としている。 SUMMARY OF THE INVENTION The present invention has been devised in view of the conventional circumstances, and one object of the present invention is to provide a steering device capable of reducing the axial dimension of the steering device.
特開2019-156082号公報JP 2019-156082 A
 本発明では、ステアリング装置は、その一態様として、第1軸と、該第1軸の径方向外側に位置した出力軸と、該出力軸を挟んで第1軸の反対側に位置した第2軸と、第1軸と第2軸とを接続する歯車機構と、トルクセンサと、電動モータと、ボールねじ機構とを備え、トルクセンサ、電動モータおよびボールねじ機構のうちの2つが第1軸に設けられ、残りの1つが第2軸に設けられる。 In the present invention, as one aspect of the steering device, the steering device includes a first shaft, an output shaft positioned radially outside the first shaft, and a second shaft positioned on the opposite side of the first shaft across the output shaft. a gear mechanism connecting a first shaft and a second shaft; a torque sensor; an electric motor; , and the remaining one is provided on the second shaft.
 本発明によれば、ステアリング装置の軸方向寸法を減少させることができる。 According to the present invention, the axial dimension of the steering device can be reduced.
第1の実施形態のステアリング装置の上面図である。1 is a top view of the steering device of the first embodiment; FIG. 図1の線A-Aに沿って切断した第1の実施形態のステアリング装置の縦断面図である。FIG. 2 is a longitudinal sectional view of the steering device of the first embodiment taken along line AA in FIG. 1; 第1の実施形態のステアリング装置の斜視図である。1 is a perspective view of a steering device according to a first embodiment; FIG. 第2の実施形態のステアリング装置の上面図である。It is a top view of the steering device of a 2nd embodiment. 図4の線B-Bに沿って切断した第2の実施形態のステアリング装置の縦断面図である。FIG. 5 is a longitudinal cross-sectional view of the second embodiment of the steering device taken along line BB of FIG. 4; 第3の実施形態のステアリング装置の上面図である。It is a top view of the steering device of 3rd Embodiment. 図6の線C-Cに沿って切断した第3の実施形態のステアリング装置の縦断面図である。FIG. 7 is a vertical cross-sectional view of the steering device of the third embodiment taken along line CC of FIG. 6; 第4の実施形態のステアリング装置の上面図である。It is a top view of the steering device of a 4th embodiment. 図8の線D-Dに沿って切断した第4の実施形態のステアリング装置の縦断面図である。FIG. 9 is a vertical cross-sectional view of the fourth embodiment of the steering device taken along line DD of FIG. 8; 図8の線E-Eに沿って切断した第1電動モータ等の部分的な断面図である。FIG. 9 is a partial cross-sectional view of the first electric motor, etc., taken along line EE in FIG. 8;
 以下、本発明のステアリング装置の実施形態を図面に基づき説明する。なお、本発明は、ステアリング装置が、操舵軸1および中間軸2の一方である第1軸と、操舵軸1および中間軸2の他方である第2軸と、を有しており、トルクセンサ8、第1電動モータ6およびボールねじ機構4のうちの2つが第1軸に設けられ、残りの1つが第2軸に設けられるようにしたものである。換言すれば、本発明は、ステアリング装置が、操舵軸1および中間軸2の一方である第1軸と、操舵軸1および中間軸2の他方である第2軸と、を有しており、第1軸または第2軸にトルクセンサ8、第1電動モータ6およびボールねじ機構4の全てが設けられることがないようにしたものである。 An embodiment of the steering device of the present invention will be described below with reference to the drawings. In the present invention, the steering device has a first shaft that is one of the steering shaft 1 and the intermediate shaft 2, and a second shaft that is the other of the steering shaft 1 and the intermediate shaft 2, and the torque sensor 8. Two of the first electric motor 6 and the ball screw mechanism 4 are provided on the first shaft, and the remaining one is provided on the second shaft. In other words, in the present invention, the steering device has a first shaft that is one of the steering shaft 1 and the intermediate shaft 2 and a second shaft that is the other of the steering shaft 1 and the intermediate shaft 2, All of the torque sensor 8, the first electric motor 6 and the ball screw mechanism 4 are prevented from being provided on the first shaft or the second shaft.
 [第1の実施形態]
 (ステアリング装置の構成)
 図1は、第1の実施形態のステアリング装置の上面図である。図2は、図1の線A-Aに沿って切断した第1の実施形態のステアリング装置の縦断面図である。図2では、操舵軸1の回転軸線Pに沿った方向のうちステアリングホイールに連係する側(図中の上側)を「一端」とし、第1ベベルギア42が取り付けられる側(図中の下側)を「他端」として説明する。また、図2では、図を簡潔にするために、第1電動モータ6および第1EPSコントローラ48の断面の図示を省略してある。図3は、第1の実施形態のステアリング装置の斜視図である。
[First Embodiment]
(Structure of steering device)
FIG. 1 is a top view of the steering device of the first embodiment. 2 is a longitudinal sectional view of the steering apparatus of the first embodiment taken along line AA of FIG. 1. FIG. In FIG. 2, the side (upper side in the figure) linked to the steering wheel in the direction along the rotation axis P of the steering shaft 1 is defined as "one end", and the side (lower side in the figure) to which the first bevel gear 42 is attached. is described as "the other end". In addition, in FIG. 2, for the sake of simplification, cross-sections of the first electric motor 6 and the first EPS controller 48 are omitted. FIG. 3 is a perspective view of the steering device of the first embodiment.
 第1の実施形態は、第1軸が操舵軸1であり、かつ第2軸が中間軸2である軸構成において、トルクセンサ8および第1電動モータ6が操舵軸1に設けられており、一方、ボールねじ機構4が中間軸2に設けられた例を示している。 In the first embodiment, the steering shaft 1 is the first shaft and the intermediate shaft 2 is the second shaft, and the torque sensor 8 and the first electric motor 6 are provided on the steering shaft 1, On the other hand, an example in which the ball screw mechanism 4 is provided on the intermediate shaft 2 is shown.
 ステアリング装置は、図示せぬステアリングホイールに連係された操舵軸1と、該操舵軸1の径方向外側に配置された中間軸2と、操舵軸1と中間軸2とを接続する歯車機構3と、中間軸2に設けられたボールねじ機構4と、該ボールねじ機構4からの推力が伝達され、転舵輪の転舵に供するセクタギア(出力軸)5と、操舵軸1にアシストトルクを付与する第1電動モータ6と、該第1電動モータ6の回転を減速する第1減速機7と、運転者から入力される回転力に伴う操舵トルクを検出するトルクセンサ8と、から主に構成されている。 The steering device includes a steering shaft 1 linked to a steering wheel (not shown), an intermediate shaft 2 arranged radially outside the steering shaft 1, and a gear mechanism 3 connecting the steering shaft 1 and the intermediate shaft 2. , a ball screw mechanism 4 provided on the intermediate shaft 2 , a sector gear (output shaft) 5 to which thrust from the ball screw mechanism 4 is transmitted and used to steer the steerable wheels, and an assist torque to the steering shaft 1 . It is mainly composed of a first electric motor 6, a first speed reducer 7 that reduces the rotation of the first electric motor 6, and a torque sensor 8 that detects the steering torque associated with the rotational force input from the driver. ing.
 操舵軸1は、一端部以外の部分が後述の第1ハウジング9、仕切部材10および第2ハウジング11内に収容されており、入力軸12、第1連携軸13および第2連携軸14を備えている。入力軸12は、一端側がステアリングホイールに連係されており、運転者の操舵トルクの入力に供する。入力軸12は、他端部が第1連携軸13の一端側に形成された開口凹部13a内に挿入されている。入力軸12は、第1ハウジング9の内周面に設けられた軸受、例えば第1ボールベアリング15によって回転可能に支持されている。第1連携軸13は、一端側がトーションバー16を介して入力軸12と相対回転可能に連結されるとともに、第1減速機7を介して外周に連結される第1電動モータ6のアシストトルクの入力に供する。第1連携軸13は、仕切部材10の内周部に設けられた軸受、例えば第2ボールベアリング17と、第2ハウジング11の内周面に設けられた軸受、例えば第3ボールベアリング18とによって回転可能に支持されている。第2連携軸14は、一端側が第1連携軸13の他端部外周に固定されており、一方、他端側が、軸受、例えば第4ボールベアリング19によって回転可能に支持されている。 The steering shaft 1 is housed in a first housing 9, a partition member 10 and a second housing 11, which will be described later, except for one end, and includes an input shaft 12, a first linking shaft 13 and a second linking shaft 14. ing. One end of the input shaft 12 is linked to the steering wheel, and is used for input of steering torque by the driver. The other end of the input shaft 12 is inserted into an opening recess 13 a formed on one end side of the first linking shaft 13 . The input shaft 12 is rotatably supported by a bearing such as a first ball bearing 15 provided on the inner peripheral surface of the first housing 9 . One end of the first linking shaft 13 is connected to the input shaft 12 via a torsion bar 16 so as to be relatively rotatable. Provide for input. The first linking shaft 13 is supported by a bearing such as a second ball bearing 17 provided on the inner peripheral portion of the partition member 10 and a bearing provided on the inner peripheral surface of the second housing 11 such as a third ball bearing 18. rotatably supported. One end of the second linking shaft 14 is fixed to the outer periphery of the other end of the first linking shaft 13 , while the other end is rotatably supported by a bearing such as a fourth ball bearing 19 .
 ここで、以下の説明の便宜上、操舵軸1の回転軸線Pに沿った方向を「軸方向」と定義し、軸方向と直交する方向を「径方向」と定義し、さらに、操舵軸1の周囲の方向を「周方向」と定義する。 Here, for convenience of the following description, the direction along the rotation axis P of the steering shaft 1 is defined as "axial direction", and the direction orthogonal to the axial direction is defined as "radial direction". The circumferential direction is defined as "circumferential direction".
 第1ハウジング9は、金属、例えばアルミニウム合金により円筒状に形成されている。第1ハウジング9は、操舵軸1の一端側に配置され、図1に示すように、複数(本実施形態では3つ)の締結部材、例えばねじ20によって円盤状の仕切部材10に固定されている。図2に示すように、第1ハウジング9は、操舵軸1の一端側に位置した小径部9aと、該小径部9aと一体に形成され、該小径部9aよりも大径に形成された大径部9bとを有している。小径部9aの内側の空間は、第1ボールベアリング15を収容するベアリング収容部21となっている。また、大径部9bの内側の空間は、トルクセンサ8を収容するセンサ収容部22となっている。 The first housing 9 is made of metal, such as an aluminum alloy, and has a cylindrical shape. The first housing 9 is arranged on one end side of the steering shaft 1 and, as shown in FIG. there is As shown in FIG. 2, the first housing 9 includes a small-diameter portion 9a located at one end of the steering shaft 1, and a large-diameter portion 9a integrally formed with the small-diameter portion 9a and having a larger diameter than the small-diameter portion 9a. and a diameter portion 9b. A space inside the small-diameter portion 9a serves as a bearing housing portion 21 for housing the first ball bearing 15 therein. A space inside the large-diameter portion 9b serves as a sensor accommodating portion 22 for accommodating the torque sensor 8. As shown in FIG.
 大径部9bの外周部には、該外周部から径方向外側に突出した円環状のフランジ部9cが突出形成されている。フランジ部9cの他端側の円環状に連続した面には、金属製の仕切部材10の一端側の面に突出形成された円環状の第1突起部10aの先端面が突き合わされ、この突き合わされた状態で、大径部9bの周囲壁の外周面と第1突起部10aの内周面とが、リング状の第1シール部材23によって気密にシールされている。 An annular flange portion 9c projecting radially outward from the outer peripheral portion is formed on the outer peripheral portion of the large diameter portion 9b. The annular continuous surface of the flange portion 9c on the other end side is abutted against the distal end surface of the annular first projection portion 10a protruding from the surface of the metal partition member 10 on the one end side. In the combined state, the outer peripheral surface of the peripheral wall of the large diameter portion 9b and the inner peripheral surface of the first protrusion 10a are airtightly sealed by the ring-shaped first seal member 23. As shown in FIG.
 第2ハウジング11は、金属、例えばアルミニウム合金によって形成されている。第2ハウジング11は、第1連携軸13および第2連携軸14を収容する円筒状の連携軸側筒状部24と、ボールねじ機構4を具備した中間軸2を収容する円筒状の中間軸側筒状部25とを一体に形成することにより構成されている。 The second housing 11 is made of metal such as an aluminum alloy. The second housing 11 includes a cylindrical linking shaft side tubular portion 24 that houses the first linking shaft 13 and the second linking shaft 14, and a cylindrical intermediate shaft that houses the intermediate shaft 2 provided with the ball screw mechanism 4. It is configured by integrally forming the side tubular portion 25 .
 連携軸側筒状部24は、円筒状の筒状本体部24aと、該筒状本体部24aの一端部から拡径した第1拡径部24bと、筒状本体部24aの他端部から拡径し、第1拡径部24bよりも小径に形成された第2拡径部24cと、を有している。
第1拡径部24bの内側の空間は、第1減速機7を収容する第1減速機収容部26となっている。第1減速機収容部26は、仕切部材10を挟んでセンサ収容部22の下方に位置している。第1拡径部24bの周壁の一端部は、仕切部材10の他端側の面に突き合わされ、この突き合わされた状態で、第1拡径部24bの周囲壁の外周面と、仕切部材10の他端側の面から他端側に突出形成された円環状の第2突起部10bとが、リング状の第2シール部材27によって気密にシールされている。第2突起部10bは、第1突起部10aよりも径方向外側に位置している。
The linking shaft-side cylindrical portion 24 includes a cylindrical main body portion 24a, a first enlarged diameter portion 24b that expands from one end of the cylindrical main body portion 24a, and a first enlarged diameter portion 24b that expands from one end of the cylindrical main body portion 24a. and a second enlarged diameter portion 24c formed to have a smaller diameter than the first enlarged diameter portion 24b.
A space inside the first enlarged diameter portion 24 b serves as a first reduction gear accommodating portion 26 that accommodates the first reduction gear 7 . The first reduction gear housing portion 26 is positioned below the sensor housing portion 22 with the partition member 10 interposed therebetween. One end of the peripheral wall of the first enlarged diameter portion 24b is abutted against the surface on the other end side of the partition member 10, and in this abutted state, the outer peripheral surface of the peripheral wall of the first enlarged diameter portion 24b and the partition member 10 A ring-shaped second projection 10 b projecting from the other end side of the second projection 10 b is airtightly sealed by a ring-shaped second sealing member 27 . The second protrusion 10b is positioned radially outward of the first protrusion 10a.
 また、仕切部材10は、その中央部に第1連携軸13の一端部が貫通する貫通穴10cを有している。仕切部材10の一端側の面(図2の上側の面)のうち貫通穴10c近傍には、他端側に突出する円環状の第3突起部10dが形成されている。第3突起部10dの内周面には、第1連携軸13を回転可能に支持する第2ボールベアリング17が設けられている。 In addition, the partition member 10 has a through hole 10c through which one end of the first linking shaft 13 passes through at its central portion. In the vicinity of the through hole 10c of the surface on the one end side of the partition member 10 (the upper surface in FIG. 2), an annular third protrusion 10d is formed to protrude toward the other end. A second ball bearing 17 that rotatably supports the first linking shaft 13 is provided on the inner peripheral surface of the third protrusion 10d.
 また、第1拡径部24bの他端側の内周面には、第1連携軸13を回転可能に支持する軸受、第3ボールベアリング18が設けられている。 A third ball bearing 18, which rotatably supports the first linking shaft 13, is provided on the inner peripheral surface of the first enlarged diameter portion 24b on the other end side.
 また、第2拡径部24cの内周面と、該第2拡径部24cと軸方向に隣接する内周面の一部とには、第2連携軸14を回転可能に支持する軸受、例えば第4ボールベアリング19が設けられている。 Bearings for rotatably supporting the second linking shaft 14 are provided on the inner peripheral surface of the second enlarged diameter portion 24c and a part of the inner peripheral surface axially adjacent to the second enlarged diameter portion 24c. For example, a fourth ball bearing 19 is provided.
 第2拡径部24cの側部と、該第2拡径部24cと軸方向に隣接する筒状本体部24aの側部とが、中間軸側筒状部25の他端側の側部と所定の傾斜角度αをもって結合部28を介して結合されている。ここで、傾斜角度αは、例えば30~60度の範囲にある角度であり、本実施形態では、約35度となっている。なお、傾斜角度αは、必ずしも上記範囲に設定されるものではなく、ステアリング装置が搭載される車両の設計に応じて適宜設定される。連携軸側筒状部24のうち結合部28よりも他端側の空間は、中間軸側筒状部25のうち結合部28よりも下側の空間と連通しており、この連通した空間の部分が、歯車機構3を収容する歯車機構収容部29となっている。歯車機構収容部29は、図示せぬ締結部材、例えばボルトによって、連携軸側筒状部24の傾斜した軸方向端面24dと、中間軸側筒状部25の傾斜した軸方向端面25aとに、図示せぬ締結部材、例えばボルトを介して円形板状の第1蓋部材30を固定することにより閉塞される。 The side portion of the second enlarged diameter portion 24c and the side portion of the tubular main body portion 24a adjacent to the second enlarged diameter portion 24c in the axial direction are the side portion of the intermediate shaft side tubular portion 25 on the other end side. They are connected via a connecting portion 28 with a predetermined inclination angle α. Here, the inclination angle α is, for example, an angle in the range of 30 to 60 degrees, and is about 35 degrees in this embodiment. It should be noted that the inclination angle α is not necessarily set within the range described above, but is appropriately set according to the design of the vehicle in which the steering device is mounted. The space of the connecting shaft side tubular portion 24 on the other end side of the coupling portion 28 communicates with the space of the intermediate shaft side tubular portion 25 below the coupling portion 28, and the space in communication with the space below the coupling portion 28. A portion serves as a gear mechanism accommodating portion 29 that accommodates the gear mechanism 3 . The gear mechanism accommodating portion 29 is attached to the inclined axial end face 24d of the linking shaft side tubular portion 24 and the inclined axial end face 25a of the intermediate shaft side tubular portion 25 by fastening members (not shown), such as bolts. It is closed by fixing the circular plate-shaped first cover member 30 via a fastening member (not shown) such as a bolt.
 中間軸側筒状部25は、長手方向にわたって概ね一定の径を有している。中間軸側筒状部25は、操舵軸1の回転軸線Pに対して傾斜角度αで傾斜した中間軸2の回転軸線Qの軸方向一端側(図2中の右斜め上側)において、第2蓋部材31によって閉塞されている。第2蓋部材31は、有底筒状に形成されており、その外周面には、雄ねじ部が形成されている。この雄ねじ部が、中間軸側筒状部25の内周面に形成された雌ねじ部にねじ留めされることで、第2蓋部材31が中間軸側筒状部25に取付固定されている。 The intermediate shaft side cylindrical portion 25 has a substantially constant diameter along the longitudinal direction. The intermediate shaft-side tubular portion 25 is located at one end in the axial direction of the rotation axis Q of the intermediate shaft 2 that is inclined at an inclination angle α with respect to the rotation axis P of the steering shaft 1 (diagonally upper right in FIG. 2). It is closed by a lid member 31 . The second lid member 31 is formed in a cylindrical shape with a bottom, and has a male screw portion formed on its outer peripheral surface. The second lid member 31 is attached and fixed to the intermediate shaft side tubular portion 25 by screwing the male threaded portion into the female threaded portion formed on the inner peripheral surface of the intermediate shaft side tubular portion 25 .
 第2蓋部材31の内周面には、中間軸2を回転可能に支持する軸受、例えば第5ボールベアリング32が設けられている。第5ボールベアリング32は、中間軸2に設けられた円環突起2aに当接した状態で中間軸側筒状部25に対して第2蓋部材31をねじ込むことで第2蓋部材31と中間軸2の間に固定される。 A bearing for rotatably supporting the intermediate shaft 2 , for example, a fifth ball bearing 32 is provided on the inner peripheral surface of the second lid member 31 . The fifth ball bearing 32 is mounted between the second cover member 31 and the intermediate shaft 2 by screwing the second cover member 31 into the intermediate shaft-side cylindrical portion 25 while in contact with the annular protrusion 2 a provided on the intermediate shaft 2 . It is fixed between the shafts 2.
 また、中間軸側筒状部25の内周面のうち歯車機構収容部29と隣接した部位は、縮径状に形成された軸受支持部25bとなっており、該軸受支持部25bには、中間軸2を回転可能に支持する第6ボールベアリング33が設けられている。第6ボールベアリング33は、中間軸側筒状部25に設けられた円環突起25cと、中間軸2に設けられた段差部2bとの双方に当接させることで、中間軸側筒状部25と中間軸2との間に固定される。 A portion of the inner peripheral surface of the intermediate shaft-side cylindrical portion 25 adjacent to the gear mechanism accommodating portion 29 is a bearing support portion 25b formed in a diameter-reduced shape. A sixth ball bearing 33 is provided to rotatably support the intermediate shaft 2 . The sixth ball bearing 33 is brought into contact with both the annular projection 25c provided on the intermediate shaft side cylindrical portion 25 and the stepped portion 2b provided on the intermediate shaft 2, so that the intermediate shaft side cylindrical portion 25 and the intermediate shaft 2.
 中間軸側筒状部25の内部空間のうち第5ボールベアリング32と第6ボールベアリング33との間の空間は、ボールねじ機構4を収容するボールねじ機構収容部34となっている。図2に示すように、ボールねじ機構収容部34のうち連携軸側筒状部24と対向する部位は、出力軸であるセクタギア5を取り囲む概ね円筒形の出力軸周囲壁部35を介して連携軸側筒状部24の筒状本体部24aに結合されている。出力軸周囲壁部35は、連携軸側筒状部24の第1拡径部24bと結合部28との間において第1拡径部24b寄りの位置に設けられている。出力軸周囲壁部35の内部の空間は、セクタギア5を収容するギア収容部36となっており、該ギア収容部36は、中間軸側筒状部25のボールねじ機構収容部34に開口している。ギア収容部36と、該ギア収容部36と隣接するボールねじ機構収容部34の一部とは、図1および図3に示すように複数(本実施形態では4つ)の締結部材、例えばボルト37によって中間軸側筒状部25に板状の第3蓋部材38を取り付けることにより閉塞されている。 A space between the fifth ball bearing 32 and the sixth ball bearing 33 in the internal space of the intermediate shaft side cylindrical portion 25 serves as a ball screw mechanism accommodating portion 34 that accommodates the ball screw mechanism 4 . As shown in FIG. 2, the part of the ball screw mechanism accommodating portion 34 that faces the linking shaft side tubular portion 24 is linked via a generally cylindrical output shaft peripheral wall portion 35 that surrounds the sector gear 5, which is the output shaft. It is connected to the tubular body portion 24 a of the shaft-side tubular portion 24 . The output shaft peripheral wall portion 35 is provided between the first enlarged diameter portion 24b of the linking shaft side cylindrical portion 24 and the coupling portion 28 at a position closer to the first enlarged diameter portion 24b. A space inside the output shaft peripheral wall portion 35 serves as a gear accommodation portion 36 that accommodates the sector gear 5 , and the gear accommodation portion 36 opens to the ball screw mechanism accommodation portion 34 of the intermediate shaft side cylindrical portion 25 . ing. The gear housing portion 36 and a portion of the ball screw mechanism housing portion 34 adjacent to the gear housing portion 36 are, as shown in FIGS. The intermediate shaft side cylindrical portion 25 is closed by attaching a plate-like third lid member 38 by 37 .
 トルクセンサ8は、図示せぬ永久磁石と、ホルダ部材39と、図示せぬ一対の第1、第2ヨークと、一対の第1、第2集磁リング40,41と、図示せぬ磁気センサと、から主に構成されている。永久磁石、ホルダ部材39、第1および第2ヨークおよび集磁リング40,41は、いずれも操舵軸1の回転軸線Pとほぼ同心円上となるように配置されている。 The torque sensor 8 includes a permanent magnet (not shown), a holder member 39, a pair of first and second yokes (not shown), a pair of first and second magnetic flux collecting rings 40 and 41, and a magnetic sensor (not shown). and consists mainly of The permanent magnet, holder member 39, first and second yokes, and magnetic flux collection rings 40 and 41 are all arranged substantially concentrically with the rotation axis P of the steering shaft 1. As shown in FIG.
 永久磁石は、磁性材料によりほぼ円筒状に形成され、第1連携軸13における一端側の端部外周に取付固定された磁性部材である。永久磁石は、該永久磁石の周方向に沿ってN極とS極が交互に配置(着磁)されることで構成されている。 The permanent magnet is a magnetic member that is made of a magnetic material and has a substantially cylindrical shape and is attached and fixed to the outer periphery of the first link shaft 13 on the one end side. The permanent magnet is configured by alternately arranging (magnetizing) N poles and S poles along the circumferential direction of the permanent magnet.
 ホルダ部材39は、ほぼ円筒状に形成されて入力軸12における他端側の端部外周に取付固定されている。 The holder member 39 is formed in a substantially cylindrical shape and is attached and fixed to the outer periphery of the other end of the input shaft 12 .
 一対の第1および第2ヨークは、いずれも軟磁性体によりほぼ円筒状に形成されると共に、ホルダ部材39を介して入力軸12に接続され、他端側が永久磁石と径方向で対向するように設けられている。第1および第2ヨークは、図示せぬ円環状の溶着プレートによってホルダ部材39に溶着固定されている。 The pair of first and second yokes are both formed of a soft magnetic material in a substantially cylindrical shape, connected to the input shaft 12 via a holder member 39, and arranged so that the other end faces the permanent magnet in the radial direction. is provided in The first and second yokes are welded and fixed to the holder member 39 by annular welding plates (not shown).
 一対の集磁リング40,41は、両ヨークの一端側へと漏洩した永久磁石による磁束を所定の範囲に集約するほぼ円環状のリングである。集磁リング40は、トルクセンサ8の外周側に配置されており、一方、集磁リング41は、トルクセンサ8の内周側に集磁リング40と対向するように配置されている。集磁リング40の周方向の所定位置には、図示せぬ平坦面を有した集磁部40aが設けられており、一方、集磁リング41の周方向における集磁部40aと対向する位置には、集磁部40aの平坦面と平行な図示せぬ平坦面を有した集磁部41aが設けられている。 The pair of magnetism collecting rings 40 and 41 are substantially annular rings that collect the magnetic flux of the permanent magnets leaked to one end of both yokes in a predetermined range. The magnetic flux collection ring 40 is arranged on the outer peripheral side of the torque sensor 8 , while the magnetic flux collection ring 41 is arranged on the inner peripheral side of the torque sensor 8 so as to face the magnetic flux collection ring 40 . A magnetism collecting portion 40a having a flat surface (not shown) is provided at a predetermined position in the circumferential direction of the magnetism collecting ring 40. On the other hand, a magnetism collecting portion 40a is provided at a position facing the magnetism collecting portion 40a in the circumferential direction of the magnetism collecting ring 41. is provided with a magnetic flux collecting portion 41a having a flat surface (not shown) parallel to the flat surface of the magnetic flux collecting portion 40a.
 磁気センサは、集磁部40aの平坦面と集磁部41aの平坦面との間の径方向隙間に収容配置された図示せぬホール素子と、このホール素子を図示せぬ基板に接続するための図示せぬ接続端子と、から構成されている。磁気センサは、上記ホール素子によるホール効果を利用することでホール素子により集磁部40a,41aの対向する平坦面の間を通過する磁束を検出し、この磁束に応じた信号を図示せぬ基板に出力する。これにより、基板における入力軸12と第1連携軸13との間の相対回転角の演算や、該相対回転角に基づく操舵トルクの演算が行われる。 The magnetic sensor includes a Hall element (not shown) housed in a radial gap between the flat surface of the magnetic flux collecting portion 40a and the flat surface of the magnetic flux collecting portion 41a, and a substrate (not shown) for connecting the Hall element. and connection terminals (not shown). The magnetic sensor uses the Hall effect of the Hall element to detect the magnetic flux passing between the opposing flat surfaces of the magnetic flux collectors 40a and 41a, and outputs a signal corresponding to this magnetic flux to a substrate (not shown). output to As a result, calculation of the relative rotation angle between the input shaft 12 and the first linking shaft 13 on the substrate and calculation of the steering torque based on the relative rotation angle are performed.
 歯車機構3は、第2連携軸14の他端側の外周部に固定された第1ベベルギア42と、中間軸2の他端側の外周部に固定され、該第1ベベルギア42と噛み合う第2ベベルギア43と、から構成されている。第1ベベルギア42は、操舵軸1の回転軸線Pの方向において他端側に傾斜した複数の第1歯部42aを有しており、一方、第2ベベルギア43は、中間軸2の回転軸線Qの方向において他端側に傾斜した複数の第2歯部43aを有している。第1歯部42aの数と第2歯部43aの数は同じになるように設定されており、従って、第1ベベルギア42と第2ベベルギア43の速度比は、1:1となっている。第1歯部42aと第2歯部43aとの噛み合いにより互いに接続されることで、中間軸2の回転軸線Qは、鉛直方向に延びる操舵軸1の回転軸線Pに対して角度αで傾斜するようになっている。 The gear mechanism 3 includes a first bevel gear 42 fixed to the outer peripheral portion on the other end side of the second linking shaft 14 and a second gear mechanism 42 fixed to the outer peripheral portion on the other end side of the intermediate shaft 2 and meshing with the first bevel gear 42 . and a bevel gear 43. The first bevel gear 42 has a plurality of first teeth 42a inclined toward the other end in the direction of the rotation axis P of the steering shaft 1. It has a plurality of second tooth portions 43a inclined toward the other end in the direction of . The number of the first tooth portions 42a and the number of the second tooth portions 43a are set to be the same, so the speed ratio between the first bevel gear 42 and the second bevel gear 43 is 1:1. Since the first tooth portion 42a and the second tooth portion 43a are connected to each other by meshing, the rotation axis Q of the intermediate shaft 2 is inclined at an angle α with respect to the rotation axis P of the steering shaft 1 extending in the vertical direction. It's like
 ボールねじ機構4は、中間軸2の外周側に設けられた螺旋溝である中間軸側ボールねじ溝2cと、ナット44の内周側に設けられた螺旋溝であるナット側ボールねじ溝44aと、ボールねじ溝2c,44aの間に配置された複数のボール45と、によって構成されている。ボール45は、中間軸2に対しナット44を相対回転可能に支持する。ナット44の外周面は、ボールねじ機構収容部34の内周面と摺動可能に接している。これにより、ナット44は、ボールねじ機構収容部34内において中間軸2の回転軸線Qに沿って摺動可能となっている。 The ball screw mechanism 4 includes an intermediate shaft side ball screw groove 2c that is a spiral groove provided on the outer peripheral side of the intermediate shaft 2, and a nut side ball screw groove 44a that is a spiral groove provided on the inner peripheral side of the nut 44. , and a plurality of balls 45 arranged between the ball screw grooves 2c and 44a. The ball 45 supports the nut 44 rotatably relative to the intermediate shaft 2 . The outer peripheral surface of the nut 44 is slidably in contact with the inner peripheral surface of the ball screw mechanism accommodating portion 34 . This allows the nut 44 to slide along the rotation axis Q of the intermediate shaft 2 inside the ball screw mechanism accommodating portion 34 .
 また、ナット44のセクタギア5側の外周部には、複数のラック歯44bが形成されている。これらのラック歯44bは、セクタギア5の歯部5aと噛み合うようになっている。 In addition, a plurality of rack teeth 44b are formed on the outer peripheral portion of the nut 44 on the sector gear 5 side. These rack teeth 44b are meshed with the tooth portion 5a of the sector gear 5. As shown in FIG.
 セクタギア5は、ギア収容部36内に揺動可能に設けられている。セクタギア5は、その軸方向一端側が歯部5aを介してナット44に接続されるとともに、他端側がピットマンアーム46および図示せぬドラッグリンクおよびボールジョイントを介して図示せぬ転舵輪に連係されている。 The sector gear 5 is provided swingably within the gear housing portion 36 . One axial end of the sector gear 5 is connected to a nut 44 via a toothed portion 5a, and the other end is linked to a steering wheel (not shown) via a pitman arm 46 and a drag link and ball joint (not shown). there is
 ピットマンアーム46は、セクタギア5の回転軸線Rを中心として回動可能となるようにセクタギア5の他端側に取り付けられている。ピットマンアーム46は、図2の実線で示される位置から時計回りの方向に90度の位置(二点鎖線で示す左側のピットマンアーム46の位置)まで回動可能となっている。また、ピットマンアーム46の回動時には、ピットマンアーム46の軌跡と、該このピットマンアーム46に接続された図示せぬドラッグリングの軌跡とが、ステアリング装置の下方に位置する部品ないし構成要素に干渉しないようになっている。 The pitman arm 46 is attached to the other end side of the sector gear 5 so as to be rotatable around the rotation axis R of the sector gear 5 . The pitman arm 46 is rotatable clockwise from the position indicated by the solid line in FIG. 2 to a position of 90 degrees (the position of the left pitman arm 46 indicated by the two-dot chain line). Also, when the pitman arm 46 rotates, the trajectory of the pitman arm 46 and the trajectory of the drag ring (not shown) connected to the pitman arm 46 do not interfere with parts or components positioned below the steering device. It's like
 第1減速機7は、連携軸側筒状部24の大径部9bに設けられた第1減速機収容部26に配置されている。第1減速機7は、第1電動モータ6からの回転を減速するものであり、図示せぬウォームシャフトとウォームホイール47とを噛み合わせてなるウォームギヤから構成されている。 The first speed reducer 7 is arranged in a first speed reducer accommodating portion 26 provided in the large diameter portion 9b of the cylindrical portion 24 on the linking shaft side. The first speed reducer 7 reduces the speed of rotation from the first electric motor 6 and is composed of a worm gear formed by meshing a worm shaft (not shown) and a worm wheel 47 .
 ウォームホイール47は、概ね円筒状をなす金属製の芯金部47aと、該芯金部47aの外周部に設けられた合成樹脂製のギア形成部47bと、を有している。ギア形成部47bは、ウォームシャフトに形成されたウォームと噛み合っている。 The worm wheel 47 has a generally cylindrical metal core portion 47a and a synthetic resin gear forming portion 47b provided on the outer peripheral portion of the core metal portion 47a. The gear forming portion 47b meshes with a worm formed on a worm shaft.
 第1電動モータ6は、第1減速機7を介して第1連携軸13に接続されており、トーションバー16の捩じれ量に応じて第1連携軸13にアシストトルクを付与する3相交流式のブラシレスモータとして構成されている。図1に示すように、第1電動モータ6は、トルクセンサ8からの操舵トルクに基づいて第1電動モータ6を制御する第1EPSコントローラ48と一体に構成されている。第1電動モータ6は、モータハウジング49に収容されており、該モータハウジング49は、第1ハウジング9と一体に形成されたウォームシャフトハウジング50に取付固定されている。第1電動モータ6は、図示せぬモータシャフトを有しており、このモータシャフトの軸方向一端部が、図示せぬウォームシャフトに接続されている。第1電動モータ6および第1EPSコントローラ48は、セクタギア5よりも高い位置であり、かつ図示せぬ運転フロアよりも低い位置に設けられている。 The first electric motor 6 is connected to the first linking shaft 13 via the first speed reducer 7, and is a three-phase AC motor that applies assist torque to the first linking shaft 13 in accordance with the twist amount of the torsion bar 16. is configured as a brushless motor. As shown in FIG. 1 , the first electric motor 6 is integrated with a first EPS controller 48 that controls the first electric motor 6 based on the steering torque from the torque sensor 8 . The first electric motor 6 is housed in a motor housing 49 , and the motor housing 49 is attached and fixed to a worm shaft housing 50 integrally formed with the first housing 9 . The first electric motor 6 has a motor shaft (not shown), and one axial end of the motor shaft is connected to a worm shaft (not shown). The first electric motor 6 and the first EPS controller 48 are provided at a position higher than the sector gear 5 and lower than the driving floor (not shown).
 かかるステアリング装置において、運転者がステアリングホイールを回転操作すると、入力軸12が回転してトーションバーが捩られ、これにより生じるトーションバーの弾性力によって、第1および第2連携軸13,14が回転する。そして、この第1および第2連携軸13,14の回転力が、第1ベベルギア42および第2ベベルギア43の噛み合いを介して中間軸2に伝達される。この中間軸2の回転に伴いナット44が中間軸2の回転軸線Qの方向に移動することで、セクタギア5が回動する。これにより、ピットマンアーム46が車体幅方向に引っ張られることで、転舵輪の向きが変更される。 In such a steering device, when the driver rotates the steering wheel, the input shaft 12 rotates and the torsion bar is twisted. do. The rotational forces of the first and second linking shafts 13 and 14 are transmitted to the intermediate shaft 2 through the engagement of the first bevel gear 42 and the second bevel gear 43 . As the intermediate shaft 2 rotates, the nut 44 moves in the direction of the rotation axis Q of the intermediate shaft 2 , thereby rotating the sector gear 5 . As a result, the pitman arm 46 is pulled in the width direction of the vehicle body, thereby changing the direction of the steered wheels.
 なお、第1の実施形態では、運転者からの操舵力が操舵軸1に入力される手動運転の例を開示したが、第1電動モータ6を大型化することにより、自動運転用のステアリング装置に本発明を適用することができる。 In the first embodiment, an example of manual driving in which the steering force from the driver is input to the steering shaft 1 is disclosed. The present invention can be applied to
 [第1の実施形態の効果]
 上記のように、第1の実施形態では、操舵軸1の径方向外側にセクタギア5が配置され、さらに、操舵軸1と中間軸2とが第1および第2ベベルギア42,43を介して互いに接続されることで、中間軸2がセクタギア5を挟んで操舵軸1の反対側に配置されている。より詳細には、中間軸2は、第1および第2ベベルギア42,43によって操舵軸1に対して傾斜角度αで傾斜する。そして、このような操舵軸1および中間軸2の構成において、トルクセンサ8および第1電動モータ6が操舵軸1に設けられており、一方、ボールねじ機構4が中間軸2に設けられている。
[Effects of the first embodiment]
As described above, in the first embodiment, the sector gear 5 is arranged radially outside the steering shaft 1, and the steering shaft 1 and the intermediate shaft 2 are connected to each other via the first and second bevel gears 42, 43. By being connected, the intermediate shaft 2 is arranged on the opposite side of the steering shaft 1 with the sector gear 5 interposed therebetween. More specifically, the intermediate shaft 2 is tilted at the tilt angle α with respect to the steering shaft 1 by the first and second bevel gears 42 and 43 . In such a configuration of the steering shaft 1 and the intermediate shaft 2, the torque sensor 8 and the first electric motor 6 are provided on the steering shaft 1, while the ball screw mechanism 4 is provided on the intermediate shaft 2. .
 このため、ナット44のストローク分を含むボールねじ機構4の軸方向長さが操舵軸1に付加されないので、トルクセンサ、第1電動モータおよびボールねじ機構の全てが操舵軸に設けられる従来技術の構成に対して、ステアリング装置の軸方向寸法を減少させることができる。このようなステアリング装置は、特に小型トラックに対して効果的である。 Therefore, since the axial length of the ball screw mechanism 4 including the stroke of the nut 44 is not added to the steering shaft 1, the torque sensor, the first electric motor and the ball screw mechanism are all provided on the steering shaft. With respect to the configuration, the axial dimensions of the steering device can be reduced. Such a steering system is particularly effective for small trucks.
 従来技術のステアリング装置では、操舵軸の一端側から順次に、トルクセンサ、ボールねじ機構および第1電動モータ(第1電動モータに接続された第1減速機)が配置されている。操舵軸の一端とトルクセンサとの間には、第1減速機を設けるための空間が無い。また、ボールねじ機構のナットの移動に伴うセクタギアの振れ角を確保する必要があるため、ステアリング装置の軸方向寸法を増加させることなく、トルクセンサとボールねじ機構との間に第1減速機を配置する余地を確保することができない。さらに、セクタギアからから転舵輪までの設計も確定しているので、操舵軸とセクタギアは一定の位置関係を有している。これらの理由により、従来技術では、操舵軸とセクタギアの位置関係を保ったまま第1電動モータを配置するには、第1電動モータ、より具体的には第1電動モータに接続された第1減速機を操舵軸の他端側(下側)の端部に配置せざるを得ない。 In the conventional steering device, a torque sensor, a ball screw mechanism, and a first electric motor (a first reduction gear connected to the first electric motor) are arranged in order from one end of the steering shaft. There is no space for providing the first reduction gear between one end of the steering shaft and the torque sensor. In addition, since it is necessary to secure the deflection angle of the sector gear due to the movement of the nut of the ball screw mechanism, the first reduction gear is provided between the torque sensor and the ball screw mechanism without increasing the axial dimension of the steering device. Unable to secure space for placement. Furthermore, since the design from the sector gear to the steered wheels is also fixed, the steering shaft and the sector gear have a fixed positional relationship. For these reasons, in the prior art, in order to dispose the first electric motor while maintaining the positional relationship between the steering shaft and the sector gear, the first electric motor, more specifically, the first electric motor connected to the first electric motor The speed reducer has to be arranged at the other end (lower side) of the steering shaft.
 しかし、第1減速機が操舵軸の他端側の端部に配置されると、ピットマンアームの回動時に、ピットマンアームに接続されたドラッグリンクが、モータハウジングに干渉する虞があった。 However, when the first reduction gear is arranged at the other end of the steering shaft, the drag link connected to the pitman arm may interfere with the motor housing when the pitman arm rotates.
 さらに、操舵軸の他端側に設けられた第1電動モータには、路面側から車両の下部に侵入する水や小石が及び易く、第1電動モータの電気的な失陥やモータハウジングの損傷が生じる虞があった。 Furthermore, the first electric motor provided on the other end side of the steering shaft is easily affected by water and pebbles that enter the lower part of the vehicle from the road surface, causing electrical failure of the first electric motor and damage to the motor housing. was likely to occur.
 これに対し、第1の実施形態では、第1電動モータ6が、セクタギア5よりも高い位置に設けられる。つまり、第1電動モータ6は、ピットマンアーム46やドラッグリンクから非常に離れた位置に設けられている。従って、ドラッグリンクがピットマンアーム46の回動時にモータハウジング49および第1EPSコントローラ48を損傷させることを抑制することができる。 On the other hand, in the first embodiment, the first electric motor 6 is provided at a position higher than the sector gear 5 . In other words, the first electric motor 6 is provided at a position far away from the pitman arm 46 and the drag link. Therefore, it is possible to prevent the drag link from damaging the motor housing 49 and the first EPS controller 48 when the pitman arm 46 rotates.
 さらに、第1電動モータ6がセクタギア5よりも高い位置にあると、路面側からの水や小石が第1電動モータ6に到達し難くなるから、水や小石に対するロバスト性を向上させ、第1電動モータ6の電気的な失陥やモータハウジング49および第1EPSコントローラ48の損傷を抑制することができる。 Furthermore, when the first electric motor 6 is positioned higher than the sector gear 5, it becomes difficult for water and pebbles from the road surface to reach the first electric motor 6. Electrical failure of the electric motor 6 and damage to the motor housing 49 and the first EPS controller 48 can be suppressed.
 また、このように第1電動モータ6がセクタギア5よりも高く配置されると、路面と車両の一番低い部分との垂直距離を示す最低地上高の基準を容易に達成することができる。 Also, when the first electric motor 6 is arranged higher than the sector gear 5 in this way, it is possible to easily achieve the minimum ground clearance standard indicating the vertical distance between the road surface and the lowest part of the vehicle.
 また、従来技術のステアリング装置では、ボールねじ機構が操舵軸に設けられており、セクタギアの歯部がボールねじ機構のナットのラック歯に噛み合っている。上述したように操舵軸とセクタギアとは一定の位置関係を有しているから、セクタギアへ推力を伝達するために比較的高い剛性が必要となるボールねじ機構に対して外径を大きくすることが困難であるという問題があった。 Also, in the conventional steering device, the ball screw mechanism is provided on the steering shaft, and the teeth of the sector gear mesh with the rack teeth of the nut of the ball screw mechanism. As described above, the steering shaft and the sector gear have a certain positional relationship, so it is possible to increase the outer diameter of the ball screw mechanism, which requires relatively high rigidity to transmit thrust to the sector gear. The problem was that it was difficult.
 これに対し、第1の実施形態では、中間軸2が操舵軸1に対して傾斜角度αで傾斜しており、さらに、セクタギア5の歯部5aが、連携軸側筒状部24の外部でボールねじ機構4のナット44のラック歯44bと噛み合っている。 On the other hand, in the first embodiment, the intermediate shaft 2 is inclined with respect to the steering shaft 1 at the inclination angle α, and furthermore, the toothed portion 5a of the sector gear 5 is positioned outside the linking shaft side cylindrical portion 24. It meshes with the rack teeth 44b of the nut 44 of the ball screw mechanism 4.
 このため、操舵軸1とセクタギア5との位置関係に拘束されることなく、ボールねじ機構4の外径を大きくし、ボールねじ機構4の設計の自由度を向上させることができる。さらに、小型のトラックだけでなく、大型のトラックにも、第1の実施形態の構成を有したステアリング装置を適用することができる。 Therefore, the outer diameter of the ball screw mechanism 4 can be increased without being constrained by the positional relationship between the steering shaft 1 and the sector gear 5, and the degree of freedom in designing the ball screw mechanism 4 can be improved. Furthermore, the steering apparatus having the configuration of the first embodiment can be applied not only to small-sized trucks but also to large-sized trucks.
 [第2の実施形態]
 図4は、第2の実施形態のステアリング装置の上面図である。図5は、図4の線B-Bに沿って切断した第2の実施形態のステアリング装置の縦断面図である。
[Second embodiment]
FIG. 4 is a top view of the steering device of the second embodiment. FIG. 5 is a longitudinal cross-sectional view of the steering device of the second embodiment taken along line BB in FIG.
 第2の実施形態は、第1軸が操舵軸1であり、かつ第2軸が中間軸2である軸構成において、トルクセンサ8が操舵軸1に設けられており、一方、ボールねじ機構4および第1電動モータ6が中間軸2に設けられた例を示している。つまり、第2の実施形態は、第1の実施形態で操舵軸1に設けられていた第1電動モータ6が中間軸2に設けられている例を示している。これに伴い、第1の実施形態の第1減速機収容部26は廃止され、連携軸側筒状部24の第1拡径部24bの軸方向寸法が、第1の実施形態よりも短くなっている。 In the second embodiment, the steering shaft 1 is the first shaft and the intermediate shaft 2 is the second shaft. and the first electric motor 6 are provided on the intermediate shaft 2 . In other words, the second embodiment shows an example in which the first electric motor 6 provided on the steering shaft 1 in the first embodiment is provided on the intermediate shaft 2 . Along with this, the first reduction gear accommodating portion 26 of the first embodiment is eliminated, and the axial dimension of the first enlarged diameter portion 24b of the linking shaft side cylindrical portion 24 becomes shorter than in the first embodiment. ing.
 第2蓋部材31は、その中央部に形成された円形の軸貫通穴31aを有しており、この軸貫通穴31aには、段差縮径状に形成された中間軸2の小径端部2dが貫通している。第2蓋部材31から外側に突出した小径端部2dの外周部には、第1減速機7の一部を構成するウォームホイール47が取付固定されている。第1減速機7を収容する第2の実施形態の第1減速機収容部26は、カップ状に形成された閉塞部材51を中間軸側筒状部25の外周部に取り付けることにより閉塞される。 The second cover member 31 has a circular shaft through-hole 31a formed in its central portion, and the small-diameter end portion 2d of the intermediate shaft 2 formed in a stepped diameter reduction shape is inserted into the shaft through-hole 31a. is penetrating. A worm wheel 47 that constitutes a part of the first speed reducer 7 is attached and fixed to the outer peripheral portion of the small-diameter end portion 2 d that protrudes outward from the second lid member 31 . The first reduction gear accommodating portion 26 of the second embodiment that accommodates the first reduction gear 7 is closed by attaching a cup-shaped closing member 51 to the outer peripheral portion of the intermediate shaft side cylindrical portion 25 . .
 [第2の実施形態の効果]
 第2の実施形態では、中間軸2が第1および第2ベベルギア42,43によって操舵軸1に対して傾斜した軸構成において、トルクセンサ8が操舵軸1に設けられており、一方、ボールねじ機構4および第1電動モータ6が中間軸2に設けられている。
[Effect of Second Embodiment]
In a second embodiment, in a shaft configuration in which the intermediate shaft 2 is inclined with respect to the steering shaft 1 by first and second bevel gears 42, 43, the torque sensor 8 is provided on the steering shaft 1, while the ball screw A mechanism 4 and a first electric motor 6 are provided on the intermediate shaft 2 .
 このため、第1減速機7が第1拡径部24bの内部に配置されないので、第1拡径部24bの軸方向寸法を短くすることにより、第1の実施形態よりもステアリング装置の軸方向寸法を減少させることができる。 For this reason, since the first speed reducer 7 is not arranged inside the first enlarged diameter portion 24b, by shortening the axial dimension of the first enlarged diameter portion 24b, the axial direction of the steering device can be reduced more than in the first embodiment. Dimensions can be reduced.
 また、第2の実施形態では、ボールねじ機構4および第1電動モータ6が中間軸2に設けられていることから、ボールねじ機構4の中間軸側ボールねじ溝2cおよびナット側ボールねじ溝44aのリードを短くすることでボールねじ機構4を減速させ、中間軸2へのアシスト力を高めることができる。また、リードを短くすると、この短くしたリード分だけ第1電動モータ6によるアシスト力も小さくて済むので、第1電動モータ6を小型化することができる。さらに、この短くしたリード分だけ第1および第2ベベルギア42,43の速度比を増加させることで入力軸12からセクタギア5までの合計の速度比を一定に保つようにすれば、ボールねじ機構4の減速比と、第1および第2ベベルギア42,43の速度比との設計の自由度を向上させることができる。 Further, in the second embodiment, since the ball screw mechanism 4 and the first electric motor 6 are provided on the intermediate shaft 2, the intermediate shaft side ball screw groove 2c and the nut side ball screw groove 44a of the ball screw mechanism 4 By shortening the lead of the ball screw mechanism 4, the speed of the ball screw mechanism 4 can be reduced, and the assisting force to the intermediate shaft 2 can be increased. Further, if the lead is shortened, the assist force of the first electric motor 6 can be reduced by the amount of the shortened lead, so the first electric motor 6 can be miniaturized. Furthermore, by increasing the speed ratio of the first and second bevel gears 42 and 43 by the shortened lead, the total speed ratio from the input shaft 12 to the sector gear 5 can be kept constant, whereby the ball screw mechanism 4 and the speed ratio of the first and second bevel gears 42 and 43 can be improved.
 [第3の実施形態]
 図6は、第3の実施形態のステアリング装置の上面図である。図7は、図6の線C-Cに沿って切断した第3の実施形態のステアリング装置の縦断面図である。
[Third Embodiment]
FIG. 6 is a top view of the steering device of the third embodiment. 7 is a vertical cross-sectional view of the third embodiment of the steering device taken along line CC of FIG. 6. FIG.
 第3の実施形態は、第1の実施形態のステアリング装置の構成と第2の実施形態のステアリング装置の構成とを組み合わせたものである。即ち、第3の実施形態では、トルクセンサ8および第1電動モータ6が操舵軸1に設けられており、一方、ボールねじ機構4と、第1電動モータ6と同様の構成を有する第2電動モータ52とが中間軸2に設けられている。 The third embodiment is a combination of the configuration of the steering device of the first embodiment and the configuration of the steering device of the second embodiment. That is, in the third embodiment, the torque sensor 8 and the first electric motor 6 are provided on the steering shaft 1, while the ball screw mechanism 4 and the second electric motor 6 having the same configuration as the first electric motor 6 are provided. A motor 52 is provided on the intermediate shaft 2 .
 第1電動モータ6は、図7に示すようにセクタギア5の回転軸線Rの方向から見たときに第2EPSコントローラ53が第1ハウジング9および連携軸側筒状部24の背面側(図7の奥側)に位置するように設けられている。
[第3の実施形態の効果]
 第3の実施形態では、中間軸2が第1および第2ベベルギア42,43によって操舵軸1に対して傾斜角度αで傾斜した軸構成において、トルクセンサ8および第1電動モータ6が操舵軸1に設けられており、一方、ボールねじ機構4および第2電動モータ52が中間軸2に設けられている。
As shown in FIG. 7, the first electric motor 6 is arranged so that the second EPS controller 53 is located on the rear side of the first housing 9 and the linking shaft side cylindrical portion 24 when viewed from the direction of the rotation axis R of the sector gear 5 (see FIG. 7). back side).
[Effect of the third embodiment]
In the third embodiment, the intermediate shaft 2 is tilted at the tilt angle α with respect to the steering shaft 1 by the first and second bevel gears 42 and 43. , while the ball screw mechanism 4 and the second electric motor 52 are provided on the intermediate shaft 2 .
 このため、第1および第2電動モータ6,52の2つのモータにより、第1および第2の実施形態と比べて、大きなアシストトルクを供給することができる。また、第1および第2電動モータ6,52の一方が故障しても、第1および第2電動モータ6,52の他方でステアリング装置の稼働を継続させることができる。 Therefore, the two motors of the first and second electric motors 6, 52 can supply larger assist torque than in the first and second embodiments. Further, even if one of the first and second electric motors 6, 52 fails, the other of the first and second electric motors 6, 52 can continue to operate the steering device.
 [第4の実施形態]
 図8は、第4の実施形態のステアリング装置の上面図である。図9は、図8の線D-Dに沿って切断した第4の実施形態のステアリング装置の縦断面図である。図10は、図8の線E-Eに沿って切断した第1電動モータ6等の部分的な断面図である。
[Fourth embodiment]
FIG. 8 is a top view of the steering device of the fourth embodiment. FIG. 9 is a longitudinal sectional view of the fourth embodiment of the steering device taken along line DD in FIG. FIG. 10 is a partial cross-sectional view of the first electric motor 6, etc. taken along line EE in FIG.
 図9に示すように、第4の実施形態では、中間軸2が、歯車機構3を介して操舵軸1と直交するように接続されている。そして、トルクセンサ8およびボールねじ機構4が操舵軸1に設けられており、一方、第1電動モータ6が中間軸2に設けられている。また、第4の実施形態では、第1~第3の実施形態の仕切部材10が廃止され、第1ハウジング9が各ボルト20によって連携軸側筒状部24に直接取り付けられている。さらに、連携軸側筒状部24が中間軸側筒状部25と別体に形成されている。 As shown in FIG. 9, in the fourth embodiment, the intermediate shaft 2 is connected orthogonally to the steering shaft 1 via the gear mechanism 3. A torque sensor 8 and a ball screw mechanism 4 are provided on the steering shaft 1 , while a first electric motor 6 is provided on the intermediate shaft 2 . Further, in the fourth embodiment, the partition member 10 of the first to third embodiments is eliminated, and the first housing 9 is directly attached to the linking shaft side cylindrical portion 24 by bolts 20. FIG. Further, the linking shaft side tubular portion 24 is formed separately from the intermediate shaft side tubular portion 25 .
 第4の実施形態では、第1ハウジング9は、小径部9aと大径部9bとの間に位置する中径部9dをさらに有しており、この中径部9dの内側の空間が、トルクセンサ8を収容するセンサ収容部22となっている。 In the fourth embodiment, the first housing 9 further has a medium-diameter portion 9d located between the small-diameter portion 9a and the large-diameter portion 9b, and the space inside the medium-diameter portion 9d is used to generate torque. A sensor accommodating portion 22 that accommodates the sensor 8 is formed.
 連携軸側筒状部24は、概ね円筒状をなしており、外周部の一部が径方向外側に膨出することで出力軸周囲壁部35が形成されている。出力軸周囲壁部35は、連携軸側筒状部24の内部に開口している。出力軸周囲壁部35内では、セクタギア5は、歯部5aが第2連携軸14と対向する姿勢で配置されており、歯部5aは、第2連携軸14の周囲に設けられたボールねじ機構4のナット44のラック歯44bと噛み合っている。 The linking shaft side tubular portion 24 has a generally cylindrical shape, and a portion of the outer peripheral portion bulges radially outward to form an output shaft surrounding wall portion 35 . The output shaft surrounding wall portion 35 opens inside the linking shaft side tubular portion 24 . In the output shaft peripheral wall portion 35 , the sector gear 5 is arranged such that the tooth portion 5 a faces the second linking shaft 14 , and the tooth portion 5 a is a ball screw provided around the second linking shaft 14 . It meshes with the rack teeth 44b of the nut 44 of the mechanism 4.
 また、第2連携軸14の軸方向中央部の外周面には、ボールねじ機構4の一部を構成する連携軸側ボールねじ溝14aが形成されている。 In addition, a linking shaft side ball screw groove 14 a that constitutes a part of the ball screw mechanism 4 is formed on the outer peripheral surface of the second linking shaft 14 at the central portion in the axial direction.
 また、連携軸側筒状部24の一端部の内側には、軸受、例えば第7ボールベアリング54を保持する概ね円環状の軸受保持部材55が設けられている。軸受保持部材55の外周面には、雄ねじ部が形成されており、この雄ねじ部が、連携軸側筒状部24の一端部の内周面に形成された雌ねじ部にねじ留めされることで、軸受保持部材55が連携軸側筒状部24に取付固定されている。軸受保持部材55は、その中央部に形成された軸貫通孔55aを有しており、この軸貫通孔55aを通して操舵軸1が軸方向に延びている。 A substantially annular bearing holding member 55 for holding a bearing, for example, a seventh ball bearing 54 is provided inside one end of the linking shaft side tubular portion 24 . A male threaded portion is formed on the outer peripheral surface of the bearing holding member 55 , and this male threaded portion is screwed into a female threaded portion formed on the inner peripheral surface of one end of the linking shaft side cylindrical portion 24 . , the bearing holding member 55 is attached and fixed to the linking shaft side tubular portion 24 . The bearing holding member 55 has a shaft through hole 55a formed in its central portion, and the steering shaft 1 extends axially through the shaft through hole 55a.
 図9に示すように、連携軸側筒状部24の他端部には、縮径状をなす縮径部24eが形成されており、この縮径部24eの内周面には、第2連携軸14を回転可能に支持する軸受、例えば第8ボールベアリング70が設けられている。 As shown in FIG. 9, a diameter-reduced portion 24e having a diameter-reduced shape is formed at the other end portion of the linking shaft-side cylindrical portion 24, and the inner peripheral surface of the diameter-reduced portion 24e has a second A bearing for rotatably supporting the linking shaft 14, for example, an eighth ball bearing 70 is provided.
 中間軸側筒状部25は、第2連携軸14の一部を収容する第1円筒部56と、該第1円筒部56と一体に形成され、中間軸2の一部を収容する第2円筒部57と、を有している。 The intermediate shaft-side cylindrical portion 25 includes a first cylindrical portion 56 that accommodates a portion of the second linking shaft 14 and a second cylindrical portion 56 that is integrally formed with the first cylindrical portion 56 and accommodates a portion of the intermediate shaft 2 . and a cylindrical portion 57 .
 第1円筒部56は、一端側が、連携軸側筒状部24が設置される支持部となり、一方、他端側が、一端側よりも小径に形成され、第2円筒部57と結合する部位となっている。第1円筒部56のうち第2円筒部57と結合しない方の端部56aは、径方向外側に傾斜している。 One end of the first cylindrical portion 56 serves as a support portion for installing the linking shaft side cylindrical portion 24 , while the other end is formed to have a smaller diameter than the one end and serves as a portion coupled to the second cylindrical portion 57 . It's becoming An end portion 56a of the first cylindrical portion 56 that is not coupled to the second cylindrical portion 57 is inclined radially outward.
 第2円筒部57は、その内周面に形成された環状突出部57aを有しており、該環状突出部57aには、中間軸2を回転可能に支持する軸受、例えば第9ボールベアリング58のアウタレース58aの一端が当接している。アウタレース58aは、該アウタレース58aの一端が環状突出部57aに当接した状態で、第2円筒部57の内周に設けられた第1止め輪59によりアウタレース58aの他端を中間軸2の軸方向一端側へ押圧することで、第2円筒部57に固定されている。また、第9ボールベアリング58のインナレース58bの一端は、中間軸2の軸方向中央付近の位置に形成された段部2eに当接している。インナレース58bは、中間軸2の段部2eに当接した状態で、中間軸2の外周に設けられた第2止め輪60によりインナレース58bの他端を中間軸2の軸方向一端側へ押圧することで、中間軸2に固定されている。 The second cylindrical portion 57 has an annular projecting portion 57a formed on its inner peripheral surface, and the annular projecting portion 57a has a bearing, for example, a ninth ball bearing 58, for rotatably supporting the intermediate shaft 2. is in contact with one end of the outer race 58a. With one end of the outer race 58a in contact with the annular projecting portion 57a, the other end of the outer race 58a is held by a first retaining ring 59 provided on the inner circumference of the second cylindrical portion 57 so as to be attached to the intermediate shaft 2. It is fixed to the second cylindrical portion 57 by pressing it toward one end in the direction. One end of the inner race 58b of the ninth ball bearing 58 is in contact with a stepped portion 2e formed near the center of the intermediate shaft 2 in the axial direction. The inner race 58 b is in contact with the stepped portion 2 e of the intermediate shaft 2 , and the other end of the inner race 58 b is pushed toward one axial end of the intermediate shaft 2 by a second retaining ring 60 provided on the outer periphery of the intermediate shaft 2 . It is fixed to the intermediate shaft 2 by pressing.
 中間軸2の軸方向一端側の小径端部2dには、第2ベベルギア43が第1ベベルギア42に対して直交するように取付固定されている。第1ベベルギア42の第1歯部42aと第2ベベルギア43の第2歯部43aとが噛み合うことにより、中間軸2の回転軸線Qが操舵軸1の回転軸線Pと直交するようになっている。 A second bevel gear 43 is attached and fixed to the first bevel gear 42 at right angles to the small-diameter end 2 d of the intermediate shaft 2 on the one axial end side. The first toothed portion 42a of the first bevel gear 42 and the second toothed portion 43a of the second bevel gear 43 mesh with each other so that the rotation axis Q of the intermediate shaft 2 is perpendicular to the rotation axis P of the steering shaft 1. .
 閉塞部材51の内側は、第1電動モータ6の回転を減速する第1減速機7が収容される第1減速機収容部26となっている。閉塞部材51の外周部の一部は、図10に示すウォームシャフトハウジング50に設けられた後述のウォームシャフト収容部61と連通している。 The inner side of the closing member 51 serves as a first reduction gear accommodating portion 26 in which the first reduction gear 7 that reduces the rotation speed of the first electric motor 6 is accommodated. A part of the outer peripheral portion of the closing member 51 communicates with a worm shaft accommodating portion 61, which will be described later, provided in the worm shaft housing 50 shown in FIG.
 ウォームシャフトハウジング50は、円筒状をなすシャフト用筒状部50aと、該シャフト用筒状部50aと一体に形成され、第1電動モータ6側へ向かうにつれて徐々に拡径する円錐テーパ状に形成された円錐テーパ部50bとを有している。シャフト用筒状部50aおよび円錐テーパ部50bの内側の空間は、ウォームシャフト62を収容するウォームシャフト収容部61となっている。円錐テーパ部50bの軸方向一端部50cは、モータハウジング49に段差縮径状に形成された段差縮径部49aの外周部に固定されている。軸方向一端部50cの内周面と段差縮径部49aの外周面との間は、リング状の第4シール部材63によって気密にシールされている。 The worm shaft housing 50 is formed integrally with a cylindrical shaft tubular portion 50a and is formed in a conical tapered shape that gradually expands in diameter toward the first electric motor 6 side. and a tapered conical portion 50b. A space inside the shaft cylindrical portion 50a and the conical tapered portion 50b serves as a worm shaft housing portion 61 for housing a worm shaft 62 therein. One axial end portion 50c of the conical tapered portion 50b is fixed to the outer peripheral portion of a stepped reduced diameter portion 49a formed in the motor housing 49 in a stepped diameter reduced shape. A ring-shaped fourth seal member 63 airtightly seals the inner peripheral surface of the one axial end portion 50c and the outer peripheral surface of the stepped reduced diameter portion 49a.
 シャフト用筒状部50aの軸方向他端側の開口部は、ウォームシャフトハウジング50内の空気を外部へ逃がすことが可能な呼吸弁64によって閉塞されている。 The opening at the other end in the axial direction of the cylindrical shaft portion 50a is closed by a breathing valve 64 that allows the air inside the worm shaft housing 50 to escape to the outside.
 ウォームシャフト62は、金属材料により概ね円柱状に形成されている。ウォームシャフト62は、一端がモータシャフト65に固定されており、一方、他端が呼吸弁64の付近に位置するようにしてウォームシャフト収容部61内に配置されている。ウォームシャフト62は、円柱状をなす軸部62aと、該軸部62aの外周部に形成され、螺旋状に連続する螺旋歯部62bと、を有している。螺旋歯部62bは、第1減速機7のウォームホイール47のギア形成部47bと噛み合っている。 The worm shaft 62 is made of a metal material and has a substantially cylindrical shape. The worm shaft 62 has one end fixed to the motor shaft 65 and the other end positioned in the worm shaft housing 61 near the breathing valve 64 . The worm shaft 62 has a cylindrical shaft portion 62a and a spiral tooth portion 62b formed on the outer peripheral portion of the shaft portion 62a and continuing in a spiral shape. The helical tooth portion 62b meshes with the gear forming portion 47b of the worm wheel 47 of the first speed reducer 7. As shown in FIG.
 図10に示すように、ウォームシャフト62の軸方向一端側の外周部には、ウォームシャフト62を回転可能に支持する軸受、例えば深溝玉軸受66が設けられている。 As shown in FIG. 10, a bearing for rotatably supporting the worm shaft 62, such as a deep groove ball bearing 66, is provided on the outer peripheral portion of the worm shaft 62 on one end side in the axial direction.
 また、ウォームシャフト62の軸方向他端側の外周部には、ウォームシャフト62を回転可能に支持する軸受、第10ボールベアリング67が設けられている。第10ボールベアリング67は、ウォームシャフト62と呼吸弁64との間に設けられたベアリング支持部材68によって支持されている。より詳細には、ベアリング支持部材68は、ウォームシャフト62の軸方向他端と対向する面に形成された円形凹部68aを有しており、この円形凹部68aに第10ボールベアリング67を嵌め込むことで、第10ボールベアリング67がベアリング保持部材68によって支持されている。ベアリング保持部材68の外周面とシャフト用筒状部50aの内周面とは、リング状の第5シール部材69によって気密にシールされている。 A tenth ball bearing 67, which rotatably supports the worm shaft 62, is provided on the outer peripheral portion of the worm shaft 62 on the other end side in the axial direction. A tenth ball bearing 67 is supported by a bearing support member 68 provided between the worm shaft 62 and the breathing valve 64 . More specifically, the bearing support member 68 has a circular recess 68a formed in a surface facing the other axial end of the worm shaft 62, and the tenth ball bearing 67 is fitted into this circular recess 68a. , the tenth ball bearing 67 is supported by the bearing holding member 68 . The outer peripheral surface of the bearing holding member 68 and the inner peripheral surface of the cylindrical shaft portion 50a are airtightly sealed by a ring-shaped fifth seal member 69. As shown in FIG.
 [第4の実施形態の効果]
 第4の実施形態では、中間軸2が第1および第2ベベルギア42,43によって操舵軸1に対して直交した軸構成において、トルクセンサ8およびボールねじ機構4が操舵軸1に設けられており、一方、第1電動モータ6が中間軸2に設けられている。
[Effects of the fourth embodiment]
In the fourth embodiment, the torque sensor 8 and the ball screw mechanism 4 are provided on the steering shaft 1 in a shaft configuration in which the intermediate shaft 2 is orthogonal to the steering shaft 1 by the first and second bevel gears 42 and 43. , on the other hand, a first electric motor 6 is provided on the intermediate shaft 2 .
 このため、第1電動モータ6が操舵軸1に配置されないので、従来技術のステアリング装置よりも第1電動モータ6分だけステアリング装置の軸方向寸法を減少させることができる。 Therefore, since the first electric motor 6 is not arranged on the steering shaft 1, the axial dimension of the steering device can be reduced by the amount of the first electric motor 6 compared to the conventional steering device.
 なお、上記第1~第3の実施形態では、中間軸2が第1および第2ベベルギア42,43によって操舵軸1に対して傾斜角度αで傾斜する例を説明したが、中間軸2が一対の平歯車によって操舵軸1と平行となるようにずらされる例を、本発明に適用することができる。
 
In the first to third embodiments described above, the intermediate shaft 2 is tilted at the tilt angle α with respect to the steering shaft 1 by the first and second bevel gears 42 and 43. The example in which the spur gear is displaced so as to be parallel to the steering axis 1 can be applied to the present invention.

Claims (7)

  1.  回転力を転舵輪に伝達するステアリング装置であって、
     第1軸と、
     前記第1軸の径方向外側に位置した出力軸と、
     前記出力軸を挟んで前記第1軸の反対側に位置した第2軸と、
     前記第1軸と前記第2軸とを接続する歯車機構と、
     前記回転力に伴う操舵トルクを検出するトルクセンサと、
     前記回転力に対するトルクを付与する第1電動モータと、
     前記回転力により生じる推力を前記出力軸に伝達するボールねじ機構と、
     を備え、
     前記トルクセンサ、前記第1電動モータおよび前記ボールねじ機構のうちの2つが前記第1軸に設けられ、残りの1つが前記第2軸に設けられる、ステアリング装置。
    A steering device that transmits rotational force to steered wheels,
    a first axis;
    an output shaft positioned radially outward of the first shaft;
    a second shaft located on the opposite side of the first shaft across the output shaft;
    a gear mechanism connecting the first shaft and the second shaft;
    a torque sensor that detects a steering torque associated with the rotational force;
    a first electric motor that imparts torque to the rotational force;
    a ball screw mechanism that transmits the thrust generated by the rotational force to the output shaft;
    with
    A steering device, wherein two of the torque sensor, the first electric motor, and the ball screw mechanism are provided on the first shaft, and the remaining one is provided on the second shaft.
  2.  請求項1に記載のステアリング装置において、
     前記第1軸は、ステアリングホイールに接続された操舵軸であり、
     前記第2軸は、前記出力軸に接続された中間軸であり、
     前記トルクセンサおよび前記第1電動モータは前記操舵軸に設けられ、
     前記ボールねじ機構は前記中間軸に設けられる、ステアリング装置。
    The steering device according to claim 1,
    the first shaft is a steering shaft connected to a steering wheel;
    the second shaft is an intermediate shaft connected to the output shaft;
    The torque sensor and the first electric motor are provided on the steering shaft,
    The steering device, wherein the ball screw mechanism is provided on the intermediate shaft.
  3.  請求項1に記載のステアリング装置において、
     前記第1軸は、ステアリングホイールに接続された操舵軸であり、
     前記第2軸は、前記出力軸に接続された中間軸であり、
     前記トルクセンサは前記操舵軸に設けられ、
     前記第1電動モータおよび前記ボールねじ機構は前記中間軸に設けられる、ステアリング装置。
    The steering device according to claim 1,
    the first shaft is a steering shaft connected to a steering wheel;
    the second shaft is an intermediate shaft connected to the output shaft;
    The torque sensor is provided on the steering shaft,
    A steering device, wherein the first electric motor and the ball screw mechanism are provided on the intermediate shaft.
  4.  請求項1に記載のステアリング装置において、
     前記回転力に対するトルクを付与する第2電動モータをさらに備え、
     前記第1軸は、ステアリングホイールに接続された操舵軸であり、
     前記第2軸は、前記出力軸に接続された中間軸であり、
     前記トルクセンサおよび前記第1電動モータは前記操舵軸に設けられ、
     前記第2電動モータおよび前記ボールねじ機構は前記中間軸に設けられる、ステアリング装置。
    The steering device according to claim 1,
    further comprising a second electric motor that imparts torque to the rotational force;
    the first shaft is a steering shaft connected to a steering wheel;
    the second shaft is an intermediate shaft connected to the output shaft;
    The torque sensor and the first electric motor are provided on the steering shaft,
    A steering device, wherein the second electric motor and the ball screw mechanism are provided on the intermediate shaft.
  5.  請求項2~4のいずれかに記載のステアリング装置において、
     前記歯車機構は、前記操舵軸の外周部に固定された第1ベベルギアと、前記中間軸の外周部に固定された第2ベベルギアと、から構成される、ステアリング装置。
    In the steering device according to any one of claims 2 to 4,
    The steering device, wherein the gear mechanism includes a first bevel gear fixed to the outer peripheral portion of the steering shaft and a second bevel gear fixed to the outer peripheral portion of the intermediate shaft.
  6.  請求項2~4のいずれかに記載のステアリング装置において、
     前記第1電動モータは、前記出力軸よりも高い位置に設けられる、ステアリング装置。
    In the steering device according to any one of claims 2 to 4,
    The steering device, wherein the first electric motor is provided at a position higher than the output shaft.
  7.  回転力を転舵輪に伝達するステアリング装置であって、
     第1軸と、
     前記第1軸の径方向外側に位置した出力軸と、
     前記第1軸に設けられた歯車機構と、
     前記歯車機構を介して前記第1軸に接続された第2軸と、
     前記回転力に伴う操舵トルクを検出するトルクセンサと、
     前記回転力に対するトルクを付与する電動モータと、
     前記回転力により生じる推力を前記出力軸に伝達するボールねじ機構と、
     を備え、
     前記トルクセンサおよび前記ボールねじ機構は、前記第1軸に設けられ、
     前記電動モータは、前記第2軸に設けられる、ステアリング装置。
    A steering device that transmits rotational force to steered wheels,
    a first axis;
    an output shaft positioned radially outward of the first shaft;
    a gear mechanism provided on the first shaft;
    a second shaft connected to the first shaft via the gear mechanism;
    a torque sensor that detects a steering torque associated with the rotational force;
    an electric motor that imparts torque to the rotational force;
    a ball screw mechanism that transmits the thrust generated by the rotational force to the output shaft;
    with
    The torque sensor and the ball screw mechanism are provided on the first shaft,
    The steering device, wherein the electric motor is provided on the second shaft.
PCT/JP2023/005881 2022-02-21 2023-02-20 Steering device WO2023157961A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024501460A JPWO2023157961A1 (en) 2022-02-21 2023-02-20

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022024550 2022-02-21
JP2022-024550 2022-02-21

Publications (1)

Publication Number Publication Date
WO2023157961A1 true WO2023157961A1 (en) 2023-08-24

Family

ID=87578431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005881 WO2023157961A1 (en) 2022-02-21 2023-02-20 Steering device

Country Status (2)

Country Link
JP (1) JPWO2023157961A1 (en)
WO (1) WO2023157961A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002264830A (en) * 2001-03-13 2002-09-18 Unisia Jkc Steering System Co Ltd Power steering device
US20120241244A1 (en) * 2011-03-23 2012-09-27 GM Global Technology Operations LLC Recirculating ball power steering system
JP2019156082A (en) * 2018-03-12 2019-09-19 クノールブレムゼステアリングシステムジャパン株式会社 Steering device
US20200339183A1 (en) * 2019-04-25 2020-10-29 Schaeffler Technologies AG & Co. KG Motor-assisted steering ball-screw
JP2022506165A (en) * 2018-10-31 2022-01-17 クノル-ブレムゼ ジステーメ フューア ヌッツファールツォイゲ ゲゼルシャフト ミット ベシュレンクテル ハフツング Ball circulation type steering mechanism

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002264830A (en) * 2001-03-13 2002-09-18 Unisia Jkc Steering System Co Ltd Power steering device
US20120241244A1 (en) * 2011-03-23 2012-09-27 GM Global Technology Operations LLC Recirculating ball power steering system
JP2019156082A (en) * 2018-03-12 2019-09-19 クノールブレムゼステアリングシステムジャパン株式会社 Steering device
JP2022506165A (en) * 2018-10-31 2022-01-17 クノル-ブレムゼ ジステーメ フューア ヌッツファールツォイゲ ゲゼルシャフト ミット ベシュレンクテル ハフツング Ball circulation type steering mechanism
US20200339183A1 (en) * 2019-04-25 2020-10-29 Schaeffler Technologies AG & Co. KG Motor-assisted steering ball-screw

Also Published As

Publication number Publication date
JPWO2023157961A1 (en) 2023-08-24

Similar Documents

Publication Publication Date Title
KR100646406B1 (en) Electric power steering apparatus for automotive vehicle equipped with belt-type transmission mechanism
KR100651141B1 (en) Electrically-assisted power steering apparatus
JP4955737B2 (en) Steering control device
KR102315099B1 (en) Reducer of Electric Power Steering Apparatus
US8381867B2 (en) Transmission ratio variable mechanism and vehicle steering apparatus including the same
EP2256016B1 (en) Vehicle steering device
US8827031B2 (en) Motor vehicle steering system
JP2010247790A (en) Electric power steering device
JP2008284912A (en) Vehicle steering device
WO2023157961A1 (en) Steering device
JP5397653B2 (en) Vehicle steering system
KR20220120219A (en) Steer-By-Wire Type Steering Apparatus
JP2004314854A (en) Steering device for vehicle
JP2008137600A (en) Electric power steering device
WO2005054036A1 (en) Steering apparatus for vehicle
JP2010006342A (en) Steering device for vehicle
JP7197070B1 (en) electric power steering device
WO2023148997A1 (en) Electric power steering device
JP6589390B2 (en) Electric power steering device
WO2023084654A1 (en) Motor mounting structure, motor unit, and vehicle steering device
JP5397672B2 (en) Electric power steering device
JP4235894B2 (en) Electric power steering device
JP2008279809A (en) Electric power steering device
JP2001315655A (en) Electric power steering system
JP2023131252A (en) Gear housing and power-assisted device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23756485

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024501460

Country of ref document: JP