WO2023157872A1 - Drive wheel and cart - Google Patents

Drive wheel and cart Download PDF

Info

Publication number
WO2023157872A1
WO2023157872A1 PCT/JP2023/005207 JP2023005207W WO2023157872A1 WO 2023157872 A1 WO2023157872 A1 WO 2023157872A1 JP 2023005207 W JP2023005207 W JP 2023005207W WO 2023157872 A1 WO2023157872 A1 WO 2023157872A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive
axle
output shaft
belt
input shaft
Prior art date
Application number
PCT/JP2023/005207
Other languages
French (fr)
Japanese (ja)
Inventor
紘 藤岡
智樹 渡邉
大介 近藤
正義 和田
Original Assignee
日本精工株式会社
学校法人東京理科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社, 学校法人東京理科大学 filed Critical 日本精工株式会社
Publication of WO2023157872A1 publication Critical patent/WO2023157872A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62BHAND-PROPELLED VEHICLES, e.g. HAND CARTS OR PERAMBULATORS; SLEDGES
    • B62B3/00Hand carts having more than one axis carrying transport wheels; Steering devices therefor; Equipment therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings

Definitions

  • the present invention relates to drive wheels and trucks.
  • Patent Document 1 discloses driving wheels and trucks using driving wheels.
  • This drive wheel has a first input shaft and a second input shaft arranged coaxially, a first output shaft and a second output shaft arranged on separate shafts, and a rotational force of the first input shaft.
  • a first spur gear mechanism that transmits to the output shaft, a second spur gear mechanism that transmits the rotational force of the second input shaft to the second output shaft, a wheel connected to the axle, and the wheel can be turned via the axle a first power conversion mechanism that transmits the rotational force of the first output shaft to one end of the axle, and a second power conversion mechanism that transmits the rotational force of the second output shaft to the other end of the axle and
  • the driving wheels are such that the rotation axis of the wheel along the vertical direction intersecting the axial direction of the axle is offset from the axis of the turning shaft in the horizontal direction orthogonal to the axial direction of the axle. are placed.
  • the drive wheel described in Patent Document 1 is a differential omnidirectional movement that enables two mounted drive devices to operate simultaneously regardless of whether the operation is a change in the direction of the wheel or a rotation of the wheel. It has mechanism.
  • the rotation direction and rotation speed of the driving portion of the omniwheel are controlled based on data input to the load cell connected to the handle.
  • the controller controls the driving force of the motor and the speed reducer based on the rotational torque detected by the torque detection mechanism provided on the rotating shaft of the drive wheel. .
  • the present disclosure has been made in view of the above problems, and aims to provide a drive wheel and a carriage capable of imparting an assist function to a differential omnidirectional movement mechanism.
  • a drive wheel for achieving the above object includes a first input shaft and a second input shaft that are coaxially arranged, and a first output shaft and a second output shaft that are arranged on separate shafts.
  • a second power conversion mechanism a turning shaft that rotatably supports the wheel via the axle, a first drive unit, and a first drive unit that transmits the driving force of the first drive unit to the first input shaft a first belt drive mechanism including a drive belt; a second drive unit; and a second belt drive mechanism including a second drive belt that transmits the driving force of the second drive unit to the second input shaft;
  • a first torque measurement unit for measuring external force torque from changes in tension of the drive belt a second torque measurement unit for measuring external force torque from changes in tension of the second drive belt, and the external force measured by the first torque measurement unit.
  • a control device that controls the first driving section based on the torque and controls the second driving section based on the external force torque measured by the second torque measuring section.
  • the first belt drive mechanism includes a first drive pulley provided on the first input shaft and a first drive pulley provided on the first drive section.
  • the second belt drive mechanism includes a second drive pulley provided on the second input shaft and a second drive pulley provided on the second drive unit, and the second drive mechanism is configured by winding a belt.
  • the first torque measurement unit measures external force torque on both the upstream side and the downstream side of the first drive belt from the change in tension of the first drive belt
  • the second The torque measurement unit measures external torque on both the upstream side and the downstream side of the second drive belt from changes in tension of the second drive belt.
  • the rotation axis of the wheel that intersects the axis of the axle and extends in the vertical direction is displaced from the axis of the turning shaft in the horizontal direction that is perpendicular to the axis of the axle. are placed.
  • the first output shaft and the second output shaft are arranged on both sides of the axle in the axial direction.
  • the first power conversion mechanism and the second power conversion mechanism are arranged on both sides of the axle in the axial direction.
  • the first power conversion mechanism and the second power conversion mechanism are arranged above in a vertical direction crossing the axial direction of the axle.
  • the pivot shaft is arranged coaxially with the first input shaft and the second input shaft.
  • the first power conversion mechanism transmits the rotational force of the first output shaft to one end of the axle having a different axial direction with respect to the first output shaft.
  • Any one of a gear mechanism, a helical gear mechanism, a worm gear mechanism, a crown gear mechanism, or a universal joint mechanism is applied, and the second power conversion mechanism converts the rotational force of the second output shaft to the second output It transmits power to the other end of the axle, which is different in the axial direction from the shaft, and any one of a bevel gear mechanism, a helical gear mechanism, a worm gear mechanism, a crown gear mechanism, or a universal joint mechanism is applied.
  • a truck according to one aspect of the present disclosure for achieving the above object includes the driving wheels described above and a main body to which the driving wheels are attached.
  • driving performance can be improved.
  • FIG. 1 is a perspective view showing a basic configuration example of a driving wheel of the embodiment.
  • FIG. 2 is a front view showing drive wheels of the embodiment.
  • FIG. 3 is a side view showing drive wheels of the embodiment.
  • FIG. 4 is a plan view showing drive wheels of the embodiment.
  • FIG. 5 is a cross-sectional view taken along line AA of FIG. 6 is a cross-sectional view taken along the line BB in FIG. 3.
  • FIG. 7 is a cross-sectional view taken along line CC of FIG. 4.
  • FIG. FIG. 8 is a cross-sectional view taken along line DD of FIG.
  • FIG. 9 is a schematic diagram showing the driving force transmission path of the drive wheels of the embodiment.
  • FIG. 10 is a block diagram showing a configuration example of drive wheels of the embodiment.
  • FIG. 11 is a flowchart showing an operation example of the driving wheels of the embodiment.
  • FIG. 12 is a perspective view showing a configuration example of a power conversion mechanism.
  • FIG. 13 is a perspective view showing a configuration example of a power conversion mechanism.
  • FIG. 14 is a perspective view showing a configuration example of a power conversion mechanism.
  • FIG. 15 is a front view showing a configuration example of a power conversion mechanism.
  • FIG. 16 is a front view showing another configuration example of the driving wheels of the embodiment. 17 is a side view of the drive wheel shown in FIG. 16;
  • FIG. 18 is a schematic diagram showing a configuration example of the truck of the embodiment.
  • FIG. 18 is a schematic diagram showing a basic configuration example of the truck of the embodiment.
  • the truck 100 includes a truck main body 101, a handle portion 102, four driving wheels 103, a power supply portion 104, and a control device 105.
  • the carriage body 101 is, for example, a flat plate material and has a rectangular shape when viewed from above.
  • a handle portion 102 is fixed to one side in the longitudinal direction of the carriage body 101 .
  • Four drive wheels 103 are attached to the four corners of the back side of the carriage body 101 .
  • the four drive wheels 103 are rotatable and steerable.
  • a power supply unit 104 and a control device 105 are mounted on the rear surface of the carriage body 101 between the front and rear driving wheels 103 .
  • Controller 105 includes a computer system.
  • a computer system includes a processor such as a CPU and memory such as ROM or RAM. Therefore, the control device 105 controls the driving wheels 103 of the truck 100 .
  • the carriage 100 can be configured as an automatic guided vehicle (AGV).
  • AGV automatic guided vehicle
  • the trolley 100 can be configured as a device that travels by arranging equipment along the flat surface of the trolley body 101 . Examples of equipment include hand lifters, forklifts, picking robots, and medical equipment.
  • the trolley 100 and the equipment are not limited to the configuration described above regarding the number and arrangement of the drive wheels 103 .
  • the truck 100 and equipment may have a pair of drive wheels 103 attached to the rear side of the truck 100 and a pair of driven wheels attached to the front side of the truck 100 in the four-wheel configuration described above.
  • the trolley 100 and the equipment may have one driving wheel 103 and all the other wheels may be driven wheels in a form having three or more wheels.
  • the trolley 100 and the equipment may have no driven wheels and all of the wheels may be drive wheels 103 in the form of three or more wheels. That is, the trolley 100 and the equipment need only have at least one drive wheel 103 in the form of three or more wheels.
  • FIG. 1 is a perspective view showing a basic configuration example of a driving wheel of the embodiment.
  • FIG. 2 is a front view showing drive wheels of the embodiment.
  • FIG. 3 is a side view showing drive wheels of the embodiment.
  • FIG. 4 is a plan view showing drive wheels of the embodiment.
  • FIG. 5 is a cross-sectional view taken along line AA of FIG. 6 is a cross-sectional view taken along the line BB in FIG. 3.
  • FIG. 7 is a cross-sectional view taken along line CC of FIG. 4.
  • FIG. FIG. 8 is a cross-sectional view taken along line DD of FIG.
  • the driving wheel 103 has a main body 10 fixed to the bogie main body 101 of the bogie 100 as described above. 14 and wheels 15 are provided.
  • the main body 10 is formed in a plate shape with the plate surface facing up and down.
  • the drive mechanism 11 is provided mainly above the main body 10 for inputting rotational force.
  • the swivel part 12 is arranged below the main body 10 .
  • the transmission mechanism 13 transmits the rotational force input by the drive mechanism 11 .
  • the power conversion mechanism 14 transmits the rotational force of the transmission mechanism 13 to the wheels 15 .
  • the wheels 15 are rotatable by rotational force input via the drive mechanism 11 , the transmission mechanism 13 , and the power conversion mechanism 14 and can be steered by the turning section 12 .
  • the drive mechanism 11 has a first belt drive mechanism 22A and a second belt drive mechanism 22B.
  • the first belt drive mechanism 22A includes a first drive section 23A, a first drive pulley 24A, a first input shaft 25A, a first driven pulley 26A, and a first drive belt 27A.
  • 23 A of 1st drive parts are comprised by a motor.
  • the first drive portion 23A is fixed to the main body 10 .
  • the first drive portion 23A has a drive shaft 23Aa that protrudes upward from the main body 10 and extends in the vertical direction.
  • the first drive pulley 24A is fixed to the drive shaft 23Aa.
  • the first input shaft 25A is provided so as to extend in the vertical direction so as to be parallel to the drive shaft 23Aa, and is rotatably supported with respect to the main body 10 about the axis O1.
  • the first driven pulley 26A is fixed to the portion of the first input shaft 25A that protrudes upward from the main body 10 .
  • the first driven pulley 26A and the first drive pulley 24A are arranged side by side in a direction orthogonal to the first input shaft 25A and the drive shaft 23Aa.
  • the first drive belt 27A is formed in an annular shape and is looped around the first driven pulley 26A and the first drive pulley 24A.
  • the first drive pulley 24A is rotated by the drive of the first drive section 23A, and this rotation is transmitted from the first drive pulley 24A through the first drive belt 27A to the first driven pulley 26A. , and the first input shaft 25A rotates.
  • the second belt drive mechanism 22B includes a second drive section 23B, a second drive pulley 24B, a second input shaft 25B, a second driven pulley 26B, and a second drive belt 27B.
  • the second driving section 23B is composed of a motor.
  • the second driving portion 23B is fixed to the main body 10. As shown in FIG.
  • the second drive portion 23B has a drive shaft 23Ba that protrudes upward from the main body 10 and extends in the vertical direction.
  • the second drive pulley 24B is fixed to the drive shaft 23Ba.
  • the second drive pulley 24B is formed to have the same diameter as the first drive pulley 24A.
  • the second input shaft 25B is provided so as to extend in the vertical direction so as to be parallel to the drive shaft 23Ba, and is rotatably supported with respect to the main body 10 about the axis O1.
  • the second input shaft 25B has a cylindrical shape and is arranged outside the first input shaft 25A so as to rotate independently of the first input shaft 25A.
  • the first input shaft 25A and the second input shaft 25B penetrate the main body 10 and extend downward.
  • the second driven pulley 26B is fixed to the portion of the second input shaft 25B that protrudes upward from the main body 10 .
  • the second driven pulley 26B has the same diameter as the first driven pulley 26A and is positioned below the first driven pulley 26A.
  • the second driven pulley 26B and the second drive pulley 24B are arranged side by side in a direction orthogonal to the second input shaft 25B and the drive shaft 23Ba.
  • the second drive belt 27B is formed in an annular shape and is looped around the second driven pulley 26B and the second drive pulley 24B. Therefore, the second belt driving mechanism 22B drives the second driving section 23B to rotate the second driving pulley 24B, and this rotation is transmitted from the second driving pulley 24B to the second driven belt 27B via the second driving belt 27B.
  • the rotation of the second input shaft 25B is transmitted to the pulley 26B.
  • a turning shaft 35 is arranged outside the second input shaft 25B.
  • the swivel shaft 35 has a cylindrical shape, is arranged outside the second input shaft 25B, extends vertically, and is rotatably supported about the axis O1. That is, the first input shaft 25A, the second input shaft 25B, and the turning shaft 35 are rotatably arranged coaxially along the axis O1.
  • a bearing 43 is provided between the first input shaft 25A and the second input shaft 25B
  • a bearing 44 is provided between the second input shaft 25B and the turning shaft 35
  • a bearing is provided between the turning shaft 35 and the main body 10. 45 are provided.
  • the swivel shaft 35 has a cylindrical main body 35a and a flange portion 35b integrally provided at the lower portion of the main body 35a, and a cover member 35c is provided at the lower portion of the flange portion 35b.
  • the pivot shaft 35 is provided on both horizontal sides of the wheel 15 under the cover member 35c such that the first support member 36A and the second support member 36B extend downward.
  • the wheel 15 is integrally provided with an axle 37 extending along an axis O2 perpendicular to the direction of the axis O1. One end of the axle 37 along the axis O2 is rotatably supported under the first support member 36A, and the other end along the axis O2 is rotatably supported under the second support member 36B. be.
  • the turning section 12 is composed of a turning shaft 35, a first supporting member 36A, and a second supporting member 36B. Further, the rotation axis O5 of the wheel 15 along the vertical direction intersecting the axis O2 of the axle 37 is displaced from the axis O1 of the turning shaft 35 in the horizontal direction orthogonal to the axis O2 of the axle 37. be. Therefore, the driving wheel 103 of the embodiment can input rotational force to the first input shaft 25A and the second input shaft 25B on the axis O1 that is the turning axis of the wheel 15, respectively.
  • a first drive spur gear 38A is fixed to the lower end of the first input shaft 25A, and a second drive spur gear 38B is fixed to the lower end of the second input shaft 25B.
  • the first drive spur gear 38A meshes with the first driven spur gear 39A and the second drive spur gear 38B meshes with the second driven spur gear 39B.
  • the second drive spur gear 38B and the first drive spur gear 38A are stacked vertically and rotate about the axis O1.
  • the first driven spur gear 39A is fixed to the top of the first output shaft 40A.
  • the first output shaft 40A is supported at its upper portion through the flange portion 35b and the cover member 35c of the turning shaft 35 and supported at its lower portion by the first support member 36A so as to be rotatable about the axis O3. be.
  • the second driven spur gear 39B is fixed to the top of the second output shaft 40B.
  • the upper portion of the second output shaft 40B is supported by penetrating the flange portion 35b and the cover member 35c of the turning shaft 35, and the lower portion is supported by the second support member 36B so as to be rotatable around the axis O4. be.
  • the axis O3 and the axis O4 are parallel to the axis O1.
  • the first driving spur gear 38A, the second driving spur gear 38B, the first driven spur gear 39A, and the second driving spur gear 38B are covered with the flange portion 35b of the turning shaft 35 and the cover member 35c.
  • the first driven spur gear 39A and the first drive spur gear 38A, and the second drive spur gear 38B and the second driven spur gear 39B have a triangular axis O1, O3 and O4 in plan view (FIG. 8). are arranged to form The first driven spur gear 39A and the first output shaft 40A centered on the axis O3, and the second driven spur gear 39B and the second output shaft 40B centered on the axis O4 are axially connected to the wheels 15. 37 are arranged orthogonally on both sides of the axis O2.
  • the spur gears 38A, 38B, 39A, 39B have the same pitch diameter, tooth profile, number of teeth, etc., but may have different shapes. Gears 39A and 39B may have different shapes.
  • the transmission mechanism 13 has a first spur gear mechanism (first transmission mechanism) 13A and a second spur gear mechanism (second transmission mechanism) 13B.
  • the first spur gear mechanism 13A comprises a first drive spur gear 38A, a first driven spur gear 39A and a first output shaft 40A.
  • the second spur gear mechanism 13B comprises a second drive spur gear 38B and a second driven spur gear 38B. It is composed of a gear 39B and a second output shaft 40B.
  • a first drive bevel gear 41A is fixed to the bottom of the first output shaft 40A, and a second drive bevel gear 41B is fixed to the bottom of the second output shaft 40B.
  • the axle 37 has a first driven bevel gear 42A fixed to one end in the direction of the axis O2, and a second driven bevel gear 42B fixed to the other end in the direction of the axis O2.
  • the first drive bevel gear 41A meshes with the first driven bevel gear 42A.
  • the second drive bevel gear 41B meshes with the second driven bevel gear 42B.
  • It has the power conversion mechanism 14, a first bevel gear mechanism 14A as a first power conversion mechanism, and a second bevel gear mechanism 14B as a second power conversion mechanism.
  • the first bevel gear mechanism 14A is composed of a first drive bevel gear 41A and a first driven bevel gear 42A.
  • the second bevel gear mechanism 14B is composed of a second drive bevel gear 41B and a second driven bevel gear 42B.
  • the drive wheels 103 can rotate and steer the wheels 15 by rotating the first input shaft 25A and the second input shaft 25B by the drive mechanism 11.
  • the first input shaft 25A is rotated
  • the second input shaft 25B is rotated in the opposite direction to the first input shaft 25A
  • the number of revolutions (rotational speed) of the first input shaft 25A and the second input shaft 25B is the same.
  • the wheels 15 can be rotated without being steered.
  • the wheels 15 can be steered while rotating or stopped by varying the number of revolutions (rotating speed) of the first input shaft 25A and the second input shaft 25B.
  • FIG. 9 is a schematic diagram showing the driving force transmission path of the drive wheels.
  • the driving wheel 103 when the first input shaft 25A rotates in the first direction A1, the first driving spur gear 38A rotates in the same direction, and the first driven spur gear 39A meshing with the first driving spur gear 38A rotates in the second direction. Rotate to A2.
  • the first driven spur gear 39A rotates in the second direction A2
  • the first drive bevel gear 41A integrally provided with the first driven spur gear 39A via the first output shaft 40A rotates in the same direction.
  • the first driven bevel gear 42A meshing with the first drive bevel gear 41A rotates in the third direction A3, and rotates the axle 37 integrated with the first driven bevel gear 42A in the same direction.
  • the second input shaft 25B rotates in the first direction B1 opposite to the first direction A1
  • the second drive spur gear 38B rotates in the same direction
  • the second driven spur gear meshes with the second drive spur gear 38B.
  • 39B rotates in the second direction B2.
  • the second driven spur gear 39B rotates in the second direction B2
  • the second drive bevel gear 41B integrally provided with the second driven spur gear 39B via the second output shaft 40B rotates in the same direction.
  • the second driven bevel gear 42B meshing with the second drive bevel gear 41B rotates in the third direction B3, and rotates the axle 37 integrated with the second driven bevel gear 42B in the same direction.
  • the third direction A3 and the third direction B3 are the same rotation direction, the wheels 15 rotate without turning if the first input shaft 25A and the second input shaft 25B have the same number of rotations.
  • the drive wheel 103 of the embodiment has a turning position detector 50 as shown in FIG.
  • the turning position detector 50 is provided on the upper surface of the main body 10 .
  • the turning position detection unit 50 includes, for example, a first spur gear that rotates around the axis O1 together with the turning shaft 35, and an axis that meshes with the first spur gear and is parallel to the axis O1. It has a second spur gear that is driven to rotate around and a detector that detects the rotational position of the second spur gear. Therefore, the first spur gear rotates together with the turning shaft 35, and the detector detects the rotational position of the first spur gear as the rotational position of the second spur gear.
  • the rotational position of the turning section 12 can be detected.
  • a detection signal from the detector is input to the controller 105 of the truck (equipment) 100 .
  • the control device 105 can control the turning of the drive wheels 103 .
  • FIG. 10 is a block diagram showing a configuration example of the driving wheels of the embodiment.
  • FIG. 11 is a flowchart showing an operation example of the driving wheels of the embodiment.
  • the driving wheel 103 of the embodiment further includes a torque measuring section 28.
  • the torque measurement section 28 has a first torque measurement section 28A and a second torque measurement section 28B, as shown in FIGS. 28 A of 1st torque measurement parts are provided in 22 A of 1st belt drive mechanisms, and measure the torque applied to 22 A of 1st belt drive mechanisms.
  • the second torque measuring section 28B is provided in the second belt driving mechanism 22B and measures the torque applied to the second belt driving mechanism 22B.
  • the first torque measuring section 28A and the second torque measuring section 28B have the same configuration, so the first torque measuring section 28A will be described, and the detailed description of the second torque measuring section 28B will be omitted.
  • 1st torque measurement parts are provided with respect to the 1st drive belt 27A between the 1st drive pulley 24A and the 1st driven pulley 26A in 22 A of 1st belt drive mechanisms, 1st press roller 29Aa, 29Ab, It includes first strain gauges 30Aa, 30Ab and first tension measurement units 31Aa, 31Ab.
  • the first pressing rollers 29Aa and 29Ab contact one side and the other side of the first driving belt 27A between the first driving pulley 24A and the first driven pulley 26A.
  • the one side and the other side of the first drive belt 27A are the portion of the first drive belt 27A that moves away from the first drive pulley 24A when the first drive belt 27A moves with the rotation of the first drive pulley 24A, and the first drive belt 27A. and the portion of the first drive belt 27A approaching the pulley 24A, which can also be referred to as the upstream side and the downstream side of the first drive belt 27A.
  • the first strain gauges 30Aa and 30Ab support the first pressing rollers 29Aa and 29Ab, respectively, and receive displacement of the first pressing rollers 29Aa and 29Ab due to changes in the tension of the first driving belt 27A as strain.
  • First strain gauges 30Aa and 30Ab are connected to the first tension measurement units 31Aa and 31Ab, respectively, and strains of the first strain gauges 30Aa and 30Ab are read as voltage values. This voltage value is calculated by the control device 105 as torque applied to one side and the other side of the first driving belt 27A.
  • second torque measuring unit 28B is provided for the second driving belt 27B between the second driving pulley 24B and the second driven pulley 26B in the second belt driving mechanism 22B.
  • Second pressing rollers 29Ba and 29Bb similar to 29Ab, second strain gauges 30Ba and 30Bb similar to first strain gauges 30Aa and 30Ab, and second tension measuring units 31Ba and 31Bb similar to first tension measuring units 31Aa and 31Ab include.
  • the driving wheel 103 further includes a control device 105 in addition to the configuration of the torque measuring section 28 described above.
  • the control device 105 controls the first driving section 23A based on the torque (voltage value) measured by the first torque measuring section 28A. Further, the control device 105 controls the second driving section 23B based on the torque (voltage value) measured by the second torque measuring section 28B.
  • the control device 105 inputs the torque (voltage value) measured by the torque measuring section 28 (28A, 28B) in step S1.
  • the torque of this torque measuring unit 28 is assumed to be an external force torque applied by an external force.
  • the control device 105 calculates the drive torque from the power consumption of each of the drive units 23A and 23B together with the input of the external force torque.
  • the control device 105 compares the external force torque and the drive torque.
  • step S4 when the external force torque is larger than the drive torque in the comparison of step S3 (step S3: Yes), the control device 105 determines an assist torque equal to or greater than the external force torque minus the drive torque.
  • step S5 the control device 105 controls the drive units 23A and 23B so as to achieve the determined assist torque.
  • step S4 when the external force torque is smaller than the drive torque in the comparison in step S3 (step S3: No), the control device 105 returns to step S1.
  • the control device 105 can determine the direction in which the operator intends to move the drive wheel 103 from the respective external force torques, Each drive unit 23A, 23B can be controlled with an assist torque corresponding to the direction.
  • first torque measuring unit 28A has first pressing rollers 29Aa and 29Ab and first strain gauges 30Aa and 30Ab arranged upstream and downstream of the first drive belt 27A.
  • the external force torque is measured both upstream and downstream of the first drive belt 27A.
  • second torque measuring unit 28B has second pressure rollers 29Ba and 29Bb and second strain gauges 30Ba and 30Bb arranged upstream and downstream of the second drive belt 27B, and from changes in tension of the second drive belt 27B, The external force torque is measured both upstream and downstream of the second drive belt 27B.
  • control device 105 can more accurately determine the direction in which the operator intends to move the drive wheels 103 based on the respective external force torques on both the upstream and downstream sides of the first drive belt 27A and the second drive belt 27B. Then, each drive unit 23A, 23B is controlled with an assist torque corresponding to the direction.
  • FIG. 12 is a perspective view showing a configuration example of the power conversion mechanism.
  • FIG. 13 is a perspective view showing a configuration example of a power conversion mechanism.
  • FIG. 14 is a perspective view showing a configuration example of a power conversion mechanism.
  • FIG. 15 is a front view showing a configuration example of a power conversion mechanism. 12 to 15, the driving wheels provided with the power conversion mechanisms 17, 18, 19, and 20 are the same as the driving wheel 103 described above, and the same parts are denoted by the same reference numerals. omitted.
  • the power conversion mechanism 17 shown in FIG. 12 is a helical gear mechanism that transmits the rotational force of the transmission mechanism 13 to the wheels 15.
  • the power conversion mechanism 17 has a first helical gear mechanism 17A as a first power conversion mechanism and a second helical gear mechanism 17B as a second power conversion mechanism.
  • the first helical gear mechanism 17A includes a first driving helical gear 51A fixed to the lower portion of the first output shaft 40A and one end of the axle 37 provided on the wheel 15 in the direction of the axis O2. and a first driven helical gear 52A meshing with the first driving helical gear 51A.
  • the second helical gear mechanism 17B includes a second driving helical gear 51B fixed to the lower portion of the second output shaft 40B, and a second driving helical gear 51B fixed to the other end of the axle 37 in the direction of the axis O2. and a second driven helical gear 52B that meshes with the helical gear 51B.
  • the rotational forces of the first input shaft 25A and the second input shaft 25B are transferred to the first output shaft 40A and the second output shaft 40A via the first driven spur gear 39A and the second driven spur gear 39B. It is transmitted to the second output shaft 40B, and transmitted from the first output shaft 40A and the second output shaft 40B to each end of the axle 37 via the first helical gear mechanism 17A and the second helical gear mechanism 17B. .
  • the drive wheels can switch between rotation and steering of the wheels 15.
  • the drive wheels are provided with helical gear mechanisms 17A and 17B at the respective ends of the axle 37, the transmission system of the rotational force to the wheels 15 is simplified, thereby simplifying the structure. This can contribute to lower floors.
  • the power conversion mechanism 18 shown in FIG. 13 is a worm gear mechanism that transmits the rotational force of the transmission mechanism 13 to the wheels 15.
  • the power conversion mechanism 18 has a first worm gear mechanism 18A as a first power conversion mechanism and a second worm gear mechanism 18B as a second power conversion mechanism.
  • the first worm gear mechanism 18A includes a first worm 53A fixed to the lower portion of the first output shaft 40A, and one end of an axle 37 provided on the wheel 15 in the axial center O2 direction. and a meshing first worm wheel 54A.
  • the second worm gear mechanism 18B includes a second worm 53B fixed to the lower portion of the second output shaft 40B, and a second worm wheel fixed to the other end of the axle 37 in the axial center O2 direction and meshing with the second worm 53B. 54B and.
  • the rotational forces of the first input shaft 25A and the second input shaft 25B are transferred to the first output shaft 40A and the second output shaft 40A through the first driven spur gear 39A and the second driven spur gear 39B. It is transmitted to the second output shaft 40B, and transmitted from the first output shaft 40A and the second output shaft 40B to each end of the axle 37 via the first worm gear mechanism 18A and the second worm gear mechanism 18B.
  • the drive wheels can switch between rotation and steering of the wheels 15.
  • the worm gear mechanisms 18A and 18B are arranged at the respective ends of the axle 37, the drive wheels simplify the transmission system of the rotational force to the wheels 15, thereby simplifying the structure. can contribute to lower floors.
  • the first worm gear mechanism 18A has a first worm wheel 54A fixed to the lower portion of the first output shaft 40A, and a first worm 53A fixed to one end of the axle 37 in the axial center O2 direction. good too.
  • the second worm gear mechanism 18B has a second worm wheel 54B fixed to the lower portion of the second output shaft 40B, and a second worm 53B fixed to the other end of the axle 37 in the axial center O2 direction.
  • the power conversion mechanism 19 shown in FIG. 14 is a crown gear mechanism that transmits the rotational force of the transmission mechanism 13 to the wheels 15.
  • the power conversion mechanism 19 has a first crown gear mechanism 19A as a first power conversion mechanism and a second crown gear mechanism 19B as a second power conversion mechanism.
  • the first crown gear mechanism 19A includes a first crown gear 55A fixed to the lower portion of the first output shaft 40A, and a first crown gear fixed to one end of an axle 37 provided on the wheel 15 in the direction of the axis O2. and a first spur gear 56A meshing with 55A.
  • the second crown gear mechanism 19B includes a second crown gear 55B fixed to the lower portion of the second output shaft 40B and a second crown gear 55B fixed to the other end of the axle 37 in the direction of the axis O2 and meshing with the second crown gear 55B. and a spur gear 56B.
  • the rotational forces of the first input shaft 25A and the second input shaft 25B are transferred to the first output shaft 40A and the second output shaft 40A via the first driven spur gear 39A and the second driven spur gear 39B. It is transmitted to the second output shaft 40B, and transmitted from the first output shaft 40A and the second output shaft 40B to each end of the axle 37 via the first crown gear mechanism 19A and the second crown gear mechanism 19B.
  • the drive wheels can switch between rotation and steering of the wheels 15.
  • the drive wheels have the crown gear mechanisms 19A and 19B at the respective ends of the axle 37, the transmission system of the rotational force to the wheels 15 is simplified, thereby simplifying the structure. can contribute to lower floors.
  • the first crown gear mechanism 19A has a first spur gear 56A fixed to the lower portion of the first output shaft 40A, and a first crown gear 55A fixed to one end of the axle 37 in the axial center O2 direction.
  • the second crown gear mechanism 19B has a second spur gear 56B fixed to the lower portion of the second output shaft 40B, and a second crown gear 55B fixed to the other end of the axle 37 in the axial center O2 direction.
  • the power conversion mechanism 20 shown in FIG. 15 is a universal joint mechanism, which transmits the rotational force of the transmission mechanism 13 to the wheels 15.
  • the power conversion mechanism 20 has a first universal joint mechanism 20A as a first power conversion mechanism and a second universal joint mechanism 20B as a second power conversion mechanism.
  • the first universal joint mechanism 20A includes a first drive joint 57A fixed to the lower end of the first output shaft 40A, and a first driven joint 58A fixed to one end of the axle 37 provided on the wheel 15 in the axial center O2 direction. and a first connecting portion 59A connecting the first drive joint 57A and the first driven joint 58A.
  • the second universal joint mechanism 20B includes a second drive joint 57B fixed to the lower end of the second output shaft 40B, a second driven joint 58B fixed to the other end of the axle 37 in the axial center O2 direction, and a second drive joint 58B. and a second connecting portion 59B that connects the joint 57B and the second driven joint 58B.
  • the first universal joint mechanism 20A has one end of the first connecting portion 59A fixed to the lower end of the first output shaft 40A and the other end of the first connecting portion 59A connected to the axis of the axle 37.
  • the second universal joint mechanism 20B has one end of the second connecting portion 59B fixed to the lower end of the second output shaft 40B and the other end of the second connecting portion 59B being fixed to the shaft of the axle 37. It may be fixed to the other end in the direction of the center O2, and a single or a plurality of joints corresponding to the second drive joint 57B and the second driven joint 58B may be provided in the intermediate portion.
  • the rotational forces of the first input shaft 25A and the second input shaft 25B are transferred to the first output shaft 40A and the second output shaft 40A via the first driven spur gear 39A and the second driven spur gear 39B. It is transmitted to the second output shaft 40B, and transmitted from the first output shaft 40A and the second output shaft 40B to each end of the axle 37 via the first universal joint mechanism 20A and the second universal joint mechanism 20B.
  • the drive wheels can switch between rotation and steering of the wheels 15.
  • the universal joint mechanisms 20A and 20B are arranged at the respective ends of the axle 37, the transmission system of the rotational force to the wheels 15 can be simplified, and the structure can be simplified. can contribute to
  • the driving wheels 103 are driven by a first power conversion mechanism (first bevel gear mechanism 14A, first helical gear mechanism 17A, first worm The gear mechanism 18A, the first crown gear mechanism 19A, and the first universal joint mechanism 20A) transmit the rotational force of the first output shaft 40A to one end of the axle 37 having a different axial direction with respect to the first output shaft 40A.
  • first power conversion mechanism first bevel gear mechanism 14A, first helical gear mechanism 17A, first worm The gear mechanism 18A, the first crown gear mechanism 19A, and the first universal joint mechanism 20A
  • the drive wheels 103 are driven by a second power conversion mechanism (a second bevel gear mechanism 14B, a second helical gear mechanism 17B, a second worm gear mechanism 14B, a second worm gear mechanism 17B, a second worm
  • the gear mechanism 18B, the second crown gear mechanism 19B, and the second universal joint mechanism 20B transmit the rotational force of the second output shaft 40B to one end of the axle 37 having a different axial direction with respect to the second output shaft 40B.
  • the power conversion mechanism is not limited to the configuration described above, and may be configured to transmit the rotational force of the output shafts 40A, 40B to the axle 37 having a different axial direction than the output shafts 40A, 40B.
  • FIG. 16 is a front view showing another configuration example of the drive wheels of the embodiment. 17 is a side view of the drive wheel shown in FIG. 16; FIG. Members having the same functions as those in the above-described embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • a drive wheel 103 ′ shown in FIGS. 16 and 17 is mainly different from the drive wheel 103 described above in that it has a power transmission mechanism 81 .
  • the first input shaft 25A, the second input shaft 25B, and the turning shaft 35 are coaxially rotatably arranged along the axis O1.
  • a first drive spur gear 38A is fixed to the lower end of the first input shaft 25A
  • a second drive spur gear 38B is fixed to the lower end of the second input shaft 25B.
  • the first drive spur gear 38A meshes with the first driven spur gear 39A
  • the second drive spur gear 38B meshes with the second driven spur gear 39B.
  • the second drive spur gear 38B and the first drive spur gear 38A are stacked vertically and rotate about the axis O1.
  • the first driven spur gear 39A is fixed to the upper portion of the first output shaft 40A, and the first output shaft 40A is rotatably supported by the turning shaft 35 about the axis O3.
  • the second driven spur gear 39B is fixed to the upper part of the second output shaft 40B, and the second output shaft 40B is rotatably supported by the turning shaft 35 about the axis O4.
  • a first drive bevel gear 41A is fixed to the lower portion of the first output shaft 40A, and a second drive bevel gear 41B is fixed to the lower portion of the second output shaft 40B.
  • a first driven bevel gear 42A that meshes with the first drive bevel gear 41A and a second driven bevel gear 42B that meshes with the second drive bevel gear 41B are fixed to the connecting shaft 91 .
  • the connecting shaft 91 has its axis O6 orthogonal to the axis O1 and parallel to the axis O2 of the axle 37 .
  • the power transmission mechanism 81 has a first power transmission mechanism 81A and a second power transmission mechanism 81B.
  • the first power transmission mechanism 81A is provided between the first bevel gear mechanism 14A of the power conversion mechanism 14 and one end of the axle 37 .
  • the second power transmission mechanism 81B is provided between the second bevel gear mechanism 14B of the power conversion mechanism 14 and the other end of the axle 37 .
  • Power conversion mechanism 14 can be replaced with power conversion mechanisms 17 , 18 , 19 , and 20 .
  • the first power transmission mechanism 81A has a first driving pulley 92A, a first driven pulley 93A, and a first driving belt 94A.
  • the first drive pulley 92A is fixed to one end of the connecting shaft 91 in the axial center O6 direction.
  • the first driven pulley 93A is fixed to one end of the axle 37 in the axial center O2 direction.
  • the first driving belt 94A is formed in an annular shape and is looped around the first driving pulley 92A and the first driven pulley 93A.
  • the second power transmission mechanism 81B has a second driving pulley 92B, a second driven pulley 93B, and a second driving belt 94B.
  • the second drive pulley 92B is fixed to the other end of the connecting shaft 91 in the axial center O6 direction.
  • the second driven pulley 93B is fixed to the other end of the axle 37 in the axial center O2 direction.
  • the second drive belt 94B is formed in an annular shape and is looped around the second drive pulley 92B and the second driven pulley 93B.
  • the driving wheel 103' rotates the first input shaft 25A
  • the first driving spur gear 38A rotates and the first driven spur gear 39A rotates.
  • the first driven spur gear 39A rotates
  • the first drive bevel gear 41A rotates together with the first output shaft 40A.
  • the first driven bevel gear 42A meshing with the first drive bevel gear 41A rotates, and the connecting shaft 91 rotates.
  • the rotational force of the connecting shaft 91 is transmitted to the axle 37 via the first drive pulley 92A, the first drive belt 94A, and the first driven pulley 93A, and the axle 37 rotates.
  • the first power transmission mechanism 81A is provided between the first bevel gear mechanism 14A and one end of the axle 37, and the second bevel gear mechanism 14B and the other end of the axle 37 are connected.
  • a second power transmission mechanism 81B is provided between. Therefore, the driving force of the bevel gear mechanisms 14A, 14B can be transmitted to the axle 37 by the power transmission mechanisms 81A, 81B.
  • the drive wheels 103, 103' of the above-described embodiment include a first input shaft 25A and a second input shaft 25B arranged coaxially, and a first output shaft 40A and a second output shaft 40B arranged on separate shafts. , a first spur gear mechanism 13A that transmits the rotational force of the first input shaft 25A to the first output shaft 40A, and a second spur gear mechanism 13B that transmits the rotational force of the second input shaft 25B to the second output shaft 40B.
  • the drive wheels 103, 103' have a differential omnidirectional movement mechanism. That is, the driving wheels 103 transmit the rotational force of the first input shaft 25A and the second input shaft 25B to the first output shaft 40A and the second output shaft 40B via the first spur gear mechanism 13A and the second spur gear mechanism 13B. , and is transmitted from the first output shaft 40A and the second output shaft 40B to the respective ends of the axle 37 via the first bevel gear mechanism 14A and the second bevel gear mechanism 14B.
  • the drive wheels 103 can switch between rotation and steering of the wheels 15 by adjusting the rotational speeds of the first input shaft 25A and the second input shaft 25B. Therefore, since the drive wheels 103 have the bevel gear mechanisms 14A and 14B arranged at the respective ends of the axle 37, the transmission system of the rotational force to the wheels 15 is simplified, thereby simplifying the structure. It is possible to achieve a low floor.
  • the drive wheels 103, 103' of the embodiment are a first belt drive mechanism including a first drive portion 23A and a first drive belt 27A that transmits the drive force of the first drive portion 23A to the first input shaft 25A.
  • a second belt driving mechanism 22B including a second driving portion 23B and a second driving belt 27B that transmits the driving force of the second driving portion 23B to the second input shaft 25B, and the tension of the first driving belt 27A.
  • a first torque measurement unit 28A that measures the external force torque from changes
  • a second torque measurement unit 28B that measures the external force torque from changes in the tension of the second drive belt 27B, and the external force torque measured by the first torque measurement unit 28A.
  • a control device 105 that controls the first drive section 23A based on the external force torque measured by the second torque measurement section 28B and controls the second drive section 23B based on the external force torque measured by the second torque measurement section 28B.
  • the drive wheels 103, 103' can provide an assist function in the differential omnidirectional movement mechanism.
  • the driving wheels 103 and 103' are controlled by the first torque measuring unit 28A, the second torque measuring unit 28B, and the control device 105 without providing an input device at the operator's hand (for example, the handle 102 of the truck 100).
  • An assist function can be imparted to the dynamic omnidirectional movement mechanism.
  • the first belt drive mechanism 22A includes a first driven pulley 26A provided on the first input shaft 25A and a first drive pulley provided on the first drive portion 23A.
  • the second belt drive mechanism 22B includes a second driven pulley 26B provided on the second input shaft 25B and a second driven pulley 26B provided on the second drive section 23B.
  • the second drive belt 27B is wound around the drive pulley 24B, and the first torque measurement unit 28A measures both the upstream side and the downstream side of the first drive belt 27A from changes in the tension of the first drive belt 27A.
  • the external force torque is measured, and the second torque measurement unit 28B measures the external force torque both upstream and downstream of the second drive belt 27B from changes in the tension of the second drive belt 27B. Therefore, the drive wheels 103, 103' can more accurately determine the direction in which the operator intends to move the drive wheels 103 based on the respective external torques on both the upstream and downstream sides of the first drive belt 27A and the second drive belt 27B. can be determined, and each drive unit 23A, 23B can be controlled with an assist torque corresponding to the direction.
  • the rotation axis O5 of the wheel 15 along the vertical direction intersecting the axis O2 of the axle 37 is positioned so that the axis O1 of the turning shaft 35 is offset from the axis O1 of the axle 37. They are staggered in the horizontal direction perpendicular to O2. Therefore, when the drive wheels 103 and 103' do not drive the wheels 15, the wheels 15 can passively turn by an external force acting from the horizontal direction. That is, the cart 100 can be automatically traveled and steered, and can be manually traveled and steered by the operator.
  • the first output shaft 40A and the second output shaft 40B are arranged on both sides of the axle 37 with respect to the wheel 15 in the axial center O2 direction. Therefore, the drive wheels 103 and 103' receive rotational force from both sides of the axle 37 in the direction of the axis O2, and the differential mechanism for steering the wheels 15 can be simplified.
  • the first power conversion mechanism (first bevel gear mechanism 14A) and the second power conversion mechanism (second bevel gear mechanism 14B) are connected to the axles 37 of the wheels 15. They are arranged on both sides in the direction of the heart O2. Therefore, the drive wheels 103 and 103' receive rotational force from both sides of the axle 37 in the direction of the axis O2, and the differential mechanism for steering the wheels 15 can be simplified.
  • the first power conversion mechanism (first bevel gear mechanism 14A) and the second power conversion mechanism (second bevel gear mechanism 14B) intersect in the axial center O2 direction of the axle 37. placed vertically above the Therefore, the driving wheels 103, 103' do not need to arrange the bevel gear mechanisms 14A, 14B on both sides of the axle 37 in the direction of the axis O2, so that the size of the differential mechanism can be reduced.
  • the turning shaft 35 is arranged coaxially with the first input shaft 25A and the second input shaft 25B. Therefore, the drive wheels 103, 103' can be made compact and structurally simplified.
  • the first power conversion mechanism transmits the rotational force of the first output shaft 40A to one end of the axle 37 having a different axial direction with respect to the first output shaft 40A.
  • Any one of the first bevel gear mechanism 14A, the first helical gear mechanism 17A, the first worm gear mechanism 18A, the first crown gear mechanism 19A, or the first universal joint mechanism 20A is applied, and the second The power conversion mechanism transmits the rotational force of the second output shaft 40B to the other end of the axle 37 having a different axial direction with respect to the second output shaft 40B.
  • Either one of the spring gear mechanism 17B, the second worm gear mechanism 18B, the second crown gear mechanism 19B, or the second universal joint mechanism 20B is applied. Therefore, the driving wheels 103 and 103' can be applied with various types of power conversion mechanisms, which simplifies the transmission system of the rotational force to the wheels 15, simplifies the structure, and lowers the floor. can contribute to
  • the truck 100 of the embodiment includes driving wheels 103, 103' and a truck body 101 to which the driving wheels 103, 103' are attached. Therefore, the trolley 100 can be simplified in structure, and a sufficient minimum ground clearance can be ensured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

The present invention brings assist function to a differential-type omni-directional movement mechanism. The present invention comprises: a first belt drive mechanism 22A which includes a first drive unit 23A and a first drive belt 27A for transmitting a drive force of the first drive unit 23A to a first input shaft 25A; a second drive mechanism 22B which includes a second drive unit 23B and a second drive belt 27B for transmitting a drive force of the second drive unit 23B to a second input shaft 25B; a first torque measurement unit 28A which measures an external torque from a change in tension in the first drive belt 27A; a second torque measurement unit 28B which measures an external torque from a change in tension in the second drive belt 27B; and a control device which controls the first drive unit on the basis of the external torque measured by the first torque measurement unit 28A, and controls the second drive unit on the basis of the external torque measured by the second torque measurement unit 28B.

Description

駆動輪及び台車Drive wheel and trolley
 本発明は、駆動輪及び台車に関するものである。 The present invention relates to drive wheels and trucks.
 特許文献1に駆動輪及び駆動輪を用いた台車について開示されている。この駆動輪は、同軸上に配置される第一入力軸及び第二入力軸と、別軸上に配置される第一出力軸及び第二出力軸と、第一入力軸の回転力を第一出力軸に伝達する第一平歯車機構と、第二入力軸の回転力を第二出力軸に伝達する第二平歯車機構と、車軸に連結される車輪と、車軸を介して車輪を旋回可能に支持する旋回軸と、第一出力軸の回転力を車軸の一端部に伝達する第一動力変換機構と、第二出力軸の回転力を車軸の他端部に伝達する第二動力変換機構と、を備えるものである。また、駆動輪は、望ましい態様として、車軸の軸心方向に交差する鉛直方向に沿う車輪の回転軸心が、旋回軸の軸心に対して車軸の軸心方向に直交する水平方向にオフセットして配置される。 Patent Document 1 discloses driving wheels and trucks using driving wheels. This drive wheel has a first input shaft and a second input shaft arranged coaxially, a first output shaft and a second output shaft arranged on separate shafts, and a rotational force of the first input shaft. A first spur gear mechanism that transmits to the output shaft, a second spur gear mechanism that transmits the rotational force of the second input shaft to the second output shaft, a wheel connected to the axle, and the wheel can be turned via the axle a first power conversion mechanism that transmits the rotational force of the first output shaft to one end of the axle, and a second power conversion mechanism that transmits the rotational force of the second output shaft to the other end of the axle and In addition, as a desirable aspect, the driving wheels are such that the rotation axis of the wheel along the vertical direction intersecting the axial direction of the axle is offset from the axis of the turning shaft in the horizontal direction orthogonal to the axial direction of the axle. are placed.
特開2020-024033号公報JP 2020-024033 A 特開2014-046890号公報JP 2014-046890 A 特開2019-151247号公報JP 2019-151247 A
 特許文献1に記載の駆動輪は、車輪の向きの変更と車輪の回転のいずれの動作であっても、搭載する2つの駆動装置が同時に動作することを可能とした差動式の全方向移動機構を備えている。 The drive wheel described in Patent Document 1 is a differential omnidirectional movement that enables two mounted drive devices to operate simultaneously regardless of whether the operation is a change in the direction of the wheel or a rotation of the wheel. It has mechanism.
 ここで、特許文献2に記載の全方向移動台車では、オムニホイールの駆動部の回転方向及び回転速度がハンドルに連結するロードセルに入力されたデータに基づいて制御する。また、特許文献3に記載の電動アシスト機能付き台車では、駆動車輪の回転軸上に設けられたトルク検出機構によって検出された回転トルクに基づいて制御部でモータの駆動力及び減速機を制御する。 Here, in the omnidirectional mobile trolley described in Patent Document 2, the rotation direction and rotation speed of the driving portion of the omniwheel are controlled based on data input to the load cell connected to the handle. In addition, in the trolley with an electric assist function described in Patent Document 3, the controller controls the driving force of the motor and the speed reducer based on the rotational torque detected by the torque detection mechanism provided on the rotating shaft of the drive wheel. .
 従って、特許文献1に記載の差動式の全方向移動機構においてもアシスト機能が望まれる。 Therefore, an assist function is desired in the differential omnidirectional movement mechanism described in Patent Document 1 as well.
 本開示は、上記の課題に鑑みてなされたものであって、差動式の全方向移動機構にアシスト機能を付与することのできる駆動輪及び台車を提供することを目的とする。 The present disclosure has been made in view of the above problems, and aims to provide a drive wheel and a carriage capable of imparting an assist function to a differential omnidirectional movement mechanism.
 上記の目的を達成するための本開示の一態様の駆動輪は、同軸上に配置される第一入力軸及び第二入力軸と、別軸上に配置される第一出力軸及び第二出力軸と、前記第一入力軸の回転力を前記第一出力軸に伝達する第一平歯車機構と、前記第二入力軸の回転力を前記第二出力軸に伝達する第二平歯車機構と、車軸に連結される車輪と、前記第一出力軸の回転力を前記車軸の一端部に伝達する第一動力変換機構と、前記第二出力軸の回転力を前記車軸の他端部に伝達する第二動力変換機構と、前記車軸を介して前記車輪を旋回可能に支持する旋回軸と、第一駆動部、及び当該第一駆動部の駆動力を前記第一入力軸に伝達する第一駆動ベルトを含む第一ベルト駆動機構と、第二駆動部、及び当該第二駆動部の駆動力を前記第二入力軸に伝達する第二駆動ベルトを含む第二ベルト駆動機構と、前記第一駆動ベルトの張力変化から外力トルクを測定する第一トルク測定部と、前記第二駆動ベルトの張力変化から外力トルクを測定する第二トルク測定部と、前記第一トルク測定部によって測定される外力トルクに基づいて前記第一駆動部を制御し、前記第二トルク測定部によって測定される外力トルクに基づいて前記第二駆動部を制御する制御装置と、を備える。 A drive wheel according to one aspect of the present disclosure for achieving the above object includes a first input shaft and a second input shaft that are coaxially arranged, and a first output shaft and a second output shaft that are arranged on separate shafts. a shaft, a first spur gear mechanism that transmits the rotational force of the first input shaft to the first output shaft, and a second spur gear mechanism that transmits the rotational force of the second input shaft to the second output shaft; a wheel connected to an axle; a first power conversion mechanism for transmitting the rotational force of the first output shaft to one end of the axle; and transmitting the rotational force of the second output shaft to the other end of the axle. a second power conversion mechanism, a turning shaft that rotatably supports the wheel via the axle, a first drive unit, and a first drive unit that transmits the driving force of the first drive unit to the first input shaft a first belt drive mechanism including a drive belt; a second drive unit; and a second belt drive mechanism including a second drive belt that transmits the driving force of the second drive unit to the second input shaft; A first torque measurement unit for measuring external force torque from changes in tension of the drive belt, a second torque measurement unit for measuring external force torque from changes in tension of the second drive belt, and the external force measured by the first torque measurement unit. a control device that controls the first driving section based on the torque and controls the second driving section based on the external force torque measured by the second torque measuring section.
 上記駆動輪の望ましい態様として、前記第一ベルト駆動機構は、前記第一入力軸に設けられた第一従動プーリと、前記第一駆動部に設けられた第一駆動プーリとに前記第一駆動ベルトを掛け回して構成され、前記第二ベルト駆動機構は、前記第二入力軸に設けられた第二従動プーリと、前記第二駆動部に設けられた第二駆動プーリとに前記第二駆動ベルトを掛け回して構成されており、前記第一トルク測定部は、前記第一駆動ベルトの張力変化から前記第一駆動ベルトの上流側及び下流側の双方で外力トルクを測定し、前記第二トルク測定部は、前記第二駆動ベルトの張力変化から前記第二駆動ベルトの上流側及び下流側の双方で外力トルクを測定する。 As a desirable aspect of the drive wheel, the first belt drive mechanism includes a first drive pulley provided on the first input shaft and a first drive pulley provided on the first drive section. The second belt drive mechanism includes a second drive pulley provided on the second input shaft and a second drive pulley provided on the second drive unit, and the second drive mechanism is configured by winding a belt. The first torque measurement unit measures external force torque on both the upstream side and the downstream side of the first drive belt from the change in tension of the first drive belt, and the second The torque measurement unit measures external torque on both the upstream side and the downstream side of the second drive belt from changes in tension of the second drive belt.
 上記駆動輪の望ましい態様として、前記車軸の軸心に交差して鉛直方向に沿う前記車輪の回転軸心が、前記旋回軸の軸心に対して前記車軸の軸心に直交する水平方向にずれて配置される。 As a desirable aspect of the driving wheel, the rotation axis of the wheel that intersects the axis of the axle and extends in the vertical direction is displaced from the axis of the turning shaft in the horizontal direction that is perpendicular to the axis of the axle. are placed.
 上記駆動輪の望ましい態様として、前記第一出力軸と前記第二出力軸は、前記車軸の軸心方向における両側に配置される。 As a desirable aspect of the drive wheel, the first output shaft and the second output shaft are arranged on both sides of the axle in the axial direction.
 上記駆動輪の望ましい態様として、前記第一動力変換機構と前記第二動力変換機構は、前記車軸の軸心方向における両側に配置される。 As a desirable aspect of the drive wheel, the first power conversion mechanism and the second power conversion mechanism are arranged on both sides of the axle in the axial direction.
 上記駆動輪の望ましい態様として、前記第一動力変換機構と前記第二動力変換機構は、前記車軸の軸心方向に交差する鉛直方向における上方に配置される。 As a desirable aspect of the drive wheels, the first power conversion mechanism and the second power conversion mechanism are arranged above in a vertical direction crossing the axial direction of the axle.
 上記駆動輪の望ましい態様として、前記旋回軸は、前記第一入力軸及び前記第二入力軸と同軸上に配置される。 As a desirable aspect of the drive wheel, the pivot shaft is arranged coaxially with the first input shaft and the second input shaft.
 上記駆動輪の望ましい態様として、前記第一動力変換機構は、前記第一出力軸の回転力を前記第一出力軸に対して軸心方向の異なる前記車軸の一端部に伝達するもので、傘歯車機構、はすば歯車機構、ウォーム歯車機構、冠歯車機構、または自在継手機構のいずれか1つが適用され、前記第二動力変換機構は、前記第二出力軸の回転力を前記第二出力軸に対して軸心方向の異なる前記車軸の他端部に伝達するもので、傘歯車機構、はすば歯車機構、ウォーム歯車機構、冠歯車機構、または自在継手機構のいずれか1つが適用される。 As a desirable aspect of the drive wheel, the first power conversion mechanism transmits the rotational force of the first output shaft to one end of the axle having a different axial direction with respect to the first output shaft. Any one of a gear mechanism, a helical gear mechanism, a worm gear mechanism, a crown gear mechanism, or a universal joint mechanism is applied, and the second power conversion mechanism converts the rotational force of the second output shaft to the second output It transmits power to the other end of the axle, which is different in the axial direction from the shaft, and any one of a bevel gear mechanism, a helical gear mechanism, a worm gear mechanism, a crown gear mechanism, or a universal joint mechanism is applied. be.
 上記の目的を達成するための本開示の一態様の台車は、上述した駆動輪と、前記駆動輪が取付けられる本体と、を備える。 A truck according to one aspect of the present disclosure for achieving the above object includes the driving wheels described above and a main body to which the driving wheels are attached.
 本開示によれば、走行性能を向上できる。 According to the present disclosure, driving performance can be improved.
図1は、実施形態の駆動輪の基本構成例を表す斜視図である。FIG. 1 is a perspective view showing a basic configuration example of a driving wheel of the embodiment. 図2は、実施形態の駆動輪を表す正面図である。FIG. 2 is a front view showing drive wheels of the embodiment. 図3は、実施形態の駆動輪を表す側面図である。FIG. 3 is a side view showing drive wheels of the embodiment. 図4は、実施形態の駆動輪を表す平面図である。FIG. 4 is a plan view showing drive wheels of the embodiment. 図5は、図2のA-A断面図である。FIG. 5 is a cross-sectional view taken along line AA of FIG. 図6は、図3のB-B断面図である。6 is a cross-sectional view taken along the line BB in FIG. 3. FIG. 図7は、図4のC-C断面図である。7 is a cross-sectional view taken along line CC of FIG. 4. FIG. 図8は、図3のD-D断面図である。FIG. 8 is a cross-sectional view taken along line DD of FIG. 図9は、実施形態の駆動輪の駆動力伝達経路を表す模式図である。FIG. 9 is a schematic diagram showing the driving force transmission path of the drive wheels of the embodiment. 図10は、実施形態の駆動輪の構成例を表すブロック図である。FIG. 10 is a block diagram showing a configuration example of drive wheels of the embodiment. 図11は、実施形態の駆動輪の動作例を表すフローチャートである。FIG. 11 is a flowchart showing an operation example of the driving wheels of the embodiment. 図12は、動力変換機構の構成例を表す斜視図である。FIG. 12 is a perspective view showing a configuration example of a power conversion mechanism. 図13は、動力変換機構の構成例を表す斜視図である。FIG. 13 is a perspective view showing a configuration example of a power conversion mechanism. 図14は、動力変換機構の構成例を表す斜視図である。FIG. 14 is a perspective view showing a configuration example of a power conversion mechanism. 図15は、動力変換機構の構成例を表す正面図である。FIG. 15 is a front view showing a configuration example of a power conversion mechanism. 図16は、実施形態の駆動輪の他の構成例を表す正面図である。FIG. 16 is a front view showing another configuration example of the driving wheels of the embodiment. 図17は、図16に示す駆動輪の側面図である。17 is a side view of the drive wheel shown in FIG. 16; FIG. 図18は、実施形態の台車の構成例を表す概略図である。FIG. 18 is a schematic diagram showing a configuration example of the truck of the embodiment.
 以下に図面を参照して、本開示に係る駆動輪及び台車の好適な実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含むものである。また、実施形態における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。 A preferred embodiment of the drive wheel and truck according to the present disclosure will be described in detail below with reference to the drawings. It should be noted that the present invention is not limited by this embodiment, and when there are a plurality of embodiments, the present invention includes a combination of each embodiment. In addition, components in the embodiments include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those that are within the so-called equivalent range.
 図18は、実施形態の台車の基本構成例を表す概略図である。 FIG. 18 is a schematic diagram showing a basic configuration example of the truck of the embodiment.
 台車100は、台車本体101と、取手部102と、4個の駆動輪103と、電源部104と、制御装置105と、を含む。 The truck 100 includes a truck main body 101, a handle portion 102, four driving wheels 103, a power supply portion 104, and a control device 105.
 台車本体101は、例えば、平板材であり、平面視が矩形形状をなしている。台車本体101は、長手方向の一方側に取手部102が固定されている。台車本体101は、裏面側に4個の駆動輪103が四隅に装着される。4個の駆動輪103は、回転可能であると共に操舵可能となっている。また、台車本体101は、前後の駆動輪103の間の裏面に電源部104と制御装置105が装着されている。制御装置105は、コンピュータシステムを含む。コンピュータシステムは、CPUのようなプロセッサ、及びROMまたはRAMのようなメモリを含む。従って、台車100は、制御装置105が駆動輪103を制御する。 The carriage body 101 is, for example, a flat plate material and has a rectangular shape when viewed from above. A handle portion 102 is fixed to one side in the longitudinal direction of the carriage body 101 . Four drive wheels 103 are attached to the four corners of the back side of the carriage body 101 . The four drive wheels 103 are rotatable and steerable. A power supply unit 104 and a control device 105 are mounted on the rear surface of the carriage body 101 between the front and rear driving wheels 103 . Controller 105 includes a computer system. A computer system includes a processor such as a CPU and memory such as ROM or RAM. Therefore, the control device 105 controls the driving wheels 103 of the truck 100 .
 台車本体101は、平坦な面を構成することで、当該平坦な面に被運搬物を載せることができる。即ち、台車100は、無人搬送車(AGV:Automatic Guided Vehicle)として構成することができる。また、台車100は、台車本体101の平坦な面に沿って機材を配置することで走行する機器として構成することができる。機器としては、例えば、ハンドリフタや、フォークリフトや、ピッキングロボットや、医療機材など様々なものがある。 By forming a flat surface on the carriage body 101, an object to be transported can be placed on the flat surface. That is, the carriage 100 can be configured as an automatic guided vehicle (AGV). Further, the trolley 100 can be configured as a device that travels by arranging equipment along the flat surface of the trolley body 101 . Examples of equipment include hand lifters, forklifts, picking robots, and medical equipment.
 なお、台車100及び機器は、駆動輪103の数や配置について上述した構成に限定されるものではない。例えば、台車100及び機器は、上述した4輪の形態において、台車100の後方側に1対の駆動輪103を取り付け、台車100の前方側に1対の従動輪を取り付けてもよい。また、図には明示しないが、台車100及び機器は、3輪以上の形態において、駆動輪103が1つであって他の車輪が全て従動輪であってもよい。また、図には明示しないが、台車100及び機器は、3輪以上の形態において、従動輪を有さず全ての車輪が駆動輪103であってよい。即ち、台車100及び機器は、3輪以上の形態において、駆動輪103が少なくとも1つあればよい。 It should be noted that the trolley 100 and the equipment are not limited to the configuration described above regarding the number and arrangement of the drive wheels 103 . For example, the truck 100 and equipment may have a pair of drive wheels 103 attached to the rear side of the truck 100 and a pair of driven wheels attached to the front side of the truck 100 in the four-wheel configuration described above. Although not shown in the drawings, the trolley 100 and the equipment may have one driving wheel 103 and all the other wheels may be driven wheels in a form having three or more wheels. Also, although not shown in the drawings, the trolley 100 and the equipment may have no driven wheels and all of the wheels may be drive wheels 103 in the form of three or more wheels. That is, the trolley 100 and the equipment need only have at least one drive wheel 103 in the form of three or more wheels.
 以下、駆動輪103について詳細に説明する。図1は、実施形態の駆動輪の基本構成例を表す斜視図である。図2は、実施形態の駆動輪を表す正面図である。図3は、実施形態の駆動輪を表す側面図である。図4は、実施形態の駆動輪を表す平面図である。図5は、図2のA-A断面図である。図6は、図3のB-B断面図である。図7は、図4のC-C断面図である。図8は、図3のD-D断面図である。 The drive wheels 103 will be described in detail below. FIG. 1 is a perspective view showing a basic configuration example of a driving wheel of the embodiment. FIG. 2 is a front view showing drive wheels of the embodiment. FIG. 3 is a side view showing drive wheels of the embodiment. FIG. 4 is a plan view showing drive wheels of the embodiment. FIG. 5 is a cross-sectional view taken along line AA of FIG. 6 is a cross-sectional view taken along the line BB in FIG. 3. FIG. 7 is a cross-sectional view taken along line CC of FIG. 4. FIG. FIG. 8 is a cross-sectional view taken along line DD of FIG.
 駆動輪103は、上述したような台車100の台車本体101に固定される本体10を有し、この本体10を基に、駆動機構11と、旋回部12と、伝達機構13と、動力変換機構14と、車輪15と、が設けられる。 The driving wheel 103 has a main body 10 fixed to the bogie main body 101 of the bogie 100 as described above. 14 and wheels 15 are provided.
 本体10は、上下に板面を向けた板状に形成される。駆動機構11は、回転力を入力するもので主に本体10の上方に設けられる。旋回部12は、本体10の下方に配置される。伝達機構13は、駆動機構11によって入力された回転力を伝達する。動力変換機構14は、伝達機構13の回転力を車輪15に伝達する。車輪15は、駆動機構11、伝達機構13、及び動力変換機構14を介して入力された回転力によって回転自在であると共に、旋回部12によって操舵可能となっている。 The main body 10 is formed in a plate shape with the plate surface facing up and down. The drive mechanism 11 is provided mainly above the main body 10 for inputting rotational force. The swivel part 12 is arranged below the main body 10 . The transmission mechanism 13 transmits the rotational force input by the drive mechanism 11 . The power conversion mechanism 14 transmits the rotational force of the transmission mechanism 13 to the wheels 15 . The wheels 15 are rotatable by rotational force input via the drive mechanism 11 , the transmission mechanism 13 , and the power conversion mechanism 14 and can be steered by the turning section 12 .
 駆動機構11は、第一ベルト駆動機構22Aと第二ベルト駆動機構22Bとを有する。第一ベルト駆動機構22Aは、第一駆動部23A、第一駆動プーリ24A、第一入力軸25A、第一従動プーリ26A、及び第一駆動ベルト27Aを含む。第一駆動部23Aは、モータで構成される。第一駆動部23Aは、本体10に固定される。第一駆動部23Aは、本体10の上方に突出して上下方向に延びる駆動軸23Aaを有する。第一駆動プーリ24Aは、駆動軸23Aaに固定される。第一入力軸25Aは、駆動軸23Aaと平行となるように上下方向に延びて設けられ、本体10に対して軸心O1を中心として回転可能に支持される。第一従動プーリ26Aは、第一入力軸25Aの本体10の上方に突出した部分に固定される。第一従動プーリ26A及び第一駆動プーリ24Aは、第一入力軸25A及び駆動軸23Aaに直交する方向で並んで設けられる。第一駆動ベルト27Aは、環状に形成され、第一従動プーリ26A及び第一駆動プーリ24Aに掛け回される。従って、第一ベルト駆動機構22Aは、第一駆動部23Aの駆動により、第一駆動プーリ24Aが回転し、この回転が第一駆動プーリ24Aから第一駆動ベルト27Aを介して第一従動プーリ26Aに伝達されて第一入力軸25Aが回転する。 The drive mechanism 11 has a first belt drive mechanism 22A and a second belt drive mechanism 22B. The first belt drive mechanism 22A includes a first drive section 23A, a first drive pulley 24A, a first input shaft 25A, a first driven pulley 26A, and a first drive belt 27A. 23 A of 1st drive parts are comprised by a motor. The first drive portion 23A is fixed to the main body 10 . The first drive portion 23A has a drive shaft 23Aa that protrudes upward from the main body 10 and extends in the vertical direction. The first drive pulley 24A is fixed to the drive shaft 23Aa. The first input shaft 25A is provided so as to extend in the vertical direction so as to be parallel to the drive shaft 23Aa, and is rotatably supported with respect to the main body 10 about the axis O1. The first driven pulley 26A is fixed to the portion of the first input shaft 25A that protrudes upward from the main body 10 . The first driven pulley 26A and the first drive pulley 24A are arranged side by side in a direction orthogonal to the first input shaft 25A and the drive shaft 23Aa. The first drive belt 27A is formed in an annular shape and is looped around the first driven pulley 26A and the first drive pulley 24A. Therefore, in the first belt drive mechanism 22A, the first drive pulley 24A is rotated by the drive of the first drive section 23A, and this rotation is transmitted from the first drive pulley 24A through the first drive belt 27A to the first driven pulley 26A. , and the first input shaft 25A rotates.
 第二ベルト駆動機構22Bは、第二駆動部23B、第二駆動プーリ24B、第二入力軸25B、第二従動プーリ26B、及び第二駆動ベルト27Bを含む。第二駆動部23Bは、モータで構成される。第二駆動部23Bは、本体10に固定される。第二駆動部23Bは、本体10の上方に突出して上下方向に延びる駆動軸23Baを有する。第二駆動プーリ24Bは、駆動軸23Baに固定される。第二駆動プーリ24Bは、第一駆動プーリ24Aと同径に形成される。第二入力軸25Bは、駆動軸23Baと平行となるように上下方向に延びて設けられ、本体10に対して軸心O1を中心として回転可能に支持される。第二入力軸25Bは、円筒形状をなし、第一入力軸25Aとは独立して回転するように第一入力軸25Aの外側に配置される。第一入力軸25A及び第二入力軸25Bは、本体10を貫通して下方まで延出される。第二従動プーリ26Bは、第二入力軸25Bの本体10の上方に突出した部分に固定される。第二従動プーリ26Bは、第一従動プーリ26Aと同径に形成され、第一従動プーリ26Aの下方に位置する。第二従動プーリ26B及び第二駆動プーリ24Bは、第二入力軸25B及び駆動軸23Baに直交する方向で並んで設けられる。第二駆動ベルト27Bは、環状に形成され、第二従動プーリ26B及び第二駆動プーリ24Bに掛け回される。従って、第二ベルト駆動機構22Bは、第二駆動部23Bを駆動することで、第二駆動プーリ24Bが回転し、この回転が第二駆動プーリ24Bから第二駆動ベルト27Bを介して第二従動プーリ26Bに伝達されて第二入力軸25Bが回転する。第二入力軸25Bの外側には、旋回軸35が配置される。 The second belt drive mechanism 22B includes a second drive section 23B, a second drive pulley 24B, a second input shaft 25B, a second driven pulley 26B, and a second drive belt 27B. The second driving section 23B is composed of a motor. The second driving portion 23B is fixed to the main body 10. As shown in FIG. The second drive portion 23B has a drive shaft 23Ba that protrudes upward from the main body 10 and extends in the vertical direction. The second drive pulley 24B is fixed to the drive shaft 23Ba. The second drive pulley 24B is formed to have the same diameter as the first drive pulley 24A. The second input shaft 25B is provided so as to extend in the vertical direction so as to be parallel to the drive shaft 23Ba, and is rotatably supported with respect to the main body 10 about the axis O1. The second input shaft 25B has a cylindrical shape and is arranged outside the first input shaft 25A so as to rotate independently of the first input shaft 25A. The first input shaft 25A and the second input shaft 25B penetrate the main body 10 and extend downward. The second driven pulley 26B is fixed to the portion of the second input shaft 25B that protrudes upward from the main body 10 . The second driven pulley 26B has the same diameter as the first driven pulley 26A and is positioned below the first driven pulley 26A. The second driven pulley 26B and the second drive pulley 24B are arranged side by side in a direction orthogonal to the second input shaft 25B and the drive shaft 23Ba. The second drive belt 27B is formed in an annular shape and is looped around the second driven pulley 26B and the second drive pulley 24B. Therefore, the second belt driving mechanism 22B drives the second driving section 23B to rotate the second driving pulley 24B, and this rotation is transmitted from the second driving pulley 24B to the second driven belt 27B via the second driving belt 27B. The rotation of the second input shaft 25B is transmitted to the pulley 26B. A turning shaft 35 is arranged outside the second input shaft 25B.
 旋回軸35は、円筒形状をなし、第二入力軸25Bの外側に配置され、上下方向に延びて設けられ、軸心O1を中心として回転自在に支持される。即ち、第一入力軸25Aと第二入力軸25Bと旋回軸35は、軸心O1に沿う同軸上に回転自在に配置される。第一入力軸25Aと第二入力軸25Bとの間に軸受43が設けられ、第二入力軸25Bと旋回軸35との間に軸受44が設けられ、旋回軸35と本体10の間に軸受45が設けられる。旋回軸35は、円筒形状をなす本体35aと、本体35aの下部に一体に設けられるフランジ部35bとを有し、フランジ部35bの下部にカバー部材35cが設けられる。旋回軸35は、カバー部材35cの下部で車輪15の水平方向の両側に第一支持部材36Aと第二支持部材36Bが下方に延出するように設けられる。車輪15は、軸心O1方向に直交する軸心O2に沿って延びる車軸37が一体に設けられる。車軸37は、軸心O2に沿う一端部が第一支持部材36Aの下部に回転自在に支持されると共に、軸心O2に沿う他端部が第二支持部材36Bの下部に回転自在に支持される。上記旋回部12は、旋回軸35、第一支持部材36A、第二支持部材36Bにより構成される。また、車軸37の軸心O2に交差する鉛直方向に沿う車輪15の回転軸心O5は、旋回軸35の軸心O1に対して車軸37の軸心O2に直交する水平方向にずれて配置される。従って、実施形態の駆動輪103は、車輪15の旋回軸心である軸心O1上の第一入力軸25Aと第二入力軸25Bにそれぞれ回転力を入力することができる。 The swivel shaft 35 has a cylindrical shape, is arranged outside the second input shaft 25B, extends vertically, and is rotatably supported about the axis O1. That is, the first input shaft 25A, the second input shaft 25B, and the turning shaft 35 are rotatably arranged coaxially along the axis O1. A bearing 43 is provided between the first input shaft 25A and the second input shaft 25B, a bearing 44 is provided between the second input shaft 25B and the turning shaft 35, and a bearing is provided between the turning shaft 35 and the main body 10. 45 are provided. The swivel shaft 35 has a cylindrical main body 35a and a flange portion 35b integrally provided at the lower portion of the main body 35a, and a cover member 35c is provided at the lower portion of the flange portion 35b. The pivot shaft 35 is provided on both horizontal sides of the wheel 15 under the cover member 35c such that the first support member 36A and the second support member 36B extend downward. The wheel 15 is integrally provided with an axle 37 extending along an axis O2 perpendicular to the direction of the axis O1. One end of the axle 37 along the axis O2 is rotatably supported under the first support member 36A, and the other end along the axis O2 is rotatably supported under the second support member 36B. be. The turning section 12 is composed of a turning shaft 35, a first supporting member 36A, and a second supporting member 36B. Further, the rotation axis O5 of the wheel 15 along the vertical direction intersecting the axis O2 of the axle 37 is displaced from the axis O1 of the turning shaft 35 in the horizontal direction orthogonal to the axis O2 of the axle 37. be. Therefore, the driving wheel 103 of the embodiment can input rotational force to the first input shaft 25A and the second input shaft 25B on the axis O1 that is the turning axis of the wheel 15, respectively.
 第一入力軸25Aは、下端部に第一駆動平歯車38Aが固定され、第二入力軸25Bは、下端部に第二駆動平歯車38Bが固定される。第一駆動平歯車38Aは、第一従動平歯車39Aに噛み合い、第二駆動平歯車38Bは、第二従動平歯車39Bに噛み合う。第二駆動平歯車38Bと第一駆動平歯車38Aは、上下に積層されて軸心O1を中心として回転する。第一従動平歯車39Aは、第一出力軸40Aの上部に固定される。第一出力軸40Aは、上部が旋回軸35のフランジ部35b及びカバー部材35cを貫通して支持され、下部が第一支持部材36Aに支持されて、軸心O3を中心として回転自在に支持される。第二従動平歯車39Bは、第二出力軸40Bの上部に固定される。第二出力軸40Bは、上部が旋回軸35のフランジ部35b及びカバー部材35cを貫通して支持され、下部が第二支持部材36Bに支持されて、軸心O4を中心として回転自在に支持される。軸心O3と軸心O4は、軸心O1と平行をなす。なお、第一駆動平歯車38Aと第二駆動平歯車38Bと第一従動平歯車39Aと第二駆動平歯車38Bは、旋回軸35のフランジ部35b及びカバー部材35cにより被覆される。 A first drive spur gear 38A is fixed to the lower end of the first input shaft 25A, and a second drive spur gear 38B is fixed to the lower end of the second input shaft 25B. The first drive spur gear 38A meshes with the first driven spur gear 39A and the second drive spur gear 38B meshes with the second driven spur gear 39B. The second drive spur gear 38B and the first drive spur gear 38A are stacked vertically and rotate about the axis O1. The first driven spur gear 39A is fixed to the top of the first output shaft 40A. The first output shaft 40A is supported at its upper portion through the flange portion 35b and the cover member 35c of the turning shaft 35 and supported at its lower portion by the first support member 36A so as to be rotatable about the axis O3. be. The second driven spur gear 39B is fixed to the top of the second output shaft 40B. The upper portion of the second output shaft 40B is supported by penetrating the flange portion 35b and the cover member 35c of the turning shaft 35, and the lower portion is supported by the second support member 36B so as to be rotatable around the axis O4. be. The axis O3 and the axis O4 are parallel to the axis O1. The first driving spur gear 38A, the second driving spur gear 38B, the first driven spur gear 39A, and the second driving spur gear 38B are covered with the flange portion 35b of the turning shaft 35 and the cover member 35c.
 第一従動平歯車39Aと第一駆動平歯車38A、及び第二駆動平歯車38Bと第二従動平歯車39Bは、平面視(図8)で軸心O1と軸心O3と軸心O4が三角形をなすように配置される。そして、軸心O3を中心とする第一従動平歯車39A及び第一出力軸40Aと、軸心O4を中心とする第二従動平歯車39B及び第二出力軸40Bは、車輪15に対して車軸37の軸心O2における両側に直交して配置される。このため、車軸37の軸心O2に直交する車輪15の回転軸心O5は、旋回軸35の軸心O1に対して車軸37の軸心O2方向に直交する水平方向にずれて配置される。なお、各平歯車38A,38B,39A,39Bは、ピッチ円直径、歯形、歯数など同形状であるが、異なる形状であってもよく、例えば、各駆動平歯車38A,38Bと各従動平歯車39A,39Bを異なる形状としてもよい。 The first driven spur gear 39A and the first drive spur gear 38A, and the second drive spur gear 38B and the second driven spur gear 39B have a triangular axis O1, O3 and O4 in plan view (FIG. 8). are arranged to form The first driven spur gear 39A and the first output shaft 40A centered on the axis O3, and the second driven spur gear 39B and the second output shaft 40B centered on the axis O4 are axially connected to the wheels 15. 37 are arranged orthogonally on both sides of the axis O2. Therefore, the rotation axis O5 of the wheel 15 orthogonal to the axis O2 of the axle 37 is displaced from the axis O1 of the turning shaft 35 in the horizontal direction orthogonal to the axis O2 of the axle 37 . The spur gears 38A, 38B, 39A, 39B have the same pitch diameter, tooth profile, number of teeth, etc., but may have different shapes. Gears 39A and 39B may have different shapes.
 上記伝達機構13は、第一平歯車機構(第一伝達機構)13Aと第二平歯車機構(第二伝達機構)13Bを有する。第一平歯車機構13Aは、第一駆動平歯車38A、第一従動平歯車39A、第一出力軸40Aにより構成され、第二平歯車機構13Bは、第二駆動平歯車38B、第二従動平歯車39B、第二出力軸40Bにより構成される。 The transmission mechanism 13 has a first spur gear mechanism (first transmission mechanism) 13A and a second spur gear mechanism (second transmission mechanism) 13B. The first spur gear mechanism 13A comprises a first drive spur gear 38A, a first driven spur gear 39A and a first output shaft 40A. The second spur gear mechanism 13B comprises a second drive spur gear 38B and a second driven spur gear 38B. It is composed of a gear 39B and a second output shaft 40B.
 第一出力軸40Aは、下部に第一駆動傘歯車41Aが固定され、第二出力軸40Bは、下部に第二駆動傘歯車41Bが固定される。一方、車軸37は、軸心O2方向の一端部に第一従動傘歯車42Aが固定され、軸心O2方向の他端部に第二従動傘歯車42Bが固定される。第一駆動傘歯車41Aは、第一従動傘歯車42Aに噛み合う。第二駆動傘歯車41Bは、第二従動傘歯車42Bに噛み合う。上記動力変換機構14、第一動力変換機構としての第一傘歯車機構14Aと、第二動力変換機構としての第二傘歯車機構14Bを有する。第一傘歯車機構14Aは、第一駆動傘歯車41A、第一従動傘歯車42Aにより構成される。第二傘歯車機構14Bは、第二駆動傘歯車41B、第二従動傘歯車42Bにより構成される。 A first drive bevel gear 41A is fixed to the bottom of the first output shaft 40A, and a second drive bevel gear 41B is fixed to the bottom of the second output shaft 40B. On the other hand, the axle 37 has a first driven bevel gear 42A fixed to one end in the direction of the axis O2, and a second driven bevel gear 42B fixed to the other end in the direction of the axis O2. The first drive bevel gear 41A meshes with the first driven bevel gear 42A. The second drive bevel gear 41B meshes with the second driven bevel gear 42B. It has the power conversion mechanism 14, a first bevel gear mechanism 14A as a first power conversion mechanism, and a second bevel gear mechanism 14B as a second power conversion mechanism. The first bevel gear mechanism 14A is composed of a first drive bevel gear 41A and a first driven bevel gear 42A. The second bevel gear mechanism 14B is composed of a second drive bevel gear 41B and a second driven bevel gear 42B.
 駆動輪103は、駆動機構11により第一入力軸25Aと第二入力軸25Bを回転することで車輪15の回転と操舵を行うことができる。例えば、第一入力軸25Aを回転し、第二入力軸25Bを第一入力軸25Aと逆方向に回転すると共に、第一入力軸25Aと第二入力軸25Bの回転数(回転速度)を同じにすることで、車輪15を操舵せずに回転することができる。このとき、第一入力軸25Aと第二入力軸25Bの回転数(回転速度)を異ならせることで、車輪15を回転または停止した状態で操舵することができる。 The drive wheels 103 can rotate and steer the wheels 15 by rotating the first input shaft 25A and the second input shaft 25B by the drive mechanism 11. For example, the first input shaft 25A is rotated, the second input shaft 25B is rotated in the opposite direction to the first input shaft 25A, and the number of revolutions (rotational speed) of the first input shaft 25A and the second input shaft 25B is the same. , the wheels 15 can be rotated without being steered. At this time, the wheels 15 can be steered while rotating or stopped by varying the number of revolutions (rotating speed) of the first input shaft 25A and the second input shaft 25B.
 ここで、駆動輪103の作動について説明する。図9は、駆動輪の駆動力伝達経路を表す模式図である。 Here, the operation of the driving wheels 103 will be explained. FIG. 9 is a schematic diagram showing the driving force transmission path of the drive wheels.
 駆動輪103において、第一入力軸25Aを第一方向A1に回転すると、第一駆動平歯車38Aが同方向に回転し、第一駆動平歯車38Aに噛み合う第一従動平歯車39Aが第二方向A2に回転する。第一従動平歯車39Aが第二方向A2に回転すると、第一従動平歯車39Aに第一出力軸40Aを介して一体に設けられた第一駆動傘歯車41Aが同方向に回転する。すると、第一駆動傘歯車41Aに噛み合う第一従動傘歯車42Aが第三方向A3に回転し、第一従動傘歯車42Aと一体の車軸37を同方向に回転させる。一方、第二入力軸25Bを第一方向A1と逆方向の第一方向B1に回転すると、第二駆動平歯車38Bが同方向に回転し、第二駆動平歯車38Bに噛み合う第二従動平歯車39Bが第二方向B2に回転する。第二従動平歯車39Bが第二方向B2に回転すると、第二従動平歯車39Bに第二出力軸40Bを介して一体に設けられた第二駆動傘歯車41Bが同方向に回転する。すると、第二駆動傘歯車41Bに噛み合う第二従動傘歯車42Bが第三方向B3に回転し、第二従動傘歯車42Bと一体の車軸37を同方向に回転させる。ここで、第三方向A3と第三方向B3同じ回転方向であることから、第一入力軸25Aと第二入力軸25Bが同回転数であれば、車輪15が旋回せずに回転する。 In the driving wheel 103, when the first input shaft 25A rotates in the first direction A1, the first driving spur gear 38A rotates in the same direction, and the first driven spur gear 39A meshing with the first driving spur gear 38A rotates in the second direction. Rotate to A2. When the first driven spur gear 39A rotates in the second direction A2, the first drive bevel gear 41A integrally provided with the first driven spur gear 39A via the first output shaft 40A rotates in the same direction. Then, the first driven bevel gear 42A meshing with the first drive bevel gear 41A rotates in the third direction A3, and rotates the axle 37 integrated with the first driven bevel gear 42A in the same direction. On the other hand, when the second input shaft 25B rotates in the first direction B1 opposite to the first direction A1, the second drive spur gear 38B rotates in the same direction, and the second driven spur gear meshes with the second drive spur gear 38B. 39B rotates in the second direction B2. When the second driven spur gear 39B rotates in the second direction B2, the second drive bevel gear 41B integrally provided with the second driven spur gear 39B via the second output shaft 40B rotates in the same direction. Then, the second driven bevel gear 42B meshing with the second drive bevel gear 41B rotates in the third direction B3, and rotates the axle 37 integrated with the second driven bevel gear 42B in the same direction. Here, since the third direction A3 and the third direction B3 are the same rotation direction, the wheels 15 rotate without turning if the first input shaft 25A and the second input shaft 25B have the same number of rotations.
 このとき、第一入力軸25Aの回転数に対して第二入力軸25Bの回転数を低下させると、第二駆動傘歯車41Bから第二従動傘歯車42Bを介して車軸37に入力する回転数が、第一駆動傘歯車41Aから第一従動傘歯車42Aを介して車軸37に入力する回転数より低くなる。すると、その回転数差だけ旋回軸35が回転し、車輪15を旋回して操舵する。また、第二入力軸25Bの回転を停止すると、第二駆動傘歯車41Bから第二従動傘歯車42Bを介して車軸37に入力する回転数が0となり、車輪15が回転せずに旋回して操舵する。 At this time, if the rotation speed of the second input shaft 25B is reduced with respect to the rotation speed of the first input shaft 25A, the rotation speed input to the axle 37 from the second drive bevel gear 41B via the second driven bevel gear 42B is lower than the rotational speed input to the axle 37 from the first drive bevel gear 41A via the first driven bevel gear 42A. Then, the turning shaft 35 rotates by the rotational speed difference, and the wheels 15 are turned and steered. When the rotation of the second input shaft 25B is stopped, the number of revolutions input from the second drive bevel gear 41B to the axle 37 via the second driven bevel gear 42B becomes 0, and the wheels 15 turn without rotating. steer.
 即ち、各平歯車38A,38B,39A,39Bの歯車比が同じで、各傘歯車41A,41B,42A,42Bの歯車比が同じであるとき、第一入力軸25Aの回転数をNA、第二入力軸25Bの回転数をNB、旋回軸35の回転数をNS、車輪15の回転数をNWとすると、旋回軸35の回転数NSと車輪15の回転数NWは、下記数式の関係となる。
 NW=(1/2)NA-(1/2)NB
 NS=-(1/2)NA-(1/2)NB
 NA=NW-NS
 NB=-NW-NS
That is, when the gear ratios of the spur gears 38A, 38B, 39A, and 39B are the same, and the gear ratios of the bevel gears 41A, 41B, 42A, and 42B are the same, the number of rotations of the first input shaft 25A is NA. Assuming that the rotation speed of the two input shaft 25B is NB, the rotation speed of the turning shaft 35 is NS, and the rotation speed of the wheel 15 is NW, the rotation speed NS of the turning shaft 35 and the rotation speed NW of the wheel 15 are related by the following formula. Become.
NW = (1/2) NA - (1/2) NB
NS=-(1/2)NA-(1/2)NB
NA=NW-NS
NB=-NW-NS
 なお、実施形態の駆動輪103は、図1に示すように、旋回位置検出部50を有している。旋回位置検出部50は、本体10の上面に設けられている。旋回位置検出部50は、図には明示しないが、例えば、旋回軸35と共に軸心O1の廻りに回転する第一平歯車と、第一平歯車と噛み合って軸心O1と平行な軸心の廻りに従動回転する第二平歯車と、第二平歯車の回転位置を検出する検出器と、を有する。従って、旋回軸35と共に第一平歯車が回転し、第一平歯車の回転位置を第二平歯車の回転位置として検出器で検出することで、旋回軸35の回転位置、即ち、本体10に対する旋回部12の回転位置を検出できる。検出器の検出信号は、台車(機器)100の制御装置105に入力される。この結果、制御装置105において駆動輪103の旋回を制御できる。 It should be noted that the drive wheel 103 of the embodiment has a turning position detector 50 as shown in FIG. The turning position detector 50 is provided on the upper surface of the main body 10 . Although not shown in the drawing, the turning position detection unit 50 includes, for example, a first spur gear that rotates around the axis O1 together with the turning shaft 35, and an axis that meshes with the first spur gear and is parallel to the axis O1. It has a second spur gear that is driven to rotate around and a detector that detects the rotational position of the second spur gear. Therefore, the first spur gear rotates together with the turning shaft 35, and the detector detects the rotational position of the first spur gear as the rotational position of the second spur gear. The rotational position of the turning section 12 can be detected. A detection signal from the detector is input to the controller 105 of the truck (equipment) 100 . As a result, the control device 105 can control the turning of the drive wheels 103 .
 図10は、実施形態の駆動輪の構成例を表すブロック図である。図11は、実施形態の駆動輪の動作例を表すフローチャートである。 FIG. 10 is a block diagram showing a configuration example of the driving wheels of the embodiment. FIG. 11 is a flowchart showing an operation example of the driving wheels of the embodiment.
 実施形態の駆動輪103は、トルク測定部28をさらに備える。 The driving wheel 103 of the embodiment further includes a torque measuring section 28.
 トルク測定部28は、図1及び図4に示すように、第一トルク測定部28Aと第二トルク測定部28Bとを有する。第一トルク測定部28Aは、第一ベルト駆動機構22Aに設けられ、第一ベルト駆動機構22Aに掛かるトルクを測定する。第二トルク測定部28Bは、第二ベルト駆動機構22Bに設けられ、第二ベルト駆動機構22Bに掛かるトルクを測定する。ここで、第一トルク測定部28Aと第二トルク測定部28Bは、同様の構成であり、第一トルク測定部28Aを説明し、第二トルク測定部28Bの詳細な説明を省略する。 The torque measurement section 28 has a first torque measurement section 28A and a second torque measurement section 28B, as shown in FIGS. 28 A of 1st torque measurement parts are provided in 22 A of 1st belt drive mechanisms, and measure the torque applied to 22 A of 1st belt drive mechanisms. The second torque measuring section 28B is provided in the second belt driving mechanism 22B and measures the torque applied to the second belt driving mechanism 22B. Here, the first torque measuring section 28A and the second torque measuring section 28B have the same configuration, so the first torque measuring section 28A will be described, and the detailed description of the second torque measuring section 28B will be omitted.
 第一トルク測定部28Aは、第一ベルト駆動機構22Aにおいて、第一駆動プーリ24Aと第一従動プーリ26Aとの間の第一駆動ベルト27Aに対して設けられ、第一押さえローラ29Aa,29Ab、第一ひずみゲージ30Aa,30Ab、第一張力測定部31Aa,31Abを含む。第一押さえローラ29Aa,29Abは、第一駆動プーリ24Aと第一従動プーリ26Aとの間の第一駆動ベルト27Aの一方と他方に接触する。第一駆動ベルト27Aの一方と他方とは、第一駆動ベルト27Aが第一駆動プーリ24Aの回転に伴って移動する場合に第一駆動プーリ24Aから遠ざかる第一駆動ベルト27Aの部分と第一駆動プーリ24Aに近づく第一駆動ベルト27Aの部分とを示し、第一駆動ベルト27Aの上流側と下流側とも言える。第一ひずみゲージ30Aa,30Abは、それぞれ第一押さえローラ29Aa,29Abを支持するもので、第一駆動ベルト27Aの張力変化に伴う第一押さえローラ29Aa,29Abの移動をひずみとして受ける。第一張力測定部31Aa,31Abは、それぞれ第一ひずみゲージ30Aa,30Abが接続され、第一ひずみゲージ30Aa,30Abのひずみを電圧値として読み取る。この電圧値は、第一駆動ベルト27Aの一方と他方に掛かるトルクとして制御装置105にて算出される。 28 A of 1st torque measurement parts are provided with respect to the 1st drive belt 27A between the 1st drive pulley 24A and the 1st driven pulley 26A in 22 A of 1st belt drive mechanisms, 1st press roller 29Aa, 29Ab, It includes first strain gauges 30Aa, 30Ab and first tension measurement units 31Aa, 31Ab. The first pressing rollers 29Aa and 29Ab contact one side and the other side of the first driving belt 27A between the first driving pulley 24A and the first driven pulley 26A. The one side and the other side of the first drive belt 27A are the portion of the first drive belt 27A that moves away from the first drive pulley 24A when the first drive belt 27A moves with the rotation of the first drive pulley 24A, and the first drive belt 27A. and the portion of the first drive belt 27A approaching the pulley 24A, which can also be referred to as the upstream side and the downstream side of the first drive belt 27A. The first strain gauges 30Aa and 30Ab support the first pressing rollers 29Aa and 29Ab, respectively, and receive displacement of the first pressing rollers 29Aa and 29Ab due to changes in the tension of the first driving belt 27A as strain. First strain gauges 30Aa and 30Ab are connected to the first tension measurement units 31Aa and 31Ab, respectively, and strains of the first strain gauges 30Aa and 30Ab are read as voltage values. This voltage value is calculated by the control device 105 as torque applied to one side and the other side of the first driving belt 27A.
 なお、第二トルク測定部28Bは、第二ベルト駆動機構22Bにおいて、第二駆動プーリ24Bと第二従動プーリ26Bとの間の第二駆動ベルト27Bに対して設けられ、第一押さえローラ29Aa,29Abと同様の第二押さえローラ29Ba,29Bb、第一ひずみゲージ30Aa,30Abと同様の第二ひずみゲージ30Ba,30Bb、第一張力測定部31Aa,31Abと同様の第二張力測定部31Ba,31Bbを含む。 In addition, the second torque measuring unit 28B is provided for the second driving belt 27B between the second driving pulley 24B and the second driven pulley 26B in the second belt driving mechanism 22B. Second pressing rollers 29Ba and 29Bb similar to 29Ab, second strain gauges 30Ba and 30Bb similar to first strain gauges 30Aa and 30Ab, and second tension measuring units 31Ba and 31Bb similar to first tension measuring units 31Aa and 31Ab include.
 駆動輪103は、図10に示すように、上述したトルク測定部28の構成にさらに制御装置105を含む。制御装置105は、第一トルク測定部28Aによって測定されるトルク(電圧値)に基づいて第一駆動部23Aを制御する。また、制御装置105は、第二トルク測定部28Bによって測定されるトルク(電圧値)に基づいて第二駆動部23Bを制御する。 As shown in FIG. 10, the driving wheel 103 further includes a control device 105 in addition to the configuration of the torque measuring section 28 described above. The control device 105 controls the first driving section 23A based on the torque (voltage value) measured by the first torque measuring section 28A. Further, the control device 105 controls the second driving section 23B based on the torque (voltage value) measured by the second torque measuring section 28B.
 具体的に、制御装置105は、図11に示すように、ステップS1において、トルク測定部28(28A,28B)によって測定されるトルク(電圧値)を入力する。このトルク測定部28のトルクは、外力によって加わる外力トルクとする。また、制御装置105は、ステップS2において、外力トルクの入力と共に各駆動部23A,23Bの消費電力から駆動トルクを算出する。そして、制御装置105は、ステップS3において、外力トルクと駆動トルクとを比較する。そして、制御装置105は、ステップS4において、ステップS3の比較で外力トルクが駆動トルクよりも大きい場合(ステップS3:Yes)、外力トルクから駆動トルクを差し引いた以上のアシストトルクを決定する。そして、制御装置105は、ステップS5において、決定したアシストトルクとなるように各駆動部23A,23Bを制御する。なお、制御装置105は、ステップS4において、ステップS3の比較で外力トルクが駆動トルクよりも小さい場合は(ステップS3:No)、ステップS1に戻る。 Specifically, as shown in FIG. 11, the control device 105 inputs the torque (voltage value) measured by the torque measuring section 28 (28A, 28B) in step S1. The torque of this torque measuring unit 28 is assumed to be an external force torque applied by an external force. Further, in step S2, the control device 105 calculates the drive torque from the power consumption of each of the drive units 23A and 23B together with the input of the external force torque. Then, in step S3, the control device 105 compares the external force torque and the drive torque. Then, in step S4, when the external force torque is larger than the drive torque in the comparison of step S3 (step S3: Yes), the control device 105 determines an assist torque equal to or greater than the external force torque minus the drive torque. Then, in step S5, the control device 105 controls the drive units 23A and 23B so as to achieve the determined assist torque. In step S4, when the external force torque is smaller than the drive torque in the comparison in step S3 (step S3: No), the control device 105 returns to step S1.
 制御装置105は、トルク測定部28が、第一トルク測定部28Aと第二トルク測定部28Bを有することから、それぞれの外力トルクからオペレータが駆動輪103を動かそうとしている方向を判断でき、当該方向に応じたアシストトルクで各駆動部23A,23Bを制御できる。 Since the torque measurement unit 28 has the first torque measurement unit 28A and the second torque measurement unit 28B, the control device 105 can determine the direction in which the operator intends to move the drive wheel 103 from the respective external force torques, Each drive unit 23A, 23B can be controlled with an assist torque corresponding to the direction.
 また、第一トルク測定部28Aは、第一駆動ベルト27Aの上流側と下流側に第一押さえローラ29Aa,29Ab及び第一ひずみゲージ30Aa,30Abを配置し、第一駆動ベルト27Aの張力変化から第一駆動ベルト27Aの上流側及び下流側の双方で外力トルクを測定する。さらに、第二トルク測定部28Bは、第二駆動ベルト27Bの上流側と下流側に第二押さえローラ29Ba,29Bb及び第二ひずみゲージ30Ba,30Bbを配置し、第二駆動ベルト27Bの張力変化から第二駆動ベルト27Bの上流側及び下流側の双方で外力トルクを測定する。このため、制御装置105は、第一駆動ベルト27A及び第二駆動ベルト27Bの上流側及び下流側の双方の各外力トルクに基づいてオペレータが駆動輪103を動かそうとしている方向をより正確に判断し、当該方向に応じたアシストトルクで各駆動部23A,23Bを制御する。 Further, the first torque measuring unit 28A has first pressing rollers 29Aa and 29Ab and first strain gauges 30Aa and 30Ab arranged upstream and downstream of the first drive belt 27A. The external force torque is measured both upstream and downstream of the first drive belt 27A. Furthermore, the second torque measuring unit 28B has second pressure rollers 29Ba and 29Bb and second strain gauges 30Ba and 30Bb arranged upstream and downstream of the second drive belt 27B, and from changes in tension of the second drive belt 27B, The external force torque is measured both upstream and downstream of the second drive belt 27B. Therefore, the control device 105 can more accurately determine the direction in which the operator intends to move the drive wheels 103 based on the respective external force torques on both the upstream and downstream sides of the first drive belt 27A and the second drive belt 27B. Then, each drive unit 23A, 23B is controlled with an assist torque corresponding to the direction.
 ここで、図12は、動力変換機構の構成例を表す斜視図である。図13は、動力変換機構の構成例を表す斜視図である。図14は、動力変換機構の構成例を表す斜視図である。図15は、動力変換機構の構成例を表す正面図である。なお、図12から図15で示す動力変換機構17,18,19,20を備える駆動輪の主構成は、上述した駆動輪103と同等であり、同等部分には同一の符号を付して説明を省略する。 Here, FIG. 12 is a perspective view showing a configuration example of the power conversion mechanism. FIG. 13 is a perspective view showing a configuration example of a power conversion mechanism. FIG. 14 is a perspective view showing a configuration example of a power conversion mechanism. FIG. 15 is a front view showing a configuration example of a power conversion mechanism. 12 to 15, the driving wheels provided with the power conversion mechanisms 17, 18, 19, and 20 are the same as the driving wheel 103 described above, and the same parts are denoted by the same reference numerals. omitted.
 図12に示す動力変換機構17は、はすば歯車機構であり、伝達機構13の回転力を車輪15に伝達するものである。動力変換機構17は、第一動力変換機構としての第一はすば歯車機構17Aと、第二動力変換機構としての第二はすば歯車機構17Bを有する。第一はすば歯車機構17Aは、第一出力軸40Aの下部に固定された第一駆動はすば歯車51Aと、車輪15に設けられた車軸37の軸心O2方向の一端部に固定されて第一駆動はすば歯車51Aに噛み合う第一従動はすば歯車52Aと、により構成されている。第二はすば歯車機構17Bは、第二出力軸40Bの下部に固定された第二駆動はすば歯車51Bと、車軸37の軸心O2方向の他端部に固定されて第二駆動はすば歯車51Bに噛み合う第二従動はすば歯車52Bと、により構成されている。 The power conversion mechanism 17 shown in FIG. 12 is a helical gear mechanism that transmits the rotational force of the transmission mechanism 13 to the wheels 15. The power conversion mechanism 17 has a first helical gear mechanism 17A as a first power conversion mechanism and a second helical gear mechanism 17B as a second power conversion mechanism. The first helical gear mechanism 17A includes a first driving helical gear 51A fixed to the lower portion of the first output shaft 40A and one end of the axle 37 provided on the wheel 15 in the direction of the axis O2. and a first driven helical gear 52A meshing with the first driving helical gear 51A. The second helical gear mechanism 17B includes a second driving helical gear 51B fixed to the lower portion of the second output shaft 40B, and a second driving helical gear 51B fixed to the other end of the axle 37 in the direction of the axis O2. and a second driven helical gear 52B that meshes with the helical gear 51B.
 この動力変換機構17を備える駆動輪は、第一入力軸25A及び第二入力軸25Bの回転力は、第一従動平歯車39A及び第二従動平歯車39Bを介して第一出力軸40A及び第二出力軸40Bに伝達され、第一出力軸40A及び第二出力軸40Bから第一はすば歯車機構17A及び第二はすば歯車機構17Bを介して車軸37の各端部に伝達される。そして、この駆動輪は、第一入力軸25A及び第二入力軸25Bの回転数を調整することで、車輪15の回転と操舵を切替えることができる。そのため、この駆動輪は、車軸37の各端部にそれぞれはすば歯車機構17A,17Bを配置することから、車輪15への回転力の伝達系統を簡素化することとなり、構造の簡素化を図ることができ、低床化に寄与できる。 In the drive wheels equipped with this power conversion mechanism 17, the rotational forces of the first input shaft 25A and the second input shaft 25B are transferred to the first output shaft 40A and the second output shaft 40A via the first driven spur gear 39A and the second driven spur gear 39B. It is transmitted to the second output shaft 40B, and transmitted from the first output shaft 40A and the second output shaft 40B to each end of the axle 37 via the first helical gear mechanism 17A and the second helical gear mechanism 17B. . By adjusting the rotational speeds of the first input shaft 25A and the second input shaft 25B, the drive wheels can switch between rotation and steering of the wheels 15. As shown in FIG. Therefore, since the drive wheels are provided with helical gear mechanisms 17A and 17B at the respective ends of the axle 37, the transmission system of the rotational force to the wheels 15 is simplified, thereby simplifying the structure. This can contribute to lower floors.
 図13に示す動力変換機構18は、ウォーム歯車機構であり、伝達機構13の回転力を車輪15に伝達するものである。動力変換機構18は、第一動力変換機構としての第一ウォーム歯車機構18Aと、第二動力変換機構としての第二ウォーム歯車機構18Bを有する。第一ウォーム歯車機構18Aは、第一出力軸40Aの下部に固定された第一ウォーム53Aと、車輪15に設けられた車軸37の軸心O2方向の一端部に固定されて第一ウォーム53Aに噛み合う第一ウォームホイール54Aと、により構成されている。第二ウォーム歯車機構18Bは、第二出力軸40Bの下部に固定された第二ウォーム53Bと、車軸37の軸心O2方向の他端部に固定されて第二ウォーム53Bに噛み合う第二ウォームホイール54Bと、により構成されている。 The power conversion mechanism 18 shown in FIG. 13 is a worm gear mechanism that transmits the rotational force of the transmission mechanism 13 to the wheels 15. The power conversion mechanism 18 has a first worm gear mechanism 18A as a first power conversion mechanism and a second worm gear mechanism 18B as a second power conversion mechanism. The first worm gear mechanism 18A includes a first worm 53A fixed to the lower portion of the first output shaft 40A, and one end of an axle 37 provided on the wheel 15 in the axial center O2 direction. and a meshing first worm wheel 54A. The second worm gear mechanism 18B includes a second worm 53B fixed to the lower portion of the second output shaft 40B, and a second worm wheel fixed to the other end of the axle 37 in the axial center O2 direction and meshing with the second worm 53B. 54B and.
 この動力変換機構18を備える駆動輪は、第一入力軸25A及び第二入力軸25Bの回転力は、第一従動平歯車39A及び第二従動平歯車39Bを介して第一出力軸40A及び第二出力軸40Bに伝達され、第一出力軸40A及び第二出力軸40Bから第一ウォーム歯車機構18A及び第二ウォーム歯車機構18Bを介して車軸37の各端部に伝達される。そして、この駆動輪は、第一入力軸25A及び第二入力軸25Bの回転数を調整することで、車輪15の回転と操舵を切替えることができる。そのため、この駆動輪は、車軸37の各端部にそれぞれウォーム歯車機構18A,18Bを配置することから、車輪15への回転力の伝達系統を簡素化することとなり、構造の簡素化を図ることができ、低床化に寄与できる。 In the driving wheels equipped with this power conversion mechanism 18, the rotational forces of the first input shaft 25A and the second input shaft 25B are transferred to the first output shaft 40A and the second output shaft 40A through the first driven spur gear 39A and the second driven spur gear 39B. It is transmitted to the second output shaft 40B, and transmitted from the first output shaft 40A and the second output shaft 40B to each end of the axle 37 via the first worm gear mechanism 18A and the second worm gear mechanism 18B. By adjusting the rotational speeds of the first input shaft 25A and the second input shaft 25B, the drive wheels can switch between rotation and steering of the wheels 15. As shown in FIG. Therefore, since the worm gear mechanisms 18A and 18B are arranged at the respective ends of the axle 37, the drive wheels simplify the transmission system of the rotational force to the wheels 15, thereby simplifying the structure. can contribute to lower floors.
 なお、第一ウォーム歯車機構18Aは、第一出力軸40Aの下部に第一ウォームホイール54Aが固定され、車軸37の軸心O2方向の一端部に第一ウォーム53Aが固定されて構成されていてもよい。また、第二ウォーム歯車機構18Bは、第二出力軸40Bの下部に第二ウォームホイール54Bが固定され、車軸37の軸心O2方向の他端部に第二ウォーム53Bが固定されて構成されていてもよい。 The first worm gear mechanism 18A has a first worm wheel 54A fixed to the lower portion of the first output shaft 40A, and a first worm 53A fixed to one end of the axle 37 in the axial center O2 direction. good too. The second worm gear mechanism 18B has a second worm wheel 54B fixed to the lower portion of the second output shaft 40B, and a second worm 53B fixed to the other end of the axle 37 in the axial center O2 direction. may
 図14に示す動力変換機構19は、冠歯車機構であり、伝達機構13の回転力を車輪15に伝達するものである。動力変換機構19は、第一動力変換機構としての第一冠歯車機構19Aと第二動力変換機構としての第二冠歯車機構19Bを有する。第一冠歯車機構19Aは、第一出力軸40Aの下部に固定された第一冠歯車55Aと、車輪15に設けられた車軸37の軸心O2方向の一端部に固定されて第一冠歯車55Aに噛み合う第一平歯車56Aと、により構成されている。第二冠歯車機構19Bは、第二出力軸40Bの下部に固定された第二冠歯車55Bと、車軸37の軸心O2方向の他端部に固定されて第二冠歯車55Bに噛み合う第二平歯車56Bと、により構成されている。 The power conversion mechanism 19 shown in FIG. 14 is a crown gear mechanism that transmits the rotational force of the transmission mechanism 13 to the wheels 15. The power conversion mechanism 19 has a first crown gear mechanism 19A as a first power conversion mechanism and a second crown gear mechanism 19B as a second power conversion mechanism. The first crown gear mechanism 19A includes a first crown gear 55A fixed to the lower portion of the first output shaft 40A, and a first crown gear fixed to one end of an axle 37 provided on the wheel 15 in the direction of the axis O2. and a first spur gear 56A meshing with 55A. The second crown gear mechanism 19B includes a second crown gear 55B fixed to the lower portion of the second output shaft 40B and a second crown gear 55B fixed to the other end of the axle 37 in the direction of the axis O2 and meshing with the second crown gear 55B. and a spur gear 56B.
 この動力変換機構19を備える駆動輪は、第一入力軸25A及び第二入力軸25Bの回転力は、第一従動平歯車39A及び第二従動平歯車39Bを介して第一出力軸40A及び第二出力軸40Bに伝達され、第一出力軸40A及び第二出力軸40Bから第一冠歯車機構19A及び第二冠歯車機構19Bを介して車軸37の各端部に伝達される。そして、この駆動輪は、第一入力軸25A及び第二入力軸25Bの回転数を調整することで、車輪15の回転と操舵を切替えることができる。そのため、この駆動輪は、車軸37の各端部にそれぞれ冠歯車機構19A,19Bを配置することから、車輪15への回転力の伝達系統を簡素化することとなり、構造の簡素化を図ることができ、低床化に寄与できる。 In the drive wheels equipped with this power conversion mechanism 19, the rotational forces of the first input shaft 25A and the second input shaft 25B are transferred to the first output shaft 40A and the second output shaft 40A via the first driven spur gear 39A and the second driven spur gear 39B. It is transmitted to the second output shaft 40B, and transmitted from the first output shaft 40A and the second output shaft 40B to each end of the axle 37 via the first crown gear mechanism 19A and the second crown gear mechanism 19B. By adjusting the rotational speeds of the first input shaft 25A and the second input shaft 25B, the drive wheels can switch between rotation and steering of the wheels 15. As shown in FIG. Therefore, since the drive wheels have the crown gear mechanisms 19A and 19B at the respective ends of the axle 37, the transmission system of the rotational force to the wheels 15 is simplified, thereby simplifying the structure. can contribute to lower floors.
 なお、第一冠歯車機構19Aは、第一出力軸40Aの下部に第一平歯車56Aが固定され、車軸37の軸心O2方向の一端部に第一冠歯車55Aが固定されて構成されていてもよい。また、第二冠歯車機構19Bは、第二出力軸40Bの下部に第二平歯車56Bが固定され、車軸37の軸心O2方向の他端部に第二冠歯車55Bが固定されて構成されていてもよい。 The first crown gear mechanism 19A has a first spur gear 56A fixed to the lower portion of the first output shaft 40A, and a first crown gear 55A fixed to one end of the axle 37 in the axial center O2 direction. may The second crown gear mechanism 19B has a second spur gear 56B fixed to the lower portion of the second output shaft 40B, and a second crown gear 55B fixed to the other end of the axle 37 in the axial center O2 direction. may be
 図15に示す動力変換機構20は、自在継手機構(ユニバーサルジョイント機構)であり、伝達機構13の回転力を車輪15に伝達するものである。動力変換機構20は、第一動力変換機構としての第一自在継手機構20Aと第二動力変換機構としての第二自在継手機構20Bを有する。第一自在継手機構20Aは、第一出力軸40Aの下端に固定された第一駆動継手57Aと、車輪15に設けられた車軸37の軸心O2方向の一端に固定された第一従動継手58Aと、第一駆動継手57A及び第一従動継手58Aを連結する第一連結部59Aと、により構成されている。第二自在継手機構20Bは、第二出力軸40Bの下端に固定された第二駆動継手57Bと、車軸37の軸心O2方向の他端に固定された第二従動継手58Bと、第二駆動継手57B及び第二従動継手58Bを連結する第二連結部59Bと、により構成されている。なお、図には明示しないが、第一自在継手機構20Aは、第一連結部59Aの一端が第一出力軸40Aの下端に固定され、第一連結部59Aの他端が車軸37の軸心O2方向の一端に固定され、中間部に第一駆動継手57A及び第一従動継手58Aに相当する単一または複数の継手が設けられた構成であってもよい。同様に、図には明示しないが、第二自在継手機構20Bは、第二連結部59Bの一端が第二出力軸40Bの下端に固定され、第二連結部59Bの他端が車軸37の軸心O2方向の他端に固定され、中間部に第二駆動継手57B及び第二従動継手58Bに相当する単一または複数の継手が設けられた構成であってもよい。 The power conversion mechanism 20 shown in FIG. 15 is a universal joint mechanism, which transmits the rotational force of the transmission mechanism 13 to the wheels 15. The power conversion mechanism 20 has a first universal joint mechanism 20A as a first power conversion mechanism and a second universal joint mechanism 20B as a second power conversion mechanism. The first universal joint mechanism 20A includes a first drive joint 57A fixed to the lower end of the first output shaft 40A, and a first driven joint 58A fixed to one end of the axle 37 provided on the wheel 15 in the axial center O2 direction. and a first connecting portion 59A connecting the first drive joint 57A and the first driven joint 58A. The second universal joint mechanism 20B includes a second drive joint 57B fixed to the lower end of the second output shaft 40B, a second driven joint 58B fixed to the other end of the axle 37 in the axial center O2 direction, and a second drive joint 58B. and a second connecting portion 59B that connects the joint 57B and the second driven joint 58B. Although not shown in the drawings, the first universal joint mechanism 20A has one end of the first connecting portion 59A fixed to the lower end of the first output shaft 40A and the other end of the first connecting portion 59A connected to the axis of the axle 37. It may be fixed to one end in the O2 direction and provided with a single or a plurality of joints corresponding to the first drive joint 57A and the first driven joint 58A in the intermediate portion. Similarly, although not shown in the drawings, the second universal joint mechanism 20B has one end of the second connecting portion 59B fixed to the lower end of the second output shaft 40B and the other end of the second connecting portion 59B being fixed to the shaft of the axle 37. It may be fixed to the other end in the direction of the center O2, and a single or a plurality of joints corresponding to the second drive joint 57B and the second driven joint 58B may be provided in the intermediate portion.
 この動力変換機構20を備える駆動輪は、第一入力軸25A及び第二入力軸25Bの回転力は、第一従動平歯車39A及び第二従動平歯車39Bを介して第一出力軸40A及び第二出力軸40Bに伝達され、第一出力軸40A及び第二出力軸40Bから第一自在継手機構20A及び第二自在継手機構20Bを介して車軸37の各端部に伝達される。そして、この駆動輪は、第一入力軸25A及び第二入力軸25Bの回転数を調整することで、車輪15の回転と操舵を切替えることができる。そのため、車軸37の各端部にそれぞれ自在継手機構20A,20Bを配置することから、車輪15への回転力の伝達系統を簡素化することとなり、構造の簡素化を図ることができ、低床化に寄与できる。 In the drive wheels equipped with this power conversion mechanism 20, the rotational forces of the first input shaft 25A and the second input shaft 25B are transferred to the first output shaft 40A and the second output shaft 40A via the first driven spur gear 39A and the second driven spur gear 39B. It is transmitted to the second output shaft 40B, and transmitted from the first output shaft 40A and the second output shaft 40B to each end of the axle 37 via the first universal joint mechanism 20A and the second universal joint mechanism 20B. By adjusting the rotational speeds of the first input shaft 25A and the second input shaft 25B, the drive wheels can switch between rotation and steering of the wheels 15. As shown in FIG. Therefore, since the universal joint mechanisms 20A and 20B are arranged at the respective ends of the axle 37, the transmission system of the rotational force to the wheels 15 can be simplified, and the structure can be simplified. can contribute to
 ところで、上述した実施形態の駆動輪103にあっては、第一出力軸40Aと車軸37とは、相互の軸心方向が90度異なる。このため、駆動輪103は、第一出力軸40Aの回転力を車軸37の一端部に伝達する第一動力変換機構(第一傘歯車機構14A、第一はすば歯車機構17A、第一ウォーム歯車機構18A、第一冠歯車機構19A、第一自在継手機構20A)は、第一出力軸40Aの回転力を第一出力軸40Aに対して軸心方向の異なる車軸37の一端部に伝達する。また、上述した実施形態の駆動輪103にあっては、第二出力軸40Bと車軸37とは、相互の軸心方向が90度異なる。このため、駆動輪103は、第二出力軸40Bの回転力を車軸37の一端部に伝達する第二動力変換機構(第二傘歯車機構14B、第二はすば歯車機構17B、第二ウォーム歯車機構18B、第二冠歯車機構19B、第二自在継手機構20B)は、第二出力軸40Bの回転力を第二出力軸40Bに対して軸心方向の異なる車軸37の一端部に伝達する。なお、動力変換機構は、上述した構成に限らず、出力軸40A,40Bの回転力を、出力軸40A,40Bに対して軸心方向の異なる車軸37に伝達する構成であればよい。 By the way, in the drive wheel 103 of the embodiment described above, the axial directions of the first output shaft 40A and the axle 37 are different from each other by 90 degrees. For this reason, the driving wheels 103 are driven by a first power conversion mechanism (first bevel gear mechanism 14A, first helical gear mechanism 17A, first worm The gear mechanism 18A, the first crown gear mechanism 19A, and the first universal joint mechanism 20A) transmit the rotational force of the first output shaft 40A to one end of the axle 37 having a different axial direction with respect to the first output shaft 40A. . Further, in the drive wheel 103 of the embodiment described above, the axial directions of the second output shaft 40B and the axle 37 are different from each other by 90 degrees. For this reason, the drive wheels 103 are driven by a second power conversion mechanism (a second bevel gear mechanism 14B, a second helical gear mechanism 17B, a second worm gear mechanism 14B, a second worm gear mechanism 17B, a second worm The gear mechanism 18B, the second crown gear mechanism 19B, and the second universal joint mechanism 20B) transmit the rotational force of the second output shaft 40B to one end of the axle 37 having a different axial direction with respect to the second output shaft 40B. . The power conversion mechanism is not limited to the configuration described above, and may be configured to transmit the rotational force of the output shafts 40A, 40B to the axle 37 having a different axial direction than the output shafts 40A, 40B.
 図16は、実施形態の駆動輪の他の構成例を表す正面図である。図17は、図16に示す駆動輪の側面図である。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。 FIG. 16 is a front view showing another configuration example of the drive wheels of the embodiment. 17 is a side view of the drive wheel shown in FIG. 16; FIG. Members having the same functions as those in the above-described embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
 図16及び図17に示す駆動輪103’は、上述した駆動輪103に対し、動力伝達機構81を有する点で主に異なる。 A drive wheel 103 ′ shown in FIGS. 16 and 17 is mainly different from the drive wheel 103 described above in that it has a power transmission mechanism 81 .
 駆動輪103’において、第一入力軸25Aと第二入力軸25Bと旋回軸35は、軸心O1に沿う同軸上に回転自在に配置される。第一入力軸25Aは、下端部に第一駆動平歯車38Aが固定され、第二入力軸25Bは、下端部に第二駆動平歯車38Bが固定される。第一駆動平歯車38Aは、第一従動平歯車39Aに噛み合い、第二駆動平歯車38Bは、第二従動平歯車39Bに噛み合う。第二駆動平歯車38Bと第一駆動平歯車38Aは、上下に積層されて軸心O1を中心として回転する。第一従動平歯車39Aは、第一出力軸40Aの上部に固定され、第一出力軸40Aは、旋回軸35に軸心O3を中心として回転自在に支持される。第二従動平歯車39Bは、第二出力軸40Bの上部に固定され、第二出力軸40Bは、旋回軸35に軸心O4を中心として回転自在に支持される。第一出力軸40Aは、下部に第一駆動傘歯車41Aが固定され、第二出力軸40Bは、下部に第二駆動傘歯車41Bが固定される。第一駆動傘歯車41Aに噛み合う第一従動傘歯車42Aと第二駆動傘歯車41Bに噛み合う第二従動傘歯車42Bは、連結軸91に固定される。連結軸91は、その軸心O6が軸心O1に直交すると共に、車軸37の軸心O2と平行をなす。 In the drive wheel 103', the first input shaft 25A, the second input shaft 25B, and the turning shaft 35 are coaxially rotatably arranged along the axis O1. A first drive spur gear 38A is fixed to the lower end of the first input shaft 25A, and a second drive spur gear 38B is fixed to the lower end of the second input shaft 25B. The first drive spur gear 38A meshes with the first driven spur gear 39A and the second drive spur gear 38B meshes with the second driven spur gear 39B. The second drive spur gear 38B and the first drive spur gear 38A are stacked vertically and rotate about the axis O1. The first driven spur gear 39A is fixed to the upper portion of the first output shaft 40A, and the first output shaft 40A is rotatably supported by the turning shaft 35 about the axis O3. The second driven spur gear 39B is fixed to the upper part of the second output shaft 40B, and the second output shaft 40B is rotatably supported by the turning shaft 35 about the axis O4. A first drive bevel gear 41A is fixed to the lower portion of the first output shaft 40A, and a second drive bevel gear 41B is fixed to the lower portion of the second output shaft 40B. A first driven bevel gear 42A that meshes with the first drive bevel gear 41A and a second driven bevel gear 42B that meshes with the second drive bevel gear 41B are fixed to the connecting shaft 91 . The connecting shaft 91 has its axis O6 orthogonal to the axis O1 and parallel to the axis O2 of the axle 37 .
 動力伝達機構81は、第一動力伝達機構81Aと第二動力伝達機構81Bを有する。第一動力伝達機構81Aは、動力変換機構14の第一傘歯車機構14Aと車軸37の一端部との間に設けられる。第二動力伝達機構81Bは、動力変換機構14の第二傘歯車機構14Bと車軸37の他端部との間に設けられる。なお、動力変換機構14は、動力変換機構17,18,19,20に置き換えることができる。 The power transmission mechanism 81 has a first power transmission mechanism 81A and a second power transmission mechanism 81B. The first power transmission mechanism 81A is provided between the first bevel gear mechanism 14A of the power conversion mechanism 14 and one end of the axle 37 . The second power transmission mechanism 81B is provided between the second bevel gear mechanism 14B of the power conversion mechanism 14 and the other end of the axle 37 . Power conversion mechanism 14 can be replaced with power conversion mechanisms 17 , 18 , 19 , and 20 .
 第一動力伝達機構81Aは、第一駆動プーリ92A、第一従動プーリ93A、第一駆動ベルト94Aを有する。第一駆動プーリ92Aは、連結軸91の軸心O6方向の一端部に固定される。第一従動プーリ93Aは、車軸37の軸心O2方向の一端部に固定される。第一駆動ベルト94Aは、環状に形成され、第一駆動プーリ92Aと第一従動プーリ93Aとに掛け回される。第二動力伝達機構81Bは、第二駆動プーリ92B、第二従動プーリ93B、第二駆動ベルト94Bを有する。第二駆動プーリ92Bは、連結軸91の軸心O6方向の他端部に固定される。第二従動プーリ93Bは、車軸37の軸心O2方向の他端部に固定される。第二駆動ベルト94Bは、環状に形成され、第二駆動プーリ92Bと第二従動プーリ93Bとに掛け回される。 The first power transmission mechanism 81A has a first driving pulley 92A, a first driven pulley 93A, and a first driving belt 94A. The first drive pulley 92A is fixed to one end of the connecting shaft 91 in the axial center O6 direction. The first driven pulley 93A is fixed to one end of the axle 37 in the axial center O2 direction. The first driving belt 94A is formed in an annular shape and is looped around the first driving pulley 92A and the first driven pulley 93A. The second power transmission mechanism 81B has a second driving pulley 92B, a second driven pulley 93B, and a second driving belt 94B. The second drive pulley 92B is fixed to the other end of the connecting shaft 91 in the axial center O6 direction. The second driven pulley 93B is fixed to the other end of the axle 37 in the axial center O2 direction. The second drive belt 94B is formed in an annular shape and is looped around the second drive pulley 92B and the second driven pulley 93B.
 そのため、駆動輪103’は、第一入力軸25Aを回転すると、第一駆動平歯車38Aが回転し、第一従動平歯車39Aが回転する。第一従動平歯車39Aが回転すると、第一出力軸40Aと共に第一駆動傘歯車41Aが回転する。すると、第一駆動傘歯車41Aに噛み合う第一従動傘歯車42Aが回転し、連結軸91が回転する。連結軸91の回転力は、第一駆動プーリ92A、第一駆動ベルト94A、第一従動プーリ93Aを介して車軸37に伝達され、車軸37が回転する。一方、第二入力軸25Bを第一入力軸25Aと逆方向に回転すると、第二駆動平歯車38Bが回転し、第二従動平歯車39Bが回転する。第二従動平歯車39Bが回転すると、第二出力軸40Bと共に第二駆動傘歯車41Bが回転する。すると、第二駆動傘歯車41Bに噛み合う第二従動傘歯車42Bが回転し、連結軸91が回転する。連結軸91の回転力は、第二駆動プーリ92B、第二駆動ベルト94B、第二従動プーリ93Bを介して車軸37に伝達され、車軸37が回転する。 Therefore, when the driving wheel 103' rotates the first input shaft 25A, the first driving spur gear 38A rotates and the first driven spur gear 39A rotates. When the first driven spur gear 39A rotates, the first drive bevel gear 41A rotates together with the first output shaft 40A. Then, the first driven bevel gear 42A meshing with the first drive bevel gear 41A rotates, and the connecting shaft 91 rotates. The rotational force of the connecting shaft 91 is transmitted to the axle 37 via the first drive pulley 92A, the first drive belt 94A, and the first driven pulley 93A, and the axle 37 rotates. On the other hand, when the second input shaft 25B rotates in the opposite direction to the first input shaft 25A, the second drive spur gear 38B rotates and the second driven spur gear 39B rotates. When the second driven spur gear 39B rotates, the second drive bevel gear 41B rotates together with the second output shaft 40B. Then, the second driven bevel gear 42B meshing with the second drive bevel gear 41B rotates, and the connecting shaft 91 rotates. The rotational force of the connecting shaft 91 is transmitted to the axle 37 via the second drive pulley 92B, the second drive belt 94B, and the second driven pulley 93B, and the axle 37 rotates.
 このように駆動輪103’にあっては、第一傘歯車機構14Aと車軸37の一端部との間に第一動力伝達機構81Aを設け、第二傘歯車機構14Bと車軸37の他端部との間に第二動力伝達機構81Bを設けている。従って、傘歯車機構14A,14Bの駆動力を動力伝達機構81A,81Bにより車軸37に伝達することができる。 Thus, in the driving wheel 103', the first power transmission mechanism 81A is provided between the first bevel gear mechanism 14A and one end of the axle 37, and the second bevel gear mechanism 14B and the other end of the axle 37 are connected. A second power transmission mechanism 81B is provided between. Therefore, the driving force of the bevel gear mechanisms 14A, 14B can be transmitted to the axle 37 by the power transmission mechanisms 81A, 81B.
 上述した実施形態の駆動輪103,103’は、同軸上に配置される第一入力軸25A及び第二入力軸25Bと、別軸上に配置される第一出力軸40A及び第二出力軸40Bと、第一入力軸25Aの回転力を第一出力軸40Aに伝達する第一平歯車機構13Aと、第二入力軸25Bの回転力を第二出力軸40Bに伝達する第二平歯車機構13Bと、車軸37に連結される車輪15と、第一出力軸40Aの回転力を車軸37の一端部に伝達する第一傘歯車機構14Aと、第二出力軸40Bの回転力を車軸37の他端部に伝達する第二傘歯車機構14Bと、車軸37を介して車輪15を旋回可能に支持する旋回軸35と、を備える。 The drive wheels 103, 103' of the above-described embodiment include a first input shaft 25A and a second input shaft 25B arranged coaxially, and a first output shaft 40A and a second output shaft 40B arranged on separate shafts. , a first spur gear mechanism 13A that transmits the rotational force of the first input shaft 25A to the first output shaft 40A, and a second spur gear mechanism 13B that transmits the rotational force of the second input shaft 25B to the second output shaft 40B. a wheel 15 connected to the axle 37; It has a second bevel gear mechanism 14B that transmits to the end portion and a turning shaft 35 that rotatably supports the wheel 15 via an axle 37 .
 そのため、駆動輪103,103’は、差動式の全方向移動機構を有する。即ち、駆動輪103は、第一入力軸25A及び第二入力軸25Bの回転力は、第一平歯車機構13A及び第二平歯車機構13Bを介して第一出力軸40A及び第二出力軸40Bに伝達され、第一出力軸40A及び第二出力軸40Bから第一傘歯車機構14A及び第二傘歯車機構14Bを介して車軸37の各端部に伝達される。ここで、駆動輪103は、第一入力軸25A及び第二入力軸25Bの回転数を調整することで、車輪15の回転と操舵を切替えることができる。そのため、駆動輪103は、車軸37の各端部にそれぞれ傘歯車機構14A,14Bを配置することから、車輪15への回転力の伝達系統を簡素化することとなり、構造の簡素化を図ることができ、低床化を図れる。 Therefore, the drive wheels 103, 103' have a differential omnidirectional movement mechanism. That is, the driving wheels 103 transmit the rotational force of the first input shaft 25A and the second input shaft 25B to the first output shaft 40A and the second output shaft 40B via the first spur gear mechanism 13A and the second spur gear mechanism 13B. , and is transmitted from the first output shaft 40A and the second output shaft 40B to the respective ends of the axle 37 via the first bevel gear mechanism 14A and the second bevel gear mechanism 14B. Here, the drive wheels 103 can switch between rotation and steering of the wheels 15 by adjusting the rotational speeds of the first input shaft 25A and the second input shaft 25B. Therefore, since the drive wheels 103 have the bevel gear mechanisms 14A and 14B arranged at the respective ends of the axle 37, the transmission system of the rotational force to the wheels 15 is simplified, thereby simplifying the structure. It is possible to achieve a low floor.
 特に、実施形態の駆動輪103,103’は、第一駆動部23A、及び当該第一駆動部23Aの駆動力を第一入力軸25Aに伝達する第一駆動ベルト27Aを含む第一ベルト駆動機構22Aと、第二駆動部23B、及び当該第二駆動部23Bの駆動力を第二入力軸25Bに伝達する第二駆動ベルト27Bを含む第二ベルト駆動機構22Bと、第一駆動ベルト27Aの張力変化から外力トルクを測定する第一トルク測定部28Aと、第二駆動ベルト27Bの張力変化から外力トルクを測定する第二トルク測定部28Bと、第一トルク測定部28Aによって測定される外力トルクに基づいて第一駆動部23Aを制御し、第二トルク測定部28Bによって測定される外力トルクに基づいて第二駆動部23Bを制御する制御装置105と、を備える。 In particular, the drive wheels 103, 103' of the embodiment are a first belt drive mechanism including a first drive portion 23A and a first drive belt 27A that transmits the drive force of the first drive portion 23A to the first input shaft 25A. 22A, a second belt driving mechanism 22B including a second driving portion 23B and a second driving belt 27B that transmits the driving force of the second driving portion 23B to the second input shaft 25B, and the tension of the first driving belt 27A. A first torque measurement unit 28A that measures the external force torque from changes, a second torque measurement unit 28B that measures the external force torque from changes in the tension of the second drive belt 27B, and the external force torque measured by the first torque measurement unit 28A. and a control device 105 that controls the first drive section 23A based on the external force torque measured by the second torque measurement section 28B and controls the second drive section 23B based on the external force torque measured by the second torque measurement section 28B.
 そのため、駆動輪103,103’は、上記差動式の全方向移動機構において、アシスト機能を付与できる。駆動輪103,103’は、第一トルク測定部28A、第二トルク測定部28B、及び制御装置105によって、オペレータの手元(例えば、台車100の取手部102)に入力装置を設けず、上記差動式の全方向移動機構において、アシスト機能を付与できる。 Therefore, the drive wheels 103, 103' can provide an assist function in the differential omnidirectional movement mechanism. The driving wheels 103 and 103' are controlled by the first torque measuring unit 28A, the second torque measuring unit 28B, and the control device 105 without providing an input device at the operator's hand (for example, the handle 102 of the truck 100). An assist function can be imparted to the dynamic omnidirectional movement mechanism.
 また、実施形態の駆動輪103,103’では、第一ベルト駆動機構22Aは、第一入力軸25Aに設けられた第一従動プーリ26Aと、第一駆動部23Aに設けられた第一駆動プーリ24Aとに第一駆動ベルト27Aを掛け回して構成され、第二ベルト駆動機構22Bは、第二入力軸25Bに設けられた第二従動プーリ26Bと、第二駆動部23Bに設けられた第二駆動プーリ24Bとに第二駆動ベルト27Bを掛け回して構成されており、第一トルク測定部28Aは、第一駆動ベルト27Aの張力変化から第一駆動ベルト27Aの上流側及び下流側の双方で外力トルクを測定し、第二トルク測定部28Bは、第二駆動ベルト27Bの張力変化から第二駆動ベルト27Bの上流側及び下流側の双方で外力トルクを測定する。そのため、駆動輪103,103’は、第一駆動ベルト27A及び第二駆動ベルト27Bの上流側及び下流側の双方の各外力トルクに基づいてオペレータが駆動輪103を動かそうとしている方向をより正確に判断でき、当該方向に応じたアシストトルクで各駆動部23A,23Bを制御できる。 In the drive wheels 103 and 103' of the embodiment, the first belt drive mechanism 22A includes a first driven pulley 26A provided on the first input shaft 25A and a first drive pulley provided on the first drive portion 23A. The second belt drive mechanism 22B includes a second driven pulley 26B provided on the second input shaft 25B and a second driven pulley 26B provided on the second drive section 23B. The second drive belt 27B is wound around the drive pulley 24B, and the first torque measurement unit 28A measures both the upstream side and the downstream side of the first drive belt 27A from changes in the tension of the first drive belt 27A. The external force torque is measured, and the second torque measurement unit 28B measures the external force torque both upstream and downstream of the second drive belt 27B from changes in the tension of the second drive belt 27B. Therefore, the drive wheels 103, 103' can more accurately determine the direction in which the operator intends to move the drive wheels 103 based on the respective external torques on both the upstream and downstream sides of the first drive belt 27A and the second drive belt 27B. can be determined, and each drive unit 23A, 23B can be controlled with an assist torque corresponding to the direction.
 また、実施形態の駆動輪103,103’では、車軸37の軸心O2に交差する鉛直方向に沿う車輪15の回転軸心O5が、旋回軸35の軸心O1に対して車軸37の軸心O2に直交する水平方向にずれて配置される。そのため、駆動輪103,103’は、車輪15を駆動しないとき、車輪15は水平方向から作用する外力により受動的に旋回することができる。即ち、台車100を自動走行及び自動操舵することができると共に、作業者が手動走行及び手動操舵することができる。 Further, in the drive wheels 103 and 103′ of the embodiment, the rotation axis O5 of the wheel 15 along the vertical direction intersecting the axis O2 of the axle 37 is positioned so that the axis O1 of the turning shaft 35 is offset from the axis O1 of the axle 37. They are staggered in the horizontal direction perpendicular to O2. Therefore, when the drive wheels 103 and 103' do not drive the wheels 15, the wheels 15 can passively turn by an external force acting from the horizontal direction. That is, the cart 100 can be automatically traveled and steered, and can be manually traveled and steered by the operator.
 また、実施形態の駆動輪103,103’では、第一出力軸40Aと第二出力軸40Bを車輪15に対して車軸37の軸心O2方向における両側に配置する。そのため、駆動輪103,103’は、回転力を車軸37における軸心O2方向の両側から入力することとなり、車輪15を操舵するための差動機構の簡素化を図ることができる。 Further, in the drive wheels 103, 103' of the embodiment, the first output shaft 40A and the second output shaft 40B are arranged on both sides of the axle 37 with respect to the wheel 15 in the axial center O2 direction. Therefore, the drive wheels 103 and 103' receive rotational force from both sides of the axle 37 in the direction of the axis O2, and the differential mechanism for steering the wheels 15 can be simplified.
 また、実施形態の駆動輪103,103’では、第一動力変換機構(第一傘歯車機構14A)と第二動力変換機構(第二傘歯車機構14B)を車輪15に対して車軸37の軸心O2方向における両側に配置する。そのため、駆動輪103,103’は、回転力を車軸37における軸心O2方向の両側から入力することとなり、車輪15を操舵するための差動機構の簡素化を図ることができる。 Further, in the drive wheels 103 and 103' of the embodiment, the first power conversion mechanism (first bevel gear mechanism 14A) and the second power conversion mechanism (second bevel gear mechanism 14B) are connected to the axles 37 of the wheels 15. They are arranged on both sides in the direction of the heart O2. Therefore, the drive wheels 103 and 103' receive rotational force from both sides of the axle 37 in the direction of the axis O2, and the differential mechanism for steering the wheels 15 can be simplified.
 また、実施形態の駆動輪103,103’では、第一動力変換機構(第一傘歯車機構14A)と第二動力変換機構(第二傘歯車機構14B)を車軸37の軸心O2方向に交差する鉛直方向における上方に配置する。そのため、駆動輪103,103’は、車軸37の軸心O2方向における両側に各傘歯車機構14A,14Bを配置する必要がなく、差動機構の小型化を図ることができる。 Further, in the drive wheels 103 and 103' of the embodiment, the first power conversion mechanism (first bevel gear mechanism 14A) and the second power conversion mechanism (second bevel gear mechanism 14B) intersect in the axial center O2 direction of the axle 37. placed vertically above the Therefore, the driving wheels 103, 103' do not need to arrange the bevel gear mechanisms 14A, 14B on both sides of the axle 37 in the direction of the axis O2, so that the size of the differential mechanism can be reduced.
 また、実施形態の駆動輪103,103’では、旋回軸35を第一入力軸25A及び第二入力軸25Bと同軸上に配置する。そのため、駆動輪103,103’は、小型化及び構造の簡素化を図ることができる。 Further, in the drive wheels 103, 103' of the embodiment, the turning shaft 35 is arranged coaxially with the first input shaft 25A and the second input shaft 25B. Therefore, the drive wheels 103, 103' can be made compact and structurally simplified.
 また、実施形態の駆動輪103,103’では、第一動力変換機構は、第一出力軸40Aの回転力を第一出力軸40Aに対して軸心方向の異なる車軸37の一端部に伝達するもので、第一傘歯車機構14A、第一はすば歯車機構17A、第一ウォーム歯車機構18A、第一冠歯車機構19A、または第一自在継手機構20Aのいずれか1つが適用され、第二動力変換機構は、第二出力軸40Bの回転力を第二出力軸40Bに対して軸心方向の異なる車軸37の他端部に伝達するもので、第二傘歯車機構14B、第二はすば歯車機構17B、第二ウォーム歯車機構18B、第二冠歯車機構19B、または第二自在継手機構20Bのいずれか1つが適用される。そのため、駆動輪103,103’は、様々な形態の動力変換機構を適用でき、車輪15への回転力の伝達系統を簡素化することとなり、構造の簡素化を図ることができ、低床化に寄与できる。 Further, in the drive wheels 103, 103' of the embodiment, the first power conversion mechanism transmits the rotational force of the first output shaft 40A to one end of the axle 37 having a different axial direction with respect to the first output shaft 40A. Any one of the first bevel gear mechanism 14A, the first helical gear mechanism 17A, the first worm gear mechanism 18A, the first crown gear mechanism 19A, or the first universal joint mechanism 20A is applied, and the second The power conversion mechanism transmits the rotational force of the second output shaft 40B to the other end of the axle 37 having a different axial direction with respect to the second output shaft 40B. Either one of the spring gear mechanism 17B, the second worm gear mechanism 18B, the second crown gear mechanism 19B, or the second universal joint mechanism 20B is applied. Therefore, the driving wheels 103 and 103' can be applied with various types of power conversion mechanisms, which simplifies the transmission system of the rotational force to the wheels 15, simplifies the structure, and lowers the floor. can contribute to
 また、実施形態の台車100は、駆動輪103,103’と、駆動輪103,103’が取付けられる台車本体101とを備える。そのため、台車100は、構造の簡素化を図ることができると共に、十分な最低地上高を確保することができる。 Further, the truck 100 of the embodiment includes driving wheels 103, 103' and a truck body 101 to which the driving wheels 103, 103' are attached. Therefore, the trolley 100 can be simplified in structure, and a sufficient minimum ground clearance can be ensured.
 13A 第一平歯車機構
 13B 第二平歯車機構
 14 動力変換機構
 14A 第一傘歯車機構(第一動力変換機構)
 14B 第二傘歯車機構(第二動力変換機構)
 15 車輪
 17 動力変換機構
 17A 第一はすば歯車機構(第一動力変換機構)
 17B 第二はすば歯車機構(第二動力変換機構)
 18 動力変換機構
 18A 第一ウォーム歯車機構(第一動力変換機構)
 18B 第二ウォーム歯車機構(第二動力変換機構)
 19 動力変換機構
 19A 第一冠歯車機構(第一動力変換機構)
 19B 第二冠歯車機構(第二動力変換機構)
 20 動力変換機構
 20A 第一自在継手機構(第一動力変換機構)
 20B 第二自在継手機構(第二動力変換機構)
 22A 第一ベルト駆動機構
 22B 第二ベルト駆動機構
 23A 第一駆動部
 23B 第二駆動部
 24A 第一駆動プーリ
 24B 第二駆動プーリ
 25A 第一入力軸
 25B 第二入力軸
 26A 第一従動プーリ
 26B 第二従動プーリ
 27A 第一駆動ベルト
 27B 第二駆動ベルト
 28 トルク測定部
 28A 第一トルク測定部
 28B 第二トルク測定部
 35 旋回軸
 37 車軸
 40A 第一出力軸
 40B 第二出力軸
 100 台車
 101 台車本体
 103,103’ 駆動輪
 105 制御装置
13A first spur gear mechanism 13B second spur gear mechanism 14 power conversion mechanism 14A first bevel gear mechanism (first power conversion mechanism)
14B Second bevel gear mechanism (second power conversion mechanism)
15 wheel 17 power conversion mechanism 17A first helical gear mechanism (first power conversion mechanism)
17B second helical gear mechanism (second power conversion mechanism)
18 power conversion mechanism 18A first worm gear mechanism (first power conversion mechanism)
18B second worm gear mechanism (second power conversion mechanism)
19 power conversion mechanism 19A first crown gear mechanism (first power conversion mechanism)
19B Second crown gear mechanism (second power conversion mechanism)
20 power conversion mechanism 20A first universal joint mechanism (first power conversion mechanism)
20B second universal joint mechanism (second power conversion mechanism)
22A first belt drive mechanism 22B second belt drive mechanism 23A first drive section 23B second drive section 24A first drive pulley 24B second drive pulley 25A first input shaft 25B second input shaft 26A first driven pulley 26B second Driven pulley 27A First drive belt 27B Second drive belt 28 Torque measurement part 28A First torque measurement part 28B Second torque measurement part 35 Turning shaft 37 Axle 40A First output shaft 40B Second output shaft 100 Truck 101 Truck body 103, 103' drive wheel 105 control device

Claims (9)

  1.  同軸上に配置される第一入力軸及び第二入力軸と、
     別軸上に配置される第一出力軸及び第二出力軸と、
     前記第一入力軸の回転力を前記第一出力軸に伝達する第一平歯車機構と、
     前記第二入力軸の回転力を前記第二出力軸に伝達する第二平歯車機構と、
     車軸に連結される車輪と、
     前記第一出力軸の回転力を前記車軸の一端部に伝達する第一動力変換機構と、
     前記第二出力軸の回転力を前記車軸の他端部に伝達する第二動力変換機構と、
     前記車軸を介して前記車輪を旋回可能に支持する旋回軸と、
     第一駆動部、及び当該第一駆動部の駆動力を前記第一入力軸に伝達する第一駆動ベルトを含む第一ベルト駆動機構と、
     第二駆動部、及び当該第二駆動部の駆動力を前記第二入力軸に伝達する第二駆動ベルトを含む第二ベルト駆動機構と、
     前記第一駆動ベルトの張力変化から外力トルクを測定する第一トルク測定部と、
     前記第二駆動ベルトの張力変化から外力トルクを測定する第二トルク測定部と、
     前記第一トルク測定部によって測定される外力トルクに基づいて前記第一駆動部を制御し、前記第二トルク測定部によって測定される外力トルクに基づいて前記第二駆動部を制御する制御装置と、
     を備える、駆動輪。
    a first input shaft and a second input shaft arranged coaxially;
    a first output shaft and a second output shaft arranged on separate shafts;
    a first spur gear mechanism that transmits the rotational force of the first input shaft to the first output shaft;
    a second spur gear mechanism that transmits the rotational force of the second input shaft to the second output shaft;
    a wheel coupled to an axle;
    a first power conversion mechanism that transmits the rotational force of the first output shaft to one end of the axle;
    a second power conversion mechanism that transmits the rotational force of the second output shaft to the other end of the axle;
    a turning shaft that rotatably supports the wheel via the axle;
    a first belt drive mechanism including a first drive section and a first drive belt that transmits the driving force of the first drive section to the first input shaft;
    a second belt drive mechanism including a second drive section and a second drive belt that transmits the driving force of the second drive section to the second input shaft;
    a first torque measuring unit for measuring an external force torque from a change in tension of the first drive belt;
    a second torque measuring unit that measures an external force torque from a change in tension of the second drive belt;
    a control device that controls the first drive section based on the external force torque measured by the first torque measurement section, and controls the second drive section based on the external force torque measured by the second torque measurement section; ,
    A drive wheel.
  2.  前記第一ベルト駆動機構は、前記第一入力軸に設けられた第一従動プーリと、前記第一駆動部に設けられた第一駆動プーリとに前記第一駆動ベルトを掛け回して構成され、
     前記第二ベルト駆動機構は、前記第二入力軸に設けられた第二従動プーリと、前記第二駆動部に設けられた第二駆動プーリとに前記第二駆動ベルトを掛け回して構成されており、
     前記第一トルク測定部は、前記第一駆動ベルトの張力変化から前記第一駆動ベルトの上流側及び下流側の双方で外力トルクを測定し、
     前記第二トルク測定部は、前記第二駆動ベルトの張力変化から前記第二駆動ベルトの上流側及び下流側の双方で外力トルクを測定する、
     請求項1に記載の駆動輪。
    The first belt drive mechanism is configured by winding the first drive belt around a first driven pulley provided on the first input shaft and a first drive pulley provided on the first drive unit,
    The second belt drive mechanism is configured by winding the second drive belt around a second driven pulley provided on the second input shaft and a second drive pulley provided on the second drive section. cage,
    The first torque measuring unit measures external force torque on both the upstream side and the downstream side of the first driving belt from changes in the tension of the first driving belt,
    The second torque measurement unit measures the external force torque on both the upstream side and the downstream side of the second drive belt from the change in tension of the second drive belt,
    A drive wheel according to claim 1 .
  3.  前記車軸の軸心に交差して鉛直方向に沿う前記車輪の回転軸心が、前記旋回軸の軸心に対して前記車軸の軸心に直交する水平方向にずれて配置される、請求項1に記載の駆動輪。 2. The center of rotation of the wheel, which extends in the vertical direction and intersects the center of the axle, is displaced from the center of the turning shaft in the horizontal direction which intersects the center of the axle. drive wheels described in .
  4.  前記第一出力軸と前記第二出力軸は、前記車軸の軸心方向における両側に配置される、請求項1に記載の駆動輪。 The drive wheel according to claim 1, wherein the first output shaft and the second output shaft are arranged on both sides of the axle in the axial direction.
  5.  前記第一動力変換機構と前記第二動力変換機構は、前記車軸の軸心方向における両側に配置される、請求項1に記載の駆動輪。 The drive wheel according to claim 1, wherein the first power conversion mechanism and the second power conversion mechanism are arranged on both sides of the axle in the axial direction.
  6.  前記第一動力変換機構と前記第二動力変換機構は、前記車軸の軸心方向に交差する鉛直方向における上方に配置される、請求項5に記載の駆動輪。 The drive wheel according to claim 5, wherein said first power conversion mechanism and said second power conversion mechanism are arranged above in a vertical direction crossing the axial direction of said axle.
  7.  前記旋回軸は、前記第一入力軸及び前記第二入力軸と同軸上に配置される、請求項1に記載の駆動輪。 The drive wheel according to claim 1, wherein the pivot shaft is arranged coaxially with the first input shaft and the second input shaft.
  8.  前記第一動力変換機構は、前記第一出力軸の回転力を前記第一出力軸に対して軸心方向の異なる前記車軸の一端部に伝達するもので、傘歯車機構、はすば歯車機構、ウォーム歯車機構、冠歯車機構、または自在継手機構のいずれか1つが適用され、前記第二動力変換機構は、前記第二出力軸の回転力を前記第二出力軸に対して軸心方向の異なる前記車軸の他端部に伝達するもので、傘歯車機構、はすば歯車機構、ウォーム歯車機構、冠歯車機構、または自在継手機構のいずれか1つが適用される、請求項1に記載の駆動輪。 The first power conversion mechanism transmits the rotational force of the first output shaft to one end of the axle having a different axial direction with respect to the first output shaft, and is a bevel gear mechanism or a helical gear mechanism. , a worm gear mechanism, a crown gear mechanism, or a universal joint mechanism is applied, and the second power conversion mechanism converts the rotational force of the second output shaft to the axial direction of the second output shaft. The transmission to the other end of the different axle shaft, according to claim 1, wherein any one of a bevel gear mechanism, a helical gear mechanism, a worm gear mechanism, a crown gear mechanism, or a universal joint mechanism is applied. drive wheel.
  9.  請求項1から8のいずれか1項に記載の駆動輪と、
     前記駆動輪が取付けられる台車本体と、
     を備える台車。
    A driving wheel according to any one of claims 1 to 8;
    a truck body to which the driving wheels are attached;
    A trolley with a
PCT/JP2023/005207 2022-02-15 2023-02-15 Drive wheel and cart WO2023157872A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022021042 2022-02-15
JP2022-021042 2022-02-15

Publications (1)

Publication Number Publication Date
WO2023157872A1 true WO2023157872A1 (en) 2023-08-24

Family

ID=87578261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005207 WO2023157872A1 (en) 2022-02-15 2023-02-15 Drive wheel and cart

Country Status (1)

Country Link
WO (1) WO2023157872A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5376347B2 (en) * 2009-06-19 2013-12-25 国立大学法人豊橋技術科学大学 Steerable drive mechanism and omnidirectional vehicle
JP2019089493A (en) * 2017-11-15 2019-06-13 日本精工株式会社 Driving wheel and carriage
JP2020019361A (en) * 2018-07-31 2020-02-06 日本精工株式会社 Driving wheel and dolly
JP2020024033A (en) * 2018-07-31 2020-02-13 日本精工株式会社 Drive wheel and bogie

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5376347B2 (en) * 2009-06-19 2013-12-25 国立大学法人豊橋技術科学大学 Steerable drive mechanism and omnidirectional vehicle
JP2019089493A (en) * 2017-11-15 2019-06-13 日本精工株式会社 Driving wheel and carriage
JP2020019361A (en) * 2018-07-31 2020-02-06 日本精工株式会社 Driving wheel and dolly
JP2020024033A (en) * 2018-07-31 2020-02-13 日本精工株式会社 Drive wheel and bogie

Similar Documents

Publication Publication Date Title
US8590664B2 (en) Steerable drive mechanism and omnidirectional moving vehicle
US6948576B2 (en) Driving and transmission unit for use in rolling vehicles
EP1693599A1 (en) Rotation transmitting apparatus and vehicle steering apparatus
JP7198445B2 (en) Drive wheel and trolley
WO2023157872A1 (en) Drive wheel and cart
CN206243331U (en) Omni-mobile balance car based on Mecanum wheel design
JP7229537B2 (en) Omnidirectional mobile device and its attitude control method
JP6837910B2 (en) Omni-directional moving vehicle
JP5485643B2 (en) Control device for transfer device
JP4953359B2 (en) Automated guided vehicle
JP7298783B2 (en) Drive wheel and trolley
CN210822443U (en) Steering system for comb-tooth type unmanned carrier
JPS6327214B2 (en)
JP2023037215A (en) Driving wheel and dolly
US20240067248A1 (en) Drive wheel and cart
JP2024014606A (en) Drive wheels and trolleys
JP6808884B1 (en) Automated guided vehicle
WO2018003886A1 (en) Omnidirectional movement device and orientation control method
JP2009083660A (en) Traveling truck
JP7327074B2 (en) Drive wheels, trolleys and equipment
JP2912486B2 (en) Low lift truck
JPH03208731A (en) Transfer
JP2982831B2 (en) Steering angle correction device
JPH0516839A (en) Four-wheel type riding farm working controller
CN111703499A (en) Steering mechanism, steering system and vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23756397

Country of ref document: EP

Kind code of ref document: A1