WO2023157730A1 - Biaxially oriented polyester film - Google Patents

Biaxially oriented polyester film Download PDF

Info

Publication number
WO2023157730A1
WO2023157730A1 PCT/JP2023/004185 JP2023004185W WO2023157730A1 WO 2023157730 A1 WO2023157730 A1 WO 2023157730A1 JP 2023004185 W JP2023004185 W JP 2023004185W WO 2023157730 A1 WO2023157730 A1 WO 2023157730A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
biaxially oriented
polyester film
oriented polyester
stress
Prior art date
Application number
PCT/JP2023/004185
Other languages
French (fr)
Japanese (ja)
Inventor
考道 後藤
信之 真鍋
昇 玉利
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2024501321A priority Critical patent/JPWO2023157730A1/ja
Publication of WO2023157730A1 publication Critical patent/WO2023157730A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a polyester film, having excellent cold formability, and particularly to a polyester film that can be suitably used for applications where molding is performed after laminating metal foil, such as battery exteriors and pharmaceutical packaging.
  • Aromatic polyesters typified by polyethylene terephthalate (PET), have excellent mechanical properties and chemical resistance, and are widely used as molded products such as fibers and films.
  • PET resin is inexpensive and excellent in terms of sanitation, so it is widely used as food containers and beverage containers.
  • Laminates for cold forming generally have a structure such as polyethylene terephthalate film/biaxially oriented nylon film/aluminum foil/polypropylene film. (See Patent Document 1, for example)
  • the flexibility of the resin film is one of the factors that affect the moldability during cold forming. If the resin film has low flexibility, a strong load is applied during elongation during cold forming, and pinholes and delamination may occur. Conversely, if the resin film has too high flexibility, the effect of protecting the laminate containing the metal foil as the base material is reduced, and the physical properties of the resulting laminate are deteriorated. Therefore, it is important that the resin film has flexibility that is neither too high nor too low.
  • Patent Document 2 As a means for solving these problems, for example, according to Patent Document 2, at least a substrate layer, an adhesive layer, a metal layer, and a sealant layer are laminated in order, and the substrate layer is formed in the MD direction.
  • the sum of the stress value A at 50% elongation / stress at 5% elongation in the TD direction and the stress value B at 50% elongation / 5% elongation in the TD direction (A + B) as a specific range It is disclosed that good moldability can be obtained by
  • the above-described cold forming tends to pose a problem of so-called springback, a phenomenon in which a part of the formed product returns from the shape after forming to the shape before forming after drawing.
  • springback may cause a problem that the dimensional accuracy of the shape after draw forming becomes insufficient.
  • the surrounding part since the surrounding part is strongly pulled during the molding process, the surrounding base material layer that has been molded and processed tends to return to its original state, causing warping and lowering the yield in post-processing. I was afraid I might let it go.
  • Biomass is an organic compound that is photosynthesised from carbon dioxide and water, and is a so-called carbon-neutral renewable energy that is regenerated into carbon dioxide and water by using it.
  • biomass plastics using these biomass as raw materials has progressed rapidly, and attempts have been made to produce polyesters, which are general-purpose polymer materials, from these biomass raw materials.
  • the present invention was made against the background of such problems of the prior art. That is, the object of the present invention is to provide a polyester film that not only has excellent cold formability, but also suppresses deterioration in dimensional accuracy after forming due to springback, and has excellent warpage resistance, and uses biomass-derived raw materials. To provide a carbon-neutral polyester film.
  • the present invention consists of the following configurations.
  • the puncture strength measured according to JIS Z 7102 is 0.45 N/ ⁇ m or more and 0.80 N/ ⁇ m or less,
  • the stress attenuation rate represented by the following formula (1) is 15.0% or more in both the MD direction and the TD direction
  • Formula (1) Stress attenuation rate (%) 100 ⁇ ( ⁇ 0- ⁇ 1)/ ⁇ 0
  • ⁇ 0 represents the value of the tensile stress immediately after applying a tensile force to the film at a tensile speed of 200 mm / min and the 50% tensile strain is applied
  • ⁇ 1 is the tensile stress from ⁇ 0 to 50%.
  • a laminate comprising the biaxially oriented polyester film of any one of [1] to [4], a gas barrier layer and a sealant layer.
  • a battery exterior material comprising the laminate according to [5] or [6].
  • the metal foil can appropriately conform to the shape of the mold during molding. Since it is excellent in springback and warpage resistance after molding, it is excellent in dimensional accuracy in molding and can contribute to improvement in productivity.
  • a carbon-neutral polyester film using a biomass-derived raw material it is possible to contribute to the reduction of the environmental load in that it does not affect the increase or decrease of carbon dioxide on the ground.
  • the biaxially oriented polyester film in the present invention is a film formed from a polyester resin composition containing, as main constituents, terephthalic acid as a dicarboxylic acid component and ethylene glycol as a diol component.
  • containing as a main component means that the content of the component in the polyester resin composition is 80 mol% or more based on 100 mol% of the total constituent components of the polyester resin, and 90 mol. % or more, more preferably 95 mol % or more, most preferably 97 mol % or more.
  • a polyester resin containing biomass-derived ethylene glycol as a constituent can be used as a diol component.
  • All of the ethylene glycol may be biomass-derived ethylene glycol, or a mixture of biomass-derived and fossil fuel-derived ethylene glycol may be used.
  • biomass-derived ethylene glycol By using biomass-derived ethylene glycol, the degree of biomass in the film can be increased, making it possible to obtain a carbon-neutral film.
  • biomass-derived ethylene glycol ethanol produced from biomass (biomass ethanol) can be used as a raw material.
  • Biomass-derived ethylene glycol can be obtained from biomass ethanol by a conventionally known method, such as a method of producing ethylene glycol via ethylene oxide.
  • polyester resins may be copolymerized with other components as long as the object of the present invention is not impaired.
  • copolymerizable components include dicarboxylic acid components such as isophthalic acid, naphthalenedicarboxylic acid, 4,4-diphenyldicarboxylic acid, adipic acid, sebacic acid and ester-forming derivatives thereof.
  • Diol components include diethylene glycol, hexamethylene glycol, neopentyl glycol, and cyclohexanedimethanol.
  • polyoxyalkylene glycols such as polyethylene glycol and polypropylene glycol.
  • the amount of copolymerization is preferably 10 mol % or less, more preferably 5 mol % or less, most preferably 3 mol % or less per constituent repeating unit.
  • the polyester resin composition may contain a single polyester resin, or may contain a plurality of polyester resins. Moreover, resins other than polyester resin may be included.
  • the intrinsic viscosity of the polyester resin composition is preferably in the range of 0.50 to 0.90 dl/g, more preferably in the range of 0.55 to 0.80 dl/g, from the viewpoint of film-forming properties and recycling properties. is.
  • the polyester resin composition may contain conventionally known additives such as lubricants, stabilizers, colorants, antioxidants, antistatic agents, and ultraviolet absorbers.
  • the lubricant can adjust the dynamic friction coefficient of the film, and includes inorganic lubricants such as silica, calcium carbonate, and alumina, as well as organic lubricants.
  • inorganic lubricant silica and calcium carbonate are preferred, and porous silica is most preferred from the viewpoint of achieving both transparency and lubricity.
  • the lower limit of the lubricant content in the biaxially oriented polyester film of the present invention is preferably 400 mass ppm, more preferably 600 mass ppm. By making it 500 mass ppm or more, it is possible to improve the slipperiness of the film.
  • the upper limit of the lubricant content is preferably 1500 mass ppm, more preferably 1200 mass ppm. By making it 1500 mass ppm or less, the transparency of the film can be improved.
  • the content of biomass-derived carbon measured by radioactive carbon (C14) is preferably 10% or more and 20% or less based on the total carbon in the polyester film. Since carbon dioxide in the atmosphere contains a certain proportion of C14 (105.5 pMC), the C14 content in plants that grow by taking in carbon dioxide in the atmosphere, such as corn, is also about 105.5 pMC. It is known. It is also known that fossil fuels contain almost no C14. Therefore, by measuring the ratio of C14 contained in the total carbon atoms in the polyester, the ratio of biomass-derived carbon can be calculated.
  • the method for obtaining the biaxially oriented polyester film of the present invention is not particularly limited, and can be appropriately selected from a T-die method, an inflation method, and the like.
  • a representative manufacturing process of the T-die method will be described.
  • the T-die method (1) a process of melt extruding a polyester resin composition into a sheet and cooling it on a cooling roll to form an unstretched sheet, (2) the unstretched sheet that has been molded is processed in the MD direction (longitudinal direction).
  • the heat set film It includes a thermal relaxation step (sometimes referred to as a relaxation step) for removing residual strain, and (5) a cooling step for cooling the film after thermal relaxation.
  • the film of the present invention may have a single layer structure of at least one layer, or may have a laminated structure of two or more layers. It may be two layers, three layers, four layers, or five layers.
  • the upper limit of the cooling roll temperature is preferably 40°C, more preferably 20°C or less.
  • the lower limit of the chill roll temperature is preferably 0°C.
  • the temperature is 0°C or higher, the effect of suppressing crystallization when the molten polyester resin composition is cooled and solidified can be sufficiently exhibited.
  • the cooling roll temperature is within the above range, it is preferable to lower the humidity of the environment around the cooling roll to prevent dew condensation.
  • the thickness of the unstretched sheet is preferably in the range of 15-2500 ⁇ m. It is more preferably 600 ⁇ m or less, and most preferably 400 ⁇ m or less.
  • the stretching method may be simultaneous biaxial stretching or sequential biaxial stretching.
  • the sequential biaxial stretching will be described below as an example.
  • the lower limit of the draw ratio in the MD direction is preferably 2.5 times, more preferably 2.8 times, and particularly preferably 3.1 times. If it is 2.5 times or more, not only will the mechanical strength of the film be good, but also the thickness unevenness will be good, leading to an improvement in the winding quality of the roll.
  • the upper limit of the draw ratio in the MD direction is preferably 5.0 times, more preferably 4.5 times, and particularly preferably 4.0 times. By setting the draw ratio in the MD direction to 5.0 times or less, it is possible to suppress the increase in springback and curl after molding due to excessive orientation of the film.
  • the temperature during stretching in the MD direction is preferably in the range of 80 to 130°C. If the stretching temperature in the MD direction is lower than 80° C., the orientation of the film becomes too high, which may increase springback and curl after molding. On the other hand, if the stretching temperature in the MD direction is higher than 130° C., the orientation in the MD direction will be low, so there is a possibility that the formability will deteriorate.
  • a method of stretching in the MD direction a method of stretching between rolls while heating a plurality of rolls or a method of heating and stretching with an infrared heater or the like is used.
  • the method of heating and stretching with an infrared heater or the like is preferable from the viewpoint that a high temperature can be easily obtained, local heating can be easily performed, and flaws caused by rolls can be reduced.
  • a method of stretching between rolls while heating a plurality of rolls is used, a method of multistage stretching between a plurality of rolls is preferable.
  • the number of rolls for multistage stretching is preferably 2 or more, more preferably 3 or more.
  • the stretching step it is preferable that there is a relaxation step in the MD direction (hereinafter also referred to as MD relaxation) between the stretching step in the MD direction and the stretching step in the TD direction following the stretching step in the MD direction.
  • the lower limit of the MD relaxation rate is preferably 1%, more preferably 3%, particularly preferably 5%.
  • the upper limit of the MD relaxation rate is preferably 10%, more preferably 8%, particularly preferably 6%.
  • the method of MD relaxation is not particularly limited, for example, there is a method of applying relaxation treatment using a speed difference between rolls after heating with a hot air heater.
  • the lower limit of the stretching temperature in the TD direction is preferably 90°C, more preferably 100°C, and particularly preferably 110°C. When the temperature is 90° C. or higher, the stretching stress can be reduced, so that springback and curling after molding can be suppressed.
  • the upper limit of the stretching temperature in the TD direction is preferably 140°C, more preferably 130°C, and particularly preferably 120°C. If the stretching temperature in the TD exceeds 140° C., not only the film formability is lowered, but also the orientation of the obtained film in the TD direction is weakened, so that the moldability may be lowered.
  • the lower limit of the draw ratio in the TD direction is preferably 2.5 times, more preferably 3.0 times, and particularly preferably 3.5 times. When it is 2.5 times or more, not only the mechanical strength and thickness unevenness of the film are improved, but also the moldability is improved.
  • the upper limit of the draw ratio in the TD direction is preferably 5.0 times, more preferably 4.5 times, and particularly preferably 4.0 times. By making it 5.0 times or less, it is possible to suppress an increase in the orientation in the TD direction and suppress the occurrence of springback and curl after molding.
  • multistage stretching can be preferably used in addition to the generally used linear stretching pattern in which the stretching ratio increases linearly.
  • Multi-stage drawing is a normal one-stage drawing, that is, a linear drawing pattern, as shown in FIG. can do. As a result, even if the draw ratio is the same, the orientation in the TD direction can be prevented from becoming too high, and springback and curling after molding can be suppressed.
  • the multi-stage stretching in the TD direction is preferably 2-stage stretching or more and 5-stage stretching or less.
  • Multi-stage stretching is preferable because it is possible to change the stretching stress by changing each stretching temperature, and the stretching stress during stretching in the TD direction can be reduced. If the stretching is two-stage or more, the stretching stress can be reduced, and even if the stretching ratio is the same, it is possible to suppress the orientation in the TD direction from becoming too high, and it is possible to suppress springback and curling after molding. . If the drawing is 5 stages or less, it is possible to prevent the equipment from becoming too large. In the multi-stage stretching, it is preferable to adopt a temperature pattern in which a temperature difference of 2° C.
  • a zone having a fixed length can be appropriately provided after each stretching step.
  • the internal stress generated during drawing is relieved in the fixed-length zone, so that the drawing stress in the next drawing can be further reduced, and the same draw ratio can be used. Even if there is, it is possible to suppress the orientation in the TD direction from becoming too high, and it is possible to suppress springback and curling after molding.
  • the lower limit of the heat setting temperature in the heat setting step is preferably 170°C, more preferably 180°C, and particularly preferably 190°C.
  • a heat shrinkage rate can be made small as it is 170 degreeC or more.
  • the upper limit of the heat setting temperature is preferably 230°C, more preferably 220°C, and particularly preferably 210°C. When the temperature is 230° C. or less, it is possible to suppress a decrease in mechanical strength due to brittleness of the biaxially oriented polyester film.
  • the lower limit of the relaxation rate in the TD direction in the thermal relaxation step is preferably 0.5%, more preferably 1.0%, and particularly preferably 2.0%. When it is 0.5% or more, the heat shrinkage rate in the TD direction can be kept low.
  • the upper limit of the relaxation rate in the TD direction is preferably 10%, more preferably 8%, particularly preferably 6%. If it is 10% or less, it is possible to prevent the occurrence of slackness and the like, and it is possible to improve the flatness.
  • the lower limit of the thickness of the biaxially oriented polyester film of the present invention is preferably 5 ⁇ m, more preferably 10 ⁇ m. By setting the thickness to 5 ⁇ m or more, good mechanical properties and moldability can be obtained.
  • the upper limit of the thickness of the biaxially oriented polyester film of the present invention is preferably 100 ⁇ m, more preferably 70 ⁇ m, and particularly preferably 40 ⁇ m.
  • the lower limit of the puncture strength of the biaxially oriented polyester film of the present invention is preferably 0.45 N/ ⁇ m, more preferably 0.50 N/ ⁇ m. Good moldability can be obtained when the puncture strength is 0.45 N/ ⁇ m or more.
  • the upper limit of the puncture strength of the biaxially oriented polyester film of the present invention is 0.80 N/ ⁇ m. When the puncture strength exceeds 0.80 N/ ⁇ m, the effect of improving the formability is saturated.
  • the piercing strength (unit: N/ ⁇ m) in the present invention means the strength (unit: N ) divided by the film thickness (unit ⁇ m).
  • the lower limit of the heat shrinkage rate in the MD and TD directions of the biaxially oriented polyester film of the present invention is preferably 0.1%, more preferably 0.2%, and particularly preferably 0.3%.
  • the upper limit of the heat shrinkage rate in the MD and TD directions is preferably 2.5%, more preferably 2.0%, and particularly preferably 1.8%. When it is 2.5% or less, it is possible to suppress the dimensional change when heated in the secondary processing step and reduce the occurrence of wrinkles.
  • the thickness unevenness in the TD direction of the biaxially oriented polyester film of the present invention is preferably 18% or less, more preferably 16% or less, still more preferably 14% or less. When it is 18% or less, the winding quality of the roll becomes good.
  • the haze of the biaxially oriented polyester film of the present invention is preferably 5.0% or less, more preferably 3.0% or less, still more preferably 2.5% or less. A content of 5.0% or less is preferable because the print looks beautiful.
  • the stress attenuation rate represented by the following formula (1) is preferably 15% or more in both the MD direction and the TD direction. % or more is more preferable.
  • Formula (1) Stress decay rate (%) after holding for 2 seconds 100 x ( ⁇ 0- ⁇ 1)/ ⁇ 0
  • ⁇ 0 represents the value of the tensile stress of the film immediately after applying a tensile force to the film at a tensile speed of 200 mm / min and the 50% tensile strain is applied
  • ⁇ 1 is ⁇ 0 to 50 % tensile strain is shown for 2 seconds.
  • the stress at 30% elongation (F30 value) in the MD direction of the film at 25 ° C. is Y (MD)
  • the stress at 30% elongation in the TD direction (F30 value) is Y (TD )
  • Y (MD) By setting the value of Y (MD) to 125 MPa or more, excellent moldability can be obtained. On the other hand, by setting the value of Y (MD) to 155 MPa or less, the stress of the film after molding is suppressed from becoming too large, the springback and warpage resistance after molding are reduced, and good moldability is achieved. Obtainable. Similarly, by setting the Y(TD) value to 140 MPa or more, excellent moldability can be obtained. By setting the value of Y(TD) to 190 MPa or less, the stress of the film after molding is suppressed from becoming too large, the springback and warpage resistance after molding are reduced, and good moldability is obtained. can be done.
  • the stress at 3% elongation (F3 value) in the MD direction of the film at 25 ° C. is X (MD)
  • the stress at 3% elongation (F3 value) in the TD direction is X (TD )
  • the value of Y (MD) / X (MD) is Z (MD)
  • the value of Y (TD) / X (TD) is Z (TD)
  • the following formulas (4) and (5) is preferably satisfied.
  • the biaxially oriented polyester film of the present invention preferably has a coefficient of dynamic friction ⁇ d with a metal surface of 0.10 or more and 0.50 or less.
  • these structures are molded by male-female press molding, and the coefficient of dynamic friction ⁇ d between the film and metal is 0.10.
  • the coefficient of dynamic friction with metal indicates the coefficient of dynamic friction between any surface of the film and SUS304-#400 mirror-finished material. The dynamic friction coefficient can be controlled by the content of the lubricant added to the film.
  • a printed layer may be laminated on the biaxially oriented polyester film of the present invention.
  • the printing ink for forming the printing layer water-based and solvent-based resin-containing printing inks can be preferably used.
  • Resins used in printing inks include acrylic resins, urethane resins, polyester resins, vinyl chloride resins, vinyl acetate copolymer resins, and mixtures thereof.
  • Known additives such as antistatic agents, light blocking agents, ultraviolet absorbers, plasticizers, lubricants, fillers, colorants, stabilizers, lubricants, antifoaming agents, cross-linking agents, anti-blocking agents, and antioxidants are added to printing inks. agents may be included.
  • the printing method for providing the printed layer is not particularly limited, and known printing methods such as offset printing, gravure printing, and screen printing can be used.
  • a known drying method such as hot air drying, hot roll drying, or infrared drying can be used.
  • the present invention further provides a laminate in which a biaxially oriented polyester film is provided with an inorganic thin film layer or a gas barrier layer such as a metal foil.
  • the inorganic thin film layer is a thin film made of metal or inorganic oxide.
  • the material for forming the inorganic thin film layer is not particularly limited as long as it can be formed into a thin film. Oxides are preferred. In particular, a composite oxide of silicon oxide and aluminum oxide is preferable from the viewpoint of achieving both flexibility and denseness of the thin film layer.
  • the mixing ratio of silicon oxide and aluminum oxide is preferably in the range of 20 to 70% by mass of Al in terms of the metal content.
  • the inorganic thin film layer can be softened, and it is possible to suppress deterioration of the gas barrier properties due to destruction of the thin film during secondary processing such as printing and lamination.
  • silicon oxide means various silicon oxides such as SiO and SiO 2 or mixtures thereof
  • aluminum oxide means various aluminum oxides such as AlO and AL 2 O 3 or mixtures thereof.
  • the film thickness of the inorganic thin film layer is usually 1 to 100 nm, preferably 5 to 50 nm.
  • the film thickness of the inorganic thin film layer is 1 nm or less, it becomes easier to obtain more satisfactory gas barrier properties.
  • it is 100 nm or less, it is advantageous in terms of bending resistance and manufacturing cost.
  • the method for forming the inorganic thin film layer is not particularly limited. Laws should be adopted accordingly.
  • a typical method for forming an inorganic thin film layer will be described below using a silicon oxide/aluminum oxide thin film as an example.
  • a vacuum deposition method when a vacuum deposition method is employed, a mixture of SiO 2 and Al 2 O 3 or a mixture of SiO 2 and Al is preferably used as the deposition raw material.
  • Particles are usually used as these vapor deposition raw materials, and the size of each particle is preferably such that the pressure during vapor deposition does not change, and the preferred particle diameter is 1 to 5 mm.
  • Methods such as resistance heating, high-frequency induction heating, electron beam heating, and laser heating can be employed for heating.
  • film formation conditions can be arbitrarily changed, such as applying a bias to the object to be vapor-deposited (laminated film to be vapor-deposited) or heating or cooling the object to be vapor-deposited.
  • vapor deposition material, reaction gas, bias of the object to be vapor-deposited, heating/cooling, etc. can be similarly changed when adopting the sputtering method or the CVD method.
  • a printed layer may be laminated on the inorganic thin film layer.
  • a gas barrier layer made of a metal oxide is not a completely dense film, and is dotted with minute defects.
  • the resin in the protective compatible resin composition penetrates into the defective portions of the metal oxide layer, As a result, the effect of stabilizing the gas barrier property is obtained.
  • the gas barrier properties of the laminated film are greatly improved.
  • Examples of the protective layer include resins such as urethane, polyester, acrylic, titanium, isocyanate, imine, and polybutadiene to which curing agents such as epoxy, isocyanate, and melamine are added.
  • Examples of the solvent (solvent) used for forming the protective layer include aromatic solvents such as benzene and toluene; alcohol solvents such as methanol and ethanol; ketone solvents such as acetone and methyl ethyl ketone; ethyl acetate and butyl acetate. ester-based solvents such as ethylene glycol monomethyl ether; and polyhydric alcohol derivatives such as ethylene glycol monomethyl ether.
  • the metal foil used for the gas barrier layer various metal foils such as aluminum and stainless steel can be used, and aluminum foil is preferable in terms of workability such as moisture resistance and extensibility, and cost.
  • a general soft aluminum foil can be used as the aluminum foil.
  • aluminum foil containing iron is preferable from the viewpoint of excellent pinhole resistance and extensibility during molding.
  • the iron content in the iron-containing aluminum foil (100% by mass) is preferably 0.1 to 9.0% by mass, more preferably 0.5 to 2.0% by mass. If the iron content is at least the lower limit, the pinhole resistance and spreadability are excellent. If the iron content is 9.0% by mass or less, the flexibility is excellent.
  • the thickness of the metal foil is preferably 9 to 200 ⁇ m, more preferably 15 to 100 ⁇ m, from the viewpoints of barrier properties, pinhole resistance and workability.
  • the laminate of the present invention may be laminated with layers of other materials.
  • a method of laminating the biaxially oriented polyester film after film formation and a method of laminating the film during film formation can be employed.
  • the laminate of the present invention can be used as a packaging material for cold molding by further forming a heat-sealable resin layer called a sealant (also called a sealant layer) on the biaxially oriented polyester film and the gas barrier layer. Formation of the sealant layer is usually carried out by an extrusion lamination method or a dry lamination method.
  • a sealant also called a sealant layer
  • the sealant layer examples include resin films made of acid-modified polyolefin resin obtained by graft-modifying polyolefin resin or acid such as maleic anhydride to polyolefin resin.
  • the polyolefin-based resins include low-, medium-, and high-density polyethylene; ethylene- ⁇ -olefin copolymers; homo-, block-, or random polypropylene; and propylene- ⁇ -olefin copolymers. These polyolefin-based resins may be used alone or in combination of two or more.
  • the sealant layer may be a single layer film or a multilayer film, and may be selected according to the required functions.
  • a multilayer film in which a resin such as an ethylene-cyclic olefin copolymer or polymethylpentene is interposed can be used.
  • the sealant layer may contain various additives such as flame retardants, slip agents, antiblocking agents, antioxidants, light stabilizers and tackifiers.
  • the thickness of the sealant layer is preferably 10-100 ⁇ m, more preferably 20-60 ⁇ m.
  • the laminate of the present invention can also be constructed by providing an adhesive layer, a printed layer, etc. between the biaxially oriented polyester film and the gas barrier layer and/or between the gas barrier layer and the sealant layer.
  • the present invention provides a battery exterior material including a laminate containing a biaxially oriented polyester film, a gas barrier layer and a sealant layer.
  • a battery exterior material including a laminate containing a biaxially oriented polyester film, a gas barrier layer and a sealant layer.
  • it is suitably used for battery outer packaging materials for laminated lithium ion batteries.
  • the invention provides a pharmaceutical packaging material.
  • Films and laminates were evaluated by the following measurement methods. Unless otherwise specified, measurements were carried out in a measurement room at 23° C. and a relative humidity of 65%.
  • Thermal shrinkage of film was measured by the dimensional change test method according to JIS-C-2318 except that the test temperature was 150° C. and the heating time was 15 minutes. Samples were cut out from the MD direction and the TD direction, respectively, and measured.
  • Stress decay rate of biaxially oriented film A test sample with a width of 15 mm and a length of 100 mm was cut in the MD direction of the film. With a tensile tester (Autograph AG-I manufactured by Shimadzu Corporation), a tensile strain of 50% is applied under the conditions of a gauge length of 50 mm and a tensile speed of 200 mm / min, and the 50% tensile strain is applied. The tensile strain was maintained for 100 seconds after the application, and the change in stress during that time was recorded. From the obtained holding time-stress graph, the stress value after holding for 2 seconds from immediately after application of 50% strain was read, and the stress decay rate after holding for 2 seconds was determined by the following formula (1).
  • ⁇ 0 represents the tensile stress of the film immediately after the 50% tensile strain was applied by applying a tensile force to the film at a tensile speed of 200 mm/min
  • ⁇ 1 is the tensile stress of 50% from ⁇ 0. The stress value when the tensile strain is held for 2 seconds is shown.
  • Biaxially oriented polyester film, biaxially oriented polyamide film (manufactured by Toyobo, N1102, thickness 15 ⁇ m), aluminum foil (material 8079, thickness 40 ⁇ m), and unstretched polypropylene film as a sealant layer (manufactured by Toyobo, P1146, thickness 70 ⁇ m) is dry laminated using a urethane-based adhesive (dry laminate adhesive manufactured by Toyo-Morton Co., Ltd., TM-509, CAT10L, ethyl acetate compounding ratio of 33.6: 4.0: 62.4 (mass ratio))
  • a laminate was produced in which biaxially oriented polyester film//biaxially oriented polyamide film//aluminum foil//sealant layer were laminated in this order.
  • the obtained laminate was placed in a die set mold (protrusion shape: 90 mm ⁇ 50 mm) and pressurized at 23° C. by a pressing machine to carry out draw forming.
  • the depth of drawing during molding was increased in units of 0.2 mm, and the maximum depth of drawing at which the laminate was not damaged was defined as the depth of drawing.
  • D Drawing depth is less than 4mm
  • a test piece that was molded without being damaged in the cold formability evaluation was placed on a horizontal table so that the convex portion faced upward.
  • the average value of the heights of the four corners of the test piece after molding, starting from the base, was defined as the average warpage height, and evaluation was performed according to the following criteria.
  • D Warp height average value is 10 mm or more
  • Polyester resins used in Examples and Comparative Examples are as follows.
  • the biomass-derived ethylene glycol is a raw material manufactured by Indian Glycol, and the biomass degree of the PET resin is 18%.
  • Example 1 Polyester resin A and polyester resin B were charged into the extruder at the ratio shown in Table 1. After the resin was melted at 280° C. in an extruder, it was cast from a T-die and brought into close contact with a cooling roll at 10° C. by an electrostatic adhesion method to obtain an unstretched sheet. Next, the obtained unstretched film was preheated with rolls heated to a temperature of 80° C., heated to 120° C. with an infrared heater, and stretched in the MD direction at a draw ratio of 3.7 times.
  • the film was stretched in the TD direction at a preheating temperature of 120°C, a stretching temperature of 140°C, and a stretching ratio of 4.6 times using a tenter-type transverse stretching machine. After that, it is heat-set at 210°C, subjected to a 5% relaxation treatment in the TD direction, subjected to a corona treatment at 40 W min/m2 on the surface layer (A) on the side in contact with the chill roll, and wound into a roll with a winder.
  • a biaxially oriented polyester film having a thickness of 12 ⁇ m was produced by removing the film. Table 1 shows the raw material composition and film-forming conditions of the obtained film, the physical properties of the obtained film, and the evaluation results.
  • Examples 2-3 A biaxially oriented polyester film having a thickness of 12 ⁇ m was obtained in the same manner as in Example 1 except that the longitudinal draw ratio was changed to the ratio shown in Table 1. Table 1 shows physical properties and evaluation results.
  • the longitudinal stretching method is 3-stage roll stretching, the roll heating temperature is 115 ° C., and the 1st stage is 1.24 times, the 2nd stage is 1.4 times, and the 3rd stage is 2.6 times.
  • a biaxially oriented polyester film having a thickness of 12 ⁇ m was obtained in the same manner as in Example 1 except that the film was stretched in the longitudinal direction at a total stretching ratio of 4.5 times. Table 1 shows physical properties and evaluation results.
  • Example 5 Polyester resin A and polyester resin B were charged into the extruder at the ratio shown in Table 1. After the resin was melted at 280° C. in an extruder, it was cast from a T-die and brought into close contact with a cooling roll at 10° C. by an electrostatic adhesion method to obtain an unstretched sheet. Next, the obtained unstretched film was preheated with rolls heated to a temperature of 80° C., heated to 120° C. with an infrared heater, and stretched in the MD direction at a draw ratio of 5.0 times. The film immediately after MD stretching was passed through a heating furnace set at 95° C.
  • the stretching method in the tenter-type transverse stretching machine was changed to three-stage stretching, and the film was stretched by providing a constant-length region of 1 m between the first and second stages and between the second and third stages.
  • Table 1 shows the stretching temperature and the stretching ratio at each stage. After that, it is heat-set at 210°C, subjected to 5% heat relaxation treatment in the width direction, corona-treated at 40 W min/m2 on the surface of the side in contact with the chill roll, and wound into a roll with a winder. , a biaxially oriented polyester film having a thickness of 12 ⁇ m was produced.
  • Table 1 shows the raw material composition and film-forming conditions of the obtained film, the physical properties of the obtained film, and the evaluation results.
  • Example 6-7 A biaxially oriented polyester film having a thickness of 12 ⁇ m was obtained in the same manner as in Example 1 except that the ratio of polyester resin A and polyester resin B was changed to the ratio shown in Table 1. Table 1 shows physical properties and evaluation results.
  • Example 7 A biaxially oriented polyester film having a thickness of 12 ⁇ m was obtained in the same manner as in Example 1, except that the polyester resin A was replaced with a polyethylene terephthalate resin (polyester resin C) derived from a fossil fuel.
  • Table 2 shows physical properties and evaluation results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

[Problem] To provide a polyester film which has excellent cold formability and which can suppress the occurrence of spring-back and curling after forming. [Solution] Provided is a biaxially oriented polyester film which has terephthalic acid and ethylene glycol as main components. The puncture strength is 0.45 N/μm to 0.80 N/μm; the thermal shrinkage at 150°C in both the MD direction and the TD direction is 2.5% or less; the dynamic friction coefficient μd between at least one surface of the film and a metal plate is 0.10 to 0.50; in a tensile stress relaxation test at 25°C, the stress decay rate indicated by formula (1) stress decay rate (%) = 100 × (σ0-σ1)/ σ0 in both the MD direction and the TD direction is 15.0% or more; and the content of radiocarbon (C14) with respect to the total carbon in the film is 10% to 20%.

Description

二軸配向ポリエステルフィルムbiaxially oriented polyester film
 本発明はポリエステルフィルムに関し、優れた冷間成形性を有し、特に電池外装用、医薬包装用など金属箔をラミネートした後に成形を施される用途に好適に使用できるポリエステルフィルムに関する。 The present invention relates to a polyester film, having excellent cold formability, and particularly to a polyester film that can be suitably used for applications where molding is performed after laminating metal foil, such as battery exteriors and pharmaceutical packaging.
 ポリエチレンテレフタレート(PET)に代表される芳香族ポリエステルは、優れた力学特性、耐薬品性などを有しており繊維、フィルムなどの成型品として広く使用されている。特にPET樹脂は安価であり、さらに衛生的な面でも優れていることから、食品容器や飲料用の容器として幅広く使用されている。 Aromatic polyesters, typified by polyethylene terephthalate (PET), have excellent mechanical properties and chemical resistance, and are widely used as molded products such as fibers and films. In particular, PET resin is inexpensive and excellent in terms of sanitation, so it is widely used as food containers and beverage containers.
近年、ラミネート型リチウムイオン電池外装材や、プレススルーパックなどは、樹脂フィルムや金属箔から構成される積層体を冷間成形することで得られている。
 上記冷間成形を行なうための積層体は、一般的に、ポリエチレンテレフタレートフィルム/二軸延伸ナイロンフィルム/アルミニウム箔/ポリプロピレンフィルムなどの構成が用いられている。(例えば特許文献1参照)
In recent years, laminate-type lithium-ion battery outer packaging materials, press-through packs, and the like are obtained by cold forming laminates composed of resin films and metal foils.
Laminates for cold forming generally have a structure such as polyethylene terephthalate film/biaxially oriented nylon film/aluminum foil/polypropylene film. (See Patent Document 1, for example)
 また、医薬包装についても、内容物の劣化を防ぐために、アルミニウムを始めとする金属箔を有する包装形態のニーズが高まっており、内容物の形状に合わせて金属箔の成形性向上が求められている。 In addition, for pharmaceutical packaging, there is a growing need for a packaging form that uses metal foil such as aluminum to prevent deterioration of the contents, and there is a demand for improved formability of the metal foil to match the shape of the contents. there is
冷間成形時の成型性に影響を与える要因として、樹脂フィルムの柔軟性が挙げられる。樹脂フィルムは、柔軟性が低いと、冷間成形の伸長時に強い負荷がかかってしまい、ピンホールやデラミネーションが発生する可能性がある。逆に樹脂フィルムは、柔軟性が高すぎると、基材としての、金属箔を含む積層体を保護する効果が薄れ、得られる積層体は、物性が低下してしまう。このため、樹脂フィルムは、高すぎず、低すぎない柔軟性を持つことが重要である。 The flexibility of the resin film is one of the factors that affect the moldability during cold forming. If the resin film has low flexibility, a strong load is applied during elongation during cold forming, and pinholes and delamination may occur. Conversely, if the resin film has too high flexibility, the effect of protecting the laminate containing the metal foil as the base material is reduced, and the physical properties of the resulting laminate are deteriorated. Therefore, it is important that the resin film has flexibility that is neither too high nor too low.
これらの課題を解決する手段として、例えば特許文献2によれば、少なくとも、基材層、接着層、金属層、及びシーラント層が順次積層された積層体からなり、前記基材層は、MD方向における50%伸長時の応力/5%伸長時の応力の値Aと、TD方向における50%伸長時の応力/5%伸長時の応力の値Bとの和(A+B)を特定の範囲とすることで良好な成形性が得られることが開示されている。 As a means for solving these problems, for example, according to Patent Document 2, at least a substrate layer, an adhesive layer, a metal layer, and a sealant layer are laminated in order, and the substrate layer is formed in the MD direction. The sum of the stress value A at 50% elongation / stress at 5% elongation in the TD direction and the stress value B at 50% elongation / 5% elongation in the TD direction (A + B) as a specific range It is disclosed that good moldability can be obtained by
 一方で上述した冷間成形では、絞り成形後に、成形品の一部が成形後の形状から成形前の形状に戻ってしまうという現象、いわゆるスプリングバックが問題となりやすい。このようなスプリングバックにより、絞り成型後の形状の寸法精度が不十分となるという問題が生じるおそれがある。また成形加工時には周囲の部分が強く引っ張られることにより、成型加工した際に、成形加工された周囲の基材層が元の状態に戻ろうとするために反りが発生し、後加工における歩留まりを低下させてしまう恐れがあった。
これに対し先に上げた特許文献2に記載のように、フィルムのF5値やF50値を制御するだけでは、成形深さは改善されるものの、成形後のスプリングバックによる寸法精度の悪化や、成形後の耐反り性を改善するには不十分であった。
On the other hand, the above-described cold forming tends to pose a problem of so-called springback, a phenomenon in which a part of the formed product returns from the shape after forming to the shape before forming after drawing. Such springback may cause a problem that the dimensional accuracy of the shape after draw forming becomes insufficient. In addition, since the surrounding part is strongly pulled during the molding process, the surrounding base material layer that has been molded and processed tends to return to its original state, causing warping and lowering the yield in post-processing. I was afraid I might let it go.
On the other hand, as described in the above-mentioned Patent Document 2, although the molding depth can be improved only by controlling the F5 value and F50 value of the film, the deterioration of dimensional accuracy due to springback after molding, It was insufficient to improve the warpage resistance after molding.
循環型社会の構築を求める声の高まりとともに、材料分野においてもエネルギーと同様に化石燃料からの脱却が望まれており、バイオマスの利用が注目されている。バイオマスは、二酸化炭素と水から光合成された有機化合物であり、それを利用することにより、再度二酸化炭素と水になる、いわゆるカーボンニュートラルな再生可能エネルギーである。昨今、これらバイオマスを原料としたバイオマスプラスチックの実用化が急速に進んでおり、汎用高分子材料であるポリエステルをこれらバイオマス原料から製造する試みも行われている。 Along with the growing demand for building a recycling-based society, there is a desire to break away from fossil fuels in the material field as well as energy, and the use of biomass is attracting attention. Biomass is an organic compound that is photosynthesised from carbon dioxide and water, and is a so-called carbon-neutral renewable energy that is regenerated into carbon dioxide and water by using it. In recent years, the practical use of biomass plastics using these biomass as raw materials has progressed rapidly, and attempts have been made to produce polyesters, which are general-purpose polymer materials, from these biomass raw materials.
特開2008-053133号公報JP 2008-053133 A 国際公開2015-125806号公報International Publication No. 2015-125806
 本発明は、かかる従来技術の課題を背景になされたものである。すなわち本発明の目的は、優れた冷間成形性を有するだけでなく、スプリングバックによる成形後の寸法精度低下を抑制し、かつ耐反り性に優れたポリエステルフィルムであり、バイオマス由来の原料を用いたカーボンニュートラルなポリエステルフィルムを提供することにある。 The present invention was made against the background of such problems of the prior art. That is, the object of the present invention is to provide a polyester film that not only has excellent cold formability, but also suppresses deterioration in dimensional accuracy after forming due to springback, and has excellent warpage resistance, and uses biomass-derived raw materials. To provide a carbon-neutral polyester film.
 本発明者らが鋭意検討した結果、特定の延伸条件範囲を選択し、フィルムの機械的特性を所定の範囲内にコントロールすることによって、優れた冷間成形性と成形後のスプリングバックやカールが抑制できることを見出し、本発明に至った。 As a result of diligent studies by the present inventors, it was found that by selecting a specific range of stretching conditions and controlling the mechanical properties of the film within a predetermined range, it is possible to achieve excellent cold formability and prevent springback and curl after forming. We found that it can be suppressed, and arrived at the present invention.
 すなわち本発明は、以下の構成からなる。
[1] テレフタル酸とエチレングリコールを主たる構成成分とする二軸配向ポリエステルフィルムであって、
JIS Z 7102に準じて測定される突き刺し強度が0.45N/μm以上、0.80N/μm以下であり、
150℃での熱収縮率がMD方向及びTD方向においていずれも2.5%以下であり、
フィルムの少なくとも一方の面と金属板との動摩擦係数μdが0.10以上、0.50以下であり、
25℃における引張応力緩和試験において、下記式(1)で示される応力減衰率が、MD方向及びTD方向においていずれも15.0%以上であり、
式(1) 応力減衰率(%)=100×(σ0-σ1)/σ0
ここで、σ0は、前記フィルムに引張速度200mm/minの速度で引張力を与えて前記50%の引張ひずみが印加された直後における引張応力の値を表し、σ1は、σ0から50%の引張ひずみを2秒間保持したときの引張応力の値を示す、
フィルム中の全炭素に対して、放射性炭素C14の含有量が10%以上、20%以下である、二軸配向ポリエステルフィルム。
[2] 25℃における、フィルムのMD方向及びTD方向の3%伸長時応力をそれぞれX(MD)及びX(TD)、MD方向及びTD方向の30%伸長時応力をそれぞれY(MD)及びY(TD)、Y(MD)/X(MD)及びY(MD)/X(MD)の値をそれぞれZ(MD)及びZ(TD)としたとき、下記式(2)~(5)のいずれも満たす、[1]記載の二軸配向ポリエステルフィルム。
 式(2) 125MPa≦Y(MD)≦155MPa
式(3) 140MPa≦Y(TD)≦190MPa
 式(4) 1.3≦Z(MD)≦1.6
式(5) 1.7≦Z(TD)≦2.2
[3] バイオマス由来のエチレングリコールをジオール単位とし、化石燃料由来のジカルボン酸をジカルボン酸単位とするバイオマスポリエステル樹脂を含む、[1]又は[2]に記載の二軸配向ポリエステルフィルム。
[4] 冷間成形用途に用いられる[1]~[3]のいずれかに記載の二軸配向ポリエステルフィルム。
[5] [1]~[4]のいずれに記載の二軸配向ポリエステルフィルム、ガスバリア層及びシーラント層を含む積層体。
[6] 前記ガスバリア層が金属箔を含む、[5]に記載の積層体。
[7] [5]又は[6]に記載の積層体を含む電池外装用材料。
That is, the present invention consists of the following configurations.
[1] A biaxially oriented polyester film containing terephthalic acid and ethylene glycol as main components,
The puncture strength measured according to JIS Z 7102 is 0.45 N/μm or more and 0.80 N/μm or less,
The thermal shrinkage rate at 150 ° C. is 2.5% or less in both the MD direction and the TD direction,
A dynamic friction coefficient μd between at least one surface of the film and the metal plate is 0.10 or more and 0.50 or less,
In a tensile stress relaxation test at 25 ° C., the stress attenuation rate represented by the following formula (1) is 15.0% or more in both the MD direction and the TD direction,
Formula (1) Stress attenuation rate (%) = 100 × (σ0-σ1)/σ0
Here, σ0 represents the value of the tensile stress immediately after applying a tensile force to the film at a tensile speed of 200 mm / min and the 50% tensile strain is applied, and σ1 is the tensile stress from σ0 to 50%. Shows the value of tensile stress when the strain is held for 2 seconds,
A biaxially oriented polyester film in which the content of radioactive carbon C14 is 10% or more and 20% or less with respect to the total carbon in the film.
[2] At 25 ° C., the stress at 3% elongation in the MD and TD directions of the film is X (MD) and X (TD), respectively, and the stress at 30% elongation in the MD and TD directions is Y (MD) and When the values of Y(TD), Y(MD)/X(MD) and Y(MD)/X(MD) are respectively Z(MD) and Z(TD), the following formulas (2) to (5) The biaxially oriented polyester film according to [1], which satisfies both of the above.
Formula (2) 125 MPa ≤ Y(MD) ≤ 155 MPa
Formula (3) 140 MPa ≤ Y(TD) ≤ 190 MPa
Formula (4) 1.3≦Z(MD)≦1.6
Formula (5) 1.7≦Z(TD)≦2.2
[3] The biaxially oriented polyester film of [1] or [2], comprising a biomass polyester resin having a biomass-derived ethylene glycol as a diol unit and a fossil fuel-derived dicarboxylic acid as a dicarboxylic acid unit.
[4] The biaxially oriented polyester film according to any one of [1] to [3], which is used for cold forming applications.
[5] A laminate comprising the biaxially oriented polyester film of any one of [1] to [4], a gas barrier layer and a sealant layer.
[6] The laminate according to [5], wherein the gas barrier layer contains a metal foil.
[7] A battery exterior material comprising the laminate according to [5] or [6].
 本発明の二軸配向ポリエステルフィルムを基材層として用いることにより、成形時に金型の形状に応じて、金属箔が適度に追従できるので、ピンホールやクラック等の発生を抑制できるばかりでなく、成形加工後のスプリングバックや耐反り性に優れるので、成形加工の寸法精度に優れ、さらには生産性の向上にも寄与することができる。加えて、バイオマス由来の原料を用いたカーボンニュートラルなポリエステルフィルムを用いることで、地上の二酸化炭素の増減に影響を与えない点で環境負荷を低減に寄与することができる。 By using the biaxially oriented polyester film of the present invention as a substrate layer, the metal foil can appropriately conform to the shape of the mold during molding. Since it is excellent in springback and warpage resistance after molding, it is excellent in dimensional accuracy in molding and can contribute to improvement in productivity. In addition, by using a carbon-neutral polyester film using a biomass-derived raw material, it is possible to contribute to the reduction of the environmental load in that it does not affect the increase or decrease of carbon dioxide on the ground.
フィルムの製造工程のおけるTD方向の多段延伸の方法を示す概略図である。It is a schematic diagram showing a method of multi-stage stretching in the TD direction in the film manufacturing process.
以下、本発明について詳細に説明する。 The present invention will be described in detail below.
[ポリエステル樹脂組成物]
 本発明における二軸配向ポリエステルフィルムは、ジカルボン酸成分としてテレフタル酸と、ジオール成分としてエチレングリコールを主たる構成成分として含むポリエステル樹脂組成物から形成されるフィルムである。ここで「主たる構成成分として含む」とは、ポリエステル樹脂組成物中の当該成分の含有率が、ポリエステル樹脂の全構成成分を100モル%として、80モル%以上であることを意味し、90モル%以上であることが好ましく、95モル%以上がより好ましく、97モル%以上が最も好ましい。
[Polyester resin composition]
The biaxially oriented polyester film in the present invention is a film formed from a polyester resin composition containing, as main constituents, terephthalic acid as a dicarboxylic acid component and ethylene glycol as a diol component. Here, "containing as a main component" means that the content of the component in the polyester resin composition is 80 mol% or more based on 100 mol% of the total constituent components of the polyester resin, and 90 mol. % or more, more preferably 95 mol % or more, most preferably 97 mol % or more.
 本発明において、ジオール成分としてバイオマス由来のエチレングリコールを構成成分として含むポリエステル樹脂を用いることができる。エチレングリコールは全てバイオマス由来のエチレングリコールであってもよいし、バイオマス由来と化石燃料由来のエチレングリコールを混合して用いることもできる。バイオマス由来のエチレングリコールを用いることにより、フィルム中のバイオマス度を上げることができ、カーボンニュートラルなフィルムを得ることが可能となる。 In the present invention, a polyester resin containing biomass-derived ethylene glycol as a constituent can be used as a diol component. All of the ethylene glycol may be biomass-derived ethylene glycol, or a mixture of biomass-derived and fossil fuel-derived ethylene glycol may be used. By using biomass-derived ethylene glycol, the degree of biomass in the film can be increased, making it possible to obtain a carbon-neutral film.
 バイオマス由来のエチレングリコールは、一例として、バイオマスを原料として製造されたエタノール(バイオマスエタノール)を原料としたものを用いることができる。バイオマスエタノールを、従来公知の方法により、エチレンオキサイドを経由してエチレングリコールを生成する方法等により、バイオマス由来のエチレングリコールを得ることができる。 As an example of biomass-derived ethylene glycol, ethanol produced from biomass (biomass ethanol) can be used as a raw material. Biomass-derived ethylene glycol can be obtained from biomass ethanol by a conventionally known method, such as a method of producing ethylene glycol via ethylene oxide.
 また、これらのポリエステル樹脂には、本発明の目的が損なわれない範囲であれば、他の成分が共重合されていてもよい。具体的には、共重合成分としては、ジカルボン酸成分では、イソフタル酸、ナフタレンジカルボン酸、4、4-ジフェニルジカルボン酸、アジピン酸、セバシン酸及びそのエステル形成性誘導体等が挙げられる。また、ジオール成分としてはジエチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノールが挙げられる。また、ポリエチレングリコール、ポリプロピレングリコール等のポリオキシアルキレングリコールも挙げられる。共重合量としては、構成する繰り返し単位あたり10モル%以内が好ましく、5モル%以内がより好ましく、3モル%以下が最も好ましい。 In addition, these polyester resins may be copolymerized with other components as long as the object of the present invention is not impaired. Specifically, examples of copolymerizable components include dicarboxylic acid components such as isophthalic acid, naphthalenedicarboxylic acid, 4,4-diphenyldicarboxylic acid, adipic acid, sebacic acid and ester-forming derivatives thereof. Diol components include diethylene glycol, hexamethylene glycol, neopentyl glycol, and cyclohexanedimethanol. Also included are polyoxyalkylene glycols such as polyethylene glycol and polypropylene glycol. The amount of copolymerization is preferably 10 mol % or less, more preferably 5 mol % or less, most preferably 3 mol % or less per constituent repeating unit.
 前記ポリエステル樹脂組成物は、単一のポリエステル樹脂を含んでもよく、複数のポリエステル樹脂を含んでいてもよい。また、ポリエステル樹脂以外の樹脂を含んでいてもよい。 The polyester resin composition may contain a single polyester resin, or may contain a plurality of polyester resins. Moreover, resins other than polyester resin may be included.
 前記ポリエステル樹脂組成物の極限粘度としては、製膜性や再回収性などの点から0.50~0.90dl/gの範囲が好ましく、より好ましくは0.55~0.80dl/gの範囲である。 The intrinsic viscosity of the polyester resin composition is preferably in the range of 0.50 to 0.90 dl/g, more preferably in the range of 0.55 to 0.80 dl/g, from the viewpoint of film-forming properties and recycling properties. is.
 ポリエステル樹脂組成物は、ポリエステル樹脂以外に、従来公知の添加剤、例えば滑剤、安定剤、着色剤、酸化防止剤、静電防止剤、紫外線吸収剤等を含有しても良い。 In addition to the polyester resin, the polyester resin composition may contain conventionally known additives such as lubricants, stabilizers, colorants, antioxidants, antistatic agents, and ultraviolet absorbers.
 例えば、前記滑剤は、フィルムの動摩擦係数を調整することができるものであり、シリカ、炭酸カルシウム、アルミナなどの無機系滑剤のほか、有機系滑剤が挙げられる。無機系滑剤としては、シリカ、炭酸カルシウムが好ましく、透明性と滑り性を両立する観点から、中でも多孔質シリカが最も好ましい。 For example, the lubricant can adjust the dynamic friction coefficient of the film, and includes inorganic lubricants such as silica, calcium carbonate, and alumina, as well as organic lubricants. As the inorganic lubricant, silica and calcium carbonate are preferred, and porous silica is most preferred from the viewpoint of achieving both transparency and lubricity.
 本発明の二軸配向ポリエステルフィルムにおける滑剤含有量の下限は、好ましくは400質量ppmであり、より好ましくは600質量ppmである。500質量ppm以上とすることで、フィルムの滑り性を良好なものとすることができる。滑剤含有量の上限は、好ましくは1500質量ppmであり、より好ましくは1200質量ppmである。1500質量ppm以下とすることで、フィルムの透明性を良好なものとすることができる。 The lower limit of the lubricant content in the biaxially oriented polyester film of the present invention is preferably 400 mass ppm, more preferably 600 mass ppm. By making it 500 mass ppm or more, it is possible to improve the slipperiness of the film. The upper limit of the lubricant content is preferably 1500 mass ppm, more preferably 1200 mass ppm. By making it 1500 mass ppm or less, the transparency of the film can be improved.
本発明の二軸配向ポリエステルフィルムは、放射性炭素(C14)測定によるバイオマス由来の炭素の含有量が、ポリエステルフィルム中の全炭素に対して10%以上、20%以下含まれることが好ましい。 大気中の二酸化炭素には、C14が一定割合(105.5pMC)で含まれているため、大気中の二酸化炭素を取り入れて成長する植物、例えばトウモロコシ中のC14含有量も105.5pMC程度であることが知られている。また、化石燃料中にはC14が殆ど含まれていないことも知られている。したがって、ポリエステル中の全炭素原子中に含まれるC14の割合を測定することにより、バイオマス由来の炭素の割合を算出することができる。 In the biaxially oriented polyester film of the present invention, the content of biomass-derived carbon measured by radioactive carbon (C14) is preferably 10% or more and 20% or less based on the total carbon in the polyester film. Since carbon dioxide in the atmosphere contains a certain proportion of C14 (105.5 pMC), the C14 content in plants that grow by taking in carbon dioxide in the atmosphere, such as corn, is also about 105.5 pMC. It is known. It is also known that fossil fuels contain almost no C14. Therefore, by measuring the ratio of C14 contained in the total carbon atoms in the polyester, the ratio of biomass-derived carbon can be calculated.
 [二軸配向ポリエステルフィルムの製造方法]
 本発明の二軸配向ポリエステルフィルムを得るための方法として、特に限定はなくTダイ方式やインフレーション方式など適宜選択することができる。ここでTダイ方式の代表的な製造工程を説明する。Tダイ方式は、(1)ポリエステル樹脂組成物をシート状に溶融押出し、冷却ロール上で冷却して未延伸シートを成形する工程、(2)成形された前記未延伸シートをMD方向(長手方向)及びMD方向と直交するTD方向(幅方向)に延伸する延伸工程、(3)前記延伸を行なった後のフィルムを加熱し結晶化させる熱固定工程、(4)前記熱固定されたフィルムの残留歪みを除去する熱緩和工程(リラックス工程ともいうことがある)、及び(5)熱緩和後のフィルムを冷却する冷却工程を含む。
[Method for producing biaxially oriented polyester film]
The method for obtaining the biaxially oriented polyester film of the present invention is not particularly limited, and can be appropriately selected from a T-die method, an inflation method, and the like. Here, a representative manufacturing process of the T-die method will be described. In the T-die method, (1) a process of melt extruding a polyester resin composition into a sheet and cooling it on a cooling roll to form an unstretched sheet, (2) the unstretched sheet that has been molded is processed in the MD direction (longitudinal direction). ) and a stretching step of stretching in the TD direction (width direction) perpendicular to the MD direction, (3) a heat setting step of heating and crystallizing the film after the stretching, (4) the heat set film It includes a thermal relaxation step (sometimes referred to as a relaxation step) for removing residual strain, and (5) a cooling step for cooling the film after thermal relaxation.
 本発明のフィルムは少なくとも1層の単層構造でもよく、2層以上の積層構造であってもよい。2層、3層、4層、5層であってもかまわない。 The film of the present invention may have a single layer structure of at least one layer, or may have a laminated structure of two or more layers. It may be two layers, three layers, four layers, or five layers.
 冷却ロール温度の上限は好ましくは40℃であり、より好ましくは20℃以下である。40℃以上であると溶融したポリエステル樹脂組成物が冷却固化する際の結晶化度が高くなりすぎず、延伸がより容易となるほか、結晶化による透明性の低下も抑制することができる。
 冷却ロールの温度の下限は好ましくは0℃である。0℃以上であると、溶融したポリエステル樹脂組成物が冷却固化する際の結晶化抑制効果を十分に発揮できる。また、冷却ロール温度を上記の範囲とする場合、結露防止のため冷却ロール付近の環境の湿度を下げておくことが好ましい。
The upper limit of the cooling roll temperature is preferably 40°C, more preferably 20°C or less. When the temperature is 40° C. or higher, the degree of crystallinity does not become too high when the melted polyester resin composition cools and solidifies, and stretching becomes easier, and a decrease in transparency due to crystallization can be suppressed.
The lower limit of the chill roll temperature is preferably 0°C. When the temperature is 0°C or higher, the effect of suppressing crystallization when the molten polyester resin composition is cooled and solidified can be sufficiently exhibited. Further, when the cooling roll temperature is within the above range, it is preferable to lower the humidity of the environment around the cooling roll to prevent dew condensation.
 未延伸シートの厚みは15~2500μmの範囲が好適である。より好ましくは600μm以下であり、最も好ましくは400μm以下である。 The thickness of the unstretched sheet is preferably in the range of 15-2500 μm. It is more preferably 600 μm or less, and most preferably 400 μm or less.
 次に延伸工程について説明する。延伸方法は、同時二軸延伸でも逐次二軸延伸でも可能である。以下、逐次二軸延伸を例に説明する。 Next, the stretching process will be explained. The stretching method may be simultaneous biaxial stretching or sequential biaxial stretching. The sequential biaxial stretching will be described below as an example.
 MD方向の延伸倍率の下限は好ましくは2.5倍であり、より好ましくは2.8倍であり、特に好ましくは3.1倍である。2.5倍以上であると、フィルムの力学強度が良好なものとなるばかりだけでなく、厚みムラも良好となりロールとした際の巻き品質の向上につながる。
 MD方向の延伸倍率の上限は好ましくは5.0倍である、より好ましくは4.5倍であり、特に好ましくは4.0倍である。MD方向の延伸倍率が5.0倍以下とすることにより、フィルムの配向が高くなりすぎるために成形後のスプリングバックやカールが大きくなることを抑制することができる。
The lower limit of the draw ratio in the MD direction is preferably 2.5 times, more preferably 2.8 times, and particularly preferably 3.1 times. If it is 2.5 times or more, not only will the mechanical strength of the film be good, but also the thickness unevenness will be good, leading to an improvement in the winding quality of the roll.
The upper limit of the draw ratio in the MD direction is preferably 5.0 times, more preferably 4.5 times, and particularly preferably 4.0 times. By setting the draw ratio in the MD direction to 5.0 times or less, it is possible to suppress the increase in springback and curl after molding due to excessive orientation of the film.
MD方向の延伸時温度としては、80~130℃の範囲とすることが好ましい。MD方向の延伸温度が80℃より低いと、フィルムの配向が高くなりすぎるために成形後のスプリングバックやカールが大きくなることがある。一方MD方向の延伸温度が130℃より高いとMD方向の配向が低くなるため成形性が低下する恐れがある。 The temperature during stretching in the MD direction is preferably in the range of 80 to 130°C. If the stretching temperature in the MD direction is lower than 80° C., the orientation of the film becomes too high, which may increase springback and curl after molding. On the other hand, if the stretching temperature in the MD direction is higher than 130° C., the orientation in the MD direction will be low, so there is a possibility that the formability will deteriorate.
 MD方向への延伸方法としては複数のロールを加熱しながらロール間で延伸する方法や、赤外線ヒーターなどにより加熱して延伸する方法が用いられる。赤外線ヒーターなどにより加熱して延伸する方法では、高温が得やすく局部加熱も容易であり、ロールによる傷欠点を低減させることができるという点から好ましい。一方、複数のロールを加熱しながらロール間で延伸する方法を用いる場合、複数のロール間で多段延伸する方法が好ましい。複数のロール間で多段延伸する方法を用いることで、高倍率の延伸であってもMD方向の配向の上昇を抑制することができ、成形後のスプリングバックやカールを抑制することができる。多段延伸する場合のロール数は、2以上が好ましく、3以上がより好ましい。 As a method of stretching in the MD direction, a method of stretching between rolls while heating a plurality of rolls or a method of heating and stretching with an infrared heater or the like is used. The method of heating and stretching with an infrared heater or the like is preferable from the viewpoint that a high temperature can be easily obtained, local heating can be easily performed, and flaws caused by rolls can be reduced. On the other hand, when a method of stretching between rolls while heating a plurality of rolls is used, a method of multistage stretching between a plurality of rolls is preferable. By using a method of multi-stage stretching between a plurality of rolls, it is possible to suppress an increase in the orientation in the MD direction even in stretching at a high magnification, and to suppress springback and curling after molding. The number of rolls for multistage stretching is preferably 2 or more, more preferably 3 or more.
 延伸工程において、MD方向の延伸工程の後に続くTD方向への延伸工程への間にMD方向へのリラックス工程(以下、MDリラックスともいう)があることが好ましい。
 MDリラックス率の下限は好ましくは1%であり、より好ましくは3%であり、特に好ましくは5%である。1%以上であると、フィルム中の非晶成分が緩和され、その後に続くTD方向の延伸工程での延伸応力を下げることができ、結果的にフィルムの配向が高くなりすぎることを抑制できるので、成形後のスプリングバックやカールを抑制することができる。
 MDリラックス率の上限は好ましくは10%であり、より好ましくは8%であり、特に好ましくは6%である。10%以下であると、収縮によるシワを抑制することができ、フィルムの品位を向上させることができるばかりか、配向緩和による力学強度の低下を抑制することができる。
 MDリラックスの方法は特に限定されないが、例えば熱風ヒーターで加熱した後にロール間の速度差を利用してリラックス処理を施す方法が挙げられる。
In the stretching step, it is preferable that there is a relaxation step in the MD direction (hereinafter also referred to as MD relaxation) between the stretching step in the MD direction and the stretching step in the TD direction following the stretching step in the MD direction.
The lower limit of the MD relaxation rate is preferably 1%, more preferably 3%, particularly preferably 5%. When it is 1% or more, the amorphous component in the film is relaxed, and the stretching stress in the subsequent stretching step in the TD direction can be reduced, and as a result, it is possible to suppress the orientation of the film from becoming too high. , springback and curl after molding can be suppressed.
The upper limit of the MD relaxation rate is preferably 10%, more preferably 8%, particularly preferably 6%. When it is 10% or less, wrinkles due to shrinkage can be suppressed, and not only can the quality of the film be improved, but also a decrease in mechanical strength due to relaxation of orientation can be suppressed.
Although the method of MD relaxation is not particularly limited, for example, there is a method of applying relaxation treatment using a speed difference between rolls after heating with a hot air heater.
 TD方向の延伸温度の下限は好ましくは90℃であり、より好ましくは100℃であり、特に好ましくは110℃である。90℃以上であると、延伸応力を下げることができるので、成形後のスプリングバックやカールを抑制することができる。
 TD方向の延伸温度の上限は好ましくは140℃であり、より好ましくは130℃であり、特に好ましくは120℃である。TD方向の延伸温度が140℃を超えると、製膜性が低下するばかりか、得られたフィルムのTD方向の配向が弱くなるため、成形性が低下する恐れがある。
The lower limit of the stretching temperature in the TD direction is preferably 90°C, more preferably 100°C, and particularly preferably 110°C. When the temperature is 90° C. or higher, the stretching stress can be reduced, so that springback and curling after molding can be suppressed.
The upper limit of the stretching temperature in the TD direction is preferably 140°C, more preferably 130°C, and particularly preferably 120°C. If the stretching temperature in the TD exceeds 140° C., not only the film formability is lowered, but also the orientation of the obtained film in the TD direction is weakened, so that the moldability may be lowered.
 TD方向の延伸倍率の下限は好ましくは2.5倍であり、より好ましくは3.0倍であり、特に好ましくは3.5倍である。2.5倍以上であると、フィルムの力学強度や厚みムラも良好となるばかりでなく、成形性が向上する。
 TD方向延伸倍率の上限は好ましくは5.0倍である、より好ましくは4.5倍であり、特に好ましくは4.0倍である。5.0倍以下とすることにより、TD方向の配向の上昇を抑制し、成形後のスプリングバックやカールの発生を抑制することができる。
The lower limit of the draw ratio in the TD direction is preferably 2.5 times, more preferably 3.0 times, and particularly preferably 3.5 times. When it is 2.5 times or more, not only the mechanical strength and thickness unevenness of the film are improved, but also the moldability is improved.
The upper limit of the draw ratio in the TD direction is preferably 5.0 times, more preferably 4.5 times, and particularly preferably 4.0 times. By making it 5.0 times or less, it is possible to suppress an increase in the orientation in the TD direction and suppress the occurrence of springback and curl after molding.
 TD方向の延伸パターンは一般的に用いられる直線的に延伸倍率が増大する直線形の延伸パターンに加えて、多段延伸を好ましく用いることができる。多段延伸は通常の1段延伸、すなわち直線形の延伸パターンに対して、図1に一例を示すように、2段以上の延伸工程を施すことであり、TD方向の延伸時にかかる延伸応力を低くすることができる。結果的に、同一の延伸倍率であってもTD方向の配向が高くなりすぎるのを抑制でき、成形後のスプリングバックやカールを抑制することができる。 As for the stretching pattern in the TD direction, multistage stretching can be preferably used in addition to the generally used linear stretching pattern in which the stretching ratio increases linearly. Multi-stage drawing is a normal one-stage drawing, that is, a linear drawing pattern, as shown in FIG. can do. As a result, even if the draw ratio is the same, the orientation in the TD direction can be prevented from becoming too high, and springback and curling after molding can be suppressed.
 TD方向の多段延伸は2段延伸以上5段延伸以下であることが好ましい。多段延伸により、各々の延伸温度を変更し、延伸応力を変化させることが可能であり、TD方向の延伸時の延伸応力を低くすることができ好ましい。2段延伸以上であると、延伸応力を下げることができ、同一の延伸倍率であってもTD方向の配向が高くなりすぎるのを抑制でき、成形後のスプリングバックやカールを抑制することができる。5段延伸以下であると、設備が大きくなりすぎることを防ぐことができる。多段延伸においては各段階の延伸において2℃以上の温度差をつけて1段目の延伸から最終段目の延伸にかけて温度を低下させる温度パターンとすることが好ましい。
また、多段延伸を行う場合、各延伸段階の後に定長とするゾーンを適宜設けることができる。各延伸段階の後に定長とするゾーンを設けることで、延伸時に発生した内部応力を定長ゾーンで緩和することにより、次の延伸を行う際の延伸応力をより低減でき、同一の延伸倍率であってもTD方向の配向が高くなりすぎるのを抑制でき、成形後のスプリングバックやカールを抑制することができる。
The multi-stage stretching in the TD direction is preferably 2-stage stretching or more and 5-stage stretching or less. Multi-stage stretching is preferable because it is possible to change the stretching stress by changing each stretching temperature, and the stretching stress during stretching in the TD direction can be reduced. If the stretching is two-stage or more, the stretching stress can be reduced, and even if the stretching ratio is the same, it is possible to suppress the orientation in the TD direction from becoming too high, and it is possible to suppress springback and curling after molding. . If the drawing is 5 stages or less, it is possible to prevent the equipment from becoming too large. In the multi-stage stretching, it is preferable to adopt a temperature pattern in which a temperature difference of 2° C. or more is provided in each stage of stretching, and the temperature is lowered from the first stage of stretching to the final stage of stretching.
In the case of multi-stage stretching, a zone having a fixed length can be appropriately provided after each stretching step. By providing a fixed-length zone after each drawing step, the internal stress generated during drawing is relieved in the fixed-length zone, so that the drawing stress in the next drawing can be further reduced, and the same draw ratio can be used. Even if there is, it is possible to suppress the orientation in the TD direction from becoming too high, and it is possible to suppress springback and curling after molding.
 熱固定工程における、熱固定温度の下限は好ましくは170℃であり、より好ましくは180℃であり、特に好ましくは190℃である。170℃以上であると熱収縮率を小さくすることができる。熱固定温度の上限は好ましくは230℃であり、より好ましくは220℃であり、特に好ましくは210℃である。230℃以下であると、二軸配向ポリエステルフィルムが脆くなることによる力学強度の低下を抑制することができる。 The lower limit of the heat setting temperature in the heat setting step is preferably 170°C, more preferably 180°C, and particularly preferably 190°C. A heat shrinkage rate can be made small as it is 170 degreeC or more. The upper limit of the heat setting temperature is preferably 230°C, more preferably 220°C, and particularly preferably 210°C. When the temperature is 230° C. or less, it is possible to suppress a decrease in mechanical strength due to brittleness of the biaxially oriented polyester film.
 熱緩和工程における、TD方向のリラックス率の下限は好ましくは0.5%であり、より好ましくは1.0%であり、特に好ましくは2.0%である。0.5%以上であるとTD方向の熱収縮率を低く保つことができる。TD方向のリラックス率の上限は好ましくは10%であり、より好ましくは8%であり、特に好ましくは6%である。10%以下であると弛みなどが生じることを防止でき、平面性を向上させることができる。 The lower limit of the relaxation rate in the TD direction in the thermal relaxation step is preferably 0.5%, more preferably 1.0%, and particularly preferably 2.0%. When it is 0.5% or more, the heat shrinkage rate in the TD direction can be kept low. The upper limit of the relaxation rate in the TD direction is preferably 10%, more preferably 8%, particularly preferably 6%. If it is 10% or less, it is possible to prevent the occurrence of slackness and the like, and it is possible to improve the flatness.
 [二軸配向ポリエステルフィルムの構成及び特性]
 本発明の二軸配向ポリエステルフィルムの厚みの下限は好ましくは5μmであり、より好ましくは10μmである。5μm以上とすることで、良好な機械特性、成形性を得ることができる。本発明の二軸配向ポリエステルフィルムの厚みの上限は好ましくは100μmであり、より好ましくは70μmであり、特に好ましくは40μmである。
[Structure and properties of biaxially oriented polyester film]
The lower limit of the thickness of the biaxially oriented polyester film of the present invention is preferably 5 μm, more preferably 10 μm. By setting the thickness to 5 μm or more, good mechanical properties and moldability can be obtained. The upper limit of the thickness of the biaxially oriented polyester film of the present invention is preferably 100 µm, more preferably 70 µm, and particularly preferably 40 µm.
本発明の二軸配向ポリエステルフィルムの突き刺し強度の下限は好ましくは0.45N/μmであり、さらに好ましくは0.50N/μmである。突き刺し強度が0.45N/μm以上であると、良好な成形性を得ることができる。本発明の二軸配向ポリエステルフィルムの突き刺し強度の上限は0.80N/μmである。突き刺し強度が0.80N/μmを超えると成形性向上効果が飽和する。ここで、本発明における突き刺し強度(単位N/μm)とは、先端部半径0.5mmの針を、突刺し速度50mm/分でフィルムに突き刺し、針がフィルムを貫通する際の強度(単位N)を、フィルムの厚み(単位μm)で割った値のことをいう。 The lower limit of the puncture strength of the biaxially oriented polyester film of the present invention is preferably 0.45 N/μm, more preferably 0.50 N/μm. Good moldability can be obtained when the puncture strength is 0.45 N/μm or more. The upper limit of the puncture strength of the biaxially oriented polyester film of the present invention is 0.80 N/μm. When the puncture strength exceeds 0.80 N/μm, the effect of improving the formability is saturated. Here, the piercing strength (unit: N/μm) in the present invention means the strength (unit: N ) divided by the film thickness (unit μm).
本発明の二軸配向ポリエステルフィルムのMD方向及びTD方向の熱収縮率の下限は、好ましくは0.1%であり、より好ましくは0.2%であり、特に好ましくは0.3%である。MD方向及びTD方向の熱収縮率の上限は好ましくは2.5%であり、より好ましくは2.0%であり、特に好ましくは1.8%である。2.5%以下であることにより、二次加工工程で加熱された際の寸法変化を抑え、シワの発生を低減することができる。 The lower limit of the heat shrinkage rate in the MD and TD directions of the biaxially oriented polyester film of the present invention is preferably 0.1%, more preferably 0.2%, and particularly preferably 0.3%. . The upper limit of the heat shrinkage rate in the MD and TD directions is preferably 2.5%, more preferably 2.0%, and particularly preferably 1.8%. When it is 2.5% or less, it is possible to suppress the dimensional change when heated in the secondary processing step and reduce the occurrence of wrinkles.
本発明の二軸配向ポリエステルフィルムのTD方向の厚みムラは、好ましくは18%以下であり、より好ましくは16%以下であり、更に好ましくは14%以下である。18%以下であると、ロールとしたときの巻き品質が良好なものとなる。 The thickness unevenness in the TD direction of the biaxially oriented polyester film of the present invention is preferably 18% or less, more preferably 16% or less, still more preferably 14% or less. When it is 18% or less, the winding quality of the roll becomes good.
本発明の二軸配向ポリエステルフィルムのヘイズが、好ましくは5.0%以下であり、より好ましくは3.0%以下であり、更に好ましくは2.5%以下である。5.0%以下とすることで、印刷が綺麗に見えるので好ましい。 The haze of the biaxially oriented polyester film of the present invention is preferably 5.0% or less, more preferably 3.0% or less, still more preferably 2.5% or less. A content of 5.0% or less is preferable because the print looks beautiful.
 次に、成形時のスプリングバックについて説明する。
 電池外装用、医薬包装用などの用途で成型を施す場合、所定の形状の金型を用いてフィルムを押し込んだ後、押し込んだ状態で一定時間保持した後に金型を引き上げることで成形体を作製するが、上記保持時間中にフィルム中の内部応力が十分に緩和されないまま金型が引き上げられてしまうと、フィルムが元の形状に戻ろうとする力が働き、スプリングバックが大きくなる結果、成形体の寸法精度が低下してしまう恐れがある。本発明者らは、得られた二軸配向ポリエステルフィルムの引張応力緩和試験において、2秒保持後の応力減素率を特定の範囲内とすることにより、上記スプリングバックが低減できることを見出した。
Next, springback during molding will be described.
When molding for applications such as battery packaging and pharmaceutical packaging, the film is pressed into a mold of a predetermined shape, held in the pressed state for a certain period of time, and then lifted out of the mold to produce a molded body. However, if the mold is pulled up while the internal stress in the film is not sufficiently relieved during the holding time, the film will exert a force to return to its original shape, resulting in increased springback, resulting in a molded body. There is a risk that the dimensional accuracy of the The present inventors found that the springback can be reduced by setting the stress reduction rate after holding for 2 seconds within a specific range in a tensile stress relaxation test of the obtained biaxially oriented polyester film.
本発明の二軸配向ポリエステルフィルムの25℃における引張応力緩和試験において、下記式(1)で示される応力減衰率は、MD方向およびTD方向において、いずれも15%以上であることが好ましく、16%以上であることが更に好ましい。
式(1) 2秒保持後の応力減衰率(%)=100×(σ0-σ1)/σ0
ここで、σ0は、前記フィルムに引っ張り速度200mm/minの速度で引張力を与えて前記50%の引張ひずみが印加された直後における前記フィルムの引張応力の値を表し、σ1は、σ0から50%の引張ひずみを2秒間保持したときの引張応力の値を示す。
In the tensile stress relaxation test at 25°C of the biaxially oriented polyester film of the present invention, the stress attenuation rate represented by the following formula (1) is preferably 15% or more in both the MD direction and the TD direction. % or more is more preferable.
Formula (1) Stress decay rate (%) after holding for 2 seconds = 100 x (σ0-σ1)/σ0
Here, σ0 represents the value of the tensile stress of the film immediately after applying a tensile force to the film at a tensile speed of 200 mm / min and the 50% tensile strain is applied, and σ1 is σ0 to 50 % tensile strain is shown for 2 seconds.
本発明の二軸配向ポリエステルフィルムは、25℃における、フィルムのMD方向の30%伸長時応力(F30値)をY(MD)、TD方向の30%伸長時応力(F30値)をY(TD)としたとき、下記式(2)及び式(3)を満たすことが好ましい。
 式(2) 125MPa≦Y(MD)≦155MPa
式(3) 140MPa≦Y(TD)≦190MPa
In the biaxially oriented polyester film of the present invention, the stress at 30% elongation (F30 value) in the MD direction of the film at 25 ° C. is Y (MD), and the stress at 30% elongation in the TD direction (F30 value) is Y (TD ), it is preferable to satisfy the following formulas (2) and (3).
Formula (2) 125 MPa ≤ Y(MD) ≤ 155 MPa
Formula (3) 140 MPa ≤ Y(TD) ≤ 190 MPa
 Y(MD)の値を125MPa以上とすることで、優れた成形性を得ることができる。一方、Y(MD)の値を155MPa以下とすることで、成形後のフィルムの応力が大きくなりすぎることを抑制し、成形後のスプリングバックや耐反り性を低減して、良好な成形性を得ることができる。同様に、Y(TD)の値を140MPa以上とすることで、優れた成形性を得ることができる。Y(TD)の値を190MPa以下とすることで、成形後のフィルムの応力が大きくなりすぎることを抑制し、成形後のスプリングバックや耐反り性を低減して、良好な成形性を得ることができる。 By setting the value of Y (MD) to 125 MPa or more, excellent moldability can be obtained. On the other hand, by setting the value of Y (MD) to 155 MPa or less, the stress of the film after molding is suppressed from becoming too large, the springback and warpage resistance after molding are reduced, and good moldability is achieved. Obtainable. Similarly, by setting the Y(TD) value to 140 MPa or more, excellent moldability can be obtained. By setting the value of Y(TD) to 190 MPa or less, the stress of the film after molding is suppressed from becoming too large, the springback and warpage resistance after molding are reduced, and good moldability is obtained. can be done.
 本発明の二軸配向ポリエステルフィルムは、25℃における、フィルムのMD方向の3%伸長時応力(F3値)をX(MD)、TD方向の3%伸長時応力(F3値)をX(TD)とし、Y(MD)/X(MD)の値をZ(MD)、Y(TD)/X(TD)の値をZ(TD)としたとき、下記式(4)及び式(5)を満たすことが好ましい。
 式(4) 1.3≦Z(MD)≦1.6
式(5) 1.7≦Z(TD)≦2.2
In the biaxially oriented polyester film of the present invention, the stress at 3% elongation (F3 value) in the MD direction of the film at 25 ° C. is X (MD), and the stress at 3% elongation (F3 value) in the TD direction is X (TD ), the value of Y (MD) / X (MD) is Z (MD), and the value of Y (TD) / X (TD) is Z (TD), the following formulas (4) and (5) is preferably satisfied.
Formula (4) 1.3≦Z(MD)≦1.6
Formula (5) 1.7≦Z(TD)≦2.2
 Z(MD)の値を1.3以上とすること、優れた成形性を得ることができる。一方、Z(MD)の値を1.6以下とすることで、成形後のフィルムの応力が大きくなりすぎることを抑制し、成形後のスプリングバックや耐反り性を低減して、良好な成形性を得ることができる。同様に、Z(TD)の値を11.7以上とすることで、優れた成形性を得ることができる。Z(TD)の値を2.2以下とすることで、成形後のフィルムの応力が大きくなりすぎることを抑制し、成形後のスプリングバックや耐反り性を低減して、良好な成形性を得ることができる。 By setting the value of Z(MD) to 1.3 or more, excellent moldability can be obtained. On the other hand, by setting the value of Z (MD) to 1.6 or less, the stress of the film after molding is suppressed from becoming too large, and the springback and warpage resistance after molding are reduced, resulting in good molding. You can get sex. Similarly, by setting the value of Z(TD) to 11.7 or more, excellent moldability can be obtained. By setting the value of Z (TD) to 2.2 or less, the stress of the film after molding is suppressed from becoming too large, and the springback and warpage resistance after molding are reduced, resulting in good moldability. Obtainable.
 本発明の二軸配向ポリエステルフィルムは、成型性の観点から金属表面との動摩擦係数μdが0.10以上、0.50以下であることが好ましい。本発明のポリエステルフィルムを電池外装用又は、医薬包装用として用いた場合、これらの構成体は、オスメス型のプレス成型によって成型されるが、フィルムと金属との間の動摩擦係数μdを0.10以上、0.50以下とすることで、プレス型との滑り性が良好となるためスムーズに成型することが可能となる。より好ましくは、0.20以上、0.50以下であり、更に好ましくは、0.25以上、0.40以下である。本発明における、金属との動摩擦係数とは、フィルムの任意の面と、SUS304―#400鏡面仕上げ材との動摩擦係数のことを示す。前記動摩擦係数は、フィルムに添加する滑剤の含有量により制御することができる。 From the standpoint of formability, the biaxially oriented polyester film of the present invention preferably has a coefficient of dynamic friction μd with a metal surface of 0.10 or more and 0.50 or less. When the polyester film of the present invention is used for battery packaging or pharmaceutical packaging, these structures are molded by male-female press molding, and the coefficient of dynamic friction μd between the film and metal is 0.10. As described above, by making it 0.50 or less, it becomes possible to perform molding smoothly because the slipperiness with the press mold is improved. It is more preferably 0.20 or more and 0.50 or less, and still more preferably 0.25 or more and 0.40 or less. In the present invention, the coefficient of dynamic friction with metal indicates the coefficient of dynamic friction between any surface of the film and SUS304-#400 mirror-finished material. The dynamic friction coefficient can be controlled by the content of the lubricant added to the film.
 本発明の二軸配向ポリエステルフィルムには、印刷層を積層しても良い。印刷層を形成する印刷インクとしては、水性及び溶媒系の樹脂含有印刷インクが好ましく使用できる。ここで印刷インクに使用される樹脂としては、アクリル系樹脂、ウレタン系樹脂、ポリエステル系樹脂、塩化ビニル系樹脂、酢酸ビニル共重合樹脂及びこれらの混合物が挙げられる。印刷インクには帯電防止剤、光遮断剤、紫外線吸収、可塑剤、滑剤、フィラー、着色剤、安定剤、潤滑剤、消泡剤、架橋剤、耐ブロッキング剤、酸化防止剤等の公知の添加剤を含有させてもよい。 A printed layer may be laminated on the biaxially oriented polyester film of the present invention. As the printing ink for forming the printing layer, water-based and solvent-based resin-containing printing inks can be preferably used. Resins used in printing inks include acrylic resins, urethane resins, polyester resins, vinyl chloride resins, vinyl acetate copolymer resins, and mixtures thereof. Known additives such as antistatic agents, light blocking agents, ultraviolet absorbers, plasticizers, lubricants, fillers, colorants, stabilizers, lubricants, antifoaming agents, cross-linking agents, anti-blocking agents, and antioxidants are added to printing inks. agents may be included.
 印刷層を設けるための印刷方法としては、特に限定されず、オフセット印刷法、グラビア印刷法、スクリーン印刷法等の公知の印刷方法が使用できる。印刷後の溶媒の乾燥には、熱風乾燥、熱ロール乾燥、赤外線乾燥等の公知の乾燥方法が使用できる。 The printing method for providing the printed layer is not particularly limited, and known printing methods such as offset printing, gravure printing, and screen printing can be used. For drying the solvent after printing, a known drying method such as hot air drying, hot roll drying, or infrared drying can be used.
 本発明は、更に二軸配向ポリエステルフィルムに無機薄膜層や金属箔などのガスバリア層を設けた積層体を提供する。 The present invention further provides a laminate in which a biaxially oriented polyester film is provided with an inorganic thin film layer or a gas barrier layer such as a metal foil.
 前記無機薄膜層としては、金属又は無機酸化物からなる薄膜である。無機薄膜層を形成する材料は、薄膜にできるものなら特に制限はないが、ガスバリア性の観点からアルミニウム、酸化ケイ素(シリカ)、酸化アルミニウム(アルミナ)、酸化ケイ素と酸化アルミニウムとの混合物等の無機酸化物が好ましく挙げられる。特に、薄膜層の柔軟性と緻密性を両立できる点からは、酸化ケイ素と酸化アルミニウムとの複合酸化物が好ましい。 The inorganic thin film layer is a thin film made of metal or inorganic oxide. The material for forming the inorganic thin film layer is not particularly limited as long as it can be formed into a thin film. Oxides are preferred. In particular, a composite oxide of silicon oxide and aluminum oxide is preferable from the viewpoint of achieving both flexibility and denseness of the thin film layer.
 この複合酸化物において、酸化ケイ素と酸化アルミニウムとの混合比は金属分の質量比でAlが20~70%の範囲であることが好ましい。一方、70%以下であると無機薄膜層を柔らかくすることができ、印刷やラミネートといった二次加工の際に薄膜が破壊されてガスバリア性が低下することを抑制することができる。なお、ここでいう酸化ケイ素とはSiOやSiO等の各種ケイ素酸化物又はそれらの混合物であり、酸化アルミニウムとは、AlOやAL等の各種アルミニウム酸化物又はそれらの混合物である。 In this composite oxide, the mixing ratio of silicon oxide and aluminum oxide is preferably in the range of 20 to 70% by mass of Al in terms of the metal content. On the other hand, if it is 70% or less, the inorganic thin film layer can be softened, and it is possible to suppress deterioration of the gas barrier properties due to destruction of the thin film during secondary processing such as printing and lamination. Here, silicon oxide means various silicon oxides such as SiO and SiO 2 or mixtures thereof, and aluminum oxide means various aluminum oxides such as AlO and AL 2 O 3 or mixtures thereof.
 無機薄膜層の膜厚は、通常1~100nm、好ましくは5~50nmである。無機薄膜層の膜厚が1nm以下であると、より満足のいくガスバリア性が得られやすくなる。一方、100nm以下であると耐屈曲性や製造コストの点で有利となる。 The film thickness of the inorganic thin film layer is usually 1 to 100 nm, preferably 5 to 50 nm. When the film thickness of the inorganic thin film layer is 1 nm or less, it becomes easier to obtain more satisfactory gas barrier properties. On the other hand, when it is 100 nm or less, it is advantageous in terms of bending resistance and manufacturing cost.
 無機薄膜層を形成する方法としては、特に制限はなく例えば、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理蒸着法(PVD法)、あるいは化学蒸着法(CVD法)等、公知の蒸着法を適宜採用すればよい。以下、無機薄膜層を形成する典型的な方法を、酸化ケイ素・酸化アルミニウム系薄膜を例に説明する。例えば、真空蒸着法を採用する場合は、蒸着原料としてSiOとAlの混合物、あるいはSiOとAlの混合物等が好ましく用いられる。これら蒸着原料としては通常粒子が用いられるが、その際各粒子の大きさは蒸着時の圧力が変化しない程度の大きさであることが望ましく、好ましい粒子径は1~5mmである。加熱には抵抗加熱、高周波誘導加熱、電子ビーム加熱、レーザー加熱などの方式を採用することができる。また、反応ガスとして酸素、窒素、水素、アルゴン、炭酸ガス、水蒸気等を導入したり、オゾン添加、イオンアシスト等の手段を用いた反応性蒸着を採用することも可能である。さらに、被蒸着体(蒸着に供する積層フィルム)にバイアスを印加したり、被蒸着体を加熱もしくは冷却するなど、成膜条件も任意に変更することができる。このような蒸着材料、反応ガス、被蒸着体のバイアス、加熱・冷却等は、スパッタリング法やCVD法を採用する場合にも同様に変更可能である。さらに、上記無機薄膜層上に印刷層を積層してもよい。 The method for forming the inorganic thin film layer is not particularly limited. Laws should be adopted accordingly. A typical method for forming an inorganic thin film layer will be described below using a silicon oxide/aluminum oxide thin film as an example. For example, when a vacuum deposition method is employed, a mixture of SiO 2 and Al 2 O 3 or a mixture of SiO 2 and Al is preferably used as the deposition raw material. Particles are usually used as these vapor deposition raw materials, and the size of each particle is preferably such that the pressure during vapor deposition does not change, and the preferred particle diameter is 1 to 5 mm. Methods such as resistance heating, high-frequency induction heating, electron beam heating, and laser heating can be employed for heating. It is also possible to introduce oxygen, nitrogen, hydrogen, argon, carbon dioxide gas, water vapor, etc. as reaction gases, or adopt reactive vapor deposition using means such as addition of ozone and ion assist. Furthermore, film formation conditions can be arbitrarily changed, such as applying a bias to the object to be vapor-deposited (laminated film to be vapor-deposited) or heating or cooling the object to be vapor-deposited. Such vapor deposition material, reaction gas, bias of the object to be vapor-deposited, heating/cooling, etc. can be similarly changed when adopting the sputtering method or the CVD method. Furthermore, a printed layer may be laminated on the inorganic thin film layer.
 本発明の二軸配向ポリエステルフィルムに無機薄膜層を設ける場合、無機薄膜層の上に保護層を設けることが好ましい。金属酸化物からなるガスバリア層は完全に密な膜ではなく、微小な欠損部分が点在している。金属酸化物層上に後述する特定の保護層用樹脂組成物を塗工して保護層を形成することにより、金属酸化物層の欠損部分に保護相溶樹脂組成物中の樹脂が浸透し、結果としてガスバリア性が安定するという効果が得られる。加えて、保護層そのものにもガスバリア性を持つ材料を使用することで、積層フィルムのガスバリア性能も大きく向上することになる。 When providing an inorganic thin film layer on the biaxially oriented polyester film of the present invention, it is preferable to provide a protective layer on the inorganic thin film layer. A gas barrier layer made of a metal oxide is not a completely dense film, and is dotted with minute defects. By forming a protective layer by applying a specific resin composition for a protective layer to be described later on the metal oxide layer, the resin in the protective compatible resin composition penetrates into the defective portions of the metal oxide layer, As a result, the effect of stabilizing the gas barrier property is obtained. In addition, by using a material with gas barrier properties for the protective layer itself, the gas barrier properties of the laminated film are greatly improved.
 前記保護層としては、ウレタン系、ポリエステル系、アクリル系、チタン系、イソシアネート系、イミン系、ポリブタジエン系等の樹脂に、エポキシ系、イソシアネート系、メラミン系等の硬化剤を添加したものが挙げられる。保護層を形成させる際に使用する溶媒(溶剤)としては、例えばベンゼン、トルエン等の芳香族系溶剤;メタノール、エタノール等のアルコール系溶剤;アセトン、メチルエチルケトン等のケトン系溶剤;酢酸エチル、酢酸ブチル等のエステル系溶剤;エチレングリコールモノメチルエーテル等の多価アルコール誘導体等が挙げられる。 Examples of the protective layer include resins such as urethane, polyester, acrylic, titanium, isocyanate, imine, and polybutadiene to which curing agents such as epoxy, isocyanate, and melamine are added. . Examples of the solvent (solvent) used for forming the protective layer include aromatic solvents such as benzene and toluene; alcohol solvents such as methanol and ethanol; ketone solvents such as acetone and methyl ethyl ketone; ethyl acetate and butyl acetate. ester-based solvents such as ethylene glycol monomethyl ether; and polyhydric alcohol derivatives such as ethylene glycol monomethyl ether.
 ガスバリア層に用いる金属箔としては、アルミニウム、ステンレス鋼等の各種金属箔を使用することができ、防湿性、延展性等の加工性、コストの面から、アルミニウム箔が好ましい。アルミニウム箔としては、一般の軟質アルミニウム箔を用いることができる。なかでも、耐ピンホール性、及び成型時の延展性に優れる点から、鉄を含むアルミニウム箔が好ましい。鉄を含むアルミニウム箔(100質量%)中の鉄の含有量は、0.1~9.0質量%が好ましく、0.5~2.0質量%がより好ましい。鉄の含有量が下限値以上であれば、耐ピンホール性、延展性に優れる。鉄の含有量が9.0質量%以下であれば、柔軟性に優れる。金属箔の厚さは、バリア性、耐ピンホール性、加工性の点から、9~200μmが好ましく、15~100μmがより好ましい。 As the metal foil used for the gas barrier layer, various metal foils such as aluminum and stainless steel can be used, and aluminum foil is preferable in terms of workability such as moisture resistance and extensibility, and cost. A general soft aluminum foil can be used as the aluminum foil. Among them, aluminum foil containing iron is preferable from the viewpoint of excellent pinhole resistance and extensibility during molding. The iron content in the iron-containing aluminum foil (100% by mass) is preferably 0.1 to 9.0% by mass, more preferably 0.5 to 2.0% by mass. If the iron content is at least the lower limit, the pinhole resistance and spreadability are excellent. If the iron content is 9.0% by mass or less, the flexibility is excellent. The thickness of the metal foil is preferably 9 to 200 μm, more preferably 15 to 100 μm, from the viewpoints of barrier properties, pinhole resistance and workability.
 本発明の積層体には他素材の層を積層してもよい。その方法として、二軸配向ポリエステルフィルムを製膜後に貼り合わせる方法、製膜中に貼り合わせる方法を採用することができる。 The laminate of the present invention may be laminated with layers of other materials. As the method, a method of laminating the biaxially oriented polyester film after film formation and a method of laminating the film during film formation can be employed.
 本発明の積層体は、二軸配向ポリエステルフィルムおよびガスバリア層に、更にシーラントと呼ばれるヒートシール性樹脂層(シーラント層ともいう)を形成し、冷間成形用包装材料として使用することができる。シーラント層の形成は、通常、押出しラミネート法あるいはドライラミネート法によりなされる。 The laminate of the present invention can be used as a packaging material for cold molding by further forming a heat-sealable resin layer called a sealant (also called a sealant layer) on the biaxially oriented polyester film and the gas barrier layer. Formation of the sealant layer is usually carried out by an extrusion lamination method or a dry lamination method.
 シーラント層としては、ポリオレフィン系樹脂、又はポリオレフィン系樹脂に無水マレイン酸等の酸をグラフト変性させた酸変性ポリオレフィン系樹脂からなる樹脂フィルムが挙げられる。前記ポリオレフィン系樹脂としては、例えば、低密度、中密度、高密度のポリエチレン;エチレン-αオレフィン共重合体;ホモ、ブロック、又はランダムポリプロピレン;プロピレン-αオレフィン共重合体等が挙げられる。これらポリオレフィン系樹脂は、1種を単独で使用してもよく、2種以上を併用してもよい。 Examples of the sealant layer include resin films made of acid-modified polyolefin resin obtained by graft-modifying polyolefin resin or acid such as maleic anhydride to polyolefin resin. Examples of the polyolefin-based resins include low-, medium-, and high-density polyethylene; ethylene-α-olefin copolymers; homo-, block-, or random polypropylene; and propylene-α-olefin copolymers. These polyolefin-based resins may be used alone or in combination of two or more.
 シーラント層は、単層フィルムであってもよく、多層フィルムであってもよく、必要とされる機能に応じて選択すればよい。例えば、防湿性を付与する点では、エチレン-環状オレフィン共重合体やポリメチルペンテン等の樹脂を介在させた多層フィルムが使用できる。また、シーラント層は、難燃剤、スリップ剤、アンチブロッキング剤、酸化防止剤、光安定剤、粘着付与剤等の各種添加剤が配合されてもよい。シーラント層の厚さは、10~100μmが好ましく、20~60μmがより好ましい。 The sealant layer may be a single layer film or a multilayer film, and may be selected according to the required functions. For example, from the viewpoint of imparting moisture resistance, a multilayer film in which a resin such as an ethylene-cyclic olefin copolymer or polymethylpentene is interposed can be used. In addition, the sealant layer may contain various additives such as flame retardants, slip agents, antiblocking agents, antioxidants, light stabilizers and tackifiers. The thickness of the sealant layer is preferably 10-100 μm, more preferably 20-60 μm.
 本発明の積層体は、二軸配向ポリエステルフィルムとガスバリア層の間、及び/又はガスバリア層とシーラント層の間に、接着剤層、印刷層などを設けて積層体を構成することもできる。 The laminate of the present invention can also be constructed by providing an adhesive layer, a printed layer, etc. between the biaxially oriented polyester film and the gas barrier layer and/or between the gas barrier layer and the sealant layer.
 本発明は、二軸配向ポリエステルフィルム、ガスバリア層及びシーラント層を含む積層体を含む、電池外装用材料を提供する。とりわけ、ラミネート型リチウムイオン電池用電池外装材に好適に用いられる。別の態様として、本発明は、医薬品包装用材料を提供する。 The present invention provides a battery exterior material including a laminate containing a biaxially oriented polyester film, a gas barrier layer and a sealant layer. In particular, it is suitably used for battery outer packaging materials for laminated lithium ion batteries. In another aspect, the invention provides a pharmaceutical packaging material.
 フィルム及び積層体の評価は次の測定法によって行った。特に記載しない場合は、測定は23℃、相対湿度65%の環境の測定室で行った。  Films and laminates were evaluated by the following measurement methods. Unless otherwise specified, measurements were carried out in a measurement room at 23° C. and a relative humidity of 65%.
[フィルムの厚み]
 JIS K7130-1999 A法に準拠し、ダイアルゲージを用いて測定した。
[Film thickness]
It was measured using a dial gauge in accordance with JIS K7130-1999 A method.
[TD方向の厚みムラの評価]
 フィルムロールからTD方向に800mm、長手方向に40mmサンプリングし、フィルムテスター連続厚み測定器(フジワーク社製)を用いて、5m/秒で連続的に幅方向の厚みを測定した。測定時の最大厚みをTmax.、最小厚みをTmin.、平均厚みをTave.とし、下記式(6)からフィルム幅方向の厚みムラを算出した。
 式(6) 厚みムラ={(Tmax.-Tmin.)/Tave.}×100(%)
[Evaluation of thickness unevenness in the TD direction]
A sample of 800 mm in the TD direction and 40 mm in the longitudinal direction was sampled from the film roll, and the thickness in the width direction was continuously measured at 5 m/sec using a film tester continuous thickness measuring device (manufactured by Fujiwork). The maximum thickness at the time of measurement is Tmax. , the minimum thickness is Tmin. , the average thickness of Tave. , and the thickness unevenness in the film width direction was calculated from the following formula (6).
Equation (6) Thickness unevenness = {(Tmax.-Tmin.)/Tave. }×100(%)
[フィルムの熱収縮率]
 熱収縮率は試験温度150℃、加熱時間15分間とした以外は、JIS-C-2318に準拠した寸法変化試験法で実施した。MD方向及びTD方向からそれぞれ試料を切り出し、測定した。
[Thermal shrinkage of film]
The heat shrinkage rate was measured by the dimensional change test method according to JIS-C-2318 except that the test temperature was 150° C. and the heating time was 15 minutes. Samples were cut out from the MD direction and the TD direction, respectively, and measured.
[フィルムのバイオマス度測定]
 得られたフィルムバイオマス度は、ASTM D6866-16 Method B (AMS)に示された放射性炭素(C14)測定により行った。
[Measurement of film biomass]
The degree of film biomass obtained was determined by radiocarbon (C14) measurement given in ASTM D6866-16 Method B (AMS).
[突き刺し強度]
食品衛生法における「食品、添加物等の規格基準 第3:器具及び容器包装」(昭和57年厚生省告示第20号)の「2.強度等試験法」に準拠して測定した。先端部半径0.5mmの針を、突刺し速度50mm/分でフィルムに突き刺し、針がフィルムを貫通する際の強度(N)を、フィルムの厚み(μm)で割った値を突き刺し強度とした。測定は常温(23℃)で行い、単位は[N/μm]である。
[Puncture strength]
It was measured in accordance with "2. Test methods for strength, etc." of "Standards and Standards for Foods, Additives, etc. No. 3: Utensils and Containers and Packages" (Ministry of Health and Welfare Notification No. 20, 1982) in the Food Sanitation Law. A needle with a tip radius of 0.5 mm was pierced into the film at a piercing speed of 50 mm/min, and the strength (N) when the needle penetrated the film was divided by the film thickness (μm) to obtain the piercing strength. . The measurement is performed at normal temperature (23° C.), and the unit is [N/μm].
[動摩擦係数]
JIS K-7125に準拠し、引張試験機(ORIENTEC社製テンシロン)を用い、23℃・65%RH環境下で、フィルムのコロナ処理を行っていない面の表面とSUS304―#400鏡面仕上げ材とを接合させた場合の動摩擦係数μdを求めた。なお、SUS304―#400鏡面仕上げ材重量は、1.5kgであり、SUS304―#400鏡面仕上げ材の底面積の大きさは、縦63mm×横63mmであった。また、摩擦測定の際の引張速度は、200mm/min.であった。
[Dynamic Friction Coefficient]
In accordance with JIS K-7125, using a tensile tester (Tensilon manufactured by ORIENTEC), under an environment of 23 ° C. and 65% RH, the surface of the film not subjected to corona treatment and SUS304-#400 mirror finish material A dynamic friction coefficient μd was obtained when the were joined. The weight of the SUS304-#400 mirror-finished material was 1.5 kg, and the size of the bottom area of the SUS304-#400 mirror-finished material was 63 mm long×63 mm wide. Moreover, the tensile speed during the friction measurement was 200 mm/min. Met.
[ヘイズ]
JIS-K-7105に準ずる方法で、試料をヘイズメーター(日本電色製、NDH2000)を用いて異なる箇所3ヶ所について測定し、その平均値をヘイズとした。単位は[%]である。
[Haze]
The sample was measured at three different locations using a haze meter (NDH2000, manufactured by Nippon Denshoku Co., Ltd.) in accordance with JIS-K-7105, and the average value was taken as the haze. The unit is [%].
[二軸配向フィルムの強伸度]
 JIS K 7127に準拠し、フィルムのMD方向に15mm幅、100mm長の試験サンプルを切り出した。引張試験機(株式会社島津製作所社製 オートグラフAG-I)にて、標点間距離50mm、引張速度200mm/minの条件で、試験サンプルを引張試験した。得られた応力―歪み曲線から試験サンプルの3%伸長時応力(F3値)、及び30%伸長時応力(F30値)を算出した。
[Strength and elongation of biaxially oriented film]
Based on JIS K 7127, a test sample of 15 mm width and 100 mm length was cut out in the MD direction of the film. The test sample was subjected to a tensile test using a tensile tester (Autograph AG-I manufactured by Shimadzu Corporation) under the conditions of a gauge length of 50 mm and a tensile speed of 200 mm/min. The obtained stress-strain curve was used to calculate the stress at 3% elongation (F3 value) and the stress at 30% elongation (F30 value) of the test sample.
[二軸配向フィルムの応力減衰率]
フィルムのMD方向に15mm幅、100mm長の試験サンプルを切り出した。引張試験機(株式会社島津製作所社製 オートグラフAG-I)にて、標点間距離50mm、引張速度200mm/minの条件で、50%の引張ひずみを印加し、前記50%の引張ひずみを印加した時から100秒後まで前記引張ひずみを保持し、その間の応力の変化を記録した。
 得られた保持時間-応力のグラフから、50%歪み印加直後から2秒保持後の応力値を読み取り、下記式(1)により2秒保持後の応力減衰率を求めた。
[Stress decay rate of biaxially oriented film]
A test sample with a width of 15 mm and a length of 100 mm was cut in the MD direction of the film. With a tensile tester (Autograph AG-I manufactured by Shimadzu Corporation), a tensile strain of 50% is applied under the conditions of a gauge length of 50 mm and a tensile speed of 200 mm / min, and the 50% tensile strain is applied. The tensile strain was maintained for 100 seconds after the application, and the change in stress during that time was recorded.
From the obtained holding time-stress graph, the stress value after holding for 2 seconds from immediately after application of 50% strain was read, and the stress decay rate after holding for 2 seconds was determined by the following formula (1).
式(1) 2秒保持後の応力減衰率(%)=100×(σ0-σ1)/σ0 Formula (1) Stress decay rate (%) after holding for 2 seconds = 100 x (σ0-σ1)/σ0
 ここで、σ0は、前記フィルムに引っ張り速度200mm/minの速度で引張力を与えて前記50%の引張ひずみが印加された直後における前記フィルムの引張応力を表し、σ1は、σ0から50%の引張ひずみを2秒間保持したときの応力値を示す。 Here, σ0 represents the tensile stress of the film immediately after the 50% tensile strain was applied by applying a tensile force to the film at a tensile speed of 200 mm/min, and σ1 is the tensile stress of 50% from σ0. The stress value when the tensile strain is held for 2 seconds is shown.
[冷間成形性]
 二軸配向ポリエステルフィルム、二軸配向ポリアミドフィルム(東洋紡社製、N1102、厚み15μm)、アルミニウム箔(8079材、厚み40μm)、及びシーラント層として未延伸ポリプロピレンフィルム(東洋紡社製、P1146、厚み70μm)を、ウレタン系接着剤(東洋モートン社製ドライラミネート接着剤、TM-509、CAT10L、酢酸エチルの配合比が33.6:4.0:62.4(質量比))を使用してドライラミネートし、二軸配向ポリエステルフィルム//二軸配向ポリアミドフィルム//アルミニウム箔//シーラント層の順に積層された積層体を作製した。得られた積層体をダイセット金型(凸部形状90mm×50mm)に設置し、プレス機により23℃下で加圧し、絞り成形を行った。成形時の絞り深さを0.2mm単位で深くしていき、上記積層体が破損しない最大の深さを絞り深さとして、次の通り評価した。
A: 絞り深さが8mm以上である
B: 絞り深さが6mm~8mm未満である
C: 絞り深さが4mm~6mm未満である
D: 絞り深さが4mm未満である
[Cold formability]
Biaxially oriented polyester film, biaxially oriented polyamide film (manufactured by Toyobo, N1102, thickness 15 μm), aluminum foil (material 8079, thickness 40 μm), and unstretched polypropylene film as a sealant layer (manufactured by Toyobo, P1146, thickness 70 μm) is dry laminated using a urethane-based adhesive (dry laminate adhesive manufactured by Toyo-Morton Co., Ltd., TM-509, CAT10L, ethyl acetate compounding ratio of 33.6: 4.0: 62.4 (mass ratio)) Then, a laminate was produced in which biaxially oriented polyester film//biaxially oriented polyamide film//aluminum foil//sealant layer were laminated in this order. The obtained laminate was placed in a die set mold (protrusion shape: 90 mm×50 mm) and pressurized at 23° C. by a pressing machine to carry out draw forming. The depth of drawing during molding was increased in units of 0.2 mm, and the maximum depth of drawing at which the laminate was not damaged was defined as the depth of drawing.
A: Drawing depth is 8mm or more
B: Drawing depth is less than 6mm to 8mm
C: The drawing depth is less than 4 mm to 6 mm
D: Drawing depth is less than 4mm
[成形後のスプリングバック]
 前記積層体をダイセット金型(凸部形状90mm×50mm)に設置し、プレス機により23℃下で加圧し、絞り成形を行った。尚、絞り成形時の金型の押し込み速度は200mm/min、押し込み後の保持時間は2秒とした。金型を取り去った後の容器深さを測定し、保持率(容器深さと成型深さの比)を算出して、次の通り評価した。
A: 保持率が90%以上である
B: 保持率が80%以上90%未満である
C: 保持率が70%以上80%未満である
D: 保持率が70%未満である
[Springback after molding]
The laminate was placed in a die set mold (protrusion shape: 90 mm×50 mm) and pressurized at 23° C. by a pressing machine to perform draw forming. In addition, the pushing speed of the mold during draw forming was set to 200 mm/min, and the holding time after pushing was set to 2 seconds. After removing the mold, the depth of the container was measured, and the retention rate (ratio of container depth to molding depth) was calculated and evaluated as follows.
A: Retention rate is 90% or more
B: Retention rate is 80% or more and less than 90%
C: Retention rate is 70% or more and less than 80%
D: Retention rate is less than 70%
[成形後のカール]
前記冷間成形性評価で破損せずに成形できた試験片を凸部が上になるように水平な台に置く。成形後の試験片4角が前記台を起点に浮き上がった高さの平均値を反り高さ平均値として、下記の基準で評価を行った。
A: 反り高さ平均値が3mm未満である
B: 反り高さ平均値が3mm以上5mm未満である
C: 反り高さ平均値が5mm以上10mm未満である
D: 反り高さ平均値が10mm以上である
[Curl after molding]
A test piece that was molded without being damaged in the cold formability evaluation was placed on a horizontal table so that the convex portion faced upward. The average value of the heights of the four corners of the test piece after molding, starting from the base, was defined as the average warpage height, and evaluation was performed according to the following criteria.
A: Average warpage height is less than 3mm
B: The average warpage height is 3 mm or more and less than 5 mm
C: The average warpage height is 5 mm or more and less than 10 mm
D: Warp height average value is 10 mm or more
[製造例]
 実施例及び比較例で使用したポリエステル樹脂は以下の通りである。
[Manufacturing example]
Polyester resins used in Examples and Comparative Examples are as follows.
(ポリエステル樹脂A)
 テレフタル酸//バイオマス由来エチレングリコール=100//100(モル%)(固有粘度0.80dl/g)である、バイオマス含有PET樹脂を用いた。バイオマス由来エチレングリコールはインディアン・グリコール社製原料を使用し、PET樹脂のバイオマス度は18%である。
(Polyester resin A)
A biomass-containing PET resin of terephthalic acid//biomass-derived ethylene glycol=100//100 (mol %) (intrinsic viscosity of 0.80 dl/g) was used. The biomass-derived ethylene glycol is a raw material manufactured by Indian Glycol, and the biomass degree of the PET resin is 18%.
(ポリエステル樹脂B)
テレフタル酸//エチレングリコール=100//100(モル%)、多孔質シリカ粒子の含有量0.72質量%(固有粘度0.62dl/g)である、化石燃料由来PET樹脂を用いた。
(Polyester resin B)
A fossil fuel-derived PET resin containing terephthalic acid//ethylene glycol=100//100 (mol %) and a porous silica particle content of 0.72 mass % (intrinsic viscosity of 0.62 dl/g) was used.
(ポリエステル樹脂C)
テレフタル酸//エチレングリコール=100//100(モル%)(固有粘度0.62dl/g)である、化石燃料由来PET樹脂を用いた。
(polyester resin C)
A fossil fuel-derived PET resin with terephthalic acid//ethylene glycol=100//100 (mol %) (intrinsic viscosity of 0.62 dl/g) was used.
[実施例1]
 押出機に、ポリエステル樹脂A及びポリエステル樹脂Bを表1に示した比率にて投入した。押出機にて樹脂を280℃で融解させた後、Tダイからキャストし、10℃の冷却ロールに静電密着法により密着させて未延伸シートを得た。次いで、得られた未延伸フィルムを80℃の温度に加熱したロールで予熱した後に赤外線ヒーターで120℃に加熱し、延伸倍率3.7倍でMD方向に一段延伸した。
 引き続き、テンター式横延伸機にて予熱温度120℃、延伸温度140℃、延伸倍率4.6倍にてTD方向に延伸した。その後、210℃で熱固定し、TD方向に5%リラックス処理を行い、チルロールに接触した側の表面層(A)に40W・min/m2の条件でコロナ処理を行い、ワインダーでロール状に巻取ることで、厚み12μmの二軸配向ポリエステルフィルムを作製した。
 得られたフィルムの原料組成及び製膜条件、得られたフィルムの物性及び評価結果を表1に示す。
[Example 1]
Polyester resin A and polyester resin B were charged into the extruder at the ratio shown in Table 1. After the resin was melted at 280° C. in an extruder, it was cast from a T-die and brought into close contact with a cooling roll at 10° C. by an electrostatic adhesion method to obtain an unstretched sheet. Next, the obtained unstretched film was preheated with rolls heated to a temperature of 80° C., heated to 120° C. with an infrared heater, and stretched in the MD direction at a draw ratio of 3.7 times.
Subsequently, the film was stretched in the TD direction at a preheating temperature of 120°C, a stretching temperature of 140°C, and a stretching ratio of 4.6 times using a tenter-type transverse stretching machine. After that, it is heat-set at 210°C, subjected to a 5% relaxation treatment in the TD direction, subjected to a corona treatment at 40 W min/m2 on the surface layer (A) on the side in contact with the chill roll, and wound into a roll with a winder. A biaxially oriented polyester film having a thickness of 12 μm was produced by removing the film.
Table 1 shows the raw material composition and film-forming conditions of the obtained film, the physical properties of the obtained film, and the evaluation results.
[実施例2~3]
 縦延伸倍率を表1に示した倍率に変更した以外、実施例1と同様に製膜して厚さ12μmの二軸配向ポリエステルフィルムを得た。物性及び評価結果を表1に示した。
[Examples 2-3]
A biaxially oriented polyester film having a thickness of 12 μm was obtained in the same manner as in Example 1 except that the longitudinal draw ratio was changed to the ratio shown in Table 1. Table 1 shows physical properties and evaluation results.
[実施例4]
縦延伸方法をロール3段延伸とし、ロール加熱温度115℃に加熱し、一段目を1.24倍、二段目を1.4倍、3段目を2.6倍とした三段延伸にて、全延伸倍率4.5倍で長手方向に延伸した以外は、実施例1と同様に製膜して厚さ12μmの二軸配向ポリエステルフィルムを得た。物性及び評価結果を表1に示した。
[Example 4]
The longitudinal stretching method is 3-stage roll stretching, the roll heating temperature is 115 ° C., and the 1st stage is 1.24 times, the 2nd stage is 1.4 times, and the 3rd stage is 2.6 times. A biaxially oriented polyester film having a thickness of 12 μm was obtained in the same manner as in Example 1 except that the film was stretched in the longitudinal direction at a total stretching ratio of 4.5 times. Table 1 shows physical properties and evaluation results.
[実施例5]
 押出機に、ポリエステル樹脂A及びポリエステル樹脂Bを表1に示した比率にて投入した。押出機にて樹脂を280℃で融解させた後、Tダイからキャストし、10℃の冷却ロールに静電密着法により密着させて未延伸シートを得た。次いで、得られた未延伸フィルムを80℃の温度に加熱したロールで予熱した後に赤外線ヒーターで120℃に加熱し、延伸倍率5.0倍でMD方向に一段延伸した。
 MD延伸直後のフィルムを熱風ヒーターで95℃に設定された加熱炉へ通し、加熱炉の入り口と出口のロール間の速度差を利用して、MD方向に3%リラックス処理を行った。
次いで、テンター式横延伸機での延伸方式を3段延伸に変更し、1段目と2段目及び2段目と3段目との間で1mの定長領域を設けて延伸した。延伸温度および各段階の延伸倍率は表1に示す通りである。その後、210℃で熱固定し、幅方向に5%熱弛緩処理を行い、チルロールに接触した側の表面に40W・min/m2の条件でコロナ処理を行い、ワインダーでロール状に巻取ることで、厚み12μmの二軸配向ポリエステルフィルムを作製した。
 得られたフィルムの原料組成及び製膜条件、得られたフィルムの物性及び評価結果を表1に示す。
[Example 5]
Polyester resin A and polyester resin B were charged into the extruder at the ratio shown in Table 1. After the resin was melted at 280° C. in an extruder, it was cast from a T-die and brought into close contact with a cooling roll at 10° C. by an electrostatic adhesion method to obtain an unstretched sheet. Next, the obtained unstretched film was preheated with rolls heated to a temperature of 80° C., heated to 120° C. with an infrared heater, and stretched in the MD direction at a draw ratio of 5.0 times.
The film immediately after MD stretching was passed through a heating furnace set at 95° C. with a hot air heater, and subjected to 3% relaxation treatment in the MD direction using the speed difference between rolls at the entrance and exit of the heating furnace.
Next, the stretching method in the tenter-type transverse stretching machine was changed to three-stage stretching, and the film was stretched by providing a constant-length region of 1 m between the first and second stages and between the second and third stages. Table 1 shows the stretching temperature and the stretching ratio at each stage. After that, it is heat-set at 210°C, subjected to 5% heat relaxation treatment in the width direction, corona-treated at 40 W min/m2 on the surface of the side in contact with the chill roll, and wound into a roll with a winder. , a biaxially oriented polyester film having a thickness of 12 μm was produced.
Table 1 shows the raw material composition and film-forming conditions of the obtained film, the physical properties of the obtained film, and the evaluation results.
[実施例6~7]
 ポリエステル樹脂Aとポリエステル樹脂Bの比率を表1に示した比率に変更した以外、実施例1と同様に製膜して厚さ12μmの二軸配向ポリエステルフィルムを得た。物性及び評価結果を表1に示した。
[Examples 6-7]
A biaxially oriented polyester film having a thickness of 12 μm was obtained in the same manner as in Example 1 except that the ratio of polyester resin A and polyester resin B was changed to the ratio shown in Table 1. Table 1 shows physical properties and evaluation results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[比較例1~4]
 縦延伸条件及び横延伸条件を表2に示した条件に変更した以外、実施例1と同様に製膜して厚さ12μmの二軸配向ポリエステルフィルムを得た。物性及び評価結果を表2に示した。
[Comparative Examples 1 to 4]
A biaxially oriented polyester film having a thickness of 12 μm was obtained in the same manner as in Example 1 except that the longitudinal stretching conditions and transverse stretching conditions were changed to the conditions shown in Table 2. Table 2 shows physical properties and evaluation results.
[比較例5~6]
ポリエステル樹脂Aとポリエステル樹脂Bの比率を表2に示した比率に変更した以外、実施例1と同様に製膜して厚さ12μmの二軸配向ポリエステルフィルムを得た。物性及び評価結果を表2に示した。
[Comparative Examples 5-6]
A biaxially oriented polyester film having a thickness of 12 μm was obtained in the same manner as in Example 1 except that the ratio of polyester resin A and polyester resin B was changed to the ratio shown in Table 2. Table 2 shows physical properties and evaluation results.
[比較例7]
ポリエステル樹脂Aの代わりに化石燃料由来のポリエチレンテレフタレート樹脂(ポリエステル樹脂C)に変更した以外、実施例1と同様に製膜して厚さ12μmの二軸配向ポリエステルフィルムを得た。物性および評価結果を表2に示した。
[Comparative Example 7]
A biaxially oriented polyester film having a thickness of 12 μm was obtained in the same manner as in Example 1, except that the polyester resin A was replaced with a polyethylene terephthalate resin (polyester resin C) derived from a fossil fuel. Table 2 shows physical properties and evaluation results.
Figure JPOXMLDOC01-appb-T000002

 
Figure JPOXMLDOC01-appb-T000002

 

Claims (7)

  1.  テレフタル酸とエチレングリコールを主たる構成成分とする二軸配向ポリエステルフィルムであって、
    JIS Z 7102に準じて測定される突き刺し強度が0.45N/μm以上、0.80N/μm以下であり、
    150℃での熱収縮率がMD方向及びTD方向においていずれも2.5%以下であり、
    フィルムの少なくとも一方の面と金属板との動摩擦係数μdが0.10以上、0.50以下であり、
    25℃における引張応力緩和試験において、下記式(1)で示される応力減衰率が、MD方向及びTD方向においていずれも15.0%以上であり、
    式(1) 応力減衰率(%)=100×(σ0-σ1)/σ0
    ここで、σ0は、前記フィルムに引張速度200mm/minの速度で引張力を与えて前記50%の引張ひずみが印加された直後における引張応力の値を表し、σ1は、σ0から50%の引張ひずみを2秒間保持したときの引張応力の値を示す、
    フィルム中の全炭素に対して、放射性炭素C14の含有量が10%以上、20%以下である、二軸配向ポリエステルフィルム。
    A biaxially oriented polyester film comprising terephthalic acid and ethylene glycol as main components,
    The puncture strength measured according to JIS Z 7102 is 0.45 N/μm or more and 0.80 N/μm or less,
    The thermal shrinkage rate at 150 ° C. is 2.5% or less in both the MD direction and the TD direction,
    A dynamic friction coefficient μd between at least one surface of the film and the metal plate is 0.10 or more and 0.50 or less,
    In a tensile stress relaxation test at 25 ° C., the stress attenuation rate represented by the following formula (1) is 15.0% or more in both the MD direction and the TD direction,
    Formula (1) Stress attenuation rate (%) = 100 × (σ0-σ1)/σ0
    Here, σ0 represents the value of the tensile stress immediately after applying a tensile force to the film at a tensile speed of 200 mm / min and the 50% tensile strain is applied, and σ1 is the tensile stress from σ0 to 50%. Shows the value of tensile stress when the strain is held for 2 seconds,
    A biaxially oriented polyester film in which the content of radioactive carbon C14 is 10% or more and 20% or less with respect to the total carbon in the film.
  2. 25℃における、フィルムのMD方向及びTD方向の3%伸長時応力をそれぞれX(MD)及びX(TD)、MD方向及びTD方向の及び30%伸長時応力をそれぞれY(MD)及びY(TD)、Y(MD)/X(MD)及びY(MD)/X(MD)の値をそれぞれZ(MD)及びZ(TD)としたとき、下記式(2)~(5)のいずれも満たす、請求項1記載の二軸配向ポリエステルフィルム。
     式(2) 125MPa≦Y(MD)≦155MPa
    式(3) 140MPa≦Y(TD)≦190MPa
     式(4) 1.3≦Z(MD)≦1.6
    式(5) 1.7≦Z(TD)≦2.2
    The stress at 3% elongation in the MD and TD of the film at 25° C. is X(MD) and X(TD), respectively; TD), Y(MD)/X(MD) and Y(MD)/X(MD) are Z(MD) and Z(TD), respectively, any of the following formulas (2) to (5) The biaxially oriented polyester film of claim 1, which also satisfies
    Formula (2) 125 MPa ≤ Y(MD) ≤ 155 MPa
    Formula (3) 140 MPa ≤ Y(TD) ≤ 190 MPa
    Formula (4) 1.3≦Z(MD)≦1.6
    Formula (5) 1.7≦Z(TD)≦2.2
  3. バイオマス由来のエチレングリコールをジオール単位とし、化石燃料由来のジカルボン酸をジカルボン酸単位とするバイオマスポリエステル樹脂を含む、請求項1又は2に記載の二軸配向ポリエステルフィルム。 The biaxially oriented polyester film according to claim 1 or 2, comprising a biomass polyester resin having a biomass-derived ethylene glycol as a diol unit and a fossil fuel-derived dicarboxylic acid as a dicarboxylic acid unit.
  4.  冷間成形用途に用いられる請求項1~3のいずれか一項に記載の二軸配向ポリエステルフィルム。 The biaxially oriented polyester film according to any one of claims 1 to 3, which is used for cold forming applications.
  5.  請求項1~4のいずれか一項に記載の二軸配向ポリエステルフィルム、ガスバリア層及びシーラント層を含む積層体。 A laminate comprising the biaxially oriented polyester film according to any one of claims 1 to 4, a gas barrier layer and a sealant layer.
  6.  前記ガスバリア層が金属箔を含む、請求項5に記載の積層体。 The laminate according to claim 5, wherein the gas barrier layer contains a metal foil.
  7.  請求項5又は6に記載の積層体を含む電池外装用材料。
     
    A battery exterior material comprising the laminate according to claim 5 or 6.
PCT/JP2023/004185 2022-02-16 2023-02-08 Biaxially oriented polyester film WO2023157730A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024501321A JPWO2023157730A1 (en) 2022-02-16 2023-02-08

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022022126 2022-02-16
JP2022-022126 2022-02-16
JP2022-060472 2022-03-31
JP2022060472 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023157730A1 true WO2023157730A1 (en) 2023-08-24

Family

ID=87578107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004185 WO2023157730A1 (en) 2022-02-16 2023-02-08 Biaxially oriented polyester film

Country Status (3)

Country Link
JP (1) JPWO2023157730A1 (en)
TW (1) TW202344582A (en)
WO (1) WO2023157730A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015147309A (en) * 2014-02-05 2015-08-20 東レ株式会社 biaxially oriented polyester film
JP2016069432A (en) * 2014-09-27 2016-05-09 三菱樹脂株式会社 Polyester film and protection sheet polyester film for rear face of solar battery
JP2017149987A (en) * 2012-09-27 2017-08-31 東洋紡株式会社 Polyester film
WO2021117736A1 (en) * 2019-12-13 2021-06-17 東洋紡株式会社 Biaxially oriented polyester film and production method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017149987A (en) * 2012-09-27 2017-08-31 東洋紡株式会社 Polyester film
JP2015147309A (en) * 2014-02-05 2015-08-20 東レ株式会社 biaxially oriented polyester film
JP2016069432A (en) * 2014-09-27 2016-05-09 三菱樹脂株式会社 Polyester film and protection sheet polyester film for rear face of solar battery
WO2021117736A1 (en) * 2019-12-13 2021-06-17 東洋紡株式会社 Biaxially oriented polyester film and production method therefor

Also Published As

Publication number Publication date
TW202344582A (en) 2023-11-16
JPWO2023157730A1 (en) 2023-08-24

Similar Documents

Publication Publication Date Title
JP6874277B2 (en) Biaxially stretched polyester film and its manufacturing method
TW201905049A (en) Biaxially-oriented polyester film
WO2017170333A1 (en) Laminate for battery packages
WO2020022060A1 (en) Laminate and packaging bag comprising same
WO2023157730A1 (en) Biaxially oriented polyester film
WO2023157731A1 (en) Biaxially oriented polyester film
WO2023176214A1 (en) Biaxially oriented polyamide film
WO2023176213A1 (en) Biaxially oriented polyamide film
WO2023176212A1 (en) Biaxially oriented polyamide film, and laminate containing biaxially oriented polyester film
JP2005146112A (en) Laminated film for paperboard
US20230374349A1 (en) Biaxially oriented polyester film and laminated body
JP7444177B2 (en) Biaxially oriented polyester films and laminates
JPWO2019142781A1 (en) Biaxially oriented polyester film
WO2023157729A1 (en) Biaxially oriented polyester film
JP2020012086A (en) Polyester-based film roll
JP7243905B2 (en) Laminates, packaging materials, and packages
JP6826784B2 (en) Biaxially oriented polyester film and method for producing biaxially oriented polyester film
JP7365569B2 (en) Biaxially oriented polyester film and method for producing biaxially oriented polyester film
JP7365568B2 (en) Biaxially oriented polyester film and method for producing biaxially oriented polyester film
WO2022202569A1 (en) Biaxially-oriented polyester film and layered body
CN118843536A (en) Biaxially oriented polyamide film
TW202138438A (en) Biaxially oriented polyester film, and production method for biaxially oriented polyester film
TW202128823A (en) Biaxially oriented polyester film, and production method for biaxially oriented polyester film
CN118843537A (en) Biaxially oriented polyamide film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23756256

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024501321

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE